aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/algebra/exposed.lsp.pamphlet3
-rw-r--r--src/share/algebra/browse.daase3392
-rw-r--r--src/share/algebra/category.daase6550
-rw-r--r--src/share/algebra/compress.daase1325
-rw-r--r--src/share/algebra/interp.daase10647
-rw-r--r--src/share/algebra/operation.daase32186
6 files changed, 27062 insertions, 27041 deletions
diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet
index 2d584577..f0ec1803 100644
--- a/src/algebra/exposed.lsp.pamphlet
+++ b/src/algebra/exposed.lsp.pamphlet
@@ -627,10 +627,11 @@
(|DequeueAggregate| . DQAGG)
(|Dictionary| . DIAGG)
(|DictionaryOperations| . DIOPS)
- (|DifferentialDomain| . DIFFEXT)
+ (|DifferentialDomain| . DIFFDOM)
(|DifferentialExtension| . DIFEXT)
(|DifferentialPolynomialCategory| . DPOLCAT)
(|DifferentialRing| . DIFRING)
+ (|DifferentialSpace| . DIFFSPC)
(|DifferentialVariableCategory| . DVARCAT)
(|DirectProductCategory| . DIRPCAT)
(|DivisionRing| . DIVRING)
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 21253206..53ab59f1 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2267485 . 3485510916)
+(2268331 . 3485633349)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4451 . T) (-4449 . T) (-4448 . T) ((-4456 "*") . T) (-4447 . T) (-4452 . T) (-4446 . T))
+((-4453 . T) (-4451 . T) (-4450 . T) ((-4458 "*") . T) (-4449 . T) (-4454 . T) (-4448 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -1384)
+(-32 R -1386)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))
+((|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4454)))
+((|HasAttribute| |#1| (QUOTE -4456)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4454 . T) (-4455 . T))
+((-4456 . T) (-4457 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4448 . T) (-4449 . T) (-4451 . T))
+((-4450 . T) (-4451 . T) (-4453 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1384 UP UPUP -1929)
+(-40 -1386 UP UPUP -3201)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4447 |has| (-415 |#2|) (-370)) (-4452 |has| (-415 |#2|) (-370)) (-4446 |has| (-415 |#2|) (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-415 |#2|) (QUOTE (-146))) (|HasCategory| (-415 |#2|) (QUOTE (-148))) (|HasCategory| (-415 |#2|) (QUOTE (-356))) (-2813 (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-375))) (-2813 (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (-2813 (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-356))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -647) (QUOTE (-572)))) (-2813 (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))))
-(-41 R -1384)
+((-4449 |has| (-417 |#2|) (-372)) (-4454 |has| (-417 |#2|) (-372)) (-4448 |has| (-417 |#2|) (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2818 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2818 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2818 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2818 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
+(-41 R -1386)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -438) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -440) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -103,34 +103,34 @@ NIL
(-43 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-313))))
+((|HasCategory| |#1| (QUOTE (-315))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4451 |has| |#1| (-564)) (-4449 . T) (-4448 . T))
-((|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564))))
+((-4453 |has| |#1| (-566)) (-4451 . T) (-4450 . T))
+((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4454 . T) (-4455 . T))
-((-2813 (-12 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-858))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|))))))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-858))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-858))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))))
+((-4456 . T) (-4457 . T))
+((-2818 (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|))))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| $ (QUOTE (-1062))) (|HasCategory| $ (LIST (QUOTE -1051) (QUOTE (-574)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4451 . T))
+((-4453 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -1384)
+(-54 |Base| R -1386)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4454 . T) (-4455 . T))
+((-4456 . T) (-4457 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-61 -2030)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-61 -2032)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2030)
+(-62 -2032)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -2030)
+(-63 -2032)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2030)
+(-64 -2032)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2030)
+(-65 -2032)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2030)
+(-66 -2032)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -2030)
+(-67 -2032)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2030)
+(-68 -2032)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2030)
+(-69 -2032)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -2030)
+(-70 -2032)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -2030)
+(-71 -2032)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -2030)
+(-72 -2032)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -2030)
+(-73 -2032)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -2030)
+(-74 -2032)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,66 +236,66 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2030)
+(-77 -2032)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2030)
+(-78 -2032)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -2030)
+(-79 -2032)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2030)
+(-80 -2032)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2030)
+(-81 -2032)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -2030)
+(-82 -2032)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2030)
+(-83 -2032)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2030)
+(-84 -2032)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2030)
+(-85 -2032)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2030)
+(-86 -2032)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2030)
+(-87 -2032)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -2030)
+(-88 -2032)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -2030)
+(-89 -2032)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-90 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-370))))
+((|HasCategory| |#1| (QUOTE (-372))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4454 . T))
+((-4456 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4454 . T) ((-4456 "*") . T) (-4455 . T) (-4451 . T) (-4449 . T) (-4448 . T) (-4447 . T) (-4452 . T) (-4446 . T) (-4445 . T) (-4444 . T) (-4443 . T) (-4442 . T) (-4450 . T) (-4453 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4441 . T))
+((-4456 . T) ((-4458 "*") . T) (-4457 . T) (-4453 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4454 . T) (-4448 . T) (-4447 . T) (-4446 . T) (-4445 . T) (-4444 . T) (-4452 . T) (-4455 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4443 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4451 . T))
+((-4453 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4456 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4458 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4454 . T))
+((-4456 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4455 . T))
+((-4457 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-572) (QUOTE (-918))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-572) (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-148))) (|HasCategory| (-572) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-1033))) (|HasCategory| (-572) (QUOTE (-828))) (-2813 (|HasCategory| (-572) (QUOTE (-828))) (|HasCategory| (-572) (QUOTE (-858)))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-1163))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-572) (QUOTE (-237))) (|HasCategory| (-572) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-572) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -315) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -292) (QUOTE (-572)) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-313))) (|HasCategory| (-572) (QUOTE (-553))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-572) (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (|HasCategory| (-572) (QUOTE (-146)))))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-574) (QUOTE (-920))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1035))) (|HasCategory| (-574) (QUOTE (-830))) (-2818 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1165))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (|HasCategory| (-574) (QUOTE (-146)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4455 . T) (-4454 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1111))) (|HasCategory| (-112) (LIST (QUOTE -315) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-112) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-112) (QUOTE (-1111))) (|HasCategory| (-112) (LIST (QUOTE -621) (QUOTE (-870)))))
+((-4457 . T) (-4456 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1113))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1113))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4449 . T) (-4448 . T))
+((-4451 . T) (-4450 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -392,22 +392,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-116 -1384 UP)
+(-116 -1386 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
(-118 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-117 |#1|) (QUOTE (-918))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-117 |#1|) (QUOTE (-1033))) (|HasCategory| (-117 |#1|) (QUOTE (-828))) (-2813 (|HasCategory| (-117 |#1|) (QUOTE (-828))) (|HasCategory| (-117 |#1|) (QUOTE (-858)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-117 |#1|) (QUOTE (-1163))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -315) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -292) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-313))) (|HasCategory| (-117 |#1|) (QUOTE (-553))) (|HasCategory| (-117 |#1|) (QUOTE (-858))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-918)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-117 |#1|) (QUOTE (-920))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-117 |#1|) (QUOTE (-1035))) (|HasCategory| (-117 |#1|) (QUOTE (-830))) (-2818 (|HasCategory| (-117 |#1|) (QUOTE (-830))) (|HasCategory| (-117 |#1|) (QUOTE (-860)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-1165))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-315))) (|HasCategory| (-117 |#1|) (QUOTE (-555))) (|HasCategory| (-117 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-920)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
(-119 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4455)))
+((|HasAttribute| |#1| (QUOTE -4457)))
(-120 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -418,15 +418,15 @@ NIL
NIL
(-122 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-123 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-124)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
(-125 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -434,20 +434,20 @@ NIL
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4454 . T) (-4455 . T))
+((-4456 . T) (-4457 . T))
NIL
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-128 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-129)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| (-130) (QUOTE (-858))) (|HasCategory| (-130) (LIST (QUOTE -315) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1111))) (|HasCategory| (-130) (LIST (QUOTE -315) (QUOTE (-130)))))) (-2813 (-12 (|HasCategory| (-130) (QUOTE (-1111))) (|HasCategory| (-130) (LIST (QUOTE -315) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-130) (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| (-130) (QUOTE (-858))) (|HasCategory| (-130) (QUOTE (-1111)))) (|HasCategory| (-130) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-130) (QUOTE (-1111))) (|HasCategory| (-130) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-130) (QUOTE (-1111))) (|HasCategory| (-130) (LIST (QUOTE -315) (QUOTE (-130))))))
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1113))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-2818 (-12 (|HasCategory| (-130) (QUOTE (-1113))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1113)))) (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1113))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-130) (QUOTE (-1113))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))))
(-130)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -470,13 +470,13 @@ NIL
NIL
(-135)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4456 "*") . T))
+(((-4458 "*") . T))
NIL
-(-136 |minix| -4127 S T$)
+(-136 |minix| -4129 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-137 |minix| -4127 R)
+(-137 |minix| -4129 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -498,8 +498,8 @@ NIL
NIL
(-142)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4454 . T) (-4444 . T) (-4455 . T))
-((-2813 (-12 (|HasCategory| (-145) (QUOTE (-375))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-145) (QUOTE (-375))) (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))))
+((-4456 . T) (-4446 . T) (-4457 . T))
+((-2818 (-12 (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
(-143 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -514,7 +514,7 @@ NIL
NIL
(-146)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4451 . T))
+((-4453 . T))
NIL
(-147 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -522,9 +522,9 @@ NIL
NIL
(-148)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-149 -1384 UP UPUP)
+(-149 -1386 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -535,14 +535,14 @@ NIL
(-151 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasAttribute| |#1| (QUOTE -4454)))
+((|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasAttribute| |#1| (QUOTE -4456)))
(-152 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-153 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4449 . T) (-4448 . T) (-4451 . T))
+((-4451 . T) (-4450 . T) (-4453 . T))
NIL
(-154)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -564,7 +564,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-159 R -1384)
+(-159 R -1386)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -595,10 +595,10 @@ NIL
(-166 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1214))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-564))))
+((|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1216))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1035))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))))
(-167 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4447 -2813 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4450 |has| |#1| (-6 -4450)) (-4453 |has| |#1| (-6 -4453)) (-3559 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 -2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4452 |has| |#1| (-6 -4452)) (-4455 |has| |#1| (-6 -4455)) (-3562 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
(-168 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -614,8 +614,8 @@ NIL
NIL
(-171 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4447 -2813 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4450 |has| |#1| (-6 -4450)) (-4453 |has| |#1| (-6 -4453)) (-3559 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-356))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-237))) (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1214)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-918))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-918))))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1214)))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1071))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-1214)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-237))) (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasAttribute| |#1| (QUOTE -4453)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-356)))))
+((-4449 -2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4452 |has| |#1| (-6 -4452)) (-4455 |has| |#1| (-6 -4455)) (-3562 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-377)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1216)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-920))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-920))))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1216)))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (QUOTE (-1035))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-1216)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#1| (QUOTE -4455)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-358)))))
(-172 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -626,7 +626,7 @@ NIL
NIL
(-174)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
(-175)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -634,7 +634,7 @@ NIL
NIL
(-176 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4456 "*") . T) (-4447 . T) (-4452 . T) (-4446 . T) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") . T) (-4449 . T) (-4454 . T) (-4448 . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
(-177)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -651,7 +651,7 @@ NIL
(-180 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-961 |#2|) (LIST (QUOTE -895) (|devaluate| |#1|))))
+((|HasCategory| (-963 |#2|) (LIST (QUOTE -897) (|devaluate| |#1|))))
(-181 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -688,7 +688,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-190 R -1384)
+(-190 R -1386)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -796,23 +796,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-217 -1384 UP UPUP R)
+(-217 -1386 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-218 -1384 FP)
+(-218 -1386 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-219)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-572) (QUOTE (-918))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-572) (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-148))) (|HasCategory| (-572) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-1033))) (|HasCategory| (-572) (QUOTE (-828))) (-2813 (|HasCategory| (-572) (QUOTE (-828))) (|HasCategory| (-572) (QUOTE (-858)))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-1163))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-572) (QUOTE (-237))) (|HasCategory| (-572) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-572) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -315) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -292) (QUOTE (-572)) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-313))) (|HasCategory| (-572) (QUOTE (-553))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-572) (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (|HasCategory| (-572) (QUOTE (-146)))))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-574) (QUOTE (-920))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1035))) (|HasCategory| (-574) (QUOTE (-830))) (-2818 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1165))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (|HasCategory| (-574) (QUOTE (-146)))))
(-220)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-221 R -1384)
+(-221 R -1386)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -826,19 +826,19 @@ NIL
NIL
(-224 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-225 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-226 R -1384)
+(-226 R -1386)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-227)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3548 . T) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3551 . T) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
(-228)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -846,23 +846,23 @@ NIL
NIL
(-229 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-564))) (|HasAttribute| |#1| (QUOTE (-4456 "*"))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4458 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-230 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-231 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4455 . T))
+((-4457 . T))
NIL
(-232 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))))
+((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239))))
(-233 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4451 . T))
+((-4453 . T))
NIL
(-234 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -873,4296 +873,4304 @@ NIL
NIL
NIL
(-236 S)
-((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.")))
+((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
NIL
NIL
(-237)
+((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
+NIL
+NIL
+(-238 S)
+((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.")))
+NIL
+NIL
+(-239)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-238 A S)
+(-240 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4454)))
-(-239 S)
+((|HasAttribute| |#1| (QUOTE -4456)))
+(-241 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4455 . T))
+((-4457 . T))
NIL
-(-240)
+(-242)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-241 S -4127 R)
+(-243 S -4129 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856))) (|HasAttribute| |#3| (QUOTE -4451)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-1111))))
-(-242 -4127 R)
+((|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858))) (|HasAttribute| |#3| (QUOTE -4453)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-1113))))
+(-244 -4129 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
+((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T))
NIL
-(-243 -4127 A B)
+(-245 -4129 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-244 -4127 R)
+(-246 -4129 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-2813 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
-(-245)
+((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2818 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+(-247)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
NIL
-(-246 S)
+(-248 S)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
NIL
NIL
-(-247)
+(-249)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4447 . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-248 S)
+(-250 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
NIL
NIL
-(-249 S)
+(-251 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-250 M)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-252 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
-(-251 |vl| R)
+(-253 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-918))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-252)
+(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-920))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-254)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
NIL
-(-253)
+(-255)
((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}.")))
NIL
NIL
-(-254)
+(-256)
((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}.")))
NIL
NIL
-(-255 |n| R M S)
+(-257 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4451 -2813 (-2085 (|has| |#4| (-1060)) (|has| |#4| (-237))) (|has| |#4| (-6 -4451)) (-2085 (|has| |#4| (-1060)) (|has| |#4| (-909 (-1188))))) (-4448 |has| |#4| (-1060)) (-4449 |has| |#4| (-1060)) ((-4456 "*") |has| |#4| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#4| (QUOTE (-370))) (-2813 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (QUOTE (-1060)))) (-2813 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-370)))) (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-801))) (-2813 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (QUOTE (-856)))) (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (QUOTE (-734))) (-2813 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-237)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-734)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-801)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-856)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1060)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1060))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (-2813 (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-734))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-2813 (|HasCategory| |#4| (QUOTE (-1060))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1111)))) (-2813 (|HasAttribute| |#4| (QUOTE -4451)) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))))
-(-256 |n| R S)
+((-4453 -2818 (-2088 (|has| |#4| (-1062)) (|has| |#4| (-239))) (|has| |#4| (-6 -4453)) (-2088 (|has| |#4| (-1062)) (|has| |#4| (-911 (-1190))))) (-4450 |has| |#4| (-1062)) (-4451 |has| |#4| (-1062)) ((-4458 "*") |has| |#4| (-174)) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#4| (QUOTE (-372))) (-2818 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-1062)))) (-2818 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372)))) (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-803))) (-2818 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (QUOTE (-858)))) (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (QUOTE (-736))) (-2818 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1062)))) (|HasCategory| |#4| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-377)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-736)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-803)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-858)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1062)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1062))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (-2818 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (|HasCategory| |#4| (QUOTE (-736))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-2818 (|HasCategory| |#4| (QUOTE (-1062))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1113)))) (-2818 (|HasAttribute| |#4| (QUOTE -4453)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))))
+(-258 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4451 -2813 (-2085 (|has| |#3| (-1060)) (|has| |#3| (-237))) (|has| |#3| (-6 -4451)) (-2085 (|has| |#3| (-1060)) (|has| |#3| (-909 (-1188))))) (-4448 |has| |#3| (-1060)) (-4449 |has| |#3| (-1060)) ((-4456 "*") |has| |#3| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#3| (QUOTE (-370))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-801))) (-2813 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856)))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-734))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-237)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-801)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-856)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-734))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-2813 (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (-2813 (|HasAttribute| |#3| (QUOTE -4451)) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))))
-(-257 A R S V E)
+((-4453 -2818 (-2088 (|has| |#3| (-1062)) (|has| |#3| (-239))) (|has| |#3| (-6 -4453)) (-2088 (|has| |#3| (-1062)) (|has| |#3| (-911 (-1190))))) (-4450 |has| |#3| (-1062)) (-4451 |has| |#3| (-1062)) ((-4458 "*") |has| |#3| (-174)) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#3| (QUOTE (-372))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-803))) (-2818 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858)))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-736))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-858)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-736))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-2818 (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113)))) (-2818 (|HasAttribute| |#3| (QUOTE -4453)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
+(-259 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
-((|HasCategory| |#2| (QUOTE (-237))))
-(-258 R S V E)
+((|HasCategory| |#2| (QUOTE (-239))))
+(-260 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
NIL
-(-259 S)
+(-261 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4454 . T) (-4455 . T))
+((-4456 . T) (-4457 . T))
NIL
-(-260)
+(-262)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-261 R |Ex|)
+(-263 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-262)
+(-264)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-263 R)
+(-265 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-264 |Ex|)
+(-266 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-265)
+(-267)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
-(-266)
+(-268)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-267 S)
+(-269 S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
-(-268)
+(-270)
((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-269 R S V)
+(-271 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#3| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-270 A S)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-272 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-271 S)
+(-273 S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-272)
+(-274)
((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
NIL
NIL
-(-273)
+(-275)
((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-274)
+(-276)
((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-275)
+(-277)
((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-276)
+(-278)
((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-277)
+(-279)
((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-278)
+(-280)
((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-279)
+(-281)
((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-280)
+(-282)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-281 R -1384)
+(-283 R -1386)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-282 R -1384)
+(-284 R -1386)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-283 |Coef| UTS ULS)
+(-285 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-370))))
-(-284 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (-372))))
+(-286 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-370))))
-(-285)
+((|HasCategory| |#1| (QUOTE (-372))))
+(-287)
((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
NIL
NIL
-(-286)
+(-288)
((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}.")))
NIL
NIL
-(-287 A S)
+(-289 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))))
-(-288 S)
+((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))))
+(-290 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4455 . T))
+((-4457 . T))
NIL
-(-289 S)
+(-291 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-290)
+(-292)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-291 |Coef| UTS)
+(-293 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-292 S T$)
+(-294 S T$)
((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}.")))
NIL
NIL
-(-293 S |Dom| |Im|)
+(-295 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4455)))
-(-294 |Dom| |Im|)
+((|HasAttribute| |#1| (QUOTE -4457)))
+(-296 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-295 S R |Mod| -3104 -1767 |exactQuo|)
+(-297 S R |Mod| -2348 -2130 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-296)
+(-298)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4447 . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-297)
+(-299)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-298 R)
+(-300 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-299 S R)
+(-301 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-300 S)
+(-302 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4451 -2813 (|has| |#1| (-1060)) (|has| |#1| (-481))) (-4448 |has| |#1| (-1060)) (-4449 |has| |#1| (-1060)))
-((|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-734)))) (|HasCategory| |#1| (QUOTE (-481))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-308))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-481)))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-734)))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-734))))
-(-301 |Key| |Entry|)
+((-4453 -2818 (|has| |#1| (-1062)) (|has| |#1| (-483))) (-4450 |has| |#1| (-1062)) (-4451 |has| |#1| (-1062)))
+((|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736)))) (|HasCategory| |#1| (QUOTE (-483))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-1113)))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-310))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483)))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736)))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-736))))
+(-303 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-302)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-304)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-303 -1384 S)
+(-305 -1386 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-304 E -1384)
+(-306 E -1386)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
-(-305 A B)
+(-307 A B)
((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-306)
+(-308)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-307 S)
+(-309 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-1060))))
-(-308)
+((|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1062))))
+(-310)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-309 R1)
+(-311 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-310 R1 R2)
+(-312 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-311)
+(-313)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-312 S)
+(-314 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-313)
+(-315)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-314 S R)
+(-316 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-315 R)
+(-317 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-316 -1384)
+(-318 -1386)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-317)
+(-319)
((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
-(-318)
+(-320)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-319 R FE |var| |cen|)
+(-321 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-918))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-1033))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-828))) (-2813 (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-828))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-858)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-1163))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -315) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -292) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-313))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-553))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-858))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-918))) (|HasCategory| $ (QUOTE (-146)))) (-2813 (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-918))) (|HasCategory| $ (QUOTE (-146))))))
-(-320 R S)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-920))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-1035))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-2818 (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-860)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-1165))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -317) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-315))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-555))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-860))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-920))) (|HasCategory| $ (QUOTE (-146)))) (-2818 (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-920))) (|HasCategory| $ (QUOTE (-146))))))
+(-322 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-321 R FE)
+(-323 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-322 R)
+(-324 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4451 -2813 (-12 (|has| |#1| (-564)) (-2813 (|has| |#1| (-1060)) (|has| |#1| (-481)))) (|has| |#1| (-1060)) (|has| |#1| (-481))) (-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) ((-4456 "*") |has| |#1| (-564)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-564)) (-4446 |has| |#1| (-564)))
-((-2813 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (QUOTE (-21))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (QUOTE (-1060))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-12 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-2813 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1123)))) (-2813 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
-(-323 R -1384)
+((-4453 -2818 (-12 (|has| |#1| (-566)) (-2818 (|has| |#1| (-1062)) (|has| |#1| (-483)))) (|has| |#1| (-1062)) (|has| |#1| (-483))) (-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) ((-4458 "*") |has| |#1| (-566)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-566)) (-4448 |has| |#1| (-566)))
+((-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (QUOTE (-21))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (QUOTE (-1062))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062)))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2818 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2818 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| $ (QUOTE (-1062))) (|HasCategory| $ (LIST (QUOTE -1051) (QUOTE (-574)))))
+(-325 R -1386)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
-(-324)
+(-326)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-325 FE |var| |cen|)
+(-327 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
-(-326 M)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+(-328 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-327 E OV R P)
+(-329 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-328 S)
+(-330 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4449 . T) (-4448 . T))
-((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-800))))
-(-329 S E)
+((-4451 . T) (-4450 . T))
+((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-802))))
+(-331 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-330 S)
+(-332 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-779) (QUOTE (-800))))
-(-331 S R E)
+((|HasCategory| (-781) (QUOTE (-802))))
+(-333 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))))
-(-332 R E)
+((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))))
+(-334 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-333 S)
+(-335 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-334 S -1384)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-336 S -1386)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-375))))
-(-335 -1384)
+((|HasCategory| |#2| (QUOTE (-377))))
+(-337 -1386)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-336)
+(-338)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
NIL
NIL
-(-337 E)
+(-339 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-338)
+(-340)
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}")))
NIL
NIL
-(-339)
+(-341)
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-341 S -1384 UP UPUP R)
+(-343 S -1386 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-342 -1384 UP UPUP R)
+(-344 -1386 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-343 -1384 UP UPUP R)
+(-345 -1386 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
-(-344 S R)
+(-346 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-345 R)
+((|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-347 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-346 |basicSymbols| |subscriptedSymbols| R)
+(-348 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-386)))) (|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
-(-347 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-388)))) (|HasCategory| $ (QUOTE (-1062))) (|HasCategory| $ (LIST (QUOTE -1051) (QUOTE (-574)))))
+(-349 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-348 S -1384 UP UPUP)
+(-350 S -1386 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-370))))
-(-349 -1384 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-372))))
+(-351 -1386 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4447 |has| (-415 |#2|) (-370)) (-4452 |has| (-415 |#2|) (-370)) (-4446 |has| (-415 |#2|) (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 |has| (-417 |#2|) (-372)) (-4454 |has| (-417 |#2|) (-372)) (-4448 |has| (-417 |#2|) (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-350 |p| |extdeg|)
+(-352 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| (-919 |#1|) (QUOTE (-146))) (|HasCategory| (-919 |#1|) (QUOTE (-375)))) (|HasCategory| (-919 |#1|) (QUOTE (-148))) (|HasCategory| (-919 |#1|) (QUOTE (-375))) (|HasCategory| (-919 |#1|) (QUOTE (-146))))
-(-351 GF |defpol|)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| (-921 |#1|) (QUOTE (-146))) (|HasCategory| (-921 |#1|) (QUOTE (-377)))) (|HasCategory| (-921 |#1|) (QUOTE (-148))) (|HasCategory| (-921 |#1|) (QUOTE (-377))) (|HasCategory| (-921 |#1|) (QUOTE (-146))))
+(-353 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
-(-352 GF |extdeg|)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+(-354 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
-(-353 GF)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+(-355 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-354 F1 GF F2)
+(-356 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-355 S)
+(-357 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-356)
+(-358)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-357 R UP -1384)
+(-359 R UP -1386)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-358 |p| |extdeg|)
+(-360 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| (-919 |#1|) (QUOTE (-146))) (|HasCategory| (-919 |#1|) (QUOTE (-375)))) (|HasCategory| (-919 |#1|) (QUOTE (-148))) (|HasCategory| (-919 |#1|) (QUOTE (-375))) (|HasCategory| (-919 |#1|) (QUOTE (-146))))
-(-359 GF |uni|)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| (-921 |#1|) (QUOTE (-146))) (|HasCategory| (-921 |#1|) (QUOTE (-377)))) (|HasCategory| (-921 |#1|) (QUOTE (-148))) (|HasCategory| (-921 |#1|) (QUOTE (-377))) (|HasCategory| (-921 |#1|) (QUOTE (-146))))
+(-361 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
-(-360 GF |extdeg|)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+(-362 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
-(-361 |p| |n|)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+(-363 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| (-919 |#1|) (QUOTE (-146))) (|HasCategory| (-919 |#1|) (QUOTE (-375)))) (|HasCategory| (-919 |#1|) (QUOTE (-148))) (|HasCategory| (-919 |#1|) (QUOTE (-375))) (|HasCategory| (-919 |#1|) (QUOTE (-146))))
-(-362 GF |defpol|)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| (-921 |#1|) (QUOTE (-146))) (|HasCategory| (-921 |#1|) (QUOTE (-377)))) (|HasCategory| (-921 |#1|) (QUOTE (-148))) (|HasCategory| (-921 |#1|) (QUOTE (-377))) (|HasCategory| (-921 |#1|) (QUOTE (-146))))
+(-364 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
-(-363 -1384 GF)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+(-365 -1386 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-364 GF)
+(-366 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-365 -1384 FP FPP)
+(-367 -1386 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-366 GF |n|)
+(-368 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
-(-367 R |ls|)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+(-369 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-368 S)
+(-370 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-369 S)
+(-371 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-370)
+(-372)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-371 |Name| S)
+(-373 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-372 S)
+(-374 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-373 S R)
+(-375 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-564))))
-(-374 R)
+((|HasCategory| |#2| (QUOTE (-566))))
+(-376 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4451 |has| |#1| (-564)) (-4449 . T) (-4448 . T))
+((-4453 |has| |#1| (-566)) (-4451 . T) (-4450 . T))
NIL
-(-375)
+(-377)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-376 S R UP)
+(-378 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-370))))
-(-377 R UP)
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-372))))
+(-379 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4448 . T) (-4449 . T) (-4451 . T))
+((-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-378 S A R B)
+(-380 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-379 A S)
+(-381 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))))
-(-380 S)
+((|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))))
+(-382 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4454 . T))
+((-4456 . T))
NIL
-(-381 |VarSet| R)
+(-383 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4449 . T) (-4448 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4451 . T) (-4450 . T))
NIL
-(-382 S V)
+(-384 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-383 S R)
+(-385 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))))
-(-384 R)
+((|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))
+(-386 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
NIL
-(-385 |Par|)
+(-387 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-386)
+(-388)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4437 . T) (-4445 . T) (-3548 . T) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4439 . T) (-4447 . T) (-3551 . T) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-387 |Par|)
+(-389 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-388 R S)
+(-390 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4449 . T) (-4448 . T))
+((-4451 . T) (-4450 . T))
((|HasCategory| |#1| (QUOTE (-174))))
-(-389 R |Basis|)
+(-391 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4449 . T) (-4448 . T))
+((-4451 . T) (-4450 . T))
NIL
-(-390)
+(-392)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-391)
+(-393)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-392 R S)
+(-394 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4449 . T) (-4448 . T))
+((-4451 . T) (-4450 . T))
((|HasCategory| |#1| (QUOTE (-174))))
-(-393 S)
+(-395 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-394 S)
+(-396 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))))
-(-395)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-397)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-396)
+(-398)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-397)
+(-399)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")))
NIL
NIL
-(-398 |n| |class| R)
+(-400 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4449 . T) (-4448 . T))
+((-4451 . T) (-4450 . T))
NIL
-(-399)
+(-401)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-400 -1384 UP UPUP R)
+(-402 -1386 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-401 S)
+(-403 S)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-402)
+(-404)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-403)
+(-405)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
NIL
NIL
-(-404)
+(-406)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-405)
+(-407)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-406 -2030 |returnType| -1563 |symbols|)
+(-408 -2032 |returnType| -1565 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-407 -1384 UP)
+(-409 -1386 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-408 R)
+(-410 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
NIL
NIL
-(-409 S)
+(-411 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-410)
+(-412)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-411 S)
+(-413 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4437)) (|HasAttribute| |#1| (QUOTE -4445)))
-(-412)
+((|HasAttribute| |#1| (QUOTE -4439)) (|HasAttribute| |#1| (QUOTE -4447)))
+(-414)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3548 . T) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3551 . T) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-413 R S)
+(-415 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-414 A B)
+(-416 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-415 S)
+(-417 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4441 -12 (|has| |#1| (-6 -4452)) (|has| |#1| (-460)) (|has| |#1| (-6 -4441))) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-828))) (-2813 (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-858)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1163))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836))))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-553))) (-12 (|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-460)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-416 S R UP)
+((-4443 -12 (|has| |#1| (-6 -4454)) (|has| |#1| (-462)) (|has| |#1| (-6 -4443))) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-830))) (-2818 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-860)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-555))) (-12 (|HasAttribute| |#1| (QUOTE -4454)) (|HasAttribute| |#1| (QUOTE -4443)) (|HasCategory| |#1| (QUOTE (-462)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-418 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-417 R UP)
+(-419 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4448 . T) (-4449 . T) (-4451 . T))
+((-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-418 A S)
+(-420 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))
-(-419 S)
+((|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))
+(-421 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-420 R1 F1 U1 A1 R2 F2 U2 A2)
+(-422 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-421 R -1384 UP A)
+(-423 R -1386 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-422 R -1384 UP A |ibasis|)
+(-424 R -1386 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1049) (|devaluate| |#2|))))
-(-423 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -1051) (|devaluate| |#2|))))
+(-425 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-424 S R)
+(-426 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-370))))
-(-425 R)
+((|HasCategory| |#2| (QUOTE (-372))))
+(-427 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4451 |has| |#1| (-564)) (-4449 . T) (-4448 . T))
+((-4453 |has| |#1| (-566)) (-4451 . T) (-4450 . T))
NIL
-(-426 R)
+(-428 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -315) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -292) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-1233))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -292) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-460))))
-(-427 R)
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -317) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1235))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-1235)))) (|HasCategory| |#1| (QUOTE (-1035))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-462))))
+(-429 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
NIL
-(-428 R FE |x| |cen|)
+(-430 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-429 R A S B)
+(-431 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-430 R FE |Expon| UPS TRAN |x|)
+(-432 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-431 S A R B)
+(-433 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-432 A S)
+(-434 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-375))))
-(-433 S)
+((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377))))
+(-435 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4454 . T) (-4444 . T) (-4455 . T))
+((-4456 . T) (-4446 . T) (-4457 . T))
NIL
-(-434 R -1384)
+(-436 R -1386)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-435 R E)
+(-437 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4441 -12 (|has| |#1| (-6 -4441)) (|has| |#2| (-6 -4441))) (-4448 . T) (-4449 . T) (-4451 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4441)) (|HasAttribute| |#2| (QUOTE -4441))))
-(-436 R -1384)
+((-4443 -12 (|has| |#1| (-6 -4443)) (|has| |#2| (-6 -4443))) (-4450 . T) (-4451 . T) (-4453 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4443)) (|HasAttribute| |#2| (QUOTE -4443))))
+(-438 R -1386)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-437 S R)
+(-439 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-481))) (|HasCategory| |#2| (QUOTE (-1123))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))))
-(-438 R)
+((|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))))
+(-440 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4451 -2813 (|has| |#1| (-1060)) (|has| |#1| (-481))) (-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) ((-4456 "*") |has| |#1| (-564)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-564)) (-4446 |has| |#1| (-564)))
+((-4453 -2818 (|has| |#1| (-1062)) (|has| |#1| (-483))) (-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) ((-4458 "*") |has| |#1| (-566)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-566)) (-4448 |has| |#1| (-566)))
NIL
-(-439 R -1384)
+(-441 R -1386)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-440 R -1384)
+(-442 R -1386)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-441 R -1384)
+(-443 R -1386)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-442)
+(-444)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-443 R -1384 UP)
+(-445 R -1386 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-48)))))
-(-444)
+((|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-48)))))
+(-446)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-445)
+(-447)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
-(-446 |f|)
+(-448 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-447)
+(-449)
((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}.")))
NIL
NIL
-(-448)
+(-450)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-449)
+(-451)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-450 UP)
+(-452 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-451 R UP -1384)
+(-453 R UP -1386)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-452 R UP)
+(-454 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-453 R)
+(-455 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-412))))
-(-454)
+((|HasCategory| |#1| (QUOTE (-414))))
+(-456)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-455 |Dom| |Expon| |VarSet| |Dpol|)
+(-457 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-456 |Dom| |Expon| |VarSet| |Dpol|)
+(-458 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-457 |Dom| |Expon| |VarSet| |Dpol|)
+(-459 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-458 |Dom| |Expon| |VarSet| |Dpol|)
+(-460 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-370))))
-(-459 S)
+((|HasCategory| |#1| (QUOTE (-372))))
+(-461 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-460)
+(-462)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-461 R |n| |ls| |gamma|)
+(-463 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4451 |has| (-415 (-961 |#1|)) (-564)) (-4449 . T) (-4448 . T))
-((|HasCategory| (-415 (-961 |#1|)) (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| (-415 (-961 |#1|)) (QUOTE (-564))))
-(-462 |vl| R E)
+((-4453 |has| (-417 (-963 |#1|)) (-566)) (-4451 . T) (-4450 . T))
+((|HasCategory| (-417 (-963 |#1|)) (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-417 (-963 |#1|)) (QUOTE (-566))))
+(-464 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-918))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-463 R BP)
+(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-920))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-465 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-464 OV E S R P)
+(-466 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-465 E OV R P)
+(-467 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-466 R)
+(-468 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-467 R FE)
+(-469 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")))
NIL
NIL
-(-468 RP TP)
+(-470 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-469 |vl| R IS E |ff| P)
+(-471 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4449 . T) (-4448 . T))
+((-4451 . T) (-4450 . T))
NIL
-(-470 E V R P Q)
+(-472 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-471 R E |VarSet| P)
+(-473 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4455 . T) (-4454 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-472 S R E)
+((-4457 . T) (-4456 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-474 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-473 R E)
+(-475 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-474)
+(-476)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-475)
+(-477)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-476)
+(-478)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-477 S R E)
+(-479 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-478 R E)
+(-480 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-479 |lv| -1384 R)
+(-481 |lv| -1386 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-480 S)
+(-482 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-481)
+(-483)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-482 |Coef| |var| |cen|)
+(-484 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
-(-483 |Key| |Entry| |Tbl| |dent|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+(-485 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-858))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))))
-(-484 R E V P)
+((-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))))
+(-486 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4455 . T) (-4454 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-485)
+((-4457 . T) (-4456 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-487)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-486)
+(-488)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
NIL
NIL
-(-487 |Key| |Entry| |hashfn|)
+(-489 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-488)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-490)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-489 |vl| R)
+(-491 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-918))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-490 -4127 S)
+(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-920))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-492 -4129 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-2813 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
-(-491)
+((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2818 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+(-493)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
-(-492 S)
+(-494 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-493 -1384 UP UPUP R)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-495 -1386 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-494 BP)
+(-496 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-495)
+(-497)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-572) (QUOTE (-918))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-572) (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-148))) (|HasCategory| (-572) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-1033))) (|HasCategory| (-572) (QUOTE (-828))) (-2813 (|HasCategory| (-572) (QUOTE (-828))) (|HasCategory| (-572) (QUOTE (-858)))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-1163))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-572) (QUOTE (-237))) (|HasCategory| (-572) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-572) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -315) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -292) (QUOTE (-572)) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-313))) (|HasCategory| (-572) (QUOTE (-553))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-572) (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (|HasCategory| (-572) (QUOTE (-146)))))
-(-496 A S)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-574) (QUOTE (-920))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1035))) (|HasCategory| (-574) (QUOTE (-830))) (-2818 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1165))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (|HasCategory| (-574) (QUOTE (-146)))))
+(-498 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4454)) (|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-497 S)
+((|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-499 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
NIL
-(-498 S)
+(-500 S)
((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A.")))
NIL
NIL
-(-499)
+(-501)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
NIL
NIL
-(-500 S)
+(-502 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-501)
+(-503)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-502 -1384 UP |AlExt| |AlPol|)
+(-504 -1386 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-503)
+(-505)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
-(-504 S |mn|)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| $ (QUOTE (-1062))) (|HasCategory| $ (LIST (QUOTE -1051) (QUOTE (-574)))))
+(-506 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-505 R |mnRow| |mnCol|)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-507 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-506 K R UP)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-508 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-507 R UP -1384)
+(-509 R UP -1386)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-508 |mn|)
+(-510 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4455 . T) (-4454 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1111))) (|HasCategory| (-112) (LIST (QUOTE -315) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-112) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-112) (QUOTE (-1111))) (|HasCategory| (-112) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-509 K R UP L)
+((-4457 . T) (-4456 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1113))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1113))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-511 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-510)
+(-512)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-511 R Q A B)
+(-513 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-512 -1384 |Expon| |VarSet| |DPoly|)
+(-514 -1386 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-1188)))))
-(-513 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-1190)))))
+(-515 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-514)
+(-516)
((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
NIL
NIL
-(-515 A S)
+(-517 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-516 A S)
+(-518 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-517 A S)
+(-519 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-518 A S)
+(-520 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-519 A S)
+(-521 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-520 A S)
+(-522 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-521 S A B)
+(-523 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-522 A B)
+(-524 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-523 S E |un|)
+(-525 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-800))))
-(-524 S |mn|)
+((|HasCategory| |#2| (QUOTE (-802))))
+(-526 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-525)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-527)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-526 |p| |n|)
+(-528 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| (-589 |#1|) (QUOTE (-146))) (|HasCategory| (-589 |#1|) (QUOTE (-375)))) (|HasCategory| (-589 |#1|) (QUOTE (-148))) (|HasCategory| (-589 |#1|) (QUOTE (-375))) (|HasCategory| (-589 |#1|) (QUOTE (-146))))
-(-527 R |mnRow| |mnCol| |Row| |Col|)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| (-591 |#1|) (QUOTE (-146))) (|HasCategory| (-591 |#1|) (QUOTE (-377)))) (|HasCategory| (-591 |#1|) (QUOTE (-148))) (|HasCategory| (-591 |#1|) (QUOTE (-377))) (|HasCategory| (-591 |#1|) (QUOTE (-146))))
+(-529 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-528 S |mn|)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-530 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-529 R |Row| |Col| M)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-531 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4455)))
-(-530 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4457)))
+(-532 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4455)))
-(-531 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4457)))
+(-533 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-564))) (|HasAttribute| |#1| (QUOTE (-4456 "*"))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-532)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4458 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-534)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-533)
+(-535)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-534 S)
+(-536 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-535)
+(-537)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-536 GF)
+(-538 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-537)
+(-539)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-538 R)
+(-540 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-539 |Varset|)
+(-541 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-540 K -1384 |Par|)
+(-542 K -1386 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-541)
+(-543)
NIL
NIL
NIL
-(-542)
+(-544)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-543 R)
+(-545 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-544)
+(-546)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-545 |Coef| UTS)
+(-547 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-546 K -1384 |Par|)
+(-548 K -1386 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-547 R BP |pMod| |nextMod|)
+(-549 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-548 OV E R P)
+(-550 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-549 K UP |Coef| UTS)
+(-551 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-550 |Coef| UTS)
+(-552 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-551 R UP)
+(-553 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
-(-552 S)
+(-554 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-553)
+(-555)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4452 . T) (-4453 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4454 . T) (-4455 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-554)
+(-556)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-555)
+(-557)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-556)
+(-558)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-557)
+(-559)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-558 |Key| |Entry| |addDom|)
+(-560 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-559 R -1384)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-561 R -1386)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-560 R0 -1384 UP UPUP R)
+(-562 R0 -1386 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-561)
+(-563)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-562 R)
+(-564 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3548 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3551 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-563 S)
+(-565 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-564)
+(-566)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-565 R -1384)
+(-567 R -1386)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-566 I)
+(-568 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-567)
+(-569)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-568 R -1384 L)
+(-570 R -1386 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -664) (|devaluate| |#2|))))
-(-569)
+((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|))))
+(-571)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-570 -1384 UP UPUP R)
+(-572 -1386 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-571 -1384 UP)
+(-573 -1386 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-572)
+(-574)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4436 . T) (-4442 . T) (-4446 . T) (-4441 . T) (-4452 . T) (-4453 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4438 . T) (-4444 . T) (-4448 . T) (-4443 . T) (-4454 . T) (-4455 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-573)
+(-575)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-574 R -1384 L)
+(-576 R -1386 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -664) (|devaluate| |#2|))))
-(-575 R -1384)
+((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|))))
+(-577 R -1386)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-637)))))
-(-576 -1384 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1152)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-639)))))
+(-578 -1386 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-577 S)
+(-579 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-578 -1384)
+(-580 -1386)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-579 R)
+(-581 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3548 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3551 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-580)
+(-582)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-581 R -1384)
+(-583 R -1386)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-290))) (|HasCategory| |#2| (QUOTE (-637))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-290)))) (|HasCategory| |#1| (QUOTE (-564))))
-(-582 -1384 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-639))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-566))))
+(-584 -1386 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-583 R -1384)
+(-585 R -1386)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-584)
+(-586)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-585)
+(-587)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-586)
+(-588)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input.")))
NIL
NIL
-(-587)
+(-589)
((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-588 |p| |unBalanced?|)
+(-590 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-589 |p|)
+(-591 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-375))))
-(-590)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377))))
+(-592)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-591 R -1384)
+(-593 R -1386)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-592 E -1384)
+(-594 E -1386)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-593)
+(-595)
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-594 -1384)
+(-596 -1386)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4449 . T) (-4448 . T))
-((|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-1188)))))
-(-595 I)
+((-4451 . T) (-4450 . T))
+((|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-1190)))))
+(-597 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-596 GF)
+(-598 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-597 R)
+(-599 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-148))))
-(-598)
+(-600)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-599 R E V P TS)
+(-601 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-600)
+(-602)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-601 |mn|)
+(-603 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145)))))) (-2813 (|HasCategory| (-145) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-145) (QUOTE (-1111)))) (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))))
-(-602 E V R P)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-2818 (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1113)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
+(-604 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-603 |Coef|)
+(-605 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))) (|HasCategory| (-572) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))))
-(-604 |Coef|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))) (|HasCategory| (-574) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))))
+(-606 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4456 "*") |has| |#1| (-564)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-564))))
-(-605)
+(((-4458 "*") |has| |#1| (-566)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-566))))
+(-607)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
NIL
-(-606 A B)
+(-608 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-607 A B C)
+(-609 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-608 R -1384 FG)
+(-610 R -1386 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-609 S)
+(-611 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-610 R |mn|)
+(-612 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1060))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-611 S |Index| |Entry|)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-613 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-858))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#3| (QUOTE (-1111))))
-(-612 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-860))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#3| (QUOTE (-1113))))
+(-614 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-613)
+(-615)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")))
NIL
NIL
-(-614)
+(-616)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-615 R A)
+(-617 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4451 -2813 (-2085 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))) (-4449 . T) (-4448 . T))
-((-2813 (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|))))
-(-616 |Entry|)
+((-4453 -2818 (-2088 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4451 . T) (-4450 . T))
+((-2818 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
+(-618 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| (-1170) (QUOTE (-858))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-617 S |Key| |Entry|)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| (-1172) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-619 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-618 |Key| |Entry|)
+(-620 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4455 . T))
+((-4457 . T))
NIL
-(-619 R S)
+(-621 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-620 S)
+(-622 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))))
-(-621 S)
+((|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))))
+(-623 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-622 S)
+(-624 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-623 -1384 UP)
+(-625 -1386 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-624 S)
+(-626 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-625)
+(-627)
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
-(-626 S)
+(-628 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-627 S R)
+(-629 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-628 R)
+(-630 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-629 A R S)
+(-631 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-856))))
-(-630 R -1384)
+((-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-858))))
+(-632 R -1386)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
-(-631 R UP)
+(-633 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4449 . T) (-4448 . T) ((-4456 "*") . T) (-4447 . T) (-4451 . T))
-((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))
-(-632 R E V P TS ST)
+((-4451 . T) (-4450 . T) ((-4458 "*") . T) (-4449 . T) (-4453 . T))
+((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))))
+(-634 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-633 OV E Z P)
+(-635 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-634)
+(-636)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-635 |VarSet| R |Order|)
+(-637 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-636 R |ls|)
+(-638 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-637)
+(-639)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-638 R -1384)
+(-640 R -1386)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-639 |lv| -1384)
+(-641 |lv| -1386)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-640)
+(-642)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-52))))))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-52) (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -315) (QUOTE (-52))))) (|HasCategory| (-1170) (QUOTE (-858))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (QUOTE (-1111))))
-(-641 S R)
+((-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1909) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1172) (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (QUOTE (-1113))))
+(-643 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-370))))
-(-642 R)
+((|HasCategory| |#2| (QUOTE (-372))))
+(-644 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4449 . T) (-4448 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4451 . T) (-4450 . T))
NIL
-(-643 R A)
+(-645 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4451 -2813 (-2085 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))) (-4449 . T) (-4448 . T))
-((-2813 (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|))))
-(-644 R FE)
+((-4453 -2818 (-2088 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4451 . T) (-4450 . T))
+((-2818 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
+(-646 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
-(-645 R)
+(-647 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-646 S R)
+(-648 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2074 (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-370))))
-(-647 R)
+((-2077 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372))))
+(-649 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
NIL
-(-648 R)
+(-650 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-649 A B)
+(-651 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-650 A B)
+(-652 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-651 A B C)
+(-653 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-652 S)
+(-654 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-653 T$)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-655 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-654 R)
+(-656 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-655 S)
+(-657 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-656 R)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-658 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-657 S E |un|)
+(-659 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-658 A S)
+(-660 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4455)))
-(-659 S)
+((|HasAttribute| |#1| (QUOTE -4457)))
+(-661 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-660 R -1384 L)
+(-662 R -1386 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-661 A)
+(-663 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-370))))
-(-662 A M)
+((-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
+(-664 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-370))))
-(-663 S A)
+((-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
+(-665 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-370))))
-(-664 A)
+((|HasCategory| |#2| (QUOTE (-372))))
+(-666 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4448 . T) (-4449 . T) (-4451 . T))
+((-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-665 -1384 UP)
+(-667 -1386 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-666 A -3027)
+(-668 A -3000)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-370))))
-(-667 A L)
+((-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
+(-669 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-668 S)
+(-670 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-669)
+(-671)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-670 M R S)
+(-672 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4449 . T) (-4448 . T))
-((|HasCategory| |#1| (QUOTE (-799))))
-(-671 R)
+((-4451 . T) (-4450 . T))
+((|HasCategory| |#1| (QUOTE (-801))))
+(-673 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-672 |VarSet| R)
+(-674 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4449 . T) (-4448 . T))
-((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-174))))
-(-673 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4451 . T) (-4450 . T))
+((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-174))))
+(-675 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-674 S)
+(-676 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-675 -1384)
+(-677 -1386)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-676 -1384 |Row| |Col| M)
+(-678 -1386 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-677 R E OV P)
+(-679 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-678 |n| R)
+(-680 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4451 . T) (-4454 . T) (-4448 . T) (-4449 . T))
-((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-564))) (-2813 (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
-(-679)
+((-4453 . T) (-4456 . T) (-4450 . T) (-4451 . T))
+((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))) (-2818 (|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+(-681)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-680 |VarSet|)
+(-682 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-681 A S)
+(-683 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-682 S)
+(-684 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-683 R)
+(-685 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-684)
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-686)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-685 |VarSet|)
+(-687 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-686 A)
+(-688 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-687 A C)
+(-689 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument.")))
NIL
NIL
-(-688 A B C)
+(-690 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-689)
+(-691)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-690 A)
+(-692 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-691 A C)
+(-693 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-692 A B C)
+(-694 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-693 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-695 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-694 S R |Row| |Col|)
+(-696 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-564))))
-(-695 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))))
+(-697 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4454 . T) (-4455 . T))
+((-4456 . T) (-4457 . T))
NIL
-(-696 R |Row| |Col| M)
+(-698 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-564))))
-(-697 R)
+((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))))
+(-699 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4454 . T) (-4455 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-564))) (|HasAttribute| |#1| (QUOTE (-4456 "*"))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-698 R)
+((-4456 . T) (-4457 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4458 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-700 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-699 T$)
+(-701 T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-700 S -1384 FLAF FLAS)
+(-702 S -1386 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-701 R Q)
+(-703 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-702)
+(-704)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4447 . T) (-4452 |has| (-707) (-370)) (-4446 |has| (-707) (-370)) (-3559 . T) (-4453 |has| (-707) (-6 -4453)) (-4450 |has| (-707) (-6 -4450)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-707) (QUOTE (-148))) (|HasCategory| (-707) (QUOTE (-146))) (|HasCategory| (-707) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-707) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| (-707) (QUOTE (-375))) (|HasCategory| (-707) (QUOTE (-370))) (-2813 (|HasCategory| (-707) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-707) (QUOTE (-370)))) (|HasCategory| (-707) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-707) (QUOTE (-237))) (-2813 (|HasCategory| (-707) (QUOTE (-370))) (|HasCategory| (-707) (QUOTE (-356)))) (|HasCategory| (-707) (QUOTE (-356))) (|HasCategory| (-707) (LIST (QUOTE -292) (QUOTE (-707)) (QUOTE (-707)))) (|HasCategory| (-707) (LIST (QUOTE -315) (QUOTE (-707)))) (|HasCategory| (-707) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-707)))) (|HasCategory| (-707) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-707) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-707) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-707) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (-2813 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-370))) (|HasCategory| (-707) (QUOTE (-356)))) (|HasCategory| (-707) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-707) (QUOTE (-1033))) (|HasCategory| (-707) (QUOTE (-1214))) (-12 (|HasCategory| (-707) (QUOTE (-1013))) (|HasCategory| (-707) (QUOTE (-1214)))) (-2813 (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-370))) (-12 (|HasCategory| (-707) (QUOTE (-356))) (|HasCategory| (-707) (QUOTE (-918))))) (-2813 (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (-12 (|HasCategory| (-707) (QUOTE (-370))) (|HasCategory| (-707) (QUOTE (-918)))) (-12 (|HasCategory| (-707) (QUOTE (-356))) (|HasCategory| (-707) (QUOTE (-918))))) (|HasCategory| (-707) (QUOTE (-553))) (-12 (|HasCategory| (-707) (QUOTE (-1071))) (|HasCategory| (-707) (QUOTE (-1214)))) (|HasCategory| (-707) (QUOTE (-1071))) (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918))) (-2813 (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-370)))) (-2813 (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-564)))) (-12 (|HasCategory| (-707) (QUOTE (-237))) (|HasCategory| (-707) (QUOTE (-370)))) (-12 (|HasCategory| (-707) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-707) (QUOTE (-370)))) (|HasCategory| (-707) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-707) (QUOTE (-564))) (|HasAttribute| (-707) (QUOTE -4453)) (|HasAttribute| (-707) (QUOTE -4450)) (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-146)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-356)))))
-(-703 S)
+((-4449 . T) (-4454 |has| (-709) (-372)) (-4448 |has| (-709) (-372)) (-3562 . T) (-4455 |has| (-709) (-6 -4455)) (-4452 |has| (-709) (-6 -4452)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-709) (QUOTE (-148))) (|HasCategory| (-709) (QUOTE (-146))) (|HasCategory| (-709) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-377))) (|HasCategory| (-709) (QUOTE (-372))) (-2818 (|HasCategory| (-709) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-709) (QUOTE (-239))) (-2818 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (LIST (QUOTE -294) (QUOTE (-709)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -317) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2818 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-709) (QUOTE (-1035))) (|HasCategory| (-709) (QUOTE (-1216))) (-12 (|HasCategory| (-709) (QUOTE (-1015))) (|HasCategory| (-709) (QUOTE (-1216)))) (-2818 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-372))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-920))))) (-2818 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (-12 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-920)))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-920))))) (|HasCategory| (-709) (QUOTE (-555))) (-12 (|HasCategory| (-709) (QUOTE (-1073))) (|HasCategory| (-709) (QUOTE (-1216)))) (|HasCategory| (-709) (QUOTE (-1073))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920))) (-2818 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-566)))) (-12 (|HasCategory| (-709) (QUOTE (-239))) (|HasCategory| (-709) (QUOTE (-372)))) (-12 (|HasCategory| (-709) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-566))) (|HasAttribute| (-709) (QUOTE -4455)) (|HasAttribute| (-709) (QUOTE -4452)) (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-146)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-358)))))
+(-705 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4455 . T))
+((-4457 . T))
NIL
-(-704 U)
+(-706 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-705)
+(-707)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-706 OV E -1384 PG)
+(-708 OV E -1386 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-707)
+(-709)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3548 . T) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3551 . T) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-708 R)
+(-710 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-709)
+(-711)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4453 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4455 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-710 S D1 D2 I)
+(-712 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-711 S)
+(-713 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-712 S)
+(-714 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-713 S T$)
+(-715 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-714 S -3608 I)
+(-716 S -3611 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-715 E OV R P)
+(-717 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented")))
NIL
NIL
-(-716 R)
+(-718 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4448 . T) (-4449 . T) (-4451 . T))
+((-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-717 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-719 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-718)
+(-720)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-719 R |Mod| -3104 -1767 |exactQuo|)
+(-721 R |Mod| -2348 -2130 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-720 R |Rep|)
+(-722 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4450 |has| |#1| (-370)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1163))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-237))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-721 IS E |ff|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4452 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-723 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-722 R M)
+(-724 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
+((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-723 R |Mod| -3104 -1767 |exactQuo|)
+(-725 R |Mod| -2348 -2130 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-724 S R)
+(-726 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-725 R)
+(-727 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4449 . T) (-4448 . T))
+((-4451 . T) (-4450 . T))
NIL
-(-726 -1384)
+(-728 -1386)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-727 S)
+(-729 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-728)
+(-730)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-729 S)
+(-731 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-730)
+(-732)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-731 S R UP)
+(-733 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))))
-(-732 R UP)
+((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))))
+(-734 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4447 |has| |#1| (-370)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 |has| |#1| (-372)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-733 S)
+(-735 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-734)
+(-736)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-735 -1384 UP)
+(-737 -1386 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-736 |VarSet| E1 E2 R S PR PS)
+(-738 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-737 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-739 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-738 E OV R PPR)
+(-740 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-739 |vl| R)
+(-741 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-918))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-740 E OV R PRF)
+(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-920))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-742 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-741 E OV R P)
+(-743 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-742 R S M)
+(-744 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-743 R M)
+(-745 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-858))))
-(-744 S)
+((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-860))))
+(-746 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4444 . T) (-4455 . T))
+((-4446 . T) (-4457 . T))
NIL
-(-745 S)
+(-747 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4454 . T) (-4444 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-746)
+((-4456 . T) (-4446 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-748)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-747 S)
+(-749 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-748 |Coef| |Var|)
+(-750 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4449 . T) (-4448 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4451 . T) (-4450 . T) (-4453 . T))
NIL
-(-749 OV E R P)
+(-751 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-750 E OV R P)
+(-752 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-751 S R)
+(-753 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-752 R)
+(-754 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4449 . T) (-4448 . T))
+((-4451 . T) (-4450 . T))
NIL
-(-753)
+(-755)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-754)
+(-756)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-755)
+(-757)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-756)
+(-758)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-757)
+(-759)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-758)
+(-760)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-759)
+(-761)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-760)
+(-762)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-761)
+(-763)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-762)
+(-764)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-763)
+(-765)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-764)
+(-766)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-765)
+(-767)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-766)
+(-768)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-767)
+(-769)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-768 S)
+(-770 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-769)
+(-771)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-770 S)
+(-772 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-771)
+(-773)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-772 |Par|)
+(-774 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-773 -1384)
+(-775 -1386)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-774 P -1384)
+(-776 P -1386)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-775 T$)
+(-777 T$)
NIL
NIL
NIL
-(-776 UP -1384)
+(-778 UP -1386)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-777)
+(-779)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-778 R)
+(-780 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-779)
+(-781)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4456 "*") . T))
+(((-4458 "*") . T))
NIL
-(-780 R -1384)
+(-782 R -1386)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-781 S)
+(-783 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-782)
+(-784)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-783 R |PolR| E |PolE|)
+(-785 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-784 R E V P TS)
+(-786 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-785 -1384 |ExtF| |SUEx| |ExtP| |n|)
+(-787 -1386 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-786 BP E OV R P)
+(-788 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-787 |Par|)
+(-789 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-788 R |VarSet|)
+(-790 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (-2074 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (-2074 (|HasCategory| |#1| (QUOTE (-553)))) (-2074 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (-2074 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-572))))) (-2074 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (-2074 (|HasCategory| |#1| (LIST (QUOTE -1003) (QUOTE (-572))))))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-789 R S)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2077 (|HasCategory| |#1| (QUOTE (-555)))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -1005) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-791 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-790 R)
+(-792 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4450 |has| |#1| (-370)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1163))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-791 R)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4452 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-793 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
-(-792 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
+(-794 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-793 S)
+(-795 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-174))))
-(-794)
+((-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-174))))
+(-796)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-795)
+(-797)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-796)
+(-798)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-797)
+(-799)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-798 |Curve|)
+(-800 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-799)
+(-801)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-800)
+(-802)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-801)
+(-803)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-802)
+(-804)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-803)
+(-805)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-804 S R)
+(-806 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-375))))
-(-805 R)
+((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377))))
+(-807 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4448 . T) (-4449 . T) (-4451 . T))
+((-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-806 -2813 R OS S)
+(-808 -2818 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-807 R)
+(-809 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (-2813 (|HasCategory| (-1010 |#1|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (|HasCategory| (-1010 |#1|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| (-1010 |#1|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-1010 |#1|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))
-(-808)
+((-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-2818 (|HasCategory| (-1012 |#1|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (|HasCategory| (-1012 |#1|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| (-1012 |#1|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1012 |#1|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))))
+(-810)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-809 R -1384 L)
+(-811 R -1386 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-810 R -1384)
+(-812 R -1386)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-811)
+(-813)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-812 R -1384)
+(-814 R -1386)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-813)
+(-815)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-814 -1384 UP UPUP R)
+(-816 -1386 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-815 -1384 UP L LQ)
+(-817 -1386 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-816)
+(-818)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-817 -1384 UP L LQ)
+(-819 -1386 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-818 -1384 UP)
+(-820 -1386 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-819 -1384 L UP A LO)
+(-821 -1386 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-820 -1384 UP)
+(-822 -1386 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-821 -1384 LO)
+(-823 -1386 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-822 -1384 LODO)
+(-824 -1386 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-823 -4127 S |f|)
+(-825 -4129 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-2813 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
-(-824 R)
+((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2818 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+(-826 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-825 |Kernels| R |var|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-827 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4456 "*") |has| |#2| (-370)) (-4447 |has| |#2| (-370)) (-4452 |has| |#2| (-370)) (-4446 |has| |#2| (-370)) (-4451 . T) (-4449 . T) (-4448 . T))
-((|HasCategory| |#2| (QUOTE (-370))))
-(-826 S)
+(((-4458 "*") |has| |#2| (-372)) (-4449 |has| |#2| (-372)) (-4454 |has| |#2| (-372)) (-4448 |has| |#2| (-372)) (-4453 . T) (-4451 . T) (-4450 . T))
+((|HasCategory| |#2| (QUOTE (-372))))
+(-828 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-827 S)
+(-829 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))))
-(-828)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-830)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-829)
+(-831)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-830)
+(-832)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-831)
+(-833)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-832)
+(-834)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-833)
+(-835)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-834 R)
+(-836 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-835 P R)
+(-837 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-237))))
-(-836)
+((-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239))))
+(-838)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-837)
+(-839)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-838 S)
+(-840 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4454 . T) (-4444 . T) (-4455 . T))
+((-4456 . T) (-4446 . T) (-4457 . T))
NIL
-(-839)
+(-841)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-840 R S)
+(-842 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-841 R)
+(-843 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4451 |has| |#1| (-856)))
-((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-21))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-553))))
-(-842 A S)
+((-4453 |has| |#1| (-858)))
+((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555))))
+(-844 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-843 S)
+(-845 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-844 R)
+(-846 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
+((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-845)
+(-847)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-846)
+(-848)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}.")))
NIL
NIL
-(-847)
+(-849)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-848)
+(-850)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-849)
+(-851)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-850 R S)
+(-852 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-851 R)
+(-853 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4451 |has| |#1| (-856)))
-((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-21))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-553))))
-(-852)
+((-4453 |has| |#1| (-858)))
+((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555))))
+(-854)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-853 -4127 S)
+(-855 -4129 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-854)
+(-856)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-855 S)
+(-857 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-856)
+(-858)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-857 S)
+(-859 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-858)
+(-860)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-859 S R)
+(-861 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))))
-(-860 R)
+((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))))
+(-862 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4448 . T) (-4449 . T) (-4451 . T))
+((-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-861 R C)
+(-863 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564))))
-(-862 R |sigma| -2073)
+((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))))
+(-864 R |sigma| -2076)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-370))))
-(-863 |x| R |sigma| -2073)
+((-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
+(-865 |x| R |sigma| -2076)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-370))))
-(-864 R)
+((-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-372))))
+(-866 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
-(-865)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
+(-867)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-866)
+(-868)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-867 S)
+(-869 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-868)
+(-870)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-869)
+(-871)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-870)
+(-872)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-871)
+(-873)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-872 |VariableList|)
+(-874 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-873)
+(-875)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-874 R |vl| |wl| |wtlevel|)
+(-876 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))))
-(-875 R PS UP)
+((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))))
+(-877 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-876 R |x| |pt|)
+(-878 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-877 |p|)
+(-879 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-878 |p|)
+(-880 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-879 |p|)
+(-881 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-878 |#1|) (QUOTE (-918))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-878 |#1|) (QUOTE (-146))) (|HasCategory| (-878 |#1|) (QUOTE (-148))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-878 |#1|) (QUOTE (-1033))) (|HasCategory| (-878 |#1|) (QUOTE (-828))) (-2813 (|HasCategory| (-878 |#1|) (QUOTE (-828))) (|HasCategory| (-878 |#1|) (QUOTE (-858)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-878 |#1|) (QUOTE (-1163))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| (-878 |#1|) (QUOTE (-237))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -878) (|devaluate| |#1|)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -315) (LIST (QUOTE -878) (|devaluate| |#1|)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -292) (LIST (QUOTE -878) (|devaluate| |#1|)) (LIST (QUOTE -878) (|devaluate| |#1|)))) (|HasCategory| (-878 |#1|) (QUOTE (-313))) (|HasCategory| (-878 |#1|) (QUOTE (-553))) (|HasCategory| (-878 |#1|) (QUOTE (-858))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-878 |#1|) (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-878 |#1|) (QUOTE (-918)))) (|HasCategory| (-878 |#1|) (QUOTE (-146)))))
-(-880 |p| PADIC)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-880 |#1|) (QUOTE (-920))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-148))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-880 |#1|) (QUOTE (-1035))) (|HasCategory| (-880 |#1|) (QUOTE (-830))) (-2818 (|HasCategory| (-880 |#1|) (QUOTE (-830))) (|HasCategory| (-880 |#1|) (QUOTE (-860)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-1165))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-239))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -880) (|devaluate| |#1|)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (QUOTE (-315))) (|HasCategory| (-880 |#1|) (QUOTE (-555))) (|HasCategory| (-880 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-920)))) (|HasCategory| (-880 |#1|) (QUOTE (-146)))))
+(-882 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-828))) (-2813 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-1163))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-858))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-881 S T$)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1035))) (|HasCategory| |#2| (QUOTE (-830))) (-2818 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1165))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-883 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))))
-(-882)
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))))
+(-884)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-883)
+(-885)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-884)
+(-886)
((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}.")))
NIL
NIL
-(-885 CF1 CF2)
+(-887 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-886 |ComponentFunction|)
+(-888 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-887 CF1 CF2)
+(-889 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-888 |ComponentFunction|)
+(-890 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-889)
+(-891)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-890 CF1 CF2)
+(-892 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-891 |ComponentFunction|)
+(-893 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-892)
+(-894)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
-(-893 R)
+(-895 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-894 R S L)
+(-896 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-895 S)
+(-897 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-896 |Base| |Subject| |Pat|)
+(-898 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2074 (|HasCategory| |#2| (QUOTE (-1060)))) (-2074 (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (-2074 (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))
-(-897 R A B)
+((-12 (-2077 (|HasCategory| |#2| (QUOTE (-1062)))) (-2077 (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (-2077 (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))
+(-899 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-898 R S)
+(-900 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-899 R -3608)
+(-901 R -3611)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-900 R S)
+(-902 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-901 R)
+(-903 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-902 |VarSet|)
+(-904 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-903 UP R)
+(-905 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-904)
+(-906)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-905 UP -1384)
+(-907 UP -1386)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-906)
+(-908)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-907)
+(-909)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-908 A S)
+(-910 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-909 S)
+(-911 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-910 S)
+(-912 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-911 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-913 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-912 S)
+(-914 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-913 S)
+(-915 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-914 S)
+(-916 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4451 . T))
-((-2813 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-858))))
-(-915 R E |VarSet| S)
+((-4453 . T))
+((-2818 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860))))
+(-917 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-916 R S)
+(-918 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-917 S)
+(-919 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-146))))
-(-918)
+(-920)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-919 |p|)
+(-921 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-375))))
-(-920 R0 -1384 UP UPUP R)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377))))
+(-922 R0 -1386 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-921 UP UPUP R)
+(-923 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-922 UP UPUP)
+(-924 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-923 R)
+(-925 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-924 R)
+(-926 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-925 E OV R P)
+(-927 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-926)
+(-928)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-927 -1384)
+(-929 -1386)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-928 R)
+(-930 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-929)
+(-931)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-930)
+(-932)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4456 "*") . T))
+(((-4458 "*") . T))
NIL
-(-931 -1384 P)
+(-933 -1386 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-932 |xx| -1384)
+(-934 |xx| -1386)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-933 R |Var| |Expon| GR)
+(-935 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-934 S)
+(-936 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-935)
+(-937)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-936)
+(-938)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-937)
+(-939)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-938 R -1384)
+(-940 R -1386)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-939)
+(-941)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-940 S A B)
+(-942 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-941 S R -1384)
+(-943 S R -1386)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-942 I)
+(-944 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-943 S E)
+(-945 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-944 S R L)
+(-946 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-945 S E V R P)
+(-947 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -895) (|devaluate| |#1|))))
-(-946 R -1384 -3608)
+((|HasCategory| |#3| (LIST (QUOTE -897) (|devaluate| |#1|))))
+(-948 R -1386 -3611)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-947 -3608)
+(-949 -3611)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-948 S R Q)
+(-950 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-949 S)
+(-951 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-950 S R P)
+(-952 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-951)
+(-953)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-952 R)
+(-954 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1060))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-953 |lv| R)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-955 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-954 |TheField| |ThePols|)
+(-956 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-856))))
-(-955 R S)
+((|HasCategory| |#1| (QUOTE (-858))))
+(-957 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-956 |x| R)
+(-958 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-957 S R E |VarSet|)
+(-959 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-918))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#4| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))))
-(-958 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-920))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))))
+(-960 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
NIL
-(-959 E V R P -1384)
+(-961 E V R P -1386)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-960 E |Vars| R P S)
+(-962 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-961 R)
+(-963 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-962 E V R P -1384)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-964 E V R P -1386)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-460))))
-(-963)
+((|HasCategory| |#3| (QUOTE (-462))))
+(-965)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-964)
+(-966)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-965 R L)
+(-967 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-966 A B)
+(-968 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-967 S)
+(-969 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-968)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-970)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-969 -1384)
+(-971 -1386)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-970 I)
+(-972 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-971)
+(-973)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-972 R E)
+(-974 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4452)))
-(-973 A B)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4454)))
+(-975 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4451 -12 (|has| |#2| (-481)) (|has| |#1| (-481))))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-858))))) (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801))))) (-12 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#2| (QUOTE (-481)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#2| (QUOTE (-481)))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-375)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#2| (QUOTE (-481)))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801))))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-858)))))
-(-974)
+((-4453 -12 (|has| |#2| (-483)) (|has| |#1| (-483))))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736))))) (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860)))))
+(-976)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-975 T$)
+(-977 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-976 T$)
+(-978 T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-977 S T$)
+(-979 S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-978)
+(-980)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-979 S)
+(-981 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4454 . T) (-4455 . T))
+((-4456 . T) (-4457 . T))
NIL
-(-980 R |polR|)
+(-982 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-460))))
-(-981)
+((|HasCategory| |#1| (QUOTE (-462))))
+(-983)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-982)
+(-984)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-983 S |Coef| |Expon| |Var|)
+(-985 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-984 |Coef| |Expon| |Var|)
+(-986 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-985)
+(-987)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-986 S R E |VarSet| P)
+(-988 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-564))))
-(-987 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-566))))
+(-989 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4454 . T))
+((-4456 . T))
NIL
-(-988 R E V P)
+(-990 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-460))))
-(-989 K)
+((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-462))))
+(-991 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-990 |VarSet| E RC P)
+(-992 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-991 R)
+(-993 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-992 R1 R2)
+(-994 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-993 R)
+(-995 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-994 K)
+(-996 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-995 R E OV PPR)
+(-997 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-996 K R UP -1384)
+(-998 K R UP -1386)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-997 |vl| |nv|)
+(-999 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-998 R |Var| |Expon| |Dpoly|)
+(-1000 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-313)))))
-(-999 R E V P TS)
+((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315)))))
+(-1001 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1000)
+(-1002)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-1001 A B R S)
+(-1003 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-1002 A S)
+(-1004 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-1163))))
-(-1003 S)
+((|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1035))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1165))))
+(-1005 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1004 |n| K)
+(-1006 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-1005)
+(-1007)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-1006 S)
+(-1008 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4454 . T) (-4455 . T))
+((-4456 . T) (-4457 . T))
NIL
-(-1007 S R)
+(-1009 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-296))))
-(-1008 R)
+((|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-298))))
+(-1010 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4447 |has| |#1| (-296)) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 |has| |#1| (-298)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1009 QR R QS S)
+(-1011 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-1010 R)
+(-1012 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4447 |has| |#1| (-296)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-553))))
-(-1011 S)
+((-4449 |has| |#1| (-298)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-555))))
+(-1013 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1012 S)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1014 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1013)
+(-1015)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1014 -1384 UP UPUP |radicnd| |n|)
+(-1016 -1386 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4447 |has| (-415 |#2|) (-370)) (-4452 |has| (-415 |#2|) (-370)) (-4446 |has| (-415 |#2|) (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-415 |#2|) (QUOTE (-146))) (|HasCategory| (-415 |#2|) (QUOTE (-148))) (|HasCategory| (-415 |#2|) (QUOTE (-356))) (-2813 (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-375))) (-2813 (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (-2813 (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-356))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -647) (QUOTE (-572)))) (-2813 (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))))
-(-1015 |bb|)
+((-4449 |has| (-417 |#2|) (-372)) (-4454 |has| (-417 |#2|) (-372)) (-4448 |has| (-417 |#2|) (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2818 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2818 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2818 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2818 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
+(-1017 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-572) (QUOTE (-918))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-572) (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-148))) (|HasCategory| (-572) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-1033))) (|HasCategory| (-572) (QUOTE (-828))) (-2813 (|HasCategory| (-572) (QUOTE (-828))) (|HasCategory| (-572) (QUOTE (-858)))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-1163))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-572) (QUOTE (-237))) (|HasCategory| (-572) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-572) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -315) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -292) (QUOTE (-572)) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-313))) (|HasCategory| (-572) (QUOTE (-553))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-572) (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (|HasCategory| (-572) (QUOTE (-146)))))
-(-1016)
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-574) (QUOTE (-920))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1035))) (|HasCategory| (-574) (QUOTE (-830))) (-2818 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1165))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (|HasCategory| (-574) (QUOTE (-146)))))
+(-1018)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-1017)
+(-1019)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-1018 RP)
+(-1020 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-1019 S)
+(-1021 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-1020 A S)
+(-1022 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-1111))))
-(-1021 S)
+((|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-1113))))
+(-1023 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1022 S)
+(-1024 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1023)
+(-1025)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4447 . T) (-4452 . T) (-4446 . T) (-4449 . T) (-4448 . T) ((-4456 "*") . T) (-4451 . T))
+((-4449 . T) (-4454 . T) (-4448 . T) (-4451 . T) (-4450 . T) ((-4458 "*") . T) (-4453 . T))
NIL
-(-1024 R -1384)
+(-1026 R -1386)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1025 R -1384)
+(-1027 R -1386)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1026 -1384 UP)
+(-1028 -1386 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1027 -1384 UP)
+(-1029 -1386 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1028 S)
+(-1030 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1029 F1 UP UPUP R F2)
+(-1031 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-1030)
+(-1032)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1031 |Pol|)
+(-1033 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1032 |Pol|)
+(-1034 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1033)
+(-1035)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1034)
+(-1036)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1035 |TheField|)
+(-1037 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4447 . T) (-4452 . T) (-4446 . T) (-4449 . T) (-4448 . T) ((-4456 "*") . T) (-4451 . T))
-((-2813 (|HasCategory| (-415 (-572)) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-415 (-572)) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 (-572)) (LIST (QUOTE -1049) (QUOTE (-572)))))
-(-1036 -1384 L)
+((-4449 . T) (-4454 . T) (-4448 . T) (-4451 . T) (-4450 . T) ((-4458 "*") . T) (-4453 . T))
+((-2818 (|HasCategory| (-417 (-574)) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1051) (QUOTE (-574)))))
+(-1038 -1386 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1037 S)
+(-1039 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1111))))
-(-1038 R E V P)
+((|HasCategory| |#1| (QUOTE (-1113))))
+(-1040 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4455 . T) (-4454 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1039 R)
+((-4457 . T) (-4456 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1041 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4456 "*"))))
-(-1040 R)
+((|HasAttribute| |#1| (QUOTE (-4458 "*"))))
+(-1042 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-313))))
-(-1041 S)
+((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315))))
+(-1043 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1042)
+(-1044)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1043 S)
+(-1045 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1044 S)
+(-1046 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1045 -1384 |Expon| |VarSet| |FPol| |LFPol|)
+(-1047 -1386 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1046)
+(-1048)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-52))))))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-52) (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -315) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-1188) (QUOTE (-858))) (|HasCategory| (-52) (QUOTE (-1111))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1047)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1190))) (LIST (QUOTE |:|) (QUOTE -1909) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-1190) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1049)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1048 A S)
+(-1050 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1049 S)
+(-1051 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1050 Q R)
+(-1052 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1051)
+(-1053)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1052 UP)
+(-1054 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1053 R)
+(-1055 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1054 R)
+(-1056 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1055 T$)
+(-1057 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1056 T$)
+(-1058 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1057 R |ls|)
+(-1059 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4455 . T) (-4454 . T))
-((-12 (|HasCategory| (-788 |#1| (-872 |#2|)) (QUOTE (-1111))) (|HasCategory| (-788 |#1| (-872 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -788) (|devaluate| |#1|) (LIST (QUOTE -872) (|devaluate| |#2|)))))) (|HasCategory| (-788 |#1| (-872 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-788 |#1| (-872 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| (-872 |#2|) (QUOTE (-375))) (|HasCategory| (-788 |#1| (-872 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1058)
+((-4457 . T) (-4456 . T))
+((-12 (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1113))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -790) (|devaluate| |#1|) (LIST (QUOTE -874) (|devaluate| |#2|)))))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-874 |#2|) (QUOTE (-377))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1060)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1059 S)
+(-1061 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1060)
+(-1062)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4451 . T))
+((-4453 . T))
NIL
-(-1061 |xx| -1384)
+(-1063 |xx| -1386)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1062 R)
+(-1064 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-1063 S |m| |n| R |Row| |Col|)
+(-1065 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (QUOTE (-564))) (|HasCategory| |#4| (QUOTE (-174))))
-(-1064 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-566))) (|HasCategory| |#4| (QUOTE (-174))))
+(-1066 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4454 . T) (-4449 . T) (-4448 . T))
+((-4456 . T) (-4451 . T) (-4450 . T))
NIL
-(-1065 |m| |n| R)
+(-1067 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4454 . T) (-4449 . T) (-4448 . T))
-((|HasCategory| |#3| (QUOTE (-174))) (-2813 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-564))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1066 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4456 . T) (-4451 . T) (-4450 . T))
+((|HasCategory| |#3| (QUOTE (-174))) (-2818 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-566))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1068 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1067 R)
+(-1069 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-1068 S T$)
+(-1070 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1111))))
-(-1069)
+((|HasCategory| |#1| (QUOTE (-1113))))
+(-1071)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1070 S)
+(-1072 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1071)
+(-1073)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1072 |TheField| |ThePolDom|)
+(-1074 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1073)
+(-1075)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4442 . T) (-4446 . T) (-4441 . T) (-4452 . T) (-4453 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4444 . T) (-4448 . T) (-4443 . T) (-4454 . T) (-4455 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1074)
+(-1076)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-52))))))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-52) (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -315) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (QUOTE (-1111))) (|HasCategory| (-1188) (QUOTE (-858))) (|HasCategory| (-52) (QUOTE (-1111))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1075 S R E V)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1190))) (LIST (QUOTE |:|) (QUOTE -1909) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-1190) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1077 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1003) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-1188)))))
-(-1076 R E V)
+((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1005) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-1190)))))
+(-1078 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
NIL
-(-1077)
+(-1079)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1078 S |TheField| |ThePols|)
+(-1080 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1079 |TheField| |ThePols|)
+(-1081 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1080 R E V P TS)
+(-1082 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1081 S R E V P)
+(-1083 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1082 R E V P)
+(-1084 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-1083 R E V P TS)
+(-1085 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1084)
+(-1086)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1085)
+(-1087)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1086 |f|)
+(-1088 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1087 |Base| R -1384)
+(-1089 |Base| R -1386)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1088 |Base| R -1384)
+(-1090 |Base| R -1386)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-1089 R |ls|)
+(-1091 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1090 UP SAE UPA)
+(-1092 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1091 R UP M)
+(-1093 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4447 |has| |#1| (-370)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-356))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-356)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))))
-(-1092 UP SAE UPA)
+((-4449 |has| |#1| (-372)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-358)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))))
+(-1094 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1093)
+(-1095)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1094)
+(-1096)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1095 S)
+(-1097 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1096)
+(-1098)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1097 R)
+(-1099 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1098 R)
+(-1100 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1099 S)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1101 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1100 R S)
+(-1102 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-856))))
-(-1101)
+((|HasCategory| |#1| (QUOTE (-858))))
+(-1103)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1102 R S)
+(-1104 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1103 S)
+(-1105 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1105 |#1|) (QUOTE (-1111))))
-(-1104 S)
+((|HasCategory| (-1107 |#1|) (QUOTE (-1113))))
+(-1106 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1105 S)
+(-1107 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1111))))
-(-1106 S L)
+((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1113))))
+(-1108 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1107)
+(-1109)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1108 A S)
+(-1110 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1109 S)
+(-1111 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4444 . T))
+((-4446 . T))
NIL
-(-1110 S)
+(-1112 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1111)
+(-1113)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1112 |m| |n|)
+(-1114 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1113 S)
+(-1115 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4454 . T) (-4444 . T) (-4455 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-1114 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4456 . T) (-4446 . T) (-4457 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-1116 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1115)
+(-1117)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1116 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1118 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1117 R FS)
+(-1119 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1118 R E V P TS)
+(-1120 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1119 R E V P TS)
+(-1121 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1120 R E V P)
+(-1122 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-1121)
+(-1123)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1122 S)
+(-1124 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1123)
+(-1125)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1124 |dimtot| |dim1| S)
+(-1126 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4448 |has| |#3| (-1060)) (-4449 |has| |#3| (-1060)) (-4451 |has| |#3| (-6 -4451)) ((-4456 "*") |has| |#3| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#3| (QUOTE (-370))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-801))) (-2813 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856)))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-734))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-1111)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-237)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-801)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-856)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (|HasAttribute| |#3| (QUOTE -4451)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))))
-(-1125 R |x|)
+((-4450 |has| |#3| (-1062)) (-4451 |has| |#3| (-1062)) (-4453 |has| |#3| (-6 -4453)) ((-4458 "*") |has| |#3| (-174)) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-803))) (-2818 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858)))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-736))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-1113)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-858)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113)))) (|HasAttribute| |#3| (QUOTE -4453)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
+(-1127 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-460))))
-(-1126)
+((|HasCategory| |#1| (QUOTE (-462))))
+(-1128)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1127 R -1384)
+(-1129 R -1386)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1128 R)
+(-1130 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1129)
+(-1131)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1130)
+(-1132)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1131)
+(-1133)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4442 . T) (-4446 . T) (-4441 . T) (-4452 . T) (-4453 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4444 . T) (-4448 . T) (-4443 . T) (-4454 . T) (-4455 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1132 S)
+(-1134 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4454 . T) (-4455 . T))
+((-4456 . T) (-4457 . T))
NIL
-(-1133 S |ndim| R |Row| |Col|)
+(-1135 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-370))) (|HasAttribute| |#3| (QUOTE (-4456 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
-(-1134 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-372))) (|HasAttribute| |#3| (QUOTE (-4458 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
+(-1136 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4454 . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4456 . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1135 R |Row| |Col| M)
+(-1137 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1136 R |VarSet|)
+(-1138 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1137 |Coef| |Var| SMP)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1139 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-370))))
-(-1138 R E V P)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))))
+(-1140 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-1139 UP -1384)
+(-1141 UP -1386)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1140 R)
+(-1142 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1141 R)
+(-1143 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1142 R)
+(-1144 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1143 S A)
+(-1145 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))))
-(-1144 R)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-1146 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1145 R)
+(-1147 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1146)
+(-1148)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1147)
+(-1149)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1148)
+(-1150)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1149)
+(-1151)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1150)
+(-1152)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1151 V C)
+(-1153 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1152 V C)
+(-1154 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| (-1151 |#1| |#2|) (LIST (QUOTE -315) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1151 |#1| |#2|) (QUOTE (-1111)))) (|HasCategory| (-1151 |#1| |#2|) (QUOTE (-1111))) (-2813 (|HasCategory| (-1151 |#1| |#2|) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-1151 |#1| |#2|) (LIST (QUOTE -315) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1151 |#1| |#2|) (QUOTE (-1111))))) (|HasCategory| (-1151 |#1| |#2|) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1153 |ndim| R)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| (-1153 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1153 |#1| |#2|) (QUOTE (-1113)))) (|HasCategory| (-1153 |#1| |#2|) (QUOTE (-1113))) (-2818 (|HasCategory| (-1153 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-1153 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1153 |#1| |#2|) (QUOTE (-1113))))) (|HasCategory| (-1153 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1155 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4451 . T) (-4443 |has| |#2| (-6 (-4456 "*"))) (-4454 . T) (-4448 . T) (-4449 . T))
-((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
-(-1154 S)
+((-4453 . T) (-4445 |has| |#2| (-6 (-4458 "*"))) (-4456 . T) (-4450 . T) (-4451 . T))
+((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+(-1156 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1155)
+(-1157)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-1156 R E V P TS)
+(-1158 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1157 R E V P)
+(-1159 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4455 . T) (-4454 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1158 S)
+((-4457 . T) (-4456 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1160 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1159 A S)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1161 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1160 S)
+(-1162 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1161 |Key| |Ent| |dent|)
+(-1163 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-858))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))))
-(-1162)
+((-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))))
+(-1164)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1163)
+(-1165)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1164 |Coef|)
+(-1166 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1165 S)
+(-1167 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1166 A B)
+(-1168 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1167 A B C)
+(-1169 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1168 S)
+(-1170 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4455 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1169)
+((-4457 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1171)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-1170)
+(-1172)
NIL
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))))
-(-1171 |Entry|)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
+(-1173 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)))))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (QUOTE (-1111))) (|HasCategory| (-1170) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1172 A)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#1|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| (-1172) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1174 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
-(-1173 |Coef|)
+((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
+(-1175 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1174 |Coef|)
+(-1176 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1175 R UP)
+(-1177 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-313))))
-(-1176 |n| R)
+((|HasCategory| |#1| (QUOTE (-315))))
+(-1178 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1177 S1 S2)
+(-1179 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1178)
+(-1180)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1179 |Coef| |var| |cen|)
+(-1181 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4456 "*") -2813 (-2085 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-828))) (|has| |#1| (-174)) (-2085 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-918)))) (-4447 -2813 (-2085 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-828))) (|has| |#1| (-564)) (-2085 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370))))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1180 R -1384)
+(((-4458 "*") -2818 (-2088 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2088 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-920)))) (-4449 -2818 (-2088 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2088 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1182 R -1386)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1181 R)
+(-1183 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1182 R S)
+(-1184 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1183 E OV R P)
+(-1185 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1184 R)
+(-1186 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4450 |has| |#1| (-370)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1163))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1185 |Coef| |var| |cen|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4452 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1187 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
-(-1186 |Coef| |var| |cen|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+(-1188 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|)))) (|HasCategory| (-779) (QUOTE (-1123))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
-(-1187)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1125))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+(-1189)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1188)
+(-1190)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1189 R)
+(-1191 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1190 R)
+(-1192 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| (-982) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasAttribute| |#1| (QUOTE -4452)))
-(-1191)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| (-984) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasAttribute| |#1| (QUOTE -4454)))
+(-1193)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1192)
+(-1194)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1193)
+(-1195)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1194 N)
+(-1196 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1195 N)
+(-1197 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
-(-1196)
+(-1198)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1197 R)
+(-1199 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1198)
+(-1200)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1199 S)
+(-1201 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1200 S)
+(-1202 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1201 |Key| |Entry|)
+(-1203 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4454 . T) (-4455 . T))
-((-12 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3690) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1202 S)
+((-4456 . T) (-4457 . T))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1204 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1203 R)
+(-1205 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1204 S |Key| |Entry|)
+(-1206 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1205 |Key| |Entry|)
+(-1207 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4455 . T))
+((-4457 . T))
NIL
-(-1206 |Key| |Entry|)
+(-1208 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1207)
+(-1209)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1208 S)
+(-1210 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1209)
+(-1211)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1210)
+(-1212)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1211 R)
+(-1213 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1212)
+(-1214)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1213 S)
+(-1215 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1214)
+(-1216)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1215 S)
+(-1217 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4455 . T) (-4454 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1216 S)
+((-4457 . T) (-4456 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1218 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1217)
+(-1219)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1218 R -1384)
+(-1220 R -1386)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1219 R |Row| |Col| M)
+(-1221 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1220 R -1384)
+(-1222 R -1386)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -895) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -895) (|devaluate| |#1|)))))
-(-1221 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -897) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -897) (|devaluate| |#1|)))))
+(-1223 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-375))))
-(-1222 R E V P)
+((|HasCategory| |#4| (QUOTE (-377))))
+(-1224 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-1223 |Coef|)
+(-1225 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-370))))
-(-1224 |Curve|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))))
+(-1226 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1225)
+(-1227)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1226 S)
+(-1228 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1227 -1384)
+((|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1229 -1386)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1228)
+(-1230)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1229)
+(-1231)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1230 S)
+(-1232 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))))
-(-1231)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-1233)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1232 S)
+(-1234 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1233)
+(-1235)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1234)
+(-1236)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1235)
+(-1237)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1236)
+(-1238)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1237)
+(-1239)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1238 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1240 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1239 |Coef|)
+(-1241 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1240 S |Coef| UTS)
+(-1242 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-370))))
-(-1241 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-372))))
+(-1243 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1242 |Coef| UTS)
+(-1244 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-146))))) (-2813 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-148))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858))))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-918))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-146))))))
-(-1243 |Coef| |var| |cen|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2818 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-920))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))))
+(-1245 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4456 "*") -2813 (-2085 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-828))) (|has| |#1| (-174)) (-2085 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-918)))) (-4447 -2813 (-2085 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-828))) (|has| |#1| (-564)) (-2085 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370))))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1244 ZP)
+(((-4458 "*") -2818 (-2088 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2088 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-920)))) (-4449 -2818 (-2088 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2088 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1246 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1245 R S)
+(-1247 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-856))))
-(-1246 S)
+((|HasCategory| |#1| (QUOTE (-858))))
+(-1248 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1111))))
-(-1247 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1113))))
+(-1249 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1248 R Q UP)
+(-1250 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1249 R UP)
+(-1251 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1250 R UP)
+(-1252 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1251 R U)
+(-1253 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1252 |x| R)
+(-1254 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4450 |has| |#2| (-370)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-1253 R PR S PS)
+(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4452 |has| |#2| (-372)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-1255 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1254 S R)
+(-1256 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1163))))
-(-1255 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1165))))
+(-1257 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4450 |has| |#1| (-370)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4452 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
NIL
-(-1256 S |Coef| |Expon|)
+(-1258 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1123))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2940) (LIST (|devaluate| |#2|) (QUOTE (-1188))))))
-(-1257 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1125))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2943) (LIST (|devaluate| |#2|) (QUOTE (-1190))))))
+(-1259 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1258 RC P)
+(-1260 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1259 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1261 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1260 |Coef|)
+(-1262 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1261 S |Coef| ULS)
+(-1263 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1262 |Coef| ULS)
+(-1264 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1263 |Coef| ULS)
+(-1265 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
-(-1264 |Coef| |var| |cen|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
+(-1266 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
-(-1265 R FE |var| |cen|)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+(-1267 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4456 "*") |has| (-1264 |#2| |#3| |#4|) (-174)) (-4447 |has| (-1264 |#2| |#3| |#4|) (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-174))) (-2813 (|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-370))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-460))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-564))))
-(-1266 A S)
+(((-4458 "*") |has| (-1266 |#2| |#3| |#4|) (-174)) (-4449 |has| (-1266 |#2| |#3| |#4|) (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-174))) (-2818 (|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-372))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-462))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-566))))
+(-1268 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4455)))
-(-1267 S)
+((|HasAttribute| |#1| (QUOTE -4457)))
+(-1269 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1268 |Coef1| |Coef2| UTS1 UTS2)
+(-1270 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1269 S |Coef|)
+(-1271 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-1214))) (|HasSignature| |#2| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3034) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1188))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))))
-(-1270 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1216))) (|HasSignature| |#2| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2968) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1190))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))))
+(-1272 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1271 |Coef| |var| |cen|)
+(-1273 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|)))) (|HasCategory| (-779) (QUOTE (-1123))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
-(-1272 |Coef| UTS)
+(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1125))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+(-1274 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1273 -1384 UP L UTS)
+(-1275 -1386 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-564))))
-(-1274)
+((|HasCategory| |#1| (QUOTE (-566))))
+(-1276)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1275 |sym|)
+(-1277 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1276 S R)
+(-1278 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1277 R)
+((|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1279 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-1278 A B)
+(-1280 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1279 R)
+(-1281 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4455 . T) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1060))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
-(-1280)
+((-4457 . T) (-4456 . T))
+((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-1282)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1281)
+(-1283)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1282)
+(-1284)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1283)
+(-1285)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1284)
+(-1286)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1285 A S)
+(-1287 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1286 S)
+(-1288 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4449 . T) (-4448 . T))
+((-4451 . T) (-4450 . T))
NIL
-(-1287 R)
+(-1289 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1288 K R UP -1384)
+(-1290 K R UP -1386)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1289)
+(-1291)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1290)
+(-1292)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1291 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1293 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))))
-(-1292 R E V P)
+((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))))
+(-1294 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4455 . T) (-4454 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-1293 R)
+((-4457 . T) (-4456 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1295 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4448 . T) (-4449 . T) (-4451 . T))
+((-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1294 |vl| R)
+(-1296 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4451 . T) (-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4447)))
-(-1295 R |VarSet| XPOLY)
+((-4453 . T) (-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4449)))
+(-1297 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1296 |vl| R)
+(-1298 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
+((-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T))
NIL
-(-1297 S -1384)
+(-1299 S -1386)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
-(-1298 -1384)
+((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
+(-1300 -1386)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
-(-1299 |VarSet| R)
+(-1301 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -725) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasAttribute| |#2| (QUOTE -4447)))
-(-1300 |vl| R)
+((-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -727) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasAttribute| |#2| (QUOTE -4449)))
+(-1302 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
+((-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T))
NIL
-(-1301 R)
+(-1303 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4447 |has| |#1| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4447)))
-(-1302 R E)
+((-4449 |has| |#1| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4449)))
+(-1304 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4451 . T) (-4452 |has| |#1| (-6 -4452)) (-4447 |has| |#1| (-6 -4447)) (-4449 . T) (-4448 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4451)) (|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#1| (QUOTE -4447)))
-(-1303 |VarSet| R)
+((-4453 . T) (-4454 |has| |#1| (-6 -4454)) (-4449 |has| |#1| (-6 -4449)) (-4451 . T) (-4450 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#1| (QUOTE -4454)) (|HasAttribute| |#1| (QUOTE -4449)))
+(-1305 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4447)))
-(-1304)
+((-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4449)))
+(-1306)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1305 A)
+(-1307 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1306 R |ls| |ls2|)
+(-1308 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1307 R)
+(-1309 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1308 |p|)
+(-1310 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+(((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
NIL
NIL
@@ -5180,4 +5188,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2267465 2267470 2267475 2267480) (-2 NIL 2267445 2267450 2267455 2267460) (-1 NIL 2267425 2267430 2267435 2267440) (0 NIL 2267405 2267410 2267415 2267420) (-1308 "ZMOD.spad" 2267214 2267227 2267343 2267400) (-1307 "ZLINDEP.spad" 2266280 2266291 2267204 2267209) (-1306 "ZDSOLVE.spad" 2256225 2256247 2266270 2266275) (-1305 "YSTREAM.spad" 2255720 2255731 2256215 2256220) (-1304 "YDIAGRAM.spad" 2255354 2255363 2255710 2255715) (-1303 "XRPOLY.spad" 2254574 2254594 2255210 2255279) (-1302 "XPR.spad" 2252369 2252382 2254292 2254391) (-1301 "XPOLY.spad" 2251924 2251935 2252225 2252294) (-1300 "XPOLYC.spad" 2251243 2251259 2251850 2251919) (-1299 "XPBWPOLY.spad" 2249680 2249700 2251023 2251092) (-1298 "XF.spad" 2248143 2248158 2249582 2249675) (-1297 "XF.spad" 2246586 2246603 2248027 2248032) (-1296 "XFALG.spad" 2243634 2243650 2246512 2246581) (-1295 "XEXPPKG.spad" 2242885 2242911 2243624 2243629) (-1294 "XDPOLY.spad" 2242499 2242515 2242741 2242810) (-1293 "XALG.spad" 2242159 2242170 2242455 2242494) (-1292 "WUTSET.spad" 2237998 2238015 2241805 2241832) (-1291 "WP.spad" 2237197 2237241 2237856 2237923) (-1290 "WHILEAST.spad" 2236995 2237004 2237187 2237192) (-1289 "WHEREAST.spad" 2236666 2236675 2236985 2236990) (-1288 "WFFINTBS.spad" 2234329 2234351 2236656 2236661) (-1287 "WEIER.spad" 2232551 2232562 2234319 2234324) (-1286 "VSPACE.spad" 2232224 2232235 2232519 2232546) (-1285 "VSPACE.spad" 2231917 2231930 2232214 2232219) (-1284 "VOID.spad" 2231594 2231603 2231907 2231912) (-1283 "VIEW.spad" 2229274 2229283 2231584 2231589) (-1282 "VIEWDEF.spad" 2224475 2224484 2229264 2229269) (-1281 "VIEW3D.spad" 2208436 2208445 2224465 2224470) (-1280 "VIEW2D.spad" 2196327 2196336 2208426 2208431) (-1279 "VECTOR.spad" 2195001 2195012 2195252 2195279) (-1278 "VECTOR2.spad" 2193640 2193653 2194991 2194996) (-1277 "VECTCAT.spad" 2191544 2191555 2193608 2193635) (-1276 "VECTCAT.spad" 2189255 2189268 2191321 2191326) (-1275 "VARIABLE.spad" 2189035 2189050 2189245 2189250) (-1274 "UTYPE.spad" 2188679 2188688 2189025 2189030) (-1273 "UTSODETL.spad" 2187974 2187998 2188635 2188640) (-1272 "UTSODE.spad" 2186190 2186210 2187964 2187969) (-1271 "UTS.spad" 2180994 2181022 2184657 2184754) (-1270 "UTSCAT.spad" 2178473 2178489 2180892 2180989) (-1269 "UTSCAT.spad" 2175596 2175614 2178017 2178022) (-1268 "UTS2.spad" 2175191 2175226 2175586 2175591) (-1267 "URAGG.spad" 2169864 2169875 2175181 2175186) (-1266 "URAGG.spad" 2164501 2164514 2169820 2169825) (-1265 "UPXSSING.spad" 2162146 2162172 2163582 2163715) (-1264 "UPXS.spad" 2159300 2159328 2160278 2160427) (-1263 "UPXSCONS.spad" 2157059 2157079 2157432 2157581) (-1262 "UPXSCCA.spad" 2155630 2155650 2156905 2157054) (-1261 "UPXSCCA.spad" 2154343 2154365 2155620 2155625) (-1260 "UPXSCAT.spad" 2152932 2152948 2154189 2154338) (-1259 "UPXS2.spad" 2152475 2152528 2152922 2152927) (-1258 "UPSQFREE.spad" 2150889 2150903 2152465 2152470) (-1257 "UPSCAT.spad" 2148676 2148700 2150787 2150884) (-1256 "UPSCAT.spad" 2146169 2146195 2148282 2148287) (-1255 "UPOLYC.spad" 2141209 2141220 2146011 2146164) (-1254 "UPOLYC.spad" 2136141 2136154 2140945 2140950) (-1253 "UPOLYC2.spad" 2135612 2135631 2136131 2136136) (-1252 "UP.spad" 2132811 2132826 2133198 2133351) (-1251 "UPMP.spad" 2131711 2131724 2132801 2132806) (-1250 "UPDIVP.spad" 2131276 2131290 2131701 2131706) (-1249 "UPDECOMP.spad" 2129521 2129535 2131266 2131271) (-1248 "UPCDEN.spad" 2128730 2128746 2129511 2129516) (-1247 "UP2.spad" 2128094 2128115 2128720 2128725) (-1246 "UNISEG.spad" 2127447 2127458 2128013 2128018) (-1245 "UNISEG2.spad" 2126944 2126957 2127403 2127408) (-1244 "UNIFACT.spad" 2126047 2126059 2126934 2126939) (-1243 "ULS.spad" 2116605 2116633 2117692 2118121) (-1242 "ULSCONS.spad" 2109001 2109021 2109371 2109520) (-1241 "ULSCCAT.spad" 2106738 2106758 2108847 2108996) (-1240 "ULSCCAT.spad" 2104583 2104605 2106694 2106699) (-1239 "ULSCAT.spad" 2102815 2102831 2104429 2104578) (-1238 "ULS2.spad" 2102329 2102382 2102805 2102810) (-1237 "UINT8.spad" 2102206 2102215 2102319 2102324) (-1236 "UINT64.spad" 2102082 2102091 2102196 2102201) (-1235 "UINT32.spad" 2101958 2101967 2102072 2102077) (-1234 "UINT16.spad" 2101834 2101843 2101948 2101953) (-1233 "UFD.spad" 2100899 2100908 2101760 2101829) (-1232 "UFD.spad" 2100026 2100037 2100889 2100894) (-1231 "UDVO.spad" 2098907 2098916 2100016 2100021) (-1230 "UDPO.spad" 2096400 2096411 2098863 2098868) (-1229 "TYPE.spad" 2096332 2096341 2096390 2096395) (-1228 "TYPEAST.spad" 2096251 2096260 2096322 2096327) (-1227 "TWOFACT.spad" 2094903 2094918 2096241 2096246) (-1226 "TUPLE.spad" 2094389 2094400 2094802 2094807) (-1225 "TUBETOOL.spad" 2091256 2091265 2094379 2094384) (-1224 "TUBE.spad" 2089903 2089920 2091246 2091251) (-1223 "TS.spad" 2088502 2088518 2089468 2089565) (-1222 "TSETCAT.spad" 2075629 2075646 2088470 2088497) (-1221 "TSETCAT.spad" 2062742 2062761 2075585 2075590) (-1220 "TRMANIP.spad" 2057108 2057125 2062448 2062453) (-1219 "TRIMAT.spad" 2056071 2056096 2057098 2057103) (-1218 "TRIGMNIP.spad" 2054598 2054615 2056061 2056066) (-1217 "TRIGCAT.spad" 2054110 2054119 2054588 2054593) (-1216 "TRIGCAT.spad" 2053620 2053631 2054100 2054105) (-1215 "TREE.spad" 2052195 2052206 2053227 2053254) (-1214 "TRANFUN.spad" 2052034 2052043 2052185 2052190) (-1213 "TRANFUN.spad" 2051871 2051882 2052024 2052029) (-1212 "TOPSP.spad" 2051545 2051554 2051861 2051866) (-1211 "TOOLSIGN.spad" 2051208 2051219 2051535 2051540) (-1210 "TEXTFILE.spad" 2049769 2049778 2051198 2051203) (-1209 "TEX.spad" 2046915 2046924 2049759 2049764) (-1208 "TEX1.spad" 2046471 2046482 2046905 2046910) (-1207 "TEMUTL.spad" 2046026 2046035 2046461 2046466) (-1206 "TBCMPPK.spad" 2044119 2044142 2046016 2046021) (-1205 "TBAGG.spad" 2043169 2043192 2044099 2044114) (-1204 "TBAGG.spad" 2042227 2042252 2043159 2043164) (-1203 "TANEXP.spad" 2041635 2041646 2042217 2042222) (-1202 "TALGOP.spad" 2041359 2041370 2041625 2041630) (-1201 "TABLE.spad" 2039770 2039793 2040040 2040067) (-1200 "TABLEAU.spad" 2039251 2039262 2039760 2039765) (-1199 "TABLBUMP.spad" 2036054 2036065 2039241 2039246) (-1198 "SYSTEM.spad" 2035282 2035291 2036044 2036049) (-1197 "SYSSOLP.spad" 2032765 2032776 2035272 2035277) (-1196 "SYSPTR.spad" 2032664 2032673 2032755 2032760) (-1195 "SYSNNI.spad" 2031846 2031857 2032654 2032659) (-1194 "SYSINT.spad" 2031250 2031261 2031836 2031841) (-1193 "SYNTAX.spad" 2027456 2027465 2031240 2031245) (-1192 "SYMTAB.spad" 2025524 2025533 2027446 2027451) (-1191 "SYMS.spad" 2021547 2021556 2025514 2025519) (-1190 "SYMPOLY.spad" 2020554 2020565 2020636 2020763) (-1189 "SYMFUNC.spad" 2020055 2020066 2020544 2020549) (-1188 "SYMBOL.spad" 2017558 2017567 2020045 2020050) (-1187 "SWITCH.spad" 2014329 2014338 2017548 2017553) (-1186 "SUTS.spad" 2011234 2011262 2012796 2012893) (-1185 "SUPXS.spad" 2008375 2008403 2009366 2009515) (-1184 "SUP.spad" 2005188 2005199 2005961 2006114) (-1183 "SUPFRACF.spad" 2004293 2004311 2005178 2005183) (-1182 "SUP2.spad" 2003685 2003698 2004283 2004288) (-1181 "SUMRF.spad" 2002659 2002670 2003675 2003680) (-1180 "SUMFS.spad" 2002296 2002313 2002649 2002654) (-1179 "SULS.spad" 1992841 1992869 1993941 1994370) (-1178 "SUCHTAST.spad" 1992610 1992619 1992831 1992836) (-1177 "SUCH.spad" 1992292 1992307 1992600 1992605) (-1176 "SUBSPACE.spad" 1984407 1984422 1992282 1992287) (-1175 "SUBRESP.spad" 1983577 1983591 1984363 1984368) (-1174 "STTF.spad" 1979676 1979692 1983567 1983572) (-1173 "STTFNC.spad" 1976144 1976160 1979666 1979671) (-1172 "STTAYLOR.spad" 1968779 1968790 1976025 1976030) (-1171 "STRTBL.spad" 1967284 1967301 1967433 1967460) (-1170 "STRING.spad" 1966693 1966702 1966707 1966734) (-1169 "STRICAT.spad" 1966481 1966490 1966661 1966688) (-1168 "STREAM.spad" 1963399 1963410 1966006 1966021) (-1167 "STREAM3.spad" 1962972 1962987 1963389 1963394) (-1166 "STREAM2.spad" 1962100 1962113 1962962 1962967) (-1165 "STREAM1.spad" 1961806 1961817 1962090 1962095) (-1164 "STINPROD.spad" 1960742 1960758 1961796 1961801) (-1163 "STEP.spad" 1959943 1959952 1960732 1960737) (-1162 "STEPAST.spad" 1959177 1959186 1959933 1959938) (-1161 "STBL.spad" 1957703 1957731 1957870 1957885) (-1160 "STAGG.spad" 1956778 1956789 1957693 1957698) (-1159 "STAGG.spad" 1955851 1955864 1956768 1956773) (-1158 "STACK.spad" 1955208 1955219 1955458 1955485) (-1157 "SREGSET.spad" 1952912 1952929 1954854 1954881) (-1156 "SRDCMPK.spad" 1951473 1951493 1952902 1952907) (-1155 "SRAGG.spad" 1946616 1946625 1951441 1951468) (-1154 "SRAGG.spad" 1941779 1941790 1946606 1946611) (-1153 "SQMATRIX.spad" 1939451 1939469 1940367 1940454) (-1152 "SPLTREE.spad" 1934003 1934016 1938887 1938914) (-1151 "SPLNODE.spad" 1930591 1930604 1933993 1933998) (-1150 "SPFCAT.spad" 1929400 1929409 1930581 1930586) (-1149 "SPECOUT.spad" 1927952 1927961 1929390 1929395) (-1148 "SPADXPT.spad" 1919547 1919556 1927942 1927947) (-1147 "spad-parser.spad" 1919012 1919021 1919537 1919542) (-1146 "SPADAST.spad" 1918713 1918722 1919002 1919007) (-1145 "SPACEC.spad" 1902912 1902923 1918703 1918708) (-1144 "SPACE3.spad" 1902688 1902699 1902902 1902907) (-1143 "SORTPAK.spad" 1902237 1902250 1902644 1902649) (-1142 "SOLVETRA.spad" 1900000 1900011 1902227 1902232) (-1141 "SOLVESER.spad" 1898528 1898539 1899990 1899995) (-1140 "SOLVERAD.spad" 1894554 1894565 1898518 1898523) (-1139 "SOLVEFOR.spad" 1893016 1893034 1894544 1894549) (-1138 "SNTSCAT.spad" 1892616 1892633 1892984 1893011) (-1137 "SMTS.spad" 1890888 1890914 1892181 1892278) (-1136 "SMP.spad" 1888363 1888383 1888753 1888880) (-1135 "SMITH.spad" 1887208 1887233 1888353 1888358) (-1134 "SMATCAT.spad" 1885318 1885348 1887152 1887203) (-1133 "SMATCAT.spad" 1883360 1883392 1885196 1885201) (-1132 "SKAGG.spad" 1882323 1882334 1883328 1883355) (-1131 "SINT.spad" 1881263 1881272 1882189 1882318) (-1130 "SIMPAN.spad" 1880991 1881000 1881253 1881258) (-1129 "SIG.spad" 1880321 1880330 1880981 1880986) (-1128 "SIGNRF.spad" 1879439 1879450 1880311 1880316) (-1127 "SIGNEF.spad" 1878718 1878735 1879429 1879434) (-1126 "SIGAST.spad" 1878103 1878112 1878708 1878713) (-1125 "SHP.spad" 1876031 1876046 1878059 1878064) (-1124 "SHDP.spad" 1865665 1865692 1866174 1866305) (-1123 "SGROUP.spad" 1865273 1865282 1865655 1865660) (-1122 "SGROUP.spad" 1864879 1864890 1865263 1865268) (-1121 "SGCF.spad" 1858018 1858027 1864869 1864874) (-1120 "SFRTCAT.spad" 1856948 1856965 1857986 1858013) (-1119 "SFRGCD.spad" 1856011 1856031 1856938 1856943) (-1118 "SFQCMPK.spad" 1850648 1850668 1856001 1856006) (-1117 "SFORT.spad" 1850087 1850101 1850638 1850643) (-1116 "SEXOF.spad" 1849930 1849970 1850077 1850082) (-1115 "SEX.spad" 1849822 1849831 1849920 1849925) (-1114 "SEXCAT.spad" 1847603 1847643 1849812 1849817) (-1113 "SET.spad" 1845927 1845938 1847024 1847063) (-1112 "SETMN.spad" 1844377 1844394 1845917 1845922) (-1111 "SETCAT.spad" 1843699 1843708 1844367 1844372) (-1110 "SETCAT.spad" 1843019 1843030 1843689 1843694) (-1109 "SETAGG.spad" 1839568 1839579 1842999 1843014) (-1108 "SETAGG.spad" 1836125 1836138 1839558 1839563) (-1107 "SEQAST.spad" 1835828 1835837 1836115 1836120) (-1106 "SEGXCAT.spad" 1834984 1834997 1835818 1835823) (-1105 "SEG.spad" 1834797 1834808 1834903 1834908) (-1104 "SEGCAT.spad" 1833722 1833733 1834787 1834792) (-1103 "SEGBIND.spad" 1833480 1833491 1833669 1833674) (-1102 "SEGBIND2.spad" 1833178 1833191 1833470 1833475) (-1101 "SEGAST.spad" 1832892 1832901 1833168 1833173) (-1100 "SEG2.spad" 1832327 1832340 1832848 1832853) (-1099 "SDVAR.spad" 1831603 1831614 1832317 1832322) (-1098 "SDPOL.spad" 1829029 1829040 1829320 1829447) (-1097 "SCPKG.spad" 1827118 1827129 1829019 1829024) (-1096 "SCOPE.spad" 1826271 1826280 1827108 1827113) (-1095 "SCACHE.spad" 1824967 1824978 1826261 1826266) (-1094 "SASTCAT.spad" 1824876 1824885 1824957 1824962) (-1093 "SAOS.spad" 1824748 1824757 1824866 1824871) (-1092 "SAERFFC.spad" 1824461 1824481 1824738 1824743) (-1091 "SAE.spad" 1822636 1822652 1823247 1823382) (-1090 "SAEFACT.spad" 1822337 1822357 1822626 1822631) (-1089 "RURPK.spad" 1819996 1820012 1822327 1822332) (-1088 "RULESET.spad" 1819449 1819473 1819986 1819991) (-1087 "RULE.spad" 1817689 1817713 1819439 1819444) (-1086 "RULECOLD.spad" 1817541 1817554 1817679 1817684) (-1085 "RTVALUE.spad" 1817276 1817285 1817531 1817536) (-1084 "RSTRCAST.spad" 1816993 1817002 1817266 1817271) (-1083 "RSETGCD.spad" 1813371 1813391 1816983 1816988) (-1082 "RSETCAT.spad" 1803307 1803324 1813339 1813366) (-1081 "RSETCAT.spad" 1793263 1793282 1803297 1803302) (-1080 "RSDCMPK.spad" 1791715 1791735 1793253 1793258) (-1079 "RRCC.spad" 1790099 1790129 1791705 1791710) (-1078 "RRCC.spad" 1788481 1788513 1790089 1790094) (-1077 "RPTAST.spad" 1788183 1788192 1788471 1788476) (-1076 "RPOLCAT.spad" 1767543 1767558 1788051 1788178) (-1075 "RPOLCAT.spad" 1746616 1746633 1767126 1767131) (-1074 "ROUTINE.spad" 1742499 1742508 1745263 1745290) (-1073 "ROMAN.spad" 1741827 1741836 1742365 1742494) (-1072 "ROIRC.spad" 1740907 1740939 1741817 1741822) (-1071 "RNS.spad" 1739810 1739819 1740809 1740902) (-1070 "RNS.spad" 1738799 1738810 1739800 1739805) (-1069 "RNG.spad" 1738534 1738543 1738789 1738794) (-1068 "RNGBIND.spad" 1737694 1737708 1738489 1738494) (-1067 "RMODULE.spad" 1737459 1737470 1737684 1737689) (-1066 "RMCAT2.spad" 1736879 1736936 1737449 1737454) (-1065 "RMATRIX.spad" 1735703 1735722 1736046 1736085) (-1064 "RMATCAT.spad" 1731282 1731313 1735659 1735698) (-1063 "RMATCAT.spad" 1726751 1726784 1731130 1731135) (-1062 "RLINSET.spad" 1726145 1726156 1726741 1726746) (-1061 "RINTERP.spad" 1726033 1726053 1726135 1726140) (-1060 "RING.spad" 1725503 1725512 1726013 1726028) (-1059 "RING.spad" 1724981 1724992 1725493 1725498) (-1058 "RIDIST.spad" 1724373 1724382 1724971 1724976) (-1057 "RGCHAIN.spad" 1722956 1722972 1723858 1723885) (-1056 "RGBCSPC.spad" 1722737 1722749 1722946 1722951) (-1055 "RGBCMDL.spad" 1722267 1722279 1722727 1722732) (-1054 "RF.spad" 1719909 1719920 1722257 1722262) (-1053 "RFFACTOR.spad" 1719371 1719382 1719899 1719904) (-1052 "RFFACT.spad" 1719106 1719118 1719361 1719366) (-1051 "RFDIST.spad" 1718102 1718111 1719096 1719101) (-1050 "RETSOL.spad" 1717521 1717534 1718092 1718097) (-1049 "RETRACT.spad" 1716949 1716960 1717511 1717516) (-1048 "RETRACT.spad" 1716375 1716388 1716939 1716944) (-1047 "RETAST.spad" 1716187 1716196 1716365 1716370) (-1046 "RESULT.spad" 1714247 1714256 1714834 1714861) (-1045 "RESRING.spad" 1713594 1713641 1714185 1714242) (-1044 "RESLATC.spad" 1712918 1712929 1713584 1713589) (-1043 "REPSQ.spad" 1712649 1712660 1712908 1712913) (-1042 "REP.spad" 1710203 1710212 1712639 1712644) (-1041 "REPDB.spad" 1709910 1709921 1710193 1710198) (-1040 "REP2.spad" 1699568 1699579 1709752 1709757) (-1039 "REP1.spad" 1693764 1693775 1699518 1699523) (-1038 "REGSET.spad" 1691561 1691578 1693410 1693437) (-1037 "REF.spad" 1690896 1690907 1691516 1691521) (-1036 "REDORDER.spad" 1690102 1690119 1690886 1690891) (-1035 "RECLOS.spad" 1688885 1688905 1689589 1689682) (-1034 "REALSOLV.spad" 1688025 1688034 1688875 1688880) (-1033 "REAL.spad" 1687897 1687906 1688015 1688020) (-1032 "REAL0Q.spad" 1685195 1685210 1687887 1687892) (-1031 "REAL0.spad" 1682039 1682054 1685185 1685190) (-1030 "RDUCEAST.spad" 1681760 1681769 1682029 1682034) (-1029 "RDIV.spad" 1681415 1681440 1681750 1681755) (-1028 "RDIST.spad" 1680982 1680993 1681405 1681410) (-1027 "RDETRS.spad" 1679846 1679864 1680972 1680977) (-1026 "RDETR.spad" 1677985 1678003 1679836 1679841) (-1025 "RDEEFS.spad" 1677084 1677101 1677975 1677980) (-1024 "RDEEF.spad" 1676094 1676111 1677074 1677079) (-1023 "RCFIELD.spad" 1673280 1673289 1675996 1676089) (-1022 "RCFIELD.spad" 1670552 1670563 1673270 1673275) (-1021 "RCAGG.spad" 1668480 1668491 1670542 1670547) (-1020 "RCAGG.spad" 1666335 1666348 1668399 1668404) (-1019 "RATRET.spad" 1665695 1665706 1666325 1666330) (-1018 "RATFACT.spad" 1665387 1665399 1665685 1665690) (-1017 "RANDSRC.spad" 1664706 1664715 1665377 1665382) (-1016 "RADUTIL.spad" 1664462 1664471 1664696 1664701) (-1015 "RADIX.spad" 1661383 1661397 1662929 1663022) (-1014 "RADFF.spad" 1659796 1659833 1659915 1660071) (-1013 "RADCAT.spad" 1659391 1659400 1659786 1659791) (-1012 "RADCAT.spad" 1658984 1658995 1659381 1659386) (-1011 "QUEUE.spad" 1658332 1658343 1658591 1658618) (-1010 "QUAT.spad" 1656790 1656801 1657133 1657198) (-1009 "QUATCT2.spad" 1656410 1656429 1656780 1656785) (-1008 "QUATCAT.spad" 1654580 1654591 1656340 1656405) (-1007 "QUATCAT.spad" 1652501 1652514 1654263 1654268) (-1006 "QUAGG.spad" 1651328 1651339 1652469 1652496) (-1005 "QQUTAST.spad" 1651096 1651105 1651318 1651323) (-1004 "QFORM.spad" 1650714 1650729 1651086 1651091) (-1003 "QFCAT.spad" 1649416 1649427 1650616 1650709) (-1002 "QFCAT.spad" 1647709 1647722 1648911 1648916) (-1001 "QFCAT2.spad" 1647401 1647418 1647699 1647704) (-1000 "QEQUAT.spad" 1646959 1646968 1647391 1647396) (-999 "QCMPACK.spad" 1641706 1641725 1646949 1646954) (-998 "QALGSET.spad" 1637785 1637817 1641620 1641625) (-997 "QALGSET2.spad" 1635781 1635799 1637775 1637780) (-996 "PWFFINTB.spad" 1633197 1633218 1635771 1635776) (-995 "PUSHVAR.spad" 1632536 1632555 1633187 1633192) (-994 "PTRANFN.spad" 1628664 1628674 1632526 1632531) (-993 "PTPACK.spad" 1625752 1625762 1628654 1628659) (-992 "PTFUNC2.spad" 1625575 1625589 1625742 1625747) (-991 "PTCAT.spad" 1624830 1624840 1625543 1625570) (-990 "PSQFR.spad" 1624137 1624161 1624820 1624825) (-989 "PSEUDLIN.spad" 1623023 1623033 1624127 1624132) (-988 "PSETPK.spad" 1608456 1608472 1622901 1622906) (-987 "PSETCAT.spad" 1602376 1602399 1608436 1608451) (-986 "PSETCAT.spad" 1596270 1596295 1602332 1602337) (-985 "PSCURVE.spad" 1595253 1595261 1596260 1596265) (-984 "PSCAT.spad" 1594036 1594065 1595151 1595248) (-983 "PSCAT.spad" 1592909 1592940 1594026 1594031) (-982 "PRTITION.spad" 1591607 1591615 1592899 1592904) (-981 "PRTDAST.spad" 1591326 1591334 1591597 1591602) (-980 "PRS.spad" 1580888 1580905 1591282 1591287) (-979 "PRQAGG.spad" 1580323 1580333 1580856 1580883) (-978 "PROPLOG.spad" 1579895 1579903 1580313 1580318) (-977 "PROPFUN2.spad" 1579518 1579531 1579885 1579890) (-976 "PROPFUN1.spad" 1578916 1578927 1579508 1579513) (-975 "PROPFRML.spad" 1577484 1577495 1578906 1578911) (-974 "PROPERTY.spad" 1576972 1576980 1577474 1577479) (-973 "PRODUCT.spad" 1574654 1574666 1574938 1574993) (-972 "PR.spad" 1573046 1573058 1573745 1573872) (-971 "PRINT.spad" 1572798 1572806 1573036 1573041) (-970 "PRIMES.spad" 1571051 1571061 1572788 1572793) (-969 "PRIMELT.spad" 1569132 1569146 1571041 1571046) (-968 "PRIMCAT.spad" 1568759 1568767 1569122 1569127) (-967 "PRIMARR.spad" 1567764 1567774 1567942 1567969) (-966 "PRIMARR2.spad" 1566531 1566543 1567754 1567759) (-965 "PREASSOC.spad" 1565913 1565925 1566521 1566526) (-964 "PPCURVE.spad" 1565050 1565058 1565903 1565908) (-963 "PORTNUM.spad" 1564825 1564833 1565040 1565045) (-962 "POLYROOT.spad" 1563674 1563696 1564781 1564786) (-961 "POLY.spad" 1561009 1561019 1561524 1561651) (-960 "POLYLIFT.spad" 1560274 1560297 1560999 1561004) (-959 "POLYCATQ.spad" 1558392 1558414 1560264 1560269) (-958 "POLYCAT.spad" 1551862 1551883 1558260 1558387) (-957 "POLYCAT.spad" 1544670 1544693 1551070 1551075) (-956 "POLY2UP.spad" 1544122 1544136 1544660 1544665) (-955 "POLY2.spad" 1543719 1543731 1544112 1544117) (-954 "POLUTIL.spad" 1542660 1542689 1543675 1543680) (-953 "POLTOPOL.spad" 1541408 1541423 1542650 1542655) (-952 "POINT.spad" 1540246 1540256 1540333 1540360) (-951 "PNTHEORY.spad" 1536948 1536956 1540236 1540241) (-950 "PMTOOLS.spad" 1535723 1535737 1536938 1536943) (-949 "PMSYM.spad" 1535272 1535282 1535713 1535718) (-948 "PMQFCAT.spad" 1534863 1534877 1535262 1535267) (-947 "PMPRED.spad" 1534342 1534356 1534853 1534858) (-946 "PMPREDFS.spad" 1533796 1533818 1534332 1534337) (-945 "PMPLCAT.spad" 1532876 1532894 1533728 1533733) (-944 "PMLSAGG.spad" 1532461 1532475 1532866 1532871) (-943 "PMKERNEL.spad" 1532040 1532052 1532451 1532456) (-942 "PMINS.spad" 1531620 1531630 1532030 1532035) (-941 "PMFS.spad" 1531197 1531215 1531610 1531615) (-940 "PMDOWN.spad" 1530487 1530501 1531187 1531192) (-939 "PMASS.spad" 1529497 1529505 1530477 1530482) (-938 "PMASSFS.spad" 1528464 1528480 1529487 1529492) (-937 "PLOTTOOL.spad" 1528244 1528252 1528454 1528459) (-936 "PLOT.spad" 1523167 1523175 1528234 1528239) (-935 "PLOT3D.spad" 1519631 1519639 1523157 1523162) (-934 "PLOT1.spad" 1518788 1518798 1519621 1519626) (-933 "PLEQN.spad" 1506078 1506105 1518778 1518783) (-932 "PINTERP.spad" 1505700 1505719 1506068 1506073) (-931 "PINTERPA.spad" 1505484 1505500 1505690 1505695) (-930 "PI.spad" 1505093 1505101 1505458 1505479) (-929 "PID.spad" 1504063 1504071 1505019 1505088) (-928 "PICOERCE.spad" 1503720 1503730 1504053 1504058) (-927 "PGROEB.spad" 1502321 1502335 1503710 1503715) (-926 "PGE.spad" 1493938 1493946 1502311 1502316) (-925 "PGCD.spad" 1492828 1492845 1493928 1493933) (-924 "PFRPAC.spad" 1491977 1491987 1492818 1492823) (-923 "PFR.spad" 1488640 1488650 1491879 1491972) (-922 "PFOTOOLS.spad" 1487898 1487914 1488630 1488635) (-921 "PFOQ.spad" 1487268 1487286 1487888 1487893) (-920 "PFO.spad" 1486687 1486714 1487258 1487263) (-919 "PF.spad" 1486261 1486273 1486492 1486585) (-918 "PFECAT.spad" 1483943 1483951 1486187 1486256) (-917 "PFECAT.spad" 1481653 1481663 1483899 1483904) (-916 "PFBRU.spad" 1479541 1479553 1481643 1481648) (-915 "PFBR.spad" 1477101 1477124 1479531 1479536) (-914 "PERM.spad" 1472908 1472918 1476931 1476946) (-913 "PERMGRP.spad" 1467678 1467688 1472898 1472903) (-912 "PERMCAT.spad" 1466339 1466349 1467658 1467673) (-911 "PERMAN.spad" 1464871 1464885 1466329 1466334) (-910 "PENDTREE.spad" 1464212 1464222 1464500 1464505) (-909 "PDRING.spad" 1462763 1462773 1464192 1464207) (-908 "PDRING.spad" 1461322 1461334 1462753 1462758) (-907 "PDEPROB.spad" 1460337 1460345 1461312 1461317) (-906 "PDEPACK.spad" 1454377 1454385 1460327 1460332) (-905 "PDECOMP.spad" 1453847 1453864 1454367 1454372) (-904 "PDECAT.spad" 1452203 1452211 1453837 1453842) (-903 "PCOMP.spad" 1452056 1452069 1452193 1452198) (-902 "PBWLB.spad" 1450644 1450661 1452046 1452051) (-901 "PATTERN.spad" 1445183 1445193 1450634 1450639) (-900 "PATTERN2.spad" 1444921 1444933 1445173 1445178) (-899 "PATTERN1.spad" 1443257 1443273 1444911 1444916) (-898 "PATRES.spad" 1440832 1440844 1443247 1443252) (-897 "PATRES2.spad" 1440504 1440518 1440822 1440827) (-896 "PATMATCH.spad" 1438701 1438732 1440212 1440217) (-895 "PATMAB.spad" 1438130 1438140 1438691 1438696) (-894 "PATLRES.spad" 1437216 1437230 1438120 1438125) (-893 "PATAB.spad" 1436980 1436990 1437206 1437211) (-892 "PARTPERM.spad" 1434988 1434996 1436970 1436975) (-891 "PARSURF.spad" 1434422 1434450 1434978 1434983) (-890 "PARSU2.spad" 1434219 1434235 1434412 1434417) (-889 "script-parser.spad" 1433739 1433747 1434209 1434214) (-888 "PARSCURV.spad" 1433173 1433201 1433729 1433734) (-887 "PARSC2.spad" 1432964 1432980 1433163 1433168) (-886 "PARPCURV.spad" 1432426 1432454 1432954 1432959) (-885 "PARPC2.spad" 1432217 1432233 1432416 1432421) (-884 "PARAMAST.spad" 1431345 1431353 1432207 1432212) (-883 "PAN2EXPR.spad" 1430757 1430765 1431335 1431340) (-882 "PALETTE.spad" 1429727 1429735 1430747 1430752) (-881 "PAIR.spad" 1428714 1428727 1429315 1429320) (-880 "PADICRC.spad" 1426048 1426066 1427219 1427312) (-879 "PADICRAT.spad" 1424063 1424075 1424284 1424377) (-878 "PADIC.spad" 1423758 1423770 1423989 1424058) (-877 "PADICCT.spad" 1422307 1422319 1423684 1423753) (-876 "PADEPAC.spad" 1420996 1421015 1422297 1422302) (-875 "PADE.spad" 1419748 1419764 1420986 1420991) (-874 "OWP.spad" 1418988 1419018 1419606 1419673) (-873 "OVERSET.spad" 1418561 1418569 1418978 1418983) (-872 "OVAR.spad" 1418342 1418365 1418551 1418556) (-871 "OUT.spad" 1417428 1417436 1418332 1418337) (-870 "OUTFORM.spad" 1406820 1406828 1417418 1417423) (-869 "OUTBFILE.spad" 1406238 1406246 1406810 1406815) (-868 "OUTBCON.spad" 1405244 1405252 1406228 1406233) (-867 "OUTBCON.spad" 1404248 1404258 1405234 1405239) (-866 "OSI.spad" 1403723 1403731 1404238 1404243) (-865 "OSGROUP.spad" 1403641 1403649 1403713 1403718) (-864 "ORTHPOL.spad" 1402126 1402136 1403558 1403563) (-863 "OREUP.spad" 1401579 1401607 1401806 1401845) (-862 "ORESUP.spad" 1400880 1400904 1401259 1401298) (-861 "OREPCTO.spad" 1398737 1398749 1400800 1400805) (-860 "OREPCAT.spad" 1392884 1392894 1398693 1398732) (-859 "OREPCAT.spad" 1386921 1386933 1392732 1392737) (-858 "ORDSET.spad" 1386093 1386101 1386911 1386916) (-857 "ORDSET.spad" 1385263 1385273 1386083 1386088) (-856 "ORDRING.spad" 1384653 1384661 1385243 1385258) (-855 "ORDRING.spad" 1384051 1384061 1384643 1384648) (-854 "ORDMON.spad" 1383906 1383914 1384041 1384046) (-853 "ORDFUNS.spad" 1383038 1383054 1383896 1383901) (-852 "ORDFIN.spad" 1382858 1382866 1383028 1383033) (-851 "ORDCOMP.spad" 1381323 1381333 1382405 1382434) (-850 "ORDCOMP2.spad" 1380616 1380628 1381313 1381318) (-849 "OPTPROB.spad" 1379254 1379262 1380606 1380611) (-848 "OPTPACK.spad" 1371663 1371671 1379244 1379249) (-847 "OPTCAT.spad" 1369342 1369350 1371653 1371658) (-846 "OPSIG.spad" 1368996 1369004 1369332 1369337) (-845 "OPQUERY.spad" 1368545 1368553 1368986 1368991) (-844 "OP.spad" 1368287 1368297 1368367 1368434) (-843 "OPERCAT.spad" 1367753 1367763 1368277 1368282) (-842 "OPERCAT.spad" 1367217 1367229 1367743 1367748) (-841 "ONECOMP.spad" 1365962 1365972 1366764 1366793) (-840 "ONECOMP2.spad" 1365386 1365398 1365952 1365957) (-839 "OMSERVER.spad" 1364392 1364400 1365376 1365381) (-838 "OMSAGG.spad" 1364180 1364190 1364348 1364387) (-837 "OMPKG.spad" 1362796 1362804 1364170 1364175) (-836 "OM.spad" 1361769 1361777 1362786 1362791) (-835 "OMLO.spad" 1361194 1361206 1361655 1361694) (-834 "OMEXPR.spad" 1361028 1361038 1361184 1361189) (-833 "OMERR.spad" 1360573 1360581 1361018 1361023) (-832 "OMERRK.spad" 1359607 1359615 1360563 1360568) (-831 "OMENC.spad" 1358951 1358959 1359597 1359602) (-830 "OMDEV.spad" 1353260 1353268 1358941 1358946) (-829 "OMCONN.spad" 1352669 1352677 1353250 1353255) (-828 "OINTDOM.spad" 1352432 1352440 1352595 1352664) (-827 "OFMONOID.spad" 1350555 1350565 1352388 1352393) (-826 "ODVAR.spad" 1349816 1349826 1350545 1350550) (-825 "ODR.spad" 1349460 1349486 1349628 1349777) (-824 "ODPOL.spad" 1346842 1346852 1347182 1347309) (-823 "ODP.spad" 1336612 1336632 1336985 1337116) (-822 "ODETOOLS.spad" 1335261 1335280 1336602 1336607) (-821 "ODESYS.spad" 1332955 1332972 1335251 1335256) (-820 "ODERTRIC.spad" 1328964 1328981 1332912 1332917) (-819 "ODERED.spad" 1328363 1328387 1328954 1328959) (-818 "ODERAT.spad" 1325978 1325995 1328353 1328358) (-817 "ODEPRRIC.spad" 1323015 1323037 1325968 1325973) (-816 "ODEPROB.spad" 1322272 1322280 1323005 1323010) (-815 "ODEPRIM.spad" 1319606 1319628 1322262 1322267) (-814 "ODEPAL.spad" 1318992 1319016 1319596 1319601) (-813 "ODEPACK.spad" 1305658 1305666 1318982 1318987) (-812 "ODEINT.spad" 1305093 1305109 1305648 1305653) (-811 "ODEIFTBL.spad" 1302488 1302496 1305083 1305088) (-810 "ODEEF.spad" 1297979 1297995 1302478 1302483) (-809 "ODECONST.spad" 1297516 1297534 1297969 1297974) (-808 "ODECAT.spad" 1296114 1296122 1297506 1297511) (-807 "OCT.spad" 1294250 1294260 1294964 1295003) (-806 "OCTCT2.spad" 1293896 1293917 1294240 1294245) (-805 "OC.spad" 1291692 1291702 1293852 1293891) (-804 "OC.spad" 1289213 1289225 1291375 1291380) (-803 "OCAMON.spad" 1289061 1289069 1289203 1289208) (-802 "OASGP.spad" 1288876 1288884 1289051 1289056) (-801 "OAMONS.spad" 1288398 1288406 1288866 1288871) (-800 "OAMON.spad" 1288259 1288267 1288388 1288393) (-799 "OAGROUP.spad" 1288121 1288129 1288249 1288254) (-798 "NUMTUBE.spad" 1287712 1287728 1288111 1288116) (-797 "NUMQUAD.spad" 1275688 1275696 1287702 1287707) (-796 "NUMODE.spad" 1267042 1267050 1275678 1275683) (-795 "NUMINT.spad" 1264608 1264616 1267032 1267037) (-794 "NUMFMT.spad" 1263448 1263456 1264598 1264603) (-793 "NUMERIC.spad" 1255562 1255572 1263253 1263258) (-792 "NTSCAT.spad" 1254070 1254086 1255530 1255557) (-791 "NTPOLFN.spad" 1253621 1253631 1253987 1253992) (-790 "NSUP.spad" 1246667 1246677 1251207 1251360) (-789 "NSUP2.spad" 1246059 1246071 1246657 1246662) (-788 "NSMP.spad" 1242289 1242308 1242597 1242724) (-787 "NREP.spad" 1240667 1240681 1242279 1242284) (-786 "NPCOEF.spad" 1239913 1239933 1240657 1240662) (-785 "NORMRETR.spad" 1239511 1239550 1239903 1239908) (-784 "NORMPK.spad" 1237413 1237432 1239501 1239506) (-783 "NORMMA.spad" 1237101 1237127 1237403 1237408) (-782 "NONE.spad" 1236842 1236850 1237091 1237096) (-781 "NONE1.spad" 1236518 1236528 1236832 1236837) (-780 "NODE1.spad" 1236005 1236021 1236508 1236513) (-779 "NNI.spad" 1234900 1234908 1235979 1236000) (-778 "NLINSOL.spad" 1233526 1233536 1234890 1234895) (-777 "NIPROB.spad" 1232067 1232075 1233516 1233521) (-776 "NFINTBAS.spad" 1229627 1229644 1232057 1232062) (-775 "NETCLT.spad" 1229601 1229612 1229617 1229622) (-774 "NCODIV.spad" 1227817 1227833 1229591 1229596) (-773 "NCNTFRAC.spad" 1227459 1227473 1227807 1227812) (-772 "NCEP.spad" 1225625 1225639 1227449 1227454) (-771 "NASRING.spad" 1225221 1225229 1225615 1225620) (-770 "NASRING.spad" 1224815 1224825 1225211 1225216) (-769 "NARNG.spad" 1224167 1224175 1224805 1224810) (-768 "NARNG.spad" 1223517 1223527 1224157 1224162) (-767 "NAGSP.spad" 1222594 1222602 1223507 1223512) (-766 "NAGS.spad" 1212255 1212263 1222584 1222589) (-765 "NAGF07.spad" 1210686 1210694 1212245 1212250) (-764 "NAGF04.spad" 1205088 1205096 1210676 1210681) (-763 "NAGF02.spad" 1199157 1199165 1205078 1205083) (-762 "NAGF01.spad" 1194918 1194926 1199147 1199152) (-761 "NAGE04.spad" 1188618 1188626 1194908 1194913) (-760 "NAGE02.spad" 1179278 1179286 1188608 1188613) (-759 "NAGE01.spad" 1175280 1175288 1179268 1179273) (-758 "NAGD03.spad" 1173284 1173292 1175270 1175275) (-757 "NAGD02.spad" 1166031 1166039 1173274 1173279) (-756 "NAGD01.spad" 1160324 1160332 1166021 1166026) (-755 "NAGC06.spad" 1156199 1156207 1160314 1160319) (-754 "NAGC05.spad" 1154700 1154708 1156189 1156194) (-753 "NAGC02.spad" 1153967 1153975 1154690 1154695) (-752 "NAALG.spad" 1153508 1153518 1153935 1153962) (-751 "NAALG.spad" 1153069 1153081 1153498 1153503) (-750 "MULTSQFR.spad" 1150027 1150044 1153059 1153064) (-749 "MULTFACT.spad" 1149410 1149427 1150017 1150022) (-748 "MTSCAT.spad" 1147504 1147525 1149308 1149405) (-747 "MTHING.spad" 1147163 1147173 1147494 1147499) (-746 "MSYSCMD.spad" 1146597 1146605 1147153 1147158) (-745 "MSET.spad" 1144555 1144565 1146303 1146342) (-744 "MSETAGG.spad" 1144400 1144410 1144523 1144550) (-743 "MRING.spad" 1141377 1141389 1144108 1144175) (-742 "MRF2.spad" 1140947 1140961 1141367 1141372) (-741 "MRATFAC.spad" 1140493 1140510 1140937 1140942) (-740 "MPRFF.spad" 1138533 1138552 1140483 1140488) (-739 "MPOLY.spad" 1136004 1136019 1136363 1136490) (-738 "MPCPF.spad" 1135268 1135287 1135994 1135999) (-737 "MPC3.spad" 1135085 1135125 1135258 1135263) (-736 "MPC2.spad" 1134731 1134764 1135075 1135080) (-735 "MONOTOOL.spad" 1133082 1133099 1134721 1134726) (-734 "MONOID.spad" 1132401 1132409 1133072 1133077) (-733 "MONOID.spad" 1131718 1131728 1132391 1132396) (-732 "MONOGEN.spad" 1130466 1130479 1131578 1131713) (-731 "MONOGEN.spad" 1129236 1129251 1130350 1130355) (-730 "MONADWU.spad" 1127266 1127274 1129226 1129231) (-729 "MONADWU.spad" 1125294 1125304 1127256 1127261) (-728 "MONAD.spad" 1124454 1124462 1125284 1125289) (-727 "MONAD.spad" 1123612 1123622 1124444 1124449) (-726 "MOEBIUS.spad" 1122348 1122362 1123592 1123607) (-725 "MODULE.spad" 1122218 1122228 1122316 1122343) (-724 "MODULE.spad" 1122108 1122120 1122208 1122213) (-723 "MODRING.spad" 1121443 1121482 1122088 1122103) (-722 "MODOP.spad" 1120108 1120120 1121265 1121332) (-721 "MODMONOM.spad" 1119839 1119857 1120098 1120103) (-720 "MODMON.spad" 1116634 1116650 1117353 1117506) (-719 "MODFIELD.spad" 1115996 1116035 1116536 1116629) (-718 "MMLFORM.spad" 1114856 1114864 1115986 1115991) (-717 "MMAP.spad" 1114598 1114632 1114846 1114851) (-716 "MLO.spad" 1113057 1113067 1114554 1114593) (-715 "MLIFT.spad" 1111669 1111686 1113047 1113052) (-714 "MKUCFUNC.spad" 1111204 1111222 1111659 1111664) (-713 "MKRECORD.spad" 1110808 1110821 1111194 1111199) (-712 "MKFUNC.spad" 1110215 1110225 1110798 1110803) (-711 "MKFLCFN.spad" 1109183 1109193 1110205 1110210) (-710 "MKBCFUNC.spad" 1108678 1108696 1109173 1109178) (-709 "MINT.spad" 1108117 1108125 1108580 1108673) (-708 "MHROWRED.spad" 1106628 1106638 1108107 1108112) (-707 "MFLOAT.spad" 1105148 1105156 1106518 1106623) (-706 "MFINFACT.spad" 1104548 1104570 1105138 1105143) (-705 "MESH.spad" 1102330 1102338 1104538 1104543) (-704 "MDDFACT.spad" 1100541 1100551 1102320 1102325) (-703 "MDAGG.spad" 1099832 1099842 1100521 1100536) (-702 "MCMPLX.spad" 1095843 1095851 1096457 1096658) (-701 "MCDEN.spad" 1095053 1095065 1095833 1095838) (-700 "MCALCFN.spad" 1092175 1092201 1095043 1095048) (-699 "MAYBE.spad" 1091459 1091470 1092165 1092170) (-698 "MATSTOR.spad" 1088767 1088777 1091449 1091454) (-697 "MATRIX.spad" 1087471 1087481 1087955 1087982) (-696 "MATLIN.spad" 1084815 1084839 1087355 1087360) (-695 "MATCAT.spad" 1076544 1076566 1084783 1084810) (-694 "MATCAT.spad" 1068145 1068169 1076386 1076391) (-693 "MATCAT2.spad" 1067427 1067475 1068135 1068140) (-692 "MAPPKG3.spad" 1066342 1066356 1067417 1067422) (-691 "MAPPKG2.spad" 1065680 1065692 1066332 1066337) (-690 "MAPPKG1.spad" 1064508 1064518 1065670 1065675) (-689 "MAPPAST.spad" 1063823 1063831 1064498 1064503) (-688 "MAPHACK3.spad" 1063635 1063649 1063813 1063818) (-687 "MAPHACK2.spad" 1063404 1063416 1063625 1063630) (-686 "MAPHACK1.spad" 1063048 1063058 1063394 1063399) (-685 "MAGMA.spad" 1060838 1060855 1063038 1063043) (-684 "MACROAST.spad" 1060417 1060425 1060828 1060833) (-683 "M3D.spad" 1058137 1058147 1059795 1059800) (-682 "LZSTAGG.spad" 1055375 1055385 1058127 1058132) (-681 "LZSTAGG.spad" 1052611 1052623 1055365 1055370) (-680 "LWORD.spad" 1049316 1049333 1052601 1052606) (-679 "LSTAST.spad" 1049100 1049108 1049306 1049311) (-678 "LSQM.spad" 1047386 1047400 1047780 1047831) (-677 "LSPP.spad" 1046921 1046938 1047376 1047381) (-676 "LSMP.spad" 1045771 1045799 1046911 1046916) (-675 "LSMP1.spad" 1043589 1043603 1045761 1045766) (-674 "LSAGG.spad" 1043258 1043268 1043557 1043584) (-673 "LSAGG.spad" 1042947 1042959 1043248 1043253) (-672 "LPOLY.spad" 1041901 1041920 1042803 1042872) (-671 "LPEFRAC.spad" 1041172 1041182 1041891 1041896) (-670 "LO.spad" 1040573 1040587 1041106 1041133) (-669 "LOGIC.spad" 1040175 1040183 1040563 1040568) (-668 "LOGIC.spad" 1039775 1039785 1040165 1040170) (-667 "LODOOPS.spad" 1038705 1038717 1039765 1039770) (-666 "LODO.spad" 1038089 1038105 1038385 1038424) (-665 "LODOF.spad" 1037135 1037152 1038046 1038051) (-664 "LODOCAT.spad" 1035801 1035811 1037091 1037130) (-663 "LODOCAT.spad" 1034465 1034477 1035757 1035762) (-662 "LODO2.spad" 1033738 1033750 1034145 1034184) (-661 "LODO1.spad" 1033138 1033148 1033418 1033457) (-660 "LODEEF.spad" 1031940 1031958 1033128 1033133) (-659 "LNAGG.spad" 1028087 1028097 1031930 1031935) (-658 "LNAGG.spad" 1024198 1024210 1028043 1028048) (-657 "LMOPS.spad" 1020966 1020983 1024188 1024193) (-656 "LMODULE.spad" 1020734 1020744 1020956 1020961) (-655 "LMDICT.spad" 1020021 1020031 1020285 1020312) (-654 "LLINSET.spad" 1019418 1019428 1020011 1020016) (-653 "LITERAL.spad" 1019324 1019335 1019408 1019413) (-652 "LIST.spad" 1017059 1017069 1018471 1018498) (-651 "LIST3.spad" 1016370 1016384 1017049 1017054) (-650 "LIST2.spad" 1015072 1015084 1016360 1016365) (-649 "LIST2MAP.spad" 1011975 1011987 1015062 1015067) (-648 "LINSET.spad" 1011597 1011607 1011965 1011970) (-647 "LINEXP.spad" 1010735 1010745 1011587 1011592) (-646 "LINDEP.spad" 1009544 1009556 1010647 1010652) (-645 "LIMITRF.spad" 1007472 1007482 1009534 1009539) (-644 "LIMITPS.spad" 1006375 1006388 1007462 1007467) (-643 "LIE.spad" 1004391 1004403 1005665 1005810) (-642 "LIECAT.spad" 1003867 1003877 1004317 1004386) (-641 "LIECAT.spad" 1003371 1003383 1003823 1003828) (-640 "LIB.spad" 1001584 1001592 1002030 1002045) (-639 "LGROBP.spad" 998937 998956 1001574 1001579) (-638 "LF.spad" 997892 997908 998927 998932) (-637 "LFCAT.spad" 996951 996959 997882 997887) (-636 "LEXTRIPK.spad" 992454 992469 996941 996946) (-635 "LEXP.spad" 990457 990484 992434 992449) (-634 "LETAST.spad" 990156 990164 990447 990452) (-633 "LEADCDET.spad" 988554 988571 990146 990151) (-632 "LAZM3PK.spad" 987258 987280 988544 988549) (-631 "LAUPOL.spad" 985951 985964 986851 986920) (-630 "LAPLACE.spad" 985534 985550 985941 985946) (-629 "LA.spad" 984974 984988 985456 985495) (-628 "LALG.spad" 984750 984760 984954 984969) (-627 "LALG.spad" 984534 984546 984740 984745) (-626 "KVTFROM.spad" 984269 984279 984524 984529) (-625 "KTVLOGIC.spad" 983781 983789 984259 984264) (-624 "KRCFROM.spad" 983519 983529 983771 983776) (-623 "KOVACIC.spad" 982242 982259 983509 983514) (-622 "KONVERT.spad" 981964 981974 982232 982237) (-621 "KOERCE.spad" 981701 981711 981954 981959) (-620 "KERNEL.spad" 980356 980366 981485 981490) (-619 "KERNEL2.spad" 980059 980071 980346 980351) (-618 "KDAGG.spad" 979168 979190 980039 980054) (-617 "KDAGG.spad" 978285 978309 979158 979163) (-616 "KAFILE.spad" 977248 977264 977483 977510) (-615 "JORDAN.spad" 975077 975089 976538 976683) (-614 "JOINAST.spad" 974771 974779 975067 975072) (-613 "JAVACODE.spad" 974637 974645 974761 974766) (-612 "IXAGG.spad" 972770 972794 974627 974632) (-611 "IXAGG.spad" 970758 970784 972617 972622) (-610 "IVECTOR.spad" 969528 969543 969683 969710) (-609 "ITUPLE.spad" 968689 968699 969518 969523) (-608 "ITRIGMNP.spad" 967528 967547 968679 968684) (-607 "ITFUN3.spad" 967034 967048 967518 967523) (-606 "ITFUN2.spad" 966778 966790 967024 967029) (-605 "ITFORM.spad" 966133 966141 966768 966773) (-604 "ITAYLOR.spad" 964127 964142 965997 966094) (-603 "ISUPS.spad" 956564 956579 963101 963198) (-602 "ISUMP.spad" 956065 956081 956554 956559) (-601 "ISTRING.spad" 955153 955166 955234 955261) (-600 "ISAST.spad" 954872 954880 955143 955148) (-599 "IRURPK.spad" 953589 953608 954862 954867) (-598 "IRSN.spad" 951561 951569 953579 953584) (-597 "IRRF2F.spad" 950046 950056 951517 951522) (-596 "IRREDFFX.spad" 949647 949658 950036 950041) (-595 "IROOT.spad" 947986 947996 949637 949642) (-594 "IR.spad" 945787 945801 947841 947868) (-593 "IRFORM.spad" 945111 945119 945777 945782) (-592 "IR2.spad" 944139 944155 945101 945106) (-591 "IR2F.spad" 943345 943361 944129 944134) (-590 "IPRNTPK.spad" 943105 943113 943335 943340) (-589 "IPF.spad" 942670 942682 942910 943003) (-588 "IPADIC.spad" 942431 942457 942596 942665) (-587 "IP4ADDR.spad" 941988 941996 942421 942426) (-586 "IOMODE.spad" 941510 941518 941978 941983) (-585 "IOBFILE.spad" 940871 940879 941500 941505) (-584 "IOBCON.spad" 940736 940744 940861 940866) (-583 "INVLAPLA.spad" 940385 940401 940726 940731) (-582 "INTTR.spad" 933767 933784 940375 940380) (-581 "INTTOOLS.spad" 931522 931538 933341 933346) (-580 "INTSLPE.spad" 930842 930850 931512 931517) (-579 "INTRVL.spad" 930408 930418 930756 930837) (-578 "INTRF.spad" 928832 928846 930398 930403) (-577 "INTRET.spad" 928264 928274 928822 928827) (-576 "INTRAT.spad" 926991 927008 928254 928259) (-575 "INTPM.spad" 925376 925392 926634 926639) (-574 "INTPAF.spad" 923240 923258 925308 925313) (-573 "INTPACK.spad" 913614 913622 923230 923235) (-572 "INT.spad" 913062 913070 913468 913609) (-571 "INTHERTR.spad" 912336 912353 913052 913057) (-570 "INTHERAL.spad" 912006 912030 912326 912331) (-569 "INTHEORY.spad" 908445 908453 911996 912001) (-568 "INTG0.spad" 902178 902196 908377 908382) (-567 "INTFTBL.spad" 896207 896215 902168 902173) (-566 "INTFACT.spad" 895266 895276 896197 896202) (-565 "INTEF.spad" 893651 893667 895256 895261) (-564 "INTDOM.spad" 892274 892282 893577 893646) (-563 "INTDOM.spad" 890959 890969 892264 892269) (-562 "INTCAT.spad" 889218 889228 890873 890954) (-561 "INTBIT.spad" 888725 888733 889208 889213) (-560 "INTALG.spad" 887913 887940 888715 888720) (-559 "INTAF.spad" 887413 887429 887903 887908) (-558 "INTABL.spad" 885931 885962 886094 886121) (-557 "INT8.spad" 885811 885819 885921 885926) (-556 "INT64.spad" 885690 885698 885801 885806) (-555 "INT32.spad" 885569 885577 885680 885685) (-554 "INT16.spad" 885448 885456 885559 885564) (-553 "INS.spad" 882951 882959 885350 885443) (-552 "INS.spad" 880540 880550 882941 882946) (-551 "INPSIGN.spad" 879988 880001 880530 880535) (-550 "INPRODPF.spad" 879084 879103 879978 879983) (-549 "INPRODFF.spad" 878172 878196 879074 879079) (-548 "INNMFACT.spad" 877147 877164 878162 878167) (-547 "INMODGCD.spad" 876635 876665 877137 877142) (-546 "INFSP.spad" 874932 874954 876625 876630) (-545 "INFPROD0.spad" 874012 874031 874922 874927) (-544 "INFORM.spad" 871211 871219 874002 874007) (-543 "INFORM1.spad" 870836 870846 871201 871206) (-542 "INFINITY.spad" 870388 870396 870826 870831) (-541 "INETCLTS.spad" 870365 870373 870378 870383) (-540 "INEP.spad" 868903 868925 870355 870360) (-539 "INDE.spad" 868632 868649 868893 868898) (-538 "INCRMAPS.spad" 868053 868063 868622 868627) (-537 "INBFILE.spad" 867125 867133 868043 868048) (-536 "INBFF.spad" 862919 862930 867115 867120) (-535 "INBCON.spad" 861209 861217 862909 862914) (-534 "INBCON.spad" 859497 859507 861199 861204) (-533 "INAST.spad" 859158 859166 859487 859492) (-532 "IMPTAST.spad" 858866 858874 859148 859153) (-531 "IMATRIX.spad" 857811 857837 858323 858350) (-530 "IMATQF.spad" 856905 856949 857767 857772) (-529 "IMATLIN.spad" 855510 855534 856861 856866) (-528 "ILIST.spad" 854168 854183 854693 854720) (-527 "IIARRAY2.spad" 853556 853594 853775 853802) (-526 "IFF.spad" 852966 852982 853237 853330) (-525 "IFAST.spad" 852580 852588 852956 852961) (-524 "IFARRAY.spad" 850073 850088 851763 851790) (-523 "IFAMON.spad" 849935 849952 850029 850034) (-522 "IEVALAB.spad" 849340 849352 849925 849930) (-521 "IEVALAB.spad" 848743 848757 849330 849335) (-520 "IDPO.spad" 848541 848553 848733 848738) (-519 "IDPOAMS.spad" 848297 848309 848531 848536) (-518 "IDPOAM.spad" 848017 848029 848287 848292) (-517 "IDPC.spad" 846955 846967 848007 848012) (-516 "IDPAM.spad" 846700 846712 846945 846950) (-515 "IDPAG.spad" 846447 846459 846690 846695) (-514 "IDENT.spad" 846097 846105 846437 846442) (-513 "IDECOMP.spad" 843336 843354 846087 846092) (-512 "IDEAL.spad" 838285 838324 843271 843276) (-511 "ICDEN.spad" 837474 837490 838275 838280) (-510 "ICARD.spad" 836665 836673 837464 837469) (-509 "IBPTOOLS.spad" 835272 835289 836655 836660) (-508 "IBITS.spad" 834475 834488 834908 834935) (-507 "IBATOOL.spad" 831452 831471 834465 834470) (-506 "IBACHIN.spad" 829959 829974 831442 831447) (-505 "IARRAY2.spad" 828947 828973 829566 829593) (-504 "IARRAY1.spad" 827992 828007 828130 828157) (-503 "IAN.spad" 826215 826223 827808 827901) (-502 "IALGFACT.spad" 825818 825851 826205 826210) (-501 "HYPCAT.spad" 825242 825250 825808 825813) (-500 "HYPCAT.spad" 824664 824674 825232 825237) (-499 "HOSTNAME.spad" 824472 824480 824654 824659) (-498 "HOMOTOP.spad" 824215 824225 824462 824467) (-497 "HOAGG.spad" 821497 821507 824205 824210) (-496 "HOAGG.spad" 818554 818566 821264 821269) (-495 "HEXADEC.spad" 816656 816664 817021 817114) (-494 "HEUGCD.spad" 815691 815702 816646 816651) (-493 "HELLFDIV.spad" 815281 815305 815681 815686) (-492 "HEAP.spad" 814673 814683 814888 814915) (-491 "HEADAST.spad" 814206 814214 814663 814668) (-490 "HDP.spad" 803972 803988 804349 804480) (-489 "HDMP.spad" 801186 801201 801802 801929) (-488 "HB.spad" 799437 799445 801176 801181) (-487 "HASHTBL.spad" 797907 797938 798118 798145) (-486 "HASAST.spad" 797623 797631 797897 797902) (-485 "HACKPI.spad" 797114 797122 797525 797618) (-484 "GTSET.spad" 796053 796069 796760 796787) (-483 "GSTBL.spad" 794572 794607 794746 794761) (-482 "GSERIES.spad" 791743 791770 792704 792853) (-481 "GROUP.spad" 791016 791024 791723 791738) (-480 "GROUP.spad" 790297 790307 791006 791011) (-479 "GROEBSOL.spad" 788791 788812 790287 790292) (-478 "GRMOD.spad" 787362 787374 788781 788786) (-477 "GRMOD.spad" 785931 785945 787352 787357) (-476 "GRIMAGE.spad" 778820 778828 785921 785926) (-475 "GRDEF.spad" 777199 777207 778810 778815) (-474 "GRAY.spad" 775662 775670 777189 777194) (-473 "GRALG.spad" 774739 774751 775652 775657) (-472 "GRALG.spad" 773814 773828 774729 774734) (-471 "GPOLSET.spad" 773268 773291 773496 773523) (-470 "GOSPER.spad" 772537 772555 773258 773263) (-469 "GMODPOL.spad" 771685 771712 772505 772532) (-468 "GHENSEL.spad" 770768 770782 771675 771680) (-467 "GENUPS.spad" 767061 767074 770758 770763) (-466 "GENUFACT.spad" 766638 766648 767051 767056) (-465 "GENPGCD.spad" 766224 766241 766628 766633) (-464 "GENMFACT.spad" 765676 765695 766214 766219) (-463 "GENEEZ.spad" 763627 763640 765666 765671) (-462 "GDMP.spad" 760683 760700 761457 761584) (-461 "GCNAALG.spad" 754606 754633 760477 760544) (-460 "GCDDOM.spad" 753782 753790 754532 754601) (-459 "GCDDOM.spad" 753020 753030 753772 753777) (-458 "GB.spad" 750546 750584 752976 752981) (-457 "GBINTERN.spad" 746566 746604 750536 750541) (-456 "GBF.spad" 742333 742371 746556 746561) (-455 "GBEUCLID.spad" 740215 740253 742323 742328) (-454 "GAUSSFAC.spad" 739528 739536 740205 740210) (-453 "GALUTIL.spad" 737854 737864 739484 739489) (-452 "GALPOLYU.spad" 736308 736321 737844 737849) (-451 "GALFACTU.spad" 734481 734500 736298 736303) (-450 "GALFACT.spad" 724670 724681 734471 734476) (-449 "FVFUN.spad" 721693 721701 724660 724665) (-448 "FVC.spad" 720745 720753 721683 721688) (-447 "FUNDESC.spad" 720423 720431 720735 720740) (-446 "FUNCTION.spad" 720272 720284 720413 720418) (-445 "FT.spad" 718569 718577 720262 720267) (-444 "FTEM.spad" 717734 717742 718559 718564) (-443 "FSUPFACT.spad" 716634 716653 717670 717675) (-442 "FST.spad" 714720 714728 716624 716629) (-441 "FSRED.spad" 714200 714216 714710 714715) (-440 "FSPRMELT.spad" 713082 713098 714157 714162) (-439 "FSPECF.spad" 711173 711189 713072 713077) (-438 "FS.spad" 705441 705451 710948 711168) (-437 "FS.spad" 699487 699499 704996 705001) (-436 "FSINT.spad" 699147 699163 699477 699482) (-435 "FSERIES.spad" 698338 698350 698967 699066) (-434 "FSCINT.spad" 697655 697671 698328 698333) (-433 "FSAGG.spad" 696772 696782 697611 697650) (-432 "FSAGG.spad" 695851 695863 696692 696697) (-431 "FSAGG2.spad" 694594 694610 695841 695846) (-430 "FS2UPS.spad" 689085 689119 694584 694589) (-429 "FS2.spad" 688732 688748 689075 689080) (-428 "FS2EXPXP.spad" 687857 687880 688722 688727) (-427 "FRUTIL.spad" 686811 686821 687847 687852) (-426 "FR.spad" 680343 680353 685651 685720) (-425 "FRNAALG.spad" 675612 675622 680285 680338) (-424 "FRNAALG.spad" 670893 670905 675568 675573) (-423 "FRNAAF2.spad" 670349 670367 670883 670888) (-422 "FRMOD.spad" 669759 669789 670280 670285) (-421 "FRIDEAL.spad" 668984 669005 669739 669754) (-420 "FRIDEAL2.spad" 668588 668620 668974 668979) (-419 "FRETRCT.spad" 668099 668109 668578 668583) (-418 "FRETRCT.spad" 667476 667488 667957 667962) (-417 "FRAMALG.spad" 665824 665837 667432 667471) (-416 "FRAMALG.spad" 664204 664219 665814 665819) (-415 "FRAC.spad" 661303 661313 661706 661879) (-414 "FRAC2.spad" 660908 660920 661293 661298) (-413 "FR2.spad" 660244 660256 660898 660903) (-412 "FPS.spad" 657059 657067 660134 660239) (-411 "FPS.spad" 653902 653912 656979 656984) (-410 "FPC.spad" 652948 652956 653804 653897) (-409 "FPC.spad" 652080 652090 652938 652943) (-408 "FPATMAB.spad" 651842 651852 652070 652075) (-407 "FPARFRAC.spad" 650329 650346 651832 651837) (-406 "FORTRAN.spad" 648835 648878 650319 650324) (-405 "FORT.spad" 647784 647792 648825 648830) (-404 "FORTFN.spad" 644954 644962 647774 647779) (-403 "FORTCAT.spad" 644638 644646 644944 644949) (-402 "FORMULA.spad" 642112 642120 644628 644633) (-401 "FORMULA1.spad" 641591 641601 642102 642107) (-400 "FORDER.spad" 641282 641306 641581 641586) (-399 "FOP.spad" 640483 640491 641272 641277) (-398 "FNLA.spad" 639907 639929 640451 640478) (-397 "FNCAT.spad" 638502 638510 639897 639902) (-396 "FNAME.spad" 638394 638402 638492 638497) (-395 "FMTC.spad" 638192 638200 638320 638389) (-394 "FMONOID.spad" 637857 637867 638148 638153) (-393 "FMONCAT.spad" 635010 635020 637847 637852) (-392 "FM.spad" 634705 634717 634944 634971) (-391 "FMFUN.spad" 631735 631743 634695 634700) (-390 "FMC.spad" 630787 630795 631725 631730) (-389 "FMCAT.spad" 628455 628473 630755 630782) (-388 "FM1.spad" 627812 627824 628389 628416) (-387 "FLOATRP.spad" 625547 625561 627802 627807) (-386 "FLOAT.spad" 618861 618869 625413 625542) (-385 "FLOATCP.spad" 616292 616306 618851 618856) (-384 "FLINEXP.spad" 616014 616024 616282 616287) (-383 "FLINEXP.spad" 615680 615692 615950 615955) (-382 "FLASORT.spad" 615006 615018 615670 615675) (-381 "FLALG.spad" 612652 612671 614932 615001) (-380 "FLAGG.spad" 609694 609704 612632 612647) (-379 "FLAGG.spad" 606637 606649 609577 609582) (-378 "FLAGG2.spad" 605362 605378 606627 606632) (-377 "FINRALG.spad" 603423 603436 605318 605357) (-376 "FINRALG.spad" 601410 601425 603307 603312) (-375 "FINITE.spad" 600562 600570 601400 601405) (-374 "FINAALG.spad" 589683 589693 600504 600557) (-373 "FINAALG.spad" 578816 578828 589639 589644) (-372 "FILE.spad" 578399 578409 578806 578811) (-371 "FILECAT.spad" 576925 576942 578389 578394) (-370 "FIELD.spad" 576331 576339 576827 576920) (-369 "FIELD.spad" 575823 575833 576321 576326) (-368 "FGROUP.spad" 574470 574480 575803 575818) (-367 "FGLMICPK.spad" 573257 573272 574460 574465) (-366 "FFX.spad" 572632 572647 572973 573066) (-365 "FFSLPE.spad" 572135 572156 572622 572627) (-364 "FFPOLY.spad" 563397 563408 572125 572130) (-363 "FFPOLY2.spad" 562457 562474 563387 563392) (-362 "FFP.spad" 561854 561874 562173 562266) (-361 "FF.spad" 561302 561318 561535 561628) (-360 "FFNBX.spad" 559814 559834 561018 561111) (-359 "FFNBP.spad" 558327 558344 559530 559623) (-358 "FFNB.spad" 556792 556813 558008 558101) (-357 "FFINTBAS.spad" 554306 554325 556782 556787) (-356 "FFIELDC.spad" 551883 551891 554208 554301) (-355 "FFIELDC.spad" 549546 549556 551873 551878) (-354 "FFHOM.spad" 548294 548311 549536 549541) (-353 "FFF.spad" 545729 545740 548284 548289) (-352 "FFCGX.spad" 544576 544596 545445 545538) (-351 "FFCGP.spad" 543465 543485 544292 544385) (-350 "FFCG.spad" 542257 542278 543146 543239) (-349 "FFCAT.spad" 535430 535452 542096 542252) (-348 "FFCAT.spad" 528682 528706 535350 535355) (-347 "FFCAT2.spad" 528429 528469 528672 528677) (-346 "FEXPR.spad" 520146 520192 528185 528224) (-345 "FEVALAB.spad" 519854 519864 520136 520141) (-344 "FEVALAB.spad" 519347 519359 519631 519636) (-343 "FDIV.spad" 518789 518813 519337 519342) (-342 "FDIVCAT.spad" 516853 516877 518779 518784) (-341 "FDIVCAT.spad" 514915 514941 516843 516848) (-340 "FDIV2.spad" 514571 514611 514905 514910) (-339 "FCTRDATA.spad" 513579 513587 514561 514566) (-338 "FCPAK1.spad" 512146 512154 513569 513574) (-337 "FCOMP.spad" 511525 511535 512136 512141) (-336 "FC.spad" 501532 501540 511515 511520) (-335 "FAXF.spad" 494503 494517 501434 501527) (-334 "FAXF.spad" 487526 487542 494459 494464) (-333 "FARRAY.spad" 485676 485686 486709 486736) (-332 "FAMR.spad" 483812 483824 485574 485671) (-331 "FAMR.spad" 481932 481946 483696 483701) (-330 "FAMONOID.spad" 481600 481610 481886 481891) (-329 "FAMONC.spad" 479896 479908 481590 481595) (-328 "FAGROUP.spad" 479520 479530 479792 479819) (-327 "FACUTIL.spad" 477724 477741 479510 479515) (-326 "FACTFUNC.spad" 476918 476928 477714 477719) (-325 "EXPUPXS.spad" 473751 473774 475050 475199) (-324 "EXPRTUBE.spad" 471039 471047 473741 473746) (-323 "EXPRODE.spad" 468199 468215 471029 471034) (-322 "EXPR.spad" 463374 463384 464088 464383) (-321 "EXPR2UPS.spad" 459496 459509 463364 463369) (-320 "EXPR2.spad" 459201 459213 459486 459491) (-319 "EXPEXPAN.spad" 456141 456166 456773 456866) (-318 "EXIT.spad" 455812 455820 456131 456136) (-317 "EXITAST.spad" 455548 455556 455802 455807) (-316 "EVALCYC.spad" 455008 455022 455538 455543) (-315 "EVALAB.spad" 454580 454590 454998 455003) (-314 "EVALAB.spad" 454150 454162 454570 454575) (-313 "EUCDOM.spad" 451724 451732 454076 454145) (-312 "EUCDOM.spad" 449360 449370 451714 451719) (-311 "ESTOOLS.spad" 441206 441214 449350 449355) (-310 "ESTOOLS2.spad" 440809 440823 441196 441201) (-309 "ESTOOLS1.spad" 440494 440505 440799 440804) (-308 "ES.spad" 433309 433317 440484 440489) (-307 "ES.spad" 426030 426040 433207 433212) (-306 "ESCONT.spad" 422823 422831 426020 426025) (-305 "ESCONT1.spad" 422572 422584 422813 422818) (-304 "ES2.spad" 422077 422093 422562 422567) (-303 "ES1.spad" 421647 421663 422067 422072) (-302 "ERROR.spad" 418974 418982 421637 421642) (-301 "EQTBL.spad" 417446 417468 417655 417682) (-300 "EQ.spad" 412251 412261 415038 415150) (-299 "EQ2.spad" 411969 411981 412241 412246) (-298 "EP.spad" 408295 408305 411959 411964) (-297 "ENV.spad" 406973 406981 408285 408290) (-296 "ENTIRER.spad" 406641 406649 406917 406968) (-295 "EMR.spad" 405929 405970 406567 406636) (-294 "ELTAGG.spad" 404183 404202 405919 405924) (-293 "ELTAGG.spad" 402401 402422 404139 404144) (-292 "ELTAB.spad" 401876 401889 402391 402396) (-291 "ELFUTS.spad" 401263 401282 401866 401871) (-290 "ELEMFUN.spad" 400952 400960 401253 401258) (-289 "ELEMFUN.spad" 400639 400649 400942 400947) (-288 "ELAGG.spad" 398610 398620 400619 400634) (-287 "ELAGG.spad" 396518 396530 398529 398534) (-286 "ELABOR.spad" 395864 395872 396508 396513) (-285 "ELABEXPR.spad" 394796 394804 395854 395859) (-284 "EFUPXS.spad" 391572 391602 394752 394757) (-283 "EFULS.spad" 388408 388431 391528 391533) (-282 "EFSTRUC.spad" 386423 386439 388398 388403) (-281 "EF.spad" 381199 381215 386413 386418) (-280 "EAB.spad" 379475 379483 381189 381194) (-279 "E04UCFA.spad" 379011 379019 379465 379470) (-278 "E04NAFA.spad" 378588 378596 379001 379006) (-277 "E04MBFA.spad" 378168 378176 378578 378583) (-276 "E04JAFA.spad" 377704 377712 378158 378163) (-275 "E04GCFA.spad" 377240 377248 377694 377699) (-274 "E04FDFA.spad" 376776 376784 377230 377235) (-273 "E04DGFA.spad" 376312 376320 376766 376771) (-272 "E04AGNT.spad" 372162 372170 376302 376307) (-271 "DVARCAT.spad" 368851 368861 372152 372157) (-270 "DVARCAT.spad" 365538 365550 368841 368846) (-269 "DSMP.spad" 363005 363019 363310 363437) (-268 "DROPT.spad" 356964 356972 362995 363000) (-267 "DROPT1.spad" 356629 356639 356954 356959) (-266 "DROPT0.spad" 351486 351494 356619 356624) (-265 "DRAWPT.spad" 349659 349667 351476 351481) (-264 "DRAW.spad" 342535 342548 349649 349654) (-263 "DRAWHACK.spad" 341843 341853 342525 342530) (-262 "DRAWCX.spad" 339313 339321 341833 341838) (-261 "DRAWCURV.spad" 338860 338875 339303 339308) (-260 "DRAWCFUN.spad" 328392 328400 338850 338855) (-259 "DQAGG.spad" 326570 326580 328360 328387) (-258 "DPOLCAT.spad" 321919 321935 326438 326565) (-257 "DPOLCAT.spad" 317354 317372 321875 321880) (-256 "DPMO.spad" 309827 309843 309965 310210) (-255 "DPMM.spad" 302313 302331 302438 302683) (-254 "DOMTMPLT.spad" 302084 302092 302303 302308) (-253 "DOMCTOR.spad" 301839 301847 302074 302079) (-252 "DOMAIN.spad" 300926 300934 301829 301834) (-251 "DMP.spad" 298186 298201 298756 298883) (-250 "DLP.spad" 297538 297548 298176 298181) (-249 "DLIST.spad" 296117 296127 296721 296748) (-248 "DLAGG.spad" 294534 294544 296107 296112) (-247 "DIVRING.spad" 294076 294084 294478 294529) (-246 "DIVRING.spad" 293662 293672 294066 294071) (-245 "DISPLAY.spad" 291852 291860 293652 293657) (-244 "DIRPROD.spad" 281355 281371 281995 282126) (-243 "DIRPROD2.spad" 280173 280191 281345 281350) (-242 "DIRPCAT.spad" 279117 279133 280037 280168) (-241 "DIRPCAT.spad" 277790 277808 278712 278717) (-240 "DIOSP.spad" 276615 276623 277780 277785) (-239 "DIOPS.spad" 275611 275621 276595 276610) (-238 "DIOPS.spad" 274581 274593 275567 275572) (-237 "DIFRING.spad" 274187 274195 274561 274576) (-236 "DIFRING.spad" 273801 273811 274177 274182) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2268311 2268316 2268321 2268326) (-2 NIL 2268291 2268296 2268301 2268306) (-1 NIL 2268271 2268276 2268281 2268286) (0 NIL 2268251 2268256 2268261 2268266) (-1310 "ZMOD.spad" 2268060 2268073 2268189 2268246) (-1309 "ZLINDEP.spad" 2267126 2267137 2268050 2268055) (-1308 "ZDSOLVE.spad" 2257071 2257093 2267116 2267121) (-1307 "YSTREAM.spad" 2256566 2256577 2257061 2257066) (-1306 "YDIAGRAM.spad" 2256200 2256209 2256556 2256561) (-1305 "XRPOLY.spad" 2255420 2255440 2256056 2256125) (-1304 "XPR.spad" 2253215 2253228 2255138 2255237) (-1303 "XPOLY.spad" 2252770 2252781 2253071 2253140) (-1302 "XPOLYC.spad" 2252089 2252105 2252696 2252765) (-1301 "XPBWPOLY.spad" 2250526 2250546 2251869 2251938) (-1300 "XF.spad" 2248989 2249004 2250428 2250521) (-1299 "XF.spad" 2247432 2247449 2248873 2248878) (-1298 "XFALG.spad" 2244480 2244496 2247358 2247427) (-1297 "XEXPPKG.spad" 2243731 2243757 2244470 2244475) (-1296 "XDPOLY.spad" 2243345 2243361 2243587 2243656) (-1295 "XALG.spad" 2243005 2243016 2243301 2243340) (-1294 "WUTSET.spad" 2238844 2238861 2242651 2242678) (-1293 "WP.spad" 2238043 2238087 2238702 2238769) (-1292 "WHILEAST.spad" 2237841 2237850 2238033 2238038) (-1291 "WHEREAST.spad" 2237512 2237521 2237831 2237836) (-1290 "WFFINTBS.spad" 2235175 2235197 2237502 2237507) (-1289 "WEIER.spad" 2233397 2233408 2235165 2235170) (-1288 "VSPACE.spad" 2233070 2233081 2233365 2233392) (-1287 "VSPACE.spad" 2232763 2232776 2233060 2233065) (-1286 "VOID.spad" 2232440 2232449 2232753 2232758) (-1285 "VIEW.spad" 2230120 2230129 2232430 2232435) (-1284 "VIEWDEF.spad" 2225321 2225330 2230110 2230115) (-1283 "VIEW3D.spad" 2209282 2209291 2225311 2225316) (-1282 "VIEW2D.spad" 2197173 2197182 2209272 2209277) (-1281 "VECTOR.spad" 2195847 2195858 2196098 2196125) (-1280 "VECTOR2.spad" 2194486 2194499 2195837 2195842) (-1279 "VECTCAT.spad" 2192390 2192401 2194454 2194481) (-1278 "VECTCAT.spad" 2190101 2190114 2192167 2192172) (-1277 "VARIABLE.spad" 2189881 2189896 2190091 2190096) (-1276 "UTYPE.spad" 2189525 2189534 2189871 2189876) (-1275 "UTSODETL.spad" 2188820 2188844 2189481 2189486) (-1274 "UTSODE.spad" 2187036 2187056 2188810 2188815) (-1273 "UTS.spad" 2181840 2181868 2185503 2185600) (-1272 "UTSCAT.spad" 2179319 2179335 2181738 2181835) (-1271 "UTSCAT.spad" 2176442 2176460 2178863 2178868) (-1270 "UTS2.spad" 2176037 2176072 2176432 2176437) (-1269 "URAGG.spad" 2170710 2170721 2176027 2176032) (-1268 "URAGG.spad" 2165347 2165360 2170666 2170671) (-1267 "UPXSSING.spad" 2162992 2163018 2164428 2164561) (-1266 "UPXS.spad" 2160146 2160174 2161124 2161273) (-1265 "UPXSCONS.spad" 2157905 2157925 2158278 2158427) (-1264 "UPXSCCA.spad" 2156476 2156496 2157751 2157900) (-1263 "UPXSCCA.spad" 2155189 2155211 2156466 2156471) (-1262 "UPXSCAT.spad" 2153778 2153794 2155035 2155184) (-1261 "UPXS2.spad" 2153321 2153374 2153768 2153773) (-1260 "UPSQFREE.spad" 2151735 2151749 2153311 2153316) (-1259 "UPSCAT.spad" 2149522 2149546 2151633 2151730) (-1258 "UPSCAT.spad" 2147015 2147041 2149128 2149133) (-1257 "UPOLYC.spad" 2142055 2142066 2146857 2147010) (-1256 "UPOLYC.spad" 2136987 2137000 2141791 2141796) (-1255 "UPOLYC2.spad" 2136458 2136477 2136977 2136982) (-1254 "UP.spad" 2133657 2133672 2134044 2134197) (-1253 "UPMP.spad" 2132557 2132570 2133647 2133652) (-1252 "UPDIVP.spad" 2132122 2132136 2132547 2132552) (-1251 "UPDECOMP.spad" 2130367 2130381 2132112 2132117) (-1250 "UPCDEN.spad" 2129576 2129592 2130357 2130362) (-1249 "UP2.spad" 2128940 2128961 2129566 2129571) (-1248 "UNISEG.spad" 2128293 2128304 2128859 2128864) (-1247 "UNISEG2.spad" 2127790 2127803 2128249 2128254) (-1246 "UNIFACT.spad" 2126893 2126905 2127780 2127785) (-1245 "ULS.spad" 2117451 2117479 2118538 2118967) (-1244 "ULSCONS.spad" 2109847 2109867 2110217 2110366) (-1243 "ULSCCAT.spad" 2107584 2107604 2109693 2109842) (-1242 "ULSCCAT.spad" 2105429 2105451 2107540 2107545) (-1241 "ULSCAT.spad" 2103661 2103677 2105275 2105424) (-1240 "ULS2.spad" 2103175 2103228 2103651 2103656) (-1239 "UINT8.spad" 2103052 2103061 2103165 2103170) (-1238 "UINT64.spad" 2102928 2102937 2103042 2103047) (-1237 "UINT32.spad" 2102804 2102813 2102918 2102923) (-1236 "UINT16.spad" 2102680 2102689 2102794 2102799) (-1235 "UFD.spad" 2101745 2101754 2102606 2102675) (-1234 "UFD.spad" 2100872 2100883 2101735 2101740) (-1233 "UDVO.spad" 2099753 2099762 2100862 2100867) (-1232 "UDPO.spad" 2097246 2097257 2099709 2099714) (-1231 "TYPE.spad" 2097178 2097187 2097236 2097241) (-1230 "TYPEAST.spad" 2097097 2097106 2097168 2097173) (-1229 "TWOFACT.spad" 2095749 2095764 2097087 2097092) (-1228 "TUPLE.spad" 2095235 2095246 2095648 2095653) (-1227 "TUBETOOL.spad" 2092102 2092111 2095225 2095230) (-1226 "TUBE.spad" 2090749 2090766 2092092 2092097) (-1225 "TS.spad" 2089348 2089364 2090314 2090411) (-1224 "TSETCAT.spad" 2076475 2076492 2089316 2089343) (-1223 "TSETCAT.spad" 2063588 2063607 2076431 2076436) (-1222 "TRMANIP.spad" 2057954 2057971 2063294 2063299) (-1221 "TRIMAT.spad" 2056917 2056942 2057944 2057949) (-1220 "TRIGMNIP.spad" 2055444 2055461 2056907 2056912) (-1219 "TRIGCAT.spad" 2054956 2054965 2055434 2055439) (-1218 "TRIGCAT.spad" 2054466 2054477 2054946 2054951) (-1217 "TREE.spad" 2053041 2053052 2054073 2054100) (-1216 "TRANFUN.spad" 2052880 2052889 2053031 2053036) (-1215 "TRANFUN.spad" 2052717 2052728 2052870 2052875) (-1214 "TOPSP.spad" 2052391 2052400 2052707 2052712) (-1213 "TOOLSIGN.spad" 2052054 2052065 2052381 2052386) (-1212 "TEXTFILE.spad" 2050615 2050624 2052044 2052049) (-1211 "TEX.spad" 2047761 2047770 2050605 2050610) (-1210 "TEX1.spad" 2047317 2047328 2047751 2047756) (-1209 "TEMUTL.spad" 2046872 2046881 2047307 2047312) (-1208 "TBCMPPK.spad" 2044965 2044988 2046862 2046867) (-1207 "TBAGG.spad" 2044015 2044038 2044945 2044960) (-1206 "TBAGG.spad" 2043073 2043098 2044005 2044010) (-1205 "TANEXP.spad" 2042481 2042492 2043063 2043068) (-1204 "TALGOP.spad" 2042205 2042216 2042471 2042476) (-1203 "TABLE.spad" 2040616 2040639 2040886 2040913) (-1202 "TABLEAU.spad" 2040097 2040108 2040606 2040611) (-1201 "TABLBUMP.spad" 2036900 2036911 2040087 2040092) (-1200 "SYSTEM.spad" 2036128 2036137 2036890 2036895) (-1199 "SYSSOLP.spad" 2033611 2033622 2036118 2036123) (-1198 "SYSPTR.spad" 2033510 2033519 2033601 2033606) (-1197 "SYSNNI.spad" 2032692 2032703 2033500 2033505) (-1196 "SYSINT.spad" 2032096 2032107 2032682 2032687) (-1195 "SYNTAX.spad" 2028302 2028311 2032086 2032091) (-1194 "SYMTAB.spad" 2026370 2026379 2028292 2028297) (-1193 "SYMS.spad" 2022393 2022402 2026360 2026365) (-1192 "SYMPOLY.spad" 2021400 2021411 2021482 2021609) (-1191 "SYMFUNC.spad" 2020901 2020912 2021390 2021395) (-1190 "SYMBOL.spad" 2018404 2018413 2020891 2020896) (-1189 "SWITCH.spad" 2015175 2015184 2018394 2018399) (-1188 "SUTS.spad" 2012080 2012108 2013642 2013739) (-1187 "SUPXS.spad" 2009221 2009249 2010212 2010361) (-1186 "SUP.spad" 2006034 2006045 2006807 2006960) (-1185 "SUPFRACF.spad" 2005139 2005157 2006024 2006029) (-1184 "SUP2.spad" 2004531 2004544 2005129 2005134) (-1183 "SUMRF.spad" 2003505 2003516 2004521 2004526) (-1182 "SUMFS.spad" 2003142 2003159 2003495 2003500) (-1181 "SULS.spad" 1993687 1993715 1994787 1995216) (-1180 "SUCHTAST.spad" 1993456 1993465 1993677 1993682) (-1179 "SUCH.spad" 1993138 1993153 1993446 1993451) (-1178 "SUBSPACE.spad" 1985253 1985268 1993128 1993133) (-1177 "SUBRESP.spad" 1984423 1984437 1985209 1985214) (-1176 "STTF.spad" 1980522 1980538 1984413 1984418) (-1175 "STTFNC.spad" 1976990 1977006 1980512 1980517) (-1174 "STTAYLOR.spad" 1969625 1969636 1976871 1976876) (-1173 "STRTBL.spad" 1968130 1968147 1968279 1968306) (-1172 "STRING.spad" 1967539 1967548 1967553 1967580) (-1171 "STRICAT.spad" 1967327 1967336 1967507 1967534) (-1170 "STREAM.spad" 1964245 1964256 1966852 1966867) (-1169 "STREAM3.spad" 1963818 1963833 1964235 1964240) (-1168 "STREAM2.spad" 1962946 1962959 1963808 1963813) (-1167 "STREAM1.spad" 1962652 1962663 1962936 1962941) (-1166 "STINPROD.spad" 1961588 1961604 1962642 1962647) (-1165 "STEP.spad" 1960789 1960798 1961578 1961583) (-1164 "STEPAST.spad" 1960023 1960032 1960779 1960784) (-1163 "STBL.spad" 1958549 1958577 1958716 1958731) (-1162 "STAGG.spad" 1957624 1957635 1958539 1958544) (-1161 "STAGG.spad" 1956697 1956710 1957614 1957619) (-1160 "STACK.spad" 1956054 1956065 1956304 1956331) (-1159 "SREGSET.spad" 1953758 1953775 1955700 1955727) (-1158 "SRDCMPK.spad" 1952319 1952339 1953748 1953753) (-1157 "SRAGG.spad" 1947462 1947471 1952287 1952314) (-1156 "SRAGG.spad" 1942625 1942636 1947452 1947457) (-1155 "SQMATRIX.spad" 1940297 1940315 1941213 1941300) (-1154 "SPLTREE.spad" 1934849 1934862 1939733 1939760) (-1153 "SPLNODE.spad" 1931437 1931450 1934839 1934844) (-1152 "SPFCAT.spad" 1930246 1930255 1931427 1931432) (-1151 "SPECOUT.spad" 1928798 1928807 1930236 1930241) (-1150 "SPADXPT.spad" 1920393 1920402 1928788 1928793) (-1149 "spad-parser.spad" 1919858 1919867 1920383 1920388) (-1148 "SPADAST.spad" 1919559 1919568 1919848 1919853) (-1147 "SPACEC.spad" 1903758 1903769 1919549 1919554) (-1146 "SPACE3.spad" 1903534 1903545 1903748 1903753) (-1145 "SORTPAK.spad" 1903083 1903096 1903490 1903495) (-1144 "SOLVETRA.spad" 1900846 1900857 1903073 1903078) (-1143 "SOLVESER.spad" 1899374 1899385 1900836 1900841) (-1142 "SOLVERAD.spad" 1895400 1895411 1899364 1899369) (-1141 "SOLVEFOR.spad" 1893862 1893880 1895390 1895395) (-1140 "SNTSCAT.spad" 1893462 1893479 1893830 1893857) (-1139 "SMTS.spad" 1891734 1891760 1893027 1893124) (-1138 "SMP.spad" 1889209 1889229 1889599 1889726) (-1137 "SMITH.spad" 1888054 1888079 1889199 1889204) (-1136 "SMATCAT.spad" 1886164 1886194 1887998 1888049) (-1135 "SMATCAT.spad" 1884206 1884238 1886042 1886047) (-1134 "SKAGG.spad" 1883169 1883180 1884174 1884201) (-1133 "SINT.spad" 1882109 1882118 1883035 1883164) (-1132 "SIMPAN.spad" 1881837 1881846 1882099 1882104) (-1131 "SIG.spad" 1881167 1881176 1881827 1881832) (-1130 "SIGNRF.spad" 1880285 1880296 1881157 1881162) (-1129 "SIGNEF.spad" 1879564 1879581 1880275 1880280) (-1128 "SIGAST.spad" 1878949 1878958 1879554 1879559) (-1127 "SHP.spad" 1876877 1876892 1878905 1878910) (-1126 "SHDP.spad" 1866511 1866538 1867020 1867151) (-1125 "SGROUP.spad" 1866119 1866128 1866501 1866506) (-1124 "SGROUP.spad" 1865725 1865736 1866109 1866114) (-1123 "SGCF.spad" 1858864 1858873 1865715 1865720) (-1122 "SFRTCAT.spad" 1857794 1857811 1858832 1858859) (-1121 "SFRGCD.spad" 1856857 1856877 1857784 1857789) (-1120 "SFQCMPK.spad" 1851494 1851514 1856847 1856852) (-1119 "SFORT.spad" 1850933 1850947 1851484 1851489) (-1118 "SEXOF.spad" 1850776 1850816 1850923 1850928) (-1117 "SEX.spad" 1850668 1850677 1850766 1850771) (-1116 "SEXCAT.spad" 1848449 1848489 1850658 1850663) (-1115 "SET.spad" 1846773 1846784 1847870 1847909) (-1114 "SETMN.spad" 1845223 1845240 1846763 1846768) (-1113 "SETCAT.spad" 1844545 1844554 1845213 1845218) (-1112 "SETCAT.spad" 1843865 1843876 1844535 1844540) (-1111 "SETAGG.spad" 1840414 1840425 1843845 1843860) (-1110 "SETAGG.spad" 1836971 1836984 1840404 1840409) (-1109 "SEQAST.spad" 1836674 1836683 1836961 1836966) (-1108 "SEGXCAT.spad" 1835830 1835843 1836664 1836669) (-1107 "SEG.spad" 1835643 1835654 1835749 1835754) (-1106 "SEGCAT.spad" 1834568 1834579 1835633 1835638) (-1105 "SEGBIND.spad" 1834326 1834337 1834515 1834520) (-1104 "SEGBIND2.spad" 1834024 1834037 1834316 1834321) (-1103 "SEGAST.spad" 1833738 1833747 1834014 1834019) (-1102 "SEG2.spad" 1833173 1833186 1833694 1833699) (-1101 "SDVAR.spad" 1832449 1832460 1833163 1833168) (-1100 "SDPOL.spad" 1829875 1829886 1830166 1830293) (-1099 "SCPKG.spad" 1827964 1827975 1829865 1829870) (-1098 "SCOPE.spad" 1827117 1827126 1827954 1827959) (-1097 "SCACHE.spad" 1825813 1825824 1827107 1827112) (-1096 "SASTCAT.spad" 1825722 1825731 1825803 1825808) (-1095 "SAOS.spad" 1825594 1825603 1825712 1825717) (-1094 "SAERFFC.spad" 1825307 1825327 1825584 1825589) (-1093 "SAE.spad" 1823482 1823498 1824093 1824228) (-1092 "SAEFACT.spad" 1823183 1823203 1823472 1823477) (-1091 "RURPK.spad" 1820842 1820858 1823173 1823178) (-1090 "RULESET.spad" 1820295 1820319 1820832 1820837) (-1089 "RULE.spad" 1818535 1818559 1820285 1820290) (-1088 "RULECOLD.spad" 1818387 1818400 1818525 1818530) (-1087 "RTVALUE.spad" 1818122 1818131 1818377 1818382) (-1086 "RSTRCAST.spad" 1817839 1817848 1818112 1818117) (-1085 "RSETGCD.spad" 1814217 1814237 1817829 1817834) (-1084 "RSETCAT.spad" 1804153 1804170 1814185 1814212) (-1083 "RSETCAT.spad" 1794109 1794128 1804143 1804148) (-1082 "RSDCMPK.spad" 1792561 1792581 1794099 1794104) (-1081 "RRCC.spad" 1790945 1790975 1792551 1792556) (-1080 "RRCC.spad" 1789327 1789359 1790935 1790940) (-1079 "RPTAST.spad" 1789029 1789038 1789317 1789322) (-1078 "RPOLCAT.spad" 1768389 1768404 1788897 1789024) (-1077 "RPOLCAT.spad" 1747462 1747479 1767972 1767977) (-1076 "ROUTINE.spad" 1743345 1743354 1746109 1746136) (-1075 "ROMAN.spad" 1742673 1742682 1743211 1743340) (-1074 "ROIRC.spad" 1741753 1741785 1742663 1742668) (-1073 "RNS.spad" 1740656 1740665 1741655 1741748) (-1072 "RNS.spad" 1739645 1739656 1740646 1740651) (-1071 "RNG.spad" 1739380 1739389 1739635 1739640) (-1070 "RNGBIND.spad" 1738540 1738554 1739335 1739340) (-1069 "RMODULE.spad" 1738305 1738316 1738530 1738535) (-1068 "RMCAT2.spad" 1737725 1737782 1738295 1738300) (-1067 "RMATRIX.spad" 1736549 1736568 1736892 1736931) (-1066 "RMATCAT.spad" 1732128 1732159 1736505 1736544) (-1065 "RMATCAT.spad" 1727597 1727630 1731976 1731981) (-1064 "RLINSET.spad" 1726991 1727002 1727587 1727592) (-1063 "RINTERP.spad" 1726879 1726899 1726981 1726986) (-1062 "RING.spad" 1726349 1726358 1726859 1726874) (-1061 "RING.spad" 1725827 1725838 1726339 1726344) (-1060 "RIDIST.spad" 1725219 1725228 1725817 1725822) (-1059 "RGCHAIN.spad" 1723802 1723818 1724704 1724731) (-1058 "RGBCSPC.spad" 1723583 1723595 1723792 1723797) (-1057 "RGBCMDL.spad" 1723113 1723125 1723573 1723578) (-1056 "RF.spad" 1720755 1720766 1723103 1723108) (-1055 "RFFACTOR.spad" 1720217 1720228 1720745 1720750) (-1054 "RFFACT.spad" 1719952 1719964 1720207 1720212) (-1053 "RFDIST.spad" 1718948 1718957 1719942 1719947) (-1052 "RETSOL.spad" 1718367 1718380 1718938 1718943) (-1051 "RETRACT.spad" 1717795 1717806 1718357 1718362) (-1050 "RETRACT.spad" 1717221 1717234 1717785 1717790) (-1049 "RETAST.spad" 1717033 1717042 1717211 1717216) (-1048 "RESULT.spad" 1715093 1715102 1715680 1715707) (-1047 "RESRING.spad" 1714440 1714487 1715031 1715088) (-1046 "RESLATC.spad" 1713764 1713775 1714430 1714435) (-1045 "REPSQ.spad" 1713495 1713506 1713754 1713759) (-1044 "REP.spad" 1711049 1711058 1713485 1713490) (-1043 "REPDB.spad" 1710756 1710767 1711039 1711044) (-1042 "REP2.spad" 1700414 1700425 1710598 1710603) (-1041 "REP1.spad" 1694610 1694621 1700364 1700369) (-1040 "REGSET.spad" 1692407 1692424 1694256 1694283) (-1039 "REF.spad" 1691742 1691753 1692362 1692367) (-1038 "REDORDER.spad" 1690948 1690965 1691732 1691737) (-1037 "RECLOS.spad" 1689731 1689751 1690435 1690528) (-1036 "REALSOLV.spad" 1688871 1688880 1689721 1689726) (-1035 "REAL.spad" 1688743 1688752 1688861 1688866) (-1034 "REAL0Q.spad" 1686041 1686056 1688733 1688738) (-1033 "REAL0.spad" 1682885 1682900 1686031 1686036) (-1032 "RDUCEAST.spad" 1682606 1682615 1682875 1682880) (-1031 "RDIV.spad" 1682261 1682286 1682596 1682601) (-1030 "RDIST.spad" 1681828 1681839 1682251 1682256) (-1029 "RDETRS.spad" 1680692 1680710 1681818 1681823) (-1028 "RDETR.spad" 1678831 1678849 1680682 1680687) (-1027 "RDEEFS.spad" 1677930 1677947 1678821 1678826) (-1026 "RDEEF.spad" 1676940 1676957 1677920 1677925) (-1025 "RCFIELD.spad" 1674126 1674135 1676842 1676935) (-1024 "RCFIELD.spad" 1671398 1671409 1674116 1674121) (-1023 "RCAGG.spad" 1669326 1669337 1671388 1671393) (-1022 "RCAGG.spad" 1667181 1667194 1669245 1669250) (-1021 "RATRET.spad" 1666541 1666552 1667171 1667176) (-1020 "RATFACT.spad" 1666233 1666245 1666531 1666536) (-1019 "RANDSRC.spad" 1665552 1665561 1666223 1666228) (-1018 "RADUTIL.spad" 1665308 1665317 1665542 1665547) (-1017 "RADIX.spad" 1662229 1662243 1663775 1663868) (-1016 "RADFF.spad" 1660642 1660679 1660761 1660917) (-1015 "RADCAT.spad" 1660237 1660246 1660632 1660637) (-1014 "RADCAT.spad" 1659830 1659841 1660227 1660232) (-1013 "QUEUE.spad" 1659178 1659189 1659437 1659464) (-1012 "QUAT.spad" 1657636 1657647 1657979 1658044) (-1011 "QUATCT2.spad" 1657256 1657275 1657626 1657631) (-1010 "QUATCAT.spad" 1655426 1655437 1657186 1657251) (-1009 "QUATCAT.spad" 1653347 1653360 1655109 1655114) (-1008 "QUAGG.spad" 1652174 1652185 1653315 1653342) (-1007 "QQUTAST.spad" 1651942 1651951 1652164 1652169) (-1006 "QFORM.spad" 1651560 1651575 1651932 1651937) (-1005 "QFCAT.spad" 1650262 1650273 1651462 1651555) (-1004 "QFCAT.spad" 1648555 1648568 1649757 1649762) (-1003 "QFCAT2.spad" 1648247 1648264 1648545 1648550) (-1002 "QEQUAT.spad" 1647805 1647814 1648237 1648242) (-1001 "QCMPACK.spad" 1642551 1642571 1647795 1647800) (-1000 "QALGSET.spad" 1638629 1638662 1642465 1642470) (-999 "QALGSET2.spad" 1636625 1636643 1638619 1638624) (-998 "PWFFINTB.spad" 1634041 1634062 1636615 1636620) (-997 "PUSHVAR.spad" 1633380 1633399 1634031 1634036) (-996 "PTRANFN.spad" 1629508 1629518 1633370 1633375) (-995 "PTPACK.spad" 1626596 1626606 1629498 1629503) (-994 "PTFUNC2.spad" 1626419 1626433 1626586 1626591) (-993 "PTCAT.spad" 1625674 1625684 1626387 1626414) (-992 "PSQFR.spad" 1624981 1625005 1625664 1625669) (-991 "PSEUDLIN.spad" 1623867 1623877 1624971 1624976) (-990 "PSETPK.spad" 1609300 1609316 1623745 1623750) (-989 "PSETCAT.spad" 1603220 1603243 1609280 1609295) (-988 "PSETCAT.spad" 1597114 1597139 1603176 1603181) (-987 "PSCURVE.spad" 1596097 1596105 1597104 1597109) (-986 "PSCAT.spad" 1594880 1594909 1595995 1596092) (-985 "PSCAT.spad" 1593753 1593784 1594870 1594875) (-984 "PRTITION.spad" 1592451 1592459 1593743 1593748) (-983 "PRTDAST.spad" 1592170 1592178 1592441 1592446) (-982 "PRS.spad" 1581732 1581749 1592126 1592131) (-981 "PRQAGG.spad" 1581167 1581177 1581700 1581727) (-980 "PROPLOG.spad" 1580739 1580747 1581157 1581162) (-979 "PROPFUN2.spad" 1580362 1580375 1580729 1580734) (-978 "PROPFUN1.spad" 1579760 1579771 1580352 1580357) (-977 "PROPFRML.spad" 1578328 1578339 1579750 1579755) (-976 "PROPERTY.spad" 1577816 1577824 1578318 1578323) (-975 "PRODUCT.spad" 1575498 1575510 1575782 1575837) (-974 "PR.spad" 1573890 1573902 1574589 1574716) (-973 "PRINT.spad" 1573642 1573650 1573880 1573885) (-972 "PRIMES.spad" 1571895 1571905 1573632 1573637) (-971 "PRIMELT.spad" 1569976 1569990 1571885 1571890) (-970 "PRIMCAT.spad" 1569603 1569611 1569966 1569971) (-969 "PRIMARR.spad" 1568608 1568618 1568786 1568813) (-968 "PRIMARR2.spad" 1567375 1567387 1568598 1568603) (-967 "PREASSOC.spad" 1566757 1566769 1567365 1567370) (-966 "PPCURVE.spad" 1565894 1565902 1566747 1566752) (-965 "PORTNUM.spad" 1565669 1565677 1565884 1565889) (-964 "POLYROOT.spad" 1564518 1564540 1565625 1565630) (-963 "POLY.spad" 1561853 1561863 1562368 1562495) (-962 "POLYLIFT.spad" 1561118 1561141 1561843 1561848) (-961 "POLYCATQ.spad" 1559236 1559258 1561108 1561113) (-960 "POLYCAT.spad" 1552706 1552727 1559104 1559231) (-959 "POLYCAT.spad" 1545514 1545537 1551914 1551919) (-958 "POLY2UP.spad" 1544966 1544980 1545504 1545509) (-957 "POLY2.spad" 1544563 1544575 1544956 1544961) (-956 "POLUTIL.spad" 1543504 1543533 1544519 1544524) (-955 "POLTOPOL.spad" 1542252 1542267 1543494 1543499) (-954 "POINT.spad" 1541090 1541100 1541177 1541204) (-953 "PNTHEORY.spad" 1537792 1537800 1541080 1541085) (-952 "PMTOOLS.spad" 1536567 1536581 1537782 1537787) (-951 "PMSYM.spad" 1536116 1536126 1536557 1536562) (-950 "PMQFCAT.spad" 1535707 1535721 1536106 1536111) (-949 "PMPRED.spad" 1535186 1535200 1535697 1535702) (-948 "PMPREDFS.spad" 1534640 1534662 1535176 1535181) (-947 "PMPLCAT.spad" 1533720 1533738 1534572 1534577) (-946 "PMLSAGG.spad" 1533305 1533319 1533710 1533715) (-945 "PMKERNEL.spad" 1532884 1532896 1533295 1533300) (-944 "PMINS.spad" 1532464 1532474 1532874 1532879) (-943 "PMFS.spad" 1532041 1532059 1532454 1532459) (-942 "PMDOWN.spad" 1531331 1531345 1532031 1532036) (-941 "PMASS.spad" 1530341 1530349 1531321 1531326) (-940 "PMASSFS.spad" 1529308 1529324 1530331 1530336) (-939 "PLOTTOOL.spad" 1529088 1529096 1529298 1529303) (-938 "PLOT.spad" 1524011 1524019 1529078 1529083) (-937 "PLOT3D.spad" 1520475 1520483 1524001 1524006) (-936 "PLOT1.spad" 1519632 1519642 1520465 1520470) (-935 "PLEQN.spad" 1506922 1506949 1519622 1519627) (-934 "PINTERP.spad" 1506544 1506563 1506912 1506917) (-933 "PINTERPA.spad" 1506328 1506344 1506534 1506539) (-932 "PI.spad" 1505937 1505945 1506302 1506323) (-931 "PID.spad" 1504907 1504915 1505863 1505932) (-930 "PICOERCE.spad" 1504564 1504574 1504897 1504902) (-929 "PGROEB.spad" 1503165 1503179 1504554 1504559) (-928 "PGE.spad" 1494782 1494790 1503155 1503160) (-927 "PGCD.spad" 1493672 1493689 1494772 1494777) (-926 "PFRPAC.spad" 1492821 1492831 1493662 1493667) (-925 "PFR.spad" 1489484 1489494 1492723 1492816) (-924 "PFOTOOLS.spad" 1488742 1488758 1489474 1489479) (-923 "PFOQ.spad" 1488112 1488130 1488732 1488737) (-922 "PFO.spad" 1487531 1487558 1488102 1488107) (-921 "PF.spad" 1487105 1487117 1487336 1487429) (-920 "PFECAT.spad" 1484787 1484795 1487031 1487100) (-919 "PFECAT.spad" 1482497 1482507 1484743 1484748) (-918 "PFBRU.spad" 1480385 1480397 1482487 1482492) (-917 "PFBR.spad" 1477945 1477968 1480375 1480380) (-916 "PERM.spad" 1473752 1473762 1477775 1477790) (-915 "PERMGRP.spad" 1468522 1468532 1473742 1473747) (-914 "PERMCAT.spad" 1467183 1467193 1468502 1468517) (-913 "PERMAN.spad" 1465715 1465729 1467173 1467178) (-912 "PENDTREE.spad" 1465056 1465066 1465344 1465349) (-911 "PDRING.spad" 1463607 1463617 1465036 1465051) (-910 "PDRING.spad" 1462166 1462178 1463597 1463602) (-909 "PDEPROB.spad" 1461181 1461189 1462156 1462161) (-908 "PDEPACK.spad" 1455221 1455229 1461171 1461176) (-907 "PDECOMP.spad" 1454691 1454708 1455211 1455216) (-906 "PDECAT.spad" 1453047 1453055 1454681 1454686) (-905 "PCOMP.spad" 1452900 1452913 1453037 1453042) (-904 "PBWLB.spad" 1451488 1451505 1452890 1452895) (-903 "PATTERN.spad" 1446027 1446037 1451478 1451483) (-902 "PATTERN2.spad" 1445765 1445777 1446017 1446022) (-901 "PATTERN1.spad" 1444101 1444117 1445755 1445760) (-900 "PATRES.spad" 1441676 1441688 1444091 1444096) (-899 "PATRES2.spad" 1441348 1441362 1441666 1441671) (-898 "PATMATCH.spad" 1439545 1439576 1441056 1441061) (-897 "PATMAB.spad" 1438974 1438984 1439535 1439540) (-896 "PATLRES.spad" 1438060 1438074 1438964 1438969) (-895 "PATAB.spad" 1437824 1437834 1438050 1438055) (-894 "PARTPERM.spad" 1435832 1435840 1437814 1437819) (-893 "PARSURF.spad" 1435266 1435294 1435822 1435827) (-892 "PARSU2.spad" 1435063 1435079 1435256 1435261) (-891 "script-parser.spad" 1434583 1434591 1435053 1435058) (-890 "PARSCURV.spad" 1434017 1434045 1434573 1434578) (-889 "PARSC2.spad" 1433808 1433824 1434007 1434012) (-888 "PARPCURV.spad" 1433270 1433298 1433798 1433803) (-887 "PARPC2.spad" 1433061 1433077 1433260 1433265) (-886 "PARAMAST.spad" 1432189 1432197 1433051 1433056) (-885 "PAN2EXPR.spad" 1431601 1431609 1432179 1432184) (-884 "PALETTE.spad" 1430571 1430579 1431591 1431596) (-883 "PAIR.spad" 1429558 1429571 1430159 1430164) (-882 "PADICRC.spad" 1426892 1426910 1428063 1428156) (-881 "PADICRAT.spad" 1424907 1424919 1425128 1425221) (-880 "PADIC.spad" 1424602 1424614 1424833 1424902) (-879 "PADICCT.spad" 1423151 1423163 1424528 1424597) (-878 "PADEPAC.spad" 1421840 1421859 1423141 1423146) (-877 "PADE.spad" 1420592 1420608 1421830 1421835) (-876 "OWP.spad" 1419832 1419862 1420450 1420517) (-875 "OVERSET.spad" 1419405 1419413 1419822 1419827) (-874 "OVAR.spad" 1419186 1419209 1419395 1419400) (-873 "OUT.spad" 1418272 1418280 1419176 1419181) (-872 "OUTFORM.spad" 1407664 1407672 1418262 1418267) (-871 "OUTBFILE.spad" 1407082 1407090 1407654 1407659) (-870 "OUTBCON.spad" 1406088 1406096 1407072 1407077) (-869 "OUTBCON.spad" 1405092 1405102 1406078 1406083) (-868 "OSI.spad" 1404567 1404575 1405082 1405087) (-867 "OSGROUP.spad" 1404485 1404493 1404557 1404562) (-866 "ORTHPOL.spad" 1402970 1402980 1404402 1404407) (-865 "OREUP.spad" 1402423 1402451 1402650 1402689) (-864 "ORESUP.spad" 1401724 1401748 1402103 1402142) (-863 "OREPCTO.spad" 1399581 1399593 1401644 1401649) (-862 "OREPCAT.spad" 1393728 1393738 1399537 1399576) (-861 "OREPCAT.spad" 1387765 1387777 1393576 1393581) (-860 "ORDSET.spad" 1386937 1386945 1387755 1387760) (-859 "ORDSET.spad" 1386107 1386117 1386927 1386932) (-858 "ORDRING.spad" 1385497 1385505 1386087 1386102) (-857 "ORDRING.spad" 1384895 1384905 1385487 1385492) (-856 "ORDMON.spad" 1384750 1384758 1384885 1384890) (-855 "ORDFUNS.spad" 1383882 1383898 1384740 1384745) (-854 "ORDFIN.spad" 1383702 1383710 1383872 1383877) (-853 "ORDCOMP.spad" 1382167 1382177 1383249 1383278) (-852 "ORDCOMP2.spad" 1381460 1381472 1382157 1382162) (-851 "OPTPROB.spad" 1380098 1380106 1381450 1381455) (-850 "OPTPACK.spad" 1372507 1372515 1380088 1380093) (-849 "OPTCAT.spad" 1370186 1370194 1372497 1372502) (-848 "OPSIG.spad" 1369840 1369848 1370176 1370181) (-847 "OPQUERY.spad" 1369389 1369397 1369830 1369835) (-846 "OP.spad" 1369131 1369141 1369211 1369278) (-845 "OPERCAT.spad" 1368597 1368607 1369121 1369126) (-844 "OPERCAT.spad" 1368061 1368073 1368587 1368592) (-843 "ONECOMP.spad" 1366806 1366816 1367608 1367637) (-842 "ONECOMP2.spad" 1366230 1366242 1366796 1366801) (-841 "OMSERVER.spad" 1365236 1365244 1366220 1366225) (-840 "OMSAGG.spad" 1365024 1365034 1365192 1365231) (-839 "OMPKG.spad" 1363640 1363648 1365014 1365019) (-838 "OM.spad" 1362613 1362621 1363630 1363635) (-837 "OMLO.spad" 1362038 1362050 1362499 1362538) (-836 "OMEXPR.spad" 1361872 1361882 1362028 1362033) (-835 "OMERR.spad" 1361417 1361425 1361862 1361867) (-834 "OMERRK.spad" 1360451 1360459 1361407 1361412) (-833 "OMENC.spad" 1359795 1359803 1360441 1360446) (-832 "OMDEV.spad" 1354104 1354112 1359785 1359790) (-831 "OMCONN.spad" 1353513 1353521 1354094 1354099) (-830 "OINTDOM.spad" 1353276 1353284 1353439 1353508) (-829 "OFMONOID.spad" 1351399 1351409 1353232 1353237) (-828 "ODVAR.spad" 1350660 1350670 1351389 1351394) (-827 "ODR.spad" 1350304 1350330 1350472 1350621) (-826 "ODPOL.spad" 1347686 1347696 1348026 1348153) (-825 "ODP.spad" 1337456 1337476 1337829 1337960) (-824 "ODETOOLS.spad" 1336105 1336124 1337446 1337451) (-823 "ODESYS.spad" 1333799 1333816 1336095 1336100) (-822 "ODERTRIC.spad" 1329808 1329825 1333756 1333761) (-821 "ODERED.spad" 1329207 1329231 1329798 1329803) (-820 "ODERAT.spad" 1326822 1326839 1329197 1329202) (-819 "ODEPRRIC.spad" 1323859 1323881 1326812 1326817) (-818 "ODEPROB.spad" 1323116 1323124 1323849 1323854) (-817 "ODEPRIM.spad" 1320450 1320472 1323106 1323111) (-816 "ODEPAL.spad" 1319836 1319860 1320440 1320445) (-815 "ODEPACK.spad" 1306502 1306510 1319826 1319831) (-814 "ODEINT.spad" 1305937 1305953 1306492 1306497) (-813 "ODEIFTBL.spad" 1303332 1303340 1305927 1305932) (-812 "ODEEF.spad" 1298823 1298839 1303322 1303327) (-811 "ODECONST.spad" 1298360 1298378 1298813 1298818) (-810 "ODECAT.spad" 1296958 1296966 1298350 1298355) (-809 "OCT.spad" 1295094 1295104 1295808 1295847) (-808 "OCTCT2.spad" 1294740 1294761 1295084 1295089) (-807 "OC.spad" 1292536 1292546 1294696 1294735) (-806 "OC.spad" 1290057 1290069 1292219 1292224) (-805 "OCAMON.spad" 1289905 1289913 1290047 1290052) (-804 "OASGP.spad" 1289720 1289728 1289895 1289900) (-803 "OAMONS.spad" 1289242 1289250 1289710 1289715) (-802 "OAMON.spad" 1289103 1289111 1289232 1289237) (-801 "OAGROUP.spad" 1288965 1288973 1289093 1289098) (-800 "NUMTUBE.spad" 1288556 1288572 1288955 1288960) (-799 "NUMQUAD.spad" 1276532 1276540 1288546 1288551) (-798 "NUMODE.spad" 1267886 1267894 1276522 1276527) (-797 "NUMINT.spad" 1265452 1265460 1267876 1267881) (-796 "NUMFMT.spad" 1264292 1264300 1265442 1265447) (-795 "NUMERIC.spad" 1256406 1256416 1264097 1264102) (-794 "NTSCAT.spad" 1254914 1254930 1256374 1256401) (-793 "NTPOLFN.spad" 1254465 1254475 1254831 1254836) (-792 "NSUP.spad" 1247511 1247521 1252051 1252204) (-791 "NSUP2.spad" 1246903 1246915 1247501 1247506) (-790 "NSMP.spad" 1243133 1243152 1243441 1243568) (-789 "NREP.spad" 1241511 1241525 1243123 1243128) (-788 "NPCOEF.spad" 1240757 1240777 1241501 1241506) (-787 "NORMRETR.spad" 1240355 1240394 1240747 1240752) (-786 "NORMPK.spad" 1238257 1238276 1240345 1240350) (-785 "NORMMA.spad" 1237945 1237971 1238247 1238252) (-784 "NONE.spad" 1237686 1237694 1237935 1237940) (-783 "NONE1.spad" 1237362 1237372 1237676 1237681) (-782 "NODE1.spad" 1236849 1236865 1237352 1237357) (-781 "NNI.spad" 1235744 1235752 1236823 1236844) (-780 "NLINSOL.spad" 1234370 1234380 1235734 1235739) (-779 "NIPROB.spad" 1232911 1232919 1234360 1234365) (-778 "NFINTBAS.spad" 1230471 1230488 1232901 1232906) (-777 "NETCLT.spad" 1230445 1230456 1230461 1230466) (-776 "NCODIV.spad" 1228661 1228677 1230435 1230440) (-775 "NCNTFRAC.spad" 1228303 1228317 1228651 1228656) (-774 "NCEP.spad" 1226469 1226483 1228293 1228298) (-773 "NASRING.spad" 1226065 1226073 1226459 1226464) (-772 "NASRING.spad" 1225659 1225669 1226055 1226060) (-771 "NARNG.spad" 1225011 1225019 1225649 1225654) (-770 "NARNG.spad" 1224361 1224371 1225001 1225006) (-769 "NAGSP.spad" 1223438 1223446 1224351 1224356) (-768 "NAGS.spad" 1213099 1213107 1223428 1223433) (-767 "NAGF07.spad" 1211530 1211538 1213089 1213094) (-766 "NAGF04.spad" 1205932 1205940 1211520 1211525) (-765 "NAGF02.spad" 1200001 1200009 1205922 1205927) (-764 "NAGF01.spad" 1195762 1195770 1199991 1199996) (-763 "NAGE04.spad" 1189462 1189470 1195752 1195757) (-762 "NAGE02.spad" 1180122 1180130 1189452 1189457) (-761 "NAGE01.spad" 1176124 1176132 1180112 1180117) (-760 "NAGD03.spad" 1174128 1174136 1176114 1176119) (-759 "NAGD02.spad" 1166875 1166883 1174118 1174123) (-758 "NAGD01.spad" 1161168 1161176 1166865 1166870) (-757 "NAGC06.spad" 1157043 1157051 1161158 1161163) (-756 "NAGC05.spad" 1155544 1155552 1157033 1157038) (-755 "NAGC02.spad" 1154811 1154819 1155534 1155539) (-754 "NAALG.spad" 1154352 1154362 1154779 1154806) (-753 "NAALG.spad" 1153913 1153925 1154342 1154347) (-752 "MULTSQFR.spad" 1150871 1150888 1153903 1153908) (-751 "MULTFACT.spad" 1150254 1150271 1150861 1150866) (-750 "MTSCAT.spad" 1148348 1148369 1150152 1150249) (-749 "MTHING.spad" 1148007 1148017 1148338 1148343) (-748 "MSYSCMD.spad" 1147441 1147449 1147997 1148002) (-747 "MSET.spad" 1145399 1145409 1147147 1147186) (-746 "MSETAGG.spad" 1145244 1145254 1145367 1145394) (-745 "MRING.spad" 1142221 1142233 1144952 1145019) (-744 "MRF2.spad" 1141791 1141805 1142211 1142216) (-743 "MRATFAC.spad" 1141337 1141354 1141781 1141786) (-742 "MPRFF.spad" 1139377 1139396 1141327 1141332) (-741 "MPOLY.spad" 1136848 1136863 1137207 1137334) (-740 "MPCPF.spad" 1136112 1136131 1136838 1136843) (-739 "MPC3.spad" 1135929 1135969 1136102 1136107) (-738 "MPC2.spad" 1135575 1135608 1135919 1135924) (-737 "MONOTOOL.spad" 1133926 1133943 1135565 1135570) (-736 "MONOID.spad" 1133245 1133253 1133916 1133921) (-735 "MONOID.spad" 1132562 1132572 1133235 1133240) (-734 "MONOGEN.spad" 1131310 1131323 1132422 1132557) (-733 "MONOGEN.spad" 1130080 1130095 1131194 1131199) (-732 "MONADWU.spad" 1128110 1128118 1130070 1130075) (-731 "MONADWU.spad" 1126138 1126148 1128100 1128105) (-730 "MONAD.spad" 1125298 1125306 1126128 1126133) (-729 "MONAD.spad" 1124456 1124466 1125288 1125293) (-728 "MOEBIUS.spad" 1123192 1123206 1124436 1124451) (-727 "MODULE.spad" 1123062 1123072 1123160 1123187) (-726 "MODULE.spad" 1122952 1122964 1123052 1123057) (-725 "MODRING.spad" 1122287 1122326 1122932 1122947) (-724 "MODOP.spad" 1120952 1120964 1122109 1122176) (-723 "MODMONOM.spad" 1120683 1120701 1120942 1120947) (-722 "MODMON.spad" 1117478 1117494 1118197 1118350) (-721 "MODFIELD.spad" 1116840 1116879 1117380 1117473) (-720 "MMLFORM.spad" 1115700 1115708 1116830 1116835) (-719 "MMAP.spad" 1115442 1115476 1115690 1115695) (-718 "MLO.spad" 1113901 1113911 1115398 1115437) (-717 "MLIFT.spad" 1112513 1112530 1113891 1113896) (-716 "MKUCFUNC.spad" 1112048 1112066 1112503 1112508) (-715 "MKRECORD.spad" 1111652 1111665 1112038 1112043) (-714 "MKFUNC.spad" 1111059 1111069 1111642 1111647) (-713 "MKFLCFN.spad" 1110027 1110037 1111049 1111054) (-712 "MKBCFUNC.spad" 1109522 1109540 1110017 1110022) (-711 "MINT.spad" 1108961 1108969 1109424 1109517) (-710 "MHROWRED.spad" 1107472 1107482 1108951 1108956) (-709 "MFLOAT.spad" 1105992 1106000 1107362 1107467) (-708 "MFINFACT.spad" 1105392 1105414 1105982 1105987) (-707 "MESH.spad" 1103174 1103182 1105382 1105387) (-706 "MDDFACT.spad" 1101385 1101395 1103164 1103169) (-705 "MDAGG.spad" 1100676 1100686 1101365 1101380) (-704 "MCMPLX.spad" 1096687 1096695 1097301 1097502) (-703 "MCDEN.spad" 1095897 1095909 1096677 1096682) (-702 "MCALCFN.spad" 1093019 1093045 1095887 1095892) (-701 "MAYBE.spad" 1092303 1092314 1093009 1093014) (-700 "MATSTOR.spad" 1089611 1089621 1092293 1092298) (-699 "MATRIX.spad" 1088315 1088325 1088799 1088826) (-698 "MATLIN.spad" 1085659 1085683 1088199 1088204) (-697 "MATCAT.spad" 1077388 1077410 1085627 1085654) (-696 "MATCAT.spad" 1068989 1069013 1077230 1077235) (-695 "MATCAT2.spad" 1068271 1068319 1068979 1068984) (-694 "MAPPKG3.spad" 1067186 1067200 1068261 1068266) (-693 "MAPPKG2.spad" 1066524 1066536 1067176 1067181) (-692 "MAPPKG1.spad" 1065352 1065362 1066514 1066519) (-691 "MAPPAST.spad" 1064667 1064675 1065342 1065347) (-690 "MAPHACK3.spad" 1064479 1064493 1064657 1064662) (-689 "MAPHACK2.spad" 1064248 1064260 1064469 1064474) (-688 "MAPHACK1.spad" 1063892 1063902 1064238 1064243) (-687 "MAGMA.spad" 1061682 1061699 1063882 1063887) (-686 "MACROAST.spad" 1061261 1061269 1061672 1061677) (-685 "M3D.spad" 1058981 1058991 1060639 1060644) (-684 "LZSTAGG.spad" 1056219 1056229 1058971 1058976) (-683 "LZSTAGG.spad" 1053455 1053467 1056209 1056214) (-682 "LWORD.spad" 1050160 1050177 1053445 1053450) (-681 "LSTAST.spad" 1049944 1049952 1050150 1050155) (-680 "LSQM.spad" 1048230 1048244 1048624 1048675) (-679 "LSPP.spad" 1047765 1047782 1048220 1048225) (-678 "LSMP.spad" 1046615 1046643 1047755 1047760) (-677 "LSMP1.spad" 1044433 1044447 1046605 1046610) (-676 "LSAGG.spad" 1044102 1044112 1044401 1044428) (-675 "LSAGG.spad" 1043791 1043803 1044092 1044097) (-674 "LPOLY.spad" 1042745 1042764 1043647 1043716) (-673 "LPEFRAC.spad" 1042016 1042026 1042735 1042740) (-672 "LO.spad" 1041417 1041431 1041950 1041977) (-671 "LOGIC.spad" 1041019 1041027 1041407 1041412) (-670 "LOGIC.spad" 1040619 1040629 1041009 1041014) (-669 "LODOOPS.spad" 1039549 1039561 1040609 1040614) (-668 "LODO.spad" 1038933 1038949 1039229 1039268) (-667 "LODOF.spad" 1037979 1037996 1038890 1038895) (-666 "LODOCAT.spad" 1036645 1036655 1037935 1037974) (-665 "LODOCAT.spad" 1035309 1035321 1036601 1036606) (-664 "LODO2.spad" 1034582 1034594 1034989 1035028) (-663 "LODO1.spad" 1033982 1033992 1034262 1034301) (-662 "LODEEF.spad" 1032784 1032802 1033972 1033977) (-661 "LNAGG.spad" 1028931 1028941 1032774 1032779) (-660 "LNAGG.spad" 1025042 1025054 1028887 1028892) (-659 "LMOPS.spad" 1021810 1021827 1025032 1025037) (-658 "LMODULE.spad" 1021578 1021588 1021800 1021805) (-657 "LMDICT.spad" 1020865 1020875 1021129 1021156) (-656 "LLINSET.spad" 1020262 1020272 1020855 1020860) (-655 "LITERAL.spad" 1020168 1020179 1020252 1020257) (-654 "LIST.spad" 1017903 1017913 1019315 1019342) (-653 "LIST3.spad" 1017214 1017228 1017893 1017898) (-652 "LIST2.spad" 1015916 1015928 1017204 1017209) (-651 "LIST2MAP.spad" 1012819 1012831 1015906 1015911) (-650 "LINSET.spad" 1012441 1012451 1012809 1012814) (-649 "LINEXP.spad" 1011579 1011589 1012431 1012436) (-648 "LINDEP.spad" 1010388 1010400 1011491 1011496) (-647 "LIMITRF.spad" 1008316 1008326 1010378 1010383) (-646 "LIMITPS.spad" 1007219 1007232 1008306 1008311) (-645 "LIE.spad" 1005235 1005247 1006509 1006654) (-644 "LIECAT.spad" 1004711 1004721 1005161 1005230) (-643 "LIECAT.spad" 1004215 1004227 1004667 1004672) (-642 "LIB.spad" 1002428 1002436 1002874 1002889) (-641 "LGROBP.spad" 999781 999800 1002418 1002423) (-640 "LF.spad" 998736 998752 999771 999776) (-639 "LFCAT.spad" 997795 997803 998726 998731) (-638 "LEXTRIPK.spad" 993298 993313 997785 997790) (-637 "LEXP.spad" 991301 991328 993278 993293) (-636 "LETAST.spad" 991000 991008 991291 991296) (-635 "LEADCDET.spad" 989398 989415 990990 990995) (-634 "LAZM3PK.spad" 988102 988124 989388 989393) (-633 "LAUPOL.spad" 986795 986808 987695 987764) (-632 "LAPLACE.spad" 986378 986394 986785 986790) (-631 "LA.spad" 985818 985832 986300 986339) (-630 "LALG.spad" 985594 985604 985798 985813) (-629 "LALG.spad" 985378 985390 985584 985589) (-628 "KVTFROM.spad" 985113 985123 985368 985373) (-627 "KTVLOGIC.spad" 984625 984633 985103 985108) (-626 "KRCFROM.spad" 984363 984373 984615 984620) (-625 "KOVACIC.spad" 983086 983103 984353 984358) (-624 "KONVERT.spad" 982808 982818 983076 983081) (-623 "KOERCE.spad" 982545 982555 982798 982803) (-622 "KERNEL.spad" 981200 981210 982329 982334) (-621 "KERNEL2.spad" 980903 980915 981190 981195) (-620 "KDAGG.spad" 980012 980034 980883 980898) (-619 "KDAGG.spad" 979129 979153 980002 980007) (-618 "KAFILE.spad" 978092 978108 978327 978354) (-617 "JORDAN.spad" 975921 975933 977382 977527) (-616 "JOINAST.spad" 975615 975623 975911 975916) (-615 "JAVACODE.spad" 975481 975489 975605 975610) (-614 "IXAGG.spad" 973614 973638 975471 975476) (-613 "IXAGG.spad" 971602 971628 973461 973466) (-612 "IVECTOR.spad" 970372 970387 970527 970554) (-611 "ITUPLE.spad" 969533 969543 970362 970367) (-610 "ITRIGMNP.spad" 968372 968391 969523 969528) (-609 "ITFUN3.spad" 967878 967892 968362 968367) (-608 "ITFUN2.spad" 967622 967634 967868 967873) (-607 "ITFORM.spad" 966977 966985 967612 967617) (-606 "ITAYLOR.spad" 964971 964986 966841 966938) (-605 "ISUPS.spad" 957408 957423 963945 964042) (-604 "ISUMP.spad" 956909 956925 957398 957403) (-603 "ISTRING.spad" 955997 956010 956078 956105) (-602 "ISAST.spad" 955716 955724 955987 955992) (-601 "IRURPK.spad" 954433 954452 955706 955711) (-600 "IRSN.spad" 952405 952413 954423 954428) (-599 "IRRF2F.spad" 950890 950900 952361 952366) (-598 "IRREDFFX.spad" 950491 950502 950880 950885) (-597 "IROOT.spad" 948830 948840 950481 950486) (-596 "IR.spad" 946631 946645 948685 948712) (-595 "IRFORM.spad" 945955 945963 946621 946626) (-594 "IR2.spad" 944983 944999 945945 945950) (-593 "IR2F.spad" 944189 944205 944973 944978) (-592 "IPRNTPK.spad" 943949 943957 944179 944184) (-591 "IPF.spad" 943514 943526 943754 943847) (-590 "IPADIC.spad" 943275 943301 943440 943509) (-589 "IP4ADDR.spad" 942832 942840 943265 943270) (-588 "IOMODE.spad" 942354 942362 942822 942827) (-587 "IOBFILE.spad" 941715 941723 942344 942349) (-586 "IOBCON.spad" 941580 941588 941705 941710) (-585 "INVLAPLA.spad" 941229 941245 941570 941575) (-584 "INTTR.spad" 934611 934628 941219 941224) (-583 "INTTOOLS.spad" 932366 932382 934185 934190) (-582 "INTSLPE.spad" 931686 931694 932356 932361) (-581 "INTRVL.spad" 931252 931262 931600 931681) (-580 "INTRF.spad" 929676 929690 931242 931247) (-579 "INTRET.spad" 929108 929118 929666 929671) (-578 "INTRAT.spad" 927835 927852 929098 929103) (-577 "INTPM.spad" 926220 926236 927478 927483) (-576 "INTPAF.spad" 924084 924102 926152 926157) (-575 "INTPACK.spad" 914458 914466 924074 924079) (-574 "INT.spad" 913906 913914 914312 914453) (-573 "INTHERTR.spad" 913180 913197 913896 913901) (-572 "INTHERAL.spad" 912850 912874 913170 913175) (-571 "INTHEORY.spad" 909289 909297 912840 912845) (-570 "INTG0.spad" 903022 903040 909221 909226) (-569 "INTFTBL.spad" 897051 897059 903012 903017) (-568 "INTFACT.spad" 896110 896120 897041 897046) (-567 "INTEF.spad" 894495 894511 896100 896105) (-566 "INTDOM.spad" 893118 893126 894421 894490) (-565 "INTDOM.spad" 891803 891813 893108 893113) (-564 "INTCAT.spad" 890062 890072 891717 891798) (-563 "INTBIT.spad" 889569 889577 890052 890057) (-562 "INTALG.spad" 888757 888784 889559 889564) (-561 "INTAF.spad" 888257 888273 888747 888752) (-560 "INTABL.spad" 886775 886806 886938 886965) (-559 "INT8.spad" 886655 886663 886765 886770) (-558 "INT64.spad" 886534 886542 886645 886650) (-557 "INT32.spad" 886413 886421 886524 886529) (-556 "INT16.spad" 886292 886300 886403 886408) (-555 "INS.spad" 883795 883803 886194 886287) (-554 "INS.spad" 881384 881394 883785 883790) (-553 "INPSIGN.spad" 880832 880845 881374 881379) (-552 "INPRODPF.spad" 879928 879947 880822 880827) (-551 "INPRODFF.spad" 879016 879040 879918 879923) (-550 "INNMFACT.spad" 877991 878008 879006 879011) (-549 "INMODGCD.spad" 877479 877509 877981 877986) (-548 "INFSP.spad" 875776 875798 877469 877474) (-547 "INFPROD0.spad" 874856 874875 875766 875771) (-546 "INFORM.spad" 872055 872063 874846 874851) (-545 "INFORM1.spad" 871680 871690 872045 872050) (-544 "INFINITY.spad" 871232 871240 871670 871675) (-543 "INETCLTS.spad" 871209 871217 871222 871227) (-542 "INEP.spad" 869747 869769 871199 871204) (-541 "INDE.spad" 869476 869493 869737 869742) (-540 "INCRMAPS.spad" 868897 868907 869466 869471) (-539 "INBFILE.spad" 867969 867977 868887 868892) (-538 "INBFF.spad" 863763 863774 867959 867964) (-537 "INBCON.spad" 862053 862061 863753 863758) (-536 "INBCON.spad" 860341 860351 862043 862048) (-535 "INAST.spad" 860002 860010 860331 860336) (-534 "IMPTAST.spad" 859710 859718 859992 859997) (-533 "IMATRIX.spad" 858655 858681 859167 859194) (-532 "IMATQF.spad" 857749 857793 858611 858616) (-531 "IMATLIN.spad" 856354 856378 857705 857710) (-530 "ILIST.spad" 855012 855027 855537 855564) (-529 "IIARRAY2.spad" 854400 854438 854619 854646) (-528 "IFF.spad" 853810 853826 854081 854174) (-527 "IFAST.spad" 853424 853432 853800 853805) (-526 "IFARRAY.spad" 850917 850932 852607 852634) (-525 "IFAMON.spad" 850779 850796 850873 850878) (-524 "IEVALAB.spad" 850184 850196 850769 850774) (-523 "IEVALAB.spad" 849587 849601 850174 850179) (-522 "IDPO.spad" 849385 849397 849577 849582) (-521 "IDPOAMS.spad" 849141 849153 849375 849380) (-520 "IDPOAM.spad" 848861 848873 849131 849136) (-519 "IDPC.spad" 847799 847811 848851 848856) (-518 "IDPAM.spad" 847544 847556 847789 847794) (-517 "IDPAG.spad" 847291 847303 847534 847539) (-516 "IDENT.spad" 846941 846949 847281 847286) (-515 "IDECOMP.spad" 844180 844198 846931 846936) (-514 "IDEAL.spad" 839129 839168 844115 844120) (-513 "ICDEN.spad" 838318 838334 839119 839124) (-512 "ICARD.spad" 837509 837517 838308 838313) (-511 "IBPTOOLS.spad" 836116 836133 837499 837504) (-510 "IBITS.spad" 835319 835332 835752 835779) (-509 "IBATOOL.spad" 832296 832315 835309 835314) (-508 "IBACHIN.spad" 830803 830818 832286 832291) (-507 "IARRAY2.spad" 829791 829817 830410 830437) (-506 "IARRAY1.spad" 828836 828851 828974 829001) (-505 "IAN.spad" 827059 827067 828652 828745) (-504 "IALGFACT.spad" 826662 826695 827049 827054) (-503 "HYPCAT.spad" 826086 826094 826652 826657) (-502 "HYPCAT.spad" 825508 825518 826076 826081) (-501 "HOSTNAME.spad" 825316 825324 825498 825503) (-500 "HOMOTOP.spad" 825059 825069 825306 825311) (-499 "HOAGG.spad" 822341 822351 825049 825054) (-498 "HOAGG.spad" 819398 819410 822108 822113) (-497 "HEXADEC.spad" 817500 817508 817865 817958) (-496 "HEUGCD.spad" 816535 816546 817490 817495) (-495 "HELLFDIV.spad" 816125 816149 816525 816530) (-494 "HEAP.spad" 815517 815527 815732 815759) (-493 "HEADAST.spad" 815050 815058 815507 815512) (-492 "HDP.spad" 804816 804832 805193 805324) (-491 "HDMP.spad" 802030 802045 802646 802773) (-490 "HB.spad" 800281 800289 802020 802025) (-489 "HASHTBL.spad" 798751 798782 798962 798989) (-488 "HASAST.spad" 798467 798475 798741 798746) (-487 "HACKPI.spad" 797958 797966 798369 798462) (-486 "GTSET.spad" 796897 796913 797604 797631) (-485 "GSTBL.spad" 795416 795451 795590 795605) (-484 "GSERIES.spad" 792587 792614 793548 793697) (-483 "GROUP.spad" 791860 791868 792567 792582) (-482 "GROUP.spad" 791141 791151 791850 791855) (-481 "GROEBSOL.spad" 789635 789656 791131 791136) (-480 "GRMOD.spad" 788206 788218 789625 789630) (-479 "GRMOD.spad" 786775 786789 788196 788201) (-478 "GRIMAGE.spad" 779664 779672 786765 786770) (-477 "GRDEF.spad" 778043 778051 779654 779659) (-476 "GRAY.spad" 776506 776514 778033 778038) (-475 "GRALG.spad" 775583 775595 776496 776501) (-474 "GRALG.spad" 774658 774672 775573 775578) (-473 "GPOLSET.spad" 774112 774135 774340 774367) (-472 "GOSPER.spad" 773381 773399 774102 774107) (-471 "GMODPOL.spad" 772529 772556 773349 773376) (-470 "GHENSEL.spad" 771612 771626 772519 772524) (-469 "GENUPS.spad" 767905 767918 771602 771607) (-468 "GENUFACT.spad" 767482 767492 767895 767900) (-467 "GENPGCD.spad" 767068 767085 767472 767477) (-466 "GENMFACT.spad" 766520 766539 767058 767063) (-465 "GENEEZ.spad" 764471 764484 766510 766515) (-464 "GDMP.spad" 761527 761544 762301 762428) (-463 "GCNAALG.spad" 755450 755477 761321 761388) (-462 "GCDDOM.spad" 754626 754634 755376 755445) (-461 "GCDDOM.spad" 753864 753874 754616 754621) (-460 "GB.spad" 751390 751428 753820 753825) (-459 "GBINTERN.spad" 747410 747448 751380 751385) (-458 "GBF.spad" 743177 743215 747400 747405) (-457 "GBEUCLID.spad" 741059 741097 743167 743172) (-456 "GAUSSFAC.spad" 740372 740380 741049 741054) (-455 "GALUTIL.spad" 738698 738708 740328 740333) (-454 "GALPOLYU.spad" 737152 737165 738688 738693) (-453 "GALFACTU.spad" 735325 735344 737142 737147) (-452 "GALFACT.spad" 725514 725525 735315 735320) (-451 "FVFUN.spad" 722537 722545 725504 725509) (-450 "FVC.spad" 721589 721597 722527 722532) (-449 "FUNDESC.spad" 721267 721275 721579 721584) (-448 "FUNCTION.spad" 721116 721128 721257 721262) (-447 "FT.spad" 719413 719421 721106 721111) (-446 "FTEM.spad" 718578 718586 719403 719408) (-445 "FSUPFACT.spad" 717478 717497 718514 718519) (-444 "FST.spad" 715564 715572 717468 717473) (-443 "FSRED.spad" 715044 715060 715554 715559) (-442 "FSPRMELT.spad" 713926 713942 715001 715006) (-441 "FSPECF.spad" 712017 712033 713916 713921) (-440 "FS.spad" 706285 706295 711792 712012) (-439 "FS.spad" 700331 700343 705840 705845) (-438 "FSINT.spad" 699991 700007 700321 700326) (-437 "FSERIES.spad" 699182 699194 699811 699910) (-436 "FSCINT.spad" 698499 698515 699172 699177) (-435 "FSAGG.spad" 697616 697626 698455 698494) (-434 "FSAGG.spad" 696695 696707 697536 697541) (-433 "FSAGG2.spad" 695438 695454 696685 696690) (-432 "FS2UPS.spad" 689929 689963 695428 695433) (-431 "FS2.spad" 689576 689592 689919 689924) (-430 "FS2EXPXP.spad" 688701 688724 689566 689571) (-429 "FRUTIL.spad" 687655 687665 688691 688696) (-428 "FR.spad" 681187 681197 686495 686564) (-427 "FRNAALG.spad" 676456 676466 681129 681182) (-426 "FRNAALG.spad" 671737 671749 676412 676417) (-425 "FRNAAF2.spad" 671193 671211 671727 671732) (-424 "FRMOD.spad" 670603 670633 671124 671129) (-423 "FRIDEAL.spad" 669828 669849 670583 670598) (-422 "FRIDEAL2.spad" 669432 669464 669818 669823) (-421 "FRETRCT.spad" 668943 668953 669422 669427) (-420 "FRETRCT.spad" 668320 668332 668801 668806) (-419 "FRAMALG.spad" 666668 666681 668276 668315) (-418 "FRAMALG.spad" 665048 665063 666658 666663) (-417 "FRAC.spad" 662147 662157 662550 662723) (-416 "FRAC2.spad" 661752 661764 662137 662142) (-415 "FR2.spad" 661088 661100 661742 661747) (-414 "FPS.spad" 657903 657911 660978 661083) (-413 "FPS.spad" 654746 654756 657823 657828) (-412 "FPC.spad" 653792 653800 654648 654741) (-411 "FPC.spad" 652924 652934 653782 653787) (-410 "FPATMAB.spad" 652686 652696 652914 652919) (-409 "FPARFRAC.spad" 651173 651190 652676 652681) (-408 "FORTRAN.spad" 649679 649722 651163 651168) (-407 "FORT.spad" 648628 648636 649669 649674) (-406 "FORTFN.spad" 645798 645806 648618 648623) (-405 "FORTCAT.spad" 645482 645490 645788 645793) (-404 "FORMULA.spad" 642956 642964 645472 645477) (-403 "FORMULA1.spad" 642435 642445 642946 642951) (-402 "FORDER.spad" 642126 642150 642425 642430) (-401 "FOP.spad" 641327 641335 642116 642121) (-400 "FNLA.spad" 640751 640773 641295 641322) (-399 "FNCAT.spad" 639346 639354 640741 640746) (-398 "FNAME.spad" 639238 639246 639336 639341) (-397 "FMTC.spad" 639036 639044 639164 639233) (-396 "FMONOID.spad" 638701 638711 638992 638997) (-395 "FMONCAT.spad" 635854 635864 638691 638696) (-394 "FM.spad" 635549 635561 635788 635815) (-393 "FMFUN.spad" 632579 632587 635539 635544) (-392 "FMC.spad" 631631 631639 632569 632574) (-391 "FMCAT.spad" 629299 629317 631599 631626) (-390 "FM1.spad" 628656 628668 629233 629260) (-389 "FLOATRP.spad" 626391 626405 628646 628651) (-388 "FLOAT.spad" 619705 619713 626257 626386) (-387 "FLOATCP.spad" 617136 617150 619695 619700) (-386 "FLINEXP.spad" 616858 616868 617126 617131) (-385 "FLINEXP.spad" 616524 616536 616794 616799) (-384 "FLASORT.spad" 615850 615862 616514 616519) (-383 "FLALG.spad" 613496 613515 615776 615845) (-382 "FLAGG.spad" 610538 610548 613476 613491) (-381 "FLAGG.spad" 607481 607493 610421 610426) (-380 "FLAGG2.spad" 606206 606222 607471 607476) (-379 "FINRALG.spad" 604267 604280 606162 606201) (-378 "FINRALG.spad" 602254 602269 604151 604156) (-377 "FINITE.spad" 601406 601414 602244 602249) (-376 "FINAALG.spad" 590527 590537 601348 601401) (-375 "FINAALG.spad" 579660 579672 590483 590488) (-374 "FILE.spad" 579243 579253 579650 579655) (-373 "FILECAT.spad" 577769 577786 579233 579238) (-372 "FIELD.spad" 577175 577183 577671 577764) (-371 "FIELD.spad" 576667 576677 577165 577170) (-370 "FGROUP.spad" 575314 575324 576647 576662) (-369 "FGLMICPK.spad" 574101 574116 575304 575309) (-368 "FFX.spad" 573476 573491 573817 573910) (-367 "FFSLPE.spad" 572979 573000 573466 573471) (-366 "FFPOLY.spad" 564241 564252 572969 572974) (-365 "FFPOLY2.spad" 563301 563318 564231 564236) (-364 "FFP.spad" 562698 562718 563017 563110) (-363 "FF.spad" 562146 562162 562379 562472) (-362 "FFNBX.spad" 560658 560678 561862 561955) (-361 "FFNBP.spad" 559171 559188 560374 560467) (-360 "FFNB.spad" 557636 557657 558852 558945) (-359 "FFINTBAS.spad" 555150 555169 557626 557631) (-358 "FFIELDC.spad" 552727 552735 555052 555145) (-357 "FFIELDC.spad" 550390 550400 552717 552722) (-356 "FFHOM.spad" 549138 549155 550380 550385) (-355 "FFF.spad" 546573 546584 549128 549133) (-354 "FFCGX.spad" 545420 545440 546289 546382) (-353 "FFCGP.spad" 544309 544329 545136 545229) (-352 "FFCG.spad" 543101 543122 543990 544083) (-351 "FFCAT.spad" 536274 536296 542940 543096) (-350 "FFCAT.spad" 529526 529550 536194 536199) (-349 "FFCAT2.spad" 529273 529313 529516 529521) (-348 "FEXPR.spad" 520990 521036 529029 529068) (-347 "FEVALAB.spad" 520698 520708 520980 520985) (-346 "FEVALAB.spad" 520191 520203 520475 520480) (-345 "FDIV.spad" 519633 519657 520181 520186) (-344 "FDIVCAT.spad" 517697 517721 519623 519628) (-343 "FDIVCAT.spad" 515759 515785 517687 517692) (-342 "FDIV2.spad" 515415 515455 515749 515754) (-341 "FCTRDATA.spad" 514423 514431 515405 515410) (-340 "FCPAK1.spad" 512990 512998 514413 514418) (-339 "FCOMP.spad" 512369 512379 512980 512985) (-338 "FC.spad" 502376 502384 512359 512364) (-337 "FAXF.spad" 495347 495361 502278 502371) (-336 "FAXF.spad" 488370 488386 495303 495308) (-335 "FARRAY.spad" 486520 486530 487553 487580) (-334 "FAMR.spad" 484656 484668 486418 486515) (-333 "FAMR.spad" 482776 482790 484540 484545) (-332 "FAMONOID.spad" 482444 482454 482730 482735) (-331 "FAMONC.spad" 480740 480752 482434 482439) (-330 "FAGROUP.spad" 480364 480374 480636 480663) (-329 "FACUTIL.spad" 478568 478585 480354 480359) (-328 "FACTFUNC.spad" 477762 477772 478558 478563) (-327 "EXPUPXS.spad" 474595 474618 475894 476043) (-326 "EXPRTUBE.spad" 471883 471891 474585 474590) (-325 "EXPRODE.spad" 469043 469059 471873 471878) (-324 "EXPR.spad" 464218 464228 464932 465227) (-323 "EXPR2UPS.spad" 460340 460353 464208 464213) (-322 "EXPR2.spad" 460045 460057 460330 460335) (-321 "EXPEXPAN.spad" 456985 457010 457617 457710) (-320 "EXIT.spad" 456656 456664 456975 456980) (-319 "EXITAST.spad" 456392 456400 456646 456651) (-318 "EVALCYC.spad" 455852 455866 456382 456387) (-317 "EVALAB.spad" 455424 455434 455842 455847) (-316 "EVALAB.spad" 454994 455006 455414 455419) (-315 "EUCDOM.spad" 452568 452576 454920 454989) (-314 "EUCDOM.spad" 450204 450214 452558 452563) (-313 "ESTOOLS.spad" 442050 442058 450194 450199) (-312 "ESTOOLS2.spad" 441653 441667 442040 442045) (-311 "ESTOOLS1.spad" 441338 441349 441643 441648) (-310 "ES.spad" 434153 434161 441328 441333) (-309 "ES.spad" 426874 426884 434051 434056) (-308 "ESCONT.spad" 423667 423675 426864 426869) (-307 "ESCONT1.spad" 423416 423428 423657 423662) (-306 "ES2.spad" 422921 422937 423406 423411) (-305 "ES1.spad" 422491 422507 422911 422916) (-304 "ERROR.spad" 419818 419826 422481 422486) (-303 "EQTBL.spad" 418290 418312 418499 418526) (-302 "EQ.spad" 413095 413105 415882 415994) (-301 "EQ2.spad" 412813 412825 413085 413090) (-300 "EP.spad" 409139 409149 412803 412808) (-299 "ENV.spad" 407817 407825 409129 409134) (-298 "ENTIRER.spad" 407485 407493 407761 407812) (-297 "EMR.spad" 406773 406814 407411 407480) (-296 "ELTAGG.spad" 405027 405046 406763 406768) (-295 "ELTAGG.spad" 403245 403266 404983 404988) (-294 "ELTAB.spad" 402720 402733 403235 403240) (-293 "ELFUTS.spad" 402107 402126 402710 402715) (-292 "ELEMFUN.spad" 401796 401804 402097 402102) (-291 "ELEMFUN.spad" 401483 401493 401786 401791) (-290 "ELAGG.spad" 399454 399464 401463 401478) (-289 "ELAGG.spad" 397362 397374 399373 399378) (-288 "ELABOR.spad" 396708 396716 397352 397357) (-287 "ELABEXPR.spad" 395640 395648 396698 396703) (-286 "EFUPXS.spad" 392416 392446 395596 395601) (-285 "EFULS.spad" 389252 389275 392372 392377) (-284 "EFSTRUC.spad" 387267 387283 389242 389247) (-283 "EF.spad" 382043 382059 387257 387262) (-282 "EAB.spad" 380319 380327 382033 382038) (-281 "E04UCFA.spad" 379855 379863 380309 380314) (-280 "E04NAFA.spad" 379432 379440 379845 379850) (-279 "E04MBFA.spad" 379012 379020 379422 379427) (-278 "E04JAFA.spad" 378548 378556 379002 379007) (-277 "E04GCFA.spad" 378084 378092 378538 378543) (-276 "E04FDFA.spad" 377620 377628 378074 378079) (-275 "E04DGFA.spad" 377156 377164 377610 377615) (-274 "E04AGNT.spad" 373006 373014 377146 377151) (-273 "DVARCAT.spad" 369695 369705 372996 373001) (-272 "DVARCAT.spad" 366382 366394 369685 369690) (-271 "DSMP.spad" 363849 363863 364154 364281) (-270 "DROPT.spad" 357808 357816 363839 363844) (-269 "DROPT1.spad" 357473 357483 357798 357803) (-268 "DROPT0.spad" 352330 352338 357463 357468) (-267 "DRAWPT.spad" 350503 350511 352320 352325) (-266 "DRAW.spad" 343379 343392 350493 350498) (-265 "DRAWHACK.spad" 342687 342697 343369 343374) (-264 "DRAWCX.spad" 340157 340165 342677 342682) (-263 "DRAWCURV.spad" 339704 339719 340147 340152) (-262 "DRAWCFUN.spad" 329236 329244 339694 339699) (-261 "DQAGG.spad" 327414 327424 329204 329231) (-260 "DPOLCAT.spad" 322763 322779 327282 327409) (-259 "DPOLCAT.spad" 318198 318216 322719 322724) (-258 "DPMO.spad" 310671 310687 310809 311054) (-257 "DPMM.spad" 303157 303175 303282 303527) (-256 "DOMTMPLT.spad" 302928 302936 303147 303152) (-255 "DOMCTOR.spad" 302683 302691 302918 302923) (-254 "DOMAIN.spad" 301770 301778 302673 302678) (-253 "DMP.spad" 299030 299045 299600 299727) (-252 "DLP.spad" 298382 298392 299020 299025) (-251 "DLIST.spad" 296961 296971 297565 297592) (-250 "DLAGG.spad" 295378 295388 296951 296956) (-249 "DIVRING.spad" 294920 294928 295322 295373) (-248 "DIVRING.spad" 294506 294516 294910 294915) (-247 "DISPLAY.spad" 292696 292704 294496 294501) (-246 "DIRPROD.spad" 282199 282215 282839 282970) (-245 "DIRPROD2.spad" 281017 281035 282189 282194) (-244 "DIRPCAT.spad" 279961 279977 280881 281012) (-243 "DIRPCAT.spad" 278634 278652 279556 279561) (-242 "DIOSP.spad" 277459 277467 278624 278629) (-241 "DIOPS.spad" 276455 276465 277439 277454) (-240 "DIOPS.spad" 275425 275437 276411 276416) (-239 "DIFRING.spad" 275031 275039 275405 275420) (-238 "DIFRING.spad" 274645 274655 275021 275026) (-237 "DIFFSPC.spad" 274224 274232 274635 274640) (-236 "DIFFSPC.spad" 273801 273811 274214 274219) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 2b56a4db..094dd195 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1125 +1,1125 @@
-(193833 . 3485510923)
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
-((((-572)) . T) (($) -2813 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-1049 (-415 (-572))))) ((|#1|) . T))
+(193833 . 3485633356)
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
+((((-574)) . T) (($) -2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1051 (-417 (-574))))) ((|#1|) . T))
(((|#2| |#2|) . T))
-((((-572)) . T))
-((($ $) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2| |#2|) . T) ((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))))
+((((-574)) . T))
+((($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))))
((($) . T))
(((|#1|) . T))
-((($) . T) (((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
(((|#2|) . T))
-((($) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
-(|has| |#1| (-918))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((($) . T) (((-415 (-572))) . T))
+((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
+(|has| |#1| (-920))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((($) . T) (((-417 (-574))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-145)) . T))
-((((-544)) . T) (((-1170)) . T) (((-227)) . T) (((-386)) . T) (((-901 (-386))) . T))
-(((|#1|) . T))
-((((-227)) . T) (((-870)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-856)))
-((($ $) . T) ((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1| |#1|) . T))
-(-2813 (|has| |#1| (-828)) (|has| |#1| (-858)))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
-((((-870)) . T))
-((((-870)) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(|has| |#1| (-856))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-322 |#1|)) . T) (((-572)) . T) (($) . T))
+((((-546)) . T) (((-1172)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T))
+(((|#1|) . T))
+((((-227)) . T) (((-872)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-858)))
+((($ $) . T) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T))
+(-2818 (|has| |#1| (-830)) (|has| |#1| (-860)))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T))
+((((-872)) . T))
+((((-872)) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(|has| |#1| (-858))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-324 |#1|)) . T) (((-574)) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
-((((-572)) . T) (((-878 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((($) . T) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-((((-415 (-572))) . T) (((-707)) . T) (($) . T))
-((((-870)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
+((((-574)) . T) (((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+((((-417 (-574))) . T) (((-709)) . T) (($) . T))
+((((-872)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
(((|#4|) . T))
-((((-415 (-572))) . T) (((-707)) . T) (($) . T))
-((((-870)) . T))
-((((-870)) |has| (-1105 |#1|) (-1111)))
-(-2813 (|has| |#1| (-237)) (|has| |#1| (-292 $ $)) (|has| |#1| (-292 |#1| |#1|)))
-((((-870)) . T) (((-1193)) . T))
+((((-417 (-574))) . T) (((-709)) . T) (($) . T))
+((((-872)) . T))
+((((-872)) |has| (-1107 |#1|) (-1113)))
+(-2818 (|has| |#1| (-239)) (|has| |#1| (-294 $ $)) (|has| |#1| (-294 |#1| |#1|)))
+((((-872)) . T) (((-1195)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1193)) . T))
-(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(((|#2| (-490 (-2860 |#1|) (-779))) . T))
-(((|#1| (-539 (-1188))) . T))
-(((#0=(-878 |#1|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
-((((-1170)) . T) (((-967 (-130))) . T) (((-870)) . T))
-((((-870)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(|has| |#4| (-375))
-(|has| |#3| (-375))
-(((|#1|) . T))
-((((-1188)) . T))
-((((-514)) . T))
-((((-878 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
+((((-1195)) . T))
+(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(((|#2| (-492 (-2863 |#1|) (-781))) . T))
+(((|#1| (-541 (-1190))) . T))
+(((#0=(-880 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
+((((-1172)) . T) (((-969 (-130))) . T) (((-872)) . T))
+((((-872)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(|has| |#4| (-377))
+(|has| |#3| (-377))
+(((|#1|) . T))
+((((-1190)) . T))
+((((-516)) . T))
+((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-564))
-((((-572)) . T) (((-415 (-572))) -2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))) ((|#2|) . T) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-872 |#1|)) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-((((-2 (|:| -2571 |#1|) (|:| -1679 |#2|))) . T))
-((($) . T))
-((((-572)) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) ((|#1|) . T) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) (((-1188)) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-1188)) . T))
-((((-572)) . T) (($) . T))
-((((-589 |#1|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+(|has| |#1| (-566))
+((((-574)) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))) ((|#2|) . T) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-874 |#1|)) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+((((-2 (|:| -2576 |#1|) (|:| -2524 |#2|))) . T))
+((($) . T))
+((((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) ((|#1|) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) (((-1190)) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-1190)) . T))
+((((-574)) . T) (($) . T))
+((((-591 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) . T) (((-572)) . T) (($) . T))
-((((-870)) . T))
-((((-870)) . T))
-(((|#1|) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-870)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) . T) (((-574)) . T) (($) . T))
+((((-872)) . T))
+((((-872)) . T))
+(((|#1|) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-872)) . T))
(((|#1| |#2|) . T))
-((((-870)) . T))
+((((-872)) . T))
(((|#1|) . T))
-(|has| |#1| (-1111))
-(((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))) ((|#2| |#2|) . T) (($ $) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+(|has| |#1| (-1113))
+(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
(((|#1|) . T))
-((((-117 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-((((-117 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) . T) (($) . T) (((-572)) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
-(((|#2|) . T) (((-572)) . T) ((|#6|) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+((((-117 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) . T) (($) . T) (((-574)) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T))
+(((|#2|) . T) (((-574)) . T) ((|#6|) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
((($) . T))
(((|#2|) . T))
((($) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
-((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
+((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
((($ $) . T))
((($) . T))
-((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) . T))
+((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-375))
+(|has| |#1| (-377))
(((|#1|) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
(((|#1|) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-572)) . T))
-((((-870)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-574)) . T))
+((((-872)) . T))
(((|#1| |#2|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
-((($) |has| |#1| (-237)))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(|has| |#1| (-564))
-(((|#1|) . T) (((-572)) . T) (($) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-856)))
-((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(|has| |#1| (-1111))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(|has| |#1| (-1111))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(|has| |#1| (-856))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))
+((($) |has| |#1| (-239)))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(|has| |#1| (-566))
+(((|#1|) . T) (((-574)) . T) (($) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-858)))
+((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(|has| |#1| (-1113))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(|has| |#1| (-1113))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(|has| |#1| (-858))
(((|#1| |#1|) . T))
-((($) . T) (((-415 (-572))) . T))
+((($) . T) (((-417 (-574))) . T))
(((|#1|) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-572) (-130)) . T))
-((((-870)) . T))
-((($) . T) (((-415 (-572))) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-574) (-130)) . T))
+((((-872)) . T))
+((($) . T) (((-417 (-574))) . T))
((((-130)) . T))
-(-2813 (|has| |#4| (-801)) (|has| |#4| (-856)))
-(-2813 (|has| |#4| (-801)) (|has| |#4| (-856)))
-(-2813 (|has| |#3| (-801)) (|has| |#3| (-856)))
-(-2813 (|has| |#3| (-801)) (|has| |#3| (-856)))
+(-2818 (|has| |#4| (-803)) (|has| |#4| (-858)))
+(-2818 (|has| |#4| (-803)) (|has| |#4| (-858)))
+(-2818 (|has| |#3| (-803)) (|has| |#3| (-858)))
+(-2818 (|has| |#3| (-803)) (|has| |#3| (-858)))
(((|#1| |#2|) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-((((-1193)) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+((((-1195)) . T))
(((|#1| |#2|) . T))
-(((|#2| |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-315 |#2|))) (((-1188) |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-522 (-1188) |#2|))))
-(|has| |#1| (-1111))
-(|has| |#1| (-1111))
-((((-572)) . T) (((-415 (-572))) . T))
-(((|#1| (-1188) (-1099 (-1188)) (-539 (-1099 (-1188)))) . T))
-((((-572) |#1|) . T))
-((((-572)) . T))
-((((-572)) . T))
-((((-919 |#1|)) . T))
-(((|#1| (-539 |#2|)) . T))
-((((-572)) . T))
-((((-572)) . T))
-(((|#1|) . T))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(((|#1| (-779)) . T))
-(|has| |#2| (-801))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-(|has| |#2| (-856))
+(((|#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) (((-1190) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1190) |#2|))))
+(|has| |#1| (-1113))
+(|has| |#1| (-1113))
+((((-574)) . T) (((-417 (-574))) . T))
+(((|#1| (-1190) (-1101 (-1190)) (-541 (-1101 (-1190)))) . T))
+((((-574) |#1|) . T))
+((((-574)) . T))
+((((-574)) . T))
+((((-921 |#1|)) . T))
+(((|#1| (-541 |#2|)) . T))
+((((-574)) . T))
+((((-574)) . T))
+(((|#1|) . T))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(((|#1| (-781)) . T))
+(|has| |#2| (-803))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+(|has| |#2| (-858))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1170) |#1|) . T))
-((((-1246 (-572)) $) . T) (((-572) (-130)) . T))
+((((-1172) |#1|) . T))
+((((-1248 (-574)) $) . T) (((-574) (-130)) . T))
(((|#1|) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-(((|#3| (-779)) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+(((|#3| (-781)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((($) . T) (((-415 (-572))) . T))
+((($) . T) (((-417 (-574))) . T))
((($) . T))
((($) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
-((((-415 (-572))) . T) (($) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
+((((-417 (-574))) . T) (($) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-1111))
-((((-415 (-572))) . T) (((-572)) . T))
-((((-572)) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-((((-572)) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) ((|#1|) . T) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#2|) . T))
-((((-1188) |#2|) |has| |#2| (-522 (-1188) |#2|)) ((|#2| |#2|) |has| |#2| (-315 |#2|)))
-((((-415 (-572))) . T) (((-572)) . T))
-((((-572)) . T) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) (((-1093)) . T) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
+(|has| |#1| (-1113))
+((((-417 (-574))) . T) (((-574)) . T))
+((((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+((((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) ((|#1|) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#2|) . T))
+((((-1190) |#2|) |has| |#2| (-524 (-1190) |#2|)) ((|#2| |#2|) |has| |#2| (-317 |#2|)))
+((((-417 (-574))) . T) (((-574)) . T))
+((((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) (((-1095)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))
(((|#1|) . T) (($) . T))
-((((-572)) . T))
-((((-572)) . T))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
-((((-572)) . T))
-((((-572)) . T))
-((((-415 (-572))) . T) (($) . T))
-(((#0=(-707) (-1184 #0#)) . T))
-((((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T))
-(|has| |#2| (-370))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
-((($) |has| (-415 |#2|) (-237)))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+((((-574)) . T))
+((((-574)) . T))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
+((((-574)) . T))
+((((-574)) . T))
+((((-417 (-574))) . T) (($) . T))
+(((#0=(-709) (-1186 #0#)) . T))
+((((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T))
+(|has| |#2| (-372))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
+((($) |has| (-417 |#2|) (-239)))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-870)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-1170) |#1|) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+((((-872)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-1172) |#1|) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
(((|#3| |#3|) . T))
-((((-870)) . T))
-((((-870)) . T))
+((((-872)) . T))
+((((-872)) . T))
(((|#1| |#1|) . T))
-(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) -2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (((-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-572) |#1|) . T))
-((((-870)) . T))
-((((-171 (-227))) |has| |#1| (-1033)) (((-171 (-386))) |has| |#1| (-1033)) (((-544)) |has| |#1| (-622 (-544))) (((-1184 |#1|)) . T) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-856)))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-856)))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#2|) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-(|has| |#1| (-370))
-((((-870)) . T))
+(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-574) |#1|) . T))
+((((-872)) . T))
+((((-171 (-227))) |has| |#1| (-1035)) (((-171 (-388))) |has| |#1| (-1035)) (((-546)) |has| |#1| (-624 (-546))) (((-1186 |#1|)) . T) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-858)))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-858)))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+(|has| |#1| (-372))
+((((-872)) . T))
((($) . T))
((($) . T))
((((-130)) . T))
-((($) |has| |#2| (-237)))
-(-12 (|has| |#4| (-237)) (|has| |#4| (-1060)))
-(-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))
-(-2813 (|has| |#4| (-174)) (|has| |#4| (-856)) (|has| |#4| (-1060)))
-(-2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-((((-870)) . T) (((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-870)) . T))
-(((|#1|) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
-(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
-(((|#2|) . T) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
-(|has| |#1| (-564))
-((((-572)) -2813 (|has| |#4| (-174)) (|has| |#4| (-856)) (-12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111))) (|has| |#4| (-1060))) ((|#4|) -2813 (|has| |#4| (-174)) (|has| |#4| (-1111))) (((-415 (-572))) -12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))
-((((-572)) -2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (|has| |#3| (-1060))) ((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-1111))) (((-415 (-572))) -12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(|has| |#1| (-564))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(((|#1|) . T))
-(|has| |#1| (-564))
-(|has| |#1| (-564))
-(|has| |#1| (-564))
-((((-707)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-1013)) (|has| |#1| (-1214)))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-415 (-572))) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
-(-12 (|has| |#1| (-1111)) (|has| |#2| (-1111)))
-((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
-(((|#4| |#4|) -2813 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))) (($ $) |has| |#4| (-174)))
-(((|#3| |#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($ $) |has| |#3| (-174)))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-544)) |has| |#2| (-622 (-544))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))))
-((((-870)) . T))
+((($) |has| |#2| (-239)))
+(-12 (|has| |#4| (-239)) (|has| |#4| (-1062)))
+(-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))
+(-2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1062)))
+(-2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+((((-872)) . T) (((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-872)) . T))
+(((|#1|) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T))
+(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
+(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
+(|has| |#1| (-566))
+((((-574)) -2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (-12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113))) (|has| |#4| (-1062))) ((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-1113))) (((-417 (-574))) -12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113))))
+((((-574)) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-1113))) (((-417 (-574))) -12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(|has| |#1| (-566))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(((|#1|) . T))
+(|has| |#1| (-566))
+(|has| |#1| (-566))
+(|has| |#1| (-566))
+((((-709)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-1015)) (|has| |#1| (-1216)))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-417 (-574))) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+(-12 (|has| |#1| (-1113)) (|has| |#2| (-1113)))
+((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
+(((|#4| |#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062))) (($ $) |has| |#4| (-174)))
+(((|#3| |#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($ $) |has| |#3| (-174)))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))))
+((((-872)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -2571 |#1|) (|:| -1679 |#2|))) . T) (((-870)) . T))
-((((-544)) |has| |#1| (-622 (-544))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))))
-(((|#4|) -2813 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))) (($) |has| |#4| (-174)))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($) |has| |#3| (-174)))
-((((-2 (|:| -2571 |#1|) (|:| -1679 |#2|))) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-544)) . T) (((-572)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
-((((-652 |#1|)) . T))
-(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-((($) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-((((-415 $) (-415 $)) |has| |#2| (-564)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-918))
-((((-1170) (-52)) . T))
-((((-572)) |has| #0=(-415 |#2|) (-647 (-572))) ((#0#) . T))
-((((-544)) . T) (((-227)) . T) (((-386)) . T) (((-901 (-386))) . T))
-((((-870)) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
+((((-2 (|:| -2576 |#1|) (|:| -2524 |#2|))) . T) (((-872)) . T))
+((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))))
+(((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062))) (($) |has| |#4| (-174)))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($) |has| |#3| (-174)))
+((((-2 (|:| -2576 |#1|) (|:| -2524 |#2|))) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
+((((-654 |#1|)) . T))
+(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((((-417 $) (-417 $)) |has| |#2| (-566)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-920))
+((((-1172) (-52)) . T))
+((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T))
+((((-546)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T))
+((((-872)) . T))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))
(((|#1|) |has| |#1| (-174)))
-(((|#1| $) |has| |#1| (-292 |#1| |#1|)))
-((((-870)) . T))
-((((-870)) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-(|has| |#1| (-858))
-(((|#2|) . T) (((-572)) . T) (((-827 |#1|)) . T))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-(|has| |#1| (-1111))
-((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-870)) . T) (((-1193)) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((((-1193)) . T))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(|has| |#1| (-237))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1| (-539 (-826 (-1188)))) . T))
-(((|#1| (-982)) . T))
-((((-572)) . T) ((|#2|) . T))
-(((#0=(-878 |#1|) $) |has| #0# (-292 #0# #0#)))
-((((-572) |#4|) . T))
-((((-572) |#3|) . T))
+(((|#1| $) |has| |#1| (-294 |#1| |#1|)))
+((((-872)) . T))
+((((-872)) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+(|has| |#1| (-860))
+(((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+(|has| |#1| (-1113))
+((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-872)) . T) (((-1195)) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((((-1195)) . T))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(|has| |#1| (-239))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1| (-541 (-828 (-1190)))) . T))
+(((|#1| (-984)) . T))
+((((-574)) . T) ((|#2|) . T))
+(((#0=(-880 |#1|) $) |has| #0# (-294 #0# #0#)))
+((((-574) |#4|) . T))
+((((-574) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1163))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
-(|has| (-1265 |#1| |#2| |#3| |#4|) (-146))
-(|has| (-1265 |#1| |#2| |#3| |#4|) (-148))
+(|has| |#1| (-1165))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
+(|has| (-1267 |#1| |#2| |#3| |#4|) (-146))
+(|has| (-1267 |#1| |#2| |#3| |#4|) (-148))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-1188)) -12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060))))
+((((-1190)) -12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062))))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-1111))
-((((-1170) |#1|) . T))
+(|has| |#1| (-1113))
+((((-1172) |#1|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-((((-1136 |#1| (-1188))) . T) (((-572)) . T) (((-826 (-1188))) . T) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-1188)) . T))
-(|has| |#2| (-375))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((((-1138 |#1| (-1190))) . T) (((-574)) . T) (((-828 (-1190))) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-1190)) . T))
+(|has| |#2| (-377))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1060)))
-((((-870)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
+(((|#2|) |has| |#2| (-1062)))
+((((-872)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
(((|#1|) . T))
-((((-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((#0=(-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) #0#) |has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))))
-((((-870)) . T))
-((((-572) |#1|) . T))
-((((-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#2| (-622 (-544)))) (((-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386))))) (((-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572))))))
+((((-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((#0=(-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) #0#) |has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))))
+((((-872)) . T))
+((((-574) |#1|) . T))
+((((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574))))))
((($) . T))
-((((-870)) . T))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) . T))
+((((-872)) . T))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) . T))
-((((-870)) . T))
-(|has| (-1264 |#2| |#3| |#4|) (-148))
-(|has| (-1264 |#2| |#3| |#4|) (-146))
-(((|#2|) |has| |#2| (-1111)) (((-572)) -12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) . T))
+((((-872)) . T))
+(|has| (-1266 |#2| |#3| |#4|) (-148))
+(|has| (-1266 |#2| |#3| |#4|) (-146))
+(((|#2|) |has| |#2| (-1113)) (((-574)) -12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))))
(((|#1|) . T))
-(|has| |#1| (-1111))
-((((-870)) . T))
+(|has| |#1| (-1113))
+((((-872)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))
(((|#1|) . T))
-((((-572) |#1|) . T))
+((((-574) |#1|) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-856)))
-((((-870)) |has| |#1| (-1111)))
-((($) |has| |#1| (-237)))
-(-2813 (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)) (|has| |#1| (-1123)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-((((-919 |#1|)) . T))
-((((-415 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-572) |#1|)))
-((((-415 (-572))) . T) (($) . T))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-858)))
+((((-872)) |has| |#1| (-1113)))
+((($) |has| |#1| (-239)))
+(-2818 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)) (|has| |#1| (-1125)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+((((-921 |#1|)) . T))
+((((-417 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-574) |#1|)))
+((((-417 (-574))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-(|has| |#1| (-370))
-(-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))
-(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
-(|has| |#1| (-370))
-(|has| |#1| (-15 * (|#1| (-779) |#1|)))
-((((-572)) . T))
-((((-572)) . T))
-((((-1153 |#2| (-415 (-961 |#1|)))) . T) (((-415 (-961 |#1|))) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+(|has| |#1| (-372))
+(-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))
+(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
+(|has| |#1| (-372))
+(|has| |#1| (-15 * (|#1| (-781) |#1|)))
+((((-574)) . T))
+((((-574)) . T))
+((((-1155 |#2| (-417 (-963 |#1|)))) . T) (((-417 (-963 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
-(((|#1|) . T))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
-((((-870)) . T))
-(((|#2|) . T))
-(-2813 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-((((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-((($) |has| |#1| (-564)) (((-572)) . T))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-((((-1271 |#1| |#2| |#3|)) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) ((|#1|) |has| |#1| (-174)))
-((((-1275 |#2|)) . T) (((-1271 |#1| |#2| |#3|)) . T) (((-1243 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T))
-(((|#1|) . T))
-((((-1188)) -12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060))))
-(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
-(-2813 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564)))
-(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))))
-((($ $) |has| |#1| (-564)) ((|#1| |#1|) . T))
-(((#0=(-707) (-1184 #0#)) . T))
-((((-589 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-870)) . T) (((-1279 |#4|)) . T))
-((((-870)) . T) (((-1279 |#3|)) . T))
-((((-589 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((($) . T) (((-415 (-572))) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))))
-((($) |has| |#1| (-564)) ((|#1|) . T))
-((((-870)) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-((($) . T))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((#1=(-1271 |#1| |#2| |#3|) #1#) |has| |#1| (-370)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) . T))
-(((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
-(((|#3|) |has| |#3| (-1060)))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-(|has| (-1105 |#1|) (-1111))
-(((|#2| (-827 |#1|)) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
-((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
+(((|#1|) . T))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
+((((-872)) . T))
+(((|#2|) . T))
+(-2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+((($) |has| |#1| (-566)) (((-574)) . T))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+((((-1273 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174)))
+((((-1277 |#2|)) . T) (((-1273 |#1| |#2| |#3|)) . T) (((-1245 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T))
+(((|#1|) . T))
+((((-1190)) -12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062))))
+(((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
+(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566)))
+(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))))
+((($ $) |has| |#1| (-566)) ((|#1| |#1|) . T))
+(((#0=(-709) (-1186 #0#)) . T))
+((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-872)) . T) (((-1281 |#4|)) . T))
+((((-872)) . T) (((-1281 |#3|)) . T))
+((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((($) . T) (((-417 (-574))) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))))
+((($) |has| |#1| (-566)) ((|#1|) . T))
+((((-872)) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((($) . T))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1273 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T))
+(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+(((|#3|) |has| |#3| (-1062)))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+(|has| (-1107 |#1|) (-1113))
+(((|#2| (-829 |#1|)) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T))
+((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
(((|#2|) . T) ((|#6|) . T))
-(|has| |#1| (-370))
-((((-572)) . T) ((|#2|) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+(|has| |#1| (-372))
+((((-574)) . T) ((|#2|) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
(((|#2|) . T) ((|#6|) . T))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-415 $) (-415 $)) |has| |#1| (-564)) (($ $) . T) ((|#1| |#1|) . T))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((#0=(-1093) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-870)) . T))
-((((-919 |#1|)) . T))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((#0=(-1095) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-872)) . T))
+((((-921 |#1|)) . T))
((((-145)) . T))
((((-145)) . T))
-((((-244 |#1| |#2|) |#2|) . T))
-((((-870)) . T))
-(((|#3|) |has| |#3| (-1111)) (((-572)) -12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (((-415 (-572))) -12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
+((((-246 |#1| |#2|) |#2|) . T))
+((((-872)) . T))
+(((|#3|) |has| |#3| (-1113)) (((-574)) -12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (((-417 (-574))) -12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
(((|#1|) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-544)) |has| |#1| (-622 (-544))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-546)) |has| |#1| (-624 (-546))))
(((|#1|) |has| |#1| (-174)))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) . T))
-(|has| |#1| (-370))
-((((-1193)) . T))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-856)))
-((($) . T))
-((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((|#1| |#1|) |has| |#1| (-315 |#1|)))
-(|has| |#2| (-828))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-856))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-((((-870)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-544)) |has| |#1| (-622 (-544))))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) . T))
+(|has| |#1| (-372))
+((((-1195)) . T))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-858)))
+((($) . T))
+((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|)))
+(|has| |#2| (-830))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-858))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+((((-872)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-546)) |has| |#1| (-624 (-546))))
(((|#1| |#2|) . T))
-((((-1188)) -12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188)))))
-((((-1170) |#1|) . T))
-(((|#1| |#2| |#3| (-539 |#3|)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-((((-870)) . T))
-((((-415 (-572))) . T))
-(((|#1|) . T))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-((((-415 (-572))) . T))
-(|has| |#1| (-375))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((((-572)) . T))
-((((-572)) . T))
-(((|#1|) . T) (((-572)) . T))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-((((-870)) . T))
-((((-870)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-(-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))
-((((-1188) #0=(-878 |#1|)) |has| #0# (-522 (-1188) #0#)) ((#0# #0#) |has| #0# (-315 #0#)))
-(((|#1|) . T))
-((((-572) |#4|) . T))
-((((-572) |#3|) . T))
-(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-((((-1265 |#1| |#2| |#3| |#4|)) . T))
-((((-415 (-572))) . T) (((-572)) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-1190)) -12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190)))))
+((((-1172) |#1|) . T))
+(((|#1| |#2| |#3| (-541 |#3|)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+((((-872)) . T))
+((((-417 (-574))) . T))
+(((|#1|) . T))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+((((-417 (-574))) . T))
+(|has| |#1| (-377))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((((-574)) . T))
+((((-574)) . T))
+(((|#1|) . T) (((-574)) . T))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+((((-872)) . T))
+((((-872)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+(-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))
+((((-1190) #0=(-880 |#1|)) |has| #0# (-524 (-1190) #0#)) ((#0# #0#) |has| #0# (-317 #0#)))
+(((|#1|) . T))
+((((-574) |#4|) . T))
+((((-574) |#3|) . T))
+(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+((((-1267 |#1| |#2| |#3| |#4|)) . T))
+((((-417 (-574))) . T) (((-574)) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) . T))
-(((|#1|) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-((((-572)) . T))
-((((-572)) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-((((-572)) -2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060))) ((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-415 (-572))) . T) (($) . T))
-(((|#1|) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-((($) . T) (((-415 (-572))) . T))
-(((#0=(-572) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-(((|#1|) |has| |#1| (-564)))
-((((-572) |#4|) . T))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-((((-572) |#3|) . T))
-((((-870)) . T))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))))
-((((-870)) . T))
-(-2813 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))
-((((-572) |#1|) . T))
-(((|#1|) . T))
-((($ $) . T) ((#0=(-872 |#1|) $) . T) ((#0# |#2|) . T))
-((($) . T))
-((($ $) . T) ((#0=(-1188) $) . T) ((#0# |#1|) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) . T))
+(((|#1|) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((((-574)) . T))
+((((-574)) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-417 (-574))) . T) (($) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+((($) . T) (((-417 (-574))) . T))
+(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+(((|#1|) |has| |#1| (-566)))
+((((-574) |#4|) . T))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+((((-574) |#3|) . T))
+((((-872)) . T))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))))
+((((-872)) . T))
+(-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))
+((((-574) |#1|) . T))
+(((|#1|) . T))
+((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T))
+((($) . T))
+((($ $) . T) ((#0=(-1190) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -2813 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) |has| |#2| (-174)) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
-(((|#2| |#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($ $) |has| |#2| (-174)))
+((($) -2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
+(((|#2| |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($ $) |has| |#2| (-174)))
((((-145)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-375)) (|has| |#2| (-375)))
-((((-870)) . T))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
+(-12 (|has| |#1| (-377)) (|has| |#2| (-377)))
+((((-872)) . T))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174)))
(((|#1|) . T))
-((((-870)) . T))
-(|has| |#1| (-1111))
+((((-872)) . T))
+(|has| |#1| (-1113))
(|has| $ (-148))
-((((-1193)) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2|) |has| |#1| (-370)) (((-572)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) . T))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
-((($) -2813 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
-(|has| |#1| (-370))
-(-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))
-(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
-(|has| |#1| (-370))
-(|has| |#1| (-15 * (|#1| (-779) |#1|)))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-((((-870)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-(((|#2| (-539 (-872 |#1|))) . T))
-((((-870)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((((-589 |#1|)) . T))
-((($) . T))
-((((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+((((-1195)) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
+((($) -2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190)))))
+(|has| |#1| (-372))
+(-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))
+(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
+(|has| |#1| (-372))
+(|has| |#1| (-15 * (|#1| (-781) |#1|)))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+((((-872)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+(((|#2| (-541 (-874 |#1|))) . T))
+((((-872)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((((-591 |#1|)) . T))
+((($) . T))
+((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
(((|#1|) . T) (($) . T))
-((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
-((((-1186 |#1| |#2| |#3|)) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) ((|#1|) |has| |#1| (-174)))
-((((-1275 |#2|)) . T) (((-1186 |#1| |#2| |#3|)) . T) (((-1179 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
+((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
+((((-1188 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174)))
+((((-1277 |#2|)) . T) (((-1188 |#1| |#2| |#3|)) . T) (((-1181 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
(((|#4|) . T))
(((|#3|) . T))
-((((-878 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T))
-((((-1188)) -12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060))))
-(((|#1|) . T))
-((($) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-572)) . T) (((-415 (-572))) -2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))) ((|#2|) . T) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-872 |#1|)) . T))
-((((-572) |#2|) . T))
-((((-870)) . T))
-((($) . T) (((-572)) . T) ((|#2|) . T) (((-415 (-572))) . T))
-((((-870)) . T))
-((((-870)) . T))
+((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T))
+((((-1190)) -12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062))))
+(((|#1|) . T))
+((($) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-574)) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))) ((|#2|) . T) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-874 |#1|)) . T))
+((((-574) |#2|) . T))
+((((-872)) . T))
+((($) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) . T))
+((((-872)) . T))
+((((-872)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((#1=(-1186 |#1| |#2| |#3|) #1#) |has| |#1| (-370)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) . T))
-(((|#2|) |has| |#2| (-1060)))
-(|has| |#1| (-1111))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) . T))
-(((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1188 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) . T))
+(((|#2|) |has| |#2| (-1062)))
+(|has| |#1| (-1113))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T))
+(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
(((|#1|) |has| |#1| (-174)) (($) . T))
(((|#1|) . T))
-(((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))) ((|#2| |#2|) . T) (($ $) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((((-870)) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((((-872)) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-(((#0=(-1093) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((($) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1111)) (((-572)) -12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
-(((|#2|) |has| |#1| (-370)))
-((((-572) |#1|) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
-((((-870)) . T))
-((((-415 |#2|) |#3|) . T))
-(((|#1| (-415 (-572))) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) . T) (($) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-870)) . T) (((-1193)) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+(((#0=(-1095) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((($) . T))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(((|#1|) . T))
+(((|#2|) |has| |#2| (-1113)) (((-574)) -12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))))
+(((|#2|) |has| |#1| (-372)))
+((((-574) |#1|) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
+((((-872)) . T))
+((((-417 |#2|) |#3|) . T))
+(((|#1| (-417 (-574))) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) . T) (($) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-872)) . T) (((-1195)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-1193)) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) . T) (($) . T))
-(((|#2| |#3| (-872 |#1|)) . T))
-((((-1188)) |has| |#2| (-909 (-1188))))
-(((|#1|) . T))
-(((|#1| (-539 |#2|) |#2|) . T))
-(((|#1| (-779) (-1093)) . T))
-((((-415 (-572))) |has| |#2| (-370)) (($) . T))
-(((|#1| (-539 (-1099 (-1188))) (-1099 (-1188))) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1010 |#1|)) . T) (((-572)) . T) ((|#1|) . T) (((-415 (-572))) -2813 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(|has| |#2| (-801))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#2| (-856))
-((((-902 |#1|)) . T) (((-827 |#1|)) . T))
-((((-827 (-1188))) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-652 (-930))) . T) (((-870)) . T))
-((((-415 (-572))) . T) (((-870)) . T))
-((((-544)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
-(|has| |#1| (-237))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((($ $) . T) (((-572) |#1|) . T))
+((((-1195)) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) . T) (($) . T))
+(((|#2| |#3| (-874 |#1|)) . T))
+((((-1190)) |has| |#2| (-911 (-1190))))
+(((|#1|) . T))
+(((|#1| (-541 |#2|) |#2|) . T))
+(((|#1| (-781) (-1095)) . T))
+((((-417 (-574))) |has| |#2| (-372)) (($) . T))
+(((|#1| (-541 (-1101 (-1190))) (-1101 (-1190))) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1012 |#1|)) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(|has| |#2| (-803))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#2| (-858))
+((((-904 |#1|)) . T) (((-829 |#1|)) . T))
+((((-829 (-1190))) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-654 (-932))) . T) (((-872)) . T))
+((((-417 (-574))) . T) (((-872)) . T))
+((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
+(|has| |#1| (-239))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((($ $) . T) (((-574) |#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-1271 |#1| |#2| |#3|) $) -12 (|has| (-1271 |#1| |#2| |#3|) (-292 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))) (($ $) . T) (((-572) |#1|) . T))
-((($ $) . T) (((-415 (-572)) |#1|) . T))
-((((-779) |#1|) . T) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-1273 |#1| |#2| |#3|) $) -12 (|has| (-1273 |#1| |#2| |#3|) (-294 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T))
+((($ $) . T) (((-417 (-574)) |#1|) . T))
+((((-781) |#1|) . T) (($ $) . T))
(((|#1|) . T))
-((((-1151 |#1| |#2|)) |has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-(((|#3| |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
-(((|#2|) . T) (((-572)) |has| |#2| (-1049 (-572))) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
+((((-1153 |#1| |#2|)) |has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
+(((|#2|) . T) (((-574)) |has| |#2| (-1051 (-574))) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
(((|#2|) . T))
-((((-870)) -2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-621 (-870))) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111))) (((-1279 |#2|)) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (((-572)) . T) (($) . T))
+((((-872)) -2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) (((-1281 |#2|)) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (((-574)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((((-572)) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-(|has| |#1| (-1111))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-572) (-145)) . T))
-((($) -2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (((-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))))
-((((-572)) . T))
-(((|#1|) . T) ((|#2|) . T) (((-572)) . T))
-((($) |has| |#1| (-564)) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-572)) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
-((($) . T) (((-572)) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
-(((|#2|) |has| |#1| (-370)))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-574)) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+(|has| |#1| (-1113))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-574) (-145)) . T))
+((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))))
+((((-574)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-574)) . T))
+((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-574)) . T))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062)))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062)))
+((($) . T) (((-574)) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
+(((|#2|) |has| |#1| (-372)))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-1193)) . T))
-((((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1| (-539 #0=(-1188)) #0#) . T))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-1195)) . T))
+((((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1| (-541 #0=(-1190)) #0#) . T))
(((|#1|) . T) (($) . T))
-((((-572)) . T))
+((((-574)) . T))
(|has| |#4| (-174))
(|has| |#3| (-174))
-(((#0=(-415 (-961 |#1|)) #0#) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(|has| |#1| (-1111))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(|has| |#1| (-1111))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-544)) |has| |#1| (-622 (-544))))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
+(((#0=(-417 (-963 |#1|)) #0#) . T))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(|has| |#1| (-1113))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(|has| |#1| (-1113))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-546)) |has| |#1| (-624 (-546))))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
(((|#1|) . T))
-((((-415 (-961 |#1|))) . T))
-(((|#1|) . T) (((-572)) . T) (($) . T))
+((((-417 (-963 |#1|))) . T))
+(((|#1|) . T) (((-574)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((((-870)) . T))
-((((-870)) . T))
-((((-1265 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1060)) (((-572)) -12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((((-872)) . T))
+((((-872)) . T))
+((((-1267 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1062)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))
(((|#1| |#2|) . T))
-(-2813 (|has| |#3| (-174)) (|has| |#3| (-734)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-(|has| |#3| (-801))
-(-2813 (|has| |#3| (-801)) (|has| |#3| (-856)))
-(|has| |#3| (-856))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#2|) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-(((|#2|) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-(((|#1| (-1168 |#1|)) |has| |#1| (-856)))
-((((-572) |#2|) . T))
-(|has| |#1| (-1111))
-(((|#1|) . T))
-(-12 (|has| |#1| (-370)) (|has| |#2| (-1163)))
-((((-415 (-572))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((($) . T) (((-415 (-572))) . T))
-(|has| |#1| (-1111))
-(((|#2|) . T))
-((((-544)) |has| |#2| (-622 (-544))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))))
-(((|#4|) -2813 (|has| |#4| (-174)) (|has| |#4| (-370))))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370))))
-((((-870)) . T))
-(((|#1|) . T))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-918)))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-918)))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#2|) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-918)))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-1188) $) |has| |#1| (-237)) ((#0# |#1|) |has| |#1| (-237)) ((#1=(-826 (-1188)) |#1|) . T) ((#1# $) . T))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-918)))
-((((-572) |#2|) . T))
-((((-870)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((($) -2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060))) ((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (((-572)) -12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))))
-((((-572) |#1|) . T))
-(|has| (-415 |#2|) (-148))
-(|has| (-415 |#2|) (-146))
-(((|#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-315 |#2|))))
-(|has| |#1| (-38 (-415 (-572))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-415 (-572))) . T))
-((((-870)) . T))
-(|has| |#1| (-564))
-(|has| |#1| (-564))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-870)) . T))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
-(|has| |#1| (-38 (-415 (-572))))
-((((-396) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#2| (-1163))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-((((-870)) . T) (((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-1228)) . T) (((-870)) . T) (((-1193)) . T))
+(-2818 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+(|has| |#3| (-803))
+(-2818 (|has| |#3| (-803)) (|has| |#3| (-858)))
+(|has| |#3| (-858))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+(((|#2|) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+(((|#1| (-1170 |#1|)) |has| |#1| (-858)))
+((((-574) |#2|) . T))
+(|has| |#1| (-1113))
+(((|#1|) . T))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-1165)))
+((((-417 (-574))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((($) . T) (((-417 (-574))) . T))
+(|has| |#1| (-1113))
+(((|#2|) . T))
+((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))))
+(((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372))))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372))))
+((((-872)) . T))
+(((|#1|) . T))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-920)))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-920)))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#2|) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-920)))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-1190) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-828 (-1190)) |#1|) . T) ((#1# $) . T))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-920)))
+((((-574) |#2|) . T))
+((((-872)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((($) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062))))
+((((-574) |#1|) . T))
+(|has| (-417 |#2|) (-148))
+(|has| (-417 |#2|) (-146))
+(((|#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))))
+(|has| |#1| (-38 (-417 (-574))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-417 (-574))) . T))
+((((-872)) . T))
+(|has| |#1| (-566))
+(|has| |#1| (-566))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-872)) . T))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
+(|has| |#1| (-38 (-417 (-574))))
+((((-398) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#2| (-1165))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+((((-872)) . T) (((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-1230)) . T) (((-872)) . T) (((-1195)) . T))
((((-117 |#1|)) . T))
-((((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
+((((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
(((|#1|) . T))
-((((-396) (-1170)) . T))
-(|has| |#1| (-564))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((((-398) (-1172)) . T))
+(|has| |#1| (-566))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
(((|#2|) . T))
-((((-779) (-1193)) . T))
-((((-870)) . T))
-((((-827 |#1|)) . T))
+((((-781) (-1195)) . T))
+((((-872)) . T))
+((((-829 |#1|)) . T))
((($) . T))
(((|#2|) |has| |#2| (-174)))
-((((-1188) (-52)) . T))
+((((-1190) (-52)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-564))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-566))
(((|#1|) |has| |#1| (-174)))
-((((-652 |#1|)) . T))
-((((-870)) . T))
-((((-544)) |has| |#1| (-622 (-544))))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(((|#2|) |has| |#2| (-315 |#2|)))
-(((#0=(-572) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
-(((|#1|) . T))
-(((|#1| (-1184 |#1|)) . T))
+((((-654 |#1|)) . T))
+((((-872)) . T))
+((((-546)) |has| |#1| (-624 (-546))))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(((|#2|) |has| |#2| (-317 |#2|)))
+(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1| (-1186 |#1|)) . T))
(|has| $ (-148))
(((|#2|) . T))
((($) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-(|has| |#2| (-375))
-(((#0=(-572) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+(|has| |#2| (-377))
+(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
(((|#1| |#2|) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1|) . T))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((($) . T) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
-((((-870)) . T))
-((((-1186 |#1| |#2| |#3|) $) -12 (|has| (-1186 |#1| |#2| |#3|) (-292 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))) (($ $) . T) (((-572) |#1|) . T))
-((($ $) . T) (((-415 (-572)) |#1|) . T))
-((((-779) |#1|) . T) (($ $) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((#0=(-1271 |#1| |#2| |#3|) #0#) -12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))) (((-1188) #0#) -12 (|has| (-1271 |#1| |#2| |#3|) (-522 (-1188) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))))
-(-12 (|has| |#1| (-1111)) (|has| |#2| (-1111)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-572)) . T) (($) . T))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) . T) (((-572)) . T) ((|#2|) . T))
-((((-572)) . T) (($) . T) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
-((((-415 (-572))) . T) (((-572)) . T))
-((((-572) (-145)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
+((((-872)) . T))
+((((-1188 |#1| |#2| |#3|) $) -12 (|has| (-1188 |#1| |#2| |#3|) (-294 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T))
+((($ $) . T) (((-417 (-574)) |#1|) . T))
+((((-781) |#1|) . T) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((#0=(-1273 |#1| |#2| |#3|) #0#) -12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1190) #0#) -12 (|has| (-1273 |#1| |#2| |#3|) (-524 (-1190) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))))
+(-12 (|has| |#1| (-1113)) (|has| |#2| (-1113)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-574)) . T) (($) . T))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) . T) (((-574)) . T) ((|#2|) . T))
+((((-574)) . T) (($) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
+((((-417 (-574))) . T) (((-574)) . T))
+((((-574) (-145)) . T))
((((-145)) . T))
(((|#1|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
((((-112)) . T))
(((|#1|) . T))
-((((-544)) |has| |#1| (-622 (-544))) (((-227)) . #0=(|has| |#1| (-1033))) (((-386)) . #0#))
-((((-870)) . T))
-((((-1193)) . T))
-(|has| |#1| (-828))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2|) |has| |#1| (-370)) ((|#1|) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#2|) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-564)))
-(|has| |#1| (-564))
-(|has| |#1| (-858))
-((($) . T) (((-572)) . T) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (((-572)) . T))
-(|has| |#1| (-918))
-(((|#1|) . T))
-(|has| |#1| (-1111))
-((((-870)) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-564)))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-(((|#1| (-1279 |#1|) (-1279 |#1|)) . T))
-((((-572) (-145)) . T) (((-1246 (-572)) $) . T))
-((($) . T))
-(-2813 (|has| |#4| (-174)) (|has| |#4| (-856)) (|has| |#4| (-1060)))
-(-2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-((((-1193)) . T) (((-870)) . T))
-((((-1193)) . T))
-((((-870)) . T))
-(|has| |#1| (-1111))
-(((|#1| (-982)) . T))
+((((-546)) |has| |#1| (-624 (-546))) (((-227)) . #0=(|has| |#1| (-1035))) (((-388)) . #0#))
+((((-872)) . T))
+((((-1195)) . T))
+(|has| |#1| (-830))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-566)))
+(|has| |#1| (-566))
+(|has| |#1| (-860))
+((($) . T) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (((-574)) . T))
+(|has| |#1| (-920))
+(((|#1|) . T))
+(|has| |#1| (-1113))
+((((-872)) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-566)))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+(((|#1| (-1281 |#1|) (-1281 |#1|)) . T))
+((((-574) (-145)) . T) (((-1248 (-574)) $) . T))
+((($) . T))
+(-2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1062)))
+(-2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+((((-1195)) . T) (((-872)) . T))
+((((-1195)) . T))
+((((-872)) . T))
+(|has| |#1| (-1113))
+(((|#1| (-984)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-(-12 (|has| |#1| (-481)) (|has| |#2| (-481)))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-((($) . T) (((-572)) . T) (((-878 |#1|)) . T) (((-415 (-572))) . T))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+(-12 (|has| |#1| (-483)) (|has| |#2| (-483)))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+((($) . T) (((-574)) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T))
(((|#1|) . T))
-(|has| |#2| (-801))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
+(|has| |#2| (-803))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(|has| |#2| (-856))
-(-12 (|has| |#1| (-801)) (|has| |#2| (-801)))
-(-12 (|has| |#1| (-801)) (|has| |#2| (-801)))
-(-2813 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(|has| |#2| (-858))
+(-12 (|has| |#1| (-803)) (|has| |#2| (-803)))
+(-12 (|has| |#1| (-803)) (|has| |#2| (-803)))
+(-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-572)) . T))
+(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-574)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-((((-870)) . T))
-(|has| |#1| (-356))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-415 (-572))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-415 (-572))) . T))
-((($) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) . T))
-(|has| |#1| (-836))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
-(|has| |#1| (-1111))
-(((|#1| $) |has| |#1| (-292 |#1| |#1|)))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-((($) |has| |#1| (-564)))
-(((|#2|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1111)))
-(((|#3|) |has| |#3| (-1111)))
-(|has| |#3| (-375))
-((($) |has| |#1| (-564)) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-572)) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
-((((-870)) . T))
-((((-870)) . T))
+((((-872)) . T))
+(|has| |#1| (-358))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-417 (-574))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-417 (-574))) . T))
+((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T))
+(|has| |#1| (-838))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T))
+(|has| |#1| (-1113))
+(((|#1| $) |has| |#1| (-294 |#1| |#1|)))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+((($) |has| |#1| (-566)))
+(((|#2|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1113)))
+(((|#3|) |has| |#3| (-1113)))
+(|has| |#3| (-377))
+((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-574)) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
+((((-872)) . T))
+((((-872)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
(((|#1| |#1|) |has| |#1| (-174)))
-(|has| |#2| (-370))
+(|has| |#2| (-372))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-((((-415 (-572))) . T) (((-572)) . T))
-((($) |has| |#2| (-237)))
-((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
-((($) . T) (((-572)) . T))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+((((-417 (-574))) . T) (((-574)) . T))
+((($) |has| |#2| (-239)))
+((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
+((($) . T) (((-574)) . T))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
((((-145)) . T))
(((|#1|) . T))
-((($) -2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (((-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))))
+((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))))
((((-145)) . T))
((((-145)) . T))
-((((-415 (-572))) . #0=(|has| |#2| (-370))) (($) . #0#) ((|#2|) . T) (((-572)) . T))
+((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#) ((|#2|) . T) (((-574)) . T))
(((|#1| |#2| |#3|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062)))
(((|#1|) |has| |#1| (-174)))
(|has| $ (-148))
(|has| $ (-148))
-((((-1193)) . T))
+((((-1195)) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-1111))
-((((-870)) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-481)) (|has| |#1| (-564)) (|has| |#1| (-1060)) (|has| |#1| (-1123)))
-((($ $) |has| |#1| (-292 $ $)) ((|#1| $) |has| |#1| (-292 |#1| |#1|)))
-(((|#1| (-415 (-572))) . T))
-(((|#1|) . T))
-((((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((((-1188)) . T))
-(|has| |#1| (-564))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(|has| |#1| (-564))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-870)) . T))
+(|has| |#1| (-1113))
+((((-872)) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1062)) (|has| |#1| (-1125)))
+((($ $) |has| |#1| (-294 $ $)) ((|#1| $) |has| |#1| (-294 |#1| |#1|)))
+(((|#1| (-417 (-574))) . T))
+(((|#1|) . T))
+((((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-1190)) . T))
+(|has| |#1| (-566))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(|has| |#1| (-566))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-872)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
-((((-572) (-415 (-961 |#1|))) . T))
+((((-574) (-417 (-963 |#1|))) . T))
(((|#2|) . T) (($) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(|has| |#4| (-856))
-(((|#2| (-244 (-2860 |#1|) (-779)) (-872 |#1|)) . T))
-(|has| |#3| (-856))
-(((|#1| (-539 |#3|) |#3|) . T))
+(|has| |#4| (-858))
+(((|#2| (-246 (-2863 |#1|) (-781)) (-874 |#1|)) . T))
+(|has| |#3| (-858))
+(((|#1| (-541 |#3|) |#3|) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(((#0=(-415 (-572)) #0#) |has| |#2| (-370)) (($ $) . T))
-((((-878 |#1|)) . T))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-((((-870)) . T))
+(((#0=(-417 (-574)) #0#) |has| |#2| (-372)) (($ $) . T))
+((((-880 |#1|)) . T))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+((((-872)) . T))
(|has| |#1| (-148))
-((((-415 (-572))) |has| |#2| (-370)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+((((-417 (-574))) |has| |#2| (-372)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
(|has| |#1| (-146))
-(-2813 (|has| |#1| (-356)) (|has| |#1| (-375)))
-((((-1153 |#2| |#1|)) . T) ((|#1|) . T))
+(-2818 (|has| |#1| (-358)) (|has| |#1| (-377)))
+((((-1155 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-174))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))
-(((|#2|) . T) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(-2813 (|has| |#3| (-801)) (|has| |#3| (-856)))
-(-2813 (|has| |#3| (-801)) (|has| |#3| (-856)))
-((((-870)) . T))
+(-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))
+(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(-2818 (|has| |#3| (-803)) (|has| |#3| (-858)))
+(-2818 (|has| |#3| (-803)) (|has| |#3| (-858)))
+((((-872)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
-((((-707)) . T))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(|has| |#1| (-564))
+((((-709)) . T))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(|has| |#1| (-566))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -1129,383 +1129,383 @@
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-1188) (-52)) . T))
-((((-1015 10)) . T) (((-415 (-572))) . T) (((-870)) . T))
-((((-544)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
+((((-1190) (-52)) . T))
+((((-1017 10)) . T) (((-417 (-574))) . T) (((-872)) . T))
+((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
(((|#1|) . T))
-((((-1015 16)) . T) (((-415 (-572))) . T) (((-870)) . T))
-((((-544)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
-(((|#1| (-572)) . T))
-((((-870)) . T))
-((((-870)) . T))
+((((-1017 16)) . T) (((-417 (-574))) . T) (((-872)) . T))
+((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
+(((|#1| (-574)) . T))
+((((-872)) . T))
+((((-872)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-415 (-572))) . T))
-(((|#3|) . T) (((-620 $)) . T))
+(((|#1| (-417 (-574))) . T))
+(((|#3|) . T) (((-622 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-572)) -2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060))) ((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-(((#0=(-1186 |#1| |#2| |#3|) #0#) -12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))) (((-1188) #0#) -12 (|has| (-1186 |#1| |#2| |#3|) (-522 (-1188) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))))
-((((-870)) . T))
-((((-870)) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+(((#0=(-1188 |#1| |#2| |#3|) #0#) -12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1190) #0#) -12 (|has| (-1188 |#1| |#2| |#3|) (-524 (-1190) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))))
+((((-872)) . T))
+((((-872)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) |has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))))
-((((-870)) . T))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) |has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))))
+((((-872)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
-((($) . T) ((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-((((-1188) (-52)) . T))
+((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((((-1190) (-52)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-872 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-836))
-((($) . T) (((-572)) . T) ((|#1|) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
-((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(|has| (-1105 |#1|) (-1111))
-(((|#2| |#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($ $) |has| |#2| (-174)))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370))))
-((((-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
-((((-572)) . T))
-((((-1193)) . T))
-((((-779)) . T))
+((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-838))
+((($) . T) (((-574)) . T) ((|#1|) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
+((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(|has| (-1107 |#1|) (-1113))
+(((|#2| |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($ $) |has| |#2| (-174)))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372))))
+((((-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174)))
+((((-574)) . T))
+((((-1195)) . T))
+((((-781)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-564))
-((((-572)) . T))
+(|has| |#1| (-566))
+((((-574)) . T))
(((|#2|) . T))
-((((-870)) . T))
-(((|#1| (-415 (-572)) (-1093)) . T))
+((((-872)) . T))
+(((|#1| (-417 (-574)) (-1095)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(|has| |#1| (-564))
-((((-572)) . T))
+(|has| |#1| (-566))
+((((-574)) . T))
((((-117 |#1|)) . T))
(((|#1|) . T))
-((((-415 (-572))) . T) (($) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-564)))
-((((-1193)) . T))
-((($) . T) (((-415 (-572))) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-564)))
-((((-572)) . T))
+((((-417 (-574))) . T) (($) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-566)))
+((((-1195)) . T))
+((($) . T) (((-417 (-574))) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-566)))
+((((-574)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-572)) . T))
-((((-901 (-572))) . T) (((-901 (-386))) . T) (((-544)) . T) (((-1188)) . T))
-((((-870)) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
+((((-574)) . T))
+((((-903 (-574))) . T) (((-903 (-388))) . T) (((-546)) . T) (((-1190)) . T))
+((((-872)) . T))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
((($) . T))
(((|#1|) . T))
-((((-870)) . T))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+((((-872)) . T))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
(((|#1|) . T) (($) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -2813 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) |has| |#2| (-174)) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
-((((-878 |#1|)) . T))
-(-2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
-(-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))
-(|has| |#2| (-1163))
-(((#0=(-52)) . T) (((-2 (|:| -3690 (-1188)) (|:| -1907 #0#))) . T))
+((($) -2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
+((((-880 |#1|)) . T))
+(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113)))
+(-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))
+(|has| |#2| (-1165))
+(((#0=(-52)) . T) (((-2 (|:| -3693 (-1190)) (|:| -1909 #0#))) . T))
(((|#1| |#2|) . T))
-(-2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-(((|#1| (-572) (-1093)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1| (-415 (-572)) (-1093)) . T))
-((($) -2813 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-((($) |has| (-415 |#2|) (-237)))
-((((-572) |#2|) . T))
+(-2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+(((|#1| (-574) (-1095)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1| (-417 (-574)) (-1095)) . T))
+((($) -2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+((($) |has| (-417 |#2|) (-239)))
+((((-574) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-375))
+(|has| |#2| (-377))
(((|#1| |#1|) . T))
-((((-870)) . T))
-((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((|#1| |#1|) |has| |#1| (-315 |#1|)))
-(-12 (|has| |#1| (-375)) (|has| |#2| (-375)))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-(((|#1|) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-(|has| |#1| (-356))
-((((-572)) -2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (|has| |#3| (-1060))) ((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-1111))) (((-415 (-572))) -12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))
-(((|#1|) . T))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-872)) . T))
+((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|)))
+(-12 (|has| |#1| (-377)) (|has| |#2| (-377)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+(((|#1|) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+(|has| |#1| (-358))
+((((-574)) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-1113))) (((-417 (-574))) -12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))
+(((|#1|) . T))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
(((|#4|) . T))
-(((|#4|) . T) (((-870)) . T))
-(((|#3|) . T) ((|#2|) . T) (($) -2813 (|has| |#4| (-174)) (|has| |#4| (-856)) (|has| |#4| (-1060))) (((-572)) . T) ((|#4|) -2813 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))))
-(((|#2|) . T) (($) -2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060))) (((-572)) . T) ((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
-(|has| |#1| (-564))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-870)) . T))
+(((|#4|) . T) (((-872)) . T))
+(((|#3|) . T) ((|#2|) . T) (($) -2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1062))) (((-574)) . T) ((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062))))
+(((|#2|) . T) (($) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) (((-574)) . T) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
+(|has| |#1| (-566))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-872)) . T))
(((|#1| |#2|) . T))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-918)))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-918)))
-((((-415 (-572))) . T) (((-572)) . T))
-((((-572)) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((($) . T))
-((((-870)) . T))
-(((|#1|) . T))
-((((-878 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((((-870)) . T))
-(((|#3| |#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($ $) |has| |#3| (-174)))
-(|has| |#1| (-1033))
-((((-870)) . T))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($) |has| |#3| (-174)))
-((((-572) (-112)) . T))
-((((-1193)) . T))
-(((|#1|) |has| |#1| (-315 |#1|)))
-((((-1193)) . T))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-((((-1188) $) |has| |#1| (-522 (-1188) $)) (($ $) |has| |#1| (-315 $)) ((|#1| |#1|) |has| |#1| (-315 |#1|)) (((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)))
-((((-1188)) |has| |#1| (-909 (-1188))))
-(-2813 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-920)))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-920)))
+((((-417 (-574))) . T) (((-574)) . T))
+((((-574)) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((($) . T))
+((((-872)) . T))
+(((|#1|) . T))
+((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((((-872)) . T))
+(((|#3| |#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($ $) |has| |#3| (-174)))
+(|has| |#1| (-1035))
+((((-872)) . T))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($) |has| |#3| (-174)))
+((((-574) (-112)) . T))
+((((-1195)) . T))
+(((|#1|) |has| |#1| (-317 |#1|)))
+((((-1195)) . T))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+((((-1190) $) |has| |#1| (-524 (-1190) $)) (($ $) |has| |#1| (-317 $)) ((|#1| |#1|) |has| |#1| (-317 |#1|)) (((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)))
+((((-1190)) |has| |#1| (-911 (-1190))))
+(-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((($) . T))
-((((-396) |#1|) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-(|has| |#1| (-1111))
-(((|#2|) . T) (((-870)) . T))
-((((-870)) . T))
-(((|#2|) . T))
-((((-919 |#1|)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+((((-398) |#1|) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+(|has| |#1| (-1113))
+(((|#2|) . T) (((-872)) . T))
+((((-872)) . T))
+(((|#2|) . T))
+((((-921 |#1|)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
(((|#1| |#2|) . T))
((($) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
(((|#1| |#1|) . T))
-(((#0=(-878 |#1|)) |has| #0# (-315 #0#)))
-((((-572)) . T) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-1049 (-415 (-572))))) ((|#1|) . T))
+(((#0=(-880 |#1|)) |has| #0# (-317 #0#)))
+((((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1051 (-417 (-574))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-(((|#1|) . T))
-(-12 (|has| |#1| (-801)) (|has| |#2| (-801)))
-(-12 (|has| |#1| (-801)) (|has| |#2| (-801)))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-((($) . T) (((-572)) . T) ((|#2|) . T))
-(((|#2|) . T) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+(((|#1|) . T))
+(-12 (|has| |#1| (-803)) (|has| |#2| (-803)))
+(-12 (|has| |#1| (-803)) (|has| |#2| (-803)))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+((($) . T) (((-574)) . T) ((|#2|) . T))
+(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
(((|#2|) . T) (($) . T))
-(|has| |#1| (-1214))
-(((#0=(-572) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
-((((-415 (-572))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1060)))
-(((|#3|) |has| |#3| (-1060)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-(|has| |#1| (-370))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
-((($ $) . T) ((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1| |#1|) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-((((-870)) . T))
-((((-870)) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-572) |#3|) . T))
-((((-870)) . T))
-((((-544)) |has| |#3| (-622 (-544))))
-((((-697 |#3|)) . T) (((-870)) . T))
+(|has| |#1| (-1216))
+(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
+((((-417 (-574))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1062)))
+(((|#3|) |has| |#3| (-1062)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+(|has| |#1| (-372))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+((($ $) . T) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+((((-872)) . T))
+((((-872)) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-574) |#3|) . T))
+((((-872)) . T))
+((((-546)) |has| |#3| (-624 (-546))))
+((((-699 |#3|)) . T) (((-872)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-856))
-(|has| |#1| (-856))
-((($) . T) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-564)))
+(|has| |#1| (-858))
+(|has| |#1| (-858))
+((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-566)))
((($) . T))
-(((#0=(-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) #0#) |has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))))
+(((#0=(-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) #0#) |has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))))
((($) . T))
((($) . T))
-(((|#2|) |has| |#2| (-1111)))
-((((-870)) -2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-621 (-870))) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111))) (((-1279 |#2|)) . T))
+(((|#2|) |has| |#2| (-1113)))
+((((-872)) -2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) (((-1281 |#2|)) . T))
((($) . T))
-((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-1170) (-52)) . T))
+((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-1172) (-52)) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -2813 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) |has| |#2| (-174)) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
-((((-870)) . T))
-(((|#2|) . T))
-((($) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
-((((-572)) |has| #0=(-415 |#2|) (-647 (-572))) ((#0#) . T))
-((($) . T) (((-572)) . T))
-((((-572) (-145)) . T))
-((((-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T) ((|#1| |#2|) . T))
-((((-415 (-572))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-870)) . T))
-((((-919 |#1|)) . T))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
-(|has| |#1| (-856))
-((($) -2813 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-(|has| |#1| (-370))
+((($) -2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
+((((-872)) . T))
+(((|#2|) . T))
+((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
+((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T))
+((($) . T) (((-574)) . T))
+((((-574) (-145)) . T))
+((((-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T) ((|#1| |#2|) . T))
+((((-417 (-574))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-872)) . T))
+((((-921 |#1|)) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
+(|has| |#1| (-858))
+((($) -2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+(|has| |#1| (-372))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-856))
-((($) . T) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-((((-1188)) |has| |#1| (-909 (-1188))))
-(|has| |#1| (-856))
-((((-514)) . T))
-(((|#1| (-1188)) . T))
-(((|#1| (-1279 |#1|) (-1279 |#1|)) . T))
-((((-870)) . T) (((-1193)) . T))
+(|has| |#1| (-858))
+((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+((((-1190)) |has| |#1| (-911 (-1190))))
+(|has| |#1| (-858))
+((((-516)) . T))
+(((|#1| (-1190)) . T))
+(((|#1| (-1281 |#1|) (-1281 |#1|)) . T))
+((((-872)) . T) (((-1195)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1193)) . T))
-(|has| |#1| (-1111))
-(((|#1| (-1188) (-826 (-1188)) (-539 (-826 (-1188)))) . T))
-((((-415 (-961 |#1|))) . T))
-((((-544)) . T))
-((((-870)) . T))
+((((-1195)) . T))
+(|has| |#1| (-1113))
+(((|#1| (-1190) (-828 (-1190)) (-541 (-828 (-1190)))) . T))
+((((-417 (-963 |#1|))) . T))
+((((-546)) . T))
+((((-872)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T) (((-1246 (-572)) $) . T) ((|#1| |#2|) . T))
+((((-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T) (((-1248 (-574)) $) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#2| (-425 |#1|))
-(|has| |#2| (-425 |#1|))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-544)) |has| |#1| (-622 (-544))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))))
-((((-870)) . T))
-((((-878 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-(((|#2|) . T) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-514)) . T))
-(|has| |#2| (-856))
-((((-514)) . T))
-(-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))
-(|has| |#1| (-564))
-((((-878 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((((-1170) |#1|) . T))
-(|has| |#1| (-1163))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-((((-967 |#1|)) . T))
-(((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1| |#1|) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-572))) (((-572)) |has| |#1| (-1049 (-572))) (((-1188)) |has| |#1| (-1049 (-1188))) ((|#1|) . T))
-((($) . T))
-((($) . T))
-((((-572) |#2|) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
-((((-572)) |has| |#1| (-895 (-572))) (((-386)) |has| |#1| (-895 (-386))))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-572)) . T))
-((((-652 |#4|)) . T) (((-870)) . T))
-((((-544)) |has| |#4| (-622 (-544))))
-((((-544)) |has| |#4| (-622 (-544))))
-((((-870)) . T) (((-652 |#4|)) . T))
-((($) |has| |#1| (-856)))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) (((-572)) . T) (($) . T) ((|#1|) . T))
-((((-572)) -2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060))) ((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
-(((|#1|) . T))
-(((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) . T))
-((((-652 |#4|)) . T) (((-870)) . T))
-((((-544)) |has| |#4| (-622 (-544))))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
-(((|#1|) . T))
-((((-1188)) |has| (-415 |#2|) (-909 (-1188))))
-(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
-((($) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((($) |has| |#1| (-237)))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-((($) . T))
-((($) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-((($) . T))
-((($) . T))
-((((-870)) -2813 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-621 (-870))) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-375)) (|has| |#3| (-734)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)) (|has| |#3| (-1111))) (((-1279 |#3|)) . T))
-(((|#2|) . T))
-((((-572) |#2|) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(((|#2| |#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($ $) |has| |#2| (-174)))
-(((|#2|) . T) (((-572)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T) ((|#2|) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-1170) (-1188) (-572) (-227) (-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-870)) . T))
-((((-572) (-112)) . T))
-(((|#1|) . T))
-((((-870)) . T))
+(|has| |#2| (-427 |#1|))
+(|has| |#2| (-427 |#1|))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))))
+((((-872)) . T))
+((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-516)) . T))
+(|has| |#2| (-858))
+((((-516)) . T))
+(-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))
+(|has| |#1| (-566))
+((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-1172) |#1|) . T))
+(|has| |#1| (-1165))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+((((-969 |#1|)) . T))
+(((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-574))) (((-574)) |has| |#1| (-1051 (-574))) (((-1190)) |has| |#1| (-1051 (-1190))) ((|#1|) . T))
+((($) . T))
+((($) . T))
+((((-574) |#2|) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
+((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388))))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-574)) . T))
+((((-654 |#4|)) . T) (((-872)) . T))
+((((-546)) |has| |#4| (-624 (-546))))
+((((-546)) |has| |#4| (-624 (-546))))
+((((-872)) . T) (((-654 |#4|)) . T))
+((($) |has| |#1| (-858)))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T))
+((((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))))
+(((|#1|) . T))
+(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T))
+((((-654 |#4|)) . T) (((-872)) . T))
+((((-546)) |has| |#4| (-624 (-546))))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
+(((|#1|) . T))
+((((-1190)) |has| (-417 |#2|) (-911 (-1190))))
+(((|#2|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
+((($) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((($) |has| |#1| (-239)))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+((($) . T))
+((($) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+((($) . T))
+((($) . T))
+((((-872)) -2818 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-623 (-872))) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062)) (|has| |#3| (-1113))) (((-1281 |#3|)) . T))
+(((|#2|) . T))
+((((-574) |#2|) . T))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(((|#2| |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($ $) |has| |#2| (-174)))
+(((|#2|) . T) (((-574)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T) ((|#2|) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-1172) (-1190) (-574) (-227) (-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-872)) . T))
+((((-574) (-112)) . T))
+(((|#1|) . T))
+((((-872)) . T))
((((-112)) . T))
((((-112)) . T))
-((((-870)) . T))
-((((-870)) . T))
+((((-872)) . T))
+((((-872)) . T))
((((-112)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((($) . T) (((-415 (-572))) . T))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((($) . T) (((-417 (-574))) . T))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174)))
(|has| $ (-148))
-((((-415 |#2|)) . T))
-((((-415 (-572))) |has| #0=(-415 |#2|) (-1049 (-415 (-572)))) (((-572)) |has| #0# (-1049 (-572))) ((#0#) . T))
+((((-417 |#2|)) . T))
+((((-417 (-574))) |has| #0=(-417 |#2|) (-1051 (-417 (-574)))) (((-574)) |has| #0# (-1051 (-574))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-174)))
(|has| |#2| (-146))
@@ -1513,208 +1513,208 @@
(((|#3|) |has| |#3| (-174)))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
(|has| |#1| (-148))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
(|has| |#1| (-148))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
(|has| |#1| (-148))
(((|#1|) . T))
-(|has| |#2| (-237))
+(|has| |#2| (-239))
(((|#2|) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-1188) (-52)) . T))
-((((-870)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-1190) (-52)) . T))
+((((-872)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
(((|#1| |#1|) . T))
-((((-1188)) |has| |#2| (-909 (-1188))))
+((((-1190)) |has| |#2| (-911 (-1190))))
((((-130)) . T))
-(|has| (-415 |#2|) (-237))
-((((-572) (-112)) . T) (((-1246 (-572)) $) . T))
-(|has| |#1| (-564))
+(|has| (-417 |#2|) (-239))
+((((-574) (-112)) . T) (((-1248 (-574)) $) . T))
+(|has| |#1| (-566))
(((|#2|) . T))
(((|#2|) . T))
-((((-902 |#1|)) . T) ((|#2|) . T) (((-572)) . T) (((-827 |#1|)) . T))
-(((|#1|) . T) (((-572)) . T) (((-827 (-1188))) . T))
+((((-904 |#1|)) . T) ((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T))
+(((|#1|) . T) (((-574)) . T) (((-829 (-1190))) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
(((|#3|) . T))
-(|has| |#1| (-38 (-415 (-572))))
-((((-572)) . T) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
-(((|#1|) . T))
-((((-1015 2)) . T) (((-415 (-572))) . T) (((-870)) . T))
-((((-544)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-1010 |#1|)) . T) ((|#1|) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-415 (-572))) . T) (((-415 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1184 |#1|)) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+(|has| |#1| (-38 (-417 (-574))))
+((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))))
+(((|#1|) . T))
+((((-1017 2)) . T) (((-417 (-574))) . T) (((-872)) . T))
+((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-1012 |#1|)) . T) ((|#1|) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1186 |#1|)) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-858))
-(((|#1|) . T) (((-572)) . T) (($) . T))
-(((|#2|) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-572) |#2|) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-(((|#2|) . T))
-((((-572) |#3|) . T))
-(((|#2|) . T))
-((((-870)) . T))
-(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-(((|#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
+(|has| |#1| (-860))
+(((|#1|) . T) (((-574)) . T) (($) . T))
+(((|#2|) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-574) |#2|) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+(((|#2|) . T))
+((((-574) |#3|) . T))
+(((|#2|) . T))
+((((-872)) . T))
+(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#1| (-1111))
-(|has| |#2| (-370))
-(((|#2|) . T) (((-572)) |has| |#2| (-1049 (-572))) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
-(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-1113))
+(|has| |#2| (-372))
+(((|#2|) . T) (((-574)) |has| |#2| (-1051 (-574))) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))))
+(|has| |#1| (-38 (-417 (-574))))
(((|#2|) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
(((|#1|) |has| |#1| (-174)))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
(((|#2|) . T))
(((|#1|) . T))
-((((-1170) (-52)) . T))
+((((-1172) (-52)) . T))
(((|#1|) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
(((|#2|) |has| |#2| (-174)))
-((($) -2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) (((-572)) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))))
-((((-572) |#3|) . T))
-((((-572) (-145)) . T))
+((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) (((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))))
+((((-574) |#3|) . T))
+((((-574) (-145)) . T))
((((-145)) . T))
-((((-870)) . T))
-((((-1193)) . T))
+((((-872)) . T))
+((((-1195)) . T))
((((-112)) . T))
(|has| |#1| (-148))
(((|#1|) . T))
(|has| |#1| (-146))
((($) . T))
-(|has| |#1| (-564))
-((((-572)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(|has| |#1| (-566))
+((((-574)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
(((|#1|) . T))
-(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
+(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
((((-145)) . T))
-((((-870)) . T))
-((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
-((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
-((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
-((((-1188) (-52)) . T) (((-1170) (-52)) . T))
+((((-872)) . T))
+((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
+((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
+((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
+((((-1190) (-52)) . T) (((-1172) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
(((|#1| |#2|) . T))
-((((-1246 (-572)) $) . T) (((-572) (-145)) . T))
-(((#0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(|has| |#1| (-858))
-(((|#2| (-779) (-1093)) . T))
+((((-1248 (-574)) $) . T) (((-574) (-145)) . T))
+(((#0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(|has| |#1| (-860))
+(((|#2| (-781) (-1095)) . T))
(((|#1| |#2|) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-564)))
-(|has| |#1| (-799))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-566)))
+(|has| |#1| (-801))
(((|#1|) |has| |#1| (-174)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-2813 (|has| |#1| (-148)) (-12 (|has| |#1| (-370)) (|has| |#2| (-148))))
-(-2813 (|has| |#1| (-146)) (-12 (|has| |#1| (-370)) (|has| |#2| (-146))))
+(-2818 (|has| |#1| (-148)) (-12 (|has| |#1| (-372)) (|has| |#2| (-148))))
+(-2818 (|has| |#1| (-146)) (-12 (|has| |#1| (-372)) (|has| |#2| (-146))))
(((|#4|) . T))
(|has| |#1| (-146))
-((((-1170) |#1|) . T))
+((((-1172) |#1|) . T))
(|has| |#1| (-148))
(((|#1|) . T))
-((((-572)) . T))
-((((-870)) . T))
+((((-574)) . T))
+((((-872)) . T))
(((|#1| |#2|) . T))
-((((-870)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-872)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
(((|#3|) . T))
-((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
-((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) (((-572)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) . T))
-((((-870)) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(((|#1|) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))) (((-967 |#1|)) . T))
-(|has| |#1| (-856))
-(|has| |#1| (-856))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-967 |#1|)) . T))
-(((|#4|) -2813 (|has| |#4| (-174)) (|has| |#4| (-370))))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370))))
-(|has| |#2| (-370))
+((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)))
+((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T))
+((((-872)) . T))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(((|#1|) . T))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))) (((-969 |#1|)) . T))
+(|has| |#1| (-858))
+(|has| |#1| (-858))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-969 |#1|)) . T))
+(((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372))))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372))))
+(|has| |#2| (-372))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) -2813 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))) (($) |has| |#4| (-174)))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($) |has| |#3| (-174)))
-(((|#2|) |has| |#2| (-1060)))
-((((-1170) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
-(((|#2| (-902 |#1|)) . T))
-((($) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
-((((-396) (-1170)) . T))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) -2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-621 (-870))) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111))) (((-1279 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3690 (-1170)) (|:| -1907 #0#))) . T))
-(((|#1|) . T))
-((((-870)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+(((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062))) (($) |has| |#4| (-174)))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($) |has| |#3| (-174)))
+(((|#2|) |has| |#2| (-1062)))
+((((-1172) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))
+(((|#2| (-904 |#1|)) . T))
+((($) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T))
+((((-398) (-1172)) . T))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) -2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) (((-1281 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -3693 (-1172)) (|:| -1909 #0#))) . T))
+(((|#1|) . T))
+((((-872)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
((((-145)) . T))
(|has| |#2| (-146))
-((((-572)) . T))
+((((-574)) . T))
(|has| |#2| (-148))
-(|has| |#1| (-481))
-(-2813 (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
-(|has| |#1| (-370))
-((((-870)) . T))
-(|has| |#1| (-38 (-415 (-572))))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-((($) |has| |#1| (-564)))
-((((-1193)) . T))
-(|has| |#1| (-856))
-(|has| |#1| (-856))
-((((-870)) . T))
-(((|#2|) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#2|) . T) (((-572)) . T) (((-827 |#1|)) . T))
+(|has| |#1| (-483))
+(-2818 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))
+(|has| |#1| (-372))
+((((-872)) . T))
+(|has| |#1| (-38 (-417 (-574))))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+((($) |has| |#1| (-566)))
+((((-1195)) . T))
+(|has| |#1| (-858))
+(|has| |#1| (-858))
+((((-872)) . T))
+(((|#2|) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1188)) |has| |#1| (-909 (-1188))))
+((((-1190)) |has| |#1| (-911 (-1190))))
(((|#2| |#2|) . T))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-870)) . T))
-(|has| |#1| (-1111))
-(((|#2| (-490 (-2860 |#1|) (-779)) (-872 |#1|)) . T))
-((((-415 (-572))) . #0=(|has| |#2| (-370))) (($) . #0#))
-(((|#1| (-539 (-1188)) (-1188)) . T))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-872)) . T))
+(|has| |#1| (-1113))
+(((|#2| (-492 (-2863 |#1|) (-781)) (-874 |#1|)) . T))
+((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#))
+(((|#1| (-541 (-1190)) (-1190)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-870)) . T))
-((((-870)) . T))
+((((-872)) . T))
+((((-872)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1729,2303 +1729,2303 @@
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) . T))
-((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-1188) (-52)) . T))
-((((-415 (-572)) |#1|) . T) (($ $) . T))
-(((|#1| (-572)) . T))
-((((-919 |#1|)) . T))
-(((|#1|) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))) (($) -2813 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060))))
-(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+(((|#1|) . T) (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) . T))
+((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-1190) (-52)) . T))
+((((-417 (-574)) |#1|) . T) (($ $) . T))
+(((|#1| (-574)) . T))
+((((-921 |#1|)) . T))
+(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062))) (($) -2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))))
+(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+((((-574) |#2|) . T))
+((($) . T) (((-574)) . T) ((|#1|) . T))
+((((-872)) . T))
+((((-574)) . T))
+(|has| |#1| (-860))
+((((-699 |#2|)) . T) (((-872)) . T))
+((((-1273 |#1| |#2| |#3|)) -12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))))
+((((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1| |#2|) . T))
+((((-417 (-963 |#1|))) . T))
+((((-984)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+(((|#1|) |has| |#1| (-174)))
+(-2818 (|has| |#1| (-239)) (|has| |#1| (-294 |#1| |#1|)))
+(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372))))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(-2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-920)))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+((((-574) |#2|) . T))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372))))
+(|has| |#1| (-358))
+(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))
+(((|#2|) . T) (((-574)) . T))
+((($) . T) (((-417 (-574))) . T))
+((((-574) (-112)) . T))
+(|has| |#1| (-830))
+(|has| |#1| (-830))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)))
(|has| |#1| (-858))
(|has| |#1| (-858))
-((((-572) |#2|) . T))
-((($) . T) (((-572)) . T) ((|#1|) . T))
-((((-870)) . T))
-((((-572)) . T))
(|has| |#1| (-858))
-((((-697 |#2|)) . T) (((-870)) . T))
-((((-1271 |#1| |#2| |#3|)) -12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))))
-((((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1| |#2|) . T))
-((((-415 (-961 |#1|))) . T))
-((((-982)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-(((|#1|) |has| |#1| (-174)))
-(-2813 (|has| |#1| (-237)) (|has| |#1| (-292 |#1| |#1|)))
-(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370))))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(-2813 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-918)))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-((((-572) |#2|) . T))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370))))
-(|has| |#1| (-356))
-(((|#3| |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
-(((|#2|) . T) (((-572)) . T))
-((($) . T) (((-415 (-572))) . T))
-((((-572) (-112)) . T))
-(|has| |#1| (-828))
-(|has| |#1| (-828))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)))
-(|has| |#1| (-856))
-(|has| |#1| (-856))
-(|has| |#1| (-856))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-572)) . T) (($) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-1188)) |has| |#1| (-909 (-1188))) (((-1093)) . T))
-(((|#1|) . T))
-(|has| |#1| (-856))
-(((#0=(-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) #0#) |has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(|has| |#1| (-1111))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-574)) . T) (($) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-1190)) |has| |#1| (-911 (-1190))) (((-1095)) . T))
+(((|#1|) . T))
+(|has| |#1| (-858))
+(((#0=(-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) #0#) |has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(|has| |#1| (-1113))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-((((-1153 |#2| (-415 (-961 |#1|)))) . T) (((-415 (-961 |#1|))) . T) (((-572)) . T))
-(((|#1| |#2| |#3| (-244 |#2| |#3|) (-244 |#1| |#3|)) . T))
+((((-1155 |#2| (-417 (-963 |#1|)))) . T) (((-417 (-963 |#1|))) . T) (((-574)) . T))
+(((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
-((($) . T) (((-572)) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
+((($) . T) (((-574)) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-539 |#2|) |#2|) . T))
-((((-870)) . T))
-((((-145)) . T) (((-870)) . T))
-((((-572) |#1|) . T))
-(((|#1| (-779) (-1093)) . T))
+(((|#1| (-541 |#2|) |#2|) . T))
+((((-872)) . T))
+((((-145)) . T) (((-872)) . T))
+((((-574) |#1|) . T))
+(((|#1| (-781) (-1095)) . T))
(((|#3|) . T))
((((-145)) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) -2813 (|has| |#1| (-856)) (|has| |#1| (-1049 (-572)))) ((|#1|) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) -2818 (|has| |#1| (-858)) (|has| |#1| (-1051 (-574)))) ((|#1|) . T))
(((|#1|) . T))
((((-145)) . T))
(((|#2|) |has| |#2| (-174)))
-(-2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
+(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113)))
(((|#1|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#3| (-174))
-(((|#4|) |has| |#4| (-370)))
-(((|#3|) |has| |#3| (-370)))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-370)))
-((((-870)) . T))
-((((-870)) . T))
-(((|#2|) . T))
-(((|#1| (-1184 |#1|)) . T))
-((((-1093)) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-((($) . T) ((|#1|) . T) (((-415 (-572))) . T) (((-572)) |has| |#1| (-647 (-572))))
-((($) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-((($) |has| |#1| (-564)))
-(((|#2|) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))))
-((($) |has| |#1| (-564)) ((|#1|) . T))
-((($) |has| |#1| (-856)))
-((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
-(|has| |#1| (-918))
-((((-1188)) . T))
-((((-870)) . T))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-572) |#2|) . T))
-((($) |has| |#1| (-237)))
-((($) |has| |#1| (-375)))
-((($) |has| |#1| (-375)))
-((($) |has| |#1| (-375)))
+(((|#4|) |has| |#4| (-372)))
+(((|#3|) |has| |#3| (-372)))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-372)))
+((((-872)) . T))
+((((-872)) . T))
+(((|#2|) . T))
+(((|#1| (-1186 |#1|)) . T))
+((((-1095)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+((($) . T) ((|#1|) . T) (((-417 (-574))) . T) (((-574)) |has| |#1| (-649 (-574))))
+((($) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+((($) |has| |#1| (-566)))
+(((|#2|) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))))
+((($) |has| |#1| (-566)) ((|#1|) . T))
+((($) |has| |#1| (-858)))
+((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)))
+(|has| |#1| (-920))
+((((-1190)) . T))
+((((-872)) . T))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-574) |#2|) . T))
+((($) |has| |#1| (-239)))
+((($) |has| |#1| (-377)))
+((($) |has| |#1| (-377)))
+((($) |has| |#1| (-377)))
(((|#1| |#2|) . T))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-918)))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((#0=(-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) #0#) |has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-918)))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-920)))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((#0=(-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) #0#) |has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-920)))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370))))
-(|has| |#1| (-858))
-(|has| |#1| (-564))
-((((-589 |#1|)) . T))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372))))
+(|has| |#1| (-860))
+(|has| |#1| (-566))
+((((-591 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-2813 (-12 (|has| |#1| (-370)) (|has| |#2| (-828))) (-12 (|has| |#1| (-370)) (|has| |#2| (-858))))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-((((-919 |#1|)) . T))
-(((|#1| (-504 |#1| |#3|) (-504 |#1| |#2|)) . T))
+(-2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) (-12 (|has| |#1| (-372)) (|has| |#2| (-860))))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+((((-921 |#1|)) . T))
+(((|#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-779)) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) . T))
-((((-572)) |has| #0=(-415 |#2|) (-647 (-572))) ((#0#) . T) (((-415 (-572))) . T) (($) . T))
-((((-680 |#1|)) . T))
+(((|#1| (-781)) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) . T))
+((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T))
+((((-682 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-544)) . T))
-((((-870)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-870)) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((((-1193)) . T))
-((((-415 (-572))) . T) (($) . T) (((-415 |#1|)) . T) ((|#1|) . T) (((-572)) . T))
-(((|#3|) . T) (((-572)) . T) (((-620 $)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-(((|#2|) . T))
-(-2813 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-375)) (|has| |#3| (-734)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)) (|has| |#3| (-1111)))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
-(|has| |#1| (-1214))
-(|has| |#1| (-1214))
-(-2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
-(|has| |#1| (-1214))
-(|has| |#1| (-1214))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((($ $) . T) ((#0=(-415 (-572)) #0#) . T) ((#1=(-415 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-((($) . T) (((-415 (-572))) . T) (((-415 |#1|)) . T) ((|#1|) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-546)) . T))
+((((-872)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-872)) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((((-1195)) . T))
+((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T))
+(((|#3|) . T) (((-574)) . T) (((-622 $)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+(((|#2|) . T))
+(-2818 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062)) (|has| |#3| (-1113)))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T))
+(|has| |#1| (-1216))
+(|has| |#1| (-1216))
+(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113)))
+(|has| |#1| (-1216))
+(|has| |#1| (-1216))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((($ $) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-417 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((($) . T) (((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T))
(((|#3| |#3|) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
(((|#3|) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-((((-1170) (-52)) . T))
-(|has| |#1| (-1111))
+((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((((-1172) (-52)) . T))
+(|has| |#1| (-1113))
(((|#1|) |has| |#1| (-174)) (($) . T))
-(-2813 (|has| |#2| (-828)) (|has| |#2| (-858)))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((((-572)) . T) (($) . T))
-((((-779)) . T))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-870)) . T))
-((($) . T) (((-572)) . T))
-((($) . T))
-(|has| |#2| (-918))
-(|has| |#1| (-370))
-(((|#2|) |has| |#2| (-1111)))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
-((((-544)) . T) (((-415 (-1184 (-572)))) . T) (((-227)) . T) (((-386)) . T))
-((((-386)) . T) (((-227)) . T) (((-870)) . T))
-(|has| |#1| (-918))
-(|has| |#1| (-918))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-(|has| |#1| (-918))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-918)))
-((($) . T))
-((($) . T) ((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370))))
-(((|#1|) . T))
-((((-1186 |#1| |#2| |#3|)) -12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-918)))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
-((((-870)) . T))
-((((-870)) . T))
-((((-982)) . T))
-((((-982)) . T) (((-870)) . T))
+(-2818 (|has| |#2| (-830)) (|has| |#2| (-860)))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-574)) . T) (($) . T))
+((((-781)) . T))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-872)) . T))
+((($) . T) (((-574)) . T))
+((($) . T))
+(|has| |#2| (-920))
+(|has| |#1| (-372))
+(((|#2|) |has| |#2| (-1113)))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+((((-546)) . T) (((-417 (-1186 (-574)))) . T) (((-227)) . T) (((-388)) . T))
+((((-388)) . T) (((-227)) . T) (((-872)) . T))
+(|has| |#1| (-920))
+(|has| |#1| (-920))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+(|has| |#1| (-920))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-920)))
+((($) . T))
+((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372))))
+(((|#1|) . T))
+((((-1188 |#1| |#2| |#3|)) -12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-920)))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174)))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
+((((-872)) . T))
+((((-872)) . T))
+((((-984)) . T))
+((((-984)) . T) (((-872)) . T))
((($ $) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((($) -2813 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (-12 (|has| |#1| (-370)) (|has| |#2| (-237)))))
-((($) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((($) -2818 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239)))))
+((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
((($ $) . T))
-((((-572) (-112)) . T))
+((((-574) (-112)) . T))
((($) . T))
(((|#1|) . T))
-((((-572)) . T))
+((((-574)) . T))
((((-112)) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
-(|has| |#1| (-38 (-415 (-572))))
-(((|#1| (-572)) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
+(|has| |#1| (-38 (-417 (-574))))
+(((|#1| (-574)) . T))
((($) . T))
-(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
+(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
(((|#1|) . T))
-((((-572)) . T))
+((((-574)) . T))
(((|#1| |#2|) . T))
-((((-1188)) |has| |#1| (-1060)))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
+((((-1190)) |has| |#1| (-1062)))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
(((|#1|) . T))
-((((-870)) . T))
-(((|#1| (-572)) . T))
-(((|#1| (-1271 |#1| |#2| |#3|)) . T))
+((((-872)) . T))
+(((|#1| (-574)) . T))
+(((|#1| (-1273 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-415 (-572))) . T))
-(((|#1| (-1243 |#1| |#2| |#3|)) . T))
-(((|#1| (-779)) . T))
+(((|#1| (-417 (-574))) . T))
+(((|#1| (-1245 |#1| |#2| |#3|)) . T))
+(((|#1| (-781)) . T))
(((|#1|) . T))
-((((-870)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(|has| |#1| (-1111))
-((((-1170) |#1|) . T))
+((((-872)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(|has| |#1| (-1113))
+((((-1172) |#1|) . T))
((($) . T))
(|has| |#2| (-148))
(|has| |#2| (-146))
-(((|#1| (-539 (-826 (-1188))) (-826 (-1188))) . T))
-((((-870)) . T))
-((((-1265 |#1| |#2| |#3| |#4|)) . T))
-((((-1265 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1060)))
-((((-572) (-112)) . T) (((-1246 (-572)) $) . T))
-((((-870)) |has| |#1| (-1111)))
-(((|#1|) . T) (((-572)) . T) (($) . T))
+(((|#1| (-541 (-828 (-1190))) (-828 (-1190))) . T))
+((((-872)) . T))
+((((-1267 |#1| |#2| |#3| |#4|)) . T))
+((((-1267 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1062)))
+((((-574) (-112)) . T) (((-1248 (-574)) $) . T))
+((((-872)) |has| |#1| (-1113)))
+(((|#1|) . T) (((-574)) . T) (($) . T))
(|has| |#2| (-174))
-((((-572)) . T))
-(|has| |#2| (-856))
+((((-574)) . T))
+(|has| |#2| (-858))
(((|#1|) . T))
-((((-572)) . T))
-((((-870)) . T))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-356)))
-((((-870)) . T))
+((((-574)) . T))
+((((-872)) . T))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-358)))
+((((-872)) . T))
(|has| |#1| (-148))
(((|#3|) . T))
-(-2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-((((-870)) . T))
-((($) |has| |#2| (-237)))
-((((-1264 |#2| |#3| |#4|)) . T) (((-1265 |#1| |#2| |#3| |#4|)) . T))
-((((-870)) . T))
-((((-48)) -12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (((-620 $)) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) -2813 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-415 (-961 |#1|))) |has| |#1| (-564)) (((-961 |#1|)) |has| |#1| (-1060)) (((-1188)) . T))
+(-2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+((((-872)) . T))
+((($) |has| |#2| (-239)))
+((((-1266 |#2| |#3| |#4|)) . T) (((-1267 |#1| |#2| |#3| |#4|)) . T))
+((((-872)) . T))
+((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (((-622 $)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) -2818 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-417 (-963 |#1|))) |has| |#1| (-566)) (((-963 |#1|)) |has| |#1| (-1062)) (((-1190)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-779)) . T))
+(((|#1| (-781)) . T))
(((|#1|) . T))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-315 |#1|)))
-((((-1265 |#1| |#2| |#3| |#4|)) . T))
-((((-572)) |has| |#1| (-895 (-572))) (((-386)) |has| |#1| (-895 (-386))))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-317 |#1|)))
+((((-1267 |#1| |#2| |#3| |#4|)) . T))
+((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-564))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+(|has| |#1| (-566))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
(((|#1|) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) . T))
-(((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T))
+(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
(((|#1|) |has| |#1| (-174)))
-((((-870)) . T))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
-(((|#1|) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
-(((|#3|) |has| |#3| (-1111)))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370))))
-((((-1264 |#2| |#3| |#4|)) . T))
+((((-872)) . T))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
+(((|#1|) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
+(((|#3|) |has| |#3| (-1113)))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372))))
+((((-1266 |#2| |#3| |#4|)) . T))
((((-112)) . T))
-(|has| |#1| (-828))
-(|has| |#1| (-828))
-(((|#1| (-572) (-1093)) . T))
-((($) |has| |#1| (-315 $)) ((|#1|) |has| |#1| (-315 |#1|)))
-(|has| |#1| (-856))
-(|has| |#1| (-856))
-(((|#1| (-572) (-1093)) . T))
-(-2813 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(((|#1| (-415 (-572)) (-1093)) . T))
-(((|#1| (-779) (-1093)) . T))
+(|has| |#1| (-830))
+(|has| |#1| (-830))
+(((|#1| (-574) (-1095)) . T))
+((($) |has| |#1| (-317 $)) ((|#1|) |has| |#1| (-317 |#1|)))
+(|has| |#1| (-858))
(|has| |#1| (-858))
-(((#0=(-919 |#1|) #0#) . T) (($ $) . T) ((#1=(-415 (-572)) #1#) . T))
+(((|#1| (-574) (-1095)) . T))
+(-2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(((|#1| (-417 (-574)) (-1095)) . T))
+(((|#1| (-781) (-1095)) . T))
+(|has| |#1| (-860))
+(((#0=(-921 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
(((|#2|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-1111))
-((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-(|has| |#1| (-1111))
-((((-415 (-572))) |has| |#2| (-370)) (($) . T) (((-572)) . T))
-((((-572)) -2813 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060))))
-(((|#1|) . T))
-(|has| |#1| (-1111))
-((((-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-647 (-572)))) ((|#2|) |has| |#1| (-370)))
-(-2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
-((((-697 (-346 (-2953) (-2953 (QUOTE X) (QUOTE HESS)) (-707)))) . T))
+(|has| |#1| (-1113))
+((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+(|has| |#1| (-1113))
+((((-417 (-574))) |has| |#2| (-372)) (($) . T) (((-574)) . T))
+((((-574)) -2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))))
+(((|#1|) . T))
+(|has| |#1| (-1113))
+((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((|#2|) |has| |#1| (-372)))
+(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113)))
+((((-699 (-348 (-2956) (-2956 (QUOTE X) (QUOTE HESS)) (-709)))) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
-((((-870)) . T))
-(|has| |#3| (-856))
-((((-870)) . T))
-((((-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) . T))
-((((-870)) . T))
-(((|#1| |#1|) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))))
-(((|#1|) . T))
-((((-572)) . T))
-((((-572)) . T))
-(((|#1|) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))))
-(((|#2|) |has| |#2| (-370)))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)) (((-572)) |has| |#1| (-647 (-572))))
-(|has| |#1| (-858))
-(((|#1|) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(((|#1|) . T) (((-572)) . T))
-(((|#2|) . T))
-((((-572)) . T) ((|#3|) . T))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) |has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-918)))
-(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-((((-870)) . T))
-((((-870)) . T))
-((($) -2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) (((-572)) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))))
-((((-544)) . T) (((-572)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
-((((-870)) . T))
-((($) |has| |#1| (-237)))
-(|has| |#1| (-38 (-415 (-572))))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((($) . T))
-(|has| |#1| (-237))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
+((((-872)) . T))
+(|has| |#3| (-858))
+((((-872)) . T))
+((((-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T))
+((((-872)) . T))
+(((|#1| |#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062))))
+(((|#1|) . T))
+((((-574)) . T))
+((((-574)) . T))
+(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062))))
+(((|#2|) |has| |#2| (-372)))
+(((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)) (((-574)) |has| |#1| (-649 (-574))))
+(|has| |#1| (-860))
+(((|#1|) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(((|#1|) . T) (((-574)) . T))
+(((|#2|) . T))
+((((-574)) . T) ((|#3|) . T))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) |has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-920)))
+(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((((-872)) . T))
+((((-872)) . T))
+((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) (((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))))
+((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
+((((-872)) . T))
+((($) |has| |#1| (-239)))
+(|has| |#1| (-38 (-417 (-574))))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((($) . T))
+(|has| |#1| (-239))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(|has| |#1| (-856))
-(((|#1| (-572)) . T))
+(|has| |#1| (-858))
+(((|#1| (-574)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| (-1186 |#1| |#2| |#3|)) . T))
+(((|#1| (-1188 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-415 (-572))) . T))
-(((|#1| |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) . T))
-(((|#1| (-1179 |#1| |#2| |#3|)) . T))
-(((|#1| (-779)) . T))
+(((|#1| (-417 (-574))) . T))
+(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T))
+(((|#1| (-1181 |#1| |#2| |#3|)) . T))
+(((|#1| (-781)) . T))
(((|#1|) . T))
-((((-415 (-961 |#1|))) . T))
+((((-417 (-963 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
-((((-415 (-961 |#1|))) . T))
+((((-417 (-963 |#1|))) . T))
(((|#1|) |has| |#1| (-174)))
(|has| |#1| (-146))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
(((|#1|) |has| |#1| (-174)))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-572)) . T) ((|#1|) . T) (($) . T) (((-415 (-572))) . T) (((-1188)) |has| |#1| (-1049 (-1188))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-574)) . T) ((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-1190)) |has| |#1| (-1051 (-1190))))
(((|#1| |#2|) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) -2813 (|has| |#1| (-856)) (|has| |#1| (-1049 (-572)))) ((|#1|) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) -2818 (|has| |#1| (-858)) (|has| |#1| (-1051 (-574)))) ((|#1|) . T))
((((-145)) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(((|#1|) . T))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) . T) (($ $) . T))
-(((|#2|) . T) ((|#1|) . T) (((-572)) . T))
-((((-870)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-((($) . T) (((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-(|has| (-415 |#2|) (-237))
-((((-652 |#1|)) . T))
-(|has| |#1| (-918))
-(((|#2|) |has| |#2| (-1060)))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
-(|has| |#1| (-370))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(((|#1|) . T))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T))
+(((|#2|) . T) ((|#1|) . T) (((-574)) . T))
+((((-872)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| (-417 |#2|) (-239))
+((((-654 |#1|)) . T))
+(|has| |#1| (-920))
+(((|#2|) |has| |#2| (-1062)))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
+(|has| |#1| (-372))
(((|#1|) |has| |#1| (-174)))
(((|#1| |#1|) . T))
-((((-878 |#1|)) . T))
-((((-870)) . T))
+((((-880 |#1|)) . T))
+((((-872)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1111)))
+(((|#2|) |has| |#2| (-1113)))
(((|#1|) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-((((-652 $)) . T) (((-1170)) . T) (((-1188)) . T) (((-572)) . T) (((-227)) . T) (((-870)) . T))
-((($) -2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060))) (((-572)) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-856)) (|has| |#3| (-1060))) ((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))))
-((((-415 (-572))) . T) (((-572)) . T) (((-620 $)) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+((((-654 $)) . T) (((-1172)) . T) (((-1190)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T))
+((($) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) (((-574)) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-858)) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))))
+((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T))
(((|#1|) . T))
-((((-870)) . T))
+((((-872)) . T))
((($) . T))
-(((|#1| (-539 |#2|) |#2|) . T))
-((((-870)) . T))
-(((|#1| (-572) (-1093)) . T))
-((((-919 |#1|)) . T))
-((((-870)) . T))
+(((|#1| (-541 |#2|) |#2|) . T))
+((((-872)) . T))
+(((|#1| (-574) (-1095)) . T))
+((((-921 |#1|)) . T))
+((((-872)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-415 (-572)) (-1093)) . T))
-(((|#1| (-779) (-1093)) . T))
-(((#0=(-415 |#2|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-572)) -2813 (|has| (-415 (-572)) (-1049 (-572))) (|has| |#1| (-1049 (-572)))) (((-415 (-572))) . T))
-(((|#1| (-610 |#1| |#3|) (-610 |#1| |#2|)) . T))
+(((|#1| (-417 (-574)) (-1095)) . T))
+(((|#1| (-781) (-1095)) . T))
+(((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-574)) -2818 (|has| (-417 (-574)) (-1051 (-574))) (|has| |#1| (-1051 (-574)))) (((-417 (-574))) . T))
+(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
-(|has| |#2| (-237))
-(((|#2| (-539 (-872 |#1|)) (-872 |#1|)) . T))
-((((-870)) . T))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+(|has| |#2| (-239))
+(((|#2| (-541 (-874 |#1|)) (-874 |#1|)) . T))
+((((-872)) . T))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) . T))
(((|#1| |#3|) . T))
-((((-870)) . T))
-(((|#1|) |has| |#1| (-174)) (((-961 |#1|)) . T) (((-572)) . T))
+((((-872)) . T))
+(((|#1|) |has| |#1| (-174)) (((-963 |#1|)) . T) (((-574)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-707)) . T))
-((((-707)) . T))
+((((-709)) . T))
+((((-709)) . T))
(((|#2|) |has| |#2| (-174)))
-(|has| |#2| (-856))
-((((-572)) . T) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
-((((-112)) |has| |#1| (-1111)) (((-870)) -2813 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)) (|has| |#1| (-1123)) (|has| |#1| (-1111))))
+(|has| |#2| (-858))
+((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))))
+((((-112)) |has| |#1| (-1113)) (((-872)) -2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)) (|has| |#1| (-1125)) (|has| |#1| (-1113))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-707)) . T) (((-415 (-572))) . T) (((-572)) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-709)) . T) (((-417 (-574))) . T) (((-574)) . T))
(((|#1| |#1|) |has| |#1| (-174)))
(((|#2|) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-((((-572) |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
-((((-386)) . T))
-((((-707)) . T))
-((((-415 (-572))) . #0=(|has| |#2| (-370))) (($) . #0#))
+((($) . T) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+((((-574) |#1|) . T))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
+((((-388)) . T))
+((((-709)) . T))
+((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#))
(((|#1|) |has| |#1| (-174)))
-((((-415 (-961 |#1|))) . T))
+((((-417 (-963 |#1|))) . T))
(((|#2| |#2|) . T))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#3|) |has| |#3| (-1060)))
-(|has| |#2| (-918))
-(|has| |#1| (-918))
-(|has| |#1| (-370))
-((($) . T))
-((((-1188)) |has| |#2| (-909 (-1188))))
-((((-870)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-415 (-572))) . T) (($) . T))
-(|has| |#1| (-481))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-370))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-481)) (|has| |#1| (-564)) (|has| |#1| (-1060)) (|has| |#1| (-1123)))
-((($) -2813 (|has| |#1| (-237)) (|has| |#1| (-356))))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#3|) |has| |#3| (-1062)))
+(|has| |#2| (-920))
+(|has| |#1| (-920))
+(|has| |#1| (-372))
+((($) . T))
+((((-1190)) |has| |#2| (-911 (-1190))))
+((((-872)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-417 (-574))) . T) (($) . T))
+(|has| |#1| (-483))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-372))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1062)) (|has| |#1| (-1125)))
+((($) -2818 (|has| |#1| (-239)) (|has| |#1| (-358))))
((((-117 |#1|)) . T))
((((-117 |#1|)) . T))
-(|has| |#1| (-356))
+(|has| |#1| (-358))
((((-145)) . T))
-(|has| |#1| (-38 (-415 (-572))))
-((($) . T) (((-572)) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(((|#2|) . T) (((-870)) . T))
-(((|#2|) . T) (((-870)) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-858))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
+(|has| |#1| (-38 (-417 (-574))))
+((($) . T) (((-574)) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(((|#2|) . T) (((-872)) . T))
+(((|#2|) . T) (((-872)) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-860))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-572)) . T))
+((($) . T) (((-574)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) ((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) ((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
(((|#2|) . T))
(((|#3|) . T))
((((-117 |#1|)) . T))
-(|has| |#1| (-375))
-(|has| |#1| (-858))
-(((|#2|) . T) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
+(|has| |#1| (-377))
+(|has| |#1| (-860))
+(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T))
((((-117 |#1|)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#1|) . T))
-((((-572)) . T))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-(|has| |#2| (-237))
-((((-870)) . T))
-((((-870)) . T))
-((((-544)) |has| |#1| (-622 (-544))) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))) (((-386)) . #0=(|has| |#1| (-1033))) (((-227)) . #0#))
-(((|#1|) |has| |#1| (-370)))
-((((-870)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((($ $) . T) (((-620 $) $) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-((($) . T) (((-1265 |#1| |#2| |#3| |#4|)) . T) (((-415 (-572))) . T))
-((($) -2813 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060))) ((|#1|) -2813 (|has| |#1| (-174)) (|has| |#1| (-1060))) (((-415 (-572))) |has| |#1| (-564)) (((-572)) -12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))
-((($) . T) (((-572)) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) . T))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-((((-386)) . T) (((-572)) . T) (((-415 (-572))) . T))
-((((-652 (-788 |#1| (-872 |#2|)))) . T) (((-870)) . T))
-((((-544)) |has| (-788 |#1| (-872 |#2|)) (-622 (-544))))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-386)) . T))
+((((-574)) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#2| (-239))
+((((-872)) . T))
+((((-872)) . T))
+((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#1| (-1035))) (((-227)) . #0#))
+(((|#1|) |has| |#1| (-372)))
+((((-872)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((($ $) . T) (((-622 $) $) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+((($) . T) (((-1267 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T))
+((($) -2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) ((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-1062))) (((-417 (-574))) |has| |#1| (-566)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))
+((($) . T) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+((((-388)) . T) (((-574)) . T) (((-417 (-574))) . T))
+((((-654 (-790 |#1| (-874 |#2|)))) . T) (((-872)) . T))
+((((-546)) |has| (-790 |#1| (-874 |#2|)) (-624 (-546))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-388)) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
+(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))
(((|#1|) |has| |#1| (-174)))
-((((-870)) . T))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-918)))
-(((|#1|) . T))
-((($) . T))
-((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-544)) |has| |#1| (-622 (-544))))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
-((((-779)) . T))
-(|has| |#1| (-1111))
-((($) -2813 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) (((-572)) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))))
-((((-870)) . T))
-((((-1188)) . T) (((-870)) . T))
-((((-572)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
-((((-415 (-572))) . T) (((-572)) . T) (((-620 $)) . T))
+((((-872)) . T))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-920)))
+(((|#1|) . T))
+((($) . T))
+((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-546)) |has| |#1| (-624 (-546))))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
+((((-781)) . T))
+(|has| |#1| (-1113))
+((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) (((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))))
+((((-872)) . T))
+((((-1190)) . T) (((-872)) . T))
+((((-574)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
+((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-572)) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(((#0=(-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))) (($) . T))
-((((-572)) . T))
-((($) . T))
-(|has| |#1| (-370))
-(-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-148)) (|has| |#1| (-370))) (|has| |#1| (-148)))
-(-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-146)) (|has| |#1| (-370))) (|has| |#1| (-146)))
-(|has| |#1| (-370))
+((((-574)) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(((#0=(-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (($) . T))
+((((-574)) . T))
+((($) . T))
+(|has| |#1| (-372))
+(-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148)))
+(-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146)))
+(|has| |#1| (-372))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(|has| |#1| (-237))
-(|has| |#1| (-370))
+(|has| |#1| (-239))
+(|has| |#1| (-372))
(((|#3|) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-572)) |has| |#2| (-647 (-572))) ((|#2|) . T))
-((((-572) |#1|) |has| |#2| (-425 |#1|)))
-((((-572) |#1|) |has| |#2| (-425 |#1|)))
-(((|#2|) . T) (($) . T) (((-572)) . T))
-(((|#2|) . T))
-((((-415 (-572))) . #0=(|has| |#2| (-370))) (($) . #0#))
-((((-415 (-572))) |has| |#2| (-370)) (($) . T))
-(|has| |#1| (-1111))
-((((-1153 |#2| |#1|)) . T) ((|#1|) . T) (((-572)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-574)) |has| |#2| (-649 (-574))) ((|#2|) . T))
+((((-574) |#1|) |has| |#2| (-427 |#1|)))
+((((-574) |#1|) |has| |#2| (-427 |#1|)))
+(((|#2|) . T) (($) . T) (((-574)) . T))
+(((|#2|) . T))
+((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#))
+((((-417 (-574))) |has| |#2| (-372)) (($) . T))
+(|has| |#1| (-1113))
+((((-1155 |#2| |#1|)) . T) ((|#1|) . T) (((-574)) . T))
(((|#1| |#2|) . T))
-((((-572)) . T) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))
-(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
+((((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574))))))
+(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
(((|#3|) |has| |#3| (-174)))
-(((|#2|) . T) (($) . T) (((-572)) . T))
-(((|#1|) . T) (($) . T) (((-572)) . T))
-(-2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
-((((-870)) . T))
-((((-572)) . T))
-(((|#1| $) |has| |#1| (-292 |#1| |#1|)))
-((((-415 (-572))) . T) (($) . T) (((-415 |#1|)) . T) ((|#1|) . T))
-((((-961 |#1|)) . T) (((-870)) . T))
+(((|#2|) . T) (($) . T) (((-574)) . T))
+(((|#1|) . T) (($) . T) (((-574)) . T))
+(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113)))
+((((-872)) . T))
+((((-574)) . T))
+(((|#1| $) |has| |#1| (-294 |#1| |#1|)))
+((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T))
+((((-963 |#1|)) . T) (((-872)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -2813 (|has| |#1| (-296)) (|has| |#1| (-370))) ((#0=(-415 (-572)) #0#) |has| |#1| (-370)))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) . T))
-((((-961 |#1|)) . T))
-((($) . T))
-((((-572) |#1|) . T))
-((((-1188)) |has| (-415 |#2|) (-909 (-1188))))
-(((|#1|) . T) (($) -2813 (|has| |#1| (-296)) (|has| |#1| (-370))) (((-415 (-572))) |has| |#1| (-370)))
-((((-544)) |has| |#2| (-622 (-544))))
-((((-697 |#2|)) . T) (((-870)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-((((-878 |#1|)) . T))
+(((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-298)) (|has| |#1| (-372))) ((#0=(-417 (-574)) #0#) |has| |#1| (-372)))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) . T))
+((((-963 |#1|)) . T))
+((($) . T))
+((((-574) |#1|) . T))
+((((-1190)) |has| (-417 |#2|) (-911 (-1190))))
+(((|#1|) . T) (($) -2818 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372)))
+((((-546)) |has| |#2| (-624 (-546))))
+((((-699 |#2|)) . T) (((-872)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+((((-880 |#1|)) . T))
(((|#1|) |has| |#1| (-174)))
-(-2813 (|has| |#4| (-801)) (|has| |#4| (-856)))
-(-2813 (|has| |#3| (-801)) (|has| |#3| (-856)))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-870)) . T))
-((((-870)) . T))
-(((|#1|) . T))
-((($) . T) (((-572)) . T) ((|#2|) . T))
-(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370))))
-(((|#2|) |has| |#2| (-1060)))
+(-2818 (|has| |#4| (-803)) (|has| |#4| (-858)))
+(-2818 (|has| |#3| (-803)) (|has| |#3| (-858)))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-872)) . T))
+((((-872)) . T))
+(((|#1|) . T))
+((($) . T) (((-574)) . T) ((|#2|) . T))
+(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372))))
+(((|#2|) |has| |#2| (-1062)))
(((|#3|) . T))
((($) . T))
(((|#1|) . T))
-((((-415 |#2|)) . T))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370))))
+((((-417 |#2|)) . T))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372))))
(((|#1|) . T))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
-(((|#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174)))
+(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) . T) (($) . T))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-1233)))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) . T) (($) . T))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-1235)))
((($) . T))
-((((-415 (-572))) |has| #0=(-415 |#2|) (-1049 (-415 (-572)))) (((-572)) |has| #0# (-1049 (-572))) ((#0#) . T))
-(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-(((|#1| (-779)) . T))
+((((-417 (-574))) |has| #0=(-417 |#2|) (-1051 (-417 (-574)))) (((-574)) |has| #0# (-1051 (-574))) ((#0#) . T))
+(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+(((|#1| (-781)) . T))
+(|has| |#1| (-860))
+(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+((((-574)) . T))
+(|has| |#1| (-38 (-417 (-574))))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) |has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
(|has| |#1| (-858))
-(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-((((-572)) . T))
-(|has| |#1| (-38 (-415 (-572))))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) |has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(|has| |#1| (-856))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-572) $) . T) (((-652 (-572)) $) . T))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| (-415 |#2|) (-237))
-(|has| |#1| (-356))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-1170)) . T) (((-514)) . T) (((-227)) . T) (((-572)) . T))
-((((-870)) . T))
-(((|#2|) . T) (((-572)) . T) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) (((-1093)) . T) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-574) $) . T) (((-654 (-574)) $) . T))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| (-417 |#2|) (-239))
+(|has| |#1| (-358))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-1172)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T))
+((((-872)) . T))
+(((|#2|) . T) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) (((-1095)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))
(((|#1| |#2|) . T))
((((-145)) . T))
-((((-788 |#1| (-872 |#2|))) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-(|has| |#1| (-1214))
-((((-870)) . T))
-(((|#1|) . T))
-(-2813 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-375)) (|has| |#3| (-734)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)) (|has| |#3| (-1111)))
-((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)))
-(((|#2|) . T))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-((((-919 |#1|)) . T))
-((($) . T))
-((($) -12 (|has| |#4| (-237)) (|has| |#4| (-1060))))
-((($) -12 (|has| |#3| (-237)) (|has| |#3| (-1060))))
-((((-415 (-961 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-544)) |has| |#4| (-622 (-544))))
-((((-870)) . T) (((-652 |#4|)) . T))
-(|has| |#1| (-856))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(|has| |#1| (-1111))
-(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) |has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))))
-(|has| |#1| (-370))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370))))
-((((-680 |#1|)) . T))
-(((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($) |has| |#3| (-174)))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
+((((-790 |#1| (-874 |#2|))) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+(|has| |#1| (-1216))
+((((-872)) . T))
+(((|#1|) . T))
+(-2818 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062)) (|has| |#3| (-1113)))
+((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)))
+(((|#2|) . T))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+((((-921 |#1|)) . T))
+((($) . T))
+((($) -12 (|has| |#4| (-239)) (|has| |#4| (-1062))))
+((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1062))))
+((((-417 (-963 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-546)) |has| |#4| (-624 (-546))))
+((((-872)) . T) (((-654 |#4|)) . T))
+(|has| |#1| (-858))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(|has| |#1| (-1113))
+(((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) |has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))))
+(|has| |#1| (-372))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372))))
+((((-682 |#1|)) . T))
+(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($) |has| |#3| (-174)))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-148)) (|has| |#1| (-370))) (|has| |#1| (-148)))
-(-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-146)) (|has| |#1| (-370))) (|has| |#1| (-146)))
+(-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148)))
+(-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146)))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
-(|has| |#1| (-856))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)))
+(|has| |#1| (-858))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
-((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-(|has| |#1| (-1111))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T) (((-572)) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (((-572)) . T))
+(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
+((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+(|has| |#1| (-1113))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-574)) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (((-574)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-(|has| |#1| (-1111))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+(|has| |#1| (-1113))
(((|#2|) |has| |#2| (-174)))
-((((-572)) . T) ((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-572)) . T))
+((((-574)) . T) ((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-574)) . T))
(((|#2|) . T))
(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-370)))
-((((-415 |#2|)) . T))
-((((-870)) . T))
-(((|#1|) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((|#1| |#1|) |has| |#1| (-315 |#1|)))
-(((|#1|) -2813 (|has| |#1| (-174)) (|has| |#1| (-370))))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-((((-322 |#1|)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#2|) |has| |#2| (-370)))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-(((|#2|) . T))
-((((-415 (-572))) . T) (((-707)) . T) (($) . T))
-((($) . T) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((#0=(-788 |#1| (-872 |#2|)) #0#) |has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))))
-((($) |has| |#1| (-237)))
-((((-572)) . T) (($) . T))
-((((-872 |#1|)) . T))
+(((|#3|) |has| |#3| (-372)))
+((((-417 |#2|)) . T))
+((((-872)) . T))
+(((|#1|) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|)))
+(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372))))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+((((-324 |#1|)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#2|) |has| |#2| (-372)))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+(((|#2|) . T))
+((((-417 (-574))) . T) (((-709)) . T) (($) . T))
+((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((#0=(-790 |#1| (-874 |#2|)) #0#) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))))
+((($) |has| |#1| (-239)))
+((((-574)) . T) (($) . T))
+((((-874 |#1|)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
(((|#2|) . T))
-((((-1188)) |has| |#1| (-909 (-1188))) (((-1093)) . T))
-((((-1188)) |has| |#1| (-909 (-1188))) (((-1099 (-1188))) . T))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
-((((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(|has| |#1| (-38 (-415 (-572))))
-(((|#4|) |has| |#4| (-1060)) (((-572)) -12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))))
-(((|#3|) |has| |#3| (-1060)) (((-572)) -12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))))
+((((-1190)) |has| |#1| (-911 (-1190))) (((-1095)) . T))
+((((-1190)) |has| |#1| (-911 (-1190))) (((-1101 (-1190))) . T))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
+((((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(|has| |#1| (-38 (-417 (-574))))
+(((|#4|) |has| |#4| (-1062)) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062))))
+(((|#3|) |has| |#3| (-1062)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062))))
(|has| |#1| (-146))
(|has| |#1| (-148))
((($ $) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)) (|has| |#1| (-1123)) (|has| |#1| (-1111)))
-(|has| |#1| (-564))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)) (|has| |#1| (-1125)) (|has| |#1| (-1113)))
+(|has| |#1| (-566))
(((|#2|) . T))
-((((-572)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
+((((-574)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
(((|#1|) . T))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062)))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
-((((-589 |#1|)) . T))
+((((-591 |#1|)) . T))
((($) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-870)) . T))
-(((|#2|) |has| |#2| (-6 (-4456 "*"))))
+((((-872)) . T))
+(((|#2|) |has| |#2| (-6 (-4458 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#3|) . T))
((($) . T))
-(((|#2|) . T) (((-572)) . T) (($) . T))
+(((|#2|) . T) (((-574)) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) . T) (((-572)) . T))
-((((-1264 |#2| |#3| |#4|)) . T) (((-572)) . T) (((-1265 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-415 (-572))) . T))
-((((-48)) -12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (((-572)) -2813 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))) (|has| |#1| (-1060))) ((|#1|) . T) (((-620 $)) . T) (($) |has| |#1| (-564)) (((-415 (-572))) -2813 (|has| |#1| (-564)) (|has| |#1| (-1049 (-415 (-572))))) (((-415 (-961 |#1|))) |has| |#1| (-564)) (((-961 |#1|)) |has| |#1| (-1060)) (((-1188)) . T))
-((((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) (((-572)) |has| |#2| (-1049 (-572))) ((|#2|) . T) (((-872 |#1|)) . T))
-((($) . T) (((-117 |#1|)) . T) (((-415 (-572))) . T))
-((((-1136 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-((((-1184 |#1|)) . T) (((-1093)) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-((((-1136 |#1| (-1188))) . T) (((-1099 (-1188))) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-1188)) . T))
-(|has| |#1| (-1111))
+(((|#3|) . T) (((-574)) . T))
+((((-1266 |#2| |#3| |#4|)) . T) (((-574)) . T) (((-1267 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T))
+((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (((-574)) -2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))) (|has| |#1| (-1062))) ((|#1|) . T) (((-622 $)) . T) (($) |has| |#1| (-566)) (((-417 (-574))) -2818 (|has| |#1| (-566)) (|has| |#1| (-1051 (-417 (-574))))) (((-417 (-963 |#1|))) |has| |#1| (-566)) (((-963 |#1|)) |has| |#1| (-1062)) (((-1190)) . T))
+((((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) (((-574)) |has| |#2| (-1051 (-574))) ((|#2|) . T) (((-874 |#1|)) . T))
+((($) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T))
+((((-1138 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+((((-1186 |#1|)) . T) (((-1095)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+((((-1138 |#1| (-1190))) . T) (((-1101 (-1190))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-1190)) . T))
+(|has| |#1| (-1113))
((($) . T))
-(|has| |#1| (-1111))
-((((-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#2| (-895 (-572)))) (((-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#2| (-895 (-386)))))
+(|has| |#1| (-1113))
+((((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))) (((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388)))))
(((|#1| |#2|) . T))
-((((-1188) |#1|) . T))
+((((-1190) |#1|) . T))
(((|#4|) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-((((-1188) (-52)) . T))
-(|has| |#1| (-237))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
-((((-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) . T))
-((((-870)) . T))
-(-2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
-(((#0=(-1265 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-415 (-572)) #0#) |has| |#1| (-564)) (($ $) |has| |#1| (-564)))
-((($) |has| |#1| (-15 * (|#1| (-572) |#1|))))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1| $) |has| |#1| (-292 |#1| |#1|)))
-((((-1265 |#1| |#2| |#3| |#4|)) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-564)) (($) |has| |#1| (-564)))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1|) . T))
-(|has| |#1| (-370))
-((($) |has| |#1| (-856)) (((-572)) -2813 (|has| |#1| (-21)) (|has| |#1| (-856))))
-((($) -2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))
-((($) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))
-((($) |has| |#1| (-15 * (|#1| (-779) |#1|))))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+((((-1190) (-52)) . T))
+(|has| |#1| (-239))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T))
+((((-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T))
+((((-872)) . T))
+(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113)))
+(((#0=(-1267 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-417 (-574)) #0#) |has| |#1| (-566)) (($ $) |has| |#1| (-566)))
+((($) |has| |#1| (-15 * (|#1| (-574) |#1|))))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1| $) |has| |#1| (-294 |#1| |#1|)))
+((((-1267 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566)))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T))
+(|has| |#1| (-372))
+((($) |has| |#1| (-858)) (((-574)) -2818 (|has| |#1| (-21)) (|has| |#1| (-858))))
+((($) -2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))
+((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
+((($) |has| |#1| (-15 * (|#1| (-781) |#1|))))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-415 (-572))) . T) (($) . T))
-(((|#3|) |has| |#3| (-370)))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
-((((-1188)) . T))
-((($) . T) (((-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| (-1264 |#2| |#3| |#4|) (-38 (-415 (-572)))) (((-572)) . T))
+((((-417 (-574))) . T) (($) . T))
+(((|#3|) |has| |#3| (-372)))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
+((((-1190)) . T))
+((($) . T) (((-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| (-1266 |#2| |#3| |#4|) (-38 (-417 (-574)))) (((-574)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
(((|#2| |#3|) . T))
-(-2813 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-(((|#1| (-539 |#2|)) . T))
-(((|#1| (-779)) . T))
-(((|#1| (-539 (-1099 (-1188)))) . T))
+(-2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+(((|#1| (-541 |#2|)) . T))
+(((|#1| (-781)) . T))
+(((|#1| (-541 (-1101 (-1190)))) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(|has| |#2| (-918))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-((((-870)) . T))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370))))
-(((|#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
-((($ $) . T) ((#0=(-1264 |#2| |#3| |#4|) #0#) . T) ((#1=(-415 (-572)) #1#) |has| #0# (-38 (-415 (-572)))))
-((((-919 |#1|)) . T))
-(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
-((((-572)) . T) (($) . T) (((-415 (-572))) . T))
-((((-870)) . T))
-((($) . T) (((-572)) . T))
-((($) . T))
-(-2813 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564)))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
+(|has| |#2| (-920))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+((((-872)) . T))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372))))
+(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174)))
+((($ $) . T) ((#0=(-1266 |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) |has| #0# (-38 (-417 (-574)))))
+((((-921 |#1|)) . T))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
+((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-872)) . T))
+((($) . T) (((-574)) . T))
+((($) . T))
+(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566)))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
-((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
-(-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370)) (|has| |#1| (-356)))
-(-2813 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
-((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
+((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
+((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)))
+(-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372)) (|has| |#1| (-358)))
+(-2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))
+((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-870)) . T))
-((((-870)) . T))
+((((-872)) . T))
+((((-872)) . T))
((((-112)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) . T))
+(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T))
(((|#2|) . T))
-(|has| |#2| (-370))
-(|has| |#1| (-858))
+(|has| |#2| (-372))
+(|has| |#1| (-860))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-572)) . T))
+((((-574)) . T))
(((|#1|) . T))
-((((-870)) . T))
+((((-872)) . T))
(((|#2|) |has| |#2| (-174)))
-(|has| |#1| (-1111))
+(|has| |#1| (-1113))
(((|#1|) |has| |#1| (-174)))
(((|#2|) . T))
(((|#1|) . T))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-415 (-572))) . T) (((-415 |#1|)) . T) ((|#1|) . T) (((-572)) . T) (($) . T))
-(((|#3|) . T) (((-572)) . T) (($) . T))
-((((-415 $) (-415 $)) |has| |#1| (-564)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-828))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T) (($) . T))
+(((|#3|) . T) (((-574)) . T) (($) . T))
+((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-830))
((($) . T))
(((|#4|) . T))
((($) . T))
((($ $) . T))
-((((-870)) . T))
-(((|#1| (-539 (-1188))) . T))
+((((-872)) . T))
+(((|#1| (-541 (-1190))) . T))
((($) . T))
(((|#1|) |has| |#1| (-174)))
-((((-870)) . T))
+((((-872)) . T))
(((|#2|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
(((|#2|) . T))
-(((|#2|) -2813 (|has| |#2| (-6 (-4456 "*"))) (|has| |#2| (-174))))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(|has| |#2| (-918))
-(|has| |#1| (-918))
-((($) -12 (|has| |#2| (-237)) (|has| |#2| (-1060))))
+(((|#2|) -2818 (|has| |#2| (-6 (-4458 "*"))) (|has| |#2| (-174))))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(|has| |#2| (-920))
+(|has| |#1| (-920))
+((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1062))))
(((|#2|) |has| |#2| (-174)))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
-((((-870)) . T))
-((((-870)) . T))
-((((-544)) . T) (((-572)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)))
+((((-872)) . T))
+((((-872)) . T))
+((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-572)) . T))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) . T))
+((($) . T) (((-574)) . T))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) . T))
(((|#1|) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-870)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-872)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-572)) . T))
-(((|#1| (-415 (-572))) . T))
+((($) . T) (((-574)) . T))
+(((|#1| (-417 (-574))) . T))
(((|#1|) . T))
-(-2813 (|has| |#1| (-296)) (|has| |#1| (-370)))
+(-2818 (|has| |#1| (-298)) (|has| |#1| (-372)))
((((-145)) . T))
-((((-572)) |has| #0=(-415 |#2|) (-647 (-572))) ((#0#) . T) (((-415 (-572))) . T) (($) . T))
-(|has| |#1| (-856))
-((((-870)) . T))
-((((-870)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1| |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) . T))
+((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T))
+(|has| |#1| (-858))
+((((-872)) . T))
+((((-872)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-189)) . T) (((-870)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-189)) . T) (((-872)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-544)) |has| |#1| (-622 (-544))) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))))
-((((-1188) (-52)) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-652 (-145))) . T) (((-1170)) . T))
-((((-870)) . T))
-((((-1170)) . T))
-((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((|#1| |#1|) |has| |#1| (-315 |#1|)))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))))
+((((-1190) (-52)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-654 (-145))) . T) (((-1172)) . T))
+((((-872)) . T))
+((((-1172)) . T))
+((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|)))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
+(|has| |#1| (-860))
+((($) -2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))
+((((-872)) . T))
+((((-546)) |has| |#1| (-624 (-546))))
+((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
+((($) |has| |#1| (-15 * (|#1| (-781) |#1|))))
+((((-872)) . T))
+(((|#2|) |has| |#2| (-372)))
+((((-872)) . T))
+((((-546)) |has| |#4| (-624 (-546))))
+((((-872)) . T) (((-654 |#4|)) . T))
+(((|#2|) . T))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T))
+(-2818 (|has| |#4| (-174)) (|has| |#4| (-736)) (|has| |#4| (-858)) (|has| |#4| (-1062)))
+(-2818 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+((((-1190) (-52)) . T))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(|has| |#1| (-920))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+(|has| |#1| (-920))
+(((|#1|) . T) (((-574)) . T) (((-417 (-574))) . T) (($) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-872)) . T))
+((((-574)) . T))
+(((#0=(-417 (-574)) #0#) . T) (($ $) . T))
+((((-417 (-574))) . T) (($) . T))
+(((|#1| (-417 (-574)) (-1095)) . T))
+(|has| |#1| (-1113))
+(|has| |#1| (-566))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(|has| |#1| (-830))
+(((#0=(-921 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T))
+((((-417 |#2|)) . T))
(|has| |#1| (-858))
-((($) -2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))
-((((-870)) . T))
-((((-544)) |has| |#1| (-622 (-544))))
-((($) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))
-((($) |has| |#1| (-15 * (|#1| (-779) |#1|))))
-((((-870)) . T))
-(((|#2|) |has| |#2| (-370)))
-((((-870)) . T))
-((((-544)) |has| |#4| (-622 (-544))))
-((((-870)) . T) (((-652 |#4|)) . T))
-(((|#2|) . T))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T) (((-620 $)) . T))
-(-2813 (|has| |#4| (-174)) (|has| |#4| (-734)) (|has| |#4| (-856)) (|has| |#4| (-1060)))
-(-2813 (|has| |#3| (-174)) (|has| |#3| (-734)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-((((-1188) (-52)) . T))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(|has| |#1| (-918))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-(|has| |#1| (-918))
-(((|#1|) . T) (((-572)) . T) (((-415 (-572))) . T) (($) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-870)) . T))
-((((-572)) . T))
-(((#0=(-415 (-572)) #0#) . T) (($ $) . T))
-((((-415 (-572))) . T) (($) . T))
-(((|#1| (-415 (-572)) (-1093)) . T))
-(|has| |#1| (-1111))
-(|has| |#1| (-564))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(|has| |#1| (-828))
-(((#0=(-919 |#1|) #0#) . T) (($ $) . T) ((#1=(-415 (-572)) #1#) . T))
-((((-415 |#2|)) . T))
-(|has| |#1| (-856))
-((((-1215 |#1|)) . T) (((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-(((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) . T) ((#1=(-572) #1#) . T) (($ $) . T))
-((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-(((|#2|) |has| |#2| (-1060)) (((-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-1217 |#1|)) . T) (((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+(((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-574) #1#) . T) (($ $) . T))
+((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+(((|#2|) |has| |#2| (-1062)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
(((|#2|) . T))
-((((-870)) . T))
-((((-415 (-572))) . T) (((-707)) . T) (($) . T) (((-572)) . T))
+((((-872)) . T))
+((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#2|) . T))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) . T))
-((((-572) |#3|) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3690 (-1188)) (|:| -1907 #0#))) . T))
-(|has| |#1| (-356))
-((((-572)) . T))
-((((-870)) . T))
-(((|#1|) . T))
-(((#0=(-1265 |#1| |#2| |#3| |#4|) $) |has| #0# (-292 #0# #0#)))
-(|has| |#1| (-370))
-(((|#1|) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))) (($) -2813 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060))) (((-572)) -2813 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060))))
-(((#0=(-1093) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-(((#0=(-415 (-572)) #0#) . T) ((#1=(-707) #1#) . T) (($ $) . T))
-((((-322 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)))
-((((-870)) . T))
-(|has| |#1| (-1111))
-(((|#1|) . T))
-(((|#1|) -2813 (|has| |#2| (-374 |#1|)) (|has| |#2| (-425 |#1|))))
-(((|#1|) -2813 (|has| |#2| (-374 |#1|)) (|has| |#2| (-425 |#1|))))
-(((|#2|) . T))
-((((-415 (-572))) . T) (((-707)) . T) (($) . T))
-((((-587)) . T))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) . T))
+((((-574) |#3|) . T))
+(((#0=(-52)) . T) (((-2 (|:| -3693 (-1190)) (|:| -1909 #0#))) . T))
+(|has| |#1| (-358))
+((((-574)) . T))
+((((-872)) . T))
+(((|#1|) . T))
+(((#0=(-1267 |#1| |#2| |#3| |#4|) $) |has| #0# (-294 #0# #0#)))
+(|has| |#1| (-372))
+(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062))) (($) -2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))) (((-574)) -2818 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))))
+(((#0=(-1095) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+(((#0=(-417 (-574)) #0#) . T) ((#1=(-709) #1#) . T) (($ $) . T))
+((((-324 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)))
+((((-872)) . T))
+(|has| |#1| (-1113))
+(((|#1|) . T))
+(((|#1|) -2818 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|))))
+(((|#1|) -2818 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|))))
+(((|#2|) . T))
+((((-417 (-574))) . T) (((-709)) . T) (($) . T))
+((((-589)) . T))
(((|#3| |#3|) . T))
-(|has| |#2| (-237))
-((((-872 |#1|)) . T))
-((((-1188)) |has| |#1| (-909 (-1188))) ((|#3|) . T))
-((((-652 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-370)) (|has| |#2| (-1033)))
-((((-415 (-572))) . T) (($) . T))
-((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
-((($) . T) (((-415 (-572))) . T))
-((((-870)) . T))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-((((-415 (-572))) . T) (($) . T) (((-415 |#1|)) . T) ((|#1|) . T))
-((((-572)) . T) (((-117 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((((-572)) . T))
+(|has| |#2| (-239))
+((((-874 |#1|)) . T))
+((((-1190)) |has| |#1| (-911 (-1190))) ((|#3|) . T))
+((((-654 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-1035)))
+((((-417 (-574))) . T) (($) . T))
+((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)))
+((($) . T) (((-417 (-574))) . T))
+((((-872)) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T))
+((((-574)) . T) (((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((((-574)) . T))
(((|#3|) . T))
-(|has| |#1| (-1111))
+(|has| |#1| (-1113))
(((|#2|) . T))
(((|#1|) . T))
-((($) |has| |#1| (-237)))
-((((-572)) . T))
-(((|#2|) . T) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (($) . T) (((-572)) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
+((($) |has| |#1| (-239)))
+((((-574)) . T))
+(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (($) . T) (((-574)) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
(((|#1| |#2|) . T))
((($) . T))
-((((-589 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((($) . T) (((-415 (-572))) . T))
+((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((($) . T) (((-417 (-574))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-572)) . T))
-(((|#1|) . T) (((-572)) . T))
-(((|#1| (-1279 |#1|) (-1279 |#1|)) . T))
+(((|#1|) . T) (((-574)) . T))
+(((|#1|) . T) (((-574)) . T))
+(((|#1| (-1281 |#1|) (-1281 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-870)) . T))
-((((-870)) . T))
+((((-872)) . T))
+((((-872)) . T))
(((|#2|) . T))
(((|#3|) . T))
-(((#0=(-117 |#1|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
-((((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) (((-572)) |has| |#2| (-1049 (-572))) ((|#2|) . T) (((-872 |#1|)) . T))
-((((-1136 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#2|) . T))
+(((#0=(-117 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
+((((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) (((-574)) |has| |#2| (-1051 (-574))) ((|#2|) . T) (((-874 |#1|)) . T))
+((((-1138 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T))
((($ $) . T))
-((((-680 |#1|)) . T))
-((($) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-((((-117 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((((-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))) (((-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386)))))
+((((-682 |#1|)) . T))
+((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((((-117 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) (((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))))
(((|#2|) . T) ((|#6|) . T))
-((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
+((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
((((-145)) . T))
((($) . T))
-((($) . T) (((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-386)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-((($) . T) (((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T))
-(|has| |#2| (-918))
-(|has| |#1| (-237))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-918))
-(|has| |#1| (-918))
+((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-388)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T))
+(|has| |#2| (-920))
+(|has| |#1| (-239))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-920))
+(|has| |#1| (-920))
(((|#4|) . T))
-(|has| |#2| (-1033))
+(|has| |#2| (-1035))
((($) . T))
-(|has| |#1| (-918))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
+(|has| |#1| (-920))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
-(|has| |#1| (-370))
-((((-919 |#1|)) . T))
-((($) . T) (((-572)) . T) ((|#1|) . T) (((-415 (-572))) . T))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) |has| |#1| (-856)) (((-572)) -2813 (|has| |#1| (-21)) (|has| |#1| (-856))))
-((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-(-2813 (|has| |#1| (-375)) (|has| |#1| (-858)))
-(((|#1|) . T))
-((((-779)) . T))
-((((-870)) . T))
-((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
-((((-415 |#2|) |#3|) . T))
-((($) . T) (((-415 (-572))) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T) (((-620 $)) . T))
-((((-572)) . T) (($) . T))
-((((-572)) . T) (($) . T))
-((((-779) |#1|) . T))
-(((|#2| (-244 (-2860 |#1|) (-779))) . T))
-(((|#1| (-539 |#3|)) . T))
-((((-415 (-572))) . T))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((((-1170)) . T) (((-870)) . T))
-(((#0=(-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) #0#) |has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))))
-((((-1170)) . T))
-(|has| |#1| (-918))
-(|has| |#2| (-370))
-(((|#1|) . T) (($) . T) (((-572)) . T))
-(-2813 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-((((-171 (-386))) . T) (((-227)) . T) (((-386)) . T))
-((((-870)) . T))
-(((|#1|) . T))
-((((-386)) . T) (((-572)) . T))
-(((#0=(-415 (-572)) #0#) . T) (($ $) . T))
+(|has| |#1| (-372))
+((((-921 |#1|)) . T))
+((($) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) . T))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) |has| |#1| (-858)) (((-574)) -2818 (|has| |#1| (-21)) (|has| |#1| (-858))))
+((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+(-2818 (|has| |#1| (-377)) (|has| |#1| (-860)))
+(((|#1|) . T))
+((((-781)) . T))
+((((-872)) . T))
+((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190)))))
+((((-417 |#2|) |#3|) . T))
+((($) . T) (((-417 (-574))) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T))
+((((-574)) . T) (($) . T))
+((((-574)) . T) (($) . T))
+((((-781) |#1|) . T))
+(((|#2| (-246 (-2863 |#1|) (-781))) . T))
+(((|#1| (-541 |#3|)) . T))
+((((-417 (-574))) . T))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((((-1172)) . T) (((-872)) . T))
+(((#0=(-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) #0#) |has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))))
+((((-1172)) . T))
+(|has| |#1| (-920))
+(|has| |#2| (-372))
+(((|#1|) . T) (($) . T) (((-574)) . T))
+(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T))
+((((-872)) . T))
+(((|#1|) . T))
+((((-388)) . T) (((-574)) . T))
+(((#0=(-417 (-574)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-870)) . T))
-(|has| |#1| (-564))
-((((-415 (-572))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-(-2813 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)))
-(|has| |#1| (-38 (-415 (-572))))
-(-12 (|has| |#1| (-553)) (|has| |#1| (-836)))
-((((-870)) . T))
-((((-1188)) -2813 (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))) (-12 (|has| |#1| (-370)) (|has| |#2| (-909 (-1188))))))
-(|has| |#1| (-370))
-((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
-(|has| |#1| (-370))
-((((-415 (-572))) . T) (($) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
-((((-572) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-370)))
-(((|#2|) |has| |#1| (-370)))
-((((-572)) . T) (($) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
+((((-872)) . T))
+(|has| |#1| (-566))
+((((-417 (-574))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)))
+(|has| |#1| (-38 (-417 (-574))))
+(-12 (|has| |#1| (-555)) (|has| |#1| (-838)))
+((((-872)) . T))
+((((-1190)) -2818 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-911 (-1190))))))
+(|has| |#1| (-372))
+((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190)))))
+(|has| |#1| (-372))
+((((-417 (-574))) . T) (($) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
+((((-574) |#1|) . T))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-372)))
+(((|#2|) |has| |#1| (-372)))
+((((-574)) . T) (($) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
((($) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-1188)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-1188)))) (((-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-572)))) (((-415 (-572))) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-572)))))
+(((|#2|) . T) (((-1190)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-1190)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-574)))) (((-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-574)))))
(((|#2|) . T))
((($) . T))
-((((-1188) #0=(-1265 |#1| |#2| |#3| |#4|)) |has| #0# (-522 (-1188) #0#)) ((#0# #0#) |has| #0# (-315 #0#)))
-((((-415 (-572))) . T) (($) . T) (((-415 |#1|)) . T) ((|#1|) . T))
-((((-620 $) $) . T) (($ $) . T))
-((((-171 (-227))) . T) (((-171 (-386))) . T) (((-1184 (-707))) . T) (((-901 (-386))) . T))
+((((-1190) #0=(-1267 |#1| |#2| |#3| |#4|)) |has| #0# (-524 (-1190) #0#)) ((#0# #0#) |has| #0# (-317 #0#)))
+((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T))
+((((-622 $) $) . T) (($ $) . T))
+((((-171 (-227))) . T) (((-171 (-388))) . T) (((-1186 (-709))) . T) (((-903 (-388))) . T))
(((|#3|) . T))
-(|has| |#1| (-564))
-(|has| (-415 |#2|) (-237))
-(((|#1| (-415 (-572))) . T))
-((($) . T) (((-415 (-572))) . T) (((-415 |#1|)) . T) ((|#1|) . T))
+(|has| |#1| (-566))
+(|has| (-417 |#2|) (-239))
+(((|#1| (-417 (-574))) . T))
+((($) . T) (((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T))
(((|#3|) . T))
-(|has| |#1| (-564))
-((((-870)) . T))
+(|has| |#1| (-566))
+((((-872)) . T))
((($ $) . T))
((($) . T))
-((((-870)) . T))
-((((-1188)) |has| |#2| (-909 (-1188))))
-((((-415 (-572))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-870)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#2|) |has| |#1| (-370)))
-((((-386)) -12 (|has| |#1| (-370)) (|has| |#2| (-895 (-386)))) (((-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-895 (-572)))))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(|has| |#1| (-370))
-(((|#1|) . T))
-((($) . T) (((-572)) . T) ((|#2|) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
+((((-872)) . T))
+((((-1190)) |has| |#2| (-911 (-1190))))
+((((-417 (-574))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-872)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#2|) |has| |#1| (-372)))
+((((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574)))))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(|has| |#1| (-372))
+(((|#1|) . T))
+((($) . T) (((-574)) . T) ((|#2|) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
(((|#3|) . T))
-((((-1170)) . T) (((-514)) . T) (((-227)) . T) (((-572)) . T))
+((((-1172)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T))
(((|#1|) . T))
-(|has| |#1| (-370))
-(|has| |#1| (-564))
-(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-(-2813 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(|has| |#1| (-372))
+(|has| |#1| (-566))
+(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
(((|#2|) . T))
(((|#2|) . T))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(|has| |#1| (-38 (-415 (-572))))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(|has| |#1| (-38 (-417 (-574))))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(|has| |#1| (-38 (-417 (-574))))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
((($) . T))
-((((-1170) |#1|) . T))
+((((-1172) |#1|) . T))
(|has| |#1| (-148))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
(|has| |#1| (-148))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))
((($) . T))
(|has| |#1| (-148))
-((((-589 |#1|)) . T))
+((((-591 |#1|)) . T))
((($) . T))
-(|has| |#1| (-564))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-566))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
((($) . T))
((($) . T))
-((((-415 |#2|)) . T))
-((((-415 (-572))) |has| |#2| (-1049 (-572))) (((-572)) |has| |#2| (-1049 (-572))) (((-1188)) |has| |#2| (-1049 (-1188))) ((|#2|) . T))
-(((#0=(-415 |#2|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
+((((-417 |#2|)) . T))
+((((-417 (-574))) |has| |#2| (-1051 (-574))) (((-574)) |has| |#2| (-1051 (-574))) (((-1190)) |has| |#2| (-1051 (-1190))) ((|#2|) . T))
+(((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-356)))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-358)))
(|has| |#1| (-148))
-((((-870)) . T))
+((((-872)) . T))
((($) . T))
-((((-1151 |#1| |#2|)) . T))
-(((|#1| (-572)) . T))
-(((|#1| (-415 (-572))) . T))
-((((-572)) |has| |#2| (-895 (-572))) (((-386)) |has| |#2| (-895 (-386))))
+((((-1153 |#1| |#2|)) . T))
+(((|#1| (-574)) . T))
+(((|#1| (-417 (-574))) . T))
+((((-574)) |has| |#2| (-897 (-574))) (((-388)) |has| |#2| (-897 (-388))))
(((|#2|) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
((((-112)) . T))
-(((|#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) . T))
-(((|#2|) . T))
-((((-870)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-1188) (-52)) . T))
-((((-415 |#2|)) . T))
-((((-870)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1111))
-(|has| |#1| (-799))
-(|has| |#1| (-799))
-((((-870)) . T))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-((((-870)) . T))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T))
+(((|#2|) . T))
+((((-872)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-1190) (-52)) . T))
+((((-417 |#2|)) . T))
+((((-872)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1113))
+(|has| |#1| (-801))
+(|has| |#1| (-801))
+((((-872)) . T))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+((((-872)) . T))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
((((-115)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-227)) . T) (((-386)) . T) (((-901 (-386))) . T))
-((((-870)) . T))
-((((-1265 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)) (((-415 (-572))) |has| |#1| (-564)))
-((((-870)) . T))
-((((-870)) . T))
+((((-227)) . T) (((-388)) . T) (((-903 (-388))) . T))
+((((-872)) . T))
+((((-1267 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566)))
+((((-872)) . T))
+((((-872)) . T))
(((|#2|) . T))
-((((-870)) . T))
-(((#0=(-919 |#1|) #0#) . T) (($ $) . T) ((#1=(-415 (-572)) #1#) . T))
+((((-872)) . T))
+(((#0=(-921 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-(|has| |#1| (-370))
-((((-870)) . T))
+((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+(|has| |#1| (-372))
+((((-872)) . T))
(((|#2|) . T))
-((((-572)) . T))
-((((-870)) . T))
-((((-572)) . T))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-((((-171 (-386))) . T) (((-227)) . T) (((-386)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-1170)) . T) (((-544)) . T) (((-572)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
-((((-870)) . T))
+((((-574)) . T))
+((((-872)) . T))
+((((-574)) . T))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-1172)) . T) (((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
+((((-872)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) |has| #0# (-174)) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-572) $) . T) (((-652 (-572)) $) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)) (|has| |#1| (-1123)) (|has| |#1| (-1111)))
-(|has| |#1| (-1163))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((($) . T))
-((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((((-572) |#1|) . T))
-(((|#1|) . T))
-(((#0=(-117 |#1|) $) |has| #0# (-292 #0# #0#)))
+((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-574) $) . T) (((-654 (-574)) $) . T))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)) (|has| |#1| (-1125)) (|has| |#1| (-1113)))
+(|has| |#1| (-1165))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((($) . T))
+((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((((-574) |#1|) . T))
+(((|#1|) . T))
+(((#0=(-117 |#1|) $) |has| #0# (-294 #0# #0#)))
(((|#1|) |has| |#1| (-174)))
-((((-322 |#1|)) . T) (((-572)) . T))
+((((-324 |#1|)) . T) (((-574)) . T))
(((|#1|) . T))
-((((-870)) . T))
+((((-872)) . T))
((((-115)) . T) ((|#1|) . T))
-((((-870)) . T))
+((((-872)) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-315 |#1|)))
-((((-572) |#1|) . T) (((-1246 (-572)) $) . T))
-((((-1188) |#1|) . T))
-(((|#1|) -2813 (|has| |#1| (-174)) (|has| |#1| (-370))))
-(((|#1|) . T))
-(((|#1|) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))))
-((((-572)) . T) (((-415 (-572))) . T))
-(((|#1|) . T))
-(|has| |#1| (-564))
-(|has| |#1| (-237))
-((($) . T) (((-572)) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)))
-((((-386)) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(|has| |#1| (-370))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(|has| |#1| (-370))
-(|has| |#1| (-564))
-(|has| |#1| (-1111))
-((((-788 |#1| (-872 |#2|))) |has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+(((|#1|) |has| |#1| (-317 |#1|)))
+((((-574) |#1|) . T) (((-1248 (-574)) $) . T))
+((((-1190) |#1|) . T))
+(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372))))
+(((|#1|) . T))
+(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062))))
+((((-574)) . T) (((-417 (-574))) . T))
+(((|#1|) . T))
+(|has| |#1| (-566))
+(|has| |#1| (-239))
+((($) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)))
+((((-388)) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(|has| |#1| (-372))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(|has| |#1| (-372))
+(|has| |#1| (-566))
+(|has| |#1| (-1113))
+((((-790 |#1| (-874 |#2|))) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-918))
-(((|#1| (-539 |#2|)) . T))
-(((|#1| (-779)) . T))
-(|has| |#1| (-237))
-(((|#1| (-539 (-1099 (-1188)))) . T))
-(|has| |#2| (-370))
-((($) -12 (|has| |#2| (-237)) (|has| |#2| (-1060))))
-((((-589 |#1|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-572)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-870)) . T))
-((((-870)) . T))
-(-2813 (|has| |#3| (-801)) (|has| |#3| (-856)))
-((((-870)) . T))
-((((-1131)) . T) (((-870)) . T))
-((((-544)) . T) (((-870)) . T))
-(((|#1|) . T))
-((($ $) . T) (((-620 $) $) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-572)) . T))
+(|has| |#2| (-920))
+(((|#1| (-541 |#2|)) . T))
+(((|#1| (-781)) . T))
+(|has| |#1| (-239))
+(((|#1| (-541 (-1101 (-1190)))) . T))
+(|has| |#2| (-372))
+((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1062))))
+((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-574)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-872)) . T))
+((((-872)) . T))
+(-2818 (|has| |#3| (-803)) (|has| |#3| (-858)))
+((((-872)) . T))
+((((-1133)) . T) (((-872)) . T))
+((((-546)) . T) (((-872)) . T))
+(((|#1|) . T))
+((($ $) . T) (((-622 $) $) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-574)) . T))
(((|#3|) . T))
-((((-870)) . T))
-(-2813 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)))
-((((-572)) . T) (((-415 (-572))) -2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))) ((|#2|) . T) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-872 |#1|)) . T))
-((((-1136 |#1| |#2|)) . T) ((|#2|) . T) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-572)) . T))
-((((-1184 |#1|)) . T) (((-572)) . T) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) (((-1093)) . T) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
-(-2813 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
-((((-1136 |#1| (-1188))) . T) (((-572)) . T) (((-1099 (-1188))) . T) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-1188)) . T))
-(((#0=(-589 |#1|) #0#) . T) (($ $) . T) ((#1=(-415 (-572)) #1#) . T))
-((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+((((-872)) . T))
+(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)))
+((((-574)) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))) ((|#2|) . T) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-874 |#1|)) . T))
+((((-1138 |#1| |#2|)) . T) ((|#2|) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-574)) . T))
+((((-1186 |#1|)) . T) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) (((-1095)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))
+(-2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062)))
+((((-1138 |#1| (-1190))) . T) (((-574)) . T) (((-1101 (-1190))) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-1190)) . T))
+(((#0=(-591 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T))
+((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#1| (-1279 |#1|) (-1279 |#1|)) . T))
-((((-589 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((($) . T) (((-415 (-572))) . T))
+(((|#1| (-1281 |#1|) (-1281 |#1|)) . T))
+((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((($) . T) (((-417 (-574))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-415 (-572))) . T))
-(((|#2|) |has| |#2| (-6 (-4456 "*"))))
+((($) . T) (((-417 (-574))) . T))
+(((|#2|) |has| |#2| (-6 (-4458 "*"))))
(((|#1|) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (((-572)) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (((-574)) . T))
(((|#1|) . T))
-((((-870)) . T))
-((((-300 |#3|)) . T))
-(((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))) ((|#2| |#2|) . T) (($ $) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-872)) . T))
+((((-302 |#3|)) . T))
+(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-((($) . T) (((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
(((|#2|) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) . T))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(|has| |#2| (-918))
-(|has| |#1| (-918))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) . T))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) . T))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(|has| |#2| (-920))
+(|has| |#1| (-920))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) . T))
(((|#1|) . T))
-((((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) . T))
+((((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1111))
+(|has| |#1| (-1113))
(((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-((((-1188)) . T) ((|#1|) . T))
-((((-870)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
-(((#0=(-415 (-572)) #0#) . T))
-((((-415 (-572))) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+((((-1190)) . T) ((|#1|) . T))
+((((-872)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))
+(((#0=(-417 (-574)) #0#) . T))
+((((-417 (-574))) . T))
(((|#1|) |has| |#1| (-174)))
-(-2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(((|#1|) . T))
-((((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((((-544)) . T))
-((((-870)) . T))
-((($) -12 (|has| |#3| (-237)) (|has| |#3| (-1060))))
-((((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-((((-870)) . T))
-((((-1188)) |has| |#2| (-909 (-1188))) (((-1093)) . T))
-((((-919 |#1|)) . T))
-((((-1264 |#2| |#3| |#4|)) . T))
-((($) . T) (((-415 (-572))) . T))
-(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
-(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
-((((-870)) . T))
-(|has| |#1| (-1233))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-((((-1188)) |has| |#1| (-909 (-1188))))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((($) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) . T))
-(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
-((($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1060)) (((-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-564))))
-(|has| |#1| (-564))
-(((|#1|) |has| |#1| (-370)))
-((((-572)) . T))
-((((-1188) #0=(-117 |#1|)) |has| #0# (-522 (-1188) #0#)) ((#0# #0#) |has| #0# (-315 #0#)))
-(|has| |#1| (-799))
-(|has| |#1| (-799))
-(((|#2|) . T) (((-572)) |has| |#2| (-1049 (-572))) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
-((((-1093)) . T) ((|#2|) . T) (((-572)) |has| |#2| (-1049 (-572))) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-572)) . T) (($) . T))
-((((-572) (-779)) . T) ((|#3| (-779)) . T))
+(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(((|#1|) . T))
+((((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-546)) . T))
+((((-872)) . T))
+((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1062))))
+((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+((((-872)) . T))
+((((-1190)) |has| |#2| (-911 (-1190))) (((-1095)) . T))
+((((-921 |#1|)) . T))
+((((-1266 |#2| |#3| |#4|)) . T))
+((($) . T) (((-417 (-574))) . T))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
+((((-872)) . T))
+(|has| |#1| (-1235))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+((((-1190)) |has| |#1| (-911 (-1190))))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T))
+(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+((($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1062)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))))
+(|has| |#1| (-566))
+(((|#1|) |has| |#1| (-372)))
+((((-574)) . T))
+((((-1190) #0=(-117 |#1|)) |has| #0# (-524 (-1190) #0#)) ((#0# #0#) |has| #0# (-317 #0#)))
+(|has| |#1| (-801))
+(|has| |#1| (-801))
+(((|#2|) . T) (((-574)) |has| |#2| (-1051 (-574))) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))))
+((((-1095)) . T) ((|#2|) . T) (((-574)) |has| |#2| (-1051 (-574))) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-574)) . T) (($) . T))
+((((-574) (-781)) . T) ((|#3| (-781)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-870)) . T))
-((($) |has| |#1| (-375)))
-((($) |has| |#1| (-375)))
-((($) |has| |#1| (-375)))
-(|has| |#2| (-828))
-(|has| |#2| (-828))
-((((-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-647 (-572)))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2|) |has| |#1| (-370)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-(((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) . T))
-((($) -2813 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-572)) |has| |#1| (-895 (-572))) (((-386)) |has| |#1| (-895 (-386))))
-(((|#1|) . T))
-((((-878 |#1|)) . T))
-((((-878 |#1|)) . T))
-(-12 (|has| |#1| (-370)) (|has| |#2| (-918)))
-((((-415 (-572))) . T) (((-707)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-872)) . T))
+((($) |has| |#1| (-377)))
+((($) |has| |#1| (-377)))
+((($) |has| |#1| (-377)))
+(|has| |#2| (-830))
+(|has| |#2| (-830))
+((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T))
+((($) -2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388))))
+(((|#1|) . T))
+((((-880 |#1|)) . T))
+((((-880 |#1|)) . T))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-920)))
+((((-417 (-574))) . T) (((-709)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-(((|#2|) -2813 (|has| |#2| (-6 (-4456 "*"))) (|has| |#2| (-174))))
+(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+(((|#2|) -2818 (|has| |#2| (-6 (-4458 "*"))) (|has| |#2| (-174))))
(((|#2|) . T))
-(|has| |#1| (-370))
+(|has| |#1| (-372))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-872 |#1|)) . T))
+((((-874 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-779)) . T))
-((((-1188)) . T))
-((((-878 |#1|)) . T))
-(-2813 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-(-2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-((((-870)) . T))
+(((|#2| (-781)) . T))
+((((-1190)) . T))
+((((-880 |#1|)) . T))
+(-2818 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+(-2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+((((-872)) . T))
(((|#1|) . T))
-(-2813 (|has| |#2| (-801)) (|has| |#2| (-856)))
-(-2813 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858))))
-((((-878 |#1|)) . T))
+(-2818 (|has| |#2| (-803)) (|has| |#2| (-858)))
+(-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860))))
+((((-880 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-((($ $) . T) (((-620 $) $) . T))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+((($ $) . T) (((-622 $) $) . T))
((($) . T))
-((((-870)) . T))
-((((-572)) . T))
+((((-872)) . T))
+((((-574)) . T))
(((|#2|) . T))
-((((-870)) . T))
-((($) . T) (((-572)) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)))
-((((-870)) . T))
+((((-872)) . T))
+((($) . T) (((-574)) . T))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)))
+((((-872)) . T))
(((|#1|) . T))
-((((-870)) . T))
-((($) . T) ((|#2|) . T) (((-415 (-572))) . T) (((-572)) |has| |#2| (-647 (-572))))
-(|has| |#1| (-1111))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-872)) . T))
+((($) . T) ((|#2|) . T) (((-417 (-574))) . T) (((-574)) |has| |#2| (-649 (-574))))
+(|has| |#1| (-1113))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-870)) . T))
-(|has| |#2| (-918))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) . T))
-((((-544)) |has| |#2| (-622 (-544))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))))
-((((-870)) . T))
-((((-870)) . T))
-(((|#3|) |has| |#3| (-1060)) (((-572)) -12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))))
-((((-1136 |#1| |#2|)) . T) (((-961 |#1|)) |has| |#2| (-622 (-1188))) (((-870)) . T))
-((((-961 |#1|)) |has| |#2| (-622 (-1188))) (((-1170)) -12 (|has| |#1| (-1049 (-572))) (|has| |#2| (-622 (-1188)))) (((-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572))))) (((-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386))))) (((-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#2| (-622 (-544)))))
-((((-1184 |#1|)) . T) (((-870)) . T))
-((((-870)) . T))
-((((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) (((-572)) |has| |#2| (-1049 (-572))) ((|#2|) . T) (((-872 |#1|)) . T))
-((((-117 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T) (((-1188)) . T))
-((((-870)) . T))
-((((-572)) . T))
+((((-872)) . T))
+(|has| |#2| (-920))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) . T))
+((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))))
+((((-872)) . T))
+((((-872)) . T))
+(((|#3|) |has| |#3| (-1062)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062))))
+((((-1138 |#1| |#2|)) . T) (((-963 |#1|)) |has| |#2| (-624 (-1190))) (((-872)) . T))
+((((-963 |#1|)) |has| |#2| (-624 (-1190))) (((-1172)) -12 (|has| |#1| (-1051 (-574))) (|has| |#2| (-624 (-1190)))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))))
+((((-1186 |#1|)) . T) (((-872)) . T))
+((((-872)) . T))
+((((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) (((-574)) |has| |#2| (-1051 (-574))) ((|#2|) . T) (((-874 |#1|)) . T))
+((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T) (((-1190)) . T))
+((((-872)) . T))
+((((-574)) . T))
(((|#1|) . T))
((($) . T))
-((((-386)) |has| |#1| (-895 (-386))) (((-572)) |has| |#1| (-895 (-572))))
-((((-572)) . T))
+((((-388)) |has| |#1| (-897 (-388))) (((-574)) |has| |#1| (-897 (-574))))
+((((-574)) . T))
(((|#1|) . T))
-((((-870)) . T))
+((((-872)) . T))
(((|#1|) . T))
-((((-870)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-652 |#1|)) . T))
-((($) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))
-((($) . T) (((-572)) . T) (((-1265 |#1| |#2| |#3| |#4|)) . T) (((-415 (-572))) . T))
-((((-572)) -2813 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060))) (($) -2813 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060))) ((|#1|) -2813 (|has| |#1| (-174)) (|has| |#1| (-1060))) (((-415 (-572))) |has| |#1| (-564)))
-((((-1193)) . T))
-((((-572)) . T) (((-415 (-572))) . T))
-((((-1193)) . T))
-((((-1193)) . T))
+((((-872)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-654 |#1|)) . T))
+((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
+((($) . T) (((-574)) . T) (((-1267 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T))
+((((-574)) -2818 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) (($) -2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) ((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-1062))) (((-417 (-574))) |has| |#1| (-566)))
+((((-1195)) . T))
+((((-574)) . T) (((-417 (-574))) . T))
+((((-1195)) . T))
+((((-1195)) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
-((((-1193)) . T))
-(((|#1|) |has| |#1| (-315 |#1|)))
-((((-386)) . T))
+((((-1195)) . T))
+(((|#1|) |has| |#1| (-317 |#1|)))
+((((-388)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-870)) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-415 |#2|) |#3|) . T))
+((((-872)) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-417 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1111))
-(((|#2| (-490 (-2860 |#1|) (-779))) . T))
-((((-572) |#1|) . T))
-((((-1170)) . T) (((-870)) . T))
+(|has| |#1| (-1113))
+(((|#2| (-492 (-2863 |#1|) (-781))) . T))
+((((-574) |#1|) . T))
+((((-1172)) . T) (((-872)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-539 (-1188))) . T))
-(-2813 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-((((-572)) . T))
+(((|#1| (-541 (-1190))) . T))
+(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+((((-574)) . T))
(((|#2|) . T))
-((($) -12 (|has| |#2| (-237)) (|has| |#2| (-1060))))
+((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1062))))
(((|#2|) . T))
-((((-1188)) |has| |#1| (-909 (-1188))) (((-1093)) . T))
-(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
-(|has| |#1| (-564))
-(((#0=(-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
-((($) . T) (((-415 (-572))) . T))
+((((-1190)) |has| |#1| (-911 (-1190))) (((-1095)) . T))
+(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
+(|has| |#1| (-566))
+(((#0=(-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
+((($) . T) (((-417 (-574))) . T))
((($) . T))
((($) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
(((|#1|) . T))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-870)) . T))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-872)) . T))
((((-145)) . T))
-(((|#1|) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (((-417 (-574))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-870)) . T))
+((((-872)) . T))
(((|#1|) . T))
-(|has| |#1| (-1163))
-(((|#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) . T))
+(|has| |#1| (-1165))
+(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T))
(((|#1|) . T))
-((((-415 $) (-415 $)) |has| |#1| (-564)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-((((-870)) . T))
-((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T) ((|#2|) . T))
-((((-1093)) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
-((((-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#2| (-895 (-386)))) (((-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#2| (-895 (-572)))))
-((((-1265 |#1| |#2| |#3| |#4|)) . T))
-((((-572) |#1|) . T))
+((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+((((-872)) . T))
+((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T) ((|#2|) . T))
+((((-1095)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))))
+((((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))
+((((-1267 |#1| |#2| |#3| |#4|)) . T))
+((((-574) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
((($) . T))
-((((-707)) . T))
-((((-788 |#1| (-872 |#2|))) . T))
-((((-572)) . T) (($) . T))
-((($) . T))
-(((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)))
-((((-415 (-572))) . T) (($) . T))
-(|has| |#1| (-1111))
-(|has| |#1| (-1111))
-(|has| |#2| (-370))
-(((|#1|) . T) (($) -2813 (|has| |#1| (-296)) (|has| |#1| (-370))) (((-415 (-572))) |has| |#1| (-370)))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-(|has| |#1| (-38 (-415 (-572))))
-((($) |has| |#2| (-237)))
-((((-572)) . T))
-((((-1188)) -12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060))))
-((((-1188)) -12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060))))
-(((|#1|) . T))
-(|has| |#1| (-237))
-(((|#2| (-244 (-2860 |#1|) (-779))) . T))
-(((|#1| (-539 |#3|)) . T))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
-(|has| |#1| (-375))
+((((-709)) . T))
+((((-790 |#1| (-874 |#2|))) . T))
+((((-574)) . T) (($) . T))
+((($) . T))
+(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)))
+((((-417 (-574))) . T) (($) . T))
+(|has| |#1| (-1113))
+(|has| |#1| (-1113))
+(|has| |#2| (-372))
+(((|#1|) . T) (($) -2818 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372)))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-38 (-417 (-574))))
+((($) |has| |#2| (-239)))
+((((-574)) . T))
+((((-1190)) -12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062))))
+((((-1190)) -12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062))))
+(((|#1|) . T))
+(|has| |#1| (-239))
+(((|#2| (-246 (-2863 |#1|) (-781))) . T))
+(((|#1| (-541 |#3|)) . T))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
+(|has| |#1| (-377))
(((|#1|) . T) (($) . T))
-(((|#1| (-539 |#2|)) . T))
-(-2813 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(((|#1| (-779)) . T))
-(|has| |#1| (-564))
-(-2813 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(((|#1| (-541 |#2|)) . T))
+(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(((|#1| (-781)) . T))
+(|has| |#1| (-566))
+(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-870)) . T))
-((((-572)) . T) (((-415 (-572))) . T) (($) . T))
-(-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))
-(-2813 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((((-872)) . T))
+((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+(-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))
+(-2818 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) |has| |#4| (-1060)))
-(((|#3|) |has| |#3| (-1060)))
-(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
-(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
-((((-572)) . T) (((-415 (-572))) -2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))) ((|#2|) . T) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-872 |#1|)) . T))
-((((-1136 |#1| |#2|)) . T) (((-572)) . T) ((|#3|) . T) (($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) ((|#2|) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-544)) |has| |#1| (-622 (-544))))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
-((((-1193)) . T))
-((((-680 |#1|)) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
-((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-((((-870)) . T))
-((((-652 $)) . T) (((-1170)) . T) (((-1188)) . T) (((-572)) . T) (((-227)) . T) (((-870)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((($) . T) (((-415 (-572))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1111)) (((-572)) -12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111))) (((-415 (-572))) -12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))
-(((|#3|) |has| |#3| (-1111)) (((-572)) -12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (((-415 (-572))) -12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))
-(|has| |#2| (-370))
-(((|#2|) |has| |#2| (-1060)) (((-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))))
-(((|#1|) . T))
-(|has| |#2| (-370))
-(((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))) ((|#2| |#2|) . T) (($ $) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+(((|#4|) |has| |#4| (-1062)))
+(((|#3|) |has| |#3| (-1062)))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
+(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
+((((-574)) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))) ((|#2|) . T) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-874 |#1|)) . T))
+((((-1138 |#1| |#2|)) . T) (((-574)) . T) ((|#3|) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) ((|#2|) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-546)) |has| |#1| (-624 (-546))))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+((((-1195)) . T))
+((((-682 |#1|)) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+((((-872)) . T))
+((((-654 $)) . T) (((-1172)) . T) (((-1190)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((($) . T) (((-417 (-574))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1113)) (((-574)) -12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113))) (((-417 (-574))) -12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113))))
+(((|#3|) |has| |#3| (-1113)) (((-574)) -12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (((-417 (-574))) -12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))
+(|has| |#2| (-372))
+(((|#2|) |has| |#2| (-1062)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))))
+(((|#1|) . T))
+(|has| |#2| (-372))
+(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
(((|#2| |#2|) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
-(((|#2|) . T))
-((((-870)) |has| |#1| (-1111)))
-((($) . T))
-((((-1265 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-828))
-(|has| |#2| (-828))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
-(|has| |#1| (-370))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#1|) |has| |#2| (-425 |#1|)))
-(((|#1|) |has| |#2| (-425 |#1|)))
-((((-1170)) . T))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-652 |#1|)) . T) (((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-652 |#1|)) . T))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-870)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1228)) . T) (((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) |has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-((((-572) |#1|) . T))
-((((-572) |#1|) . T))
-((((-572) |#1|) . T))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((((-572) |#1|) . T))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
-((((-1188)) |has| |#1| (-909 (-1188))) (((-826 (-1188))) . T))
-(-2813 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-((((-827 |#1|)) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+(((|#2|) . T))
+((((-872)) |has| |#1| (-1113)))
+((($) . T))
+((((-1267 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-830))
+(|has| |#2| (-830))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
+(|has| |#1| (-372))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) |has| |#2| (-427 |#1|)))
+(((|#1|) |has| |#2| (-427 |#1|)))
+((((-1172)) . T))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-654 |#1|)) . T) (((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-654 |#1|)) . T))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-872)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1230)) . T) (((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) |has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+((((-574) |#1|) . T))
+((((-574) |#1|) . T))
+((((-574) |#1|) . T))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((((-574) |#1|) . T))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
+((((-1190)) |has| |#1| (-911 (-1190))) (((-828 (-1190))) . T))
+(-2818 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+((((-829 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-870)) . T))
-(-2813 (|has| |#3| (-174)) (|has| |#3| (-734)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+((((-872)) . T))
+(-2818 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
(((|#1| |#2|) . T))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-(|has| |#1| (-38 (-415 (-572))))
-((((-870)) . T))
-((((-1265 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)) (((-415 (-572))) |has| |#1| (-564)))
-(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-(|has| |#1| (-370))
-(-2813 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (-12 (|has| |#1| (-370)) (|has| |#2| (-237))))
-(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
-(|has| |#1| (-370))
-(((|#1|) . T))
-(((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1| |#1|) . T))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
-((((-322 |#1|)) . T))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((#0=(-707) (-1184 #0#)) . T))
-((((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-572)) . T) (((-415 (-572))) . T))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+(|has| |#1| (-38 (-417 (-574))))
+((((-872)) . T))
+((((-1267 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566)))
+(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+(|has| |#1| (-372))
+(-2818 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239))))
+(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
+(|has| |#1| (-372))
+(((|#1|) . T))
+(((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
+((((-324 |#1|)) . T))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((#0=(-709) (-1186 #0#)) . T))
+((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-574)) . T) (((-417 (-574))) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-856))
-(((|#2|) . T) (((-1188)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-1188)))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) ((|#1|) |has| |#1| (-174)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) -2813 (|has| |#1| (-370)) (|has| |#1| (-564))))
-((($ $) . T) ((#0=(-872 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1136 |#1| (-1188))) . T) (((-826 (-1188))) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-1188)) . T))
+(|has| |#1| (-858))
+(((|#2|) . T) (((-1190)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-1190)))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))))
+((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1138 |#1| (-1190))) . T) (((-828 (-1190))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-1190)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1093) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1188) $) |has| |#1| (-237)) ((#0# |#1|) |has| |#1| (-237)) ((#1=(-1099 (-1188)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1095) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1190) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1101 (-1190)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) (((-572)) |has| |#2| (-647 (-572))) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
-(|has| |#1| (-237))
-(|has| |#2| (-918))
-((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) |has| #0# (-174)) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
+((($) . T) (((-574)) |has| |#2| (-649 (-574))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
+(|has| |#1| (-239))
+(|has| |#2| (-920))
+((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
(((|#1|) |has| |#1| (-174)))
-((((-572) |#1|) . T))
+((((-574) |#1|) . T))
(((|#1|) . T))
-((((-1193)) . T))
-(((#0=(-1265 |#1| |#2| |#3| |#4|)) |has| #0# (-315 #0#)))
+((((-1195)) . T))
+(((#0=(-1267 |#1| |#2| |#3| |#4|)) |has| #0# (-317 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2| |#2|) |has| |#1| (-370)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
-(|has| |#2| (-237))
+((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2| |#2|) |has| |#1| (-372)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+(|has| |#2| (-239))
(|has| $ (-148))
-((((-870)) . T))
-((($) . T) (((-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
-((((-870)) . T))
-(|has| |#1| (-856))
+((((-872)) . T))
+((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
+((((-872)) . T))
+(|has| |#1| (-858))
((((-130)) . T))
-((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))
-((((-415 (-572))) . T) (((-707)) . T) (($) . T) (((-572)) . T))
+((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))
+((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T))
(((|#1|) . T))
((((-130)) . T))
-((((-415 |#2|) |#3|) . T))
-((((-870)) . T))
-(-12 (|has| |#1| (-313)) (|has| |#1| (-918)))
-(((|#2| (-680 |#1|)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-870)) |has| |#1| (-1111)))
+((((-417 |#2|) |#3|) . T))
+((((-872)) . T))
+(-12 (|has| |#1| (-315)) (|has| |#1| (-920)))
+(((|#2| (-682 |#1|)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-872)) |has| |#1| (-1113)))
(((|#4|) . T))
-(|has| |#1| (-564))
-((($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2|) |has| |#1| (-370)) ((|#1|) . T))
-((((-1188)) -2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))
-(((|#1|) . T) (($) -2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
-((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
-((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188)))))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
-(((|#1|) . T))
-(((|#1| (-539 (-826 (-1188)))) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((((-572)) . T) ((|#2|) . T) (($) . T) (((-415 (-572))) . T) (((-1188)) |has| |#2| (-1049 (-1188))))
-(((|#1|) . T))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-(((|#1|) . T))
-(-2813 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))
-((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
-((($) . T) (((-878 |#1|)) . T) (((-415 (-572))) . T))
-((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
-(|has| |#1| (-564))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-415 |#2|)) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-415 (-572)) #0#) . T) (($ $) . T))
-(((|#2|) . T) (((-415 (-572))) . T) (($) . T))
-((((-572)) . T))
-((((-870)) . T))
-((((-589 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-((((-870)) . T))
-((((-415 (-572))) . T) (($) . T))
-((((-572) |#1|) . T))
-((($) . T))
-((($) . T))
-((((-870)) . T))
-((((-544)) |has| |#2| (-622 (-544))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))))
-((((-870)) . T))
-((((-870)) . T))
-((((-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572))))) (((-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386))))) (((-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-(((|#1|) . T) (((-870)) . T) (((-1193)) . T))
-((((-870)) . T))
-((((-1193)) . T))
-((((-115)) . T) ((|#1|) . T) (((-572)) . T))
-(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(|has| |#1| (-566))
+((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T))
+((((-1190)) -2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))
+(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190)))))
+((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190)))))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))
+(((|#1|) . T))
+(((|#1| (-541 (-828 (-1190)))) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((((-574)) . T) ((|#2|) . T) (($) . T) (((-417 (-574))) . T) (((-1190)) |has| |#2| (-1051 (-1190))))
+(((|#1|) . T))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+(((|#1|) . T))
+(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))
+((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)))
+((($) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T))
+((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)))
+(|has| |#1| (-566))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-417 |#2|)) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T))
+(((|#2|) . T) (((-417 (-574))) . T) (($) . T))
+((((-574)) . T))
+((((-872)) . T))
+((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-872)) . T))
+((((-417 (-574))) . T) (($) . T))
+((((-574) |#1|) . T))
+((($) . T))
+((($) . T))
+((((-872)) . T))
+((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))))
+((((-872)) . T))
+((((-872)) . T))
+((((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+(((|#1|) . T) (((-872)) . T) (((-1195)) . T))
+((((-872)) . T))
+((((-1195)) . T))
+((((-115)) . T) ((|#1|) . T) (((-574)) . T))
+(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
((((-130)) . T))
-((($) . T) (((-572)) . T) (((-117 |#1|)) . T) (((-415 (-572))) . T))
-(((|#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) . T))
-(((|#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) . T))
-((((-870)) . T))
-((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((($) . T) (((-574)) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T))
+(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T))
+(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T))
+((((-872)) . T))
+((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
-((($) . T) (((-572)) . T))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-1115)) . T))
-((((-870)) . T))
-((((-1193)) . T) (((-870)) . T))
-((((-1193)) . T) (((-870)) . T))
-((($) -2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((((-1193)) . T))
-((((-1193)) . T))
-((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
-((($) . T) (((-572)) . T))
-((($) -2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-((($ $) . T) (((-1188) $) . T))
-(|has| |#2| (-918))
-((((-1271 |#1| |#2| |#3|)) . T))
-((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
-(((|#1|) . T))
-((((-1271 |#1| |#2| |#3|)) . T) (((-1243 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-918))
-((((-1188)) . T) (((-870)) . T))
+((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((($) . T) (((-574)) . T))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-1117)) . T))
+((((-872)) . T))
+((((-1195)) . T) (((-872)) . T))
+((((-1195)) . T) (((-872)) . T))
+((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-1195)) . T))
+((((-1195)) . T))
+((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
+((($) . T) (((-574)) . T))
+((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($ $) . T) (((-1190) $) . T))
+(|has| |#2| (-920))
+((((-1273 |#1| |#2| |#3|)) . T))
+((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)))
+(((|#1|) . T))
+((((-1273 |#1| |#2| |#3|)) . T) (((-1245 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-920))
+((((-1190)) . T) (((-872)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-((((-707)) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-1193)) . T))
+((((-709)) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-1195)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-1193)) . T))
-((((-1265 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-415 (-572))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)) (((-415 (-572))) |has| |#1| (-564)))
-((((-1193)) . T))
-((((-1265 |#1| |#2| |#3| |#4|)) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-564)) (($) |has| |#1| (-564)))
-((((-415 (-572))) . T) (($) . T))
-(((|#1| (-572)) . T))
+((((-1195)) . T))
+((((-1267 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566)))
+((((-1195)) . T))
+((((-1267 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566)))
+((((-417 (-574))) . T) (($) . T))
+(((|#1| (-574)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-((((-1193)) . T))
-((((-1193)) . T))
-(|has| |#1| (-370))
-(|has| |#1| (-370))
-(-2813 (|has| |#1| (-174)) (|has| |#1| (-564)))
-(((|#1| (-572)) . T))
-(((|#1| (-415 (-572))) . T))
-(((|#1| (-779)) . T))
-((((-415 (-572))) . T))
-(((|#1| (-539 |#2|) |#2|) . T))
-((((-572) |#1|) . T))
-((((-572) |#1|) . T))
-(|has| |#1| (-1111))
-((((-572) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-901 (-386))) . T) (((-901 (-572))) . T) (((-1188)) . T) (((-544)) . T))
-(((|#1|) . T))
-((((-870)) . T))
-(-2813 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-(-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))
-((((-572)) . T))
-((((-572)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
+((((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+((((-1195)) . T))
+((((-1195)) . T))
+(|has| |#1| (-372))
+(|has| |#1| (-372))
+(-2818 (|has| |#1| (-174)) (|has| |#1| (-566)))
+(((|#1| (-574)) . T))
+(((|#1| (-417 (-574))) . T))
+(((|#1| (-781)) . T))
+((((-417 (-574))) . T))
+(((|#1| (-541 |#2|) |#2|) . T))
+((((-574) |#1|) . T))
+((((-574) |#1|) . T))
+(|has| |#1| (-1113))
+((((-574) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-903 (-388))) . T) (((-903 (-574))) . T) (((-1190)) . T) (((-546)) . T))
+(((|#1|) . T))
+((((-872)) . T))
+(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+(-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))
+((((-574)) . T))
+((((-574)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-2813 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
-((((-1188)) -12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060))))
-(-2813 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))))
+(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062)))
+((((-1190)) -12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062))))
+(-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-370))
+(|has| |#1| (-372))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) |has| #0# (-174)) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
-(|has| |#1| (-237))
-((($) . T) (((-572)) . T) (((-415 (-572))) . T))
-((($) . T) (((-572)) . T))
-((($) . T) (((-572)) . T))
-((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
-((((-870)) . T))
-(((|#1| (-779) (-1093)) . T))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
-((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
+(|has| |#1| (-239))
+((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((($) . T) (((-574)) . T))
+((($) . T) (((-574)) . T))
+((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
+((((-872)) . T))
+(((|#1| (-781) (-1095)) . T))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
+((((-1248 (-574)) $) . T) (((-574) |#1|) . T))
((((-117 |#1|)) . T))
-((((-415 (-572))) . T) (((-572)) . T))
-(((|#2|) |has| |#2| (-1060)))
-((((-415 (-572))) . T) (($) . T))
-(((|#2|) . T))
-((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
-((((-572)) . T))
-((((-572)) . T))
-((((-1170) (-1188) (-572) (-227) (-870)) . T))
+((((-417 (-574))) . T) (((-574)) . T))
+(((|#2|) |has| |#2| (-1062)))
+((((-417 (-574))) . T) (($) . T))
+(((|#2|) . T))
+((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+((((-574)) . T))
+((((-574)) . T))
+((((-1172) (-1190) (-574) (-227) (-872)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-572)) . T) ((|#2|) |has| |#2| (-174)))
-((((-115)) . T) ((|#1|) . T) (((-572)) . T))
-(-2813 (|has| |#1| (-356)) (|has| |#1| (-375)))
+((((-574)) . T) ((|#2|) |has| |#2| (-174)))
+((((-115)) . T) ((|#1|) . T) (((-574)) . T))
+(-2818 (|has| |#1| (-358)) (|has| |#1| (-377)))
(((|#1| |#2|) . T))
((((-227)) . T))
-((((-415 (-572))) . T) (($) . T) (((-572)) . T))
-((((-870)) . T))
+((((-417 (-574))) . T) (($) . T) (((-574)) . T))
+((((-872)) . T))
((($) . T) ((|#1|) . T))
-((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
-((($) . T) (((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
-(((|#2|) |has| |#2| (-1111)) (((-572)) -12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-544)) |has| |#1| (-622 (-544))))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
-((((-572) $) . T) (((-652 (-572)) $) . T))
-((($) . T) (((-415 (-572))) . T))
-(|has| |#1| (-918))
-(|has| |#1| (-918))
-((((-227)) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) (((-386)) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) (((-901 (-386))) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-901 (-386))))) (((-901 (-572))) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-901 (-572))))) (((-544)) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-544)))))
-((((-870)) . T))
-((((-870)) . T))
+((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
+((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#2|) |has| |#2| (-1113)) (((-574)) -12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-546)) |has| |#1| (-624 (-546))))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113))))
+((((-574) $) . T) (((-654 (-574)) $) . T))
+((($) . T) (((-417 (-574))) . T))
+(|has| |#1| (-920))
+(|has| |#1| (-920))
+((((-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) (((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) (((-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) (((-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546)))))
+((((-872)) . T))
+((((-872)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-(((|#1|) . T) (((-572)) . T))
-((((-1193)) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-564)))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-856)))
+(((|#1|) . T) (((-574)) . T))
+((((-1195)) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-566)))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-858)))
(((|#2|) . T))
-(-2813 (|has| |#1| (-21)) (|has| |#1| (-856)))
+(-2818 (|has| |#1| (-21)) (|has| |#1| (-858)))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
-((((-870)) -2813 (-12 (|has| |#1| (-621 (-870))) (|has| |#2| (-621 (-870)))) (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111)))))
-((((-415 |#2|) |#3|) . T))
-((((-415 (-572))) . T) (($) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-370))
-((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
-((($) . T) (((-572)) . T))
-(|has| (-415 |#2|) (-148))
-(|has| (-415 |#2|) (-146))
-((($) . T))
-((((-707)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((#0=(-572) #0#) . T))
-((($) . T) (((-415 (-572))) . T))
-(-2813 (|has| |#4| (-174)) (|has| |#4| (-734)) (|has| |#4| (-856)) (|has| |#4| (-1060)))
-(-2813 (|has| |#3| (-174)) (|has| |#3| (-734)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
-((((-870)) . T) (((-1193)) . T))
-(|has| |#4| (-801))
-(-2813 (|has| |#4| (-801)) (|has| |#4| (-856)))
-(|has| |#4| (-856))
-(|has| |#3| (-801))
-((((-1193)) . T))
-(-2813 (|has| |#3| (-801)) (|has| |#3| (-856)))
-(|has| |#3| (-856))
-((((-572)) . T))
-(((|#2|) . T))
-((((-1188)) -2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))
-((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
-((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188)))))
+((((-872)) -2818 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113)))))
+((((-417 |#2|) |#3|) . T))
+((((-417 (-574))) . T) (($) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-372))
+((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+((($) . T) (((-574)) . T))
+(|has| (-417 |#2|) (-148))
+(|has| (-417 |#2|) (-146))
+((($) . T))
+((((-709)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((#0=(-574) #0#) . T))
+((($) . T) (((-417 (-574))) . T))
+(-2818 (|has| |#4| (-174)) (|has| |#4| (-736)) (|has| |#4| (-858)) (|has| |#4| (-1062)))
+(-2818 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1062)))
+((((-872)) . T) (((-1195)) . T))
+(|has| |#4| (-803))
+(-2818 (|has| |#4| (-803)) (|has| |#4| (-858)))
+(|has| |#4| (-858))
+(|has| |#3| (-803))
+((((-1195)) . T))
+(-2818 (|has| |#3| (-803)) (|has| |#3| (-858)))
+(|has| |#3| (-858))
+((((-574)) . T))
+(((|#2|) . T))
+((((-1190)) -2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))
+((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190)))))
+((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-872 |#1|)) . T))
-((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
-((((-1151 |#1| |#2|)) . T))
-((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
-(((|#2|) . T) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) . T))
-((($) . T))
-(|has| |#1| (-1033))
-(((|#2|) . T) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-((($) . T))
-((((-870)) . T))
-((((-544)) |has| |#2| (-622 (-544))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-386)) . #0=(|has| |#2| (-1033))) (((-227)) . #0#))
-((((-300 |#3|)) . T))
-((((-1188) (-52)) . T))
-(((|#1|) . T))
-(|has| |#1| (-38 (-415 (-572))))
-(|has| |#1| (-38 (-415 (-572))))
-((((-870)) . T))
-(((|#2|) . T))
-((((-870)) . T))
-((((-415 (-572)) |#1|) . T) (($ $) . T))
-((((-415 |#2|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((((-415 (-572))) . T) (((-707)) . T) (($) . T))
-((((-1186 |#1| |#2| |#3|)) . T))
-((((-1186 |#1| |#2| |#3|)) . T) (((-1179 |#1| |#2| |#3|)) . T))
-((((-870)) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-572) |#1|) . T))
-((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
+((((-874 |#1|)) . T))
+((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)))
+((((-1153 |#1| |#2|)) . T))
+((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)))
+(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) . T))
+((($) . T))
+(|has| |#1| (-1035))
+(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+((($) . T))
+((((-872)) . T))
+((((-546)) |has| |#2| (-624 (-546))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#2| (-1035))) (((-227)) . #0#))
+((((-302 |#3|)) . T))
+((((-1190) (-52)) . T))
+(((|#1|) . T))
+(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-417 (-574))))
+((((-872)) . T))
+(((|#2|) . T))
+((((-872)) . T))
+((((-417 (-574)) |#1|) . T) (($ $) . T))
+((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-417 (-574))) . T) (((-709)) . T) (($) . T))
+((((-1188 |#1| |#2| |#3|)) . T))
+((((-1188 |#1| |#2| |#3|)) . T) (((-1181 |#1| |#2| |#3|)) . T))
+((((-872)) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-574) |#1|) . T))
+((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-370))
-(((|#3|) . T) ((|#2|) . T) (($) -2813 (|has| |#4| (-174)) (|has| |#4| (-856)) (|has| |#4| (-1060))) ((|#4|) -2813 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))) (((-572)) -12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))))
-(((|#2|) . T) (($) -2813 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060))) ((|#3|) -2813 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (((-572)) -12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))))
+(|has| |#2| (-372))
+(((|#3|) . T) ((|#2|) . T) (($) -2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1062))) ((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062))) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062))))
+(((|#2|) . T) (($) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062))))
(((|#1|) . T))
(((|#1|) . T))
((((-117 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) (((-572)) |has| |#2| (-1049 (-572))) ((|#2|) . T) (((-872 |#1|)) . T))
-((((-1188)) . T) ((|#1|) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-((((-189)) . T) (((-870)) . T))
-((((-870)) . T))
+((((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) (((-574)) |has| |#2| (-1051 (-574))) ((|#2|) . T) (((-874 |#1|)) . T))
+((((-1190)) . T) ((|#1|) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+((((-189)) . T) (((-872)) . T))
+((((-872)) . T))
(((|#1|) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-((((-130)) . T) (((-870)) . T))
-((((-572) |#1|) . T) (((-1246 (-572)) $) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+((((-130)) . T) (((-872)) . T))
+((((-574) |#1|) . T) (((-1248 (-574)) $) . T))
((((-130)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-370)) (|has| |#2| (-292 |#2| |#2|))) (($ $) . T) (((-572) |#1|) . T))
-((($ $) . T) (((-415 (-572)) |#1|) . T))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-918)))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-((((-870)) . T))
-((((-870)) . T))
-((((-870)) . T))
-(((|#1| (-539 |#2|)) . T))
-((((-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) . T))
-((((-572) (-130)) . T))
-(((|#1| (-572)) . T))
-(((|#1| (-415 (-572))) . T))
-(((|#1| (-779)) . T))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-117 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-(-2813 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
-(-2813 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
-((($) . T))
-(((|#2| (-539 (-872 |#1|))) . T))
-((((-1193)) . T))
-((((-1193)) . T))
-((((-572) |#1|) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-(((|#2|) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-870)) . T) (((-1193)) . T))
-((((-1193)) . T))
-((((-870)) -2813 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
-(((|#1|) . T))
-(((|#2| (-779)) . T))
+(((|#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) (($ $) . T) (((-574) |#1|) . T))
+((($ $) . T) (((-417 (-574)) |#1|) . T))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-920)))
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+((((-872)) . T))
+((((-872)) . T))
+((((-872)) . T))
+(((|#1| (-541 |#2|)) . T))
+((((-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) . T))
+((((-574) (-130)) . T))
+(((|#1| (-574)) . T))
+(((|#1| (-417 (-574))) . T))
+(((|#1| (-781)) . T))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))
+(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))
+((($) . T))
+(((|#2| (-541 (-874 |#1|))) . T))
+((((-1195)) . T))
+((((-1195)) . T))
+((((-574) |#1|) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+(((|#2|) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-872)) . T) (((-1195)) . T))
+((((-1195)) . T))
+((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))))
+(((|#1|) . T))
+(((|#2| (-781)) . T))
(((|#1| |#2|) . T))
-((((-1170) |#1|) . T))
-((((-415 |#2|)) . T))
-((((-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T))
-(|has| |#1| (-564))
-(|has| |#1| (-564))
+((((-1172) |#1|) . T))
+((((-417 |#2|)) . T))
+((((-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T))
+(|has| |#1| (-566))
+(|has| |#1| (-566))
((($) . T) ((|#2|) . T))
-((($) . T) (((-415 (-572))) . T))
-((((-415 (-572))) . T) (($) . T))
+((($) . T) (((-417 (-574))) . T))
+((((-417 (-574))) . T) (($) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-572)) . T) (($) . T))
-(((|#2| $) |has| |#2| (-292 |#2| |#2|)))
-(((|#1| (-652 |#1|)) |has| |#1| (-856)))
-(-2813 (|has| |#1| (-237)) (|has| |#1| (-356)))
-(-2813 (|has| |#1| (-370)) (|has| |#1| (-356)))
-((((-1275 |#1|)) . T) (((-572)) . T) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
-(|has| |#1| (-1111))
-(((|#1|) . T))
-((((-1275 |#1|)) . T) (((-572)) . T) (($) -2813 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-1093)) . T) ((|#2|) . T) (((-415 (-572))) -2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))))
-((((-415 (-572))) . T) (($) . T))
-((((-1010 |#1|)) . T) ((|#1|) . T) (((-572)) -2813 (|has| (-1010 |#1|) (-1049 (-572))) (|has| |#1| (-1049 (-572)))) (((-415 (-572))) -2813 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
-((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-1188)) |has| |#1| (-909 (-1188))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
-((($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
-(((|#1| (-610 |#1| |#3|) (-610 |#1| |#2|)) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-574)) . T) (($) . T))
+(((|#2| $) |has| |#2| (-294 |#2| |#2|)))
+(((|#1| (-654 |#1|)) |has| |#1| (-858)))
+(-2818 (|has| |#1| (-239)) (|has| |#1| (-358)))
+(-2818 (|has| |#1| (-372)) (|has| |#1| (-358)))
+((((-1277 |#1|)) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))))
+(|has| |#1| (-1113))
+(((|#1|) . T))
+((((-1277 |#1|)) . T) (((-574)) . T) (($) -2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-1095)) . T) ((|#2|) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))))
+((((-417 (-574))) . T) (($) . T))
+((((-1012 |#1|)) . T) ((|#1|) . T) (((-574)) -2818 (|has| (-1012 |#1|) (-1051 (-574))) (|has| |#1| (-1051 (-574)))) (((-417 (-574))) -2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))
+((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-1190)) |has| |#1| (-911 (-1190))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))
+(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1151 |#1| |#2|) #0#) |has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))))
+(((#0=(-1153 |#1| |#2|) #0#) |has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))))
-(|has| |#1| (-292 |#1| |#1|))
-(((#0=(-117 |#1|)) |has| #0# (-315 #0#)))
+(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))))
+(|has| |#1| (-294 |#1| |#1|))
+(((#0=(-117 |#1|)) |has| #0# (-317 #0#)))
((($ $) . T))
-(-2813 (|has| |#1| (-858)) (|has| |#1| (-1111)))
-((($ $) . T) ((#0=(-872 |#1|) $) . T) ((#0# |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-237)) ((|#2| |#1|) |has| |#1| (-237)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-486 . -1111) T) ((-269 . -522) 193724) ((-251 . -522) 193667) ((-249 . -1111) 193617) ((-579 . -111) 193602) ((-539 . -23) T) ((-134 . -1111) T) ((-139 . -1111) T) ((-118 . -315) 193559) ((-138 . -1111) T) ((-807 . -1229) 193528) ((-487 . -522) 193320) ((-685 . -624) 193304) ((-702 . -102) T) ((-1152 . -522) 193223) ((-398 . -132) T) ((-1292 . -987) 193192) ((-1035 . -1062) 193129) ((-31 . -93) T) ((-610 . -497) 193113) ((-1035 . -648) 193050) ((-629 . -132) T) ((-827 . -854) T) ((-531 . -57) 193000) ((-527 . -522) 192933) ((-358 . -235) 192920) ((-361 . -1062) 192865) ((-59 . -522) 192798) ((-524 . -522) 192731) ((-426 . -909) 192690) ((-171 . -1060) T) ((-505 . -522) 192623) ((-504 . -522) 192556) ((-361 . -648) 192501) ((-807 . -1049) 192281) ((-707 . -38) 192246) ((-1252 . -624) 191994) ((-350 . -356) T) ((-1105 . -1104) 191978) ((-1105 . -1111) 191956) ((-863 . -624) 191853) ((-171 . -247) 191804) ((-171 . -237) 191755) ((-1105 . -1106) 191713) ((-880 . -292) 191671) ((-227 . -803) T) ((-227 . -800) T) ((-702 . -290) NIL) ((-579 . -624) 191643) ((-1161 . -1205) 191622) ((-415 . -1003) 191606) ((-48 . -1062) 191571) ((-709 . -21) T) ((-709 . -25) T) ((-48 . -648) 191536) ((-1294 . -656) 191510) ((-322 . -161) 191489) ((-322 . -144) 191468) ((-1161 . -107) 191418) ((-117 . -21) T) ((-40 . -233) 191395) ((-135 . -25) T) ((-117 . -25) T) ((-616 . -294) 191371) ((-483 . -294) 191350) ((-1252 . -332) 191327) ((-1252 . -1060) T) ((-863 . -1060) T) ((-807 . -345) 191311) ((-140 . -187) T) ((-118 . -1163) NIL) ((-91 . -621) 191243) ((-485 . -132) T) ((-1252 . -237) T) ((-1107 . -498) 191224) ((-1107 . -621) 191190) ((-1101 . -498) 191171) ((-1101 . -621) 191137) ((-601 . -1229) T) ((-1084 . -498) 191118) ((-579 . -1060) T) ((-1084 . -621) 191084) ((-670 . -725) 191068) ((-1077 . -498) 191049) ((-1077 . -621) 191015) ((-967 . -294) 190992) ((-60 . -34) T) ((-1073 . -803) T) ((-1073 . -800) T) ((-1047 . -498) 190973) ((-1030 . -498) 190954) ((-824 . -734) T) ((-739 . -47) 190919) ((-631 . -38) 190906) ((-362 . -296) T) ((-359 . -296) T) ((-351 . -296) T) ((-269 . -296) 190837) ((-251 . -296) 190768) ((-1047 . -621) 190734) ((-1035 . -102) T) ((-1030 . -621) 190700) ((-634 . -498) 190681) ((-421 . -734) T) ((-118 . -38) 190626) ((-491 . -498) 190607) ((-634 . -621) 190573) ((-421 . -481) T) ((-220 . -498) 190554) ((-491 . -621) 190520) ((-361 . -102) T) ((-220 . -621) 190486) ((-1223 . -1069) T) ((-350 . -654) 190416) ((-719 . -1069) T) ((-1186 . -47) 190393) ((-1185 . -47) 190363) ((-1179 . -47) 190340) ((-129 . -294) 190315) ((-1046 . -152) 190261) ((-919 . -296) T) ((-1137 . -47) 190233) ((-702 . -315) NIL) ((-523 . -621) 190215) ((-518 . -621) 190197) ((-516 . -621) 190179) ((-333 . -1111) 190129) ((-720 . -460) 190060) ((-48 . -102) T) ((-1263 . -292) 190018) ((-1242 . -292) 189918) ((-652 . -674) 189902) ((-652 . -659) 189886) ((-346 . -21) T) ((-346 . -25) T) ((-40 . -356) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-652 . -380) 189870) ((-613 . -498) 189852) ((-610 . -292) 189804) ((-613 . -621) 189771) ((-396 . -102) T) ((-1131 . -144) T) ((-127 . -621) 189703) ((-882 . -1111) T) ((-666 . -419) 189687) ((-722 . -621) 189669) ((-253 . -621) 189636) ((-189 . -621) 189618) ((-163 . -621) 189600) ((-158 . -621) 189582) ((-1294 . -734) T) ((-1113 . -34) T) ((-879 . -803) NIL) ((-879 . -800) NIL) ((-866 . -858) T) ((-739 . -895) NIL) ((-1303 . -132) T) ((-388 . -132) T) ((-901 . -624) 189550) ((-913 . -102) T) ((-739 . -1049) 189426) ((-1186 . -1229) T) ((-539 . -132) T) ((-1185 . -1229) T) ((-1098 . -419) 189410) ((-1011 . -497) 189394) ((-118 . -408) 189371) ((-1179 . -1229) T) ((-790 . -419) 189355) ((-788 . -419) 189339) ((-952 . -34) T) ((-702 . -1163) NIL) ((-256 . -656) 189111) ((-255 . -656) 188870) ((-825 . -929) 188849) ((-462 . -419) 188833) ((-610 . -19) 188817) ((-1157 . -1222) 188786) ((-1179 . -895) NIL) ((-1179 . -893) 188738) ((-610 . -612) 188715) ((-1215 . -621) 188647) ((-1187 . -621) 188629) ((-62 . -403) T) ((-1185 . -1049) 188564) ((-1179 . -1049) 188530) ((-702 . -38) 188480) ((-40 . -654) 188410) ((-482 . -292) 188368) ((-1235 . -621) 188350) ((-739 . -384) 188334) ((-846 . -621) 188316) ((-666 . -1069) T) ((-1263 . -1013) 188282) ((-1242 . -1013) 188248) ((-254 . -1229) T) ((-1099 . -624) 188232) ((-1074 . -1205) 188207) ((-1087 . -624) 188184) ((-880 . -622) 187991) ((-880 . -621) 187973) ((-709 . -235) 187960) ((-1201 . -497) 187897) ((-426 . -1033) 187875) ((-48 . -315) 187862) ((-1074 . -107) 187808) ((-487 . -497) 187745) ((-528 . -1229) T) ((-1179 . -345) 187697) ((-1152 . -497) 187668) ((-1179 . -384) 187620) ((-1098 . -1069) T) ((-445 . -102) T) ((-185 . -1111) T) ((-256 . -34) T) ((-255 . -34) T) ((-790 . -1069) T) ((-788 . -1069) T) ((-739 . -909) 187597) ((-462 . -1069) T) ((-59 . -497) 187581) ((-1045 . -1067) 187555) ((-527 . -497) 187539) ((-524 . -497) 187523) ((-505 . -497) 187507) ((-504 . -497) 187491) ((-249 . -522) 187424) ((-1045 . -111) 187391) ((-1186 . -909) 187304) ((-1185 . -909) 187210) ((-1179 . -909) 187043) ((-1137 . -909) 187027) ((-678 . -1123) T) ((-361 . -1163) T) ((-653 . -93) T) ((-328 . -1067) 187009) ((-256 . -799) 186988) ((-256 . -802) 186939) ((-31 . -498) 186920) ((-256 . -801) 186899) ((-255 . -799) 186878) ((-255 . -802) 186829) ((-255 . -801) 186808) ((-31 . -621) 186774) ((-50 . -1069) T) ((-256 . -734) 186684) ((-255 . -734) 186594) ((-1223 . -1111) T) ((-678 . -23) T) ((-589 . -1069) T) ((-526 . -1069) T) ((-386 . -1067) 186559) ((-328 . -111) 186534) ((-73 . -390) T) ((-73 . -403) T) ((-1035 . -38) 186471) ((-702 . -408) 186453) ((-99 . -102) T) ((-719 . -1111) T) ((-1308 . -1062) 186440) ((-1014 . -146) 186412) ((-1014 . -148) 186384) ((-878 . -654) 186356) ((-386 . -111) 186312) ((-325 . -1233) 186291) ((-482 . -1013) 186257) ((-361 . -38) 186222) ((-40 . -377) 186194) ((-881 . -621) 186066) ((-128 . -126) 186050) ((-122 . -126) 186034) ((-844 . -1067) 186004) ((-841 . -21) 185956) ((-835 . -1067) 185940) ((-841 . -25) 185892) ((-325 . -564) 185843) ((-525 . -624) 185824) ((-572 . -836) T) ((-244 . -1229) T) ((-1045 . -624) 185793) ((-844 . -111) 185758) ((-835 . -111) 185737) ((-1263 . -621) 185719) ((-1242 . -621) 185701) ((-1242 . -622) 185372) ((-1184 . -918) 185351) ((-1136 . -918) 185330) ((-48 . -38) 185295) ((-1301 . -1123) T) ((-544 . -292) 185251) ((-610 . -621) 185163) ((-610 . -622) 185124) ((-1299 . -1123) T) ((-368 . -624) 185108) ((-328 . -624) 185092) ((-244 . -1049) 184919) ((-1184 . -656) 184808) ((-1136 . -656) 184697) ((-862 . -656) 184671) ((-726 . -621) 184653) ((-554 . -375) T) ((-1301 . -23) T) ((-1299 . -23) T) ((-499 . -1111) T) ((-386 . -624) 184603) ((-386 . -626) 184585) ((-1045 . -1060) T) ((-873 . -102) T) ((-1201 . -292) 184564) ((-171 . -375) 184515) ((-1015 . -1229) T) ((-844 . -624) 184469) ((-835 . -624) 184424) ((-44 . -23) T) ((-487 . -292) 184403) ((-594 . -1111) T) ((-1157 . -1120) 184372) ((-1115 . -1114) 184324) ((-398 . -21) T) ((-398 . -25) T) ((-153 . -1123) T) ((-1308 . -102) T) ((-1015 . -893) 184306) ((-1015 . -895) 184288) ((-1223 . -725) 184185) ((-631 . -233) 184169) ((-629 . -21) T) ((-295 . -564) T) ((-629 . -25) T) ((-1209 . -1111) T) ((-719 . -725) 184134) ((-244 . -384) 184103) ((-1015 . -1049) 184063) ((-386 . -1060) T) ((-225 . -1069) T) ((-118 . -233) 184040) ((-59 . -292) 183992) ((-153 . -23) T) ((-524 . -292) 183944) ((-333 . -522) 183877) ((-504 . -292) 183829) ((-386 . -247) T) ((-386 . -237) T) ((-844 . -1060) T) ((-835 . -1060) T) ((-720 . -958) 183798) ((-709 . -858) T) ((-482 . -621) 183780) ((-1265 . -1062) 183685) ((-588 . -654) 183657) ((-572 . -654) 183629) ((-503 . -654) 183579) ((-835 . -237) 183558) ((-135 . -858) T) ((-1265 . -648) 183450) ((-666 . -1111) T) ((-1201 . -612) 183429) ((-558 . -1205) 183408) ((-343 . -1111) T) ((-325 . -370) 183387) ((-415 . -148) 183366) ((-415 . -146) 183345) ((-973 . -1123) 183244) ((-244 . -909) 183176) ((-823 . -1123) 183086) ((-662 . -860) 183070) ((-487 . -612) 183049) ((-558 . -107) 182999) ((-1015 . -384) 182981) ((-1015 . -345) 182963) ((-97 . -1111) T) ((-973 . -23) 182774) ((-485 . -21) T) ((-485 . -25) T) ((-823 . -23) 182644) ((-1188 . -621) 182626) ((-59 . -19) 182610) ((-1188 . -622) 182532) ((-1184 . -734) T) ((-1136 . -734) T) ((-524 . -19) 182516) ((-504 . -19) 182500) ((-59 . -612) 182477) ((-1098 . -1111) T) ((-910 . -102) 182455) ((-862 . -734) T) ((-790 . -1111) T) ((-524 . -612) 182432) ((-504 . -612) 182409) ((-788 . -1111) T) ((-788 . -1076) 182376) ((-469 . -1111) T) ((-462 . -1111) T) ((-594 . -725) 182351) ((-657 . -1111) T) ((-1271 . -47) 182328) ((-1265 . -102) T) ((-1264 . -47) 182298) ((-1243 . -47) 182275) ((-1223 . -174) 182226) ((-1185 . -313) 182205) ((-1179 . -313) 182184) ((-1107 . -624) 182165) ((-1101 . -624) 182146) ((-1091 . -564) 182097) ((-1015 . -909) NIL) ((-1091 . -1233) 182048) ((-678 . -132) T) ((-635 . -1123) T) ((-1084 . -624) 182029) ((-1077 . -624) 182010) ((-1047 . -624) 181991) ((-1030 . -624) 181972) ((-707 . -654) 181922) ((-280 . -1111) T) ((-85 . -449) T) ((-85 . -403) T) ((-722 . -1067) 181892) ((-719 . -174) T) ((-50 . -1111) T) ((-603 . -47) 181869) ((-227 . -656) 181834) ((-589 . -1111) T) ((-526 . -1111) T) ((-495 . -828) T) ((-495 . -929) T) ((-366 . -1233) T) ((-360 . -1233) T) ((-352 . -1233) T) ((-325 . -1123) T) ((-322 . -1062) 181744) ((-319 . -1062) 181673) ((-108 . -1233) T) ((-634 . -624) 181654) ((-366 . -564) T) ((-219 . -929) T) ((-219 . -828) T) ((-322 . -648) 181564) ((-319 . -648) 181493) ((-360 . -564) T) ((-352 . -564) T) ((-491 . -624) 181474) ((-108 . -564) T) ((-666 . -725) 181444) ((-1179 . -1033) NIL) ((-220 . -624) 181425) ((-325 . -23) T) ((-67 . -1229) T) ((-1011 . -621) 181357) ((-702 . -233) 181339) ((-722 . -111) 181304) ((-652 . -34) T) ((-249 . -497) 181288) ((-1308 . -1163) T) ((-1303 . -21) T) ((-1303 . -25) T) ((-1113 . -1109) 181272) ((-173 . -1111) T) ((-1301 . -132) T) ((-1299 . -132) T) ((-1292 . -102) T) ((-1275 . -621) 181238) ((-1271 . -1229) T) ((-961 . -918) 181217) ((-1264 . -1229) T) ((-1264 . -1049) 181152) ((-1243 . -1229) T) ((-523 . -624) 181136) ((-1243 . -895) NIL) ((-1243 . -893) 181088) ((-1243 . -1049) 181054) ((-489 . -918) 181033) ((-1223 . -522) 181000) ((-1201 . -622) NIL) ((-1098 . -725) 180849) ((-1073 . -656) 180821) ((-961 . -656) 180710) ((-605 . -498) 180691) ((-593 . -498) 180672) ((-790 . -725) 180501) ((-605 . -621) 180467) ((-593 . -621) 180433) ((-544 . -621) 180415) ((-544 . -622) 180396) ((-788 . -725) 180245) ((-1088 . -102) T) ((-388 . -25) T) ((-631 . -654) 180217) ((-388 . -21) T) ((-489 . -656) 180106) ((-469 . -725) 180077) ((-462 . -725) 179926) ((-998 . -102) T) ((-1201 . -621) 179908) ((-1153 . -1134) 179853) ((-1057 . -1222) 179782) ((-745 . -102) T) ((-118 . -654) 179712) ((-613 . -624) 179694) ((-910 . -315) 179632) ((-884 . -93) T) ((-539 . -25) T) ((-722 . -624) 179586) ((-689 . -93) T) ((-684 . -93) T) ((-653 . -498) 179567) ((-142 . -102) T) ((-44 . -132) T) ((-672 . -621) 179549) ((-603 . -1229) T) ((-350 . -1069) T) ((-295 . -1123) T) ((-653 . -621) 179502) ((-486 . -93) T) ((-362 . -621) 179484) ((-359 . -621) 179466) ((-351 . -621) 179448) ((-269 . -622) 179196) ((-269 . -621) 179178) ((-251 . -621) 179160) ((-251 . -622) 179021) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1152 . -621) 179003) ((-1131 . -648) 178990) ((-1131 . -1062) 178977) ((-827 . -734) T) ((-827 . -865) T) ((-610 . -294) 178954) ((-589 . -725) 178919) ((-487 . -622) NIL) ((-487 . -621) 178901) ((-526 . -725) 178846) ((-322 . -102) T) ((-319 . -102) T) ((-295 . -23) T) ((-153 . -132) T) ((-919 . -621) 178828) ((-919 . -622) 178810) ((-394 . -734) T) ((-880 . -1067) 178762) ((-880 . -111) 178700) ((-722 . -1060) T) ((-720 . -1255) 178684) ((-702 . -356) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-527 . -621) 178616) ((-386 . -803) T) ((-225 . -1111) T) ((-169 . -1229) T) ((-386 . -800) T) ((-227 . -802) T) ((-227 . -799) T) ((-59 . -622) 178577) ((-59 . -621) 178489) ((-227 . -734) T) ((-524 . -622) 178450) ((-524 . -621) 178362) ((-505 . -621) 178294) ((-504 . -622) 178255) ((-504 . -621) 178167) ((-1091 . -370) 178118) ((-40 . -419) 178095) ((-77 . -1229) T) ((-879 . -918) NIL) ((-366 . -335) 178079) ((-366 . -370) T) ((-360 . -335) 178063) ((-360 . -370) T) ((-352 . -335) 178047) ((-352 . -370) T) ((-322 . -290) 178026) ((-108 . -370) T) ((-70 . -1229) T) ((-1243 . -345) 177978) ((-879 . -656) 177923) ((-1243 . -384) 177875) ((-973 . -132) 177730) ((-823 . -132) 177600) ((-967 . -659) 177584) ((-1098 . -174) 177495) ((-967 . -380) 177479) ((-1073 . -802) T) ((-1073 . -799) T) ((-880 . -624) 177377) ((-790 . -174) 177268) ((-788 . -174) 177179) ((-824 . -47) 177141) ((-1073 . -734) T) ((-333 . -497) 177125) ((-961 . -734) T) ((-1292 . -315) 177063) ((-462 . -174) 176974) ((-249 . -292) 176926) ((-1271 . -909) 176839) ((-1264 . -909) 176745) ((-1263 . -1067) 176580) ((-489 . -734) T) ((-1243 . -909) 176413) ((-1242 . -1067) 176221) ((-1223 . -296) 176200) ((-1198 . -1229) T) ((-1195 . -375) T) ((-1194 . -375) T) ((-1157 . -152) 176184) ((-1131 . -102) T) ((-1129 . -1111) T) ((-1091 . -23) T) ((-1091 . -1123) T) ((-1086 . -102) T) ((-1068 . -621) 176151) ((-936 . -964) T) ((-745 . -315) 176089) ((-75 . -1229) T) ((-672 . -389) 176061) ((-171 . -918) 176014) ((-30 . -964) T) ((-112 . -852) T) ((-1 . -621) 175996) ((-1014 . -417) 175968) ((-129 . -659) 175950) ((-50 . -628) 175934) ((-702 . -654) 175869) ((-603 . -909) 175782) ((-446 . -102) T) ((-129 . -380) 175764) ((-142 . -315) NIL) ((-880 . -1060) T) ((-841 . -858) 175743) ((-81 . -1229) T) ((-719 . -296) T) ((-40 . -1069) T) ((-589 . -174) T) ((-526 . -174) T) ((-519 . -621) 175725) ((-171 . -656) 175599) ((-515 . -621) 175581) ((-358 . -148) 175563) ((-358 . -146) T) ((-366 . -1123) T) ((-360 . -1123) T) ((-352 . -1123) T) ((-1015 . -313) T) ((-923 . -313) T) ((-880 . -247) T) ((-108 . -1123) T) ((-880 . -237) 175542) ((-1263 . -111) 175363) ((-1242 . -111) 175152) ((-249 . -1267) 175136) ((-572 . -856) T) ((-366 . -23) T) ((-361 . -356) T) ((-322 . -315) 175123) ((-319 . -315) 175064) ((-360 . -23) T) ((-325 . -132) T) ((-352 . -23) T) ((-1015 . -1033) T) ((-31 . -624) 175045) ((-108 . -23) T) ((-662 . -1062) 175029) ((-249 . -612) 175006) ((-339 . -1111) T) ((-662 . -648) 174976) ((-1265 . -38) 174868) ((-1252 . -918) 174847) ((-112 . -1111) T) ((-824 . -1229) 174826) ((-1046 . -102) T) ((-1252 . -656) 174715) ((-879 . -802) NIL) ((-863 . -656) 174689) ((-879 . -799) NIL) ((-824 . -895) NIL) ((-879 . -734) T) ((-1098 . -522) 174562) ((-790 . -522) 174509) ((-788 . -522) 174461) ((-579 . -656) 174448) ((-824 . -1049) 174276) ((-462 . -522) 174219) ((-396 . -397) T) ((-1263 . -624) 174032) ((-1242 . -624) 173780) ((-60 . -1229) T) ((-629 . -858) 173759) ((-508 . -669) T) ((-1157 . -987) 173728) ((-1035 . -654) 173665) ((-1014 . -460) T) ((-707 . -856) T) ((-518 . -800) T) ((-482 . -1067) 173500) ((-508 . -113) T) ((-350 . -1111) T) ((-319 . -1163) NIL) ((-295 . -132) T) ((-402 . -1111) T) ((-878 . -1069) T) ((-702 . -377) 173467) ((-361 . -654) 173397) ((-225 . -628) 173374) ((-333 . -292) 173326) ((-482 . -111) 173147) ((-1263 . -1060) T) ((-1242 . -1060) T) ((-824 . -384) 173131) ((-171 . -734) T) ((-662 . -102) T) ((-1263 . -247) 173110) ((-1263 . -237) 173062) ((-1242 . -237) 172967) ((-1242 . -247) 172946) ((-1014 . -410) NIL) ((-678 . -647) 172894) ((-322 . -38) 172804) ((-319 . -38) 172733) ((-69 . -621) 172715) ((-325 . -501) 172681) ((-48 . -654) 172631) ((-1201 . -294) 172610) ((-1237 . -858) T) ((-1124 . -1123) 172520) ((-83 . -1229) T) ((-61 . -621) 172502) ((-487 . -294) 172481) ((-1294 . -1049) 172458) ((-1176 . -1111) T) ((-1124 . -23) 172328) ((-824 . -909) 172264) ((-1252 . -734) T) ((-1113 . -1229) T) ((-482 . -624) 172090) ((-1098 . -296) 172021) ((-975 . -1111) T) ((-902 . -102) T) ((-790 . -296) 171932) ((-333 . -19) 171916) ((-59 . -294) 171893) ((-788 . -296) 171824) ((-863 . -734) T) ((-118 . -856) NIL) ((-524 . -294) 171801) ((-333 . -612) 171778) ((-504 . -294) 171755) ((-462 . -296) 171686) ((-1046 . -315) 171537) ((-884 . -498) 171518) ((-884 . -621) 171484) ((-689 . -498) 171465) ((-579 . -734) T) ((-684 . -498) 171446) ((-689 . -621) 171396) ((-684 . -621) 171362) ((-670 . -621) 171344) ((-486 . -498) 171325) ((-486 . -621) 171291) ((-249 . -622) 171252) ((-249 . -498) 171229) ((-139 . -498) 171210) ((-138 . -498) 171191) ((-134 . -498) 171172) ((-249 . -621) 171064) ((-215 . -102) T) ((-139 . -621) 171030) ((-138 . -621) 170996) ((-134 . -621) 170962) ((-1158 . -34) T) ((-952 . -1229) T) ((-350 . -725) 170907) ((-678 . -25) T) ((-678 . -21) T) ((-1188 . -624) 170888) ((-482 . -1060) T) ((-643 . -425) 170853) ((-615 . -425) 170818) ((-1131 . -1163) T) ((-720 . -1062) 170641) ((-589 . -296) T) ((-526 . -296) T) ((-1264 . -313) 170620) ((-482 . -237) 170572) ((-482 . -247) 170551) ((-1243 . -313) 170530) ((-720 . -648) 170359) ((-1243 . -1033) NIL) ((-1091 . -132) T) ((-880 . -803) 170338) ((-145 . -102) T) ((-40 . -1111) T) ((-880 . -800) 170317) ((-652 . -1021) 170301) ((-588 . -1069) T) ((-572 . -1069) T) ((-503 . -1069) T) ((-415 . -460) T) ((-366 . -132) T) ((-322 . -408) 170285) ((-319 . -408) 170246) ((-360 . -132) T) ((-352 . -132) T) ((-1193 . -1111) T) ((-1131 . -38) 170233) ((-1105 . -621) 170200) ((-108 . -132) T) ((-963 . -1111) T) ((-930 . -1111) T) ((-779 . -1111) T) ((-680 . -1111) T) ((-709 . -148) T) ((-117 . -148) T) ((-1301 . -21) T) ((-1301 . -25) T) ((-1299 . -21) T) ((-1299 . -25) T) ((-672 . -1067) 170184) ((-539 . -858) T) ((-508 . -858) T) ((-362 . -1067) 170136) ((-359 . -1067) 170088) ((-351 . -1067) 170040) ((-256 . -1229) T) ((-255 . -1229) T) ((-269 . -1067) 169883) ((-251 . -1067) 169726) ((-672 . -111) 169705) ((-555 . -852) T) ((-362 . -111) 169643) ((-359 . -111) 169581) ((-351 . -111) 169519) ((-269 . -111) 169348) ((-251 . -111) 169177) ((-825 . -1233) 169156) ((-631 . -419) 169140) ((-44 . -21) T) ((-44 . -25) T) ((-823 . -647) 169046) ((-825 . -564) 169025) ((-256 . -1049) 168852) ((-255 . -1049) 168679) ((-127 . -120) 168663) ((-919 . -1067) 168628) ((-720 . -102) T) ((-707 . -1069) T) ((-605 . -624) 168609) ((-593 . -624) 168590) ((-544 . -626) 168493) ((-350 . -174) T) ((-88 . -621) 168475) ((-153 . -21) T) ((-153 . -25) T) ((-919 . -111) 168431) ((-40 . -725) 168376) ((-878 . -1111) T) ((-672 . -624) 168353) ((-653 . -624) 168334) ((-362 . -624) 168271) ((-359 . -624) 168208) ((-555 . -1111) T) ((-351 . -624) 168145) ((-333 . -622) 168106) ((-333 . -621) 168018) ((-269 . -624) 167771) ((-251 . -624) 167556) ((-1242 . -800) 167509) ((-1242 . -803) 167462) ((-256 . -384) 167431) ((-255 . -384) 167400) ((-662 . -38) 167370) ((-616 . -34) T) ((-490 . -1123) 167280) ((-483 . -34) T) ((-1124 . -132) 167150) ((-973 . -25) 166961) ((-919 . -624) 166911) ((-882 . -621) 166893) ((-973 . -21) 166848) ((-823 . -21) 166758) ((-823 . -25) 166609) ((-1235 . -375) T) ((-631 . -1069) T) ((-1190 . -564) 166588) ((-1184 . -47) 166565) ((-362 . -1060) T) ((-359 . -1060) T) ((-490 . -23) 166435) ((-351 . -1060) T) ((-269 . -1060) T) ((-251 . -1060) T) ((-1136 . -47) 166407) ((-118 . -1069) T) ((-1045 . -656) 166381) ((-967 . -34) T) ((-362 . -237) 166360) ((-362 . -247) T) ((-359 . -237) 166339) ((-359 . -247) T) ((-351 . -237) 166318) ((-351 . -247) T) ((-269 . -332) 166290) ((-251 . -332) 166247) ((-269 . -237) 166226) ((-1168 . -152) 166210) ((-256 . -909) 166142) ((-255 . -909) 166074) ((-1093 . -858) T) ((-422 . -1123) T) ((-1065 . -23) T) ((-919 . -1060) T) ((-328 . -656) 166056) ((-1035 . -856) T) ((-678 . -235) 166029) ((-1223 . -1013) 165995) ((-1185 . -929) 165974) ((-1179 . -929) 165953) ((-1179 . -828) NIL) ((-1010 . -1062) 165849) ((-976 . -1229) T) ((-919 . -247) T) ((-825 . -370) 165828) ((-392 . -23) T) ((-128 . -1111) 165806) ((-122 . -1111) 165784) ((-919 . -237) T) ((-129 . -34) T) ((-386 . -656) 165749) ((-1010 . -648) 165697) ((-878 . -725) 165684) ((-1308 . -654) 165656) ((-1057 . -152) 165621) ((-1004 . -1229) T) ((-40 . -174) T) ((-702 . -419) 165603) ((-720 . -315) 165590) ((-844 . -656) 165550) ((-835 . -656) 165524) ((-325 . -25) T) ((-325 . -21) T) ((-666 . -292) 165503) ((-588 . -1111) T) ((-572 . -1111) T) ((-503 . -1111) T) ((-249 . -294) 165480) ((-1184 . -1229) T) ((-319 . -233) 165441) ((-1184 . -895) NIL) ((-55 . -1111) T) ((-1136 . -895) 165300) ((-130 . -858) T) ((-1184 . -1049) 165180) ((-1136 . -1049) 165063) ((-185 . -621) 165045) ((-862 . -1049) 164941) ((-790 . -292) 164868) ((-825 . -1123) T) ((-1045 . -734) T) ((-610 . -659) 164852) ((-1057 . -987) 164781) ((-1010 . -102) T) ((-825 . -23) T) ((-720 . -1163) 164759) ((-702 . -1069) T) ((-610 . -380) 164743) ((-358 . -460) T) ((-350 . -296) T) ((-1280 . -1111) T) ((-252 . -1111) T) ((-407 . -102) T) ((-295 . -21) T) ((-295 . -25) T) ((-368 . -734) T) ((-718 . -1111) T) ((-707 . -1111) T) ((-368 . -481) T) ((-1223 . -621) 164725) ((-1184 . -384) 164709) ((-1136 . -384) 164693) ((-1035 . -419) 164655) ((-142 . -231) 164637) ((-386 . -802) T) ((-386 . -799) T) ((-878 . -174) T) ((-386 . -734) T) ((-719 . -621) 164619) ((-720 . -38) 164448) ((-1279 . -1277) 164432) ((-358 . -410) T) ((-1279 . -1111) 164382) ((-1202 . -1111) T) ((-588 . -725) 164369) ((-572 . -725) 164356) ((-503 . -725) 164321) ((-1265 . -654) 164211) ((-322 . -637) 164190) ((-844 . -734) T) ((-835 . -734) T) ((-652 . -1229) T) ((-1091 . -647) 164138) ((-1184 . -909) 164081) ((-1136 . -909) 164065) ((-823 . -235) 164011) ((-670 . -1067) 163995) ((-108 . -647) 163977) ((-490 . -132) 163847) ((-1190 . -1123) T) ((-961 . -47) 163816) ((-631 . -1111) T) ((-670 . -111) 163795) ((-499 . -621) 163761) ((-333 . -294) 163738) ((-489 . -47) 163695) ((-1190 . -23) T) ((-118 . -1111) T) ((-103 . -102) 163673) ((-1291 . -1123) T) ((-556 . -858) T) ((-227 . -1229) T) ((-1065 . -132) T) ((-1035 . -1069) T) ((-827 . -1049) 163657) ((-1291 . -23) T) ((-1014 . -732) 163629) ((-1209 . -621) 163611) ((-707 . -725) 163576) ((-594 . -621) 163558) ((-394 . -1049) 163542) ((-361 . -1069) T) ((-392 . -132) T) ((-330 . -1049) 163526) ((-1131 . -836) T) ((-1116 . -1111) T) ((-1091 . -21) T) ((-227 . -895) 163508) ((-1015 . -929) T) ((-91 . -34) T) ((-1015 . -828) T) ((-923 . -929) T) ((-1091 . -25) T) ((-1010 . -315) 163473) ((-495 . -1233) T) ((-884 . -624) 163454) ((-722 . -656) 163414) ((-689 . -624) 163395) ((-219 . -1233) T) ((-684 . -624) 163376) ((-227 . -1049) 163336) ((-40 . -296) T) ((-495 . -564) T) ((-486 . -624) 163317) ((-366 . -25) T) ((-322 . -654) 162972) ((-319 . -654) 162886) ((-366 . -21) T) ((-360 . -25) T) ((-360 . -21) T) ((-219 . -564) T) ((-352 . -25) T) ((-352 . -21) T) ((-325 . -235) 162832) ((-249 . -624) 162809) ((-139 . -624) 162790) ((-138 . -624) 162771) ((-134 . -624) 162752) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1069) T) ((-588 . -174) T) ((-572 . -174) T) ((-503 . -174) T) ((-1073 . -1229) T) ((-666 . -621) 162734) ((-745 . -744) 162718) ((-343 . -621) 162700) ((-68 . -390) T) ((-68 . -403) T) ((-1113 . -107) 162684) ((-1073 . -895) 162666) ((-961 . -895) 162591) ((-661 . -1123) T) ((-631 . -725) 162578) ((-489 . -895) NIL) ((-1157 . -102) T) ((-1105 . -626) 162562) ((-1073 . -1049) 162544) ((-97 . -621) 162526) ((-485 . -148) T) ((-961 . -1049) 162406) ((-118 . -725) 162351) ((-661 . -23) T) ((-489 . -1049) 162227) ((-1098 . -622) NIL) ((-1098 . -621) 162209) ((-790 . -622) NIL) ((-790 . -621) 162170) ((-788 . -622) 161804) ((-788 . -621) 161718) ((-1124 . -647) 161624) ((-469 . -621) 161606) ((-462 . -621) 161588) ((-462 . -622) 161449) ((-1046 . -231) 161395) ((-880 . -918) 161374) ((-127 . -34) T) ((-825 . -132) T) ((-657 . -621) 161356) ((-586 . -102) T) ((-362 . -1298) 161340) ((-359 . -1298) 161324) ((-351 . -1298) 161308) ((-128 . -522) 161241) ((-122 . -522) 161174) ((-519 . -800) T) ((-519 . -803) T) ((-518 . -802) T) ((-103 . -315) 161112) ((-224 . -102) 161090) ((-707 . -174) T) ((-702 . -1111) T) ((-880 . -656) 161006) ((-65 . -391) T) ((-280 . -621) 160988) ((-65 . -403) T) ((-961 . -384) 160972) ((-878 . -296) T) ((-50 . -621) 160954) ((-1010 . -38) 160902) ((-1131 . -654) 160874) ((-589 . -621) 160856) ((-489 . -384) 160840) ((-589 . -622) 160822) ((-526 . -621) 160804) ((-919 . -1298) 160791) ((-879 . -1229) T) ((-709 . -460) T) ((-503 . -522) 160757) ((-495 . -370) T) ((-362 . -375) 160736) ((-359 . -375) 160715) ((-351 . -375) 160694) ((-722 . -734) T) ((-219 . -370) T) ((-117 . -460) T) ((-1302 . -1293) 160678) ((-879 . -893) 160655) ((-879 . -895) NIL) ((-973 . -858) 160554) ((-823 . -858) 160505) ((-1236 . -102) T) ((-662 . -664) 160489) ((-1215 . -34) T) ((-173 . -621) 160471) ((-1124 . -21) 160381) ((-1124 . -25) 160232) ((-879 . -1049) 160209) ((-961 . -909) 160190) ((-1252 . -47) 160167) ((-919 . -375) T) ((-59 . -659) 160151) ((-524 . -659) 160135) ((-489 . -909) 160112) ((-71 . -449) T) ((-71 . -403) T) ((-504 . -659) 160096) ((-59 . -380) 160080) ((-631 . -174) T) ((-524 . -380) 160064) ((-504 . -380) 160048) ((-835 . -716) 160032) ((-1184 . -313) 160011) ((-1190 . -132) T) ((-1153 . -1062) 159995) ((-118 . -174) T) ((-1153 . -648) 159927) ((-1157 . -315) 159865) ((-171 . -1229) T) ((-1291 . -132) T) ((-874 . -1062) 159835) ((-643 . -752) 159819) ((-615 . -752) 159803) ((-1264 . -929) 159782) ((-1243 . -929) 159761) ((-1243 . -828) NIL) ((-874 . -648) 159731) ((-702 . -725) 159681) ((-1242 . -918) 159634) ((-1035 . -1111) T) ((-879 . -384) 159611) ((-879 . -345) 159588) ((-914 . -1123) T) ((-171 . -893) 159572) ((-171 . -895) 159497) ((-1279 . -522) 159430) ((-1091 . -235) 159349) ((-495 . -1123) T) ((-361 . -1111) T) ((-219 . -1123) T) ((-76 . -449) T) ((-76 . -403) T) ((-1263 . -656) 159246) ((-171 . -1049) 159142) ((-325 . -858) T) ((-1242 . -656) 158950) ((-880 . -802) 158929) ((-880 . -799) 158908) ((-880 . -734) T) ((-495 . -23) T) ((-366 . -235) 158881) ((-360 . -235) 158854) ((-352 . -235) 158827) ((-225 . -621) 158809) ((-176 . -460) T) ((-224 . -315) 158747) ((-86 . -449) T) ((-86 . -403) T) ((-108 . -235) 158734) ((-219 . -23) T) ((-1303 . -1296) 158713) ((-685 . -1049) 158697) ((-588 . -296) T) ((-572 . -296) T) ((-503 . -296) T) ((-137 . -478) 158652) ((-1252 . -1229) T) ((-662 . -654) 158611) ((-48 . -1111) T) ((-720 . -233) 158595) ((-879 . -909) NIL) ((-1252 . -895) NIL) ((-898 . -102) T) ((-894 . -102) T) ((-396 . -1111) T) ((-171 . -384) 158579) ((-171 . -345) 158563) ((-1252 . -1049) 158443) ((-863 . -1049) 158339) ((-1153 . -102) T) ((-670 . -800) 158318) ((-661 . -132) T) ((-670 . -803) 158297) ((-118 . -522) 158205) ((-579 . -1049) 158187) ((-300 . -1286) 158157) ((-874 . -102) T) ((-972 . -564) 158136) ((-1223 . -1067) 158019) ((-1014 . -1062) 157964) ((-490 . -647) 157870) ((-913 . -1111) T) ((-1035 . -725) 157807) ((-719 . -1067) 157772) ((-1014 . -648) 157717) ((-625 . -102) T) ((-610 . -34) T) ((-1158 . -1229) T) ((-1223 . -111) 157586) ((-482 . -656) 157483) ((-361 . -725) 157428) ((-171 . -909) 157387) ((-707 . -296) T) ((-702 . -174) T) ((-719 . -111) 157343) ((-1308 . -1069) T) ((-1252 . -384) 157327) ((-426 . -1233) 157305) ((-1129 . -621) 157287) ((-319 . -856) NIL) ((-426 . -564) T) ((-227 . -313) T) ((-1242 . -799) 157240) ((-1242 . -802) 157193) ((-1263 . -734) T) ((-1242 . -734) T) ((-48 . -725) 157158) ((-227 . -1033) T) ((-1265 . -419) 157124) ((-358 . -1286) 157101) ((-1252 . -909) 157044) ((-726 . -734) T) ((-339 . -621) 157026) ((-1223 . -624) 156908) ((-1124 . -235) 156854) ((-112 . -621) 156836) ((-112 . -622) 156818) ((-726 . -481) T) ((-719 . -624) 156768) ((-1302 . -1062) 156752) ((-490 . -21) 156662) ((-128 . -497) 156646) ((-122 . -497) 156630) ((-490 . -25) 156481) ((-1302 . -648) 156451) ((-631 . -296) T) ((-594 . -1067) 156426) ((-445 . -1111) T) ((-1073 . -313) T) ((-118 . -296) T) ((-1115 . -102) T) ((-1014 . -102) T) ((-594 . -111) 156394) ((-1153 . -315) 156332) ((-1223 . -1060) T) ((-1073 . -1033) T) ((-66 . -1229) T) ((-1065 . -25) T) ((-1065 . -21) T) ((-719 . -1060) T) ((-392 . -21) T) ((-392 . -25) T) ((-702 . -522) NIL) ((-1035 . -174) T) ((-719 . -247) T) ((-1073 . -553) T) ((-720 . -654) 156242) ((-514 . -102) T) ((-510 . -102) T) ((-361 . -174) T) ((-350 . -621) 156224) ((-415 . -1062) 156176) ((-402 . -621) 156158) ((-1131 . -856) T) ((-482 . -734) T) ((-901 . -1049) 156126) ((-415 . -648) 156078) ((-108 . -858) T) ((-666 . -1067) 156062) ((-495 . -132) T) ((-1265 . -1069) T) ((-219 . -132) T) ((-1168 . -102) 156040) ((-99 . -1111) T) ((-249 . -674) 156024) ((-249 . -659) 156008) ((-666 . -111) 155987) ((-594 . -624) 155971) ((-322 . -419) 155955) ((-249 . -380) 155939) ((-1171 . -239) 155886) ((-1010 . -233) 155870) ((-74 . -1229) T) ((-48 . -174) T) ((-709 . -395) T) ((-709 . -144) T) ((-1302 . -102) T) ((-1209 . -624) 155852) ((-1098 . -1067) 155695) ((-1087 . -1229) T) ((-269 . -918) 155674) ((-251 . -918) 155653) ((-790 . -1067) 155476) ((-788 . -1067) 155319) ((-616 . -1229) T) ((-1176 . -621) 155301) ((-1098 . -111) 155130) ((-1057 . -102) T) ((-483 . -1229) T) ((-469 . -1067) 155101) ((-462 . -1067) 154944) ((-672 . -656) 154928) ((-879 . -313) T) ((-790 . -111) 154737) ((-788 . -111) 154566) ((-362 . -656) 154518) ((-359 . -656) 154470) ((-351 . -656) 154422) ((-269 . -656) 154311) ((-251 . -656) 154200) ((-1170 . -858) T) ((-1099 . -1049) 154184) ((-469 . -111) 154145) ((-462 . -111) 153974) ((-1087 . -1049) 153951) ((-1011 . -34) T) ((-975 . -621) 153933) ((-967 . -1229) T) ((-127 . -1021) 153917) ((-972 . -1123) T) ((-879 . -1033) NIL) ((-743 . -1123) T) ((-723 . -1123) T) ((-666 . -624) 153835) ((-1279 . -497) 153819) ((-1153 . -38) 153779) ((-972 . -23) T) ((-919 . -656) 153744) ((-873 . -1111) T) ((-851 . -102) T) ((-825 . -21) T) ((-643 . -1062) 153728) ((-615 . -1062) 153712) ((-825 . -25) T) ((-743 . -23) T) ((-723 . -23) T) ((-643 . -648) 153696) ((-110 . -669) T) ((-615 . -648) 153680) ((-589 . -1067) 153645) ((-526 . -1067) 153590) ((-229 . -57) 153548) ((-461 . -23) T) ((-415 . -102) T) ((-268 . -102) T) ((-110 . -113) T) ((-702 . -296) T) ((-874 . -38) 153518) ((-589 . -111) 153474) ((-526 . -111) 153403) ((-1098 . -624) 153139) ((-426 . -1123) T) ((-322 . -1069) 153029) ((-319 . -1069) T) ((-129 . -1229) T) ((-790 . -624) 152777) ((-788 . -624) 152543) ((-666 . -1060) T) ((-1308 . -1111) T) ((-462 . -624) 152328) ((-171 . -313) 152259) ((-426 . -23) T) ((-40 . -621) 152241) ((-40 . -622) 152225) ((-108 . -1003) 152207) ((-117 . -877) 152191) ((-657 . -624) 152175) ((-48 . -522) 152141) ((-1215 . -1021) 152125) ((-1193 . -621) 152092) ((-1201 . -34) T) ((-963 . -621) 152058) ((-930 . -621) 152040) ((-1124 . -858) 151991) ((-779 . -621) 151973) ((-680 . -621) 151955) ((-1168 . -315) 151893) ((-487 . -34) T) ((-1103 . -1229) T) ((-485 . -460) T) ((-1152 . -34) T) ((-1098 . -1060) T) ((-50 . -624) 151862) ((-790 . -1060) T) ((-788 . -1060) T) ((-655 . -239) 151846) ((-640 . -239) 151792) ((-589 . -624) 151742) ((-526 . -624) 151672) ((-490 . -235) 151618) ((-1252 . -313) 151597) ((-1098 . -332) 151558) ((-462 . -1060) T) ((-1190 . -21) T) ((-1098 . -237) 151537) ((-790 . -332) 151514) ((-790 . -237) T) ((-788 . -332) 151486) ((-739 . -1233) 151465) ((-333 . -659) 151449) ((-1190 . -25) T) ((-59 . -34) T) ((-527 . -34) T) ((-524 . -34) T) ((-462 . -332) 151428) ((-333 . -380) 151412) ((-505 . -34) T) ((-504 . -34) T) ((-1014 . -1163) NIL) ((-739 . -564) 151343) ((-643 . -102) T) ((-615 . -102) T) ((-362 . -734) T) ((-359 . -734) T) ((-351 . -734) T) ((-269 . -734) T) ((-251 . -734) T) ((-386 . -1229) T) ((-1057 . -315) 151251) ((-1291 . -21) T) ((-910 . -1111) 151229) ((-50 . -1060) T) ((-1291 . -25) T) ((-1186 . -564) 151208) ((-1185 . -1233) 151187) ((-1185 . -564) 151138) ((-1179 . -1233) 151117) ((-1179 . -564) 151068) ((-589 . -1060) T) ((-526 . -1060) T) ((-1035 . -296) T) ((-368 . -1049) 151052) ((-328 . -1049) 151036) ((-1014 . -38) 150981) ((-386 . -895) 150963) ((-1010 . -654) 150886) ((-844 . -1229) T) ((-835 . -1229) 150865) ((-807 . -1123) T) ((-919 . -734) T) ((-589 . -247) T) ((-589 . -237) T) ((-526 . -237) T) ((-526 . -247) T) ((-1137 . -564) 150844) ((-361 . -296) T) ((-655 . -703) 150828) ((-386 . -1049) 150788) ((-300 . -1062) 150709) ((-1131 . -1069) T) ((-103 . -126) 150693) ((-300 . -648) 150635) ((-807 . -23) T) ((-1301 . -1296) 150611) ((-1279 . -292) 150563) ((-415 . -315) 150528) ((-1299 . -1296) 150507) ((-1265 . -1111) T) ((-878 . -621) 150489) ((-844 . -1049) 150458) ((-205 . -795) T) ((-204 . -795) T) ((-203 . -795) T) ((-202 . -795) T) ((-201 . -795) T) ((-200 . -795) T) ((-199 . -795) T) ((-198 . -795) T) ((-197 . -795) T) ((-196 . -795) T) ((-555 . -621) 150440) ((-503 . -1013) T) ((-279 . -847) T) ((-278 . -847) T) ((-277 . -847) T) ((-276 . -847) T) ((-48 . -296) T) ((-275 . -847) T) ((-274 . -847) T) ((-273 . -847) T) ((-195 . -795) T) ((-620 . -858) T) ((-662 . -419) 150424) ((-225 . -624) 150386) ((-110 . -858) T) ((-661 . -21) T) ((-661 . -25) T) ((-1302 . -38) 150356) ((-118 . -292) 150307) ((-1279 . -19) 150291) ((-1279 . -612) 150268) ((-1292 . -1111) T) ((-358 . -1062) 150213) ((-1088 . -1111) T) ((-998 . -1111) T) ((-972 . -132) T) ((-825 . -235) 150200) ((-745 . -1111) T) ((-358 . -648) 150145) ((-743 . -132) T) ((-723 . -132) T) ((-519 . -801) T) ((-519 . -802) T) ((-461 . -132) T) ((-415 . -1163) 150123) ((-225 . -1060) T) ((-300 . -102) 149905) ((-142 . -1111) T) ((-707 . -1013) T) ((-1116 . -292) 149861) ((-91 . -1229) T) ((-128 . -621) 149793) ((-122 . -621) 149725) ((-1308 . -174) T) ((-1185 . -370) 149704) ((-1179 . -370) 149683) ((-322 . -1111) T) ((-426 . -132) T) ((-319 . -1111) T) ((-415 . -38) 149635) ((-1144 . -102) T) ((-1265 . -725) 149527) ((-662 . -1069) T) ((-1146 . -1274) T) ((-325 . -146) 149506) ((-325 . -148) 149485) ((-140 . -1111) T) ((-137 . -1111) T) ((-115 . -1111) T) ((-866 . -102) T) ((-588 . -621) 149467) ((-572 . -622) 149366) ((-572 . -621) 149348) ((-503 . -621) 149330) ((-503 . -622) 149275) ((-493 . -23) T) ((-490 . -858) 149226) ((-495 . -647) 149208) ((-974 . -621) 149190) ((-219 . -647) 149172) ((-227 . -412) T) ((-670 . -656) 149156) ((-55 . -621) 149138) ((-1184 . -929) 149117) ((-739 . -1123) T) ((-358 . -102) T) ((-1228 . -1094) T) ((-1131 . -852) T) ((-826 . -858) T) ((-739 . -23) T) ((-350 . -1067) 149062) ((-1170 . -1169) T) ((-1158 . -107) 149046) ((-1186 . -1123) T) ((-1185 . -1123) T) ((-523 . -1049) 149030) ((-1179 . -1123) T) ((-1137 . -1123) T) ((-350 . -111) 148959) ((-1015 . -1233) T) ((-127 . -1229) T) ((-923 . -1233) T) ((-702 . -292) NIL) ((-722 . -1229) T) ((-1280 . -621) 148941) ((-1186 . -23) T) ((-1185 . -23) T) ((-1179 . -23) T) ((-1015 . -564) T) ((-1153 . -233) 148925) ((-923 . -564) T) ((-1137 . -23) T) ((-252 . -621) 148907) ((-1086 . -1111) T) ((-807 . -132) T) ((-718 . -621) 148889) ((-322 . -725) 148799) ((-319 . -725) 148728) ((-707 . -621) 148710) ((-707 . -622) 148655) ((-415 . -408) 148639) ((-446 . -1111) T) ((-495 . -25) T) ((-495 . -21) T) ((-1131 . -1111) T) ((-219 . -25) T) ((-219 . -21) T) ((-720 . -419) 148623) ((-722 . -1049) 148592) ((-1279 . -621) 148504) ((-1279 . -622) 148465) ((-1265 . -174) T) ((-1202 . -621) 148447) ((-249 . -34) T) ((-350 . -624) 148377) ((-402 . -624) 148359) ((-935 . -985) T) ((-1215 . -1229) T) ((-670 . -799) 148338) ((-670 . -802) 148317) ((-406 . -403) T) ((-531 . -102) 148295) ((-1046 . -1111) T) ((-224 . -1006) 148279) ((-512 . -102) T) ((-631 . -621) 148261) ((-45 . -858) NIL) ((-631 . -622) 148238) ((-1046 . -618) 148213) ((-910 . -522) 148146) ((-350 . -1060) T) ((-118 . -622) NIL) ((-118 . -621) 148128) ((-880 . -1229) T) ((-678 . -425) 148112) ((-678 . -1134) 148057) ((-508 . -152) 148039) ((-350 . -237) T) ((-350 . -247) T) ((-40 . -1067) 147984) ((-880 . -893) 147968) ((-880 . -895) 147893) ((-720 . -1069) T) ((-702 . -1013) NIL) ((-1263 . -47) 147863) ((-1242 . -47) 147840) ((-1152 . -1021) 147811) ((-3 . |UnionCategory|) T) ((-1131 . -725) 147798) ((-1116 . -621) 147780) ((-1091 . -148) 147759) ((-1091 . -146) 147710) ((-975 . -624) 147694) ((-227 . -929) T) ((-40 . -111) 147623) ((-880 . -1049) 147487) ((-1015 . -370) T) ((-1014 . -233) 147464) ((-709 . -1062) 147451) ((-923 . -370) T) ((-709 . -648) 147438) ((-325 . -1217) 147404) ((-386 . -313) T) ((-325 . -1214) 147370) ((-322 . -174) 147349) ((-319 . -174) T) ((-589 . -1298) 147336) ((-526 . -1298) 147313) ((-366 . -148) 147292) ((-117 . -1062) 147279) ((-366 . -146) 147230) ((-360 . -148) 147209) ((-360 . -146) 147160) ((-352 . -148) 147139) ((-616 . -1205) 147115) ((-117 . -648) 147102) ((-352 . -146) 147053) ((-325 . -35) 147019) ((-483 . -1205) 146998) ((0 . |EnumerationCategory|) T) ((-325 . -95) 146964) ((-386 . -1033) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -239) 146914) ((-662 . -1111) T) ((-616 . -107) 146861) ((-493 . -132) T) ((-483 . -107) 146811) ((-244 . -1123) 146721) ((-880 . -384) 146705) ((-880 . -345) 146689) ((-244 . -23) 146559) ((-40 . -624) 146489) ((-1073 . -929) T) ((-1073 . -828) T) ((-589 . -375) T) ((-526 . -375) T) ((-1292 . -522) 146422) ((-1271 . -564) 146401) ((-1264 . -1233) 146380) ((-358 . -1163) T) ((-333 . -34) T) ((-44 . -425) 146364) ((-1193 . -624) 146300) ((-881 . -1229) T) ((-398 . -752) 146284) ((-1264 . -564) 146235) ((-1263 . -1229) T) ((-1153 . -654) 146194) ((-739 . -132) T) ((-680 . -624) 146178) ((-1243 . -1233) 146157) ((-1243 . -564) 146108) ((-1242 . -1229) T) ((-1242 . -895) 145981) ((-1242 . -893) 145951) ((-1186 . -132) T) ((-317 . -1094) T) ((-1185 . -132) T) ((-745 . -522) 145884) ((-1179 . -132) T) ((-1137 . -132) T) ((-902 . -1111) T) ((-145 . -852) T) ((-1035 . -1013) T) ((-699 . -621) 145866) ((-1015 . -23) T) ((-531 . -315) 145804) ((-1015 . -1123) T) ((-142 . -522) NIL) ((-874 . -654) 145749) ((-1014 . -356) NIL) ((-982 . -23) T) ((-923 . -1123) T) ((-358 . -38) 145714) ((-923 . -23) T) ((-880 . -909) 145673) ((-82 . -621) 145655) ((-40 . -1060) T) ((-878 . -1067) 145642) ((-878 . -111) 145627) ((-709 . -102) T) ((-702 . -621) 145609) ((-610 . -1229) T) ((-604 . -564) 145588) ((-435 . -1123) T) ((-346 . -1062) 145572) ((-215 . -1111) T) ((-176 . -1062) 145504) ((-482 . -47) 145474) ((-135 . -102) T) ((-40 . -237) 145446) ((-40 . -247) T) ((-117 . -102) T) ((-603 . -564) 145425) ((-346 . -648) 145409) ((-702 . -622) 145317) ((-322 . -522) 145283) ((-176 . -648) 145215) ((-319 . -522) 145107) ((-495 . -235) 145094) ((-1263 . -1049) 145078) ((-1242 . -1049) 144864) ((-1010 . -419) 144848) ((-219 . -235) 144835) ((-435 . -23) T) ((-1131 . -174) T) ((-1265 . -296) T) ((-662 . -725) 144805) ((-145 . -1111) T) ((-48 . -1013) T) ((-415 . -233) 144789) ((-301 . -239) 144739) ((-879 . -929) T) ((-879 . -828) NIL) ((-878 . -624) 144711) ((-872 . -858) T) ((-1242 . -345) 144681) ((-1242 . -384) 144651) ((-224 . -1132) 144635) ((-1279 . -294) 144612) ((-482 . -1229) T) ((-1223 . -656) 144537) ((-1014 . -654) 144467) ((-972 . -21) T) ((-972 . -25) T) ((-743 . -21) T) ((-743 . -25) T) ((-723 . -21) T) ((-723 . -25) T) ((-719 . -656) 144432) ((-461 . -21) T) ((-461 . -25) T) ((-346 . -102) T) ((-176 . -102) T) ((-1010 . -1069) T) ((-878 . -1060) T) ((-782 . -102) T) ((-1264 . -370) 144411) ((-1263 . -909) 144317) ((-1243 . -370) 144296) ((-1242 . -909) 144147) ((-1035 . -621) 144129) ((-415 . -836) 144082) ((-1186 . -501) 144048) ((-171 . -929) 143979) ((-1185 . -501) 143945) ((-1179 . -501) 143911) ((-720 . -1111) T) ((-1137 . -501) 143877) ((-588 . -1067) 143864) ((-572 . -1067) 143851) ((-503 . -1067) 143816) ((-322 . -296) 143795) ((-319 . -296) T) ((-361 . -621) 143777) ((-426 . -25) T) ((-426 . -21) T) ((-99 . -292) 143756) ((-588 . -111) 143741) ((-572 . -111) 143726) ((-503 . -111) 143682) ((-1188 . -895) 143649) ((-910 . -497) 143633) ((-48 . -621) 143615) ((-48 . -622) 143560) ((-244 . -132) 143430) ((-1302 . -654) 143389) ((-1252 . -929) 143368) ((-824 . -1233) 143347) ((-396 . -498) 143328) ((-1046 . -522) 143172) ((-396 . -621) 143138) ((-824 . -564) 143069) ((-594 . -656) 143044) ((-269 . -47) 143016) ((-251 . -47) 142973) ((-539 . -517) 142950) ((-588 . -624) 142922) ((-572 . -624) 142894) ((-503 . -624) 142827) ((-1085 . -1229) T) ((-1011 . -1229) T) ((-1271 . -23) T) ((-1271 . -1123) T) ((-707 . -1067) 142792) ((-1264 . -1123) T) ((-1264 . -23) T) ((-1243 . -1123) T) ((-1243 . -23) T) ((-1223 . -734) T) ((-1014 . -377) 142764) ((-112 . -375) T) ((-482 . -909) 142670) ((-1131 . -296) T) ((-913 . -621) 142652) ((-55 . -624) 142634) ((-91 . -107) 142618) ((-1015 . -132) T) ((-914 . -858) 142569) ((-709 . -1163) T) ((-707 . -111) 142525) ((-851 . -654) 142442) ((-604 . -1123) T) ((-603 . -1123) T) ((-720 . -725) 142271) ((-719 . -734) T) ((-982 . -132) T) ((-923 . -132) T) ((-495 . -858) T) ((-807 . -25) T) ((-807 . -21) T) ((-588 . -1060) T) ((-219 . -858) T) ((-415 . -654) 142208) ((-572 . -1060) T) ((-544 . -1229) T) ((-503 . -1060) T) ((-604 . -23) T) ((-350 . -1298) 142185) ((-325 . -460) 142164) ((-346 . -315) 142151) ((-603 . -23) T) ((-435 . -132) T) ((-666 . -656) 142125) ((-249 . -1021) 142109) ((-880 . -313) T) ((-1303 . -1293) 142093) ((-779 . -800) T) ((-779 . -803) T) ((-709 . -38) 142080) ((-572 . -237) T) ((-503 . -247) T) ((-503 . -237) T) ((-1161 . -239) 142030) ((-1098 . -918) 142009) ((-117 . -38) 141996) ((-211 . -808) T) ((-210 . -808) T) ((-209 . -808) T) ((-208 . -808) T) ((-880 . -1033) 141974) ((-1292 . -497) 141958) ((-790 . -918) 141937) ((-788 . -918) 141916) ((-362 . -1229) 141895) ((-359 . -1229) 141874) ((-351 . -1229) 141853) ((-1201 . -1229) T) ((-269 . -1229) 141832) ((-462 . -918) 141811) ((-745 . -497) 141795) ((-1098 . -656) 141684) ((-707 . -624) 141619) ((-790 . -656) 141508) ((-631 . -1067) 141495) ((-487 . -1229) T) ((-350 . -375) T) ((-142 . -497) 141477) ((-788 . -656) 141366) ((-1152 . -1229) T) ((-557 . -858) T) ((-469 . -656) 141337) ((-269 . -895) 141196) ((-251 . -895) NIL) ((-118 . -1067) 141141) ((-462 . -656) 141030) ((-672 . -1049) 141007) ((-631 . -111) 140992) ((-398 . -1062) 140976) ((-362 . -1049) 140960) ((-359 . -1049) 140944) ((-351 . -1049) 140928) ((-269 . -1049) 140772) ((-251 . -1049) 140648) ((-919 . -1229) T) ((-118 . -111) 140577) ((-59 . -1229) T) ((-398 . -648) 140561) ((-629 . -1062) 140545) ((-527 . -1229) T) ((-524 . -1229) T) ((-505 . -1229) T) ((-504 . -1229) T) ((-445 . -621) 140527) ((-442 . -621) 140509) ((-629 . -648) 140493) ((-3 . -102) T) ((-1038 . -1222) 140462) ((-841 . -102) T) ((-697 . -57) 140420) ((-707 . -1060) T) ((-643 . -654) 140389) ((-615 . -654) 140358) ((-50 . -656) 140332) ((-295 . -460) T) ((-484 . -1222) 140301) ((0 . -102) T) ((-589 . -656) 140266) ((-526 . -656) 140211) ((-49 . -102) T) ((-919 . -1049) 140198) ((-707 . -247) T) ((-1091 . -417) 140177) ((-739 . -647) 140125) ((-1010 . -1111) T) ((-720 . -174) 140016) ((-631 . -624) 139911) ((-495 . -1003) 139893) ((-426 . -235) 139866) ((-269 . -384) 139850) ((-251 . -384) 139834) ((-407 . -1111) T) ((-1037 . -102) 139812) ((-346 . -38) 139796) ((-219 . -1003) 139778) ((-118 . -624) 139708) ((-176 . -38) 139640) ((-1263 . -313) 139619) ((-1242 . -313) 139598) ((-666 . -734) T) ((-99 . -621) 139580) ((-485 . -1062) 139545) ((-1179 . -647) 139497) ((-485 . -648) 139462) ((-493 . -25) T) ((-493 . -21) T) ((-1242 . -1033) 139414) ((-1068 . -1229) T) ((-631 . -1060) T) ((-386 . -412) T) ((-398 . -102) T) ((-1116 . -626) 139329) ((-269 . -909) 139275) ((-251 . -909) 139252) ((-118 . -1060) T) ((-824 . -1123) T) ((-1098 . -734) T) ((-631 . -237) 139231) ((-629 . -102) T) ((-790 . -734) T) ((-788 . -734) T) ((-421 . -1123) T) ((-118 . -247) T) ((-40 . -375) NIL) ((-118 . -237) NIL) ((-1234 . -858) T) ((-462 . -734) T) ((-824 . -23) T) ((-739 . -25) T) ((-739 . -21) T) ((-1088 . -292) 139210) ((-78 . -404) T) ((-78 . -403) T) ((-541 . -775) 139192) ((-702 . -1067) 139142) ((-1271 . -132) T) ((-1264 . -132) T) ((-1243 . -132) T) ((-1186 . -25) T) ((-1153 . -419) 139126) ((-643 . -374) 139058) ((-615 . -374) 138990) ((-1168 . -1160) 138974) ((-103 . -1111) 138952) ((-1186 . -21) T) ((-1185 . -21) T) ((-873 . -621) 138934) ((-1010 . -725) 138882) ((-225 . -656) 138849) ((-702 . -111) 138783) ((-50 . -734) T) ((-1185 . -25) T) ((-358 . -356) T) ((-1179 . -21) T) ((-1091 . -460) 138734) ((-1179 . -25) T) ((-720 . -522) 138681) ((-589 . -734) T) ((-526 . -734) T) ((-1137 . -21) T) ((-1137 . -25) T) ((-1304 . -102) T) ((-604 . -132) T) ((-300 . -654) 138416) ((-603 . -132) T) ((-366 . -460) T) ((-360 . -460) T) ((-352 . -460) T) ((-482 . -313) 138395) ((-1237 . -102) T) ((-319 . -292) 138330) ((-108 . -460) T) ((-79 . -449) T) ((-79 . -403) T) ((-485 . -102) T) ((-699 . -624) 138314) ((-1308 . -621) 138296) ((-1308 . -622) 138278) ((-1091 . -410) 138257) ((-1046 . -497) 138188) ((-137 . -292) 138165) ((-572 . -803) T) ((-572 . -800) T) ((-1074 . -239) 138111) ((-366 . -410) 138062) ((-360 . -410) 138013) ((-352 . -410) 137964) ((-1294 . -1123) T) ((-1303 . -1062) 137948) ((-388 . -1062) 137932) ((-1303 . -648) 137902) ((-388 . -648) 137872) ((-702 . -624) 137807) ((-1294 . -23) T) ((-1281 . -102) T) ((-177 . -621) 137789) ((-1153 . -1069) T) ((-555 . -375) T) ((-678 . -752) 137773) ((-1190 . -146) 137752) ((-1190 . -148) 137731) ((-1157 . -1111) T) ((-1157 . -1082) 137700) ((-69 . -1229) T) ((-1035 . -1067) 137637) ((-358 . -654) 137567) ((-874 . -1069) T) ((-244 . -647) 137473) ((-702 . -1060) T) ((-361 . -1067) 137418) ((-61 . -1229) T) ((-1035 . -111) 137334) ((-910 . -621) 137245) ((-702 . -247) T) ((-702 . -237) NIL) ((-851 . -856) 137224) ((-707 . -803) T) ((-707 . -800) T) ((-1014 . -419) 137201) ((-361 . -111) 137130) ((-386 . -929) T) ((-415 . -856) 137109) ((-720 . -296) 137020) ((-225 . -734) T) ((-1271 . -501) 136986) ((-1264 . -501) 136952) ((-1243 . -501) 136918) ((-586 . -1111) T) ((-322 . -1013) 136897) ((-224 . -1111) 136875) ((-1236 . -852) T) ((-325 . -984) 136837) ((-105 . -102) T) ((-48 . -1067) 136802) ((-1303 . -102) T) ((-388 . -102) T) ((-48 . -111) 136758) ((-1015 . -647) 136740) ((-1265 . -621) 136722) ((-539 . -102) T) ((-508 . -102) T) ((-1144 . -1145) 136706) ((-153 . -1286) 136690) ((-249 . -1229) T) ((-1228 . -102) T) ((-1035 . -624) 136627) ((-1184 . -1233) 136606) ((-361 . -624) 136536) ((-1136 . -1233) 136515) ((-244 . -21) 136425) ((-244 . -25) 136276) ((-128 . -120) 136260) ((-122 . -120) 136244) ((-44 . -752) 136228) ((-1184 . -564) 136139) ((-1136 . -564) 136070) ((-1236 . -1111) T) ((-1046 . -292) 136045) ((-1178 . -1094) T) ((-1005 . -1094) T) ((-824 . -132) T) ((-118 . -803) NIL) ((-118 . -800) NIL) ((-362 . -313) T) ((-359 . -313) T) ((-351 . -313) T) ((-256 . -1123) 135955) ((-255 . -1123) 135865) ((-1035 . -1060) T) ((-1014 . -1069) T) ((-48 . -624) 135798) ((-350 . -656) 135743) ((-629 . -38) 135727) ((-1292 . -621) 135689) ((-1292 . -622) 135650) ((-1088 . -621) 135632) ((-1035 . -247) T) ((-361 . -1060) T) ((-823 . -1286) 135602) ((-256 . -23) T) ((-255 . -23) T) ((-998 . -621) 135584) ((-1186 . -235) 135537) ((-1185 . -235) 135483) ((-745 . -622) 135444) ((-745 . -621) 135426) ((-1179 . -235) 135307) ((-807 . -858) 135286) ((-1171 . -152) 135233) ((-1010 . -522) 135145) ((-361 . -237) T) ((-361 . -247) T) ((-396 . -624) 135126) ((-1015 . -25) T) ((-142 . -621) 135108) ((-142 . -622) 135067) ((-919 . -313) T) ((-1015 . -21) T) ((-982 . -25) T) ((-923 . -21) T) ((-923 . -25) T) ((-435 . -21) T) ((-435 . -25) T) ((-851 . -419) 135051) ((-48 . -1060) T) ((-1301 . -1293) 135035) ((-1299 . -1293) 135019) ((-1046 . -612) 134994) ((-322 . -622) 134855) ((-322 . -621) 134837) ((-319 . -622) NIL) ((-319 . -621) 134819) ((-48 . -247) T) ((-48 . -237) T) ((-662 . -292) 134780) ((-558 . -239) 134730) ((-140 . -621) 134697) ((-137 . -621) 134679) ((-115 . -621) 134661) ((-485 . -38) 134626) ((-1303 . -1300) 134605) ((-1294 . -132) T) ((-1302 . -1069) T) ((-1093 . -102) T) ((-88 . -1229) T) ((-508 . -315) NIL) ((-1011 . -107) 134589) ((-898 . -1111) T) ((-894 . -1111) T) ((-1279 . -659) 134573) ((-1279 . -380) 134557) ((-333 . -1229) T) ((-601 . -858) T) ((-1153 . -1111) T) ((-1153 . -1064) 134497) ((-103 . -522) 134430) ((-936 . -621) 134412) ((-350 . -734) T) ((-30 . -621) 134394) ((-874 . -1111) T) ((-851 . -1069) 134373) ((-40 . -656) 134280) ((-227 . -1233) T) ((-415 . -1069) T) ((-1170 . -152) 134262) ((-1010 . -296) 134213) ((-625 . -1111) T) ((-227 . -564) T) ((-325 . -1260) 134197) ((-325 . -1257) 134167) ((-709 . -654) 134139) ((-1201 . -1205) 134118) ((-1086 . -621) 134100) ((-1201 . -107) 134050) ((-655 . -152) 134034) ((-640 . -152) 133980) ((-117 . -654) 133952) ((-487 . -1205) 133931) ((-495 . -148) T) ((-495 . -146) NIL) ((-1131 . -622) 133846) ((-446 . -621) 133828) ((-219 . -148) T) ((-219 . -146) NIL) ((-1131 . -621) 133810) ((-130 . -102) T) ((-52 . -102) T) ((-1243 . -647) 133762) ((-487 . -107) 133712) ((-1004 . -23) T) ((-1303 . -38) 133682) ((-1184 . -1123) T) ((-1136 . -1123) T) ((-1073 . -1233) T) ((-244 . -235) 133628) ((-317 . -102) T) ((-862 . -1123) T) ((-961 . -1233) 133607) ((-489 . -1233) 133586) ((-1073 . -564) T) ((-961 . -564) 133517) ((-1184 . -23) T) ((-1162 . -1094) T) ((-1136 . -23) T) ((-862 . -23) T) ((-489 . -564) 133448) ((-1153 . -725) 133380) ((-678 . -1062) 133364) ((-1157 . -522) 133297) ((-678 . -648) 133281) ((-1046 . -622) NIL) ((-1046 . -621) 133263) ((-96 . -1094) T) ((-874 . -725) 133233) ((-1308 . -1067) 133220) ((-1223 . -47) 133189) ((-256 . -132) T) ((-255 . -132) T) ((-1115 . -1111) T) ((-1014 . -1111) T) ((-62 . -621) 133171) ((-1179 . -858) NIL) ((-1035 . -800) T) ((-1035 . -803) T) ((-1308 . -111) 133156) ((-1271 . -25) T) ((-1271 . -21) T) ((-1264 . -21) T) ((-878 . -656) 133143) ((-1264 . -25) T) ((-1243 . -21) T) ((-1243 . -25) T) ((-1038 . -152) 133127) ((-1015 . -235) 133114) ((-880 . -828) 133093) ((-880 . -929) T) ((-720 . -292) 133020) ((-604 . -21) T) ((-346 . -654) 132979) ((-604 . -25) T) ((-603 . -21) T) ((-176 . -654) 132896) ((-40 . -734) T) ((-224 . -522) 132829) ((-603 . -25) T) ((-484 . -152) 132813) ((-471 . -152) 132797) ((-930 . -802) T) ((-930 . -734) T) ((-779 . -801) T) ((-779 . -802) T) ((-514 . -1111) T) ((-510 . -1111) T) ((-779 . -734) T) ((-227 . -370) T) ((-1301 . -1062) 132781) ((-1299 . -1062) 132765) ((-1301 . -648) 132735) ((-1168 . -1111) 132713) ((-879 . -1233) T) ((-1299 . -648) 132683) ((-662 . -621) 132665) ((-879 . -564) T) ((-702 . -375) NIL) ((-44 . -1062) 132649) ((-1308 . -624) 132631) ((-1302 . -1111) T) ((-678 . -102) T) ((-366 . -1286) 132615) ((-360 . -1286) 132599) ((-44 . -648) 132583) ((-352 . -1286) 132567) ((-556 . -102) T) ((-528 . -858) 132546) ((-1057 . -1111) T) ((-825 . -460) 132525) ((-153 . -1062) 132509) ((-1057 . -1082) 132438) ((-1038 . -987) 132407) ((-827 . -1123) T) ((-1014 . -725) 132352) ((-153 . -648) 132336) ((-394 . -1123) T) ((-484 . -987) 132305) ((-471 . -987) 132274) ((-110 . -152) 132256) ((-73 . -621) 132238) ((-902 . -621) 132220) ((-1091 . -732) 132199) ((-1308 . -1060) T) ((-824 . -647) 132147) ((-300 . -1069) 132089) ((-171 . -1233) 131994) ((-227 . -1123) T) ((-330 . -23) T) ((-1179 . -1003) 131946) ((-851 . -1111) T) ((-1265 . -1067) 131851) ((-1137 . -748) 131830) ((-1263 . -929) 131809) ((-1242 . -929) 131788) ((-878 . -734) T) ((-171 . -564) 131699) ((-588 . -656) 131686) ((-572 . -656) 131658) ((-415 . -1111) T) ((-268 . -1111) T) ((-215 . -621) 131640) ((-503 . -656) 131590) ((-227 . -23) T) ((-1242 . -828) 131543) ((-1301 . -102) T) ((-361 . -1298) 131520) ((-1299 . -102) T) ((-1265 . -111) 131412) ((-823 . -1062) 131309) ((-823 . -648) 131251) ((-145 . -621) 131233) ((-1004 . -132) T) ((-44 . -102) T) ((-244 . -858) 131184) ((-1252 . -1233) 131163) ((-103 . -497) 131147) ((-1302 . -725) 131117) ((-1098 . -47) 131078) ((-1073 . -1123) T) ((-961 . -1123) T) ((-128 . -34) T) ((-122 . -34) T) ((-790 . -47) 131055) ((-788 . -47) 131027) ((-1252 . -564) 130938) ((-361 . -375) T) ((-489 . -1123) T) ((-1184 . -132) T) ((-1136 . -132) T) ((-462 . -47) 130917) ((-879 . -370) T) ((-862 . -132) T) ((-153 . -102) T) ((-1073 . -23) T) ((-961 . -23) T) ((-579 . -564) T) ((-824 . -25) T) ((-824 . -21) T) ((-1153 . -522) 130850) ((-600 . -1094) T) ((-594 . -1049) 130834) ((-1265 . -624) 130708) ((-489 . -23) T) ((-358 . -1069) T) ((-1223 . -909) 130689) ((-678 . -315) 130627) ((-1124 . -1286) 130597) ((-707 . -656) 130562) ((-1015 . -858) T) ((-1014 . -174) T) ((-972 . -146) 130541) ((-643 . -1111) T) ((-615 . -1111) T) ((-972 . -148) 130520) ((-743 . -148) 130499) ((-743 . -146) 130478) ((-666 . -1229) T) ((-982 . -858) T) ((-1271 . -235) 130431) ((-1264 . -235) 130377) ((-1243 . -235) 130258) ((-841 . -654) 130175) ((-482 . -929) 130154) ((-325 . -1062) 129989) ((-322 . -1067) 129899) ((-319 . -1067) 129828) ((-1010 . -292) 129786) ((-415 . -725) 129738) ((-325 . -648) 129579) ((-603 . -235) 129532) ((-709 . -856) T) ((-1265 . -1060) T) ((-322 . -111) 129428) ((-319 . -111) 129341) ((-973 . -102) T) ((-823 . -102) 129131) ((-720 . -622) NIL) ((-720 . -621) 129113) ((-1265 . -332) 129057) ((-666 . -1049) 128953) ((-1098 . -1229) 128932) ((-1046 . -294) 128907) ((-588 . -734) T) ((-572 . -802) T) ((-171 . -370) 128858) ((-572 . -799) T) ((-572 . -734) T) ((-503 . -734) T) ((-790 . -1229) T) ((-1157 . -497) 128842) ((-1098 . -895) NIL) ((-879 . -1123) T) ((-118 . -918) NIL) ((-1301 . -1300) 128818) ((-1299 . -1300) 128797) ((-790 . -895) NIL) ((-788 . -895) 128656) ((-1294 . -25) T) ((-1294 . -21) T) ((-1226 . -102) 128634) ((-1117 . -403) T) ((-631 . -656) 128621) ((-462 . -895) NIL) ((-683 . -102) 128599) ((-1098 . -1049) 128426) ((-879 . -23) T) ((-790 . -1049) 128285) ((-788 . -1049) 128142) ((-118 . -656) 128087) ((-462 . -1049) 127963) ((-322 . -624) 127527) ((-319 . -624) 127410) ((-398 . -654) 127379) ((-657 . -1049) 127363) ((-589 . -1229) T) ((-635 . -102) T) ((-526 . -1229) T) ((-224 . -497) 127347) ((-1279 . -34) T) ((-629 . -654) 127306) ((-295 . -1062) 127293) ((-137 . -624) 127277) ((-295 . -648) 127264) ((-643 . -725) 127248) ((-615 . -725) 127232) ((-678 . -38) 127192) ((-325 . -102) T) ((-85 . -621) 127174) ((-50 . -1049) 127158) ((-1131 . -1067) 127145) ((-1098 . -384) 127129) ((-790 . -384) 127113) ((-707 . -734) T) ((-707 . -802) T) ((-707 . -799) T) ((-589 . -1049) 127100) ((-526 . -1049) 127077) ((-60 . -57) 127039) ((-330 . -132) T) ((-322 . -1060) 126929) ((-319 . -1060) T) ((-171 . -1123) T) ((-788 . -384) 126913) ((-45 . -152) 126863) ((-1015 . -1003) 126845) ((-462 . -384) 126829) ((-415 . -174) T) ((-322 . -247) 126808) ((-319 . -247) T) ((-319 . -237) NIL) ((-300 . -1111) 126590) ((-227 . -132) T) ((-1131 . -111) 126575) ((-171 . -23) T) ((-807 . -148) 126554) ((-807 . -146) 126533) ((-256 . -647) 126439) ((-255 . -647) 126345) ((-325 . -290) 126311) ((-1168 . -522) 126244) ((-485 . -654) 126194) ((-1144 . -1111) T) ((-227 . -1071) T) ((-823 . -315) 126132) ((-1098 . -909) 126067) ((-790 . -909) 126010) ((-788 . -909) 125994) ((-1301 . -38) 125964) ((-1299 . -38) 125934) ((-1252 . -1123) T) ((-863 . -1123) T) ((-462 . -909) 125911) ((-866 . -1111) T) ((-1252 . -23) T) ((-1131 . -624) 125883) ((-1073 . -132) T) ((-579 . -1123) T) ((-863 . -23) T) ((-631 . -734) T) ((-362 . -929) T) ((-359 . -929) T) ((-295 . -102) T) ((-351 . -929) T) ((-981 . -1094) T) ((-961 . -132) T) ((-824 . -235) 125856) ((-118 . -802) NIL) ((-118 . -799) NIL) ((-118 . -734) T) ((-702 . -918) NIL) ((-1057 . -522) 125757) ((-489 . -132) T) ((-579 . -23) T) ((-683 . -315) 125695) ((-643 . -769) T) ((-615 . -769) T) ((-1243 . -858) NIL) ((-1091 . -1062) 125605) ((-1014 . -296) T) ((-702 . -656) 125555) ((-256 . -21) T) ((-358 . -1111) T) ((-256 . -25) T) ((-255 . -21) T) ((-255 . -25) T) ((-153 . -38) 125539) ((-2 . -102) T) ((-919 . -929) T) ((-1091 . -648) 125407) ((-490 . -1286) 125377) ((-1131 . -1060) T) ((-719 . -313) T) ((-366 . -1062) 125329) ((-360 . -1062) 125281) ((-352 . -1062) 125233) ((-366 . -648) 125185) ((-225 . -1049) 125162) ((-360 . -648) 125114) ((-108 . -1062) 125064) ((-352 . -648) 125016) ((-300 . -725) 124958) ((-709 . -1069) T) ((-495 . -460) T) ((-415 . -522) 124870) ((-108 . -648) 124820) ((-219 . -460) T) ((-1131 . -237) T) ((-301 . -152) 124770) ((-1010 . -622) 124731) ((-1010 . -621) 124713) ((-1000 . -621) 124695) ((-117 . -1069) T) ((-662 . -1067) 124679) ((-227 . -501) T) ((-407 . -621) 124661) ((-407 . -622) 124638) ((-1065 . -1286) 124608) ((-662 . -111) 124587) ((-1153 . -497) 124571) ((-1303 . -654) 124530) ((-388 . -654) 124499) ((-823 . -38) 124469) ((-63 . -449) T) ((-63 . -403) T) ((-1171 . -102) T) ((-879 . -132) T) ((-492 . -102) 124447) ((-1308 . -375) T) ((-1091 . -102) T) ((-1072 . -102) T) ((-358 . -725) 124392) ((-739 . -148) 124371) ((-739 . -146) 124350) ((-662 . -624) 124268) ((-1035 . -656) 124205) ((-531 . -1111) 124183) ((-366 . -102) T) ((-360 . -102) T) ((-352 . -102) T) ((-108 . -102) T) ((-512 . -1111) T) ((-361 . -656) 124128) ((-1184 . -647) 124076) ((-1136 . -647) 124024) ((-392 . -517) 124003) ((-841 . -856) 123982) ((-386 . -1233) T) ((-702 . -734) T) ((-1243 . -1003) 123934) ((-346 . -1069) T) ((-112 . -1229) T) ((-176 . -1069) T) ((-103 . -621) 123866) ((-1186 . -146) 123845) ((-1186 . -148) 123824) ((-386 . -564) T) ((-1185 . -148) 123803) ((-1185 . -146) 123782) ((-1179 . -146) 123689) ((-415 . -296) T) ((-1179 . -148) 123596) ((-1137 . -148) 123575) ((-1137 . -146) 123554) ((-325 . -38) 123395) ((-171 . -132) T) ((-319 . -803) NIL) ((-319 . -800) NIL) ((-662 . -1060) T) ((-48 . -656) 123345) ((-1124 . -1062) 123242) ((-902 . -624) 123219) ((-1124 . -648) 123161) ((-1178 . -102) T) ((-1005 . -102) T) ((-1004 . -21) T) ((-128 . -1021) 123145) ((-122 . -1021) 123129) ((-1004 . -25) T) ((-910 . -120) 123113) ((-1170 . -102) T) ((-1252 . -132) T) ((-1184 . -25) T) ((-350 . -1229) T) ((-1184 . -21) T) ((-863 . -132) T) ((-1136 . -25) T) ((-1136 . -21) T) ((-862 . -25) T) ((-862 . -21) T) ((-790 . -313) 123092) ((-1171 . -315) 122887) ((-1168 . -497) 122871) ((-655 . -102) 122849) ((-640 . -102) T) ((-1161 . -152) 122799) ((-579 . -132) T) ((-629 . -856) 122778) ((-1157 . -621) 122740) ((-1157 . -622) 122701) ((-1035 . -799) T) ((-1035 . -802) T) ((-1035 . -734) T) ((-720 . -1067) 122524) ((-492 . -315) 122462) ((-461 . -425) 122432) ((-358 . -174) T) ((-256 . -235) 122378) ((-255 . -235) 122324) ((-295 . -38) 122311) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-275 . -102) T) ((-274 . -102) T) ((-350 . -1049) 122288) ((-273 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-361 . -734) T) ((-720 . -111) 122097) ((-678 . -233) 122081) ((-589 . -313) T) ((-526 . -313) T) ((-300 . -522) 122030) ((-108 . -315) NIL) ((-72 . -403) T) ((-1124 . -102) 121820) ((-841 . -419) 121804) ((-1131 . -803) T) ((-1131 . -800) T) ((-709 . -1111) T) ((-586 . -621) 121786) ((-386 . -370) T) ((-171 . -501) 121764) ((-224 . -621) 121696) ((-135 . -1111) T) ((-117 . -1111) T) ((-975 . -1229) T) ((-48 . -734) T) ((-1057 . -497) 121661) ((-142 . -433) 121643) ((-142 . -375) T) ((-1038 . -102) T) ((-520 . -517) 121622) ((-720 . -624) 121378) ((-484 . -102) T) ((-471 . -102) T) ((-1045 . -1123) T) ((-1236 . -621) 121360) ((-1193 . -1049) 121296) ((-1186 . -35) 121262) ((-1186 . -95) 121228) ((-1186 . -1217) 121194) ((-1186 . -1214) 121160) ((-1185 . -1214) 121126) ((-1185 . -1217) 121092) ((-1170 . -315) NIL) ((-89 . -404) T) ((-89 . -403) T) ((-1091 . -1163) 121071) ((-40 . -1229) 121043) ((-1185 . -95) 121009) ((-1045 . -23) T) ((-1185 . -35) 120975) ((-579 . -501) T) ((-1179 . -1214) 120941) ((-1179 . -1217) 120907) ((-1179 . -95) 120873) ((-1179 . -35) 120839) ((-368 . -1123) T) ((-366 . -1163) 120818) ((-360 . -1163) 120797) ((-352 . -1163) 120776) ((-1115 . -292) 120732) ((-1137 . -35) 120698) ((-1137 . -95) 120664) ((-108 . -1163) T) ((-1137 . -1217) 120630) ((-841 . -1069) 120609) ((-655 . -315) 120547) ((-640 . -315) 120398) ((-1137 . -1214) 120364) ((-720 . -1060) T) ((-1073 . -647) 120346) ((-1091 . -38) 120214) ((-961 . -647) 120162) ((-1015 . -148) T) ((-1015 . -146) NIL) ((-386 . -1123) T) ((-330 . -25) T) ((-328 . -23) T) ((-952 . -858) 120141) ((-720 . -332) 120118) ((-489 . -647) 120066) ((-40 . -1049) 119954) ((-720 . -237) T) ((-709 . -725) 119941) ((-346 . -1111) T) ((-176 . -1111) T) ((-337 . -858) T) ((-426 . -460) 119891) ((-386 . -23) T) ((-366 . -38) 119856) ((-360 . -38) 119821) ((-352 . -38) 119786) ((-80 . -449) T) ((-80 . -403) T) ((-227 . -25) T) ((-227 . -21) T) ((-844 . -1123) T) ((-108 . -38) 119736) ((-835 . -1123) T) ((-782 . -1111) T) ((-117 . -725) 119723) ((-680 . -1049) 119707) ((-620 . -102) T) ((-844 . -23) T) ((-835 . -23) T) ((-1168 . -292) 119659) ((-1124 . -315) 119597) ((-490 . -1062) 119494) ((-1113 . -239) 119478) ((-64 . -404) T) ((-64 . -403) T) ((-1162 . -102) T) ((-110 . -102) T) ((-490 . -648) 119420) ((-40 . -384) 119397) ((-96 . -102) T) ((-661 . -860) 119381) ((-1184 . -235) 119368) ((-1146 . -1094) T) ((-1073 . -21) T) ((-1073 . -25) T) ((-1065 . -1062) 119352) ((-823 . -233) 119321) ((-961 . -25) T) ((-961 . -21) T) ((-1065 . -648) 119263) ((-629 . -1069) T) ((-1131 . -375) T) ((-1038 . -315) 119201) ((-678 . -654) 119160) ((-489 . -25) T) ((-489 . -21) T) ((-392 . -1062) 119144) ((-898 . -621) 119126) ((-894 . -621) 119108) ((-531 . -522) 119041) ((-256 . -858) 118992) ((-255 . -858) 118943) ((-392 . -648) 118913) ((-879 . -647) 118890) ((-484 . -315) 118828) ((-471 . -315) 118766) ((-358 . -296) T) ((-1168 . -1267) 118750) ((-1153 . -621) 118712) ((-1153 . -622) 118673) ((-1151 . -102) T) ((-1010 . -1067) 118569) ((-40 . -909) 118521) ((-1168 . -612) 118498) ((-1308 . -656) 118485) ((-874 . -498) 118462) ((-1074 . -152) 118408) ((-880 . -1233) T) ((-1010 . -111) 118290) ((-346 . -725) 118274) ((-874 . -621) 118236) ((-176 . -725) 118168) ((-415 . -292) 118126) ((-880 . -564) T) ((-108 . -408) 118108) ((-84 . -391) T) ((-84 . -403) T) ((-709 . -174) T) ((-625 . -621) 118090) ((-99 . -734) T) ((-490 . -102) 117880) ((-99 . -481) T) ((-117 . -174) T) ((-1301 . -654) 117839) ((-1299 . -654) 117798) ((-1124 . -38) 117768) ((-171 . -647) 117716) ((-1065 . -102) T) ((-1010 . -624) 117606) ((-879 . -25) T) ((-823 . -242) 117585) ((-879 . -21) T) ((-826 . -102) T) ((-44 . -654) 117528) ((-422 . -102) T) ((-392 . -102) T) ((-110 . -315) NIL) ((-229 . -102) 117506) ((-128 . -1229) T) ((-122 . -1229) T) ((-825 . -1062) 117457) ((-825 . -648) 117399) ((-1045 . -132) T) ((-678 . -374) 117383) ((-153 . -654) 117342) ((-643 . -292) 117300) ((-615 . -292) 117258) ((-1308 . -734) T) ((-1010 . -1060) T) ((-1252 . -647) 117206) ((-1115 . -621) 117188) ((-1014 . -621) 117170) ((-572 . -1229) T) ((-503 . -1229) T) ((-523 . -23) T) ((-518 . -23) T) ((-350 . -313) T) ((-516 . -23) T) ((-328 . -132) T) ((-3 . -1111) T) ((-1014 . -622) 117154) ((-1010 . -247) 117133) ((-1010 . -237) 117112) ((-1271 . -146) 117091) ((-1271 . -148) 117070) ((-841 . -1111) T) ((-1264 . -148) 117049) ((-1264 . -146) 117028) ((-1263 . -1233) 117007) ((-1243 . -146) 116914) ((-1243 . -148) 116821) ((-1242 . -1233) 116800) ((-386 . -132) T) ((-227 . -235) 116787) ((-572 . -895) 116769) ((0 . -1111) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1111) T) ((-1265 . -656) 116674) ((-1263 . -564) 116625) ((-722 . -1123) T) ((-1242 . -564) 116576) ((-572 . -1049) 116558) ((-603 . -148) 116537) ((-603 . -146) 116516) ((-503 . -1049) 116459) ((-1146 . -1148) T) ((-87 . -391) T) ((-87 . -403) T) ((-880 . -370) T) ((-844 . -132) T) ((-835 . -132) T) ((-973 . -654) 116403) ((-722 . -23) T) ((-514 . -621) 116369) ((-510 . -621) 116351) ((-823 . -654) 116101) ((-1303 . -1069) T) ((-386 . -1071) T) ((-1037 . -1111) 116079) ((-55 . -1049) 116061) ((-910 . -34) T) ((-490 . -315) 115999) ((-600 . -102) T) ((-1168 . -622) 115960) ((-1168 . -621) 115892) ((-1190 . -1062) 115775) ((-45 . -102) T) ((-825 . -102) T) ((-1190 . -648) 115672) ((-1252 . -25) T) ((-1252 . -21) T) ((-1073 . -235) 115659) ((-863 . -25) T) ((-44 . -374) 115643) ((-863 . -21) T) ((-739 . -460) 115594) ((-1302 . -621) 115576) ((-1291 . -1062) 115546) ((-1065 . -315) 115484) ((-679 . -1094) T) ((-614 . -1094) T) ((-398 . -1111) T) ((-579 . -25) T) ((-579 . -21) T) ((-182 . -1094) T) ((-162 . -1094) T) ((-157 . -1094) T) ((-155 . -1094) T) ((-1291 . -648) 115454) ((-629 . -1111) T) ((-707 . -895) 115436) ((-1279 . -1229) T) ((-229 . -315) 115374) ((-145 . -375) T) ((-1057 . -622) 115316) ((-1057 . -621) 115259) ((-319 . -918) NIL) ((-1237 . -852) T) ((-707 . -1049) 115204) ((-719 . -929) T) ((-482 . -1233) 115183) ((-1185 . -460) 115162) ((-1179 . -460) 115141) ((-336 . -102) T) ((-880 . -1123) T) ((-325 . -654) 115023) ((-322 . -656) 114752) ((-319 . -656) 114681) ((-482 . -564) 114632) ((-346 . -522) 114598) ((-558 . -152) 114548) ((-40 . -313) T) ((-851 . -621) 114530) ((-709 . -296) T) ((-880 . -23) T) ((-386 . -501) T) ((-1091 . -233) 114500) ((-520 . -102) T) ((-415 . -622) 114307) ((-415 . -621) 114289) ((-268 . -621) 114271) ((-117 . -296) T) ((-1265 . -734) T) ((-631 . -1229) 114250) ((-1304 . -1111) T) ((-1263 . -370) 114229) ((-1242 . -370) 114208) ((-1292 . -34) T) ((-1237 . -1111) T) ((-118 . -1229) T) ((-108 . -233) 114190) ((-1190 . -102) T) ((-485 . -1111) T) ((-531 . -497) 114174) ((-745 . -34) T) ((-661 . -1062) 114158) ((-490 . -38) 114128) ((-661 . -648) 114098) ((-879 . -235) NIL) ((-142 . -34) T) ((-118 . -893) 114075) ((-118 . -895) NIL) ((-631 . -1049) 113958) ((-652 . -858) 113937) ((-1291 . -102) T) ((-301 . -102) T) ((-720 . -375) 113916) ((-118 . -1049) 113893) ((-398 . -725) 113877) ((-629 . -725) 113861) ((-1116 . -1229) T) ((-45 . -315) 113665) ((-824 . -146) 113644) ((-824 . -148) 113623) ((-295 . -654) 113595) ((-1302 . -389) 113574) ((-827 . -858) T) ((-1281 . -1111) T) ((-1171 . -231) 113521) ((-394 . -858) 113500) ((-1271 . -1217) 113466) ((-1271 . -1214) 113432) ((-1264 . -1214) 113398) ((-523 . -132) T) ((-1264 . -1217) 113364) ((-1243 . -1214) 113330) ((-1243 . -1217) 113296) ((-1271 . -35) 113262) ((-1271 . -95) 113228) ((-1264 . -95) 113194) ((-643 . -621) 113163) ((-615 . -621) 113132) ((-227 . -858) T) ((-1264 . -35) 113098) ((-1263 . -1123) T) ((-1243 . -95) 113064) ((-1131 . -656) 113036) ((-1243 . -35) 113002) ((-1242 . -1123) T) ((-601 . -152) 112984) ((-1091 . -356) 112963) ((-176 . -296) T) ((-118 . -384) 112940) ((-118 . -345) 112917) ((-171 . -235) 112862) ((-878 . -313) T) ((-319 . -802) NIL) ((-319 . -799) NIL) ((-322 . -734) 112711) ((-319 . -734) T) ((-482 . -370) 112690) ((-366 . -356) 112669) ((-360 . -356) 112648) ((-352 . -356) 112627) ((-322 . -481) 112606) ((-1263 . -23) T) ((-1242 . -23) T) ((-726 . -1123) T) ((-722 . -132) T) ((-661 . -102) T) ((-485 . -725) 112571) ((-45 . -288) 112521) ((-105 . -1111) T) ((-68 . -621) 112503) ((-981 . -102) T) ((-872 . -102) T) ((-631 . -909) 112462) ((-1303 . -1111) T) ((-388 . -1111) T) ((-1252 . -235) 112449) ((-82 . -1229) T) ((-1228 . -1111) T) ((-1073 . -858) T) ((-118 . -909) NIL) ((-790 . -929) 112428) ((-721 . -858) T) ((-539 . -1111) T) ((-508 . -1111) T) ((-362 . -1233) T) ((-359 . -1233) T) ((-351 . -1233) T) ((-269 . -1233) 112407) ((-251 . -1233) 112386) ((-541 . -868) T) ((-1124 . -233) 112355) ((-1170 . -836) T) ((-1153 . -1067) 112339) ((-398 . -769) T) ((-702 . -1229) T) ((-699 . -1049) 112323) ((-362 . -564) T) ((-359 . -564) T) ((-351 . -564) T) ((-269 . -564) 112254) ((-251 . -564) 112185) ((-533 . -1094) T) ((-1153 . -111) 112164) ((-461 . -752) 112134) ((-874 . -1067) 112104) ((-825 . -38) 112046) ((-702 . -893) 112028) ((-702 . -895) 112010) ((-301 . -315) 111814) ((-919 . -1233) T) ((-1168 . -294) 111791) ((-1091 . -654) 111686) ((-678 . -419) 111670) ((-874 . -111) 111635) ((-1015 . -460) T) ((-702 . -1049) 111580) ((-919 . -564) T) ((-541 . -621) 111562) ((-589 . -929) T) ((-495 . -1062) 111512) ((-482 . -1123) T) ((-526 . -929) T) ((-923 . -460) T) ((-65 . -621) 111494) ((-219 . -1062) 111444) ((-495 . -648) 111394) ((-366 . -654) 111331) ((-360 . -654) 111268) ((-352 . -654) 111205) ((-640 . -231) 111151) ((-219 . -648) 111101) ((-108 . -654) 111051) ((-482 . -23) T) ((-1131 . -802) T) ((-880 . -132) T) ((-1131 . -799) T) ((-1294 . -1296) 111030) ((-1131 . -734) T) ((-662 . -656) 111004) ((-300 . -621) 110745) ((-1153 . -624) 110663) ((-1046 . -34) T) ((-823 . -856) 110642) ((-588 . -313) T) ((-572 . -313) T) ((-503 . -313) T) ((-1303 . -725) 110612) ((-702 . -384) 110594) ((-702 . -345) 110576) ((-485 . -174) T) ((-388 . -725) 110546) ((-874 . -624) 110481) ((-879 . -858) NIL) ((-572 . -1033) T) ((-503 . -1033) T) ((-1144 . -621) 110463) ((-1124 . -242) 110442) ((-216 . -102) T) ((-1161 . -102) T) ((-71 . -621) 110424) ((-1153 . -1060) T) ((-1190 . -38) 110321) ((-866 . -621) 110303) ((-572 . -553) T) ((-678 . -1069) T) ((-739 . -958) 110256) ((-361 . -1229) T) ((-1153 . -237) 110235) ((-1093 . -1111) T) ((-1045 . -25) T) ((-1045 . -21) T) ((-1014 . -1067) 110180) ((-914 . -102) T) ((-874 . -1060) T) ((-702 . -909) NIL) ((-362 . -335) 110164) ((-362 . -370) T) ((-359 . -335) 110148) ((-359 . -370) T) ((-351 . -335) 110132) ((-351 . -370) T) ((-495 . -102) T) ((-1291 . -38) 110102) ((-554 . -858) T) ((-531 . -695) 110052) ((-219 . -102) T) ((-1035 . -1049) 109932) ((-1014 . -111) 109861) ((-1186 . -984) 109830) ((-1185 . -984) 109792) ((-528 . -152) 109776) ((-1091 . -377) 109755) ((-358 . -621) 109737) ((-328 . -21) T) ((-361 . -1049) 109714) ((-328 . -25) T) ((-1179 . -984) 109683) ((-48 . -1229) T) ((-76 . -621) 109665) ((-1137 . -984) 109632) ((-707 . -313) T) ((-130 . -852) T) ((-919 . -370) T) ((-386 . -25) T) ((-386 . -21) T) ((-919 . -335) 109619) ((-86 . -621) 109601) ((-707 . -1033) T) ((-685 . -858) T) ((-1263 . -132) T) ((-1242 . -132) T) ((-910 . -1021) 109585) ((-844 . -21) T) ((-48 . -1049) 109528) ((-844 . -25) T) ((-835 . -25) T) ((-835 . -21) T) ((-1124 . -654) 109278) ((-1301 . -1069) T) ((-557 . -102) T) ((-1299 . -1069) T) ((-662 . -734) T) ((-1115 . -626) 109181) ((-1014 . -624) 109111) ((-1302 . -1067) 109095) ((-823 . -419) 109064) ((-103 . -120) 109048) ((-130 . -1111) T) ((-52 . -1111) T) ((-935 . -621) 109030) ((-879 . -1003) 109007) ((-831 . -102) T) ((-1302 . -111) 108986) ((-661 . -38) 108956) ((-579 . -858) T) ((-362 . -1123) T) ((-359 . -1123) T) ((-351 . -1123) T) ((-269 . -1123) T) ((-251 . -1123) T) ((-631 . -313) 108935) ((-1161 . -315) 108739) ((-672 . -23) T) ((-532 . -1094) T) ((-317 . -1111) T) ((-490 . -233) 108708) ((-153 . -1069) T) ((-362 . -23) T) ((-359 . -23) T) ((-351 . -23) T) ((-118 . -313) T) ((-269 . -23) T) ((-251 . -23) T) ((-1014 . -1060) T) ((-720 . -918) 108687) ((-1168 . -624) 108664) ((-1014 . -237) 108636) ((-1014 . -247) T) ((-118 . -1033) NIL) ((-919 . -1123) T) ((-1264 . -460) 108615) ((-1243 . -460) 108594) ((-531 . -621) 108526) ((-720 . -656) 108415) ((-415 . -1067) 108367) ((-512 . -621) 108349) ((-919 . -23) T) ((-495 . -315) NIL) ((-1302 . -624) 108305) ((-482 . -132) T) ((-219 . -315) NIL) ((-415 . -111) 108243) ((-823 . -1069) 108173) ((-745 . -1109) 108157) ((-1263 . -501) 108123) ((-1242 . -501) 108089) ((-556 . -852) T) ((-142 . -1109) 108071) ((-485 . -296) T) ((-1302 . -1060) T) ((-1234 . -102) T) ((-1074 . -102) T) ((-851 . -624) 107939) ((-508 . -522) NIL) ((-490 . -242) 107918) ((-415 . -624) 107816) ((-972 . -1062) 107699) ((-743 . -1062) 107669) ((-972 . -648) 107566) ((-1184 . -146) 107545) ((-743 . -648) 107515) ((-461 . -1062) 107485) ((-1184 . -148) 107464) ((-1136 . -148) 107443) ((-1136 . -146) 107422) ((-643 . -1067) 107406) ((-615 . -1067) 107390) ((-461 . -648) 107360) ((-1186 . -1270) 107344) ((-1186 . -1257) 107321) ((-1185 . -1262) 107282) ((-678 . -1111) T) ((-678 . -1064) 107222) ((-1185 . -1257) 107192) ((-556 . -1111) T) ((-495 . -1163) T) ((-1185 . -1260) 107176) ((-1179 . -1241) 107137) ((-826 . -271) 107121) ((-219 . -1163) T) ((-350 . -929) T) ((-99 . -1229) T) ((-643 . -111) 107100) ((-615 . -111) 107079) ((-1179 . -1257) 107056) ((-851 . -1060) 107035) ((-1179 . -1239) 107019) ((-523 . -25) T) ((-503 . -308) T) ((-519 . -23) T) ((-518 . -25) T) ((-516 . -25) T) ((-515 . -23) T) ((-426 . -1062) 106993) ((-415 . -1060) T) ((-325 . -1069) T) ((-702 . -313) T) ((-426 . -648) 106967) ((-108 . -856) T) ((-720 . -734) T) ((-415 . -247) T) ((-415 . -237) 106946) ((-386 . -235) 106933) ((-495 . -38) 106883) ((-219 . -38) 106833) ((-482 . -501) 106799) ((-1236 . -375) T) ((-1170 . -1155) T) ((-1112 . -102) T) ((-835 . -235) 106772) ((-709 . -621) 106754) ((-709 . -622) 106669) ((-722 . -21) T) ((-722 . -25) T) ((-1146 . -102) T) ((-490 . -654) 106419) ((-135 . -621) 106401) ((-117 . -621) 106383) ((-158 . -25) T) ((-1301 . -1111) T) ((-880 . -647) 106331) ((-1299 . -1111) T) ((-972 . -102) T) ((-743 . -102) T) ((-723 . -102) T) ((-461 . -102) T) ((-824 . -460) 106282) ((-44 . -1111) T) ((-1099 . -858) T) ((-1074 . -315) 106133) ((-672 . -132) T) ((-1065 . -654) 106102) ((-678 . -725) 106086) ((-295 . -1069) T) ((-362 . -132) T) ((-359 . -132) T) ((-351 . -132) T) ((-269 . -132) T) ((-251 . -132) T) ((-392 . -654) 106055) ((-426 . -102) T) ((-153 . -1111) T) ((-45 . -231) 106005) ((-807 . -1062) 105989) ((-967 . -858) 105968) ((-1010 . -656) 105870) ((-807 . -648) 105854) ((-244 . -1286) 105824) ((-1035 . -313) T) ((-300 . -1067) 105745) ((-919 . -132) T) ((-40 . -929) T) ((-495 . -408) 105727) ((-361 . -313) T) ((-219 . -408) 105709) ((-1091 . -419) 105693) ((-300 . -111) 105609) ((-1195 . -858) T) ((-1194 . -858) T) ((-880 . -25) T) ((-880 . -21) T) ((-346 . -621) 105591) ((-1265 . -47) 105535) ((-227 . -148) T) ((-176 . -621) 105517) ((-1124 . -856) 105496) ((-782 . -621) 105478) ((-129 . -858) T) ((-616 . -239) 105425) ((-483 . -239) 105375) ((-1301 . -725) 105345) ((-48 . -313) T) ((-1299 . -725) 105315) ((-65 . -624) 105244) ((-973 . -1111) T) ((-823 . -1111) 105034) ((-318 . -102) T) ((-910 . -1229) T) ((-48 . -1033) T) ((-1242 . -647) 104942) ((-697 . -102) 104920) ((-44 . -725) 104904) ((-558 . -102) T) ((-300 . -624) 104835) ((-67 . -390) T) ((-67 . -403) T) ((-670 . -23) T) ((-825 . -654) 104771) ((-678 . -769) T) ((-1226 . -1111) 104749) ((-358 . -1067) 104694) ((-683 . -1111) 104672) ((-1073 . -148) T) ((-961 . -148) 104651) ((-961 . -146) 104630) ((-807 . -102) T) ((-153 . -725) 104614) ((-489 . -148) 104593) ((-489 . -146) 104572) ((-358 . -111) 104501) ((-1091 . -1069) T) ((-328 . -858) 104480) ((-1271 . -984) 104449) ((-635 . -1111) T) ((-1264 . -984) 104411) ((-519 . -132) T) ((-515 . -132) T) ((-301 . -231) 104361) ((-366 . -1069) T) ((-360 . -1069) T) ((-352 . -1069) T) ((-300 . -1060) 104303) ((-1243 . -984) 104272) ((-386 . -858) T) ((-108 . -1069) T) ((-1010 . -734) T) ((-878 . -929) T) ((-851 . -803) 104251) ((-851 . -800) 104230) ((-426 . -315) 104169) ((-476 . -102) T) ((-603 . -984) 104138) ((-325 . -1111) T) ((-415 . -803) 104117) ((-415 . -800) 104096) ((-508 . -497) 104078) ((-1265 . -1049) 104044) ((-1263 . -21) T) ((-1263 . -25) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-823 . -725) 103986) ((-358 . -624) 103916) ((-707 . -412) T) ((-1292 . -1229) T) ((-1124 . -419) 103885) ((-614 . -102) T) ((-1088 . -1229) T) ((-1014 . -375) NIL) ((-679 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1190 . -654) 103795) ((-745 . -1229) T) ((-739 . -1062) 103638) ((-44 . -769) T) ((-739 . -648) 103487) ((-601 . -102) T) ((-661 . -664) 103471) ((-77 . -404) T) ((-77 . -403) T) ((-142 . -1229) T) ((-879 . -148) T) ((-879 . -146) NIL) ((-1228 . -93) T) ((-358 . -1060) T) ((-70 . -390) T) ((-70 . -403) T) ((-1177 . -102) T) ((-678 . -522) 103404) ((-1291 . -654) 103349) ((-697 . -315) 103287) ((-972 . -38) 103184) ((-1192 . -621) 103166) ((-743 . -38) 103136) ((-558 . -315) 102940) ((-1186 . -1062) 102823) ((-322 . -1229) T) ((-358 . -237) T) ((-358 . -247) T) ((-319 . -1229) T) ((-295 . -1111) T) ((-1185 . -1062) 102658) ((-1179 . -1062) 102448) ((-1137 . -1062) 102331) ((-1186 . -648) 102228) ((-1185 . -648) 102069) ((-719 . -1233) T) ((-1179 . -648) 101865) ((-1168 . -659) 101849) ((-1137 . -648) 101746) ((-1223 . -564) 101725) ((-827 . -393) 101709) ((-719 . -564) T) ((-322 . -893) 101693) ((-322 . -895) 101618) ((-137 . -1229) T) ((-319 . -893) 101579) ((-319 . -895) NIL) ((-807 . -315) 101544) ((-325 . -725) 101385) ((-394 . -393) 101369) ((-330 . -329) 101346) ((-493 . -102) T) ((-482 . -25) T) ((-482 . -21) T) ((-426 . -38) 101320) ((-322 . -1049) 100983) ((-227 . -1214) T) ((-227 . -1217) T) ((-3 . -621) 100965) ((-319 . -1049) 100895) ((-880 . -235) 100868) ((-2 . -1111) T) ((-2 . |RecordCategory|) T) ((-841 . -621) 100850) ((-1124 . -1069) 100780) ((-588 . -929) T) ((-572 . -828) T) ((-572 . -929) T) ((-503 . -929) T) ((-137 . -1049) 100764) ((-227 . -95) T) ((-171 . -148) 100743) ((-75 . -449) T) ((0 . -621) 100725) ((-75 . -403) T) ((-171 . -146) 100676) ((-227 . -35) T) ((-49 . -621) 100658) ((-485 . -1069) T) ((-495 . -233) 100640) ((-492 . -979) 100624) ((-490 . -856) 100603) ((-219 . -233) 100585) ((-81 . -449) T) ((-81 . -403) T) ((-1157 . -34) T) ((-823 . -174) 100564) ((-739 . -102) T) ((-661 . -654) 100523) ((-1037 . -621) 100490) ((-508 . -292) 100440) ((-322 . -384) 100409) ((-319 . -384) 100370) ((-319 . -345) 100331) ((-1096 . -621) 100313) ((-824 . -958) 100260) ((-670 . -132) T) ((-1252 . -146) 100239) ((-1252 . -148) 100218) ((-1186 . -102) T) ((-1185 . -102) T) ((-1179 . -102) T) ((-1171 . -1111) T) ((-1137 . -102) T) ((-224 . -34) T) ((-295 . -725) 100205) ((-1171 . -618) 100181) ((-601 . -315) NIL) ((-492 . -1111) 100159) ((-1161 . -231) 100109) ((-398 . -621) 100091) ((-518 . -858) T) ((-1131 . -1229) T) ((-1271 . -1270) 100075) ((-1271 . -1257) 100052) ((-1264 . -1262) 100013) ((-1264 . -1257) 99983) ((-1264 . -1260) 99967) ((-1243 . -1241) 99928) ((-1243 . -1257) 99905) ((-629 . -621) 99887) ((-1243 . -1239) 99871) ((-707 . -929) T) ((-1186 . -290) 99837) ((-1185 . -290) 99803) ((-1179 . -290) 99769) ((-1091 . -1111) T) ((-1072 . -1111) T) ((-48 . -308) T) ((-322 . -909) 99735) ((-319 . -909) NIL) ((-1072 . -1079) 99714) ((-1131 . -895) 99696) ((-807 . -38) 99680) ((-269 . -647) 99628) ((-251 . -647) 99576) ((-709 . -1067) 99563) ((-603 . -1257) 99540) ((-1137 . -290) 99506) ((-325 . -174) 99437) ((-366 . -1111) T) ((-360 . -1111) T) ((-352 . -1111) T) ((-508 . -19) 99419) ((-1131 . -1049) 99401) ((-1113 . -152) 99385) ((-108 . -1111) T) ((-117 . -1067) 99372) ((-719 . -370) T) ((-508 . -612) 99347) ((-709 . -111) 99332) ((-1263 . -235) 99278) ((-1242 . -235) 99177) ((-444 . -102) T) ((-884 . -1274) T) ((-254 . -102) T) ((-45 . -1160) 99127) ((-117 . -111) 99112) ((-1304 . -621) 99079) ((-1304 . -498) 99061) ((-643 . -728) T) ((-615 . -728) T) ((-1281 . -621) 99043) ((-1237 . -621) 99025) ((-1235 . -858) T) ((-1223 . -1123) T) ((-1223 . -23) T) ((-823 . -522) 98958) ((-1046 . -1229) T) ((-244 . -1062) 98855) ((-1184 . -460) 98786) ((-1179 . -315) 98671) ((-952 . -152) 98655) ((-1178 . -1111) T) ((-1170 . -1111) T) ((-244 . -648) 98597) ((-1153 . -656) 98535) ((-1137 . -315) 98522) ((-1136 . -460) 98473) ((-533 . -102) T) ((-528 . -102) 98423) ((-1098 . -564) 98354) ((-1098 . -1233) 98333) ((-1091 . -725) 98201) ((-790 . -1233) 98180) ((-788 . -1233) 98159) ((-62 . -1229) T) ((-485 . -621) 98111) ((-485 . -622) 98033) ((-1015 . -1062) 97983) ((-1005 . -1111) T) ((-790 . -564) 97894) ((-788 . -564) 97825) ((-490 . -419) 97794) ((-631 . -929) 97773) ((-462 . -1233) 97752) ((-739 . -315) 97739) ((-709 . -624) 97711) ((-406 . -621) 97693) ((-683 . -522) 97626) ((-672 . -25) T) ((-672 . -21) T) ((-462 . -564) 97557) ((-362 . -25) T) ((-362 . -21) T) ((-118 . -929) T) ((-118 . -828) NIL) ((-359 . -25) T) ((-359 . -21) T) ((-351 . -25) T) ((-351 . -21) T) ((-269 . -25) T) ((-269 . -21) T) ((-251 . -25) T) ((-251 . -21) T) ((-83 . -391) T) ((-83 . -403) T) ((-135 . -624) 97539) ((-117 . -624) 97511) ((-1015 . -648) 97461) ((-952 . -991) 97445) ((-923 . -648) 97397) ((-923 . -1062) 97349) ((-919 . -21) T) ((-919 . -25) T) ((-880 . -858) 97300) ((-874 . -656) 97260) ((-719 . -1123) T) ((-719 . -23) T) ((-709 . -1060) T) ((-709 . -237) T) ((-295 . -174) T) ((-662 . -1229) T) ((-317 . -93) T) ((-655 . -1111) 97238) ((-640 . -618) 97213) ((-640 . -1111) T) ((-589 . -1233) T) ((-589 . -564) T) ((-526 . -1233) T) ((-526 . -564) T) ((-495 . -654) 97163) ((-482 . -235) 97109) ((-435 . -1062) 97093) ((-435 . -648) 97077) ((-366 . -725) 97029) ((-360 . -725) 96981) ((-346 . -1067) 96965) ((-352 . -725) 96917) ((-346 . -111) 96896) ((-176 . -1067) 96828) ((-219 . -654) 96778) ((-176 . -111) 96689) ((-108 . -725) 96639) ((-279 . -1111) T) ((-278 . -1111) T) ((-277 . -1111) T) ((-276 . -1111) T) ((-275 . -1111) T) ((-274 . -1111) T) ((-273 . -1111) T) ((-214 . -1111) T) ((-213 . -1111) T) ((-171 . -1217) 96617) ((-171 . -1214) 96595) ((-211 . -1111) T) ((-210 . -1111) T) ((-117 . -1060) T) ((-209 . -1111) T) ((-208 . -1111) T) ((-205 . -1111) T) ((-204 . -1111) T) ((-203 . -1111) T) ((-202 . -1111) T) ((-201 . -1111) T) ((-200 . -1111) T) ((-199 . -1111) T) ((-198 . -1111) T) ((-197 . -1111) T) ((-196 . -1111) T) ((-195 . -1111) T) ((-244 . -102) 96385) ((-171 . -35) 96363) ((-171 . -95) 96341) ((-662 . -1049) 96237) ((-490 . -1069) 96167) ((-1124 . -1111) 95957) ((-1153 . -34) T) ((-678 . -497) 95941) ((-73 . -1229) T) ((-105 . -621) 95923) ((-1303 . -621) 95905) ((-388 . -621) 95887) ((-346 . -624) 95839) ((-176 . -624) 95756) ((-1228 . -498) 95737) ((-739 . -38) 95586) ((-579 . -1217) T) ((-579 . -1214) T) ((-539 . -621) 95568) ((-528 . -315) 95506) ((-508 . -621) 95488) ((-508 . -622) 95470) ((-1228 . -621) 95436) ((-1179 . -1163) NIL) ((-1038 . -1082) 95405) ((-1038 . -1111) T) ((-1015 . -102) T) ((-982 . -102) T) ((-923 . -102) T) ((-902 . -1049) 95382) ((-1153 . -734) T) ((-1014 . -656) 95289) ((-484 . -1111) T) ((-471 . -1111) T) ((-594 . -23) T) ((-579 . -35) T) ((-579 . -95) T) ((-435 . -102) T) ((-1074 . -231) 95235) ((-1186 . -38) 95132) ((-874 . -734) T) ((-702 . -929) T) ((-519 . -25) T) ((-515 . -21) T) ((-515 . -25) T) ((-1185 . -38) 94973) ((-346 . -1060) T) ((-1179 . -38) 94769) ((-1091 . -174) T) ((-176 . -1060) T) ((-1137 . -38) 94666) ((-720 . -47) 94643) ((-366 . -174) T) ((-360 . -174) T) ((-527 . -57) 94617) ((-505 . -57) 94567) ((-358 . -1298) 94544) ((-227 . -460) T) ((-325 . -296) 94495) ((-352 . -174) T) ((-176 . -247) T) ((-1242 . -858) 94394) ((-108 . -174) T) ((-880 . -1003) 94378) ((-666 . -1123) T) ((-589 . -370) T) ((-589 . -335) 94365) ((-526 . -335) 94342) ((-526 . -370) T) ((-322 . -313) 94321) ((-319 . -313) T) ((-610 . -858) 94300) ((-1124 . -725) 94242) ((-528 . -288) 94226) ((-666 . -23) T) ((-426 . -233) 94210) ((-319 . -1033) NIL) ((-343 . -23) T) ((-103 . -1021) 94194) ((-45 . -36) 94173) ((-620 . -1111) T) ((-358 . -375) T) ((-532 . -102) T) ((-503 . -27) T) ((-244 . -315) 94111) ((-1098 . -1123) T) ((-1302 . -656) 94085) ((-790 . -1123) T) ((-788 . -1123) T) ((-1190 . -419) 94069) ((-462 . -1123) T) ((-1073 . -460) T) ((-1162 . -1111) T) ((-961 . -460) 94020) ((-1126 . -1094) T) ((-110 . -1111) T) ((-1098 . -23) T) ((-1171 . -522) 93803) ((-825 . -1069) T) ((-790 . -23) T) ((-788 . -23) T) ((-489 . -460) 93754) ((-469 . -23) T) ((-388 . -389) 93733) ((-362 . -235) 93706) ((-359 . -235) 93679) ((-351 . -235) 93652) ((-462 . -23) T) ((-269 . -235) 93625) ((-96 . -1111) T) ((-720 . -1229) T) ((-678 . -292) 93602) ((-492 . -522) 93535) ((-1271 . -1062) 93418) ((-1271 . -648) 93315) ((-1264 . -648) 93156) ((-1264 . -1062) 92991) ((-1243 . -648) 92787) ((-295 . -296) T) ((-1243 . -1062) 92577) ((-1093 . -621) 92559) ((-1093 . -622) 92540) ((-415 . -918) 92519) ((-1223 . -132) T) ((-50 . -1123) T) ((-1179 . -408) 92471) ((-1035 . -929) T) ((-1014 . -734) T) ((-851 . -656) 92444) ((-720 . -895) NIL) ((-604 . -1062) 92404) ((-589 . -1123) T) ((-526 . -1123) T) ((-603 . -1062) 92287) ((-1168 . -34) T) ((-1015 . -315) NIL) ((-823 . -497) 92271) ((-604 . -648) 92244) ((-361 . -929) T) ((-603 . -648) 92141) ((-919 . -235) 92128) ((-415 . -656) 92044) ((-50 . -23) T) ((-719 . -132) T) ((-720 . -1049) 91924) ((-589 . -23) T) ((-108 . -522) NIL) ((-526 . -23) T) ((-171 . -417) 91895) ((-1151 . -1111) T) ((-1294 . -1293) 91879) ((-709 . -803) T) ((-709 . -800) T) ((-1131 . -313) T) ((-386 . -148) T) ((-286 . -621) 91861) ((-285 . -621) 91843) ((-1242 . -1003) 91813) ((-48 . -929) T) ((-683 . -497) 91797) ((-256 . -1286) 91767) ((-255 . -1286) 91737) ((-1188 . -858) T) ((-1124 . -174) 91716) ((-1131 . -1033) T) ((-1057 . -34) T) ((-844 . -148) 91695) ((-844 . -146) 91674) ((-745 . -107) 91658) ((-620 . -133) T) ((-490 . -1111) 91448) ((-1190 . -1069) T) ((-879 . -460) T) ((-85 . -1229) T) ((-244 . -38) 91418) ((-142 . -107) 91400) ((-720 . -384) 91384) ((-841 . -624) 91252) ((-1302 . -734) T) ((-1291 . -1069) T) ((-1271 . -102) T) ((-1131 . -553) T) ((-587 . -102) T) ((-130 . -498) 91234) ((-1264 . -102) T) ((-398 . -1067) 91218) ((-1184 . -958) 91187) ((-44 . -292) 91164) ((-130 . -621) 91131) ((-52 . -621) 91113) ((-1136 . -958) 91080) ((-661 . -419) 91064) ((-1243 . -102) T) ((-1170 . -522) NIL) ((-670 . -25) T) ((-629 . -1067) 91048) ((-670 . -21) T) ((-972 . -654) 90958) ((-743 . -654) 90903) ((-723 . -654) 90875) ((-398 . -111) 90854) ((-224 . -259) 90838) ((-1065 . -1064) 90778) ((-1065 . -1111) T) ((-1015 . -1163) T) ((-826 . -1111) T) ((-461 . -654) 90693) ((-350 . -1233) T) ((-643 . -656) 90677) ((-629 . -111) 90656) ((-615 . -656) 90640) ((-604 . -102) T) ((-317 . -498) 90621) ((-594 . -132) T) ((-603 . -102) T) ((-422 . -1111) T) ((-392 . -1111) T) ((-317 . -621) 90587) ((-229 . -1111) 90565) ((-655 . -522) 90498) ((-640 . -522) 90342) ((-841 . -1060) 90321) ((-652 . -152) 90305) ((-350 . -564) T) ((-720 . -909) 90248) ((-558 . -231) 90198) ((-1271 . -290) 90164) ((-1264 . -290) 90130) ((-1091 . -296) 90081) ((-495 . -856) T) ((-225 . -1123) T) ((-1243 . -290) 90047) ((-1223 . -501) 90013) ((-1015 . -38) 89963) ((-219 . -856) T) ((-426 . -654) 89922) ((-923 . -38) 89874) ((-851 . -802) 89853) ((-851 . -799) 89832) ((-851 . -734) 89811) ((-366 . -296) T) ((-360 . -296) T) ((-352 . -296) T) ((-171 . -460) 89742) ((-435 . -38) 89726) ((-108 . -296) T) ((-225 . -23) T) ((-415 . -802) 89705) ((-415 . -799) 89684) ((-415 . -734) T) ((-508 . -294) 89659) ((-485 . -1067) 89624) ((-666 . -132) T) ((-629 . -624) 89593) ((-1124 . -522) 89526) ((-343 . -132) T) ((-171 . -410) 89505) ((-490 . -725) 89447) ((-823 . -292) 89424) ((-485 . -111) 89380) ((-661 . -1069) T) ((-824 . -1062) 89223) ((-1290 . -1094) T) ((-1252 . -460) 89154) ((-824 . -648) 89003) ((-1289 . -1094) T) ((-1098 . -132) T) ((-1065 . -725) 88945) ((-790 . -132) T) ((-788 . -132) T) ((-579 . -460) T) ((-1038 . -522) 88878) ((-629 . -1060) T) ((-600 . -1111) T) ((-541 . -175) T) ((-469 . -132) T) ((-462 . -132) T) ((-1010 . -1229) 88819) ((-45 . -1111) T) ((-392 . -725) 88789) ((-825 . -1111) T) ((-484 . -522) 88722) ((-471 . -522) 88655) ((-1304 . -624) 88637) ((-461 . -374) 88607) ((-45 . -618) 88586) ((-322 . -308) T) ((-485 . -624) 88536) ((-1243 . -315) 88421) ((-678 . -621) 88383) ((-59 . -858) 88362) ((-1015 . -408) 88344) ((-556 . -621) 88326) ((-807 . -654) 88285) ((-823 . -612) 88262) ((-524 . -858) 88241) ((-504 . -858) 88220) ((-40 . -1233) T) ((-1010 . -1049) 88116) ((-50 . -132) T) ((-589 . -132) T) ((-526 . -132) T) ((-300 . -656) 87976) ((-350 . -335) 87953) ((-350 . -370) T) ((-328 . -329) 87930) ((-325 . -292) 87888) ((-40 . -564) T) ((-386 . -1214) T) ((-386 . -1217) T) ((-1046 . -1205) 87863) ((-1201 . -239) 87813) ((-1179 . -233) 87765) ((-336 . -1111) T) ((-386 . -95) T) ((-386 . -35) T) ((-1046 . -107) 87711) ((-485 . -1060) T) ((-1303 . -1067) 87695) ((-487 . -239) 87645) ((-1171 . -497) 87579) ((-1294 . -1062) 87563) ((-388 . -1067) 87547) ((-1294 . -648) 87517) ((-485 . -247) T) ((-824 . -102) T) ((-722 . -148) 87496) ((-722 . -146) 87475) ((-492 . -497) 87459) ((-493 . -342) 87428) ((-1303 . -111) 87407) ((-520 . -1111) T) ((-490 . -174) 87386) ((-1010 . -384) 87370) ((-421 . -102) T) ((-388 . -111) 87349) ((-1010 . -345) 87333) ((-284 . -994) 87317) ((-283 . -994) 87301) ((-1301 . -621) 87283) ((-1299 . -621) 87265) ((-110 . -522) NIL) ((-1184 . -1255) 87249) ((-862 . -860) 87233) ((-1190 . -1111) T) ((-103 . -1229) T) ((-961 . -958) 87194) ((-825 . -725) 87136) ((-1243 . -1163) NIL) ((-489 . -958) 87081) ((-1073 . -144) T) ((-60 . -102) 87059) ((-44 . -621) 87041) ((-78 . -621) 87023) ((-358 . -656) 86968) ((-1291 . -1111) T) ((-519 . -858) T) ((-295 . -292) 86947) ((-350 . -1123) T) ((-301 . -1111) T) ((-1010 . -909) 86906) ((-301 . -618) 86885) ((-1303 . -624) 86834) ((-1271 . -38) 86731) ((-1264 . -38) 86572) ((-1243 . -38) 86368) ((-495 . -1069) T) ((-388 . -624) 86352) ((-219 . -1069) T) ((-350 . -23) T) ((-153 . -621) 86334) ((-841 . -803) 86313) ((-841 . -800) 86292) ((-1228 . -624) 86273) ((-604 . -38) 86246) ((-603 . -38) 86143) ((-878 . -564) T) ((-225 . -132) T) ((-325 . -1013) 86109) ((-79 . -621) 86091) ((-720 . -313) 86070) ((-300 . -734) 85972) ((-832 . -102) T) ((-872 . -852) T) ((-300 . -481) 85951) ((-1294 . -102) T) ((-40 . -370) T) ((-880 . -148) 85930) ((-493 . -654) 85912) ((-880 . -146) 85891) ((-1170 . -497) 85873) ((-1303 . -1060) T) ((-490 . -522) 85806) ((-1157 . -1229) T) ((-973 . -621) 85788) ((-655 . -497) 85772) ((-640 . -497) 85703) ((-823 . -621) 85434) ((-48 . -27) T) ((-1190 . -725) 85331) ((-661 . -1111) T) ((-869 . -868) T) ((-444 . -371) 85305) ((-739 . -654) 85215) ((-1113 . -102) T) ((-981 . -1111) T) ((-872 . -1111) T) ((-824 . -315) 85202) ((-541 . -535) T) ((-541 . -584) T) ((-1299 . -389) 85174) ((-1065 . -522) 85107) ((-1171 . -292) 85083) ((-244 . -233) 85052) ((-256 . -1062) 84949) ((-255 . -1062) 84846) ((-1291 . -725) 84816) ((-1178 . -93) T) ((-1005 . -93) T) ((-825 . -174) 84795) ((-256 . -648) 84737) ((-255 . -648) 84679) ((-1226 . -498) 84656) ((-229 . -522) 84589) ((-629 . -803) 84568) ((-629 . -800) 84547) ((-1226 . -621) 84459) ((-224 . -1229) T) ((-683 . -621) 84391) ((-1186 . -654) 84301) ((-1168 . -1021) 84285) ((-952 . -102) 84235) ((-358 . -734) T) ((-869 . -621) 84217) ((-1185 . -654) 84099) ((-1179 . -654) 83936) ((-1137 . -654) 83846) ((-1243 . -408) 83798) ((-1124 . -497) 83782) ((-60 . -315) 83720) ((-337 . -102) T) ((-1223 . -21) T) ((-1223 . -25) T) ((-40 . -1123) T) ((-719 . -21) T) ((-635 . -621) 83702) ((-523 . -329) 83681) ((-719 . -25) T) ((-447 . -102) T) ((-108 . -292) NIL) ((-930 . -1123) T) ((-40 . -23) T) ((-779 . -1123) T) ((-572 . -1233) T) ((-503 . -1233) T) ((-325 . -621) 83663) ((-1015 . -233) 83645) ((-171 . -167) 83629) ((-588 . -564) T) ((-572 . -564) T) ((-503 . -564) T) ((-779 . -23) T) ((-1263 . -148) 83608) ((-1171 . -612) 83584) ((-1263 . -146) 83563) ((-1038 . -497) 83547) ((-1242 . -146) 83472) ((-1242 . -148) 83397) ((-1294 . -1300) 83376) ((-484 . -497) 83360) ((-471 . -497) 83344) ((-531 . -34) T) ((-661 . -725) 83314) ((-112 . -978) T) ((-670 . -858) 83293) ((-1190 . -174) 83244) ((-372 . -102) T) ((-244 . -242) 83223) ((-256 . -102) T) ((-255 . -102) T) ((-1252 . -958) 83192) ((-249 . -858) 83171) ((-824 . -38) 83020) ((-45 . -522) 82812) ((-1170 . -292) 82762) ((-216 . -1111) T) ((-1161 . -1111) T) ((-1161 . -618) 82741) ((-594 . -25) T) ((-594 . -21) T) ((-1113 . -315) 82679) ((-972 . -419) 82663) ((-707 . -1233) T) ((-640 . -292) 82616) ((-1098 . -647) 82564) ((-790 . -647) 82512) ((-788 . -647) 82460) ((-350 . -132) T) ((-295 . -621) 82442) ((-914 . -1111) T) ((-707 . -564) T) ((-130 . -624) 82424) ((-878 . -1123) T) ((-462 . -647) 82372) ((-914 . -912) 82356) ((-386 . -460) T) ((-495 . -1111) T) ((-952 . -315) 82294) ((-709 . -656) 82266) ((-557 . -852) T) ((-219 . -1111) T) ((-322 . -929) 82245) ((-319 . -929) T) ((-319 . -828) NIL) ((-398 . -728) T) ((-878 . -23) T) ((-117 . -656) 82232) ((-482 . -146) 82211) ((-426 . -419) 82195) ((-482 . -148) 82174) ((-110 . -497) 82156) ((-317 . -624) 82137) ((-2 . -621) 82119) ((-188 . -102) T) ((-1170 . -19) 82101) ((-1170 . -612) 82076) ((-666 . -21) T) ((-666 . -25) T) ((-601 . -1155) T) ((-1124 . -292) 82053) ((-343 . -25) T) ((-343 . -21) T) ((-244 . -654) 81803) ((-503 . -370) T) ((-1294 . -38) 81773) ((-1184 . -1062) 81596) ((-1153 . -1229) T) ((-1136 . -1062) 81439) ((-862 . -1062) 81423) ((-640 . -612) 81398) ((-1301 . -1067) 81382) ((-1299 . -1067) 81366) ((-1184 . -648) 81195) ((-1136 . -648) 81044) ((-862 . -648) 81014) ((-1263 . -1214) 80980) ((-1263 . -1217) 80946) ((-557 . -1111) T) ((-1098 . -25) T) ((-1098 . -21) T) ((-539 . -800) T) ((-539 . -803) T) ((-118 . -1233) T) ((-972 . -1069) T) ((-631 . -564) T) ((-790 . -25) T) ((-790 . -21) T) ((-788 . -21) T) ((-788 . -25) T) ((-743 . -1069) T) ((-723 . -1069) T) ((-678 . -1067) 80930) ((-525 . -1094) T) ((-469 . -25) T) ((-118 . -564) T) ((-469 . -21) T) ((-462 . -25) T) ((-462 . -21) T) ((-1263 . -95) 80896) ((-1162 . -93) T) ((-1153 . -1049) 80792) ((-825 . -296) 80771) ((-1246 . -102) 80749) ((-831 . -1111) T) ((-975 . -978) T) ((-678 . -111) 80728) ((-625 . -1229) T) ((-301 . -522) 80520) ((-1243 . -233) 80472) ((-1242 . -1214) 80438) ((-1242 . -1217) 80404) ((-256 . -315) 80342) ((-255 . -315) 80280) ((-1237 . -375) T) ((-1171 . -622) NIL) ((-1171 . -621) 80262) ((-1234 . -852) T) ((-1153 . -384) 80246) ((-1131 . -828) T) ((-96 . -93) T) ((-1131 . -929) T) ((-1124 . -612) 80223) ((-1091 . -622) 80207) ((-1015 . -654) 80157) ((-923 . -654) 80094) ((-823 . -294) 80071) ((-492 . -621) 80003) ((-616 . -152) 79950) ((-495 . -725) 79900) ((-426 . -1069) T) ((-490 . -497) 79884) ((-435 . -654) 79843) ((-333 . -858) 79822) ((-346 . -656) 79796) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -725) 79746) ((-171 . -732) 79717) ((-176 . -656) 79649) ((-589 . -21) T) ((-589 . -25) T) ((-526 . -25) T) ((-526 . -21) T) ((-483 . -152) 79599) ((-1091 . -621) 79581) ((-1072 . -621) 79563) ((-1004 . -102) T) ((-870 . -102) T) ((-807 . -419) 79526) ((-40 . -132) T) ((-707 . -370) T) ((-709 . -734) T) ((-709 . -802) T) ((-709 . -799) T) ((-214 . -904) T) ((-588 . -1123) T) ((-572 . -1123) T) ((-503 . -1123) T) ((-366 . -621) 79508) ((-360 . -621) 79490) ((-352 . -621) 79472) ((-66 . -404) T) ((-66 . -403) T) ((-108 . -622) 79402) ((-108 . -621) 79344) ((-213 . -904) T) ((-967 . -152) 79328) ((-779 . -132) T) ((-678 . -624) 79246) ((-135 . -734) T) ((-117 . -734) T) ((-1263 . -35) 79212) ((-1065 . -497) 79196) ((-588 . -23) T) ((-572 . -23) T) ((-503 . -23) T) ((-1242 . -95) 79162) ((-1242 . -35) 79128) ((-1184 . -102) T) ((-1136 . -102) T) ((-862 . -102) T) ((-229 . -497) 79112) ((-1301 . -111) 79091) ((-1299 . -111) 79070) ((-44 . -1067) 79054) ((-1301 . -624) 79000) ((-1301 . -1060) T) ((-1299 . -624) 78929) ((-1252 . -1255) 78913) ((-863 . -860) 78897) ((-1190 . -296) 78876) ((-1115 . -1229) T) ((-110 . -292) 78826) ((-1014 . -1229) 78798) ((-129 . -152) 78780) ((-1153 . -909) 78739) ((-44 . -111) 78718) ((-1234 . -1111) T) ((-1193 . -1274) T) ((-1178 . -498) 78699) ((-1178 . -621) 78665) ((-678 . -1060) T) ((-1170 . -622) NIL) ((-1170 . -621) 78647) ((-1074 . -618) 78622) ((-1074 . -1111) T) ((-1005 . -498) 78603) ((-74 . -449) T) ((-74 . -403) T) ((-1005 . -621) 78569) ((-153 . -1067) 78553) ((-678 . -237) 78532) ((-579 . -562) 78516) ((-362 . -148) 78495) ((-362 . -146) 78446) ((-359 . -148) 78425) ((-359 . -146) 78376) ((-351 . -148) 78355) ((-351 . -146) 78306) ((-269 . -146) 78285) ((-269 . -148) 78264) ((-256 . -38) 78234) ((-251 . -148) 78213) ((-118 . -370) T) ((-251 . -146) 78192) ((-255 . -38) 78162) ((-153 . -111) 78141) ((-1014 . -1049) 78029) ((-1179 . -856) NIL) ((-702 . -1233) T) ((-807 . -1069) T) ((-707 . -1123) T) ((-1299 . -1060) T) ((-1168 . -1229) T) ((-1014 . -384) 78006) ((-919 . -146) T) ((-919 . -148) 77988) ((-878 . -132) T) ((-823 . -1067) 77885) ((-707 . -23) T) ((-702 . -564) T) ((-227 . -1062) 77850) ((-655 . -621) 77782) ((-655 . -622) 77743) ((-640 . -622) NIL) ((-640 . -621) 77725) ((-495 . -174) T) ((-227 . -648) 77690) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-482 . -1217) 77656) ((-482 . -1214) 77622) ((-279 . -621) 77604) ((-278 . -621) 77586) ((-277 . -621) 77568) ((-276 . -621) 77550) ((-275 . -621) 77532) ((-508 . -659) 77514) ((-274 . -621) 77496) ((-346 . -734) T) ((-273 . -621) 77478) ((-110 . -19) 77460) ((-176 . -734) T) ((-508 . -380) 77442) ((-214 . -621) 77424) ((-528 . -1160) 77408) ((-508 . -124) T) ((-110 . -612) 77383) ((-213 . -621) 77365) ((-482 . -35) 77331) ((-482 . -95) 77297) ((-211 . -621) 77279) ((-210 . -621) 77261) ((-209 . -621) 77243) ((-208 . -621) 77225) ((-205 . -621) 77207) ((-204 . -621) 77189) ((-203 . -621) 77171) ((-202 . -621) 77153) ((-201 . -621) 77135) ((-200 . -621) 77117) ((-199 . -621) 77099) ((-544 . -1114) 77051) ((-198 . -621) 77033) ((-197 . -621) 77015) ((-45 . -497) 76952) ((-196 . -621) 76934) ((-195 . -621) 76916) ((-153 . -624) 76885) ((-1126 . -102) T) ((-823 . -111) 76775) ((-652 . -102) 76725) ((-490 . -292) 76702) ((-1302 . -1049) 76686) ((-1124 . -621) 76417) ((-1112 . -1111) T) ((-1057 . -1229) T) ((-1184 . -315) 76404) ((-1073 . -1062) 76391) ((-1146 . -1111) T) ((-961 . -1062) 76234) ((-1136 . -315) 76221) ((-1107 . -1094) T) ((-631 . -1123) T) ((-1073 . -648) 76208) ((-1101 . -1094) T) ((-961 . -648) 76057) ((-1098 . -235) 76030) ((-489 . -1062) 75873) ((-1084 . -1094) T) ((-1077 . -1094) T) ((-1047 . -1094) T) ((-1030 . -1094) T) ((-118 . -1123) T) ((-489 . -648) 75722) ((-790 . -235) 75709) ((-827 . -102) T) ((-634 . -1094) T) ((-631 . -23) T) ((-1161 . -522) 75501) ((-491 . -1094) T) ((-394 . -102) T) ((-330 . -102) T) ((-220 . -1094) T) ((-972 . -1111) T) ((-153 . -1060) T) ((-739 . -419) 75485) ((-118 . -23) T) ((-1014 . -909) 75437) ((-743 . -1111) T) ((-723 . -1111) T) ((-461 . -1111) T) ((-415 . -1229) T) ((-322 . -438) 75421) ((-600 . -93) T) ((-1271 . -654) 75331) ((-1038 . -622) 75292) ((-1035 . -1233) T) ((-227 . -102) T) ((-1038 . -621) 75254) ((-1264 . -654) 75136) ((-824 . -233) 75120) ((-823 . -624) 74850) ((-1243 . -654) 74687) ((-1035 . -564) T) ((-841 . -656) 74660) ((-361 . -1233) T) ((-484 . -621) 74622) ((-484 . -622) 74583) ((-471 . -622) 74544) ((-471 . -621) 74506) ((-604 . -654) 74465) ((-415 . -893) 74449) ((-325 . -1067) 74284) ((-415 . -895) 74209) ((-603 . -654) 74119) ((-851 . -1049) 74015) ((-495 . -522) NIL) ((-490 . -612) 73992) ((-589 . -235) 73979) ((-361 . -564) T) ((-526 . -235) 73966) ((-219 . -522) NIL) ((-880 . -460) T) ((-426 . -1111) T) ((-415 . -1049) 73830) ((-325 . -111) 73651) ((-702 . -370) T) ((-227 . -290) T) ((-1226 . -624) 73628) ((-48 . -1233) T) ((-823 . -1060) 73558) ((-1184 . -1163) 73536) ((-588 . -132) T) ((-572 . -132) T) ((-503 . -132) T) ((-1171 . -294) 73512) ((-48 . -564) T) ((-1073 . -102) T) ((-961 . -102) T) ((-879 . -1062) 73457) ((-322 . -27) 73436) ((-823 . -237) 73388) ((-253 . -843) 73370) ((-244 . -856) 73349) ((-189 . -843) 73331) ((-721 . -102) T) ((-301 . -497) 73268) ((-879 . -648) 73213) ((-489 . -102) T) ((-739 . -1069) T) ((-620 . -621) 73195) ((-620 . -622) 73056) ((-415 . -384) 73040) ((-415 . -345) 73024) ((-1184 . -38) 72853) ((-325 . -624) 72679) ((-1136 . -38) 72528) ((-643 . -1229) 72502) ((-615 . -1229) 72476) ((-862 . -38) 72446) ((-398 . -656) 72430) ((-652 . -315) 72368) ((-1162 . -498) 72349) ((-1162 . -621) 72315) ((-972 . -725) 72212) ((-743 . -725) 72182) ((-224 . -107) 72166) ((-45 . -292) 72066) ((-629 . -656) 72040) ((-318 . -1111) T) ((-295 . -1067) 72027) ((-110 . -621) 72009) ((-110 . -622) 71991) ((-461 . -725) 71961) ((-824 . -258) 71900) ((-697 . -1111) 71878) ((-558 . -1111) T) ((-1186 . -1069) T) ((-1185 . -1069) T) ((-96 . -498) 71859) ((-1179 . -1069) T) ((-295 . -111) 71844) ((-1137 . -1069) T) ((-558 . -618) 71823) ((-96 . -621) 71789) ((-1015 . -856) T) ((-229 . -695) 71747) ((-702 . -1123) T) ((-1223 . -748) 71723) ((-1035 . -370) T) ((-846 . -843) 71705) ((-841 . -802) 71684) ((-415 . -909) 71643) ((-325 . -1060) T) ((-350 . -25) T) ((-350 . -21) T) ((-171 . -1062) 71553) ((-68 . -1229) T) ((-841 . -799) 71532) ((-426 . -725) 71506) ((-807 . -1111) T) ((-720 . -929) 71485) ((-707 . -132) T) ((-171 . -648) 71313) ((-702 . -23) T) ((-495 . -296) T) ((-841 . -734) 71292) ((-325 . -237) 71244) ((-325 . -247) 71223) ((-219 . -296) T) ((-130 . -375) T) ((-1263 . -460) 71202) ((-1242 . -460) 71181) ((-361 . -335) 71158) ((-361 . -370) T) ((-1151 . -621) 71140) ((-45 . -1267) 71090) ((-879 . -102) T) ((-652 . -288) 71074) ((-707 . -1071) T) ((-1290 . -102) T) ((-1289 . -102) T) ((-485 . -656) 71039) ((-476 . -1111) T) ((-45 . -612) 70964) ((-1170 . -294) 70939) ((-295 . -624) 70911) ((-40 . -647) 70850) ((-1252 . -1062) 70673) ((-863 . -1062) 70657) ((-48 . -370) T) ((-1117 . -621) 70639) ((-1252 . -648) 70468) ((-863 . -648) 70438) ((-640 . -294) 70413) ((-824 . -654) 70323) ((-579 . -1062) 70310) ((-490 . -621) 70041) ((-244 . -419) 70010) ((-961 . -315) 69997) ((-579 . -648) 69984) ((-65 . -1229) T) ((-1074 . -522) 69828) ((-679 . -1111) T) ((-631 . -132) T) ((-489 . -315) 69815) ((-614 . -1111) T) ((-554 . -102) T) ((-118 . -132) T) ((-295 . -1060) T) ((-182 . -1111) T) ((-162 . -1111) T) ((-157 . -1111) T) ((-155 . -1111) T) ((-461 . -769) T) ((-31 . -1094) T) ((-972 . -174) 69766) ((-981 . -93) T) ((-1091 . -1067) 69676) ((-629 . -802) 69655) ((-601 . -1111) T) ((-629 . -799) 69634) ((-629 . -734) T) ((-301 . -292) 69613) ((-300 . -1229) T) ((-1065 . -621) 69575) ((-1065 . -622) 69536) ((-1035 . -1123) T) ((-171 . -102) T) ((-280 . -858) T) ((-1177 . -1111) T) ((-826 . -621) 69518) ((-1124 . -294) 69495) ((-1113 . -231) 69479) ((-1014 . -313) T) ((-807 . -725) 69463) ((-366 . -1067) 69415) ((-361 . -1123) T) ((-360 . -1067) 69367) ((-422 . -621) 69349) ((-392 . -621) 69331) ((-352 . -1067) 69283) ((-229 . -621) 69215) ((-1091 . -111) 69111) ((-1035 . -23) T) ((-108 . -1067) 69061) ((-907 . -102) T) ((-849 . -102) T) ((-816 . -102) T) ((-777 . -102) T) ((-685 . -102) T) ((-482 . -460) 69040) ((-426 . -174) T) ((-366 . -111) 68978) ((-360 . -111) 68916) ((-352 . -111) 68854) ((-256 . -233) 68823) ((-255 . -233) 68792) ((-361 . -23) T) ((-71 . -1229) T) ((-227 . -38) 68757) ((-108 . -111) 68691) ((-40 . -25) T) ((-40 . -21) T) ((-678 . -728) T) ((-171 . -290) 68669) ((-48 . -1123) T) ((-930 . -25) T) ((-779 . -25) T) ((-1303 . -656) 68643) ((-1161 . -497) 68580) ((-493 . -1111) T) ((-1294 . -654) 68539) ((-1252 . -102) T) ((-1073 . -1163) T) ((-863 . -102) T) ((-244 . -1069) 68469) ((-973 . -800) 68422) ((-973 . -803) 68375) ((-388 . -656) 68359) ((-48 . -23) T) ((-823 . -803) 68310) ((-823 . -800) 68261) ((-556 . -375) T) ((-301 . -612) 68240) ((-485 . -734) T) ((-579 . -102) T) ((-1091 . -624) 68058) ((-253 . -187) T) ((-189 . -187) T) ((-879 . -315) 68015) ((-661 . -292) 67994) ((-112 . -669) T) ((-358 . -1229) T) ((-366 . -624) 67931) ((-360 . -624) 67868) ((-352 . -624) 67805) ((-76 . -1229) T) ((-108 . -624) 67755) ((-112 . -113) T) ((-1073 . -38) 67742) ((-672 . -381) 67721) ((-961 . -38) 67570) ((-739 . -1111) T) ((-489 . -38) 67419) ((-86 . -1229) T) ((-600 . -498) 67400) ((-1243 . -856) NIL) ((-579 . -290) T) ((-1186 . -1111) T) ((-600 . -621) 67366) ((-1185 . -1111) T) ((-1179 . -1111) T) ((-1091 . -1060) T) ((-358 . -1049) 67343) ((-825 . -498) 67327) ((-1015 . -1069) T) ((-45 . -621) 67309) ((-45 . -622) NIL) ((-923 . -1069) T) ((-825 . -621) 67278) ((-1158 . -102) 67256) ((-1091 . -247) 67207) ((-435 . -1069) T) ((-366 . -1060) T) ((-360 . -1060) T) ((-372 . -371) 67184) ((-352 . -1060) T) ((-350 . -235) 67171) ((-256 . -242) 67150) ((-255 . -242) 67129) ((-1091 . -237) 67054) ((-1137 . -1111) T) ((-300 . -909) 67013) ((-108 . -1060) T) ((-702 . -132) T) ((-426 . -522) 66855) ((-366 . -237) 66834) ((-366 . -247) T) ((-44 . -728) T) ((-360 . -237) 66813) ((-360 . -247) T) ((-352 . -237) 66792) ((-352 . -247) T) ((-1178 . -624) 66773) ((-171 . -315) 66738) ((-108 . -247) T) ((-108 . -237) T) ((-1005 . -624) 66719) ((-325 . -800) T) ((-878 . -21) T) ((-878 . -25) T) ((-415 . -313) T) ((-508 . -34) T) ((-110 . -294) 66694) ((-1124 . -1067) 66591) ((-879 . -1163) NIL) ((-336 . -621) 66573) ((-415 . -1033) 66551) ((-1124 . -111) 66441) ((-699 . -1274) T) ((-444 . -1111) T) ((-254 . -1111) T) ((-1303 . -734) T) ((-63 . -621) 66423) ((-879 . -38) 66368) ((-531 . -1229) T) ((-610 . -152) 66352) ((-520 . -621) 66334) ((-1252 . -315) 66321) ((-739 . -725) 66170) ((-539 . -801) T) ((-539 . -802) T) ((-572 . -647) 66152) ((-503 . -647) 66112) ((-362 . -460) T) ((-359 . -460) T) ((-351 . -460) T) ((-269 . -460) 66063) ((-533 . -1111) T) ((-528 . -1111) 66013) ((-251 . -460) 65964) ((-1161 . -292) 65943) ((-1190 . -621) 65925) ((-697 . -522) 65858) ((-972 . -296) 65837) ((-558 . -522) 65629) ((-256 . -654) 65449) ((-255 . -654) 65256) ((-1291 . -621) 65225) ((-1291 . -498) 65209) ((-1186 . -725) 65106) ((-1184 . -233) 65090) ((-1124 . -624) 64820) ((-171 . -1163) 64799) ((-1185 . -725) 64640) ((-1179 . -725) 64436) ((-975 . -113) T) ((-901 . -102) T) ((-1168 . -682) 64420) ((-1137 . -725) 64317) ((-1035 . -132) T) ((-362 . -410) 64268) ((-359 . -410) 64219) ((-351 . -410) 64170) ((-973 . -375) 64123) ((-807 . -522) 64035) ((-301 . -622) NIL) ((-301 . -621) 64017) ((-919 . -460) T) ((-914 . -292) 63996) ((-823 . -375) 63975) ((-518 . -517) 63954) ((-516 . -517) 63933) ((-495 . -292) NIL) ((-490 . -294) 63910) ((-426 . -296) T) ((-361 . -132) T) ((-219 . -292) NIL) ((-702 . -501) NIL) ((-99 . -1123) T) ((-40 . -235) 63876) ((-171 . -38) 63704) ((-1263 . -984) 63666) ((-1158 . -315) 63604) ((-1242 . -984) 63573) ((-919 . -410) T) ((-1124 . -1060) 63503) ((-1265 . -564) T) ((-1161 . -612) 63482) ((-112 . -858) T) ((-1074 . -497) 63413) ((-588 . -21) T) ((-588 . -25) T) ((-572 . -21) T) ((-572 . -25) T) ((-503 . -25) T) ((-503 . -21) T) ((-1252 . -1163) 63391) ((-1124 . -237) 63343) ((-48 . -132) T) ((-1210 . -102) T) ((-244 . -1111) 63133) ((-879 . -408) 63110) ((-1099 . -102) T) ((-1087 . -102) T) ((-616 . -102) T) ((-483 . -102) T) ((-1252 . -38) 62939) ((-863 . -38) 62909) ((-1045 . -1062) 62883) ((-739 . -174) 62794) ((-661 . -621) 62776) ((-653 . -1094) T) ((-1045 . -648) 62760) ((-579 . -38) 62747) ((-981 . -498) 62728) ((-981 . -621) 62694) ((-967 . -102) 62644) ((-872 . -621) 62626) ((-872 . -622) 62548) ((-601 . -522) NIL) ((-1271 . -1069) T) ((-1264 . -1069) T) ((-328 . -1062) 62530) ((-1243 . -1069) T) ((-1308 . -1123) T) ((-1223 . -148) 62509) ((-1223 . -146) 62488) ((-328 . -648) 62470) ((-709 . -1229) T) ((-1196 . -102) T) ((-1195 . -102) T) ((-1194 . -102) T) ((-1186 . -174) 62421) ((-604 . -1069) T) ((-603 . -1069) T) ((-1185 . -174) 62352) ((-1179 . -174) 62283) ((-386 . -1062) 62248) ((-1162 . -624) 62229) ((-1137 . -174) 62180) ((-1015 . -1111) T) ((-982 . -1111) T) ((-923 . -1111) T) ((-386 . -648) 62145) ((-807 . -805) 62129) ((-707 . -25) T) ((-707 . -21) T) ((-118 . -647) 62106) ((-709 . -895) 62088) ((-435 . -1111) T) ((-322 . -1233) 62067) ((-319 . -1233) T) ((-171 . -408) 62051) ((-844 . -1062) 62021) ((-482 . -984) 61983) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -621) 61965) ((-835 . -1062) 61949) ((-108 . -803) T) ((-108 . -800) T) ((-709 . -1049) 61931) ((-322 . -564) 61910) ((-319 . -564) T) ((-844 . -648) 61880) ((-835 . -648) 61850) ((-1308 . -23) T) ((-135 . -1049) 61832) ((-96 . -624) 61813) ((-1004 . -654) 61795) ((-490 . -1067) 61692) ((-45 . -294) 61617) ((-244 . -725) 61559) ((-525 . -102) T) ((-490 . -111) 61449) ((-1103 . -102) 61419) ((-1045 . -102) T) ((-1184 . -654) 61329) ((-1136 . -654) 61239) ((-862 . -654) 61198) ((-652 . -836) 61177) ((-739 . -522) 61120) ((-1065 . -1067) 61104) ((-1146 . -93) T) ((-1074 . -292) 61079) ((-631 . -21) T) ((-631 . -25) T) ((-532 . -1111) T) ((-678 . -656) 61017) ((-368 . -102) T) ((-328 . -102) T) ((-392 . -1067) 61001) ((-1065 . -111) 60980) ((-824 . -419) 60964) ((-118 . -25) T) ((-89 . -621) 60946) ((-118 . -21) T) ((-616 . -315) 60741) ((-483 . -315) 60545) ((-1161 . -622) NIL) ((-392 . -111) 60524) ((-386 . -102) T) ((-216 . -621) 60506) ((-1161 . -621) 60488) ((-1179 . -522) 60257) ((-1015 . -725) 60207) ((-1137 . -522) 60177) ((-923 . -725) 60129) ((-490 . -624) 59859) ((-358 . -313) T) ((-1201 . -152) 59809) ((-967 . -315) 59747) ((-844 . -102) T) ((-435 . -725) 59731) ((-227 . -836) T) ((-835 . -102) T) ((-833 . -102) T) ((-1301 . -656) 59705) ((-487 . -152) 59655) ((-1263 . -1262) 59634) ((-1131 . -1233) T) ((-346 . -1049) 59601) ((-1263 . -1257) 59571) ((-1263 . -1260) 59555) ((-1242 . -1241) 59534) ((-80 . -621) 59516) ((-914 . -621) 59498) ((-1242 . -1257) 59475) ((-1131 . -564) T) ((-930 . -858) T) ((-779 . -858) T) ((-680 . -858) T) ((-495 . -622) 59405) ((-495 . -621) 59346) ((-386 . -290) T) ((-1242 . -1239) 59330) ((-1265 . -1123) T) ((-219 . -622) 59260) ((-219 . -621) 59201) ((-1074 . -612) 59176) ((-826 . -624) 59160) ((-572 . -235) 59147) ((-524 . -152) 59131) ((-59 . -152) 59115) ((-504 . -152) 59099) ((-503 . -235) 59086) ((-366 . -1298) 59070) ((-360 . -1298) 59054) ((-352 . -1298) 59038) ((-322 . -370) 59017) ((-319 . -370) T) ((-490 . -1060) 58947) ((-702 . -647) 58929) ((-1299 . -656) 58903) ((-129 . -315) NIL) ((-1265 . -23) T) ((-697 . -497) 58887) ((-64 . -621) 58869) ((-1124 . -803) 58820) ((-1124 . -800) 58771) ((-558 . -497) 58708) ((-678 . -34) T) ((-490 . -237) 58660) ((-301 . -294) 58639) ((-244 . -174) 58618) ((-824 . -1069) T) ((-44 . -656) 58576) ((-1091 . -375) 58527) ((-1098 . -146) 58506) ((-739 . -296) 58437) ((-528 . -522) 58370) ((-825 . -1067) 58321) ((-1098 . -148) 58300) ((-557 . -621) 58282) ((-366 . -375) 58261) ((-360 . -375) 58240) ((-352 . -375) 58219) ((-977 . -1229) T) ((-879 . -233) 58196) ((-825 . -111) 58138) ((-790 . -146) 58117) ((-790 . -148) 58096) ((-269 . -958) 58063) ((-256 . -856) 58042) ((-251 . -958) 57987) ((-255 . -856) 57966) ((-788 . -146) 57945) ((-788 . -148) 57924) ((-153 . -656) 57898) ((-587 . -1111) T) ((-461 . -292) 57861) ((-462 . -148) 57840) ((-462 . -146) 57819) ((-678 . -734) T) ((-831 . -621) 57801) ((-1271 . -1111) T) ((-1264 . -1111) T) ((-1243 . -1111) T) ((-1223 . -1217) 57767) ((-1223 . -1214) 57733) ((-1186 . -296) 57712) ((-1185 . -296) 57663) ((-1179 . -296) 57614) ((-1137 . -296) 57593) ((-346 . -909) 57574) ((-1015 . -174) T) ((-923 . -174) T) ((-702 . -21) T) ((-702 . -25) T) ((-227 . -654) 57524) ((-604 . -1111) T) ((-603 . -1111) T) ((-482 . -1260) 57508) ((-482 . -1257) 57478) ((-426 . -292) 57406) ((-555 . -858) T) ((-322 . -1123) 57255) ((-319 . -1123) T) ((-1223 . -35) 57221) ((-1223 . -95) 57187) ((-84 . -621) 57169) ((-91 . -102) 57147) ((-1308 . -132) T) ((-722 . -1062) 57117) ((-600 . -624) 57098) ((-589 . -146) T) ((-589 . -148) 57080) ((-526 . -148) 57062) ((-526 . -146) T) ((-722 . -648) 57032) ((-322 . -23) 56884) ((-40 . -349) 56858) ((-319 . -23) T) ((-825 . -624) 56772) ((-1170 . -659) 56754) ((-1294 . -1069) T) ((-1170 . -380) 56736) ((-823 . -656) 56521) ((-1107 . -102) T) ((-1101 . -102) T) ((-1084 . -102) T) ((-171 . -233) 56505) ((-1077 . -102) T) ((-1047 . -102) T) ((-1030 . -102) T) ((-601 . -497) 56487) ((-634 . -102) T) ((-244 . -522) 56420) ((-491 . -102) T) ((-1301 . -734) T) ((-1299 . -734) T) ((-220 . -102) T) ((-1190 . -1067) 56303) ((-1073 . -654) 56275) ((-961 . -654) 56185) ((-1190 . -111) 56054) ((-884 . -1094) T) ((-869 . -175) T) ((-489 . -654) 55964) ((-825 . -1060) T) ((-689 . -1094) T) ((-684 . -1094) T) ((-631 . -235) 55937) ((-523 . -102) T) ((-518 . -102) T) ((-48 . -647) 55897) ((-516 . -102) T) ((-486 . -1094) T) ((-1291 . -1067) 55867) ((-118 . -235) NIL) ((-139 . -1094) T) ((-138 . -1094) T) ((-134 . -1094) T) ((-1045 . -38) 55851) ((-825 . -237) T) ((-825 . -247) 55830) ((-1291 . -111) 55795) ((-1271 . -725) 55692) ((-1264 . -725) 55533) ((-558 . -292) 55512) ((-1252 . -233) 55496) ((-1234 . -621) 55478) ((-614 . -93) T) ((-1074 . -622) NIL) ((-1074 . -621) 55460) ((-679 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1243 . -725) 55256) ((-1014 . -929) T) ((-153 . -734) T) ((-1190 . -624) 55109) ((-1124 . -375) 55088) ((-1035 . -25) T) ((-1015 . -522) NIL) ((-256 . -419) 55057) ((-255 . -419) 55026) ((-1035 . -21) T) ((-880 . -1062) 54978) ((-604 . -725) 54951) ((-603 . -725) 54848) ((-807 . -292) 54806) ((-127 . -102) 54784) ((-841 . -1049) 54680) ((-171 . -836) 54659) ((-325 . -656) 54556) ((-823 . -34) T) ((-722 . -102) T) ((-1131 . -1123) T) ((-1037 . -1229) T) ((-880 . -648) 54508) ((-386 . -38) 54473) ((-361 . -25) T) ((-361 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-253 . -102) T) ((-158 . -102) T) ((-362 . -1286) 54457) ((-359 . -1286) 54441) ((-351 . -1286) 54425) ((-171 . -356) 54404) ((-572 . -858) T) ((-1131 . -23) T) ((-87 . -621) 54386) ((-709 . -313) T) ((-844 . -38) 54356) ((-835 . -38) 54326) ((-1291 . -624) 54268) ((-1265 . -132) T) ((-1161 . -294) 54247) ((-973 . -734) 54146) ((-973 . -801) 54099) ((-973 . -802) 54052) ((-823 . -799) 54031) ((-117 . -313) T) ((-91 . -315) 53969) ((-683 . -34) T) ((-558 . -612) 53948) ((-48 . -25) T) ((-48 . -21) T) ((-823 . -802) 53899) ((-823 . -801) 53878) ((-709 . -1033) T) ((-661 . -1067) 53862) ((-879 . -654) 53792) ((-823 . -734) 53702) ((-973 . -481) 53655) ((-490 . -803) 53606) ((-490 . -800) 53557) ((-919 . -1286) 53544) ((-1190 . -1060) T) ((-661 . -111) 53523) ((-1190 . -332) 53500) ((-1215 . -102) 53478) ((-1112 . -621) 53460) ((-709 . -553) T) ((-824 . -1111) T) ((-1291 . -1060) T) ((-1146 . -498) 53441) ((-1235 . -102) T) ((-421 . -1111) T) ((-1146 . -621) 53407) ((-256 . -1069) 53337) ((-255 . -1069) 53267) ((-846 . -102) T) ((-295 . -656) 53254) ((-601 . -292) 53204) ((-697 . -695) 53162) ((-972 . -621) 53144) ((-880 . -102) T) ((-743 . -621) 53126) ((-723 . -621) 53108) ((-1271 . -174) 53059) ((-1264 . -174) 52990) ((-1243 . -174) 52921) ((-707 . -858) T) ((-1015 . -296) T) ((-461 . -621) 52903) ((-635 . -734) T) ((-60 . -1111) 52881) ((-249 . -152) 52865) ((-923 . -296) T) ((-1035 . -1023) T) ((-635 . -481) T) ((-720 . -1233) 52844) ((-702 . -235) NIL) ((-661 . -624) 52762) ((-171 . -654) 52657) ((-1279 . -858) 52636) ((-604 . -174) 52615) ((-603 . -174) 52566) ((-1263 . -648) 52407) ((-1263 . -1062) 52242) ((-1242 . -648) 52056) ((-1242 . -1062) 51864) ((-720 . -564) 51775) ((-415 . -929) T) ((-415 . -828) 51754) ((-325 . -802) T) ((-981 . -624) 51735) ((-325 . -734) T) ((-426 . -621) 51717) ((-426 . -622) 51624) ((-652 . -1160) 51608) ((-110 . -659) 51590) ((-176 . -313) T) ((-127 . -315) 51528) ((-110 . -380) 51510) ((-406 . -1229) T) ((-322 . -132) 51381) ((-319 . -132) T) ((-69 . -403) T) ((-110 . -124) T) ((-528 . -497) 51365) ((-662 . -1123) T) ((-601 . -19) 51347) ((-61 . -449) T) ((-61 . -403) T) ((-832 . -1111) T) ((-601 . -612) 51322) ((-485 . -1049) 51282) ((-661 . -1060) T) ((-662 . -23) T) ((-1294 . -1111) T) ((-31 . -102) T) ((-1252 . -654) 51192) ((-863 . -654) 51151) ((-824 . -725) 51000) ((-585 . -868) T) ((-579 . -654) 50972) ((-118 . -858) NIL) ((-1184 . -419) 50956) ((-1136 . -419) 50940) ((-862 . -419) 50924) ((-881 . -102) 50875) ((-1263 . -102) T) ((-1243 . -522) 50644) ((-1242 . -102) T) ((-1215 . -315) 50582) ((-1186 . -292) 50547) ((-1185 . -292) 50505) ((-533 . -93) T) ((-1179 . -292) 50333) ((-318 . -621) 50315) ((-1113 . -1111) T) ((-1091 . -656) 50189) ((-719 . -460) T) ((-697 . -621) 50121) ((-295 . -734) T) ((-108 . -918) NIL) ((-697 . -622) 50082) ((-609 . -621) 50064) ((-585 . -621) 50046) ((-558 . -622) NIL) ((-558 . -621) 50028) ((-537 . -621) 50010) ((-519 . -517) 49989) ((-495 . -1067) 49939) ((-482 . -1062) 49774) ((-515 . -517) 49753) ((-482 . -648) 49594) ((-219 . -1067) 49544) ((-366 . -656) 49496) ((-360 . -656) 49448) ((-227 . -856) T) ((-352 . -656) 49400) ((-610 . -102) 49350) ((-495 . -111) 49284) ((-490 . -375) 49263) ((-108 . -656) 49213) ((-361 . -235) 49200) ((-244 . -497) 49184) ((-350 . -148) 49166) ((-350 . -146) T) ((-171 . -377) 49137) ((-952 . -1277) 49121) ((-219 . -111) 49055) ((-880 . -315) 49020) ((-952 . -1111) 48970) ((-807 . -622) 48931) ((-807 . -621) 48913) ((-726 . -102) T) ((-337 . -1111) T) ((-216 . -624) 48890) ((-1131 . -132) T) ((-722 . -38) 48860) ((-322 . -501) 48839) ((-508 . -1229) T) ((-1263 . -290) 48805) ((-1242 . -290) 48771) ((-333 . -152) 48755) ((-447 . -1111) T) ((-1074 . -294) 48730) ((-1294 . -725) 48700) ((-48 . -235) 48687) ((-1171 . -34) T) ((-1303 . -1049) 48664) ((-492 . -34) T) ((-476 . -621) 48646) ((-254 . -292) 48620) ((-388 . -1049) 48604) ((-1184 . -1069) T) ((-1136 . -1069) T) ((-862 . -1069) T) ((-1073 . -856) T) ((-495 . -624) 48554) ((-219 . -624) 48504) ((-824 . -174) 48415) ((-528 . -292) 48367) ((-1271 . -296) 48346) ((-1210 . -371) 48320) ((-1099 . -271) 48304) ((-679 . -498) 48285) ((-679 . -621) 48251) ((-614 . -498) 48232) ((-118 . -1003) 48209) ((-614 . -621) 48159) ((-482 . -102) T) ((-182 . -498) 48140) ((-182 . -621) 48106) ((-162 . -498) 48087) ((-162 . -621) 48053) ((-157 . -498) 48034) ((-155 . -498) 48015) ((-157 . -621) 47981) ((-372 . -1111) T) ((-256 . -1111) T) ((-255 . -1111) T) ((-155 . -621) 47947) ((-1264 . -296) 47898) ((-1243 . -296) 47849) ((-880 . -1163) 47827) ((-1186 . -1013) 47793) ((-616 . -371) 47733) ((-1185 . -1013) 47699) ((-616 . -231) 47646) ((-702 . -858) T) ((-601 . -621) 47628) ((-601 . -622) NIL) ((-483 . -231) 47578) ((-495 . -1060) T) ((-1179 . -1013) 47544) ((-88 . -448) T) ((-88 . -403) T) ((-219 . -1060) T) ((-1137 . -1013) 47510) ((-1091 . -734) T) ((-720 . -1123) T) ((-604 . -296) 47489) ((-603 . -296) 47468) ((-495 . -247) T) ((-495 . -237) T) ((-219 . -247) T) ((-219 . -237) T) ((-1177 . -621) 47450) ((-880 . -38) 47402) ((-366 . -734) T) ((-360 . -734) T) ((-352 . -734) T) ((-108 . -802) T) ((-108 . -799) T) ((-720 . -23) T) ((-108 . -734) T) ((-528 . -1267) 47386) ((-1308 . -25) T) ((-482 . -290) 47352) ((-1308 . -21) T) ((-1242 . -315) 47291) ((-1188 . -102) T) ((-40 . -146) 47263) ((-40 . -148) 47235) ((-528 . -612) 47212) ((-1124 . -656) 46997) ((-610 . -315) 46935) ((-45 . -659) 46885) ((-45 . -674) 46835) ((-45 . -380) 46785) ((-1170 . -34) T) ((-879 . -856) NIL) ((-662 . -132) T) ((-493 . -621) 46767) ((-244 . -292) 46744) ((-188 . -1111) T) ((-1098 . -460) 46695) ((-824 . -522) 46569) ((-672 . -1062) 46553) ((-655 . -34) T) ((-640 . -34) T) ((-790 . -460) 46484) ((-672 . -648) 46468) ((-362 . -1062) 46420) ((-359 . -1062) 46372) ((-351 . -1062) 46324) ((-269 . -1062) 46167) ((-251 . -1062) 46010) ((-788 . -460) 45961) ((-362 . -648) 45913) ((-359 . -648) 45865) ((-351 . -648) 45817) ((-269 . -648) 45666) ((-251 . -648) 45515) ((-462 . -460) 45466) ((-961 . -419) 45450) ((-739 . -621) 45432) ((-256 . -725) 45374) ((-255 . -725) 45316) ((-739 . -622) 45177) ((-489 . -419) 45161) ((-346 . -308) T) ((-532 . -93) T) ((-358 . -929) T) ((-1011 . -102) 45139) ((-919 . -1062) 45104) ((-1035 . -858) T) ((-60 . -522) 45037) ((-919 . -648) 45002) ((-1242 . -1163) 44954) ((-1015 . -292) NIL) ((-227 . -1069) T) ((-386 . -836) T) ((-1124 . -34) T) ((-589 . -460) T) ((-526 . -460) T) ((-1246 . -1104) 44938) ((-1246 . -1111) 44916) ((-244 . -612) 44893) ((-1246 . -1106) 44850) ((-1186 . -621) 44832) ((-1185 . -621) 44814) ((-1179 . -621) 44796) ((-1179 . -622) NIL) ((-1137 . -621) 44778) ((-880 . -408) 44762) ((-605 . -102) T) ((-593 . -102) T) ((-544 . -102) T) ((-1263 . -38) 44603) ((-1242 . -38) 44417) ((-878 . -148) T) ((-589 . -410) T) ((-526 . -410) T) ((-1275 . -102) T) ((-1265 . -21) T) ((-1265 . -25) T) ((-1124 . -799) 44396) ((-1124 . -802) 44347) ((-1124 . -801) 44326) ((-1004 . -1111) T) ((-1038 . -34) T) ((-870 . -1111) T) ((-1124 . -734) 44236) ((-672 . -102) T) ((-653 . -102) T) ((-558 . -294) 44215) ((-1201 . -102) T) ((-484 . -34) T) ((-471 . -34) T) ((-362 . -102) T) ((-359 . -102) T) ((-351 . -102) T) ((-269 . -102) T) ((-251 . -102) T) ((-485 . -313) T) ((-1073 . -1069) T) ((-961 . -1069) T) ((-322 . -647) 44121) ((-319 . -647) 44082) ((-1184 . -1111) T) ((-489 . -1069) T) ((-487 . -102) T) ((-444 . -621) 44064) ((-1136 . -1111) T) ((-254 . -621) 44046) ((-862 . -1111) T) ((-1152 . -102) T) ((-824 . -296) 43977) ((-972 . -1067) 43860) ((-485 . -1033) T) ((-743 . -1067) 43830) ((-1045 . -654) 43789) ((-461 . -1067) 43759) ((-1158 . -1132) 43743) ((-1113 . -522) 43676) ((-972 . -111) 43545) ((-919 . -102) T) ((-743 . -111) 43510) ((-533 . -498) 43491) ((-533 . -621) 43457) ((-59 . -102) 43407) ((-528 . -622) 43368) ((-528 . -621) 43280) ((-527 . -102) 43258) ((-524 . -102) 43208) ((-505 . -102) 43186) ((-504 . -102) 43136) ((-461 . -111) 43099) ((-256 . -174) 43078) ((-255 . -174) 43057) ((-328 . -654) 43039) ((-426 . -1067) 43013) ((-1223 . -984) 42975) ((-1010 . -1123) T) ((-386 . -654) 42925) ((-1146 . -624) 42906) ((-952 . -522) 42839) ((-495 . -803) T) ((-482 . -38) 42680) ((-426 . -111) 42647) ((-495 . -800) T) ((-1011 . -315) 42585) ((-219 . -803) T) ((-219 . -800) T) ((-1010 . -23) T) ((-720 . -132) T) ((-1242 . -408) 42555) ((-844 . -654) 42500) ((-835 . -654) 42459) ((-322 . -25) 42311) ((-171 . -419) 42295) ((-322 . -21) 42166) ((-319 . -25) T) ((-319 . -21) T) ((-872 . -375) T) ((-972 . -624) 42019) ((-110 . -34) T) ((-743 . -624) 41975) ((-723 . -624) 41957) ((-490 . -656) 41742) ((-879 . -1069) T) ((-601 . -294) 41717) ((-588 . -148) T) ((-572 . -148) T) ((-503 . -148) T) ((-1184 . -725) 41546) ((-1068 . -102) 41524) ((-1136 . -725) 41373) ((-1131 . -647) 41355) ((-862 . -725) 41325) ((-678 . -1229) T) ((-1 . -102) T) ((-426 . -624) 41233) ((-244 . -621) 40964) ((-1126 . -1111) T) ((-1252 . -419) 40948) ((-1201 . -315) 40752) ((-972 . -1060) T) ((-743 . -1060) T) ((-723 . -1060) T) ((-652 . -1111) 40702) ((-1065 . -656) 40686) ((-863 . -419) 40670) ((-519 . -102) T) ((-515 . -102) T) ((-269 . -315) 40657) ((-251 . -315) 40644) ((-972 . -332) 40623) ((-392 . -656) 40607) ((-678 . -1049) 40503) ((-487 . -315) 40307) ((-256 . -522) 40240) ((-255 . -522) 40173) ((-1152 . -315) 40099) ((-827 . -1111) T) ((-807 . -1067) 40083) ((-1271 . -292) 40048) ((-1264 . -292) 40006) ((-1243 . -292) 39834) ((-394 . -1111) T) ((-330 . -1111) T) ((-426 . -1060) T) ((-171 . -1069) T) ((-59 . -315) 39772) ((-807 . -111) 39751) ((-603 . -292) 39716) ((-527 . -315) 39654) ((-524 . -315) 39592) ((-505 . -315) 39530) ((-504 . -315) 39468) ((-426 . -237) 39447) ((-490 . -34) T) ((-227 . -1111) T) ((-1015 . -622) 39377) ((-1015 . -621) 39337) ((-982 . -621) 39297) ((-923 . -621) 39279) ((-707 . -148) T) ((-709 . -929) T) ((-709 . -828) T) ((-435 . -621) 39261) ((-1131 . -21) T) ((-1131 . -25) T) ((-678 . -384) 39245) ((-117 . -929) T) ((-880 . -233) 39229) ((-44 . -1229) T) ((-78 . -1229) T) ((-127 . -126) 39213) ((-1065 . -34) T) ((-1301 . -1049) 39187) ((-1299 . -1049) 39144) ((-1252 . -1069) T) ((-863 . -1069) T) ((-490 . -799) 39123) ((-362 . -1163) 39102) ((-359 . -1163) 39081) ((-351 . -1163) 39060) ((-490 . -802) 39011) ((-490 . -801) 38990) ((-229 . -34) T) ((-490 . -734) 38900) ((-807 . -624) 38746) ((-670 . -1062) 38730) ((-60 . -497) 38714) ((-579 . -1069) T) ((-670 . -648) 38698) ((-1184 . -174) 38589) ((-1136 . -174) 38500) ((-1073 . -1111) T) ((-1098 . -958) 38445) ((-961 . -1111) T) ((-825 . -656) 38396) ((-790 . -958) 38365) ((-721 . -1111) T) ((-788 . -958) 38332) ((-524 . -288) 38316) ((-678 . -909) 38275) ((-489 . -1111) T) ((-462 . -958) 38242) ((-79 . -1229) T) ((-362 . -38) 38207) ((-359 . -38) 38172) ((-351 . -38) 38137) ((-269 . -38) 37986) ((-251 . -38) 37835) ((-919 . -1163) T) ((-532 . -498) 37816) ((-631 . -148) 37795) ((-631 . -146) 37774) ((-532 . -621) 37740) ((-118 . -148) T) ((-118 . -146) NIL) ((-422 . -734) T) ((-807 . -1060) T) ((-350 . -460) T) ((-1271 . -1013) 37706) ((-1264 . -1013) 37672) ((-1243 . -1013) 37638) ((-919 . -38) 37603) ((-227 . -725) 37568) ((-325 . -47) 37538) ((-40 . -417) 37510) ((-141 . -621) 37492) ((-1010 . -132) T) ((-823 . -1229) T) ((-176 . -929) T) ((-557 . -375) T) ((-722 . -654) 37437) ((-614 . -624) 37418) ((-350 . -410) T) ((-679 . -624) 37399) ((-319 . -235) NIL) ((-182 . -624) 37380) ((-162 . -624) 37361) ((-157 . -624) 37342) ((-155 . -624) 37323) ((-528 . -294) 37300) ((-1242 . -233) 37270) ((-884 . -102) T) ((-823 . -1049) 37097) ((-45 . -34) T) ((-689 . -102) T) ((-684 . -102) T) ((-670 . -102) T) ((-662 . -21) T) ((-662 . -25) T) ((-1113 . -497) 37081) ((-683 . -1229) T) ((-486 . -102) T) ((-249 . -102) 37031) ((-554 . -852) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-879 . -1111) T) ((-1190 . -656) 36956) ((-1073 . -725) 36943) ((-739 . -1067) 36786) ((-1184 . -522) 36733) ((-961 . -725) 36582) ((-1136 . -522) 36534) ((-1290 . -1111) T) ((-1289 . -1111) T) ((-489 . -725) 36383) ((-67 . -621) 36365) ((-739 . -111) 36194) ((-952 . -497) 36178) ((-1291 . -656) 36138) ((-1186 . -1067) 36021) ((-825 . -734) T) ((-1185 . -1067) 35856) ((-1179 . -1067) 35646) ((-325 . -1229) T) ((-1137 . -1067) 35529) ((-1014 . -1233) T) ((-1105 . -102) 35507) ((-823 . -384) 35476) ((-587 . -621) 35458) ((-554 . -1111) T) ((-1014 . -564) T) ((-1186 . -111) 35327) ((-1185 . -111) 35148) ((-1179 . -111) 34917) ((-1137 . -111) 34786) ((-1116 . -1114) 34750) ((-386 . -856) T) ((-1271 . -621) 34732) ((-1264 . -621) 34714) ((-880 . -654) 34651) ((-1243 . -621) 34633) ((-1243 . -622) NIL) ((-244 . -294) 34610) ((-40 . -460) T) ((-227 . -174) T) ((-171 . -1111) T) ((-739 . -624) 34395) ((-702 . -148) T) ((-702 . -146) NIL) ((-604 . -621) 34377) ((-603 . -621) 34359) ((-1131 . -235) 34346) ((-907 . -1111) T) ((-849 . -1111) T) ((-816 . -1111) T) ((-777 . -1111) T) ((-666 . -860) 34330) ((-685 . -1111) T) ((-823 . -909) 34262) ((-1234 . -375) T) ((-40 . -410) NIL) ((-1186 . -624) 34144) ((-1131 . -669) T) ((-879 . -725) 34089) ((-256 . -497) 34073) ((-255 . -497) 34057) ((-1185 . -624) 33800) ((-1179 . -624) 33595) ((-720 . -647) 33543) ((-661 . -656) 33517) ((-1137 . -624) 33399) ((-301 . -34) T) ((-1131 . -113) T) ((-739 . -1060) T) ((-589 . -1286) 33386) ((-526 . -1286) 33363) ((-1252 . -1111) T) ((-1184 . -296) 33274) ((-1136 . -296) 33205) ((-1073 . -174) T) ((-295 . -1229) T) ((-863 . -1111) T) ((-961 . -174) 33116) ((-790 . -1255) 33100) ((-652 . -522) 33033) ((-77 . -621) 33015) ((-739 . -332) 32980) ((-1190 . -734) T) ((-579 . -1111) T) ((-489 . -174) 32891) ((-249 . -315) 32829) ((-1153 . -1123) T) ((-70 . -621) 32811) ((-1291 . -734) T) ((-1186 . -1060) T) ((-1185 . -1060) T) ((-333 . -102) 32761) ((-1179 . -1060) T) ((-1153 . -23) T) ((-1137 . -1060) T) ((-91 . -1132) 32745) ((-874 . -1123) T) ((-1186 . -237) 32704) ((-1185 . -247) 32683) ((-1185 . -237) 32635) ((-1179 . -237) 32522) ((-1179 . -247) 32501) ((-325 . -909) 32407) ((-874 . -23) T) ((-171 . -725) 32235) ((-415 . -1233) T) ((-1112 . -375) T) ((-1014 . -370) T) ((-878 . -460) T) ((-1035 . -148) T) ((-952 . -292) 32187) ((-319 . -858) NIL) ((-1263 . -654) 32069) ((-882 . -102) T) ((-1242 . -654) 31924) ((-720 . -25) T) ((-415 . -564) T) ((-720 . -21) T) ((-533 . -624) 31905) ((-361 . -148) 31887) ((-361 . -146) T) ((-1158 . -1111) 31865) ((-461 . -728) T) ((-75 . -621) 31847) ((-115 . -858) T) ((-249 . -288) 31831) ((-244 . -1067) 31728) ((-81 . -621) 31710) ((-743 . -375) 31663) ((-1188 . -836) T) ((-745 . -239) 31647) ((-1171 . -1229) T) ((-142 . -239) 31629) ((-244 . -111) 31519) ((-1252 . -725) 31348) ((-48 . -148) T) ((-879 . -174) T) ((-863 . -725) 31318) ((-492 . -1229) T) ((-961 . -522) 31265) ((-661 . -734) T) ((-579 . -725) 31252) ((-1045 . -1069) T) ((-489 . -522) 31195) ((-952 . -19) 31179) ((-952 . -612) 31156) ((-1091 . -1229) 31081) ((-824 . -622) NIL) ((-824 . -621) 31063) ((-1223 . -1062) 30946) ((-1015 . -1067) 30896) ((-421 . -621) 30878) ((-256 . -292) 30855) ((-366 . -1229) 30834) ((-360 . -1229) 30813) ((-352 . -1229) 30792) ((-255 . -292) 30769) ((-495 . -918) NIL) ((-322 . -29) 30739) ((-108 . -1229) T) ((-1014 . -1123) T) ((-219 . -918) NIL) ((-1223 . -648) 30636) ((-923 . -1067) 30588) ((-1091 . -1049) 30484) ((-1015 . -111) 30418) ((-719 . -1062) 30383) ((-1014 . -23) T) ((-923 . -111) 30321) ((-745 . -703) 30305) ((-719 . -648) 30270) ((-269 . -233) 30254) ((-435 . -1067) 30238) ((-386 . -1069) T) ((-244 . -624) 29968) ((-702 . -1217) NIL) ((-495 . -656) 29918) ((-482 . -654) 29800) ((-108 . -893) 29782) ((-108 . -895) 29764) ((-702 . -1214) NIL) ((-219 . -656) 29714) ((-366 . -1049) 29698) ((-360 . -1049) 29682) ((-333 . -315) 29620) ((-352 . -1049) 29604) ((-227 . -296) T) ((-435 . -111) 29583) ((-60 . -621) 29515) ((-171 . -174) T) ((-1131 . -858) T) ((-108 . -1049) 29475) ((-901 . -1111) T) ((-844 . -1069) T) ((-835 . -1069) T) ((-702 . -35) NIL) ((-702 . -95) NIL) ((-319 . -1003) 29436) ((-185 . -102) T) ((-588 . -460) T) ((-572 . -460) T) ((-503 . -460) T) ((-415 . -370) T) ((-244 . -1060) 29366) ((-1161 . -34) T) ((-485 . -929) T) ((-1010 . -647) 29314) ((-256 . -612) 29291) ((-255 . -612) 29268) ((-1091 . -384) 29252) ((-879 . -522) 29160) ((-244 . -237) 29112) ((-1170 . -1229) T) ((-1015 . -624) 29062) ((-923 . -624) 28999) ((-832 . -621) 28981) ((-1302 . -1123) T) ((-1294 . -621) 28963) ((-1252 . -174) 28854) ((-435 . -624) 28823) ((-108 . -384) 28805) ((-108 . -345) 28787) ((-1073 . -296) T) ((-961 . -296) 28718) ((-807 . -375) 28697) ((-655 . -1229) T) ((-640 . -1229) T) ((-594 . -1062) 28672) ((-489 . -296) 28603) ((-579 . -174) T) ((-333 . -288) 28587) ((-1302 . -23) T) ((-1223 . -102) T) ((-1210 . -1111) T) ((-1099 . -1111) T) ((-1087 . -1111) T) ((-594 . -648) 28562) ((-83 . -621) 28544) ((-1195 . -852) T) ((-1194 . -852) T) ((-719 . -102) T) ((-362 . -356) 28523) ((-616 . -1111) T) ((-359 . -356) 28502) ((-351 . -356) 28481) ((-483 . -1111) T) ((-1201 . -231) 28431) ((-269 . -258) 28393) ((-1153 . -132) T) ((-616 . -618) 28369) ((-1091 . -909) 28302) ((-1015 . -1060) T) ((-923 . -1060) T) ((-483 . -618) 28281) ((-1179 . -800) NIL) ((-1179 . -803) NIL) ((-1113 . -622) 28242) ((-487 . -231) 28192) ((-1113 . -621) 28174) ((-1015 . -247) T) ((-1015 . -237) T) ((-435 . -1060) T) ((-967 . -1111) 28124) ((-923 . -247) T) ((-874 . -132) T) ((-707 . -460) T) ((-851 . -1123) 28103) ((-108 . -909) NIL) ((-1223 . -290) 28069) ((-1124 . -1229) T) ((-880 . -856) 28048) ((-1010 . -25) T) ((-914 . -734) T) ((-171 . -522) 27960) ((-1010 . -21) T) ((-914 . -481) T) ((-415 . -1123) T) ((-495 . -802) T) ((-495 . -799) T) ((-919 . -356) T) ((-495 . -734) T) ((-219 . -802) T) ((-219 . -799) T) ((-720 . -235) 27947) ((-219 . -734) T) ((-851 . -23) 27899) ((-1196 . -1111) T) ((-666 . -1062) 27883) ((-1195 . -1111) T) ((-532 . -624) 27864) ((-1194 . -1111) T) ((-325 . -313) 27843) ((-1046 . -239) 27789) ((-666 . -648) 27759) ((-415 . -23) T) ((-952 . -622) 27720) ((-952 . -621) 27632) ((-652 . -497) 27616) ((-45 . -1021) 27566) ((-1124 . -1049) 27393) ((-625 . -978) T) ((-499 . -102) T) ((-337 . -621) 27375) ((-1004 . -292) 27342) ((-601 . -659) 27324) ((-131 . -1111) T) ((-129 . -1111) T) ((-601 . -380) 27306) ((-350 . -1286) 27283) ((-447 . -621) 27265) ((-1252 . -522) 27212) ((-1098 . -1062) 27055) ((-1038 . -1229) T) ((-879 . -296) T) ((-1184 . -292) 26982) ((-1098 . -648) 26831) ((-1011 . -1006) 26815) ((-790 . -1062) 26638) ((-788 . -1062) 26481) ((-790 . -648) 26310) ((-788 . -648) 26159) ((-484 . -1229) T) ((-471 . -1229) T) ((-594 . -102) T) ((-469 . -1062) 26130) ((-462 . -1062) 25973) ((-672 . -654) 25942) ((-631 . -460) 25921) ((-469 . -648) 25892) ((-462 . -648) 25741) ((-362 . -654) 25678) ((-359 . -654) 25615) ((-351 . -654) 25552) ((-269 . -654) 25462) ((-251 . -654) 25372) ((-1294 . -389) 25344) ((-525 . -1111) T) ((-118 . -460) T) ((-1209 . -102) T) ((-1103 . -1111) 25314) ((-1045 . -1111) T) ((-1126 . -93) T) ((-902 . -858) T) ((-1271 . -111) 25183) ((-358 . -1233) T) ((-1271 . -1067) 25066) ((-1124 . -384) 25035) ((-1264 . -1067) 24870) ((-1243 . -1067) 24660) ((-1264 . -111) 24481) ((-1243 . -111) 24250) ((-1223 . -315) 24237) ((-1014 . -132) T) ((-919 . -654) 24187) ((-372 . -621) 24169) ((-358 . -564) T) ((-295 . -313) T) ((-604 . -1067) 24129) ((-603 . -1067) 24012) ((-589 . -1062) 23977) ((-526 . -1062) 23922) ((-368 . -1111) T) ((-328 . -1111) T) ((-256 . -621) 23883) ((-255 . -621) 23844) ((-589 . -648) 23809) ((-526 . -648) 23754) ((-702 . -417) 23721) ((-643 . -23) T) ((-615 . -23) T) ((-666 . -102) T) ((-604 . -111) 23674) ((-603 . -111) 23543) ((-386 . -1111) T) ((-343 . -102) T) ((-171 . -296) 23454) ((-1242 . -856) 23407) ((-722 . -1069) T) ((-1158 . -522) 23340) ((-1202 . -843) 23324) ((-1124 . -909) 23256) ((-844 . -1111) T) ((-835 . -1111) T) ((-833 . -1111) T) ((-97 . -102) T) ((-145 . -858) T) ((-620 . -893) 23240) ((-110 . -1229) T) ((-1098 . -102) T) ((-1074 . -34) T) ((-790 . -102) T) ((-788 . -102) T) ((-1271 . -624) 23122) ((-1264 . -624) 22865) ((-469 . -102) T) ((-462 . -102) T) ((-1243 . -624) 22660) ((-244 . -803) 22611) ((-244 . -800) 22562) ((-657 . -102) T) ((-604 . -624) 22520) ((-603 . -624) 22402) ((-1252 . -296) 22313) ((-672 . -642) 22297) ((-188 . -621) 22279) ((-652 . -292) 22231) ((-1045 . -725) 22215) ((-579 . -296) T) ((-972 . -656) 22140) ((-1302 . -132) T) ((-743 . -656) 22100) ((-723 . -656) 22087) ((-280 . -102) T) ((-461 . -656) 22017) ((-50 . -102) T) ((-589 . -102) T) ((-526 . -102) T) ((-1271 . -1060) T) ((-1264 . -1060) T) ((-1243 . -1060) T) ((-515 . -654) 21999) ((-328 . -725) 21981) ((-1271 . -237) 21940) ((-1264 . -247) 21919) ((-1264 . -237) 21871) ((-1243 . -237) 21758) ((-1243 . -247) 21737) ((-1223 . -38) 21634) ((-604 . -1060) T) ((-603 . -1060) T) ((-1015 . -803) T) ((-1015 . -800) T) ((-982 . -803) T) ((-982 . -800) T) ((-880 . -1069) T) ((-109 . -621) 21616) ((-702 . -460) T) ((-386 . -725) 21581) ((-426 . -656) 21555) ((-878 . -877) 21539) ((-719 . -38) 21504) ((-603 . -237) 21463) ((-40 . -732) 21435) ((-358 . -335) 21412) ((-358 . -370) T) ((-1091 . -313) 21363) ((-300 . -1123) 21244) ((-1117 . -1229) T) ((-1010 . -235) 21217) ((-173 . -102) T) ((-1246 . -621) 21184) ((-851 . -132) 21136) ((-652 . -1267) 21120) ((-844 . -725) 21090) ((-835 . -725) 21060) ((-490 . -1229) T) ((-366 . -313) T) ((-360 . -313) T) ((-352 . -313) T) ((-652 . -612) 21037) ((-415 . -132) T) ((-528 . -674) 21021) ((-108 . -313) T) ((-300 . -23) 20904) ((-528 . -659) 20888) ((-702 . -410) NIL) ((-528 . -380) 20872) ((-297 . -621) 20854) ((-91 . -1111) 20832) ((-108 . -1033) T) ((-572 . -144) T) ((-1279 . -152) 20816) ((-490 . -1049) 20643) ((-1265 . -146) 20604) ((-1265 . -148) 20565) ((-1065 . -1229) T) ((-1004 . -621) 20547) ((-870 . -621) 20529) ((-824 . -1067) 20372) ((-1290 . -93) T) ((-1289 . -93) T) ((-1184 . -622) NIL) ((-1107 . -1111) T) ((-1101 . -1111) T) ((-1098 . -315) 20359) ((-1084 . -1111) T) ((-229 . -1229) T) ((-1077 . -1111) T) ((-1047 . -1111) T) ((-1030 . -1111) T) ((-790 . -315) 20346) ((-788 . -315) 20333) ((-1184 . -621) 20315) ((-824 . -111) 20144) ((-1136 . -621) 20126) ((-634 . -1111) T) ((-585 . -175) T) ((-537 . -175) T) ((-462 . -315) 20113) ((-491 . -1111) T) ((-1136 . -622) 19861) ((-1045 . -174) T) ((-952 . -294) 19838) ((-220 . -1111) T) ((-862 . -621) 19820) ((-616 . -522) 19603) ((-81 . -624) 19544) ((-826 . -1049) 19528) ((-483 . -522) 19320) ((-972 . -734) T) ((-743 . -734) T) ((-723 . -734) T) ((-358 . -1123) T) ((-1191 . -621) 19302) ((-225 . -102) T) ((-490 . -384) 19271) ((-523 . -1111) T) ((-518 . -1111) T) ((-516 . -1111) T) ((-807 . -656) 19245) ((-1035 . -460) T) ((-967 . -522) 19178) ((-358 . -23) T) ((-643 . -132) T) ((-615 . -132) T) ((-361 . -460) T) ((-244 . -375) 19157) ((-386 . -174) T) ((-1263 . -1069) T) ((-1242 . -1069) T) ((-227 . -1013) T) ((-824 . -624) 18894) ((-707 . -395) T) ((-426 . -734) T) ((-709 . -1233) T) ((-1153 . -647) 18842) ((-588 . -877) 18826) ((-1294 . -1067) 18810) ((-1171 . -1205) 18786) ((-709 . -564) T) ((-127 . -1111) 18764) ((-722 . -1111) T) ((-666 . -38) 18734) ((-490 . -909) 18666) ((-253 . -1111) T) ((-189 . -1111) T) ((-361 . -410) T) ((-322 . -148) 18645) ((-322 . -146) 18624) ((-129 . -522) NIL) ((-117 . -564) T) ((-319 . -148) 18580) ((-319 . -146) 18536) ((-48 . -460) T) ((-163 . -1111) T) ((-158 . -1111) T) ((-1171 . -107) 18483) ((-790 . -1163) 18461) ((-697 . -34) T) ((-1294 . -111) 18440) ((-558 . -34) T) ((-492 . -107) 18424) ((-256 . -294) 18401) ((-255 . -294) 18378) ((-879 . -292) 18329) ((-45 . -1229) T) ((-1235 . -852) T) ((-825 . -1229) T) ((-824 . -1060) T) ((-670 . -654) 18298) ((-1190 . -47) 18275) ((-824 . -332) 18237) ((-1098 . -38) 18086) ((-824 . -237) 18065) ((-790 . -38) 17894) ((-788 . -38) 17743) ((-1126 . -498) 17724) ((-462 . -38) 17573) ((-1126 . -621) 17539) ((-1129 . -102) T) ((-652 . -622) 17500) ((-652 . -621) 17412) ((-589 . -1163) T) ((-526 . -1163) T) ((-1158 . -497) 17396) ((-350 . -1062) 17341) ((-1215 . -1111) 17319) ((-1153 . -25) T) ((-1153 . -21) T) ((-350 . -648) 17264) ((-1294 . -624) 17213) ((-482 . -1069) T) ((-1235 . -1111) T) ((-1243 . -800) NIL) ((-1243 . -803) NIL) ((-1010 . -858) 17192) ((-846 . -1111) T) ((-827 . -621) 17174) ((-874 . -21) T) ((-874 . -25) T) ((-807 . -734) T) ((-176 . -1233) T) ((-589 . -38) 17139) ((-526 . -38) 17104) ((-394 . -621) 17086) ((-339 . -102) T) ((-330 . -621) 17068) ((-171 . -292) 17026) ((-63 . -1229) T) ((-112 . -102) T) ((-880 . -1111) T) ((-176 . -564) T) ((-722 . -725) 16996) ((-300 . -132) 16879) ((-227 . -621) 16861) ((-227 . -622) 16791) ((-1014 . -647) 16730) ((-1294 . -1060) T) ((-1131 . -148) T) ((-640 . -1205) 16705) ((-739 . -918) 16684) ((-601 . -34) T) ((-655 . -107) 16668) ((-640 . -107) 16614) ((-1252 . -292) 16541) ((-739 . -656) 16430) ((-301 . -1229) T) ((-1190 . -1049) 16326) ((-952 . -626) 16303) ((-585 . -584) T) ((-585 . -535) T) ((-537 . -535) T) ((-1179 . -918) NIL) ((-1073 . -622) 16218) ((-1073 . -621) 16200) ((-961 . -621) 16182) ((-721 . -498) 16132) ((-350 . -102) T) ((-256 . -1067) 16029) ((-255 . -1067) 15926) ((-402 . -102) T) ((-31 . -1111) T) ((-961 . -622) 15787) ((-721 . -621) 15722) ((-1292 . -1222) 15691) ((-489 . -621) 15673) ((-489 . -622) 15534) ((-269 . -419) 15518) ((-251 . -419) 15502) ((-256 . -111) 15392) ((-255 . -111) 15282) ((-1186 . -656) 15207) ((-1185 . -656) 15104) ((-1179 . -656) 14956) ((-1137 . -656) 14881) ((-358 . -132) T) ((-82 . -449) T) ((-82 . -403) T) ((-1014 . -25) T) ((-1014 . -21) T) ((-881 . -1111) 14832) ((-40 . -1062) 14777) ((-880 . -725) 14729) ((-40 . -648) 14674) ((-386 . -296) T) ((-171 . -1013) 14625) ((-702 . -395) T) ((-1010 . -1008) 14609) ((-709 . -1123) T) ((-702 . -167) 14591) ((-1263 . -1111) T) ((-1242 . -1111) T) ((-322 . -1214) 14570) ((-322 . -1217) 14549) ((-1176 . -102) T) ((-322 . -968) 14528) ((-135 . -1123) T) ((-117 . -1123) T) ((-661 . -1229) T) ((-610 . -1277) 14512) ((-709 . -23) T) ((-610 . -1111) 14462) ((-322 . -95) 14441) ((-91 . -522) 14374) ((-176 . -370) T) ((-256 . -624) 14104) ((-255 . -624) 13834) ((-322 . -35) 13813) ((-616 . -497) 13747) ((-135 . -23) T) ((-117 . -23) T) ((-975 . -102) T) ((-726 . -1111) T) ((-483 . -497) 13684) ((-415 . -647) 13632) ((-661 . -1049) 13528) ((-967 . -497) 13512) ((-362 . -1069) T) ((-359 . -1069) T) ((-351 . -1069) T) ((-269 . -1069) T) ((-251 . -1069) T) ((-879 . -622) NIL) ((-879 . -621) 13494) ((-1290 . -498) 13475) ((-1289 . -498) 13456) ((-1302 . -21) T) ((-1290 . -621) 13422) ((-1289 . -621) 13388) ((-579 . -1013) T) ((-739 . -734) T) ((-1302 . -25) T) ((-256 . -1060) 13318) ((-255 . -1060) 13248) ((-72 . -1229) T) ((-256 . -237) 13200) ((-255 . -237) 13152) ((-1153 . -235) 13125) ((-40 . -102) T) ((-919 . -1069) T) ((-1193 . -102) T) ((-129 . -497) 13107) ((-1186 . -734) T) ((-1185 . -734) T) ((-1179 . -734) T) ((-1179 . -799) NIL) ((-1179 . -802) NIL) ((-963 . -102) T) ((-930 . -102) T) ((-878 . -1062) 13094) ((-1137 . -734) T) ((-779 . -102) T) ((-680 . -102) T) ((-878 . -648) 13081) ((-554 . -621) 13063) ((-482 . -1111) T) ((-346 . -1123) T) ((-176 . -1123) T) ((-325 . -929) 13042) ((-1263 . -725) 12883) ((-880 . -174) T) ((-1242 . -725) 12697) ((-851 . -21) 12649) ((-851 . -25) 12601) ((-249 . -1160) 12585) ((-127 . -522) 12518) ((-415 . -25) T) ((-415 . -21) T) ((-346 . -23) T) ((-171 . -622) 12284) ((-171 . -621) 12266) ((-176 . -23) T) ((-652 . -294) 12243) ((-528 . -34) T) ((-907 . -621) 12225) ((-89 . -1229) T) ((-849 . -621) 12207) ((-816 . -621) 12189) ((-777 . -621) 12171) ((-685 . -621) 12153) ((-244 . -656) 11938) ((-625 . -113) T) ((-1188 . -1111) T) ((-1184 . -1067) 11761) ((-1161 . -1229) T) ((-1136 . -1067) 11604) ((-862 . -1067) 11588) ((-1246 . -626) 11572) ((-1184 . -111) 11381) ((-1136 . -111) 11210) ((-862 . -111) 11189) ((-1236 . -858) T) ((-1252 . -622) NIL) ((-1252 . -621) 11171) ((-350 . -1163) T) ((-863 . -621) 11153) ((-1087 . -292) 11132) ((-80 . -1229) T) ((-914 . -1229) T) ((-1015 . -918) NIL) ((-1223 . -654) 11042) ((-616 . -292) 11018) ((-1215 . -522) 10951) ((-495 . -1229) T) ((-579 . -621) 10933) ((-483 . -292) 10912) ((-1098 . -233) 10896) ((-525 . -93) T) ((-1015 . -656) 10846) ((-219 . -1229) T) ((-1014 . -235) 10812) ((-967 . -292) 10764) ((-295 . -929) T) ((-825 . -313) 10743) ((-878 . -102) T) ((-790 . -233) 10727) ((-923 . -656) 10679) ((-719 . -654) 10629) ((-702 . -732) 10596) ((-643 . -21) T) ((-643 . -25) T) ((-615 . -21) T) ((-555 . -102) T) ((-350 . -38) 10561) ((-495 . -893) 10543) ((-495 . -895) 10525) ((-482 . -725) 10366) ((-219 . -893) 10348) ((-64 . -1229) T) ((-219 . -895) 10330) ((-615 . -25) T) ((-435 . -656) 10304) ((-1184 . -624) 10073) ((-495 . -1049) 10033) ((-880 . -522) 9945) ((-1136 . -624) 9737) ((-862 . -624) 9655) ((-219 . -1049) 9615) ((-244 . -34) T) ((-1011 . -1111) 9593) ((-588 . -1062) 9580) ((-572 . -1062) 9567) ((-503 . -1062) 9532) ((-1263 . -174) 9463) ((-1242 . -174) 9394) ((-588 . -648) 9381) ((-572 . -648) 9368) ((-503 . -648) 9333) ((-720 . -146) 9312) ((-720 . -148) 9291) ((-709 . -132) T) ((-137 . -473) 9268) ((-1158 . -621) 9200) ((-666 . -664) 9184) ((-129 . -292) 9134) ((-117 . -132) T) ((-485 . -1233) T) ((-616 . -612) 9110) ((-483 . -612) 9089) ((-343 . -342) 9058) ((-605 . -1111) T) ((-593 . -1111) T) ((-544 . -1111) T) ((-485 . -564) T) ((-1184 . -1060) T) ((-1136 . -1060) T) ((-862 . -1060) T) ((-244 . -799) 9037) ((-244 . -802) 8988) ((-244 . -801) 8967) ((-1184 . -332) 8944) ((-244 . -734) 8854) ((-967 . -19) 8838) ((-495 . -384) 8820) ((-495 . -345) 8802) ((-1136 . -332) 8774) ((-361 . -1286) 8751) ((-219 . -384) 8733) ((-219 . -345) 8715) ((-967 . -612) 8692) ((-1184 . -237) T) ((-1275 . -1111) T) ((-672 . -1111) T) ((-653 . -1111) T) ((-1201 . -1111) T) ((-1098 . -258) 8629) ((-594 . -654) 8589) ((-362 . -1111) T) ((-359 . -1111) T) ((-351 . -1111) T) ((-269 . -1111) T) ((-251 . -1111) T) ((-84 . -1229) T) ((-128 . -102) 8567) ((-122 . -102) 8545) ((-1242 . -522) 8405) ((-1201 . -618) 8384) ((-1152 . -1111) T) ((-1126 . -624) 8365) ((-1091 . -929) 8316) ((-487 . -1111) T) ((-1015 . -802) T) ((-1015 . -799) T) ((-487 . -618) 8295) ((-256 . -803) 8246) ((-256 . -800) 8197) ((-255 . -803) 8148) ((-40 . -1163) NIL) ((-255 . -800) 8099) ((-1015 . -734) T) ((-129 . -19) 8081) ((-982 . -802) T) ((-707 . -1062) 8046) ((-923 . -734) T) ((-919 . -1111) T) ((-901 . -621) 8028) ((-129 . -612) 8003) ((-707 . -648) 7968) ((-91 . -497) 7952) ((-495 . -909) NIL) ((-880 . -296) T) ((-227 . -1067) 7917) ((-844 . -292) 7896) ((-219 . -909) NIL) ((-841 . -1123) 7875) ((-59 . -1111) 7825) ((-527 . -1111) 7803) ((-524 . -1111) 7753) ((-505 . -1111) 7731) ((-504 . -1111) 7681) ((-588 . -102) T) ((-572 . -102) T) ((-503 . -102) T) ((-482 . -174) 7612) ((-366 . -929) T) ((-360 . -929) T) ((-352 . -929) T) ((-227 . -111) 7568) ((-841 . -23) 7520) ((-435 . -734) T) ((-108 . -929) T) ((-40 . -38) 7465) ((-108 . -828) T) ((-589 . -356) T) ((-526 . -356) T) ((-666 . -654) 7424) ((-322 . -460) 7403) ((-319 . -460) T) ((-610 . -522) 7336) ((-415 . -235) 7309) ((-346 . -132) T) ((-176 . -132) T) ((-300 . -25) 7173) ((-300 . -21) 7056) ((-45 . -1205) 7035) ((-66 . -621) 7017) ((-55 . -102) T) ((-343 . -654) 6999) ((-1280 . -102) T) ((-45 . -107) 6949) ((-827 . -624) 6933) ((-1279 . -102) 6883) ((-1271 . -656) 6808) ((-1264 . -656) 6705) ((-1243 . -656) 6557) ((-1243 . -918) NIL) ((-1113 . -433) 6541) ((-1113 . -375) 6520) ((-394 . -624) 6504) ((-330 . -624) 6488) ((-1210 . -621) 6470) ((-1202 . -102) T) ((-1074 . -1229) T) ((-1098 . -654) 6380) ((-1073 . -1067) 6367) ((-1073 . -111) 6352) ((-961 . -1067) 6195) ((-961 . -111) 6024) ((-790 . -654) 5934) ((-788 . -654) 5844) ((-631 . -1062) 5831) ((-672 . -725) 5815) ((-631 . -648) 5802) ((-489 . -1067) 5645) ((-485 . -370) T) ((-469 . -654) 5601) ((-462 . -654) 5511) ((-227 . -624) 5461) ((-362 . -725) 5413) ((-359 . -725) 5365) ((-118 . -1062) 5310) ((-351 . -725) 5262) ((-269 . -725) 5111) ((-251 . -725) 4960) ((-1107 . -93) T) ((-1101 . -93) T) ((-118 . -648) 4905) ((-1084 . -93) T) ((-952 . -659) 4889) ((-1077 . -93) T) ((-489 . -111) 4718) ((-1068 . -1111) 4696) ((-1047 . -93) T) ((-952 . -380) 4680) ((-252 . -102) T) ((-1030 . -93) T) ((-74 . -621) 4662) ((-972 . -47) 4641) ((-718 . -102) T) ((-707 . -102) T) ((-1 . -1111) T) ((-629 . -1123) T) ((-1099 . -621) 4623) ((-634 . -93) T) ((-1087 . -621) 4605) ((-919 . -725) 4570) ((-127 . -497) 4554) ((-491 . -93) T) ((-629 . -23) T) ((-398 . -23) T) ((-87 . -1229) T) ((-220 . -93) T) ((-616 . -621) 4536) ((-616 . -622) NIL) ((-483 . -622) NIL) ((-483 . -621) 4518) ((-358 . -25) T) ((-358 . -21) T) ((-50 . -654) 4477) ((-519 . -1111) T) ((-515 . -1111) T) ((-128 . -315) 4415) ((-122 . -315) 4353) ((-604 . -656) 4327) ((-603 . -656) 4252) ((-589 . -654) 4202) ((-227 . -1060) T) ((-526 . -654) 4132) ((-386 . -1013) T) ((-227 . -247) T) ((-227 . -237) T) ((-1073 . -624) 4104) ((-1073 . -626) 4085) ((-967 . -622) 4046) ((-967 . -621) 3958) ((-961 . -624) 3747) ((-878 . -38) 3734) ((-721 . -624) 3684) ((-1263 . -296) 3635) ((-1242 . -296) 3586) ((-489 . -624) 3371) ((-1131 . -460) T) ((-510 . -858) T) ((-322 . -1150) 3350) ((-1010 . -148) 3329) ((-1010 . -146) 3308) ((-503 . -315) 3295) ((-301 . -1205) 3274) ((-1196 . -621) 3256) ((-1195 . -621) 3238) ((-1194 . -621) 3220) ((-879 . -1067) 3165) ((-485 . -1123) T) ((-140 . -843) 3147) ((-115 . -843) 3128) ((-631 . -102) T) ((-1215 . -497) 3112) ((-256 . -375) 3091) ((-255 . -375) 3070) ((-1073 . -1060) T) ((-301 . -107) 3020) ((-131 . -621) 3002) ((-129 . -622) NIL) ((-129 . -621) 2946) ((-118 . -102) T) ((-961 . -1060) T) ((-879 . -111) 2875) ((-485 . -23) T) ((-461 . -1229) T) ((-489 . -1060) T) ((-1073 . -237) T) ((-961 . -332) 2844) ((-489 . -332) 2801) ((-362 . -174) T) ((-359 . -174) T) ((-351 . -174) T) ((-269 . -174) 2712) ((-251 . -174) 2623) ((-972 . -1049) 2519) ((-525 . -498) 2500) ((-743 . -1049) 2471) ((-525 . -621) 2437) ((-426 . -1229) 2354) ((-1116 . -102) T) ((-1103 . -621) 2313) ((-1045 . -621) 2295) ((-702 . -1062) 2245) ((-1292 . -152) 2229) ((-1290 . -624) 2210) ((-1289 . -624) 2191) ((-1284 . -621) 2173) ((-1271 . -734) T) ((-702 . -648) 2123) ((-1264 . -734) T) ((-1243 . -799) NIL) ((-1243 . -802) NIL) ((-171 . -1067) 2033) ((-919 . -174) T) ((-879 . -624) 1963) ((-1243 . -734) T) ((-1014 . -349) 1937) ((-225 . -654) 1889) ((-1011 . -522) 1822) ((-851 . -858) 1801) ((-572 . -1163) T) ((-482 . -296) 1752) ((-604 . -734) T) ((-368 . -621) 1734) ((-328 . -621) 1716) ((-426 . -1049) 1612) ((-603 . -734) T) ((-415 . -858) 1563) ((-171 . -111) 1459) ((-841 . -132) 1411) ((-745 . -152) 1395) ((-1279 . -315) 1333) ((-495 . -313) T) ((-386 . -621) 1300) ((-528 . -1021) 1284) ((-386 . -622) 1198) ((-219 . -313) T) ((-142 . -152) 1180) ((-722 . -292) 1159) ((-495 . -1033) T) ((-588 . -38) 1146) ((-572 . -38) 1133) ((-503 . -38) 1098) ((-219 . -1033) T) ((-879 . -1060) T) ((-844 . -621) 1080) ((-835 . -621) 1062) ((-833 . -621) 1044) ((-824 . -918) 1023) ((-1303 . -1123) T) ((-1252 . -1067) 846) ((-863 . -1067) 830) ((-879 . -247) T) ((-879 . -237) NIL) ((-697 . -1229) T) ((-1303 . -23) T) ((-824 . -656) 719) ((-558 . -1229) T) ((-426 . -345) 703) ((-579 . -1067) 690) ((-1252 . -111) 499) ((-709 . -647) 481) ((-863 . -111) 460) ((-388 . -23) T) ((-171 . -624) 238) ((-1201 . -522) 30) ((-884 . -1111) T) ((-689 . -1111) T) ((-684 . -1111) T) ((-670 . -1111) T)) \ No newline at end of file
+(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113)))
+((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((|#2| $) |has| |#1| (-239)) ((|#2| |#1|) |has| |#1| (-239)) ((|#3| |#1|) . T) ((|#3| $) . T))
+(((-488 . -1113) T) ((-271 . -524) 193724) ((-253 . -524) 193667) ((-251 . -1113) 193617) ((-581 . -111) 193602) ((-541 . -23) T) ((-134 . -1113) T) ((-139 . -1113) T) ((-118 . -317) 193559) ((-138 . -1113) T) ((-809 . -1231) 193528) ((-489 . -524) 193320) ((-687 . -626) 193304) ((-704 . -102) T) ((-1154 . -524) 193223) ((-400 . -132) T) ((-1294 . -989) 193192) ((-1037 . -1064) 193129) ((-31 . -93) T) ((-612 . -499) 193113) ((-1037 . -650) 193050) ((-631 . -132) T) ((-829 . -856) T) ((-533 . -57) 193000) ((-529 . -524) 192933) ((-360 . -235) 192920) ((-363 . -1064) 192865) ((-59 . -524) 192798) ((-526 . -524) 192731) ((-428 . -911) 192690) ((-171 . -1062) T) ((-507 . -524) 192623) ((-506 . -524) 192556) ((-363 . -650) 192501) ((-809 . -1051) 192281) ((-709 . -38) 192246) ((-1254 . -626) 191994) ((-352 . -358) T) ((-1107 . -1106) 191978) ((-1107 . -1113) 191956) ((-865 . -626) 191853) ((-171 . -249) 191804) ((-171 . -239) 191755) ((-1107 . -1108) 191713) ((-882 . -294) 191671) ((-227 . -805) T) ((-227 . -802) T) ((-704 . -292) NIL) ((-581 . -626) 191643) ((-1163 . -1207) 191622) ((-417 . -1005) 191606) ((-48 . -1064) 191571) ((-711 . -21) T) ((-711 . -25) T) ((-48 . -650) 191536) ((-1296 . -658) 191510) ((-324 . -161) 191489) ((-324 . -144) 191468) ((-1163 . -107) 191418) ((-117 . -21) T) ((-40 . -233) 191395) ((-135 . -25) T) ((-117 . -25) T) ((-618 . -296) 191371) ((-485 . -296) 191350) ((-1254 . -334) 191327) ((-1254 . -1062) T) ((-865 . -1062) T) ((-809 . -347) 191311) ((-140 . -187) T) ((-118 . -1165) NIL) ((-91 . -623) 191243) ((-487 . -132) T) ((-1254 . -239) T) ((-1109 . -500) 191224) ((-1109 . -623) 191190) ((-1103 . -500) 191171) ((-1103 . -623) 191137) ((-603 . -1231) T) ((-1086 . -500) 191118) ((-581 . -1062) T) ((-1086 . -623) 191084) ((-672 . -727) 191068) ((-1079 . -500) 191049) ((-1079 . -623) 191015) ((-969 . -296) 190992) ((-60 . -34) T) ((-1075 . -805) T) ((-1075 . -802) T) ((-1049 . -500) 190973) ((-1032 . -500) 190954) ((-826 . -736) T) ((-741 . -47) 190919) ((-633 . -38) 190906) ((-364 . -298) T) ((-361 . -298) T) ((-353 . -298) T) ((-271 . -298) 190837) ((-253 . -298) 190768) ((-1049 . -623) 190734) ((-1037 . -102) T) ((-1032 . -623) 190700) ((-636 . -500) 190681) ((-423 . -736) T) ((-118 . -38) 190626) ((-493 . -500) 190607) ((-636 . -623) 190573) ((-423 . -483) T) ((-220 . -500) 190554) ((-493 . -623) 190520) ((-363 . -102) T) ((-220 . -623) 190486) ((-1225 . -1071) T) ((-352 . -656) 190416) ((-721 . -1071) T) ((-1188 . -47) 190393) ((-1187 . -47) 190363) ((-1181 . -47) 190340) ((-129 . -296) 190315) ((-1048 . -152) 190261) ((-921 . -298) T) ((-1139 . -47) 190233) ((-704 . -317) NIL) ((-525 . -623) 190215) ((-520 . -623) 190197) ((-518 . -623) 190179) ((-335 . -1113) 190129) ((-722 . -462) 190060) ((-48 . -102) T) ((-1265 . -294) 190018) ((-1244 . -294) 189918) ((-654 . -676) 189902) ((-654 . -661) 189886) ((-348 . -21) T) ((-348 . -25) T) ((-40 . -358) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-654 . -382) 189870) ((-615 . -500) 189852) ((-612 . -294) 189804) ((-615 . -623) 189771) ((-398 . -102) T) ((-1133 . -144) T) ((-127 . -623) 189703) ((-884 . -1113) T) ((-668 . -421) 189687) ((-724 . -623) 189669) ((-255 . -623) 189636) ((-189 . -623) 189618) ((-163 . -623) 189600) ((-158 . -623) 189582) ((-1296 . -736) T) ((-1115 . -34) T) ((-881 . -805) NIL) ((-881 . -802) NIL) ((-868 . -860) T) ((-741 . -897) NIL) ((-1305 . -132) T) ((-390 . -132) T) ((-903 . -626) 189550) ((-915 . -102) T) ((-741 . -1051) 189426) ((-1188 . -1231) T) ((-541 . -132) T) ((-1187 . -1231) T) ((-1100 . -421) 189410) ((-1013 . -499) 189394) ((-118 . -410) 189371) ((-1181 . -1231) T) ((-792 . -421) 189355) ((-790 . -421) 189339) ((-954 . -34) T) ((-704 . -1165) NIL) ((-258 . -658) 189111) ((-257 . -658) 188870) ((-827 . -931) 188849) ((-464 . -421) 188833) ((-612 . -19) 188817) ((-1159 . -1224) 188786) ((-1181 . -897) NIL) ((-1181 . -895) 188738) ((-612 . -614) 188715) ((-1217 . -623) 188647) ((-1189 . -623) 188629) ((-62 . -405) T) ((-1187 . -1051) 188564) ((-1181 . -1051) 188530) ((-704 . -38) 188480) ((-40 . -656) 188410) ((-484 . -294) 188368) ((-1237 . -623) 188350) ((-741 . -386) 188334) ((-848 . -623) 188316) ((-668 . -1071) T) ((-1265 . -1015) 188282) ((-1244 . -1015) 188248) ((-256 . -1231) T) ((-1101 . -626) 188232) ((-1076 . -1207) 188207) ((-1089 . -626) 188184) ((-882 . -624) 187991) ((-882 . -623) 187973) ((-711 . -235) 187960) ((-1203 . -499) 187897) ((-428 . -1035) 187875) ((-48 . -317) 187862) ((-1076 . -107) 187808) ((-489 . -499) 187745) ((-530 . -1231) T) ((-1181 . -347) 187697) ((-1154 . -499) 187668) ((-1181 . -386) 187620) ((-1100 . -1071) T) ((-447 . -102) T) ((-185 . -1113) T) ((-258 . -34) T) ((-257 . -34) T) ((-792 . -1071) T) ((-790 . -1071) T) ((-741 . -911) 187597) ((-464 . -1071) T) ((-59 . -499) 187581) ((-1047 . -1069) 187555) ((-529 . -499) 187539) ((-526 . -499) 187523) ((-507 . -499) 187507) ((-506 . -499) 187491) ((-251 . -524) 187424) ((-1047 . -111) 187391) ((-1188 . -911) 187304) ((-1187 . -911) 187210) ((-1181 . -911) 187043) ((-1139 . -911) 187027) ((-680 . -1125) T) ((-363 . -1165) T) ((-655 . -93) T) ((-330 . -1069) 187009) ((-258 . -801) 186988) ((-258 . -804) 186939) ((-31 . -500) 186920) ((-258 . -803) 186899) ((-257 . -801) 186878) ((-257 . -804) 186829) ((-257 . -803) 186808) ((-31 . -623) 186774) ((-50 . -1071) T) ((-258 . -736) 186684) ((-257 . -736) 186594) ((-1225 . -1113) T) ((-680 . -23) T) ((-591 . -1071) T) ((-528 . -1071) T) ((-388 . -1069) 186559) ((-330 . -111) 186534) ((-73 . -392) T) ((-73 . -405) T) ((-1037 . -38) 186471) ((-704 . -410) 186453) ((-99 . -102) T) ((-721 . -1113) T) ((-1310 . -1064) 186440) ((-1016 . -146) 186412) ((-1016 . -148) 186384) ((-880 . -656) 186356) ((-388 . -111) 186312) ((-327 . -1235) 186291) ((-484 . -1015) 186257) ((-363 . -38) 186222) ((-40 . -379) 186194) ((-883 . -623) 186066) ((-128 . -126) 186050) ((-122 . -126) 186034) ((-846 . -1069) 186004) ((-843 . -21) 185956) ((-837 . -1069) 185940) ((-843 . -25) 185892) ((-327 . -566) 185843) ((-527 . -626) 185824) ((-574 . -838) T) ((-246 . -1231) T) ((-1047 . -626) 185793) ((-846 . -111) 185758) ((-837 . -111) 185737) ((-1265 . -623) 185719) ((-1244 . -623) 185701) ((-1244 . -624) 185372) ((-1186 . -920) 185351) ((-1138 . -920) 185330) ((-48 . -38) 185295) ((-1303 . -1125) T) ((-546 . -294) 185251) ((-612 . -623) 185163) ((-612 . -624) 185124) ((-1301 . -1125) T) ((-370 . -626) 185108) ((-330 . -626) 185092) ((-246 . -1051) 184919) ((-1186 . -658) 184808) ((-1138 . -658) 184697) ((-864 . -658) 184671) ((-728 . -623) 184653) ((-556 . -377) T) ((-1303 . -23) T) ((-1301 . -23) T) ((-501 . -1113) T) ((-388 . -626) 184603) ((-388 . -628) 184585) ((-1047 . -1062) T) ((-875 . -102) T) ((-1203 . -294) 184564) ((-171 . -377) 184515) ((-1017 . -1231) T) ((-846 . -626) 184469) ((-837 . -626) 184424) ((-44 . -23) T) ((-489 . -294) 184403) ((-596 . -1113) T) ((-1159 . -1122) 184372) ((-1117 . -1116) 184324) ((-400 . -21) T) ((-400 . -25) T) ((-153 . -1125) T) ((-1310 . -102) T) ((-1017 . -895) 184306) ((-1017 . -897) 184288) ((-1225 . -727) 184185) ((-633 . -233) 184169) ((-631 . -21) T) ((-297 . -566) T) ((-631 . -25) T) ((-1211 . -1113) T) ((-721 . -727) 184134) ((-246 . -386) 184103) ((-1017 . -1051) 184063) ((-388 . -1062) T) ((-225 . -1071) T) ((-118 . -233) 184040) ((-59 . -294) 183992) ((-153 . -23) T) ((-526 . -294) 183944) ((-335 . -524) 183877) ((-506 . -294) 183829) ((-388 . -249) T) ((-388 . -239) T) ((-846 . -1062) T) ((-837 . -1062) T) ((-722 . -960) 183798) ((-711 . -860) T) ((-484 . -623) 183780) ((-1267 . -1064) 183685) ((-590 . -656) 183657) ((-574 . -656) 183629) ((-505 . -656) 183579) ((-837 . -239) 183558) ((-135 . -860) T) ((-1267 . -650) 183450) ((-668 . -1113) T) ((-1203 . -614) 183429) ((-560 . -1207) 183408) ((-345 . -1113) T) ((-327 . -372) 183387) ((-417 . -148) 183366) ((-417 . -146) 183345) ((-975 . -1125) 183244) ((-246 . -911) 183176) ((-825 . -1125) 183086) ((-664 . -862) 183070) ((-489 . -614) 183049) ((-560 . -107) 182999) ((-1017 . -386) 182981) ((-1017 . -347) 182963) ((-97 . -1113) T) ((-975 . -23) 182774) ((-487 . -21) T) ((-487 . -25) T) ((-825 . -23) 182644) ((-1190 . -623) 182626) ((-59 . -19) 182610) ((-1190 . -624) 182532) ((-1186 . -736) T) ((-1138 . -736) T) ((-526 . -19) 182516) ((-506 . -19) 182500) ((-59 . -614) 182477) ((-1100 . -1113) T) ((-912 . -102) 182455) ((-864 . -736) T) ((-792 . -1113) T) ((-526 . -614) 182432) ((-506 . -614) 182409) ((-790 . -1113) T) ((-790 . -1078) 182376) ((-471 . -1113) T) ((-464 . -1113) T) ((-596 . -727) 182351) ((-659 . -1113) T) ((-1273 . -47) 182328) ((-1267 . -102) T) ((-1266 . -47) 182298) ((-1245 . -47) 182275) ((-1225 . -174) 182226) ((-1187 . -315) 182205) ((-1181 . -315) 182184) ((-1109 . -626) 182165) ((-1103 . -626) 182146) ((-1093 . -566) 182097) ((-1017 . -911) NIL) ((-1093 . -1235) 182048) ((-680 . -132) T) ((-637 . -1125) T) ((-1086 . -626) 182029) ((-1079 . -626) 182010) ((-1049 . -626) 181991) ((-1032 . -626) 181972) ((-709 . -656) 181922) ((-282 . -1113) T) ((-85 . -451) T) ((-85 . -405) T) ((-724 . -1069) 181892) ((-721 . -174) T) ((-50 . -1113) T) ((-605 . -47) 181869) ((-227 . -658) 181834) ((-591 . -1113) T) ((-528 . -1113) T) ((-497 . -830) T) ((-497 . -931) T) ((-368 . -1235) T) ((-362 . -1235) T) ((-354 . -1235) T) ((-327 . -1125) T) ((-324 . -1064) 181744) ((-321 . -1064) 181673) ((-108 . -1235) T) ((-636 . -626) 181654) ((-368 . -566) T) ((-219 . -931) T) ((-219 . -830) T) ((-324 . -650) 181564) ((-321 . -650) 181493) ((-362 . -566) T) ((-354 . -566) T) ((-493 . -626) 181474) ((-108 . -566) T) ((-668 . -727) 181444) ((-1181 . -1035) NIL) ((-220 . -626) 181425) ((-327 . -23) T) ((-67 . -1231) T) ((-1013 . -623) 181357) ((-704 . -233) 181339) ((-724 . -111) 181304) ((-654 . -34) T) ((-251 . -499) 181288) ((-1310 . -1165) T) ((-1305 . -21) T) ((-1305 . -25) T) ((-1115 . -1111) 181272) ((-173 . -1113) T) ((-1303 . -132) T) ((-1301 . -132) T) ((-1294 . -102) T) ((-1277 . -623) 181238) ((-1273 . -1231) T) ((-963 . -920) 181217) ((-1266 . -1231) T) ((-1266 . -1051) 181152) ((-1245 . -1231) T) ((-525 . -626) 181136) ((-1245 . -897) NIL) ((-1245 . -895) 181088) ((-1245 . -1051) 181054) ((-491 . -920) 181033) ((-1225 . -524) 181000) ((-1203 . -624) NIL) ((-1100 . -727) 180849) ((-1075 . -658) 180821) ((-963 . -658) 180710) ((-607 . -500) 180691) ((-595 . -500) 180672) ((-792 . -727) 180501) ((-607 . -623) 180467) ((-595 . -623) 180433) ((-546 . -623) 180415) ((-546 . -624) 180396) ((-790 . -727) 180245) ((-1090 . -102) T) ((-390 . -25) T) ((-633 . -656) 180217) ((-390 . -21) T) ((-491 . -658) 180106) ((-471 . -727) 180077) ((-464 . -727) 179926) ((-1000 . -102) T) ((-1203 . -623) 179908) ((-1155 . -1136) 179853) ((-1059 . -1224) 179782) ((-747 . -102) T) ((-118 . -656) 179712) ((-615 . -626) 179694) ((-912 . -317) 179632) ((-886 . -93) T) ((-541 . -25) T) ((-724 . -626) 179586) ((-691 . -93) T) ((-686 . -93) T) ((-655 . -500) 179567) ((-142 . -102) T) ((-44 . -132) T) ((-674 . -623) 179549) ((-605 . -1231) T) ((-352 . -1071) T) ((-297 . -1125) T) ((-655 . -623) 179502) ((-488 . -93) T) ((-364 . -623) 179484) ((-361 . -623) 179466) ((-353 . -623) 179448) ((-271 . -624) 179196) ((-271 . -623) 179178) ((-253 . -623) 179160) ((-253 . -624) 179021) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1154 . -623) 179003) ((-1133 . -650) 178990) ((-1133 . -1064) 178977) ((-829 . -736) T) ((-829 . -867) T) ((-612 . -296) 178954) ((-591 . -727) 178919) ((-489 . -624) NIL) ((-489 . -623) 178901) ((-528 . -727) 178846) ((-324 . -102) T) ((-321 . -102) T) ((-297 . -23) T) ((-153 . -132) T) ((-921 . -623) 178828) ((-921 . -624) 178810) ((-396 . -736) T) ((-882 . -1069) 178762) ((-882 . -111) 178700) ((-724 . -1062) T) ((-722 . -1257) 178684) ((-704 . -358) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-529 . -623) 178616) ((-388 . -805) T) ((-225 . -1113) T) ((-169 . -1231) T) ((-388 . -802) T) ((-227 . -804) T) ((-227 . -801) T) ((-59 . -624) 178577) ((-59 . -623) 178489) ((-227 . -736) T) ((-526 . -624) 178450) ((-526 . -623) 178362) ((-507 . -623) 178294) ((-506 . -624) 178255) ((-506 . -623) 178167) ((-1093 . -372) 178118) ((-40 . -421) 178095) ((-77 . -1231) T) ((-881 . -920) NIL) ((-368 . -337) 178079) ((-368 . -372) T) ((-362 . -337) 178063) ((-362 . -372) T) ((-354 . -337) 178047) ((-354 . -372) T) ((-324 . -292) 178026) ((-108 . -372) T) ((-70 . -1231) T) ((-1245 . -347) 177978) ((-881 . -658) 177923) ((-1245 . -386) 177875) ((-975 . -132) 177730) ((-825 . -132) 177600) ((-969 . -661) 177584) ((-1100 . -174) 177495) ((-969 . -382) 177479) ((-1075 . -804) T) ((-1075 . -801) T) ((-882 . -626) 177377) ((-792 . -174) 177268) ((-790 . -174) 177179) ((-826 . -47) 177141) ((-1075 . -736) T) ((-335 . -499) 177125) ((-963 . -736) T) ((-1294 . -317) 177063) ((-464 . -174) 176974) ((-251 . -294) 176926) ((-1273 . -911) 176839) ((-1266 . -911) 176745) ((-1265 . -1069) 176580) ((-491 . -736) T) ((-1245 . -911) 176413) ((-1244 . -1069) 176221) ((-1225 . -298) 176200) ((-1200 . -1231) T) ((-1197 . -377) T) ((-1196 . -377) T) ((-1159 . -152) 176184) ((-1133 . -102) T) ((-1131 . -1113) T) ((-1093 . -23) T) ((-1093 . -1125) T) ((-1088 . -102) T) ((-1070 . -623) 176151) ((-938 . -966) T) ((-747 . -317) 176089) ((-75 . -1231) T) ((-674 . -391) 176061) ((-171 . -920) 176014) ((-30 . -966) T) ((-112 . -854) T) ((-1 . -623) 175996) ((-1016 . -419) 175968) ((-129 . -661) 175950) ((-50 . -630) 175934) ((-704 . -656) 175869) ((-605 . -911) 175782) ((-448 . -102) T) ((-129 . -382) 175764) ((-142 . -317) NIL) ((-882 . -1062) T) ((-843 . -860) 175743) ((-81 . -1231) T) ((-721 . -298) T) ((-40 . -1071) T) ((-591 . -174) T) ((-528 . -174) T) ((-521 . -623) 175725) ((-171 . -658) 175599) ((-517 . -623) 175581) ((-360 . -148) 175563) ((-360 . -146) T) ((-368 . -1125) T) ((-362 . -1125) T) ((-354 . -1125) T) ((-1017 . -315) T) ((-925 . -315) T) ((-882 . -249) T) ((-108 . -1125) T) ((-882 . -239) 175542) ((-1265 . -111) 175363) ((-1244 . -111) 175152) ((-251 . -1269) 175136) ((-574 . -858) T) ((-368 . -23) T) ((-363 . -358) T) ((-324 . -317) 175123) ((-321 . -317) 175064) ((-362 . -23) T) ((-327 . -132) T) ((-354 . -23) T) ((-1017 . -1035) T) ((-31 . -626) 175045) ((-108 . -23) T) ((-664 . -1064) 175029) ((-251 . -614) 175006) ((-341 . -1113) T) ((-664 . -650) 174976) ((-1267 . -38) 174868) ((-1254 . -920) 174847) ((-112 . -1113) T) ((-826 . -1231) 174826) ((-1048 . -102) T) ((-1254 . -658) 174715) ((-881 . -804) NIL) ((-865 . -658) 174689) ((-881 . -801) NIL) ((-826 . -897) NIL) ((-881 . -736) T) ((-1100 . -524) 174562) ((-792 . -524) 174509) ((-790 . -524) 174461) ((-581 . -658) 174448) ((-826 . -1051) 174276) ((-464 . -524) 174219) ((-398 . -399) T) ((-1265 . -626) 174032) ((-1244 . -626) 173780) ((-60 . -1231) T) ((-631 . -860) 173759) ((-510 . -671) T) ((-1159 . -989) 173728) ((-1037 . -656) 173665) ((-1016 . -462) T) ((-709 . -858) T) ((-520 . -802) T) ((-484 . -1069) 173500) ((-510 . -113) T) ((-352 . -1113) T) ((-321 . -1165) NIL) ((-297 . -132) T) ((-404 . -1113) T) ((-880 . -1071) T) ((-704 . -379) 173467) ((-363 . -656) 173397) ((-225 . -630) 173374) ((-335 . -294) 173326) ((-484 . -111) 173147) ((-1265 . -1062) T) ((-1244 . -1062) T) ((-826 . -386) 173131) ((-171 . -736) T) ((-664 . -102) T) ((-1265 . -249) 173110) ((-1265 . -239) 173062) ((-1244 . -239) 172967) ((-1244 . -249) 172946) ((-1016 . -412) NIL) ((-680 . -649) 172894) ((-324 . -38) 172804) ((-321 . -38) 172733) ((-69 . -623) 172715) ((-327 . -503) 172681) ((-48 . -656) 172631) ((-1203 . -296) 172610) ((-1239 . -860) T) ((-1126 . -1125) 172520) ((-83 . -1231) T) ((-61 . -623) 172502) ((-489 . -296) 172481) ((-1296 . -1051) 172458) ((-1178 . -1113) T) ((-1126 . -23) 172328) ((-826 . -911) 172264) ((-1254 . -736) T) ((-1115 . -1231) T) ((-484 . -626) 172090) ((-1100 . -298) 172021) ((-977 . -1113) T) ((-904 . -102) T) ((-792 . -298) 171932) ((-335 . -19) 171916) ((-59 . -296) 171893) ((-790 . -298) 171824) ((-865 . -736) T) ((-118 . -858) NIL) ((-526 . -296) 171801) ((-335 . -614) 171778) ((-506 . -296) 171755) ((-464 . -298) 171686) ((-1048 . -317) 171537) ((-886 . -500) 171518) ((-886 . -623) 171484) ((-691 . -500) 171465) ((-581 . -736) T) ((-686 . -500) 171446) ((-691 . -623) 171396) ((-686 . -623) 171362) ((-672 . -623) 171344) ((-488 . -500) 171325) ((-488 . -623) 171291) ((-251 . -624) 171252) ((-251 . -500) 171229) ((-139 . -500) 171210) ((-138 . -500) 171191) ((-134 . -500) 171172) ((-251 . -623) 171064) ((-215 . -102) T) ((-139 . -623) 171030) ((-138 . -623) 170996) ((-134 . -623) 170962) ((-1160 . -34) T) ((-954 . -1231) T) ((-352 . -727) 170907) ((-680 . -25) T) ((-680 . -21) T) ((-1190 . -626) 170888) ((-484 . -1062) T) ((-645 . -427) 170853) ((-617 . -427) 170818) ((-1133 . -1165) T) ((-722 . -1064) 170641) ((-591 . -298) T) ((-528 . -298) T) ((-1266 . -315) 170620) ((-484 . -239) 170572) ((-484 . -249) 170551) ((-1245 . -315) 170530) ((-722 . -650) 170359) ((-1245 . -1035) NIL) ((-1093 . -132) T) ((-882 . -805) 170338) ((-145 . -102) T) ((-40 . -1113) T) ((-882 . -802) 170317) ((-654 . -1023) 170301) ((-590 . -1071) T) ((-574 . -1071) T) ((-505 . -1071) T) ((-417 . -462) T) ((-368 . -132) T) ((-324 . -410) 170285) ((-321 . -410) 170246) ((-362 . -132) T) ((-354 . -132) T) ((-1195 . -1113) T) ((-1133 . -38) 170233) ((-1107 . -623) 170200) ((-108 . -132) T) ((-965 . -1113) T) ((-932 . -1113) T) ((-781 . -1113) T) ((-682 . -1113) T) ((-711 . -148) T) ((-117 . -148) T) ((-1303 . -21) T) ((-1303 . -25) T) ((-1301 . -21) T) ((-1301 . -25) T) ((-674 . -1069) 170184) ((-541 . -860) T) ((-510 . -860) T) ((-364 . -1069) 170136) ((-361 . -1069) 170088) ((-353 . -1069) 170040) ((-258 . -1231) T) ((-257 . -1231) T) ((-271 . -1069) 169883) ((-253 . -1069) 169726) ((-674 . -111) 169705) ((-557 . -854) T) ((-364 . -111) 169643) ((-361 . -111) 169581) ((-353 . -111) 169519) ((-271 . -111) 169348) ((-253 . -111) 169177) ((-827 . -1235) 169156) ((-633 . -421) 169140) ((-44 . -21) T) ((-44 . -25) T) ((-825 . -649) 169046) ((-827 . -566) 169025) ((-258 . -1051) 168852) ((-257 . -1051) 168679) ((-127 . -120) 168663) ((-921 . -1069) 168628) ((-722 . -102) T) ((-709 . -1071) T) ((-607 . -626) 168609) ((-595 . -626) 168590) ((-546 . -628) 168493) ((-352 . -174) T) ((-88 . -623) 168475) ((-153 . -21) T) ((-153 . -25) T) ((-921 . -111) 168431) ((-40 . -727) 168376) ((-880 . -1113) T) ((-674 . -626) 168353) ((-655 . -626) 168334) ((-364 . -626) 168271) ((-361 . -626) 168208) ((-557 . -1113) T) ((-353 . -626) 168145) ((-335 . -624) 168106) ((-335 . -623) 168018) ((-271 . -626) 167771) ((-253 . -626) 167556) ((-1244 . -802) 167509) ((-1244 . -805) 167462) ((-258 . -386) 167431) ((-257 . -386) 167400) ((-664 . -38) 167370) ((-618 . -34) T) ((-492 . -1125) 167280) ((-485 . -34) T) ((-1126 . -132) 167150) ((-975 . -25) 166961) ((-921 . -626) 166911) ((-884 . -623) 166893) ((-975 . -21) 166848) ((-825 . -21) 166758) ((-825 . -25) 166609) ((-1237 . -377) T) ((-633 . -1071) T) ((-1192 . -566) 166588) ((-1186 . -47) 166565) ((-364 . -1062) T) ((-361 . -1062) T) ((-492 . -23) 166435) ((-353 . -1062) T) ((-271 . -1062) T) ((-253 . -1062) T) ((-1138 . -47) 166407) ((-118 . -1071) T) ((-1047 . -658) 166381) ((-969 . -34) T) ((-364 . -239) 166360) ((-364 . -249) T) ((-361 . -239) 166339) ((-361 . -249) T) ((-353 . -239) 166318) ((-353 . -249) T) ((-271 . -334) 166290) ((-253 . -334) 166247) ((-271 . -239) 166226) ((-1170 . -152) 166210) ((-258 . -911) 166142) ((-257 . -911) 166074) ((-1095 . -860) T) ((-424 . -1125) T) ((-1067 . -23) T) ((-921 . -1062) T) ((-330 . -658) 166056) ((-1037 . -858) T) ((-680 . -235) 166029) ((-1225 . -1015) 165995) ((-1187 . -931) 165974) ((-1181 . -931) 165953) ((-1181 . -830) NIL) ((-1012 . -1064) 165849) ((-978 . -1231) T) ((-921 . -249) T) ((-827 . -372) 165828) ((-394 . -23) T) ((-128 . -1113) 165806) ((-122 . -1113) 165784) ((-921 . -239) T) ((-129 . -34) T) ((-388 . -658) 165749) ((-1012 . -650) 165697) ((-880 . -727) 165684) ((-1310 . -656) 165656) ((-1059 . -152) 165621) ((-1006 . -1231) T) ((-40 . -174) T) ((-704 . -421) 165603) ((-722 . -317) 165590) ((-846 . -658) 165550) ((-837 . -658) 165524) ((-327 . -25) T) ((-327 . -21) T) ((-668 . -294) 165503) ((-590 . -1113) T) ((-574 . -1113) T) ((-505 . -1113) T) ((-251 . -296) 165480) ((-1186 . -1231) T) ((-321 . -233) 165441) ((-1186 . -897) NIL) ((-55 . -1113) T) ((-1138 . -897) 165300) ((-130 . -860) T) ((-1186 . -1051) 165180) ((-1138 . -1051) 165063) ((-185 . -623) 165045) ((-864 . -1051) 164941) ((-792 . -294) 164868) ((-827 . -1125) T) ((-1047 . -736) T) ((-612 . -661) 164852) ((-1059 . -989) 164781) ((-1012 . -102) T) ((-827 . -23) T) ((-722 . -1165) 164759) ((-704 . -1071) T) ((-612 . -382) 164743) ((-360 . -462) T) ((-352 . -298) T) ((-1282 . -1113) T) ((-254 . -1113) T) ((-409 . -102) T) ((-297 . -21) T) ((-297 . -25) T) ((-370 . -736) T) ((-720 . -1113) T) ((-709 . -1113) T) ((-370 . -483) T) ((-1225 . -623) 164725) ((-1186 . -386) 164709) ((-1138 . -386) 164693) ((-1037 . -421) 164655) ((-142 . -231) 164637) ((-388 . -804) T) ((-388 . -801) T) ((-880 . -174) T) ((-388 . -736) T) ((-721 . -623) 164619) ((-722 . -38) 164448) ((-1281 . -1279) 164432) ((-360 . -412) T) ((-1281 . -1113) 164382) ((-1204 . -1113) T) ((-590 . -727) 164369) ((-574 . -727) 164356) ((-505 . -727) 164321) ((-1267 . -656) 164211) ((-324 . -639) 164190) ((-846 . -736) T) ((-837 . -736) T) ((-654 . -1231) T) ((-1093 . -649) 164138) ((-1186 . -911) 164081) ((-1138 . -911) 164065) ((-825 . -235) 164011) ((-672 . -1069) 163995) ((-108 . -649) 163977) ((-492 . -132) 163847) ((-1192 . -1125) T) ((-963 . -47) 163816) ((-633 . -1113) T) ((-672 . -111) 163795) ((-501 . -623) 163761) ((-335 . -296) 163738) ((-491 . -47) 163695) ((-1192 . -23) T) ((-118 . -1113) T) ((-103 . -102) 163673) ((-1293 . -1125) T) ((-558 . -860) T) ((-227 . -1231) T) ((-1067 . -132) T) ((-1037 . -1071) T) ((-829 . -1051) 163657) ((-1293 . -23) T) ((-1016 . -734) 163629) ((-1211 . -623) 163611) ((-709 . -727) 163576) ((-596 . -623) 163558) ((-396 . -1051) 163542) ((-363 . -1071) T) ((-394 . -132) T) ((-332 . -1051) 163526) ((-1133 . -838) T) ((-1118 . -1113) T) ((-1093 . -21) T) ((-227 . -897) 163508) ((-1017 . -931) T) ((-91 . -34) T) ((-1017 . -830) T) ((-925 . -931) T) ((-1093 . -25) T) ((-1012 . -317) 163473) ((-497 . -1235) T) ((-886 . -626) 163454) ((-724 . -658) 163414) ((-691 . -626) 163395) ((-219 . -1235) T) ((-686 . -626) 163376) ((-227 . -1051) 163336) ((-40 . -298) T) ((-497 . -566) T) ((-488 . -626) 163317) ((-368 . -25) T) ((-324 . -656) 162972) ((-321 . -656) 162886) ((-368 . -21) T) ((-362 . -25) T) ((-362 . -21) T) ((-219 . -566) T) ((-354 . -25) T) ((-354 . -21) T) ((-327 . -235) 162832) ((-251 . -626) 162809) ((-139 . -626) 162790) ((-138 . -626) 162771) ((-134 . -626) 162752) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1071) T) ((-590 . -174) T) ((-574 . -174) T) ((-505 . -174) T) ((-1075 . -1231) T) ((-668 . -623) 162734) ((-747 . -746) 162718) ((-345 . -623) 162700) ((-68 . -392) T) ((-68 . -405) T) ((-1115 . -107) 162684) ((-1075 . -897) 162666) ((-963 . -897) 162591) ((-663 . -1125) T) ((-633 . -727) 162578) ((-491 . -897) NIL) ((-1159 . -102) T) ((-1107 . -628) 162562) ((-1075 . -1051) 162544) ((-97 . -623) 162526) ((-487 . -148) T) ((-963 . -1051) 162406) ((-118 . -727) 162351) ((-663 . -23) T) ((-491 . -1051) 162227) ((-1100 . -624) NIL) ((-1100 . -623) 162209) ((-792 . -624) NIL) ((-792 . -623) 162170) ((-790 . -624) 161804) ((-790 . -623) 161718) ((-1126 . -649) 161624) ((-471 . -623) 161606) ((-464 . -623) 161588) ((-464 . -624) 161449) ((-1048 . -231) 161395) ((-882 . -920) 161374) ((-127 . -34) T) ((-827 . -132) T) ((-659 . -623) 161356) ((-588 . -102) T) ((-364 . -1300) 161340) ((-361 . -1300) 161324) ((-353 . -1300) 161308) ((-128 . -524) 161241) ((-122 . -524) 161174) ((-521 . -802) T) ((-521 . -805) T) ((-520 . -804) T) ((-103 . -317) 161112) ((-224 . -102) 161090) ((-709 . -174) T) ((-704 . -1113) T) ((-882 . -658) 161006) ((-65 . -393) T) ((-282 . -623) 160988) ((-65 . -405) T) ((-963 . -386) 160972) ((-880 . -298) T) ((-50 . -623) 160954) ((-1012 . -38) 160902) ((-1133 . -656) 160874) ((-591 . -623) 160856) ((-491 . -386) 160840) ((-591 . -624) 160822) ((-528 . -623) 160804) ((-921 . -1300) 160791) ((-881 . -1231) T) ((-711 . -462) T) ((-505 . -524) 160757) ((-497 . -372) T) ((-364 . -377) 160736) ((-361 . -377) 160715) ((-353 . -377) 160694) ((-724 . -736) T) ((-219 . -372) T) ((-117 . -462) T) ((-1304 . -1295) 160678) ((-881 . -895) 160655) ((-881 . -897) NIL) ((-975 . -860) 160554) ((-825 . -860) 160505) ((-1238 . -102) T) ((-664 . -666) 160489) ((-1217 . -34) T) ((-173 . -623) 160471) ((-1126 . -21) 160381) ((-1126 . -25) 160232) ((-881 . -1051) 160209) ((-963 . -911) 160190) ((-1254 . -47) 160167) ((-921 . -377) T) ((-59 . -661) 160151) ((-526 . -661) 160135) ((-491 . -911) 160112) ((-71 . -451) T) ((-71 . -405) T) ((-506 . -661) 160096) ((-59 . -382) 160080) ((-633 . -174) T) ((-526 . -382) 160064) ((-506 . -382) 160048) ((-837 . -718) 160032) ((-1186 . -315) 160011) ((-1192 . -132) T) ((-1155 . -1064) 159995) ((-118 . -174) T) ((-1155 . -650) 159927) ((-1159 . -317) 159865) ((-171 . -1231) T) ((-1293 . -132) T) ((-876 . -1064) 159835) ((-645 . -754) 159819) ((-617 . -754) 159803) ((-1266 . -931) 159782) ((-1245 . -931) 159761) ((-1245 . -830) NIL) ((-876 . -650) 159731) ((-704 . -727) 159681) ((-1244 . -920) 159634) ((-1037 . -1113) T) ((-881 . -386) 159611) ((-881 . -347) 159588) ((-916 . -1125) T) ((-171 . -895) 159572) ((-171 . -897) 159497) ((-1281 . -524) 159430) ((-1093 . -235) 159349) ((-497 . -1125) T) ((-363 . -1113) T) ((-219 . -1125) T) ((-76 . -451) T) ((-76 . -405) T) ((-1265 . -658) 159246) ((-171 . -1051) 159142) ((-327 . -860) T) ((-1244 . -658) 158950) ((-882 . -804) 158929) ((-882 . -801) 158908) ((-882 . -736) T) ((-497 . -23) T) ((-368 . -235) 158881) ((-362 . -235) 158854) ((-354 . -235) 158827) ((-225 . -623) 158809) ((-176 . -462) T) ((-224 . -317) 158747) ((-86 . -451) T) ((-86 . -405) T) ((-108 . -235) 158734) ((-219 . -23) T) ((-1305 . -1298) 158713) ((-687 . -1051) 158697) ((-590 . -298) T) ((-574 . -298) T) ((-505 . -298) T) ((-137 . -480) 158652) ((-1254 . -1231) T) ((-664 . -656) 158611) ((-48 . -1113) T) ((-722 . -233) 158595) ((-881 . -911) NIL) ((-1254 . -897) NIL) ((-900 . -102) T) ((-896 . -102) T) ((-398 . -1113) T) ((-171 . -386) 158579) ((-171 . -347) 158563) ((-1254 . -1051) 158443) ((-865 . -1051) 158339) ((-1155 . -102) T) ((-672 . -802) 158318) ((-663 . -132) T) ((-672 . -805) 158297) ((-118 . -524) 158205) ((-581 . -1051) 158187) ((-302 . -1288) 158157) ((-876 . -102) T) ((-974 . -566) 158136) ((-1225 . -1069) 158019) ((-1016 . -1064) 157964) ((-492 . -649) 157870) ((-915 . -1113) T) ((-1037 . -727) 157807) ((-721 . -1069) 157772) ((-1016 . -650) 157717) ((-627 . -102) T) ((-612 . -34) T) ((-1160 . -1231) T) ((-1225 . -111) 157586) ((-484 . -658) 157483) ((-363 . -727) 157428) ((-171 . -911) 157387) ((-709 . -298) T) ((-704 . -174) T) ((-721 . -111) 157343) ((-1310 . -1071) T) ((-1254 . -386) 157327) ((-428 . -1235) 157305) ((-1131 . -623) 157287) ((-321 . -858) NIL) ((-428 . -566) T) ((-227 . -315) T) ((-1244 . -801) 157240) ((-1244 . -804) 157193) ((-1265 . -736) T) ((-1244 . -736) T) ((-48 . -727) 157158) ((-227 . -1035) T) ((-1267 . -421) 157124) ((-360 . -1288) 157101) ((-1254 . -911) 157044) ((-728 . -736) T) ((-341 . -623) 157026) ((-1225 . -626) 156908) ((-1126 . -235) 156854) ((-112 . -623) 156836) ((-112 . -624) 156818) ((-728 . -483) T) ((-721 . -626) 156768) ((-1304 . -1064) 156752) ((-492 . -21) 156662) ((-128 . -499) 156646) ((-122 . -499) 156630) ((-492 . -25) 156481) ((-1304 . -650) 156451) ((-633 . -298) T) ((-596 . -1069) 156426) ((-447 . -1113) T) ((-1075 . -315) T) ((-118 . -298) T) ((-1117 . -102) T) ((-1016 . -102) T) ((-596 . -111) 156394) ((-1155 . -317) 156332) ((-1225 . -1062) T) ((-1075 . -1035) T) ((-66 . -1231) T) ((-1067 . -25) T) ((-1067 . -21) T) ((-721 . -1062) T) ((-394 . -21) T) ((-394 . -25) T) ((-704 . -524) NIL) ((-1037 . -174) T) ((-721 . -249) T) ((-1075 . -555) T) ((-722 . -656) 156242) ((-516 . -102) T) ((-512 . -102) T) ((-363 . -174) T) ((-352 . -623) 156224) ((-417 . -1064) 156176) ((-404 . -623) 156158) ((-1133 . -858) T) ((-484 . -736) T) ((-903 . -1051) 156126) ((-417 . -650) 156078) ((-108 . -860) T) ((-668 . -1069) 156062) ((-497 . -132) T) ((-1267 . -1071) T) ((-219 . -132) T) ((-1170 . -102) 156040) ((-99 . -1113) T) ((-251 . -676) 156024) ((-251 . -661) 156008) ((-668 . -111) 155987) ((-596 . -626) 155971) ((-324 . -421) 155955) ((-251 . -382) 155939) ((-1173 . -241) 155886) ((-1012 . -233) 155870) ((-74 . -1231) T) ((-48 . -174) T) ((-711 . -397) T) ((-711 . -144) T) ((-1304 . -102) T) ((-1211 . -626) 155852) ((-1100 . -1069) 155695) ((-1089 . -1231) T) ((-271 . -920) 155674) ((-253 . -920) 155653) ((-792 . -1069) 155476) ((-790 . -1069) 155319) ((-618 . -1231) T) ((-1178 . -623) 155301) ((-1100 . -111) 155130) ((-1059 . -102) T) ((-485 . -1231) T) ((-471 . -1069) 155101) ((-464 . -1069) 154944) ((-674 . -658) 154928) ((-881 . -315) T) ((-792 . -111) 154737) ((-790 . -111) 154566) ((-364 . -658) 154518) ((-361 . -658) 154470) ((-353 . -658) 154422) ((-271 . -658) 154311) ((-253 . -658) 154200) ((-1172 . -860) T) ((-1101 . -1051) 154184) ((-471 . -111) 154145) ((-464 . -111) 153974) ((-1089 . -1051) 153951) ((-1013 . -34) T) ((-977 . -623) 153933) ((-969 . -1231) T) ((-127 . -1023) 153917) ((-974 . -1125) T) ((-881 . -1035) NIL) ((-745 . -1125) T) ((-725 . -1125) T) ((-668 . -626) 153835) ((-1281 . -499) 153819) ((-1155 . -38) 153779) ((-974 . -23) T) ((-921 . -658) 153744) ((-875 . -1113) T) ((-853 . -102) T) ((-827 . -21) T) ((-645 . -1064) 153728) ((-617 . -1064) 153712) ((-827 . -25) T) ((-745 . -23) T) ((-725 . -23) T) ((-645 . -650) 153696) ((-110 . -671) T) ((-617 . -650) 153680) ((-591 . -1069) 153645) ((-528 . -1069) 153590) ((-229 . -57) 153548) ((-463 . -23) T) ((-417 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-704 . -298) T) ((-876 . -38) 153518) ((-591 . -111) 153474) ((-528 . -111) 153403) ((-1100 . -626) 153139) ((-428 . -1125) T) ((-324 . -1071) 153029) ((-321 . -1071) T) ((-129 . -1231) T) ((-792 . -626) 152777) ((-790 . -626) 152543) ((-668 . -1062) T) ((-1310 . -1113) T) ((-464 . -626) 152328) ((-171 . -315) 152259) ((-428 . -23) T) ((-40 . -623) 152241) ((-40 . -624) 152225) ((-108 . -1005) 152207) ((-117 . -879) 152191) ((-659 . -626) 152175) ((-48 . -524) 152141) ((-1217 . -1023) 152125) ((-1195 . -623) 152092) ((-1203 . -34) T) ((-965 . -623) 152058) ((-932 . -623) 152040) ((-1126 . -860) 151991) ((-781 . -623) 151973) ((-682 . -623) 151955) ((-1170 . -317) 151893) ((-489 . -34) T) ((-1105 . -1231) T) ((-487 . -462) T) ((-1154 . -34) T) ((-1100 . -1062) T) ((-50 . -626) 151862) ((-792 . -1062) T) ((-790 . -1062) T) ((-657 . -241) 151846) ((-642 . -241) 151792) ((-591 . -626) 151742) ((-528 . -626) 151672) ((-492 . -235) 151618) ((-1254 . -315) 151597) ((-1100 . -334) 151558) ((-464 . -1062) T) ((-1192 . -21) T) ((-1100 . -239) 151537) ((-792 . -334) 151514) ((-792 . -239) T) ((-790 . -334) 151486) ((-741 . -1235) 151465) ((-335 . -661) 151449) ((-1192 . -25) T) ((-59 . -34) T) ((-529 . -34) T) ((-526 . -34) T) ((-464 . -334) 151428) ((-335 . -382) 151412) ((-507 . -34) T) ((-506 . -34) T) ((-1016 . -1165) NIL) ((-741 . -566) 151343) ((-645 . -102) T) ((-617 . -102) T) ((-364 . -736) T) ((-361 . -736) T) ((-353 . -736) T) ((-271 . -736) T) ((-253 . -736) T) ((-388 . -1231) T) ((-1059 . -317) 151251) ((-1293 . -21) T) ((-912 . -1113) 151229) ((-50 . -1062) T) ((-1293 . -25) T) ((-1188 . -566) 151208) ((-1187 . -1235) 151187) ((-1187 . -566) 151138) ((-1181 . -1235) 151117) ((-1181 . -566) 151068) ((-591 . -1062) T) ((-528 . -1062) T) ((-1037 . -298) T) ((-370 . -1051) 151052) ((-330 . -1051) 151036) ((-1016 . -38) 150981) ((-388 . -897) 150963) ((-1012 . -656) 150886) ((-846 . -1231) T) ((-837 . -1231) 150865) ((-809 . -1125) T) ((-921 . -736) T) ((-591 . -249) T) ((-591 . -239) T) ((-528 . -239) T) ((-528 . -249) T) ((-1139 . -566) 150844) ((-363 . -298) T) ((-657 . -705) 150828) ((-388 . -1051) 150788) ((-302 . -1064) 150709) ((-1133 . -1071) T) ((-103 . -126) 150693) ((-302 . -650) 150635) ((-809 . -23) T) ((-1303 . -1298) 150611) ((-1281 . -294) 150563) ((-417 . -317) 150528) ((-1301 . -1298) 150507) ((-1267 . -1113) T) ((-880 . -623) 150489) ((-846 . -1051) 150458) ((-205 . -797) T) ((-204 . -797) T) ((-203 . -797) T) ((-202 . -797) T) ((-201 . -797) T) ((-200 . -797) T) ((-199 . -797) T) ((-198 . -797) T) ((-197 . -797) T) ((-196 . -797) T) ((-557 . -623) 150440) ((-505 . -1015) T) ((-281 . -849) T) ((-280 . -849) T) ((-279 . -849) T) ((-278 . -849) T) ((-48 . -298) T) ((-277 . -849) T) ((-276 . -849) T) ((-275 . -849) T) ((-195 . -797) T) ((-622 . -860) T) ((-664 . -421) 150424) ((-225 . -626) 150386) ((-110 . -860) T) ((-663 . -21) T) ((-663 . -25) T) ((-1304 . -38) 150356) ((-118 . -294) 150307) ((-1281 . -19) 150291) ((-1281 . -614) 150268) ((-1294 . -1113) T) ((-360 . -1064) 150213) ((-1090 . -1113) T) ((-1000 . -1113) T) ((-974 . -132) T) ((-827 . -235) 150200) ((-747 . -1113) T) ((-360 . -650) 150145) ((-745 . -132) T) ((-725 . -132) T) ((-521 . -803) T) ((-521 . -804) T) ((-463 . -132) T) ((-417 . -1165) 150123) ((-225 . -1062) T) ((-302 . -102) 149905) ((-142 . -1113) T) ((-709 . -1015) T) ((-1118 . -294) 149861) ((-91 . -1231) T) ((-128 . -623) 149793) ((-122 . -623) 149725) ((-1310 . -174) T) ((-1187 . -372) 149704) ((-1181 . -372) 149683) ((-324 . -1113) T) ((-428 . -132) T) ((-321 . -1113) T) ((-417 . -38) 149635) ((-1146 . -102) T) ((-1267 . -727) 149527) ((-664 . -1071) T) ((-1148 . -1276) T) ((-327 . -146) 149506) ((-327 . -148) 149485) ((-140 . -1113) T) ((-137 . -1113) T) ((-115 . -1113) T) ((-868 . -102) T) ((-590 . -623) 149467) ((-574 . -624) 149366) ((-574 . -623) 149348) ((-505 . -623) 149330) ((-505 . -624) 149275) ((-495 . -23) T) ((-492 . -860) 149226) ((-497 . -649) 149208) ((-976 . -623) 149190) ((-219 . -649) 149172) ((-227 . -414) T) ((-672 . -658) 149156) ((-55 . -623) 149138) ((-1186 . -931) 149117) ((-741 . -1125) T) ((-360 . -102) T) ((-1230 . -1096) T) ((-1133 . -854) T) ((-828 . -860) T) ((-741 . -23) T) ((-352 . -1069) 149062) ((-1172 . -1171) T) ((-1160 . -107) 149046) ((-1188 . -1125) T) ((-1187 . -1125) T) ((-525 . -1051) 149030) ((-1181 . -1125) T) ((-1139 . -1125) T) ((-352 . -111) 148959) ((-1017 . -1235) T) ((-127 . -1231) T) ((-925 . -1235) T) ((-704 . -294) NIL) ((-724 . -1231) T) ((-1282 . -623) 148941) ((-1188 . -23) T) ((-1187 . -23) T) ((-1181 . -23) T) ((-1017 . -566) T) ((-1155 . -233) 148925) ((-925 . -566) T) ((-1139 . -23) T) ((-254 . -623) 148907) ((-1088 . -1113) T) ((-809 . -132) T) ((-720 . -623) 148889) ((-324 . -727) 148799) ((-321 . -727) 148728) ((-709 . -623) 148710) ((-709 . -624) 148655) ((-417 . -410) 148639) ((-448 . -1113) T) ((-497 . -25) T) ((-497 . -21) T) ((-1133 . -1113) T) ((-219 . -25) T) ((-219 . -21) T) ((-722 . -421) 148623) ((-724 . -1051) 148592) ((-1281 . -623) 148504) ((-1281 . -624) 148465) ((-1267 . -174) T) ((-1204 . -623) 148447) ((-251 . -34) T) ((-352 . -626) 148377) ((-404 . -626) 148359) ((-937 . -987) T) ((-1217 . -1231) T) ((-672 . -801) 148338) ((-672 . -804) 148317) ((-408 . -405) T) ((-533 . -102) 148295) ((-1048 . -1113) T) ((-224 . -1008) 148279) ((-514 . -102) T) ((-633 . -623) 148261) ((-45 . -860) NIL) ((-633 . -624) 148238) ((-1048 . -620) 148213) ((-912 . -524) 148146) ((-352 . -1062) T) ((-118 . -624) NIL) ((-118 . -623) 148128) ((-882 . -1231) T) ((-680 . -427) 148112) ((-680 . -1136) 148057) ((-510 . -152) 148039) ((-352 . -239) T) ((-352 . -249) T) ((-40 . -1069) 147984) ((-882 . -895) 147968) ((-882 . -897) 147893) ((-722 . -1071) T) ((-704 . -1015) NIL) ((-1265 . -47) 147863) ((-1244 . -47) 147840) ((-1154 . -1023) 147811) ((-3 . |UnionCategory|) T) ((-1133 . -727) 147798) ((-1118 . -623) 147780) ((-1093 . -148) 147759) ((-1093 . -146) 147710) ((-977 . -626) 147694) ((-227 . -931) T) ((-40 . -111) 147623) ((-882 . -1051) 147487) ((-1017 . -372) T) ((-1016 . -233) 147464) ((-711 . -1064) 147451) ((-925 . -372) T) ((-711 . -650) 147438) ((-327 . -1219) 147404) ((-388 . -315) T) ((-327 . -1216) 147370) ((-324 . -174) 147349) ((-321 . -174) T) ((-591 . -1300) 147336) ((-528 . -1300) 147313) ((-368 . -148) 147292) ((-117 . -1064) 147279) ((-368 . -146) 147230) ((-362 . -148) 147209) ((-362 . -146) 147160) ((-354 . -148) 147139) ((-618 . -1207) 147115) ((-117 . -650) 147102) ((-354 . -146) 147053) ((-327 . -35) 147019) ((-485 . -1207) 146998) ((0 . |EnumerationCategory|) T) ((-327 . -95) 146964) ((-388 . -1035) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 146914) ((-664 . -1113) T) ((-618 . -107) 146861) ((-495 . -132) T) ((-485 . -107) 146811) ((-246 . -1125) 146721) ((-882 . -386) 146705) ((-882 . -347) 146689) ((-246 . -23) 146559) ((-40 . -626) 146489) ((-1075 . -931) T) ((-1075 . -830) T) ((-591 . -377) T) ((-528 . -377) T) ((-1294 . -524) 146422) ((-1273 . -566) 146401) ((-1266 . -1235) 146380) ((-360 . -1165) T) ((-335 . -34) T) ((-44 . -427) 146364) ((-1195 . -626) 146300) ((-883 . -1231) T) ((-400 . -754) 146284) ((-1266 . -566) 146235) ((-1265 . -1231) T) ((-1155 . -656) 146194) ((-741 . -132) T) ((-682 . -626) 146178) ((-1245 . -1235) 146157) ((-1245 . -566) 146108) ((-1244 . -1231) T) ((-1244 . -897) 145981) ((-1244 . -895) 145951) ((-1188 . -132) T) ((-319 . -1096) T) ((-1187 . -132) T) ((-747 . -524) 145884) ((-1181 . -132) T) ((-1139 . -132) T) ((-904 . -1113) T) ((-145 . -854) T) ((-1037 . -1015) T) ((-701 . -623) 145866) ((-1017 . -23) T) ((-533 . -317) 145804) ((-1017 . -1125) T) ((-142 . -524) NIL) ((-876 . -656) 145749) ((-1016 . -358) NIL) ((-984 . -23) T) ((-925 . -1125) T) ((-360 . -38) 145714) ((-925 . -23) T) ((-882 . -911) 145673) ((-82 . -623) 145655) ((-40 . -1062) T) ((-880 . -1069) 145642) ((-880 . -111) 145627) ((-711 . -102) T) ((-704 . -623) 145609) ((-612 . -1231) T) ((-606 . -566) 145588) ((-437 . -1125) T) ((-348 . -1064) 145572) ((-215 . -1113) T) ((-176 . -1064) 145504) ((-484 . -47) 145474) ((-135 . -102) T) ((-40 . -239) 145446) ((-40 . -249) T) ((-117 . -102) T) ((-605 . -566) 145425) ((-348 . -650) 145409) ((-704 . -624) 145317) ((-324 . -524) 145283) ((-176 . -650) 145215) ((-321 . -524) 145107) ((-497 . -235) 145094) ((-1265 . -1051) 145078) ((-1244 . -1051) 144864) ((-1012 . -421) 144848) ((-219 . -235) 144835) ((-437 . -23) T) ((-1133 . -174) T) ((-1267 . -298) T) ((-664 . -727) 144805) ((-145 . -1113) T) ((-48 . -1015) T) ((-417 . -233) 144789) ((-303 . -241) 144739) ((-881 . -931) T) ((-881 . -830) NIL) ((-880 . -626) 144711) ((-874 . -860) T) ((-1244 . -347) 144681) ((-1244 . -386) 144651) ((-224 . -1134) 144635) ((-1281 . -296) 144612) ((-484 . -1231) T) ((-1225 . -658) 144537) ((-1016 . -656) 144467) ((-974 . -21) T) ((-974 . -25) T) ((-745 . -21) T) ((-745 . -25) T) ((-725 . -21) T) ((-725 . -25) T) ((-721 . -658) 144432) ((-463 . -21) T) ((-463 . -25) T) ((-348 . -102) T) ((-176 . -102) T) ((-1012 . -1071) T) ((-880 . -1062) T) ((-784 . -102) T) ((-1266 . -372) 144411) ((-1265 . -911) 144317) ((-1245 . -372) 144296) ((-1244 . -911) 144147) ((-1037 . -623) 144129) ((-417 . -838) 144082) ((-1188 . -503) 144048) ((-171 . -931) 143979) ((-1187 . -503) 143945) ((-1181 . -503) 143911) ((-722 . -1113) T) ((-1139 . -503) 143877) ((-590 . -1069) 143864) ((-574 . -1069) 143851) ((-505 . -1069) 143816) ((-324 . -298) 143795) ((-321 . -298) T) ((-363 . -623) 143777) ((-428 . -25) T) ((-428 . -21) T) ((-99 . -294) 143756) ((-590 . -111) 143741) ((-574 . -111) 143726) ((-505 . -111) 143682) ((-1190 . -897) 143649) ((-912 . -499) 143633) ((-48 . -623) 143615) ((-48 . -624) 143560) ((-246 . -132) 143430) ((-1304 . -656) 143389) ((-1254 . -931) 143368) ((-826 . -1235) 143347) ((-398 . -500) 143328) ((-1048 . -524) 143172) ((-398 . -623) 143138) ((-826 . -566) 143069) ((-596 . -658) 143044) ((-271 . -47) 143016) ((-253 . -47) 142973) ((-541 . -519) 142950) ((-590 . -626) 142922) ((-574 . -626) 142894) ((-505 . -626) 142827) ((-1087 . -1231) T) ((-1013 . -1231) T) ((-1273 . -23) T) ((-1273 . -1125) T) ((-709 . -1069) 142792) ((-1266 . -1125) T) ((-1266 . -23) T) ((-1245 . -1125) T) ((-1245 . -23) T) ((-1225 . -736) T) ((-1016 . -379) 142764) ((-112 . -377) T) ((-484 . -911) 142670) ((-1133 . -298) T) ((-915 . -623) 142652) ((-55 . -626) 142634) ((-91 . -107) 142618) ((-1017 . -132) T) ((-916 . -860) 142569) ((-711 . -1165) T) ((-709 . -111) 142525) ((-853 . -656) 142442) ((-606 . -1125) T) ((-605 . -1125) T) ((-722 . -727) 142271) ((-721 . -736) T) ((-984 . -132) T) ((-925 . -132) T) ((-497 . -860) T) ((-809 . -25) T) ((-809 . -21) T) ((-590 . -1062) T) ((-219 . -860) T) ((-417 . -656) 142208) ((-574 . -1062) T) ((-546 . -1231) T) ((-505 . -1062) T) ((-606 . -23) T) ((-352 . -1300) 142185) ((-327 . -462) 142164) ((-348 . -317) 142151) ((-605 . -23) T) ((-437 . -132) T) ((-668 . -658) 142125) ((-251 . -1023) 142109) ((-882 . -315) T) ((-1305 . -1295) 142093) ((-781 . -802) T) ((-781 . -805) T) ((-711 . -38) 142080) ((-574 . -239) T) ((-505 . -249) T) ((-505 . -239) T) ((-1163 . -241) 142030) ((-1100 . -920) 142009) ((-117 . -38) 141996) ((-211 . -810) T) ((-210 . -810) T) ((-209 . -810) T) ((-208 . -810) T) ((-882 . -1035) 141974) ((-1294 . -499) 141958) ((-792 . -920) 141937) ((-790 . -920) 141916) ((-364 . -1231) 141895) ((-361 . -1231) 141874) ((-353 . -1231) 141853) ((-1203 . -1231) T) ((-271 . -1231) 141832) ((-464 . -920) 141811) ((-747 . -499) 141795) ((-1100 . -658) 141684) ((-709 . -626) 141619) ((-792 . -658) 141508) ((-633 . -1069) 141495) ((-489 . -1231) T) ((-352 . -377) T) ((-142 . -499) 141477) ((-790 . -658) 141366) ((-1154 . -1231) T) ((-559 . -860) T) ((-471 . -658) 141337) ((-271 . -897) 141196) ((-253 . -897) NIL) ((-118 . -1069) 141141) ((-464 . -658) 141030) ((-674 . -1051) 141007) ((-633 . -111) 140992) ((-400 . -1064) 140976) ((-364 . -1051) 140960) ((-361 . -1051) 140944) ((-353 . -1051) 140928) ((-271 . -1051) 140772) ((-253 . -1051) 140648) ((-921 . -1231) T) ((-118 . -111) 140577) ((-59 . -1231) T) ((-400 . -650) 140561) ((-631 . -1064) 140545) ((-529 . -1231) T) ((-526 . -1231) T) ((-507 . -1231) T) ((-506 . -1231) T) ((-447 . -623) 140527) ((-444 . -623) 140509) ((-631 . -650) 140493) ((-3 . -102) T) ((-1040 . -1224) 140462) ((-843 . -102) T) ((-699 . -57) 140420) ((-709 . -1062) T) ((-645 . -656) 140389) ((-617 . -656) 140358) ((-50 . -658) 140332) ((-297 . -462) T) ((-486 . -1224) 140301) ((0 . -102) T) ((-591 . -658) 140266) ((-528 . -658) 140211) ((-49 . -102) T) ((-921 . -1051) 140198) ((-709 . -249) T) ((-1093 . -419) 140177) ((-741 . -649) 140125) ((-1012 . -1113) T) ((-722 . -174) 140016) ((-633 . -626) 139911) ((-497 . -1005) 139893) ((-428 . -235) 139866) ((-271 . -386) 139850) ((-253 . -386) 139834) ((-409 . -1113) T) ((-1039 . -102) 139812) ((-348 . -38) 139796) ((-219 . -1005) 139778) ((-118 . -626) 139708) ((-176 . -38) 139640) ((-1265 . -315) 139619) ((-1244 . -315) 139598) ((-668 . -736) T) ((-99 . -623) 139580) ((-487 . -1064) 139545) ((-1181 . -649) 139497) ((-487 . -650) 139462) ((-495 . -25) T) ((-495 . -21) T) ((-1244 . -1035) 139414) ((-1070 . -1231) T) ((-633 . -1062) T) ((-388 . -414) T) ((-400 . -102) T) ((-1118 . -628) 139329) ((-271 . -911) 139275) ((-253 . -911) 139252) ((-118 . -1062) T) ((-826 . -1125) T) ((-1100 . -736) T) ((-633 . -239) 139231) ((-631 . -102) T) ((-792 . -736) T) ((-790 . -736) T) ((-423 . -1125) T) ((-118 . -249) T) ((-40 . -377) NIL) ((-118 . -239) NIL) ((-1236 . -860) T) ((-464 . -736) T) ((-826 . -23) T) ((-741 . -25) T) ((-741 . -21) T) ((-1090 . -294) 139210) ((-78 . -406) T) ((-78 . -405) T) ((-543 . -777) 139192) ((-704 . -1069) 139142) ((-1273 . -132) T) ((-1266 . -132) T) ((-1245 . -132) T) ((-1188 . -25) T) ((-1155 . -421) 139126) ((-645 . -376) 139058) ((-617 . -376) 138990) ((-1170 . -1162) 138974) ((-103 . -1113) 138952) ((-1188 . -21) T) ((-1187 . -21) T) ((-875 . -623) 138934) ((-1012 . -727) 138882) ((-225 . -658) 138849) ((-704 . -111) 138783) ((-50 . -736) T) ((-1187 . -25) T) ((-360 . -358) T) ((-1181 . -21) T) ((-1093 . -462) 138734) ((-1181 . -25) T) ((-722 . -524) 138681) ((-591 . -736) T) ((-528 . -736) T) ((-1139 . -21) T) ((-1139 . -25) T) ((-1306 . -102) T) ((-606 . -132) T) ((-302 . -656) 138416) ((-605 . -132) T) ((-368 . -462) T) ((-362 . -462) T) ((-354 . -462) T) ((-484 . -315) 138395) ((-1239 . -102) T) ((-321 . -294) 138330) ((-108 . -462) T) ((-79 . -451) T) ((-79 . -405) T) ((-487 . -102) T) ((-701 . -626) 138314) ((-1310 . -623) 138296) ((-1310 . -624) 138278) ((-1093 . -412) 138257) ((-1048 . -499) 138188) ((-137 . -294) 138165) ((-574 . -805) T) ((-574 . -802) T) ((-1076 . -241) 138111) ((-368 . -412) 138062) ((-362 . -412) 138013) ((-354 . -412) 137964) ((-1296 . -1125) T) ((-1305 . -1064) 137948) ((-390 . -1064) 137932) ((-1305 . -650) 137902) ((-390 . -650) 137872) ((-704 . -626) 137807) ((-1296 . -23) T) ((-1283 . -102) T) ((-177 . -623) 137789) ((-1155 . -1071) T) ((-557 . -377) T) ((-680 . -754) 137773) ((-1192 . -146) 137752) ((-1192 . -148) 137731) ((-1159 . -1113) T) ((-1159 . -1084) 137700) ((-69 . -1231) T) ((-1037 . -1069) 137637) ((-360 . -656) 137567) ((-876 . -1071) T) ((-246 . -649) 137473) ((-704 . -1062) T) ((-363 . -1069) 137418) ((-61 . -1231) T) ((-1037 . -111) 137334) ((-912 . -623) 137245) ((-704 . -249) T) ((-704 . -239) NIL) ((-853 . -858) 137224) ((-709 . -805) T) ((-709 . -802) T) ((-1016 . -421) 137201) ((-363 . -111) 137130) ((-388 . -931) T) ((-417 . -858) 137109) ((-722 . -298) 137020) ((-225 . -736) T) ((-1273 . -503) 136986) ((-1266 . -503) 136952) ((-1245 . -503) 136918) ((-588 . -1113) T) ((-324 . -1015) 136897) ((-224 . -1113) 136875) ((-1238 . -854) T) ((-327 . -986) 136837) ((-105 . -102) T) ((-48 . -1069) 136802) ((-1305 . -102) T) ((-390 . -102) T) ((-48 . -111) 136758) ((-1017 . -649) 136740) ((-1267 . -623) 136722) ((-541 . -102) T) ((-510 . -102) T) ((-1146 . -1147) 136706) ((-153 . -1288) 136690) ((-251 . -1231) T) ((-1230 . -102) T) ((-1037 . -626) 136627) ((-1186 . -1235) 136606) ((-363 . -626) 136536) ((-1138 . -1235) 136515) ((-246 . -21) 136425) ((-246 . -25) 136276) ((-128 . -120) 136260) ((-122 . -120) 136244) ((-44 . -754) 136228) ((-1186 . -566) 136139) ((-1138 . -566) 136070) ((-1238 . -1113) T) ((-1048 . -294) 136045) ((-1180 . -1096) T) ((-1007 . -1096) T) ((-826 . -132) T) ((-118 . -805) NIL) ((-118 . -802) NIL) ((-364 . -315) T) ((-361 . -315) T) ((-353 . -315) T) ((-258 . -1125) 135955) ((-257 . -1125) 135865) ((-1037 . -1062) T) ((-1016 . -1071) T) ((-48 . -626) 135798) ((-352 . -658) 135743) ((-631 . -38) 135727) ((-1294 . -623) 135689) ((-1294 . -624) 135650) ((-1090 . -623) 135632) ((-1037 . -249) T) ((-363 . -1062) T) ((-825 . -1288) 135602) ((-258 . -23) T) ((-257 . -23) T) ((-1000 . -623) 135584) ((-1188 . -235) 135537) ((-1187 . -235) 135483) ((-747 . -624) 135444) ((-747 . -623) 135426) ((-1181 . -235) 135307) ((-809 . -860) 135286) ((-1173 . -152) 135233) ((-1012 . -524) 135145) ((-363 . -239) T) ((-363 . -249) T) ((-398 . -626) 135126) ((-1017 . -25) T) ((-142 . -623) 135108) ((-142 . -624) 135067) ((-921 . -315) T) ((-1017 . -21) T) ((-984 . -25) T) ((-925 . -21) T) ((-925 . -25) T) ((-437 . -21) T) ((-437 . -25) T) ((-853 . -421) 135051) ((-48 . -1062) T) ((-1303 . -1295) 135035) ((-1301 . -1295) 135019) ((-1048 . -614) 134994) ((-324 . -624) 134855) ((-324 . -623) 134837) ((-321 . -624) NIL) ((-321 . -623) 134819) ((-48 . -249) T) ((-48 . -239) T) ((-664 . -294) 134780) ((-560 . -241) 134730) ((-140 . -623) 134697) ((-137 . -623) 134679) ((-115 . -623) 134661) ((-487 . -38) 134626) ((-1305 . -1302) 134605) ((-1296 . -132) T) ((-1304 . -1071) T) ((-1095 . -102) T) ((-88 . -1231) T) ((-510 . -317) NIL) ((-1013 . -107) 134589) ((-900 . -1113) T) ((-896 . -1113) T) ((-1281 . -661) 134573) ((-1281 . -382) 134557) ((-335 . -1231) T) ((-603 . -860) T) ((-1155 . -1113) T) ((-1155 . -1066) 134497) ((-103 . -524) 134430) ((-938 . -623) 134412) ((-352 . -736) T) ((-30 . -623) 134394) ((-876 . -1113) T) ((-853 . -1071) 134373) ((-40 . -658) 134280) ((-227 . -1235) T) ((-417 . -1071) T) ((-1172 . -152) 134262) ((-1012 . -298) 134213) ((-627 . -1113) T) ((-227 . -566) T) ((-327 . -1262) 134197) ((-327 . -1259) 134167) ((-711 . -656) 134139) ((-1203 . -1207) 134118) ((-1088 . -623) 134100) ((-1203 . -107) 134050) ((-657 . -152) 134034) ((-642 . -152) 133980) ((-117 . -656) 133952) ((-489 . -1207) 133931) ((-497 . -148) T) ((-497 . -146) NIL) ((-1133 . -624) 133846) ((-448 . -623) 133828) ((-219 . -148) T) ((-219 . -146) NIL) ((-1133 . -623) 133810) ((-130 . -102) T) ((-52 . -102) T) ((-1245 . -649) 133762) ((-489 . -107) 133712) ((-1006 . -23) T) ((-1305 . -38) 133682) ((-1186 . -1125) T) ((-1138 . -1125) T) ((-1075 . -1235) T) ((-246 . -235) 133628) ((-319 . -102) T) ((-864 . -1125) T) ((-963 . -1235) 133607) ((-491 . -1235) 133586) ((-1075 . -566) T) ((-963 . -566) 133517) ((-1186 . -23) T) ((-1164 . -1096) T) ((-1138 . -23) T) ((-864 . -23) T) ((-491 . -566) 133448) ((-1155 . -727) 133380) ((-680 . -1064) 133364) ((-1159 . -524) 133297) ((-680 . -650) 133281) ((-1048 . -624) NIL) ((-1048 . -623) 133263) ((-96 . -1096) T) ((-876 . -727) 133233) ((-1310 . -1069) 133220) ((-1225 . -47) 133189) ((-258 . -132) T) ((-257 . -132) T) ((-1117 . -1113) T) ((-1016 . -1113) T) ((-62 . -623) 133171) ((-1181 . -860) NIL) ((-1037 . -802) T) ((-1037 . -805) T) ((-1310 . -111) 133156) ((-1273 . -25) T) ((-1273 . -21) T) ((-1266 . -21) T) ((-880 . -658) 133143) ((-1266 . -25) T) ((-1245 . -21) T) ((-1245 . -25) T) ((-1040 . -152) 133127) ((-1017 . -235) 133114) ((-882 . -830) 133093) ((-882 . -931) T) ((-722 . -294) 133020) ((-606 . -21) T) ((-348 . -656) 132979) ((-606 . -25) T) ((-605 . -21) T) ((-176 . -656) 132896) ((-40 . -736) T) ((-224 . -524) 132829) ((-605 . -25) T) ((-486 . -152) 132813) ((-473 . -152) 132797) ((-932 . -804) T) ((-932 . -736) T) ((-781 . -803) T) ((-781 . -804) T) ((-516 . -1113) T) ((-512 . -1113) T) ((-781 . -736) T) ((-227 . -372) T) ((-1303 . -1064) 132781) ((-1301 . -1064) 132765) ((-1303 . -650) 132735) ((-1170 . -1113) 132713) ((-881 . -1235) T) ((-1301 . -650) 132683) ((-664 . -623) 132665) ((-881 . -566) T) ((-704 . -377) NIL) ((-44 . -1064) 132649) ((-1310 . -626) 132631) ((-1304 . -1113) T) ((-680 . -102) T) ((-368 . -1288) 132615) ((-362 . -1288) 132599) ((-44 . -650) 132583) ((-354 . -1288) 132567) ((-558 . -102) T) ((-530 . -860) 132546) ((-1059 . -1113) T) ((-827 . -462) 132525) ((-153 . -1064) 132509) ((-1059 . -1084) 132438) ((-1040 . -989) 132407) ((-829 . -1125) T) ((-1016 . -727) 132352) ((-153 . -650) 132336) ((-396 . -1125) T) ((-486 . -989) 132305) ((-473 . -989) 132274) ((-110 . -152) 132256) ((-73 . -623) 132238) ((-904 . -623) 132220) ((-1093 . -734) 132199) ((-1310 . -1062) T) ((-826 . -649) 132147) ((-302 . -1071) 132089) ((-171 . -1235) 131994) ((-227 . -1125) T) ((-332 . -23) T) ((-1181 . -1005) 131946) ((-853 . -1113) T) ((-1267 . -1069) 131851) ((-1139 . -750) 131830) ((-1265 . -931) 131809) ((-1244 . -931) 131788) ((-880 . -736) T) ((-171 . -566) 131699) ((-590 . -658) 131686) ((-574 . -658) 131658) ((-417 . -1113) T) ((-270 . -1113) T) ((-215 . -623) 131640) ((-505 . -658) 131590) ((-227 . -23) T) ((-1244 . -830) 131543) ((-1303 . -102) T) ((-363 . -1300) 131520) ((-1301 . -102) T) ((-1267 . -111) 131412) ((-825 . -1064) 131309) ((-825 . -650) 131251) ((-145 . -623) 131233) ((-1006 . -132) T) ((-44 . -102) T) ((-246 . -860) 131184) ((-1254 . -1235) 131163) ((-103 . -499) 131147) ((-1304 . -727) 131117) ((-1100 . -47) 131078) ((-1075 . -1125) T) ((-963 . -1125) T) ((-128 . -34) T) ((-122 . -34) T) ((-792 . -47) 131055) ((-790 . -47) 131027) ((-1254 . -566) 130938) ((-363 . -377) T) ((-491 . -1125) T) ((-1186 . -132) T) ((-1138 . -132) T) ((-464 . -47) 130917) ((-881 . -372) T) ((-864 . -132) T) ((-153 . -102) T) ((-1075 . -23) T) ((-963 . -23) T) ((-581 . -566) T) ((-826 . -25) T) ((-826 . -21) T) ((-1155 . -524) 130850) ((-602 . -1096) T) ((-596 . -1051) 130834) ((-1267 . -626) 130708) ((-491 . -23) T) ((-360 . -1071) T) ((-1225 . -911) 130689) ((-680 . -317) 130627) ((-1126 . -1288) 130597) ((-709 . -658) 130562) ((-1017 . -860) T) ((-1016 . -174) T) ((-974 . -146) 130541) ((-645 . -1113) T) ((-617 . -1113) T) ((-974 . -148) 130520) ((-745 . -148) 130499) ((-745 . -146) 130478) ((-668 . -1231) T) ((-984 . -860) T) ((-1273 . -235) 130431) ((-1266 . -235) 130377) ((-1245 . -235) 130258) ((-843 . -656) 130175) ((-484 . -931) 130154) ((-327 . -1064) 129989) ((-324 . -1069) 129899) ((-321 . -1069) 129828) ((-1012 . -294) 129786) ((-417 . -727) 129738) ((-327 . -650) 129579) ((-605 . -235) 129532) ((-711 . -858) T) ((-1267 . -1062) T) ((-324 . -111) 129428) ((-321 . -111) 129341) ((-975 . -102) T) ((-825 . -102) 129131) ((-722 . -624) NIL) ((-722 . -623) 129113) ((-1267 . -334) 129057) ((-668 . -1051) 128953) ((-1100 . -1231) 128932) ((-1048 . -296) 128907) ((-590 . -736) T) ((-574 . -804) T) ((-171 . -372) 128858) ((-574 . -801) T) ((-574 . -736) T) ((-505 . -736) T) ((-792 . -1231) T) ((-1159 . -499) 128842) ((-1100 . -897) NIL) ((-881 . -1125) T) ((-118 . -920) NIL) ((-1303 . -1302) 128818) ((-1301 . -1302) 128797) ((-792 . -897) NIL) ((-790 . -897) 128656) ((-1296 . -25) T) ((-1296 . -21) T) ((-1228 . -102) 128634) ((-1119 . -405) T) ((-633 . -658) 128621) ((-464 . -897) NIL) ((-685 . -102) 128599) ((-1100 . -1051) 128426) ((-881 . -23) T) ((-792 . -1051) 128285) ((-790 . -1051) 128142) ((-118 . -658) 128087) ((-464 . -1051) 127963) ((-324 . -626) 127527) ((-321 . -626) 127410) ((-400 . -656) 127379) ((-659 . -1051) 127363) ((-591 . -1231) T) ((-637 . -102) T) ((-528 . -1231) T) ((-224 . -499) 127347) ((-1281 . -34) T) ((-631 . -656) 127306) ((-297 . -1064) 127293) ((-137 . -626) 127277) ((-297 . -650) 127264) ((-645 . -727) 127248) ((-617 . -727) 127232) ((-680 . -38) 127192) ((-327 . -102) T) ((-85 . -623) 127174) ((-50 . -1051) 127158) ((-1133 . -1069) 127145) ((-1100 . -386) 127129) ((-792 . -386) 127113) ((-709 . -736) T) ((-709 . -804) T) ((-709 . -801) T) ((-591 . -1051) 127100) ((-528 . -1051) 127077) ((-60 . -57) 127039) ((-332 . -132) T) ((-324 . -1062) 126929) ((-321 . -1062) T) ((-171 . -1125) T) ((-790 . -386) 126913) ((-45 . -152) 126863) ((-1017 . -1005) 126845) ((-464 . -386) 126829) ((-417 . -174) T) ((-324 . -249) 126808) ((-321 . -249) T) ((-321 . -239) NIL) ((-302 . -1113) 126590) ((-227 . -132) T) ((-1133 . -111) 126575) ((-171 . -23) T) ((-809 . -148) 126554) ((-809 . -146) 126533) ((-258 . -649) 126439) ((-257 . -649) 126345) ((-327 . -292) 126311) ((-1170 . -524) 126244) ((-487 . -656) 126194) ((-1146 . -1113) T) ((-227 . -1073) T) ((-825 . -317) 126132) ((-1100 . -911) 126067) ((-792 . -911) 126010) ((-790 . -911) 125994) ((-1303 . -38) 125964) ((-1301 . -38) 125934) ((-1254 . -1125) T) ((-865 . -1125) T) ((-464 . -911) 125911) ((-868 . -1113) T) ((-1254 . -23) T) ((-1133 . -626) 125883) ((-1075 . -132) T) ((-581 . -1125) T) ((-865 . -23) T) ((-633 . -736) T) ((-364 . -931) T) ((-361 . -931) T) ((-297 . -102) T) ((-353 . -931) T) ((-983 . -1096) T) ((-963 . -132) T) ((-826 . -235) 125856) ((-118 . -804) NIL) ((-118 . -801) NIL) ((-118 . -736) T) ((-704 . -920) NIL) ((-1059 . -524) 125757) ((-491 . -132) T) ((-581 . -23) T) ((-685 . -317) 125695) ((-645 . -771) T) ((-617 . -771) T) ((-1245 . -860) NIL) ((-1093 . -1064) 125605) ((-1016 . -298) T) ((-704 . -658) 125555) ((-258 . -21) T) ((-360 . -1113) T) ((-258 . -25) T) ((-257 . -21) T) ((-257 . -25) T) ((-153 . -38) 125539) ((-2 . -102) T) ((-921 . -931) T) ((-1093 . -650) 125407) ((-492 . -1288) 125377) ((-1133 . -1062) T) ((-721 . -315) T) ((-368 . -1064) 125329) ((-362 . -1064) 125281) ((-354 . -1064) 125233) ((-368 . -650) 125185) ((-225 . -1051) 125162) ((-362 . -650) 125114) ((-108 . -1064) 125064) ((-354 . -650) 125016) ((-302 . -727) 124958) ((-711 . -1071) T) ((-497 . -462) T) ((-417 . -524) 124870) ((-108 . -650) 124820) ((-219 . -462) T) ((-1133 . -239) T) ((-303 . -152) 124770) ((-1012 . -624) 124731) ((-1012 . -623) 124713) ((-1002 . -623) 124695) ((-117 . -1071) T) ((-664 . -1069) 124679) ((-227 . -503) T) ((-409 . -623) 124661) ((-409 . -624) 124638) ((-1067 . -1288) 124608) ((-664 . -111) 124587) ((-1155 . -499) 124571) ((-1305 . -656) 124530) ((-390 . -656) 124499) ((-825 . -38) 124469) ((-63 . -451) T) ((-63 . -405) T) ((-1173 . -102) T) ((-881 . -132) T) ((-494 . -102) 124447) ((-1310 . -377) T) ((-1093 . -102) T) ((-1074 . -102) T) ((-360 . -727) 124392) ((-741 . -148) 124371) ((-741 . -146) 124350) ((-664 . -626) 124268) ((-1037 . -658) 124205) ((-533 . -1113) 124183) ((-368 . -102) T) ((-362 . -102) T) ((-354 . -102) T) ((-108 . -102) T) ((-514 . -1113) T) ((-363 . -658) 124128) ((-1186 . -649) 124076) ((-1138 . -649) 124024) ((-394 . -519) 124003) ((-843 . -858) 123982) ((-388 . -1235) T) ((-704 . -736) T) ((-1245 . -1005) 123934) ((-348 . -1071) T) ((-112 . -1231) T) ((-176 . -1071) T) ((-103 . -623) 123866) ((-1188 . -146) 123845) ((-1188 . -148) 123824) ((-388 . -566) T) ((-1187 . -148) 123803) ((-1187 . -146) 123782) ((-1181 . -146) 123689) ((-417 . -298) T) ((-1181 . -148) 123596) ((-1139 . -148) 123575) ((-1139 . -146) 123554) ((-327 . -38) 123395) ((-171 . -132) T) ((-321 . -805) NIL) ((-321 . -802) NIL) ((-664 . -1062) T) ((-48 . -658) 123345) ((-1126 . -1064) 123242) ((-904 . -626) 123219) ((-1126 . -650) 123161) ((-1180 . -102) T) ((-1007 . -102) T) ((-1006 . -21) T) ((-128 . -1023) 123145) ((-122 . -1023) 123129) ((-1006 . -25) T) ((-912 . -120) 123113) ((-1172 . -102) T) ((-1254 . -132) T) ((-1186 . -25) T) ((-352 . -1231) T) ((-1186 . -21) T) ((-865 . -132) T) ((-1138 . -25) T) ((-1138 . -21) T) ((-864 . -25) T) ((-864 . -21) T) ((-792 . -315) 123092) ((-1173 . -317) 122887) ((-1170 . -499) 122871) ((-657 . -102) 122849) ((-642 . -102) T) ((-1163 . -152) 122799) ((-581 . -132) T) ((-631 . -858) 122778) ((-1159 . -623) 122740) ((-1159 . -624) 122701) ((-1037 . -801) T) ((-1037 . -804) T) ((-1037 . -736) T) ((-722 . -1069) 122524) ((-494 . -317) 122462) ((-463 . -427) 122432) ((-360 . -174) T) ((-258 . -235) 122378) ((-257 . -235) 122324) ((-297 . -38) 122311) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-352 . -1051) 122288) ((-275 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-363 . -736) T) ((-722 . -111) 122097) ((-680 . -233) 122081) ((-591 . -315) T) ((-528 . -315) T) ((-302 . -524) 122030) ((-108 . -317) NIL) ((-72 . -405) T) ((-1126 . -102) 121820) ((-843 . -421) 121804) ((-1133 . -805) T) ((-1133 . -802) T) ((-711 . -1113) T) ((-588 . -623) 121786) ((-388 . -372) T) ((-171 . -503) 121764) ((-224 . -623) 121696) ((-135 . -1113) T) ((-117 . -1113) T) ((-977 . -1231) T) ((-48 . -736) T) ((-1059 . -499) 121661) ((-142 . -435) 121643) ((-142 . -377) T) ((-1040 . -102) T) ((-522 . -519) 121622) ((-722 . -626) 121378) ((-486 . -102) T) ((-473 . -102) T) ((-1047 . -1125) T) ((-1238 . -623) 121360) ((-1195 . -1051) 121296) ((-1188 . -35) 121262) ((-1188 . -95) 121228) ((-1188 . -1219) 121194) ((-1188 . -1216) 121160) ((-1187 . -1216) 121126) ((-1187 . -1219) 121092) ((-1172 . -317) NIL) ((-89 . -406) T) ((-89 . -405) T) ((-1093 . -1165) 121071) ((-40 . -1231) 121043) ((-1187 . -95) 121009) ((-1047 . -23) T) ((-1187 . -35) 120975) ((-581 . -503) T) ((-1181 . -1216) 120941) ((-1181 . -1219) 120907) ((-1181 . -95) 120873) ((-1181 . -35) 120839) ((-370 . -1125) T) ((-368 . -1165) 120818) ((-362 . -1165) 120797) ((-354 . -1165) 120776) ((-1117 . -294) 120732) ((-1139 . -35) 120698) ((-1139 . -95) 120664) ((-108 . -1165) T) ((-1139 . -1219) 120630) ((-843 . -1071) 120609) ((-657 . -317) 120547) ((-642 . -317) 120398) ((-1139 . -1216) 120364) ((-722 . -1062) T) ((-1075 . -649) 120346) ((-1093 . -38) 120214) ((-963 . -649) 120162) ((-1017 . -148) T) ((-1017 . -146) NIL) ((-388 . -1125) T) ((-332 . -25) T) ((-330 . -23) T) ((-954 . -860) 120141) ((-722 . -334) 120118) ((-491 . -649) 120066) ((-40 . -1051) 119954) ((-722 . -239) T) ((-711 . -727) 119941) ((-348 . -1113) T) ((-176 . -1113) T) ((-339 . -860) T) ((-428 . -462) 119891) ((-388 . -23) T) ((-368 . -38) 119856) ((-362 . -38) 119821) ((-354 . -38) 119786) ((-80 . -451) T) ((-80 . -405) T) ((-227 . -25) T) ((-227 . -21) T) ((-846 . -1125) T) ((-108 . -38) 119736) ((-837 . -1125) T) ((-784 . -1113) T) ((-117 . -727) 119723) ((-682 . -1051) 119707) ((-622 . -102) T) ((-846 . -23) T) ((-837 . -23) T) ((-1170 . -294) 119659) ((-1126 . -317) 119597) ((-492 . -1064) 119494) ((-1115 . -241) 119478) ((-64 . -406) T) ((-64 . -405) T) ((-1164 . -102) T) ((-110 . -102) T) ((-492 . -650) 119420) ((-40 . -386) 119397) ((-96 . -102) T) ((-663 . -862) 119381) ((-1186 . -235) 119368) ((-1148 . -1096) T) ((-1075 . -21) T) ((-1075 . -25) T) ((-1067 . -1064) 119352) ((-825 . -233) 119321) ((-963 . -25) T) ((-963 . -21) T) ((-1067 . -650) 119263) ((-631 . -1071) T) ((-1133 . -377) T) ((-1040 . -317) 119201) ((-680 . -656) 119160) ((-491 . -25) T) ((-491 . -21) T) ((-394 . -1064) 119144) ((-900 . -623) 119126) ((-896 . -623) 119108) ((-533 . -524) 119041) ((-258 . -860) 118992) ((-257 . -860) 118943) ((-394 . -650) 118913) ((-881 . -649) 118890) ((-486 . -317) 118828) ((-473 . -317) 118766) ((-360 . -298) T) ((-1170 . -1269) 118750) ((-1155 . -623) 118712) ((-1155 . -624) 118673) ((-1153 . -102) T) ((-1012 . -1069) 118569) ((-40 . -911) 118521) ((-1170 . -614) 118498) ((-1310 . -658) 118485) ((-876 . -500) 118462) ((-1076 . -152) 118408) ((-882 . -1235) T) ((-1012 . -111) 118290) ((-348 . -727) 118274) ((-876 . -623) 118236) ((-176 . -727) 118168) ((-417 . -294) 118126) ((-882 . -566) T) ((-108 . -410) 118108) ((-84 . -393) T) ((-84 . -405) T) ((-711 . -174) T) ((-627 . -623) 118090) ((-99 . -736) T) ((-492 . -102) 117880) ((-99 . -483) T) ((-117 . -174) T) ((-1303 . -656) 117839) ((-1301 . -656) 117798) ((-1126 . -38) 117768) ((-171 . -649) 117716) ((-1067 . -102) T) ((-1012 . -626) 117606) ((-881 . -25) T) ((-825 . -244) 117585) ((-881 . -21) T) ((-828 . -102) T) ((-44 . -656) 117528) ((-424 . -102) T) ((-394 . -102) T) ((-110 . -317) NIL) ((-229 . -102) 117506) ((-128 . -1231) T) ((-122 . -1231) T) ((-827 . -1064) 117457) ((-827 . -650) 117399) ((-1047 . -132) T) ((-680 . -376) 117383) ((-153 . -656) 117342) ((-645 . -294) 117300) ((-617 . -294) 117258) ((-1310 . -736) T) ((-1012 . -1062) T) ((-1254 . -649) 117206) ((-1117 . -623) 117188) ((-1016 . -623) 117170) ((-574 . -1231) T) ((-505 . -1231) T) ((-525 . -23) T) ((-520 . -23) T) ((-352 . -315) T) ((-518 . -23) T) ((-330 . -132) T) ((-3 . -1113) T) ((-1016 . -624) 117154) ((-1012 . -249) 117133) ((-1012 . -239) 117112) ((-1273 . -146) 117091) ((-1273 . -148) 117070) ((-843 . -1113) T) ((-1266 . -148) 117049) ((-1266 . -146) 117028) ((-1265 . -1235) 117007) ((-1245 . -146) 116914) ((-1245 . -148) 116821) ((-1244 . -1235) 116800) ((-388 . -132) T) ((-227 . -235) 116787) ((-574 . -897) 116769) ((0 . -1113) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1113) T) ((-1267 . -658) 116674) ((-1265 . -566) 116625) ((-724 . -1125) T) ((-1244 . -566) 116576) ((-574 . -1051) 116558) ((-605 . -148) 116537) ((-605 . -146) 116516) ((-505 . -1051) 116459) ((-1148 . -1150) T) ((-87 . -393) T) ((-87 . -405) T) ((-882 . -372) T) ((-846 . -132) T) ((-837 . -132) T) ((-975 . -656) 116403) ((-724 . -23) T) ((-516 . -623) 116369) ((-512 . -623) 116351) ((-825 . -656) 116101) ((-1305 . -1071) T) ((-388 . -1073) T) ((-1039 . -1113) 116079) ((-55 . -1051) 116061) ((-912 . -34) T) ((-492 . -317) 115999) ((-602 . -102) T) ((-1170 . -624) 115960) ((-1170 . -623) 115892) ((-1192 . -1064) 115775) ((-45 . -102) T) ((-827 . -102) T) ((-1192 . -650) 115672) ((-1254 . -25) T) ((-1254 . -21) T) ((-1075 . -235) 115659) ((-865 . -25) T) ((-44 . -376) 115643) ((-865 . -21) T) ((-741 . -462) 115594) ((-1304 . -623) 115576) ((-1293 . -1064) 115546) ((-1067 . -317) 115484) ((-681 . -1096) T) ((-616 . -1096) T) ((-400 . -1113) T) ((-581 . -25) T) ((-581 . -21) T) ((-182 . -1096) T) ((-162 . -1096) T) ((-157 . -1096) T) ((-155 . -1096) T) ((-1293 . -650) 115454) ((-631 . -1113) T) ((-709 . -897) 115436) ((-1281 . -1231) T) ((-229 . -317) 115374) ((-145 . -377) T) ((-1059 . -624) 115316) ((-1059 . -623) 115259) ((-321 . -920) NIL) ((-1239 . -854) T) ((-709 . -1051) 115204) ((-721 . -931) T) ((-484 . -1235) 115183) ((-1187 . -462) 115162) ((-1181 . -462) 115141) ((-338 . -102) T) ((-882 . -1125) T) ((-327 . -656) 115023) ((-324 . -658) 114752) ((-321 . -658) 114681) ((-484 . -566) 114632) ((-348 . -524) 114598) ((-560 . -152) 114548) ((-40 . -315) T) ((-853 . -623) 114530) ((-711 . -298) T) ((-882 . -23) T) ((-388 . -503) T) ((-1093 . -233) 114500) ((-522 . -102) T) ((-417 . -624) 114307) ((-417 . -623) 114289) ((-270 . -623) 114271) ((-117 . -298) T) ((-1267 . -736) T) ((-633 . -1231) 114250) ((-1306 . -1113) T) ((-1265 . -372) 114229) ((-1244 . -372) 114208) ((-1294 . -34) T) ((-1239 . -1113) T) ((-118 . -1231) T) ((-108 . -233) 114190) ((-1192 . -102) T) ((-487 . -1113) T) ((-533 . -499) 114174) ((-747 . -34) T) ((-663 . -1064) 114158) ((-492 . -38) 114128) ((-663 . -650) 114098) ((-881 . -235) NIL) ((-142 . -34) T) ((-118 . -895) 114075) ((-118 . -897) NIL) ((-633 . -1051) 113958) ((-654 . -860) 113937) ((-1293 . -102) T) ((-303 . -102) T) ((-722 . -377) 113916) ((-118 . -1051) 113893) ((-400 . -727) 113877) ((-631 . -727) 113861) ((-1118 . -1231) T) ((-45 . -317) 113665) ((-826 . -146) 113644) ((-826 . -148) 113623) ((-297 . -656) 113595) ((-1304 . -391) 113574) ((-829 . -860) T) ((-1283 . -1113) T) ((-1173 . -231) 113521) ((-396 . -860) 113500) ((-1273 . -1219) 113466) ((-1273 . -1216) 113432) ((-1266 . -1216) 113398) ((-525 . -132) T) ((-1266 . -1219) 113364) ((-1245 . -1216) 113330) ((-1245 . -1219) 113296) ((-1273 . -35) 113262) ((-1273 . -95) 113228) ((-1266 . -95) 113194) ((-645 . -623) 113163) ((-617 . -623) 113132) ((-227 . -860) T) ((-1266 . -35) 113098) ((-1265 . -1125) T) ((-1245 . -95) 113064) ((-1133 . -658) 113036) ((-1245 . -35) 113002) ((-1244 . -1125) T) ((-603 . -152) 112984) ((-1093 . -358) 112963) ((-176 . -298) T) ((-118 . -386) 112940) ((-118 . -347) 112917) ((-171 . -235) 112862) ((-880 . -315) T) ((-321 . -804) NIL) ((-321 . -801) NIL) ((-324 . -736) 112711) ((-321 . -736) T) ((-484 . -372) 112690) ((-368 . -358) 112669) ((-362 . -358) 112648) ((-354 . -358) 112627) ((-324 . -483) 112606) ((-1265 . -23) T) ((-1244 . -23) T) ((-728 . -1125) T) ((-724 . -132) T) ((-663 . -102) T) ((-487 . -727) 112571) ((-45 . -290) 112521) ((-105 . -1113) T) ((-68 . -623) 112503) ((-983 . -102) T) ((-874 . -102) T) ((-633 . -911) 112462) ((-1305 . -1113) T) ((-390 . -1113) T) ((-1254 . -235) 112449) ((-82 . -1231) T) ((-1230 . -1113) T) ((-1075 . -860) T) ((-118 . -911) NIL) ((-792 . -931) 112428) ((-723 . -860) T) ((-541 . -1113) T) ((-510 . -1113) T) ((-364 . -1235) T) ((-361 . -1235) T) ((-353 . -1235) T) ((-271 . -1235) 112407) ((-253 . -1235) 112386) ((-543 . -870) T) ((-1126 . -233) 112355) ((-1172 . -838) T) ((-1155 . -1069) 112339) ((-400 . -771) T) ((-704 . -1231) T) ((-701 . -1051) 112323) ((-364 . -566) T) ((-361 . -566) T) ((-353 . -566) T) ((-271 . -566) 112254) ((-253 . -566) 112185) ((-535 . -1096) T) ((-1155 . -111) 112164) ((-463 . -754) 112134) ((-876 . -1069) 112104) ((-827 . -38) 112046) ((-704 . -895) 112028) ((-704 . -897) 112010) ((-303 . -317) 111814) ((-921 . -1235) T) ((-1170 . -296) 111791) ((-1093 . -656) 111686) ((-680 . -421) 111670) ((-876 . -111) 111635) ((-1017 . -462) T) ((-704 . -1051) 111580) ((-921 . -566) T) ((-543 . -623) 111562) ((-591 . -931) T) ((-497 . -1064) 111512) ((-484 . -1125) T) ((-528 . -931) T) ((-925 . -462) T) ((-65 . -623) 111494) ((-219 . -1064) 111444) ((-497 . -650) 111394) ((-368 . -656) 111331) ((-362 . -656) 111268) ((-354 . -656) 111205) ((-642 . -231) 111151) ((-219 . -650) 111101) ((-108 . -656) 111051) ((-484 . -23) T) ((-1133 . -804) T) ((-882 . -132) T) ((-1133 . -801) T) ((-1296 . -1298) 111030) ((-1133 . -736) T) ((-664 . -658) 111004) ((-302 . -623) 110745) ((-1155 . -626) 110663) ((-1048 . -34) T) ((-825 . -858) 110642) ((-590 . -315) T) ((-574 . -315) T) ((-505 . -315) T) ((-1305 . -727) 110612) ((-704 . -386) 110594) ((-704 . -347) 110576) ((-487 . -174) T) ((-390 . -727) 110546) ((-876 . -626) 110481) ((-881 . -860) NIL) ((-574 . -1035) T) ((-505 . -1035) T) ((-1146 . -623) 110463) ((-1126 . -244) 110442) ((-216 . -102) T) ((-1163 . -102) T) ((-71 . -623) 110424) ((-1155 . -1062) T) ((-1192 . -38) 110321) ((-868 . -623) 110303) ((-574 . -555) T) ((-680 . -1071) T) ((-741 . -960) 110256) ((-363 . -1231) T) ((-1155 . -239) 110235) ((-1095 . -1113) T) ((-1047 . -25) T) ((-1047 . -21) T) ((-1016 . -1069) 110180) ((-916 . -102) T) ((-876 . -1062) T) ((-704 . -911) NIL) ((-364 . -337) 110164) ((-364 . -372) T) ((-361 . -337) 110148) ((-361 . -372) T) ((-353 . -337) 110132) ((-353 . -372) T) ((-497 . -102) T) ((-1293 . -38) 110102) ((-556 . -860) T) ((-533 . -697) 110052) ((-219 . -102) T) ((-1037 . -1051) 109932) ((-1016 . -111) 109861) ((-1188 . -986) 109830) ((-1187 . -986) 109792) ((-530 . -152) 109776) ((-1093 . -379) 109755) ((-360 . -623) 109737) ((-330 . -21) T) ((-363 . -1051) 109714) ((-330 . -25) T) ((-1181 . -986) 109683) ((-48 . -1231) T) ((-76 . -623) 109665) ((-1139 . -986) 109632) ((-709 . -315) T) ((-130 . -854) T) ((-921 . -372) T) ((-388 . -25) T) ((-388 . -21) T) ((-921 . -337) 109619) ((-86 . -623) 109601) ((-709 . -1035) T) ((-687 . -860) T) ((-1265 . -132) T) ((-1244 . -132) T) ((-912 . -1023) 109585) ((-846 . -21) T) ((-48 . -1051) 109528) ((-846 . -25) T) ((-837 . -25) T) ((-837 . -21) T) ((-1126 . -656) 109278) ((-1303 . -1071) T) ((-559 . -102) T) ((-1301 . -1071) T) ((-664 . -736) T) ((-1117 . -628) 109181) ((-1016 . -626) 109111) ((-1304 . -1069) 109095) ((-825 . -421) 109064) ((-103 . -120) 109048) ((-130 . -1113) T) ((-52 . -1113) T) ((-937 . -623) 109030) ((-881 . -1005) 109007) ((-833 . -102) T) ((-1304 . -111) 108986) ((-663 . -38) 108956) ((-581 . -860) T) ((-364 . -1125) T) ((-361 . -1125) T) ((-353 . -1125) T) ((-271 . -1125) T) ((-253 . -1125) T) ((-633 . -315) 108935) ((-1163 . -317) 108739) ((-674 . -23) T) ((-534 . -1096) T) ((-319 . -1113) T) ((-492 . -233) 108708) ((-153 . -1071) T) ((-364 . -23) T) ((-361 . -23) T) ((-353 . -23) T) ((-118 . -315) T) ((-271 . -23) T) ((-253 . -23) T) ((-1016 . -1062) T) ((-722 . -920) 108687) ((-1170 . -626) 108664) ((-1016 . -239) 108636) ((-1016 . -249) T) ((-118 . -1035) NIL) ((-921 . -1125) T) ((-1266 . -462) 108615) ((-1245 . -462) 108594) ((-533 . -623) 108526) ((-722 . -658) 108415) ((-417 . -1069) 108367) ((-514 . -623) 108349) ((-921 . -23) T) ((-497 . -317) NIL) ((-1304 . -626) 108305) ((-484 . -132) T) ((-219 . -317) NIL) ((-417 . -111) 108243) ((-825 . -1071) 108173) ((-747 . -1111) 108157) ((-1265 . -503) 108123) ((-1244 . -503) 108089) ((-558 . -854) T) ((-142 . -1111) 108071) ((-487 . -298) T) ((-1304 . -1062) T) ((-1236 . -102) T) ((-1076 . -102) T) ((-853 . -626) 107939) ((-510 . -524) NIL) ((-492 . -244) 107918) ((-417 . -626) 107816) ((-974 . -1064) 107699) ((-745 . -1064) 107669) ((-974 . -650) 107566) ((-1186 . -146) 107545) ((-745 . -650) 107515) ((-463 . -1064) 107485) ((-1186 . -148) 107464) ((-1138 . -148) 107443) ((-1138 . -146) 107422) ((-645 . -1069) 107406) ((-617 . -1069) 107390) ((-463 . -650) 107360) ((-1188 . -1272) 107344) ((-1188 . -1259) 107321) ((-1187 . -1264) 107282) ((-680 . -1113) T) ((-680 . -1066) 107222) ((-1187 . -1259) 107192) ((-558 . -1113) T) ((-497 . -1165) T) ((-1187 . -1262) 107176) ((-1181 . -1243) 107137) ((-828 . -273) 107121) ((-219 . -1165) T) ((-352 . -931) T) ((-99 . -1231) T) ((-645 . -111) 107100) ((-617 . -111) 107079) ((-1181 . -1259) 107056) ((-853 . -1062) 107035) ((-1181 . -1241) 107019) ((-525 . -25) T) ((-505 . -310) T) ((-521 . -23) T) ((-520 . -25) T) ((-518 . -25) T) ((-517 . -23) T) ((-428 . -1064) 106993) ((-417 . -1062) T) ((-327 . -1071) T) ((-704 . -315) T) ((-428 . -650) 106967) ((-108 . -858) T) ((-722 . -736) T) ((-417 . -249) T) ((-417 . -239) 106946) ((-388 . -235) 106933) ((-497 . -38) 106883) ((-219 . -38) 106833) ((-484 . -503) 106799) ((-1238 . -377) T) ((-1172 . -1157) T) ((-1114 . -102) T) ((-837 . -235) 106772) ((-711 . -623) 106754) ((-711 . -624) 106669) ((-724 . -21) T) ((-724 . -25) T) ((-1148 . -102) T) ((-492 . -656) 106419) ((-135 . -623) 106401) ((-117 . -623) 106383) ((-158 . -25) T) ((-1303 . -1113) T) ((-882 . -649) 106331) ((-1301 . -1113) T) ((-974 . -102) T) ((-745 . -102) T) ((-725 . -102) T) ((-463 . -102) T) ((-826 . -462) 106282) ((-44 . -1113) T) ((-1101 . -860) T) ((-1076 . -317) 106133) ((-674 . -132) T) ((-1067 . -656) 106102) ((-680 . -727) 106086) ((-297 . -1071) T) ((-364 . -132) T) ((-361 . -132) T) ((-353 . -132) T) ((-271 . -132) T) ((-253 . -132) T) ((-394 . -656) 106055) ((-428 . -102) T) ((-153 . -1113) T) ((-45 . -231) 106005) ((-809 . -1064) 105989) ((-969 . -860) 105968) ((-1012 . -658) 105870) ((-809 . -650) 105854) ((-246 . -1288) 105824) ((-1037 . -315) T) ((-302 . -1069) 105745) ((-921 . -132) T) ((-40 . -931) T) ((-497 . -410) 105727) ((-363 . -315) T) ((-219 . -410) 105709) ((-1093 . -421) 105693) ((-302 . -111) 105609) ((-1197 . -860) T) ((-1196 . -860) T) ((-882 . -25) T) ((-882 . -21) T) ((-348 . -623) 105591) ((-1267 . -47) 105535) ((-227 . -148) T) ((-176 . -623) 105517) ((-1126 . -858) 105496) ((-784 . -623) 105478) ((-129 . -860) T) ((-618 . -241) 105425) ((-485 . -241) 105375) ((-1303 . -727) 105345) ((-48 . -315) T) ((-1301 . -727) 105315) ((-65 . -626) 105244) ((-975 . -1113) T) ((-825 . -1113) 105034) ((-320 . -102) T) ((-912 . -1231) T) ((-48 . -1035) T) ((-1244 . -649) 104942) ((-699 . -102) 104920) ((-44 . -727) 104904) ((-560 . -102) T) ((-302 . -626) 104835) ((-67 . -392) T) ((-67 . -405) T) ((-672 . -23) T) ((-827 . -656) 104771) ((-680 . -771) T) ((-1228 . -1113) 104749) ((-360 . -1069) 104694) ((-685 . -1113) 104672) ((-1075 . -148) T) ((-963 . -148) 104651) ((-963 . -146) 104630) ((-809 . -102) T) ((-153 . -727) 104614) ((-491 . -148) 104593) ((-491 . -146) 104572) ((-360 . -111) 104501) ((-1093 . -1071) T) ((-330 . -860) 104480) ((-1273 . -986) 104449) ((-637 . -1113) T) ((-1266 . -986) 104411) ((-521 . -132) T) ((-517 . -132) T) ((-303 . -231) 104361) ((-368 . -1071) T) ((-362 . -1071) T) ((-354 . -1071) T) ((-302 . -1062) 104303) ((-1245 . -986) 104272) ((-388 . -860) T) ((-108 . -1071) T) ((-1012 . -736) T) ((-880 . -931) T) ((-853 . -805) 104251) ((-853 . -802) 104230) ((-428 . -317) 104169) ((-478 . -102) T) ((-605 . -986) 104138) ((-327 . -1113) T) ((-417 . -805) 104117) ((-417 . -802) 104096) ((-510 . -499) 104078) ((-1267 . -1051) 104044) ((-1265 . -21) T) ((-1265 . -25) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-825 . -727) 103986) ((-360 . -626) 103916) ((-709 . -414) T) ((-1294 . -1231) T) ((-1126 . -421) 103885) ((-616 . -102) T) ((-1090 . -1231) T) ((-1016 . -377) NIL) ((-681 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1192 . -656) 103795) ((-747 . -1231) T) ((-741 . -1064) 103638) ((-44 . -771) T) ((-741 . -650) 103487) ((-603 . -102) T) ((-663 . -666) 103471) ((-77 . -406) T) ((-77 . -405) T) ((-142 . -1231) T) ((-881 . -148) T) ((-881 . -146) NIL) ((-1230 . -93) T) ((-360 . -1062) T) ((-70 . -392) T) ((-70 . -405) T) ((-1179 . -102) T) ((-680 . -524) 103404) ((-1293 . -656) 103349) ((-699 . -317) 103287) ((-974 . -38) 103184) ((-1194 . -623) 103166) ((-745 . -38) 103136) ((-560 . -317) 102940) ((-1188 . -1064) 102823) ((-324 . -1231) T) ((-360 . -239) T) ((-360 . -249) T) ((-321 . -1231) T) ((-297 . -1113) T) ((-1187 . -1064) 102658) ((-1181 . -1064) 102448) ((-1139 . -1064) 102331) ((-1188 . -650) 102228) ((-1187 . -650) 102069) ((-721 . -1235) T) ((-1181 . -650) 101865) ((-1170 . -661) 101849) ((-1139 . -650) 101746) ((-1225 . -566) 101725) ((-829 . -395) 101709) ((-721 . -566) T) ((-324 . -895) 101693) ((-324 . -897) 101618) ((-137 . -1231) T) ((-321 . -895) 101579) ((-321 . -897) NIL) ((-809 . -317) 101544) ((-327 . -727) 101385) ((-396 . -395) 101369) ((-332 . -331) 101346) ((-495 . -102) T) ((-484 . -25) T) ((-484 . -21) T) ((-428 . -38) 101320) ((-324 . -1051) 100983) ((-227 . -1216) T) ((-227 . -1219) T) ((-3 . -623) 100965) ((-321 . -1051) 100895) ((-882 . -235) 100868) ((-2 . -1113) T) ((-2 . |RecordCategory|) T) ((-843 . -623) 100850) ((-1126 . -1071) 100780) ((-590 . -931) T) ((-574 . -830) T) ((-574 . -931) T) ((-505 . -931) T) ((-137 . -1051) 100764) ((-227 . -95) T) ((-171 . -148) 100743) ((-75 . -451) T) ((0 . -623) 100725) ((-75 . -405) T) ((-171 . -146) 100676) ((-227 . -35) T) ((-49 . -623) 100658) ((-487 . -1071) T) ((-497 . -233) 100640) ((-494 . -981) 100624) ((-492 . -858) 100603) ((-219 . -233) 100585) ((-81 . -451) T) ((-81 . -405) T) ((-1159 . -34) T) ((-825 . -174) 100564) ((-741 . -102) T) ((-663 . -656) 100523) ((-1039 . -623) 100490) ((-510 . -294) 100440) ((-324 . -386) 100409) ((-321 . -386) 100370) ((-321 . -347) 100331) ((-1098 . -623) 100313) ((-826 . -960) 100260) ((-672 . -132) T) ((-1254 . -146) 100239) ((-1254 . -148) 100218) ((-1188 . -102) T) ((-1187 . -102) T) ((-1181 . -102) T) ((-1173 . -1113) T) ((-1139 . -102) T) ((-224 . -34) T) ((-297 . -727) 100205) ((-1173 . -620) 100181) ((-603 . -317) NIL) ((-494 . -1113) 100159) ((-1163 . -231) 100109) ((-400 . -623) 100091) ((-520 . -860) T) ((-1133 . -1231) T) ((-1273 . -1272) 100075) ((-1273 . -1259) 100052) ((-1266 . -1264) 100013) ((-1266 . -1259) 99983) ((-1266 . -1262) 99967) ((-1245 . -1243) 99928) ((-1245 . -1259) 99905) ((-631 . -623) 99887) ((-1245 . -1241) 99871) ((-709 . -931) T) ((-1188 . -292) 99837) ((-1187 . -292) 99803) ((-1181 . -292) 99769) ((-1093 . -1113) T) ((-1074 . -1113) T) ((-48 . -310) T) ((-324 . -911) 99735) ((-321 . -911) NIL) ((-1074 . -1081) 99714) ((-1133 . -897) 99696) ((-809 . -38) 99680) ((-271 . -649) 99628) ((-253 . -649) 99576) ((-711 . -1069) 99563) ((-605 . -1259) 99540) ((-1139 . -292) 99506) ((-327 . -174) 99437) ((-368 . -1113) T) ((-362 . -1113) T) ((-354 . -1113) T) ((-510 . -19) 99419) ((-1133 . -1051) 99401) ((-1115 . -152) 99385) ((-108 . -1113) T) ((-117 . -1069) 99372) ((-721 . -372) T) ((-510 . -614) 99347) ((-711 . -111) 99332) ((-1265 . -235) 99278) ((-1244 . -235) 99177) ((-446 . -102) T) ((-886 . -1276) T) ((-256 . -102) T) ((-45 . -1162) 99127) ((-117 . -111) 99112) ((-1306 . -623) 99079) ((-1306 . -500) 99061) ((-645 . -730) T) ((-617 . -730) T) ((-1283 . -623) 99043) ((-1239 . -623) 99025) ((-1237 . -860) T) ((-1225 . -1125) T) ((-1225 . -23) T) ((-825 . -524) 98958) ((-1048 . -1231) T) ((-246 . -1064) 98855) ((-1186 . -462) 98786) ((-1181 . -317) 98671) ((-954 . -152) 98655) ((-1180 . -1113) T) ((-1172 . -1113) T) ((-246 . -650) 98597) ((-1155 . -658) 98535) ((-1139 . -317) 98522) ((-1138 . -462) 98473) ((-535 . -102) T) ((-530 . -102) 98423) ((-1100 . -566) 98354) ((-1100 . -1235) 98333) ((-1093 . -727) 98201) ((-792 . -1235) 98180) ((-790 . -1235) 98159) ((-62 . -1231) T) ((-487 . -623) 98111) ((-487 . -624) 98033) ((-1017 . -1064) 97983) ((-1007 . -1113) T) ((-792 . -566) 97894) ((-790 . -566) 97825) ((-492 . -421) 97794) ((-633 . -931) 97773) ((-464 . -1235) 97752) ((-741 . -317) 97739) ((-711 . -626) 97711) ((-408 . -623) 97693) ((-685 . -524) 97626) ((-674 . -25) T) ((-674 . -21) T) ((-464 . -566) 97557) ((-364 . -25) T) ((-364 . -21) T) ((-118 . -931) T) ((-118 . -830) NIL) ((-361 . -25) T) ((-361 . -21) T) ((-353 . -25) T) ((-353 . -21) T) ((-271 . -25) T) ((-271 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-83 . -393) T) ((-83 . -405) T) ((-135 . -626) 97539) ((-117 . -626) 97511) ((-1017 . -650) 97461) ((-954 . -993) 97445) ((-925 . -650) 97397) ((-925 . -1064) 97349) ((-921 . -21) T) ((-921 . -25) T) ((-882 . -860) 97300) ((-876 . -658) 97260) ((-721 . -1125) T) ((-721 . -23) T) ((-711 . -1062) T) ((-711 . -239) T) ((-297 . -174) T) ((-664 . -1231) T) ((-319 . -93) T) ((-657 . -1113) 97238) ((-642 . -620) 97213) ((-642 . -1113) T) ((-591 . -1235) T) ((-591 . -566) T) ((-528 . -1235) T) ((-528 . -566) T) ((-497 . -656) 97163) ((-484 . -235) 97109) ((-437 . -1064) 97093) ((-437 . -650) 97077) ((-368 . -727) 97029) ((-362 . -727) 96981) ((-348 . -1069) 96965) ((-354 . -727) 96917) ((-348 . -111) 96896) ((-176 . -1069) 96828) ((-219 . -656) 96778) ((-176 . -111) 96689) ((-108 . -727) 96639) ((-281 . -1113) T) ((-280 . -1113) T) ((-279 . -1113) T) ((-278 . -1113) T) ((-277 . -1113) T) ((-276 . -1113) T) ((-275 . -1113) T) ((-214 . -1113) T) ((-213 . -1113) T) ((-171 . -1219) 96617) ((-171 . -1216) 96595) ((-211 . -1113) T) ((-210 . -1113) T) ((-117 . -1062) T) ((-209 . -1113) T) ((-208 . -1113) T) ((-205 . -1113) T) ((-204 . -1113) T) ((-203 . -1113) T) ((-202 . -1113) T) ((-201 . -1113) T) ((-200 . -1113) T) ((-199 . -1113) T) ((-198 . -1113) T) ((-197 . -1113) T) ((-196 . -1113) T) ((-195 . -1113) T) ((-246 . -102) 96385) ((-171 . -35) 96363) ((-171 . -95) 96341) ((-664 . -1051) 96237) ((-492 . -1071) 96167) ((-1126 . -1113) 95957) ((-1155 . -34) T) ((-680 . -499) 95941) ((-73 . -1231) T) ((-105 . -623) 95923) ((-1305 . -623) 95905) ((-390 . -623) 95887) ((-348 . -626) 95839) ((-176 . -626) 95756) ((-1230 . -500) 95737) ((-741 . -38) 95586) ((-581 . -1219) T) ((-581 . -1216) T) ((-541 . -623) 95568) ((-530 . -317) 95506) ((-510 . -623) 95488) ((-510 . -624) 95470) ((-1230 . -623) 95436) ((-1181 . -1165) NIL) ((-1040 . -1084) 95405) ((-1040 . -1113) T) ((-1017 . -102) T) ((-984 . -102) T) ((-925 . -102) T) ((-904 . -1051) 95382) ((-1155 . -736) T) ((-1016 . -658) 95289) ((-486 . -1113) T) ((-473 . -1113) T) ((-596 . -23) T) ((-581 . -35) T) ((-581 . -95) T) ((-437 . -102) T) ((-1076 . -231) 95235) ((-1188 . -38) 95132) ((-876 . -736) T) ((-704 . -931) T) ((-521 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-1187 . -38) 94973) ((-348 . -1062) T) ((-1181 . -38) 94769) ((-1093 . -174) T) ((-176 . -1062) T) ((-1139 . -38) 94666) ((-722 . -47) 94643) ((-368 . -174) T) ((-362 . -174) T) ((-529 . -57) 94617) ((-507 . -57) 94567) ((-360 . -1300) 94544) ((-227 . -462) T) ((-327 . -298) 94495) ((-354 . -174) T) ((-176 . -249) T) ((-1244 . -860) 94394) ((-108 . -174) T) ((-882 . -1005) 94378) ((-668 . -1125) T) ((-591 . -372) T) ((-591 . -337) 94365) ((-528 . -337) 94342) ((-528 . -372) T) ((-324 . -315) 94321) ((-321 . -315) T) ((-612 . -860) 94300) ((-1126 . -727) 94242) ((-530 . -290) 94226) ((-668 . -23) T) ((-428 . -233) 94210) ((-321 . -1035) NIL) ((-345 . -23) T) ((-103 . -1023) 94194) ((-45 . -36) 94173) ((-622 . -1113) T) ((-360 . -377) T) ((-534 . -102) T) ((-505 . -27) T) ((-246 . -317) 94111) ((-1100 . -1125) T) ((-1304 . -658) 94085) ((-792 . -1125) T) ((-790 . -1125) T) ((-1192 . -421) 94069) ((-464 . -1125) T) ((-1075 . -462) T) ((-1164 . -1113) T) ((-963 . -462) 94020) ((-1128 . -1096) T) ((-110 . -1113) T) ((-1100 . -23) T) ((-1173 . -524) 93803) ((-827 . -1071) T) ((-792 . -23) T) ((-790 . -23) T) ((-491 . -462) 93754) ((-471 . -23) T) ((-390 . -391) 93733) ((-364 . -235) 93706) ((-361 . -235) 93679) ((-353 . -235) 93652) ((-464 . -23) T) ((-271 . -235) 93625) ((-96 . -1113) T) ((-722 . -1231) T) ((-680 . -294) 93602) ((-494 . -524) 93535) ((-1273 . -1064) 93418) ((-1273 . -650) 93315) ((-1266 . -650) 93156) ((-1266 . -1064) 92991) ((-1245 . -650) 92787) ((-297 . -298) T) ((-1245 . -1064) 92577) ((-1095 . -623) 92559) ((-1095 . -624) 92540) ((-417 . -920) 92519) ((-1225 . -132) T) ((-50 . -1125) T) ((-1181 . -410) 92471) ((-1037 . -931) T) ((-1016 . -736) T) ((-853 . -658) 92444) ((-722 . -897) NIL) ((-606 . -1064) 92404) ((-591 . -1125) T) ((-528 . -1125) T) ((-605 . -1064) 92287) ((-1170 . -34) T) ((-1017 . -317) NIL) ((-825 . -499) 92271) ((-606 . -650) 92244) ((-363 . -931) T) ((-605 . -650) 92141) ((-921 . -235) 92128) ((-417 . -658) 92044) ((-50 . -23) T) ((-721 . -132) T) ((-722 . -1051) 91924) ((-591 . -23) T) ((-108 . -524) NIL) ((-528 . -23) T) ((-171 . -419) 91895) ((-1153 . -1113) T) ((-1296 . -1295) 91879) ((-711 . -805) T) ((-711 . -802) T) ((-1133 . -315) T) ((-388 . -148) T) ((-288 . -623) 91861) ((-287 . -623) 91843) ((-1244 . -1005) 91813) ((-48 . -931) T) ((-685 . -499) 91797) ((-258 . -1288) 91767) ((-257 . -1288) 91737) ((-1190 . -860) T) ((-1126 . -174) 91716) ((-1133 . -1035) T) ((-1059 . -34) T) ((-846 . -148) 91695) ((-846 . -146) 91674) ((-747 . -107) 91658) ((-622 . -133) T) ((-492 . -1113) 91448) ((-1192 . -1071) T) ((-881 . -462) T) ((-85 . -1231) T) ((-246 . -38) 91418) ((-142 . -107) 91400) ((-722 . -386) 91384) ((-843 . -626) 91252) ((-1304 . -736) T) ((-1293 . -1071) T) ((-1273 . -102) T) ((-1133 . -555) T) ((-589 . -102) T) ((-130 . -500) 91234) ((-1266 . -102) T) ((-400 . -1069) 91218) ((-1186 . -960) 91187) ((-44 . -294) 91164) ((-130 . -623) 91131) ((-52 . -623) 91113) ((-1138 . -960) 91080) ((-663 . -421) 91064) ((-1245 . -102) T) ((-1172 . -524) NIL) ((-672 . -25) T) ((-631 . -1069) 91048) ((-672 . -21) T) ((-974 . -656) 90958) ((-745 . -656) 90903) ((-725 . -656) 90875) ((-400 . -111) 90854) ((-224 . -261) 90838) ((-1067 . -1066) 90778) ((-1067 . -1113) T) ((-1017 . -1165) T) ((-828 . -1113) T) ((-463 . -656) 90693) ((-352 . -1235) T) ((-645 . -658) 90677) ((-631 . -111) 90656) ((-617 . -658) 90640) ((-606 . -102) T) ((-319 . -500) 90621) ((-596 . -132) T) ((-605 . -102) T) ((-424 . -1113) T) ((-394 . -1113) T) ((-319 . -623) 90587) ((-229 . -1113) 90565) ((-657 . -524) 90498) ((-642 . -524) 90342) ((-843 . -1062) 90321) ((-654 . -152) 90305) ((-352 . -566) T) ((-722 . -911) 90248) ((-560 . -231) 90198) ((-1273 . -292) 90164) ((-1266 . -292) 90130) ((-1093 . -298) 90081) ((-497 . -858) T) ((-225 . -1125) T) ((-1245 . -292) 90047) ((-1225 . -503) 90013) ((-1017 . -38) 89963) ((-219 . -858) T) ((-428 . -656) 89922) ((-925 . -38) 89874) ((-853 . -804) 89853) ((-853 . -801) 89832) ((-853 . -736) 89811) ((-368 . -298) T) ((-362 . -298) T) ((-354 . -298) T) ((-171 . -462) 89742) ((-437 . -38) 89726) ((-108 . -298) T) ((-225 . -23) T) ((-417 . -804) 89705) ((-417 . -801) 89684) ((-417 . -736) T) ((-510 . -296) 89659) ((-487 . -1069) 89624) ((-668 . -132) T) ((-631 . -626) 89593) ((-1126 . -524) 89526) ((-345 . -132) T) ((-171 . -412) 89505) ((-492 . -727) 89447) ((-825 . -294) 89424) ((-487 . -111) 89380) ((-663 . -1071) T) ((-826 . -1064) 89223) ((-1292 . -1096) T) ((-1254 . -462) 89154) ((-826 . -650) 89003) ((-1291 . -1096) T) ((-1100 . -132) T) ((-1067 . -727) 88945) ((-792 . -132) T) ((-790 . -132) T) ((-581 . -462) T) ((-1040 . -524) 88878) ((-631 . -1062) T) ((-602 . -1113) T) ((-543 . -175) T) ((-471 . -132) T) ((-464 . -132) T) ((-1012 . -1231) 88819) ((-45 . -1113) T) ((-394 . -727) 88789) ((-827 . -1113) T) ((-486 . -524) 88722) ((-473 . -524) 88655) ((-1306 . -626) 88637) ((-463 . -376) 88607) ((-45 . -620) 88586) ((-324 . -310) T) ((-487 . -626) 88536) ((-1245 . -317) 88421) ((-680 . -623) 88383) ((-59 . -860) 88362) ((-1017 . -410) 88344) ((-558 . -623) 88326) ((-809 . -656) 88285) ((-825 . -614) 88262) ((-526 . -860) 88241) ((-506 . -860) 88220) ((-40 . -1235) T) ((-1012 . -1051) 88116) ((-50 . -132) T) ((-591 . -132) T) ((-528 . -132) T) ((-302 . -658) 87976) ((-352 . -337) 87953) ((-352 . -372) T) ((-330 . -331) 87930) ((-327 . -294) 87888) ((-40 . -566) T) ((-388 . -1216) T) ((-388 . -1219) T) ((-1048 . -1207) 87863) ((-1203 . -241) 87813) ((-1181 . -233) 87765) ((-338 . -1113) T) ((-388 . -95) T) ((-388 . -35) T) ((-1048 . -107) 87711) ((-487 . -1062) T) ((-1305 . -1069) 87695) ((-489 . -241) 87645) ((-1173 . -499) 87579) ((-1296 . -1064) 87563) ((-390 . -1069) 87547) ((-1296 . -650) 87517) ((-487 . -249) T) ((-826 . -102) T) ((-724 . -148) 87496) ((-724 . -146) 87475) ((-494 . -499) 87459) ((-495 . -344) 87428) ((-1305 . -111) 87407) ((-522 . -1113) T) ((-492 . -174) 87386) ((-1012 . -386) 87370) ((-423 . -102) T) ((-390 . -111) 87349) ((-1012 . -347) 87333) ((-286 . -996) 87317) ((-285 . -996) 87301) ((-1303 . -623) 87283) ((-1301 . -623) 87265) ((-110 . -524) NIL) ((-1186 . -1257) 87249) ((-864 . -862) 87233) ((-1192 . -1113) T) ((-103 . -1231) T) ((-963 . -960) 87194) ((-827 . -727) 87136) ((-1245 . -1165) NIL) ((-491 . -960) 87081) ((-1075 . -144) T) ((-60 . -102) 87059) ((-44 . -623) 87041) ((-78 . -623) 87023) ((-360 . -658) 86968) ((-1293 . -1113) T) ((-521 . -860) T) ((-297 . -294) 86947) ((-352 . -1125) T) ((-303 . -1113) T) ((-1012 . -911) 86906) ((-303 . -620) 86885) ((-1305 . -626) 86834) ((-1273 . -38) 86731) ((-1266 . -38) 86572) ((-1245 . -38) 86368) ((-497 . -1071) T) ((-390 . -626) 86352) ((-219 . -1071) T) ((-352 . -23) T) ((-153 . -623) 86334) ((-843 . -805) 86313) ((-843 . -802) 86292) ((-1230 . -626) 86273) ((-606 . -38) 86246) ((-605 . -38) 86143) ((-880 . -566) T) ((-225 . -132) T) ((-327 . -1015) 86109) ((-79 . -623) 86091) ((-722 . -315) 86070) ((-302 . -736) 85972) ((-834 . -102) T) ((-874 . -854) T) ((-302 . -483) 85951) ((-1296 . -102) T) ((-40 . -372) T) ((-882 . -148) 85930) ((-495 . -656) 85912) ((-882 . -146) 85891) ((-1172 . -499) 85873) ((-1305 . -1062) T) ((-492 . -524) 85806) ((-1159 . -1231) T) ((-975 . -623) 85788) ((-657 . -499) 85772) ((-642 . -499) 85703) ((-825 . -623) 85434) ((-48 . -27) T) ((-1192 . -727) 85331) ((-663 . -1113) T) ((-871 . -870) T) ((-446 . -373) 85305) ((-741 . -656) 85215) ((-1115 . -102) T) ((-983 . -1113) T) ((-874 . -1113) T) ((-826 . -317) 85202) ((-543 . -537) T) ((-543 . -586) T) ((-1301 . -391) 85174) ((-1067 . -524) 85107) ((-1173 . -294) 85083) ((-246 . -233) 85052) ((-258 . -1064) 84949) ((-257 . -1064) 84846) ((-1293 . -727) 84816) ((-1180 . -93) T) ((-1007 . -93) T) ((-827 . -174) 84795) ((-258 . -650) 84737) ((-257 . -650) 84679) ((-1228 . -500) 84656) ((-229 . -524) 84589) ((-631 . -805) 84568) ((-631 . -802) 84547) ((-1228 . -623) 84459) ((-224 . -1231) T) ((-685 . -623) 84391) ((-1188 . -656) 84301) ((-1170 . -1023) 84285) ((-954 . -102) 84235) ((-360 . -736) T) ((-871 . -623) 84217) ((-1187 . -656) 84099) ((-1181 . -656) 83936) ((-1139 . -656) 83846) ((-1245 . -410) 83798) ((-1126 . -499) 83782) ((-60 . -317) 83720) ((-339 . -102) T) ((-1225 . -21) T) ((-1225 . -25) T) ((-40 . -1125) T) ((-721 . -21) T) ((-637 . -623) 83702) ((-525 . -331) 83681) ((-721 . -25) T) ((-449 . -102) T) ((-108 . -294) NIL) ((-932 . -1125) T) ((-40 . -23) T) ((-781 . -1125) T) ((-574 . -1235) T) ((-505 . -1235) T) ((-327 . -623) 83663) ((-1017 . -233) 83645) ((-171 . -167) 83629) ((-590 . -566) T) ((-574 . -566) T) ((-505 . -566) T) ((-781 . -23) T) ((-1265 . -148) 83608) ((-1173 . -614) 83584) ((-1265 . -146) 83563) ((-1040 . -499) 83547) ((-1244 . -146) 83472) ((-1244 . -148) 83397) ((-1296 . -1302) 83376) ((-486 . -499) 83360) ((-473 . -499) 83344) ((-533 . -34) T) ((-663 . -727) 83314) ((-112 . -980) T) ((-672 . -860) 83293) ((-1192 . -174) 83244) ((-374 . -102) T) ((-246 . -244) 83223) ((-258 . -102) T) ((-257 . -102) T) ((-1254 . -960) 83192) ((-251 . -860) 83171) ((-826 . -38) 83020) ((-45 . -524) 82812) ((-1172 . -294) 82762) ((-216 . -1113) T) ((-1163 . -1113) T) ((-1163 . -620) 82741) ((-596 . -25) T) ((-596 . -21) T) ((-1115 . -317) 82679) ((-974 . -421) 82663) ((-709 . -1235) T) ((-642 . -294) 82616) ((-1100 . -649) 82564) ((-792 . -649) 82512) ((-790 . -649) 82460) ((-352 . -132) T) ((-297 . -623) 82442) ((-916 . -1113) T) ((-709 . -566) T) ((-130 . -626) 82424) ((-880 . -1125) T) ((-464 . -649) 82372) ((-916 . -914) 82356) ((-388 . -462) T) ((-497 . -1113) T) ((-954 . -317) 82294) ((-711 . -658) 82266) ((-559 . -854) T) ((-219 . -1113) T) ((-324 . -931) 82245) ((-321 . -931) T) ((-321 . -830) NIL) ((-400 . -730) T) ((-880 . -23) T) ((-117 . -658) 82232) ((-484 . -146) 82211) ((-428 . -421) 82195) ((-484 . -148) 82174) ((-110 . -499) 82156) ((-319 . -626) 82137) ((-2 . -623) 82119) ((-188 . -102) T) ((-1172 . -19) 82101) ((-1172 . -614) 82076) ((-668 . -21) T) ((-668 . -25) T) ((-603 . -1157) T) ((-1126 . -294) 82053) ((-345 . -25) T) ((-345 . -21) T) ((-246 . -656) 81803) ((-505 . -372) T) ((-1296 . -38) 81773) ((-1186 . -1064) 81596) ((-1155 . -1231) T) ((-1138 . -1064) 81439) ((-864 . -1064) 81423) ((-642 . -614) 81398) ((-1303 . -1069) 81382) ((-1301 . -1069) 81366) ((-1186 . -650) 81195) ((-1138 . -650) 81044) ((-864 . -650) 81014) ((-1265 . -1216) 80980) ((-1265 . -1219) 80946) ((-559 . -1113) T) ((-1100 . -25) T) ((-1100 . -21) T) ((-541 . -802) T) ((-541 . -805) T) ((-118 . -1235) T) ((-974 . -1071) T) ((-633 . -566) T) ((-792 . -25) T) ((-792 . -21) T) ((-790 . -21) T) ((-790 . -25) T) ((-745 . -1071) T) ((-725 . -1071) T) ((-680 . -1069) 80930) ((-527 . -1096) T) ((-471 . -25) T) ((-118 . -566) T) ((-471 . -21) T) ((-464 . -25) T) ((-464 . -21) T) ((-1265 . -95) 80896) ((-1164 . -93) T) ((-1155 . -1051) 80792) ((-827 . -298) 80771) ((-1248 . -102) 80749) ((-833 . -1113) T) ((-977 . -980) T) ((-680 . -111) 80728) ((-627 . -1231) T) ((-303 . -524) 80520) ((-1245 . -233) 80472) ((-1244 . -1216) 80438) ((-1244 . -1219) 80404) ((-258 . -317) 80342) ((-257 . -317) 80280) ((-1239 . -377) T) ((-1173 . -624) NIL) ((-1173 . -623) 80262) ((-1236 . -854) T) ((-1155 . -386) 80246) ((-1133 . -830) T) ((-96 . -93) T) ((-1133 . -931) T) ((-1126 . -614) 80223) ((-1093 . -624) 80207) ((-1017 . -656) 80157) ((-925 . -656) 80094) ((-825 . -296) 80071) ((-494 . -623) 80003) ((-618 . -152) 79950) ((-497 . -727) 79900) ((-428 . -1071) T) ((-492 . -499) 79884) ((-437 . -656) 79843) ((-335 . -860) 79822) ((-348 . -658) 79796) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -727) 79746) ((-171 . -734) 79717) ((-176 . -658) 79649) ((-591 . -21) T) ((-591 . -25) T) ((-528 . -25) T) ((-528 . -21) T) ((-485 . -152) 79599) ((-1093 . -623) 79581) ((-1074 . -623) 79563) ((-1006 . -102) T) ((-872 . -102) T) ((-809 . -421) 79526) ((-40 . -132) T) ((-709 . -372) T) ((-711 . -736) T) ((-711 . -804) T) ((-711 . -801) T) ((-214 . -906) T) ((-590 . -1125) T) ((-574 . -1125) T) ((-505 . -1125) T) ((-368 . -623) 79508) ((-362 . -623) 79490) ((-354 . -623) 79472) ((-66 . -406) T) ((-66 . -405) T) ((-108 . -624) 79402) ((-108 . -623) 79344) ((-213 . -906) T) ((-969 . -152) 79328) ((-781 . -132) T) ((-680 . -626) 79246) ((-135 . -736) T) ((-117 . -736) T) ((-1265 . -35) 79212) ((-1067 . -499) 79196) ((-590 . -23) T) ((-574 . -23) T) ((-505 . -23) T) ((-1244 . -95) 79162) ((-1244 . -35) 79128) ((-1186 . -102) T) ((-1138 . -102) T) ((-864 . -102) T) ((-229 . -499) 79112) ((-1303 . -111) 79091) ((-1301 . -111) 79070) ((-44 . -1069) 79054) ((-1303 . -626) 79000) ((-1303 . -1062) T) ((-1301 . -626) 78929) ((-1254 . -1257) 78913) ((-865 . -862) 78897) ((-1192 . -298) 78876) ((-1117 . -1231) T) ((-110 . -294) 78826) ((-1016 . -1231) 78798) ((-129 . -152) 78780) ((-1155 . -911) 78739) ((-44 . -111) 78718) ((-1236 . -1113) T) ((-1195 . -1276) T) ((-1180 . -500) 78699) ((-1180 . -623) 78665) ((-680 . -1062) T) ((-1172 . -624) NIL) ((-1172 . -623) 78647) ((-1076 . -620) 78622) ((-1076 . -1113) T) ((-1007 . -500) 78603) ((-74 . -451) T) ((-74 . -405) T) ((-1007 . -623) 78569) ((-153 . -1069) 78553) ((-680 . -239) 78532) ((-581 . -564) 78516) ((-364 . -148) 78495) ((-364 . -146) 78446) ((-361 . -148) 78425) ((-361 . -146) 78376) ((-353 . -148) 78355) ((-353 . -146) 78306) ((-271 . -146) 78285) ((-271 . -148) 78264) ((-258 . -38) 78234) ((-253 . -148) 78213) ((-118 . -372) T) ((-253 . -146) 78192) ((-257 . -38) 78162) ((-153 . -111) 78141) ((-1016 . -1051) 78029) ((-1181 . -858) NIL) ((-704 . -1235) T) ((-809 . -1071) T) ((-709 . -1125) T) ((-1301 . -1062) T) ((-1170 . -1231) T) ((-1016 . -386) 78006) ((-921 . -146) T) ((-921 . -148) 77988) ((-880 . -132) T) ((-825 . -1069) 77885) ((-709 . -23) T) ((-704 . -566) T) ((-227 . -1064) 77850) ((-657 . -623) 77782) ((-657 . -624) 77743) ((-642 . -624) NIL) ((-642 . -623) 77725) ((-497 . -174) T) ((-227 . -650) 77690) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-484 . -1219) 77656) ((-484 . -1216) 77622) ((-281 . -623) 77604) ((-280 . -623) 77586) ((-279 . -623) 77568) ((-278 . -623) 77550) ((-277 . -623) 77532) ((-510 . -661) 77514) ((-276 . -623) 77496) ((-348 . -736) T) ((-275 . -623) 77478) ((-110 . -19) 77460) ((-176 . -736) T) ((-510 . -382) 77442) ((-214 . -623) 77424) ((-530 . -1162) 77408) ((-510 . -124) T) ((-110 . -614) 77383) ((-213 . -623) 77365) ((-484 . -35) 77331) ((-484 . -95) 77297) ((-211 . -623) 77279) ((-210 . -623) 77261) ((-209 . -623) 77243) ((-208 . -623) 77225) ((-205 . -623) 77207) ((-204 . -623) 77189) ((-203 . -623) 77171) ((-202 . -623) 77153) ((-201 . -623) 77135) ((-200 . -623) 77117) ((-199 . -623) 77099) ((-546 . -1116) 77051) ((-198 . -623) 77033) ((-197 . -623) 77015) ((-45 . -499) 76952) ((-196 . -623) 76934) ((-195 . -623) 76916) ((-153 . -626) 76885) ((-1128 . -102) T) ((-825 . -111) 76775) ((-654 . -102) 76725) ((-492 . -294) 76702) ((-1304 . -1051) 76686) ((-1126 . -623) 76417) ((-1114 . -1113) T) ((-1059 . -1231) T) ((-1186 . -317) 76404) ((-1075 . -1064) 76391) ((-1148 . -1113) T) ((-963 . -1064) 76234) ((-1138 . -317) 76221) ((-1109 . -1096) T) ((-633 . -1125) T) ((-1075 . -650) 76208) ((-1103 . -1096) T) ((-963 . -650) 76057) ((-1100 . -235) 76030) ((-491 . -1064) 75873) ((-1086 . -1096) T) ((-1079 . -1096) T) ((-1049 . -1096) T) ((-1032 . -1096) T) ((-118 . -1125) T) ((-491 . -650) 75722) ((-792 . -235) 75709) ((-829 . -102) T) ((-636 . -1096) T) ((-633 . -23) T) ((-1163 . -524) 75501) ((-493 . -1096) T) ((-396 . -102) T) ((-332 . -102) T) ((-220 . -1096) T) ((-974 . -1113) T) ((-153 . -1062) T) ((-741 . -421) 75485) ((-118 . -23) T) ((-1016 . -911) 75437) ((-745 . -1113) T) ((-725 . -1113) T) ((-463 . -1113) T) ((-417 . -1231) T) ((-324 . -440) 75421) ((-602 . -93) T) ((-1273 . -656) 75331) ((-1040 . -624) 75292) ((-1037 . -1235) T) ((-227 . -102) T) ((-1040 . -623) 75254) ((-1266 . -656) 75136) ((-826 . -233) 75120) ((-825 . -626) 74850) ((-1245 . -656) 74687) ((-1037 . -566) T) ((-843 . -658) 74660) ((-363 . -1235) T) ((-486 . -623) 74622) ((-486 . -624) 74583) ((-473 . -624) 74544) ((-473 . -623) 74506) ((-606 . -656) 74465) ((-417 . -895) 74449) ((-327 . -1069) 74284) ((-417 . -897) 74209) ((-605 . -656) 74119) ((-853 . -1051) 74015) ((-497 . -524) NIL) ((-492 . -614) 73992) ((-591 . -235) 73979) ((-363 . -566) T) ((-528 . -235) 73966) ((-219 . -524) NIL) ((-882 . -462) T) ((-428 . -1113) T) ((-417 . -1051) 73830) ((-327 . -111) 73651) ((-704 . -372) T) ((-227 . -292) T) ((-1228 . -626) 73628) ((-48 . -1235) T) ((-825 . -1062) 73558) ((-1186 . -1165) 73536) ((-590 . -132) T) ((-574 . -132) T) ((-505 . -132) T) ((-1173 . -296) 73512) ((-48 . -566) T) ((-1075 . -102) T) ((-963 . -102) T) ((-881 . -1064) 73457) ((-324 . -27) 73436) ((-825 . -239) 73388) ((-255 . -845) 73370) ((-246 . -858) 73349) ((-189 . -845) 73331) ((-723 . -102) T) ((-303 . -499) 73268) ((-881 . -650) 73213) ((-491 . -102) T) ((-741 . -1071) T) ((-622 . -623) 73195) ((-622 . -624) 73056) ((-417 . -386) 73040) ((-417 . -347) 73024) ((-1186 . -38) 72853) ((-327 . -626) 72679) ((-1138 . -38) 72528) ((-645 . -1231) 72502) ((-617 . -1231) 72476) ((-864 . -38) 72446) ((-400 . -658) 72430) ((-654 . -317) 72368) ((-1164 . -500) 72349) ((-1164 . -623) 72315) ((-974 . -727) 72212) ((-745 . -727) 72182) ((-224 . -107) 72166) ((-45 . -294) 72066) ((-631 . -658) 72040) ((-320 . -1113) T) ((-297 . -1069) 72027) ((-110 . -623) 72009) ((-110 . -624) 71991) ((-463 . -727) 71961) ((-826 . -260) 71900) ((-699 . -1113) 71878) ((-560 . -1113) T) ((-1188 . -1071) T) ((-1187 . -1071) T) ((-96 . -500) 71859) ((-1181 . -1071) T) ((-297 . -111) 71844) ((-1139 . -1071) T) ((-560 . -620) 71823) ((-96 . -623) 71789) ((-1017 . -858) T) ((-229 . -697) 71747) ((-704 . -1125) T) ((-1225 . -750) 71723) ((-1037 . -372) T) ((-848 . -845) 71705) ((-843 . -804) 71684) ((-417 . -911) 71643) ((-327 . -1062) T) ((-352 . -25) T) ((-352 . -21) T) ((-171 . -1064) 71553) ((-68 . -1231) T) ((-843 . -801) 71532) ((-428 . -727) 71506) ((-809 . -1113) T) ((-722 . -931) 71485) ((-709 . -132) T) ((-171 . -650) 71313) ((-704 . -23) T) ((-497 . -298) T) ((-843 . -736) 71292) ((-327 . -239) 71244) ((-327 . -249) 71223) ((-219 . -298) T) ((-130 . -377) T) ((-1265 . -462) 71202) ((-1244 . -462) 71181) ((-363 . -337) 71158) ((-363 . -372) T) ((-1153 . -623) 71140) ((-45 . -1269) 71090) ((-881 . -102) T) ((-654 . -290) 71074) ((-709 . -1073) T) ((-1292 . -102) T) ((-1291 . -102) T) ((-487 . -658) 71039) ((-478 . -1113) T) ((-45 . -614) 70964) ((-1172 . -296) 70939) ((-297 . -626) 70911) ((-40 . -649) 70850) ((-1254 . -1064) 70673) ((-865 . -1064) 70657) ((-48 . -372) T) ((-1119 . -623) 70639) ((-1254 . -650) 70468) ((-865 . -650) 70438) ((-642 . -296) 70413) ((-826 . -656) 70323) ((-581 . -1064) 70310) ((-492 . -623) 70041) ((-246 . -421) 70010) ((-963 . -317) 69997) ((-581 . -650) 69984) ((-65 . -1231) T) ((-1076 . -524) 69828) ((-681 . -1113) T) ((-633 . -132) T) ((-491 . -317) 69815) ((-616 . -1113) T) ((-556 . -102) T) ((-118 . -132) T) ((-297 . -1062) T) ((-182 . -1113) T) ((-162 . -1113) T) ((-157 . -1113) T) ((-155 . -1113) T) ((-463 . -771) T) ((-31 . -1096) T) ((-974 . -174) 69766) ((-983 . -93) T) ((-1093 . -1069) 69676) ((-631 . -804) 69655) ((-603 . -1113) T) ((-631 . -801) 69634) ((-631 . -736) T) ((-303 . -294) 69613) ((-302 . -1231) T) ((-1067 . -623) 69575) ((-1067 . -624) 69536) ((-1037 . -1125) T) ((-171 . -102) T) ((-282 . -860) T) ((-1179 . -1113) T) ((-828 . -623) 69518) ((-1126 . -296) 69495) ((-1115 . -231) 69479) ((-1016 . -315) T) ((-809 . -727) 69463) ((-368 . -1069) 69415) ((-363 . -1125) T) ((-362 . -1069) 69367) ((-424 . -623) 69349) ((-394 . -623) 69331) ((-354 . -1069) 69283) ((-229 . -623) 69215) ((-1093 . -111) 69111) ((-1037 . -23) T) ((-108 . -1069) 69061) ((-909 . -102) T) ((-851 . -102) T) ((-818 . -102) T) ((-779 . -102) T) ((-687 . -102) T) ((-484 . -462) 69040) ((-428 . -174) T) ((-368 . -111) 68978) ((-362 . -111) 68916) ((-354 . -111) 68854) ((-258 . -233) 68823) ((-257 . -233) 68792) ((-363 . -23) T) ((-71 . -1231) T) ((-227 . -38) 68757) ((-108 . -111) 68691) ((-40 . -25) T) ((-40 . -21) T) ((-680 . -730) T) ((-171 . -292) 68669) ((-48 . -1125) T) ((-932 . -25) T) ((-781 . -25) T) ((-1305 . -658) 68643) ((-1163 . -499) 68580) ((-495 . -1113) T) ((-1296 . -656) 68539) ((-1254 . -102) T) ((-1075 . -1165) T) ((-865 . -102) T) ((-246 . -1071) 68469) ((-975 . -802) 68422) ((-975 . -805) 68375) ((-390 . -658) 68359) ((-48 . -23) T) ((-825 . -805) 68310) ((-825 . -802) 68261) ((-558 . -377) T) ((-303 . -614) 68240) ((-487 . -736) T) ((-581 . -102) T) ((-1093 . -626) 68058) ((-255 . -187) T) ((-189 . -187) T) ((-881 . -317) 68015) ((-663 . -294) 67994) ((-112 . -671) T) ((-360 . -1231) T) ((-368 . -626) 67931) ((-362 . -626) 67868) ((-354 . -626) 67805) ((-76 . -1231) T) ((-108 . -626) 67755) ((-112 . -113) T) ((-1075 . -38) 67742) ((-674 . -383) 67721) ((-963 . -38) 67570) ((-741 . -1113) T) ((-491 . -38) 67419) ((-86 . -1231) T) ((-602 . -500) 67400) ((-1245 . -858) NIL) ((-581 . -292) T) ((-1188 . -1113) T) ((-602 . -623) 67366) ((-1187 . -1113) T) ((-1181 . -1113) T) ((-1093 . -1062) T) ((-360 . -1051) 67343) ((-827 . -500) 67327) ((-1017 . -1071) T) ((-45 . -623) 67309) ((-45 . -624) NIL) ((-925 . -1071) T) ((-827 . -623) 67278) ((-1160 . -102) 67256) ((-1093 . -249) 67207) ((-437 . -1071) T) ((-368 . -1062) T) ((-362 . -1062) T) ((-374 . -373) 67184) ((-354 . -1062) T) ((-352 . -235) 67171) ((-258 . -244) 67150) ((-257 . -244) 67129) ((-1093 . -239) 67054) ((-1139 . -1113) T) ((-302 . -911) 67013) ((-108 . -1062) T) ((-704 . -132) T) ((-428 . -524) 66855) ((-368 . -239) 66834) ((-368 . -249) T) ((-44 . -730) T) ((-362 . -239) 66813) ((-362 . -249) T) ((-354 . -239) 66792) ((-354 . -249) T) ((-1180 . -626) 66773) ((-171 . -317) 66738) ((-108 . -249) T) ((-108 . -239) T) ((-1007 . -626) 66719) ((-327 . -802) T) ((-880 . -21) T) ((-880 . -25) T) ((-417 . -315) T) ((-510 . -34) T) ((-110 . -296) 66694) ((-1126 . -1069) 66591) ((-881 . -1165) NIL) ((-338 . -623) 66573) ((-417 . -1035) 66551) ((-1126 . -111) 66441) ((-701 . -1276) T) ((-446 . -1113) T) ((-256 . -1113) T) ((-1305 . -736) T) ((-63 . -623) 66423) ((-881 . -38) 66368) ((-533 . -1231) T) ((-612 . -152) 66352) ((-522 . -623) 66334) ((-1254 . -317) 66321) ((-741 . -727) 66170) ((-541 . -803) T) ((-541 . -804) T) ((-574 . -649) 66152) ((-505 . -649) 66112) ((-364 . -462) T) ((-361 . -462) T) ((-353 . -462) T) ((-271 . -462) 66063) ((-535 . -1113) T) ((-530 . -1113) 66013) ((-253 . -462) 65964) ((-1163 . -294) 65943) ((-1192 . -623) 65925) ((-699 . -524) 65858) ((-974 . -298) 65837) ((-560 . -524) 65629) ((-258 . -656) 65449) ((-257 . -656) 65256) ((-1293 . -623) 65225) ((-1293 . -500) 65209) ((-1188 . -727) 65106) ((-1186 . -233) 65090) ((-1126 . -626) 64820) ((-171 . -1165) 64799) ((-1187 . -727) 64640) ((-1181 . -727) 64436) ((-977 . -113) T) ((-903 . -102) T) ((-1170 . -684) 64420) ((-1139 . -727) 64317) ((-1037 . -132) T) ((-364 . -412) 64268) ((-361 . -412) 64219) ((-353 . -412) 64170) ((-975 . -377) 64123) ((-809 . -524) 64035) ((-303 . -624) NIL) ((-303 . -623) 64017) ((-921 . -462) T) ((-916 . -294) 63996) ((-825 . -377) 63975) ((-520 . -519) 63954) ((-518 . -519) 63933) ((-497 . -294) NIL) ((-492 . -296) 63910) ((-428 . -298) T) ((-363 . -132) T) ((-219 . -294) NIL) ((-704 . -503) NIL) ((-99 . -1125) T) ((-40 . -235) 63876) ((-171 . -38) 63704) ((-1265 . -986) 63666) ((-1160 . -317) 63604) ((-1244 . -986) 63573) ((-921 . -412) T) ((-1126 . -1062) 63503) ((-1267 . -566) T) ((-1163 . -614) 63482) ((-112 . -860) T) ((-1076 . -499) 63413) ((-590 . -21) T) ((-590 . -25) T) ((-574 . -21) T) ((-574 . -25) T) ((-505 . -25) T) ((-505 . -21) T) ((-1254 . -1165) 63391) ((-1126 . -239) 63343) ((-48 . -132) T) ((-1212 . -102) T) ((-246 . -1113) 63133) ((-881 . -410) 63110) ((-1101 . -102) T) ((-1089 . -102) T) ((-618 . -102) T) ((-485 . -102) T) ((-1254 . -38) 62939) ((-865 . -38) 62909) ((-1047 . -1064) 62883) ((-741 . -174) 62794) ((-663 . -623) 62776) ((-655 . -1096) T) ((-1047 . -650) 62760) ((-581 . -38) 62747) ((-983 . -500) 62728) ((-983 . -623) 62694) ((-969 . -102) 62644) ((-874 . -623) 62626) ((-874 . -624) 62548) ((-603 . -524) NIL) ((-1273 . -1071) T) ((-1266 . -1071) T) ((-330 . -1064) 62530) ((-1245 . -1071) T) ((-1310 . -1125) T) ((-1225 . -148) 62509) ((-1225 . -146) 62488) ((-330 . -650) 62470) ((-711 . -1231) T) ((-1198 . -102) T) ((-1197 . -102) T) ((-1196 . -102) T) ((-1188 . -174) 62421) ((-606 . -1071) T) ((-605 . -1071) T) ((-1187 . -174) 62352) ((-1181 . -174) 62283) ((-388 . -1064) 62248) ((-1164 . -626) 62229) ((-1139 . -174) 62180) ((-1017 . -1113) T) ((-984 . -1113) T) ((-925 . -1113) T) ((-388 . -650) 62145) ((-809 . -807) 62129) ((-709 . -25) T) ((-709 . -21) T) ((-118 . -649) 62106) ((-711 . -897) 62088) ((-437 . -1113) T) ((-324 . -1235) 62067) ((-321 . -1235) T) ((-171 . -410) 62051) ((-846 . -1064) 62021) ((-484 . -986) 61983) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -623) 61965) ((-837 . -1064) 61949) ((-108 . -805) T) ((-108 . -802) T) ((-711 . -1051) 61931) ((-324 . -566) 61910) ((-321 . -566) T) ((-846 . -650) 61880) ((-837 . -650) 61850) ((-1310 . -23) T) ((-135 . -1051) 61832) ((-96 . -626) 61813) ((-1006 . -656) 61795) ((-492 . -1069) 61692) ((-45 . -296) 61617) ((-246 . -727) 61559) ((-527 . -102) T) ((-492 . -111) 61449) ((-1105 . -102) 61419) ((-1047 . -102) T) ((-1186 . -656) 61329) ((-1138 . -656) 61239) ((-864 . -656) 61198) ((-654 . -838) 61177) ((-741 . -524) 61120) ((-1067 . -1069) 61104) ((-1148 . -93) T) ((-1076 . -294) 61079) ((-633 . -21) T) ((-633 . -25) T) ((-534 . -1113) T) ((-680 . -658) 61017) ((-370 . -102) T) ((-330 . -102) T) ((-394 . -1069) 61001) ((-1067 . -111) 60980) ((-826 . -421) 60964) ((-118 . -25) T) ((-89 . -623) 60946) ((-118 . -21) T) ((-618 . -317) 60741) ((-485 . -317) 60545) ((-1163 . -624) NIL) ((-394 . -111) 60524) ((-388 . -102) T) ((-216 . -623) 60506) ((-1163 . -623) 60488) ((-1181 . -524) 60257) ((-1017 . -727) 60207) ((-1139 . -524) 60177) ((-925 . -727) 60129) ((-492 . -626) 59859) ((-360 . -315) T) ((-1203 . -152) 59809) ((-969 . -317) 59747) ((-846 . -102) T) ((-437 . -727) 59731) ((-227 . -838) T) ((-837 . -102) T) ((-835 . -102) T) ((-1303 . -658) 59705) ((-489 . -152) 59655) ((-1265 . -1264) 59634) ((-1133 . -1235) T) ((-348 . -1051) 59601) ((-1265 . -1259) 59571) ((-1265 . -1262) 59555) ((-1244 . -1243) 59534) ((-80 . -623) 59516) ((-916 . -623) 59498) ((-1244 . -1259) 59475) ((-1133 . -566) T) ((-932 . -860) T) ((-781 . -860) T) ((-682 . -860) T) ((-497 . -624) 59405) ((-497 . -623) 59346) ((-388 . -292) T) ((-1244 . -1241) 59330) ((-1267 . -1125) T) ((-219 . -624) 59260) ((-219 . -623) 59201) ((-1076 . -614) 59176) ((-828 . -626) 59160) ((-574 . -235) 59147) ((-526 . -152) 59131) ((-59 . -152) 59115) ((-506 . -152) 59099) ((-505 . -235) 59086) ((-368 . -1300) 59070) ((-362 . -1300) 59054) ((-354 . -1300) 59038) ((-324 . -372) 59017) ((-321 . -372) T) ((-492 . -1062) 58947) ((-704 . -649) 58929) ((-1301 . -658) 58903) ((-129 . -317) NIL) ((-1267 . -23) T) ((-699 . -499) 58887) ((-64 . -623) 58869) ((-1126 . -805) 58820) ((-1126 . -802) 58771) ((-560 . -499) 58708) ((-680 . -34) T) ((-492 . -239) 58660) ((-303 . -296) 58639) ((-246 . -174) 58618) ((-826 . -1071) T) ((-44 . -658) 58576) ((-1093 . -377) 58527) ((-1100 . -146) 58506) ((-741 . -298) 58437) ((-530 . -524) 58370) ((-827 . -1069) 58321) ((-1100 . -148) 58300) ((-559 . -623) 58282) ((-368 . -377) 58261) ((-362 . -377) 58240) ((-354 . -377) 58219) ((-979 . -1231) T) ((-881 . -233) 58196) ((-827 . -111) 58138) ((-792 . -146) 58117) ((-792 . -148) 58096) ((-271 . -960) 58063) ((-258 . -858) 58042) ((-253 . -960) 57987) ((-257 . -858) 57966) ((-790 . -146) 57945) ((-790 . -148) 57924) ((-153 . -658) 57898) ((-589 . -1113) T) ((-463 . -294) 57861) ((-464 . -148) 57840) ((-464 . -146) 57819) ((-680 . -736) T) ((-833 . -623) 57801) ((-1273 . -1113) T) ((-1266 . -1113) T) ((-1245 . -1113) T) ((-1225 . -1219) 57767) ((-1225 . -1216) 57733) ((-1188 . -298) 57712) ((-1187 . -298) 57663) ((-1181 . -298) 57614) ((-1139 . -298) 57593) ((-348 . -911) 57574) ((-1017 . -174) T) ((-925 . -174) T) ((-704 . -21) T) ((-704 . -25) T) ((-227 . -656) 57524) ((-606 . -1113) T) ((-605 . -1113) T) ((-484 . -1262) 57508) ((-484 . -1259) 57478) ((-428 . -294) 57406) ((-557 . -860) T) ((-324 . -1125) 57255) ((-321 . -1125) T) ((-1225 . -35) 57221) ((-1225 . -95) 57187) ((-84 . -623) 57169) ((-91 . -102) 57147) ((-1310 . -132) T) ((-724 . -1064) 57117) ((-602 . -626) 57098) ((-591 . -146) T) ((-591 . -148) 57080) ((-528 . -148) 57062) ((-528 . -146) T) ((-724 . -650) 57032) ((-324 . -23) 56884) ((-40 . -351) 56858) ((-321 . -23) T) ((-827 . -626) 56772) ((-1172 . -661) 56754) ((-1296 . -1071) T) ((-1172 . -382) 56736) ((-825 . -658) 56521) ((-1109 . -102) T) ((-1103 . -102) T) ((-1086 . -102) T) ((-171 . -233) 56505) ((-1079 . -102) T) ((-1049 . -102) T) ((-1032 . -102) T) ((-603 . -499) 56487) ((-636 . -102) T) ((-246 . -524) 56420) ((-493 . -102) T) ((-1303 . -736) T) ((-1301 . -736) T) ((-220 . -102) T) ((-1192 . -1069) 56303) ((-1075 . -656) 56275) ((-963 . -656) 56185) ((-1192 . -111) 56054) ((-886 . -1096) T) ((-871 . -175) T) ((-491 . -656) 55964) ((-827 . -1062) T) ((-691 . -1096) T) ((-686 . -1096) T) ((-633 . -235) 55937) ((-525 . -102) T) ((-520 . -102) T) ((-48 . -649) 55897) ((-518 . -102) T) ((-488 . -1096) T) ((-1293 . -1069) 55867) ((-118 . -235) NIL) ((-139 . -1096) T) ((-138 . -1096) T) ((-134 . -1096) T) ((-1047 . -38) 55851) ((-827 . -239) T) ((-827 . -249) 55830) ((-1293 . -111) 55795) ((-1273 . -727) 55692) ((-1266 . -727) 55533) ((-560 . -294) 55512) ((-1254 . -233) 55496) ((-1236 . -623) 55478) ((-616 . -93) T) ((-1076 . -624) NIL) ((-1076 . -623) 55460) ((-681 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1245 . -727) 55256) ((-1016 . -931) T) ((-153 . -736) T) ((-1192 . -626) 55109) ((-1126 . -377) 55088) ((-1037 . -25) T) ((-1017 . -524) NIL) ((-258 . -421) 55057) ((-257 . -421) 55026) ((-1037 . -21) T) ((-882 . -1064) 54978) ((-606 . -727) 54951) ((-605 . -727) 54848) ((-809 . -294) 54806) ((-127 . -102) 54784) ((-843 . -1051) 54680) ((-171 . -838) 54659) ((-327 . -658) 54556) ((-825 . -34) T) ((-724 . -102) T) ((-1133 . -1125) T) ((-1039 . -1231) T) ((-882 . -650) 54508) ((-388 . -38) 54473) ((-363 . -25) T) ((-363 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-364 . -1288) 54457) ((-361 . -1288) 54441) ((-353 . -1288) 54425) ((-171 . -358) 54404) ((-574 . -860) T) ((-1133 . -23) T) ((-87 . -623) 54386) ((-711 . -315) T) ((-846 . -38) 54356) ((-837 . -38) 54326) ((-1293 . -626) 54268) ((-1267 . -132) T) ((-1163 . -296) 54247) ((-975 . -736) 54146) ((-975 . -803) 54099) ((-975 . -804) 54052) ((-825 . -801) 54031) ((-117 . -315) T) ((-91 . -317) 53969) ((-685 . -34) T) ((-560 . -614) 53948) ((-48 . -25) T) ((-48 . -21) T) ((-825 . -804) 53899) ((-825 . -803) 53878) ((-711 . -1035) T) ((-663 . -1069) 53862) ((-881 . -656) 53792) ((-825 . -736) 53702) ((-975 . -483) 53655) ((-492 . -805) 53606) ((-492 . -802) 53557) ((-921 . -1288) 53544) ((-1192 . -1062) T) ((-663 . -111) 53523) ((-1192 . -334) 53500) ((-1217 . -102) 53478) ((-1114 . -623) 53460) ((-711 . -555) T) ((-826 . -1113) T) ((-1293 . -1062) T) ((-1148 . -500) 53441) ((-1237 . -102) T) ((-423 . -1113) T) ((-1148 . -623) 53407) ((-258 . -1071) 53337) ((-257 . -1071) 53267) ((-848 . -102) T) ((-297 . -658) 53254) ((-603 . -294) 53204) ((-699 . -697) 53162) ((-974 . -623) 53144) ((-882 . -102) T) ((-745 . -623) 53126) ((-725 . -623) 53108) ((-1273 . -174) 53059) ((-1266 . -174) 52990) ((-1245 . -174) 52921) ((-709 . -860) T) ((-1017 . -298) T) ((-463 . -623) 52903) ((-637 . -736) T) ((-60 . -1113) 52881) ((-251 . -152) 52865) ((-925 . -298) T) ((-1037 . -1025) T) ((-637 . -483) T) ((-722 . -1235) 52844) ((-704 . -235) NIL) ((-663 . -626) 52762) ((-171 . -656) 52657) ((-1281 . -860) 52636) ((-606 . -174) 52615) ((-605 . -174) 52566) ((-1265 . -650) 52407) ((-1265 . -1064) 52242) ((-1244 . -650) 52056) ((-1244 . -1064) 51864) ((-722 . -566) 51775) ((-417 . -931) T) ((-417 . -830) 51754) ((-327 . -804) T) ((-983 . -626) 51735) ((-327 . -736) T) ((-428 . -623) 51717) ((-428 . -624) 51624) ((-654 . -1162) 51608) ((-110 . -661) 51590) ((-176 . -315) T) ((-127 . -317) 51528) ((-110 . -382) 51510) ((-408 . -1231) T) ((-324 . -132) 51381) ((-321 . -132) T) ((-69 . -405) T) ((-110 . -124) T) ((-530 . -499) 51365) ((-664 . -1125) T) ((-603 . -19) 51347) ((-61 . -451) T) ((-61 . -405) T) ((-834 . -1113) T) ((-603 . -614) 51322) ((-487 . -1051) 51282) ((-663 . -1062) T) ((-664 . -23) T) ((-1296 . -1113) T) ((-31 . -102) T) ((-1254 . -656) 51192) ((-865 . -656) 51151) ((-826 . -727) 51000) ((-587 . -870) T) ((-581 . -656) 50972) ((-118 . -860) NIL) ((-1186 . -421) 50956) ((-1138 . -421) 50940) ((-864 . -421) 50924) ((-883 . -102) 50875) ((-1265 . -102) T) ((-1245 . -524) 50644) ((-1244 . -102) T) ((-1217 . -317) 50582) ((-1188 . -294) 50547) ((-1187 . -294) 50505) ((-535 . -93) T) ((-1181 . -294) 50333) ((-320 . -623) 50315) ((-1115 . -1113) T) ((-1093 . -658) 50189) ((-721 . -462) T) ((-699 . -623) 50121) ((-297 . -736) T) ((-108 . -920) NIL) ((-699 . -624) 50082) ((-611 . -623) 50064) ((-587 . -623) 50046) ((-560 . -624) NIL) ((-560 . -623) 50028) ((-539 . -623) 50010) ((-521 . -519) 49989) ((-497 . -1069) 49939) ((-484 . -1064) 49774) ((-517 . -519) 49753) ((-484 . -650) 49594) ((-219 . -1069) 49544) ((-368 . -658) 49496) ((-362 . -658) 49448) ((-227 . -858) T) ((-354 . -658) 49400) ((-612 . -102) 49350) ((-497 . -111) 49284) ((-492 . -377) 49263) ((-108 . -658) 49213) ((-363 . -235) 49200) ((-246 . -499) 49184) ((-352 . -148) 49166) ((-352 . -146) T) ((-171 . -379) 49137) ((-954 . -1279) 49121) ((-219 . -111) 49055) ((-882 . -317) 49020) ((-954 . -1113) 48970) ((-809 . -624) 48931) ((-809 . -623) 48913) ((-728 . -102) T) ((-339 . -1113) T) ((-216 . -626) 48890) ((-1133 . -132) T) ((-724 . -38) 48860) ((-324 . -503) 48839) ((-510 . -1231) T) ((-1265 . -292) 48805) ((-1244 . -292) 48771) ((-335 . -152) 48755) ((-449 . -1113) T) ((-1076 . -296) 48730) ((-1296 . -727) 48700) ((-48 . -235) 48687) ((-1173 . -34) T) ((-1305 . -1051) 48664) ((-494 . -34) T) ((-478 . -623) 48646) ((-256 . -294) 48620) ((-390 . -1051) 48604) ((-1186 . -1071) T) ((-1138 . -1071) T) ((-864 . -1071) T) ((-1075 . -858) T) ((-497 . -626) 48554) ((-219 . -626) 48504) ((-826 . -174) 48415) ((-530 . -294) 48367) ((-1273 . -298) 48346) ((-1212 . -373) 48320) ((-1101 . -273) 48304) ((-681 . -500) 48285) ((-681 . -623) 48251) ((-616 . -500) 48232) ((-118 . -1005) 48209) ((-616 . -623) 48159) ((-484 . -102) T) ((-182 . -500) 48140) ((-182 . -623) 48106) ((-162 . -500) 48087) ((-162 . -623) 48053) ((-157 . -500) 48034) ((-155 . -500) 48015) ((-157 . -623) 47981) ((-374 . -1113) T) ((-258 . -1113) T) ((-257 . -1113) T) ((-155 . -623) 47947) ((-1266 . -298) 47898) ((-1245 . -298) 47849) ((-882 . -1165) 47827) ((-1188 . -1015) 47793) ((-618 . -373) 47733) ((-1187 . -1015) 47699) ((-618 . -231) 47646) ((-704 . -860) T) ((-603 . -623) 47628) ((-603 . -624) NIL) ((-485 . -231) 47578) ((-497 . -1062) T) ((-1181 . -1015) 47544) ((-88 . -450) T) ((-88 . -405) T) ((-219 . -1062) T) ((-1139 . -1015) 47510) ((-1093 . -736) T) ((-722 . -1125) T) ((-606 . -298) 47489) ((-605 . -298) 47468) ((-497 . -249) T) ((-497 . -239) T) ((-219 . -249) T) ((-219 . -239) T) ((-1179 . -623) 47450) ((-882 . -38) 47402) ((-368 . -736) T) ((-362 . -736) T) ((-354 . -736) T) ((-108 . -804) T) ((-108 . -801) T) ((-722 . -23) T) ((-108 . -736) T) ((-530 . -1269) 47386) ((-1310 . -25) T) ((-484 . -292) 47352) ((-1310 . -21) T) ((-1244 . -317) 47291) ((-1190 . -102) T) ((-40 . -146) 47263) ((-40 . -148) 47235) ((-530 . -614) 47212) ((-1126 . -658) 46997) ((-612 . -317) 46935) ((-45 . -661) 46885) ((-45 . -676) 46835) ((-45 . -382) 46785) ((-1172 . -34) T) ((-881 . -858) NIL) ((-664 . -132) T) ((-495 . -623) 46767) ((-246 . -294) 46744) ((-188 . -1113) T) ((-1100 . -462) 46695) ((-826 . -524) 46569) ((-674 . -1064) 46553) ((-657 . -34) T) ((-642 . -34) T) ((-792 . -462) 46484) ((-674 . -650) 46468) ((-364 . -1064) 46420) ((-361 . -1064) 46372) ((-353 . -1064) 46324) ((-271 . -1064) 46167) ((-253 . -1064) 46010) ((-790 . -462) 45961) ((-364 . -650) 45913) ((-361 . -650) 45865) ((-353 . -650) 45817) ((-271 . -650) 45666) ((-253 . -650) 45515) ((-464 . -462) 45466) ((-963 . -421) 45450) ((-741 . -623) 45432) ((-258 . -727) 45374) ((-257 . -727) 45316) ((-741 . -624) 45177) ((-491 . -421) 45161) ((-348 . -310) T) ((-534 . -93) T) ((-360 . -931) T) ((-1013 . -102) 45139) ((-921 . -1064) 45104) ((-1037 . -860) T) ((-60 . -524) 45037) ((-921 . -650) 45002) ((-1244 . -1165) 44954) ((-1017 . -294) NIL) ((-227 . -1071) T) ((-388 . -838) T) ((-1126 . -34) T) ((-591 . -462) T) ((-528 . -462) T) ((-1248 . -1106) 44938) ((-1248 . -1113) 44916) ((-246 . -614) 44893) ((-1248 . -1108) 44850) ((-1188 . -623) 44832) ((-1187 . -623) 44814) ((-1181 . -623) 44796) ((-1181 . -624) NIL) ((-1139 . -623) 44778) ((-882 . -410) 44762) ((-607 . -102) T) ((-595 . -102) T) ((-546 . -102) T) ((-1265 . -38) 44603) ((-1244 . -38) 44417) ((-880 . -148) T) ((-591 . -412) T) ((-528 . -412) T) ((-1277 . -102) T) ((-1267 . -21) T) ((-1267 . -25) T) ((-1126 . -801) 44396) ((-1126 . -804) 44347) ((-1126 . -803) 44326) ((-1006 . -1113) T) ((-1040 . -34) T) ((-872 . -1113) T) ((-1126 . -736) 44236) ((-674 . -102) T) ((-655 . -102) T) ((-560 . -296) 44215) ((-1203 . -102) T) ((-486 . -34) T) ((-473 . -34) T) ((-364 . -102) T) ((-361 . -102) T) ((-353 . -102) T) ((-271 . -102) T) ((-253 . -102) T) ((-487 . -315) T) ((-1075 . -1071) T) ((-963 . -1071) T) ((-324 . -649) 44121) ((-321 . -649) 44082) ((-1186 . -1113) T) ((-491 . -1071) T) ((-489 . -102) T) ((-446 . -623) 44064) ((-1138 . -1113) T) ((-256 . -623) 44046) ((-864 . -1113) T) ((-1154 . -102) T) ((-826 . -298) 43977) ((-974 . -1069) 43860) ((-487 . -1035) T) ((-745 . -1069) 43830) ((-1047 . -656) 43789) ((-463 . -1069) 43759) ((-1160 . -1134) 43743) ((-1115 . -524) 43676) ((-974 . -111) 43545) ((-921 . -102) T) ((-745 . -111) 43510) ((-535 . -500) 43491) ((-535 . -623) 43457) ((-59 . -102) 43407) ((-530 . -624) 43368) ((-530 . -623) 43280) ((-529 . -102) 43258) ((-526 . -102) 43208) ((-507 . -102) 43186) ((-506 . -102) 43136) ((-463 . -111) 43099) ((-258 . -174) 43078) ((-257 . -174) 43057) ((-330 . -656) 43039) ((-428 . -1069) 43013) ((-1225 . -986) 42975) ((-1012 . -1125) T) ((-388 . -656) 42925) ((-1148 . -626) 42906) ((-954 . -524) 42839) ((-497 . -805) T) ((-484 . -38) 42680) ((-428 . -111) 42647) ((-497 . -802) T) ((-1013 . -317) 42585) ((-219 . -805) T) ((-219 . -802) T) ((-1012 . -23) T) ((-722 . -132) T) ((-1244 . -410) 42555) ((-846 . -656) 42500) ((-837 . -656) 42459) ((-324 . -25) 42311) ((-171 . -421) 42295) ((-324 . -21) 42166) ((-321 . -25) T) ((-321 . -21) T) ((-874 . -377) T) ((-974 . -626) 42019) ((-110 . -34) T) ((-745 . -626) 41975) ((-725 . -626) 41957) ((-492 . -658) 41742) ((-881 . -1071) T) ((-603 . -296) 41717) ((-590 . -148) T) ((-574 . -148) T) ((-505 . -148) T) ((-1186 . -727) 41546) ((-1070 . -102) 41524) ((-1138 . -727) 41373) ((-1133 . -649) 41355) ((-864 . -727) 41325) ((-680 . -1231) T) ((-1 . -102) T) ((-428 . -626) 41233) ((-246 . -623) 40964) ((-1128 . -1113) T) ((-1254 . -421) 40948) ((-1203 . -317) 40752) ((-974 . -1062) T) ((-745 . -1062) T) ((-725 . -1062) T) ((-654 . -1113) 40702) ((-1067 . -658) 40686) ((-865 . -421) 40670) ((-521 . -102) T) ((-517 . -102) T) ((-271 . -317) 40657) ((-253 . -317) 40644) ((-974 . -334) 40623) ((-394 . -658) 40607) ((-680 . -1051) 40503) ((-489 . -317) 40307) ((-258 . -524) 40240) ((-257 . -524) 40173) ((-1154 . -317) 40099) ((-829 . -1113) T) ((-809 . -1069) 40083) ((-1273 . -294) 40048) ((-1266 . -294) 40006) ((-1245 . -294) 39834) ((-396 . -1113) T) ((-332 . -1113) T) ((-428 . -1062) T) ((-171 . -1071) T) ((-59 . -317) 39772) ((-809 . -111) 39751) ((-605 . -294) 39716) ((-529 . -317) 39654) ((-526 . -317) 39592) ((-507 . -317) 39530) ((-506 . -317) 39468) ((-428 . -239) 39447) ((-492 . -34) T) ((-227 . -1113) T) ((-1017 . -624) 39377) ((-1017 . -623) 39337) ((-984 . -623) 39297) ((-925 . -623) 39279) ((-709 . -148) T) ((-711 . -931) T) ((-711 . -830) T) ((-437 . -623) 39261) ((-1133 . -21) T) ((-1133 . -25) T) ((-680 . -386) 39245) ((-117 . -931) T) ((-882 . -233) 39229) ((-44 . -1231) T) ((-78 . -1231) T) ((-127 . -126) 39213) ((-1067 . -34) T) ((-1303 . -1051) 39187) ((-1301 . -1051) 39144) ((-1254 . -1071) T) ((-865 . -1071) T) ((-492 . -801) 39123) ((-364 . -1165) 39102) ((-361 . -1165) 39081) ((-353 . -1165) 39060) ((-492 . -804) 39011) ((-492 . -803) 38990) ((-229 . -34) T) ((-492 . -736) 38900) ((-809 . -626) 38746) ((-672 . -1064) 38730) ((-60 . -499) 38714) ((-581 . -1071) T) ((-672 . -650) 38698) ((-1186 . -174) 38589) ((-1138 . -174) 38500) ((-1075 . -1113) T) ((-1100 . -960) 38445) ((-963 . -1113) T) ((-827 . -658) 38396) ((-792 . -960) 38365) ((-723 . -1113) T) ((-790 . -960) 38332) ((-526 . -290) 38316) ((-680 . -911) 38275) ((-491 . -1113) T) ((-464 . -960) 38242) ((-79 . -1231) T) ((-364 . -38) 38207) ((-361 . -38) 38172) ((-353 . -38) 38137) ((-271 . -38) 37986) ((-253 . -38) 37835) ((-921 . -1165) T) ((-534 . -500) 37816) ((-633 . -148) 37795) ((-633 . -146) 37774) ((-534 . -623) 37740) ((-118 . -148) T) ((-118 . -146) NIL) ((-424 . -736) T) ((-809 . -1062) T) ((-352 . -462) T) ((-1273 . -1015) 37706) ((-1266 . -1015) 37672) ((-1245 . -1015) 37638) ((-921 . -38) 37603) ((-227 . -727) 37568) ((-327 . -47) 37538) ((-40 . -419) 37510) ((-141 . -623) 37492) ((-1012 . -132) T) ((-825 . -1231) T) ((-176 . -931) T) ((-559 . -377) T) ((-724 . -656) 37437) ((-616 . -626) 37418) ((-352 . -412) T) ((-681 . -626) 37399) ((-321 . -235) NIL) ((-182 . -626) 37380) ((-162 . -626) 37361) ((-157 . -626) 37342) ((-155 . -626) 37323) ((-530 . -296) 37300) ((-1244 . -233) 37270) ((-886 . -102) T) ((-825 . -1051) 37097) ((-45 . -34) T) ((-691 . -102) T) ((-686 . -102) T) ((-672 . -102) T) ((-664 . -21) T) ((-664 . -25) T) ((-1115 . -499) 37081) ((-685 . -1231) T) ((-488 . -102) T) ((-251 . -102) 37031) ((-556 . -854) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-881 . -1113) T) ((-1192 . -658) 36956) ((-1075 . -727) 36943) ((-741 . -1069) 36786) ((-1186 . -524) 36733) ((-963 . -727) 36582) ((-1138 . -524) 36534) ((-1292 . -1113) T) ((-1291 . -1113) T) ((-491 . -727) 36383) ((-67 . -623) 36365) ((-741 . -111) 36194) ((-954 . -499) 36178) ((-1293 . -658) 36138) ((-1188 . -1069) 36021) ((-827 . -736) T) ((-1187 . -1069) 35856) ((-1181 . -1069) 35646) ((-327 . -1231) T) ((-1139 . -1069) 35529) ((-1016 . -1235) T) ((-1107 . -102) 35507) ((-825 . -386) 35476) ((-589 . -623) 35458) ((-556 . -1113) T) ((-1016 . -566) T) ((-1188 . -111) 35327) ((-1187 . -111) 35148) ((-1181 . -111) 34917) ((-1139 . -111) 34786) ((-1118 . -1116) 34750) ((-388 . -858) T) ((-1273 . -623) 34732) ((-1266 . -623) 34714) ((-882 . -656) 34651) ((-1245 . -623) 34633) ((-1245 . -624) NIL) ((-246 . -296) 34610) ((-40 . -462) T) ((-227 . -174) T) ((-171 . -1113) T) ((-741 . -626) 34395) ((-704 . -148) T) ((-704 . -146) NIL) ((-606 . -623) 34377) ((-605 . -623) 34359) ((-1133 . -235) 34346) ((-909 . -1113) T) ((-851 . -1113) T) ((-818 . -1113) T) ((-779 . -1113) T) ((-668 . -862) 34330) ((-687 . -1113) T) ((-825 . -911) 34262) ((-1236 . -377) T) ((-40 . -412) NIL) ((-1188 . -626) 34144) ((-1133 . -671) T) ((-881 . -727) 34089) ((-258 . -499) 34073) ((-257 . -499) 34057) ((-1187 . -626) 33800) ((-1181 . -626) 33595) ((-722 . -649) 33543) ((-663 . -658) 33517) ((-1139 . -626) 33399) ((-303 . -34) T) ((-1133 . -113) T) ((-741 . -1062) T) ((-591 . -1288) 33386) ((-528 . -1288) 33363) ((-1254 . -1113) T) ((-1186 . -298) 33274) ((-1138 . -298) 33205) ((-1075 . -174) T) ((-297 . -1231) T) ((-865 . -1113) T) ((-963 . -174) 33116) ((-792 . -1257) 33100) ((-654 . -524) 33033) ((-77 . -623) 33015) ((-741 . -334) 32980) ((-1192 . -736) T) ((-581 . -1113) T) ((-491 . -174) 32891) ((-251 . -317) 32829) ((-1155 . -1125) T) ((-70 . -623) 32811) ((-1293 . -736) T) ((-1188 . -1062) T) ((-1187 . -1062) T) ((-335 . -102) 32761) ((-1181 . -1062) T) ((-1155 . -23) T) ((-1139 . -1062) T) ((-91 . -1134) 32745) ((-876 . -1125) T) ((-1188 . -239) 32704) ((-1187 . -249) 32683) ((-1187 . -239) 32635) ((-1181 . -239) 32522) ((-1181 . -249) 32501) ((-327 . -911) 32407) ((-876 . -23) T) ((-171 . -727) 32235) ((-417 . -1235) T) ((-1114 . -377) T) ((-1016 . -372) T) ((-880 . -462) T) ((-1037 . -148) T) ((-954 . -294) 32187) ((-321 . -860) NIL) ((-1265 . -656) 32069) ((-884 . -102) T) ((-1244 . -656) 31924) ((-722 . -25) T) ((-417 . -566) T) ((-722 . -21) T) ((-535 . -626) 31905) ((-363 . -148) 31887) ((-363 . -146) T) ((-1160 . -1113) 31865) ((-463 . -730) T) ((-75 . -623) 31847) ((-115 . -860) T) ((-251 . -290) 31831) ((-246 . -1069) 31728) ((-81 . -623) 31710) ((-745 . -377) 31663) ((-1190 . -838) T) ((-747 . -241) 31647) ((-1173 . -1231) T) ((-142 . -241) 31629) ((-246 . -111) 31519) ((-1254 . -727) 31348) ((-48 . -148) T) ((-881 . -174) T) ((-865 . -727) 31318) ((-494 . -1231) T) ((-963 . -524) 31265) ((-663 . -736) T) ((-581 . -727) 31252) ((-1047 . -1071) T) ((-491 . -524) 31195) ((-954 . -19) 31179) ((-954 . -614) 31156) ((-1093 . -1231) 31081) ((-826 . -624) NIL) ((-826 . -623) 31063) ((-1225 . -1064) 30946) ((-1017 . -1069) 30896) ((-423 . -623) 30878) ((-258 . -294) 30855) ((-368 . -1231) 30834) ((-362 . -1231) 30813) ((-354 . -1231) 30792) ((-257 . -294) 30769) ((-497 . -920) NIL) ((-324 . -29) 30739) ((-108 . -1231) T) ((-1016 . -1125) T) ((-219 . -920) NIL) ((-1225 . -650) 30636) ((-925 . -1069) 30588) ((-1093 . -1051) 30484) ((-1017 . -111) 30418) ((-721 . -1064) 30383) ((-1016 . -23) T) ((-925 . -111) 30321) ((-747 . -705) 30305) ((-721 . -650) 30270) ((-271 . -233) 30254) ((-437 . -1069) 30238) ((-388 . -1071) T) ((-246 . -626) 29968) ((-704 . -1219) NIL) ((-497 . -658) 29918) ((-484 . -656) 29800) ((-108 . -895) 29782) ((-108 . -897) 29764) ((-704 . -1216) NIL) ((-219 . -658) 29714) ((-368 . -1051) 29698) ((-362 . -1051) 29682) ((-335 . -317) 29620) ((-354 . -1051) 29604) ((-227 . -298) T) ((-437 . -111) 29583) ((-60 . -623) 29515) ((-171 . -174) T) ((-1133 . -860) T) ((-108 . -1051) 29475) ((-903 . -1113) T) ((-846 . -1071) T) ((-837 . -1071) T) ((-704 . -35) NIL) ((-704 . -95) NIL) ((-321 . -1005) 29436) ((-185 . -102) T) ((-590 . -462) T) ((-574 . -462) T) ((-505 . -462) T) ((-417 . -372) T) ((-246 . -1062) 29366) ((-1163 . -34) T) ((-487 . -931) T) ((-1012 . -649) 29314) ((-258 . -614) 29291) ((-257 . -614) 29268) ((-1093 . -386) 29252) ((-881 . -524) 29160) ((-246 . -239) 29112) ((-1172 . -1231) T) ((-1017 . -626) 29062) ((-925 . -626) 28999) ((-834 . -623) 28981) ((-1304 . -1125) T) ((-1296 . -623) 28963) ((-1254 . -174) 28854) ((-437 . -626) 28823) ((-108 . -386) 28805) ((-108 . -347) 28787) ((-1075 . -298) T) ((-963 . -298) 28718) ((-809 . -377) 28697) ((-657 . -1231) T) ((-642 . -1231) T) ((-596 . -1064) 28672) ((-491 . -298) 28603) ((-581 . -174) T) ((-335 . -290) 28587) ((-1304 . -23) T) ((-1225 . -102) T) ((-1212 . -1113) T) ((-1101 . -1113) T) ((-1089 . -1113) T) ((-596 . -650) 28562) ((-83 . -623) 28544) ((-1197 . -854) T) ((-1196 . -854) T) ((-721 . -102) T) ((-364 . -358) 28523) ((-618 . -1113) T) ((-361 . -358) 28502) ((-353 . -358) 28481) ((-485 . -1113) T) ((-1203 . -231) 28431) ((-271 . -260) 28393) ((-1155 . -132) T) ((-618 . -620) 28369) ((-1093 . -911) 28302) ((-1017 . -1062) T) ((-925 . -1062) T) ((-485 . -620) 28281) ((-1181 . -802) NIL) ((-1181 . -805) NIL) ((-1115 . -624) 28242) ((-489 . -231) 28192) ((-1115 . -623) 28174) ((-1017 . -249) T) ((-1017 . -239) T) ((-437 . -1062) T) ((-969 . -1113) 28124) ((-925 . -249) T) ((-876 . -132) T) ((-709 . -462) T) ((-853 . -1125) 28103) ((-108 . -911) NIL) ((-1225 . -292) 28069) ((-1126 . -1231) T) ((-882 . -858) 28048) ((-1012 . -25) T) ((-916 . -736) T) ((-171 . -524) 27960) ((-1012 . -21) T) ((-916 . -483) T) ((-417 . -1125) T) ((-497 . -804) T) ((-497 . -801) T) ((-921 . -358) T) ((-497 . -736) T) ((-219 . -804) T) ((-219 . -801) T) ((-722 . -235) 27947) ((-219 . -736) T) ((-853 . -23) 27899) ((-1198 . -1113) T) ((-668 . -1064) 27883) ((-1197 . -1113) T) ((-534 . -626) 27864) ((-1196 . -1113) T) ((-327 . -315) 27843) ((-1048 . -241) 27789) ((-668 . -650) 27759) ((-417 . -23) T) ((-954 . -624) 27720) ((-954 . -623) 27632) ((-654 . -499) 27616) ((-45 . -1023) 27566) ((-1126 . -1051) 27393) ((-627 . -980) T) ((-501 . -102) T) ((-339 . -623) 27375) ((-1006 . -294) 27342) ((-603 . -661) 27324) ((-131 . -1113) T) ((-129 . -1113) T) ((-603 . -382) 27306) ((-352 . -1288) 27283) ((-449 . -623) 27265) ((-1254 . -524) 27212) ((-1100 . -1064) 27055) ((-1040 . -1231) T) ((-881 . -298) T) ((-1186 . -294) 26982) ((-1100 . -650) 26831) ((-1013 . -1008) 26815) ((-792 . -1064) 26638) ((-790 . -1064) 26481) ((-792 . -650) 26310) ((-790 . -650) 26159) ((-486 . -1231) T) ((-473 . -1231) T) ((-596 . -102) T) ((-471 . -1064) 26130) ((-464 . -1064) 25973) ((-674 . -656) 25942) ((-633 . -462) 25921) ((-471 . -650) 25892) ((-464 . -650) 25741) ((-364 . -656) 25678) ((-361 . -656) 25615) ((-353 . -656) 25552) ((-271 . -656) 25462) ((-253 . -656) 25372) ((-1296 . -391) 25344) ((-527 . -1113) T) ((-118 . -462) T) ((-1211 . -102) T) ((-1105 . -1113) 25314) ((-1047 . -1113) T) ((-1128 . -93) T) ((-904 . -860) T) ((-1273 . -111) 25183) ((-360 . -1235) T) ((-1273 . -1069) 25066) ((-1126 . -386) 25035) ((-1266 . -1069) 24870) ((-1245 . -1069) 24660) ((-1266 . -111) 24481) ((-1245 . -111) 24250) ((-1225 . -317) 24237) ((-1016 . -132) T) ((-921 . -656) 24187) ((-374 . -623) 24169) ((-360 . -566) T) ((-297 . -315) T) ((-606 . -1069) 24129) ((-605 . -1069) 24012) ((-591 . -1064) 23977) ((-528 . -1064) 23922) ((-370 . -1113) T) ((-330 . -1113) T) ((-258 . -623) 23883) ((-257 . -623) 23844) ((-591 . -650) 23809) ((-528 . -650) 23754) ((-704 . -419) 23721) ((-645 . -23) T) ((-617 . -23) T) ((-668 . -102) T) ((-606 . -111) 23674) ((-605 . -111) 23543) ((-388 . -1113) T) ((-345 . -102) T) ((-171 . -298) 23454) ((-1244 . -858) 23407) ((-724 . -1071) T) ((-1160 . -524) 23340) ((-1204 . -845) 23324) ((-1126 . -911) 23256) ((-846 . -1113) T) ((-837 . -1113) T) ((-835 . -1113) T) ((-97 . -102) T) ((-145 . -860) T) ((-622 . -895) 23240) ((-110 . -1231) T) ((-1100 . -102) T) ((-1076 . -34) T) ((-792 . -102) T) ((-790 . -102) T) ((-1273 . -626) 23122) ((-1266 . -626) 22865) ((-471 . -102) T) ((-464 . -102) T) ((-1245 . -626) 22660) ((-246 . -805) 22611) ((-246 . -802) 22562) ((-659 . -102) T) ((-606 . -626) 22520) ((-605 . -626) 22402) ((-1254 . -298) 22313) ((-674 . -644) 22297) ((-188 . -623) 22279) ((-654 . -294) 22231) ((-1047 . -727) 22215) ((-581 . -298) T) ((-974 . -658) 22140) ((-1304 . -132) T) ((-745 . -658) 22100) ((-725 . -658) 22087) ((-282 . -102) T) ((-463 . -658) 22017) ((-50 . -102) T) ((-591 . -102) T) ((-528 . -102) T) ((-1273 . -1062) T) ((-1266 . -1062) T) ((-1245 . -1062) T) ((-517 . -656) 21999) ((-330 . -727) 21981) ((-1273 . -239) 21940) ((-1266 . -249) 21919) ((-1266 . -239) 21871) ((-1245 . -239) 21758) ((-1245 . -249) 21737) ((-1225 . -38) 21634) ((-606 . -1062) T) ((-605 . -1062) T) ((-1017 . -805) T) ((-1017 . -802) T) ((-984 . -805) T) ((-984 . -802) T) ((-882 . -1071) T) ((-109 . -623) 21616) ((-704 . -462) T) ((-388 . -727) 21581) ((-428 . -658) 21555) ((-880 . -879) 21539) ((-721 . -38) 21504) ((-605 . -239) 21463) ((-40 . -734) 21435) ((-360 . -337) 21412) ((-360 . -372) T) ((-1093 . -315) 21363) ((-302 . -1125) 21244) ((-1119 . -1231) T) ((-1012 . -235) 21217) ((-173 . -102) T) ((-1248 . -623) 21184) ((-853 . -132) 21136) ((-654 . -1269) 21120) ((-846 . -727) 21090) ((-837 . -727) 21060) ((-492 . -1231) T) ((-368 . -315) T) ((-362 . -315) T) ((-354 . -315) T) ((-654 . -614) 21037) ((-417 . -132) T) ((-530 . -676) 21021) ((-108 . -315) T) ((-302 . -23) 20904) ((-530 . -661) 20888) ((-704 . -412) NIL) ((-530 . -382) 20872) ((-299 . -623) 20854) ((-91 . -1113) 20832) ((-108 . -1035) T) ((-574 . -144) T) ((-1281 . -152) 20816) ((-492 . -1051) 20643) ((-1267 . -146) 20604) ((-1267 . -148) 20565) ((-1067 . -1231) T) ((-1006 . -623) 20547) ((-872 . -623) 20529) ((-826 . -1069) 20372) ((-1292 . -93) T) ((-1291 . -93) T) ((-1186 . -624) NIL) ((-1109 . -1113) T) ((-1103 . -1113) T) ((-1100 . -317) 20359) ((-1086 . -1113) T) ((-229 . -1231) T) ((-1079 . -1113) T) ((-1049 . -1113) T) ((-1032 . -1113) T) ((-792 . -317) 20346) ((-790 . -317) 20333) ((-1186 . -623) 20315) ((-826 . -111) 20144) ((-1138 . -623) 20126) ((-636 . -1113) T) ((-587 . -175) T) ((-539 . -175) T) ((-464 . -317) 20113) ((-493 . -1113) T) ((-1138 . -624) 19861) ((-1047 . -174) T) ((-954 . -296) 19838) ((-220 . -1113) T) ((-864 . -623) 19820) ((-618 . -524) 19603) ((-81 . -626) 19544) ((-828 . -1051) 19528) ((-485 . -524) 19320) ((-974 . -736) T) ((-745 . -736) T) ((-725 . -736) T) ((-360 . -1125) T) ((-1193 . -623) 19302) ((-225 . -102) T) ((-492 . -386) 19271) ((-525 . -1113) T) ((-520 . -1113) T) ((-518 . -1113) T) ((-809 . -658) 19245) ((-1037 . -462) T) ((-969 . -524) 19178) ((-360 . -23) T) ((-645 . -132) T) ((-617 . -132) T) ((-363 . -462) T) ((-246 . -377) 19157) ((-388 . -174) T) ((-1265 . -1071) T) ((-1244 . -1071) T) ((-227 . -1015) T) ((-826 . -626) 18894) ((-709 . -397) T) ((-428 . -736) T) ((-711 . -1235) T) ((-1155 . -649) 18842) ((-590 . -879) 18826) ((-1296 . -1069) 18810) ((-1173 . -1207) 18786) ((-711 . -566) T) ((-127 . -1113) 18764) ((-724 . -1113) T) ((-668 . -38) 18734) ((-492 . -911) 18666) ((-255 . -1113) T) ((-189 . -1113) T) ((-363 . -412) T) ((-324 . -148) 18645) ((-324 . -146) 18624) ((-129 . -524) NIL) ((-117 . -566) T) ((-321 . -148) 18580) ((-321 . -146) 18536) ((-48 . -462) T) ((-163 . -1113) T) ((-158 . -1113) T) ((-1173 . -107) 18483) ((-792 . -1165) 18461) ((-699 . -34) T) ((-1296 . -111) 18440) ((-560 . -34) T) ((-494 . -107) 18424) ((-258 . -296) 18401) ((-257 . -296) 18378) ((-881 . -294) 18329) ((-45 . -1231) T) ((-1237 . -854) T) ((-827 . -1231) T) ((-826 . -1062) T) ((-672 . -656) 18298) ((-1192 . -47) 18275) ((-826 . -334) 18237) ((-1100 . -38) 18086) ((-826 . -239) 18065) ((-792 . -38) 17894) ((-790 . -38) 17743) ((-1128 . -500) 17724) ((-464 . -38) 17573) ((-1128 . -623) 17539) ((-1131 . -102) T) ((-654 . -624) 17500) ((-654 . -623) 17412) ((-591 . -1165) T) ((-528 . -1165) T) ((-1160 . -499) 17396) ((-352 . -1064) 17341) ((-1217 . -1113) 17319) ((-1155 . -25) T) ((-1155 . -21) T) ((-352 . -650) 17264) ((-1296 . -626) 17213) ((-484 . -1071) T) ((-1237 . -1113) T) ((-1245 . -802) NIL) ((-1245 . -805) NIL) ((-1012 . -860) 17192) ((-848 . -1113) T) ((-829 . -623) 17174) ((-876 . -21) T) ((-876 . -25) T) ((-809 . -736) T) ((-176 . -1235) T) ((-591 . -38) 17139) ((-528 . -38) 17104) ((-396 . -623) 17086) ((-341 . -102) T) ((-332 . -623) 17068) ((-171 . -294) 17026) ((-63 . -1231) T) ((-112 . -102) T) ((-882 . -1113) T) ((-176 . -566) T) ((-724 . -727) 16996) ((-302 . -132) 16879) ((-227 . -623) 16861) ((-227 . -624) 16791) ((-1016 . -649) 16730) ((-1296 . -1062) T) ((-1133 . -148) T) ((-642 . -1207) 16705) ((-741 . -920) 16684) ((-603 . -34) T) ((-657 . -107) 16668) ((-642 . -107) 16614) ((-1254 . -294) 16541) ((-741 . -658) 16430) ((-303 . -1231) T) ((-1192 . -1051) 16326) ((-954 . -628) 16303) ((-587 . -586) T) ((-587 . -537) T) ((-539 . -537) T) ((-1181 . -920) NIL) ((-1075 . -624) 16218) ((-1075 . -623) 16200) ((-963 . -623) 16182) ((-723 . -500) 16132) ((-352 . -102) T) ((-258 . -1069) 16029) ((-257 . -1069) 15926) ((-404 . -102) T) ((-31 . -1113) T) ((-963 . -624) 15787) ((-723 . -623) 15722) ((-1294 . -1224) 15691) ((-491 . -623) 15673) ((-491 . -624) 15534) ((-271 . -421) 15518) ((-253 . -421) 15502) ((-258 . -111) 15392) ((-257 . -111) 15282) ((-1188 . -658) 15207) ((-1187 . -658) 15104) ((-1181 . -658) 14956) ((-1139 . -658) 14881) ((-360 . -132) T) ((-82 . -451) T) ((-82 . -405) T) ((-1016 . -25) T) ((-1016 . -21) T) ((-883 . -1113) 14832) ((-40 . -1064) 14777) ((-882 . -727) 14729) ((-40 . -650) 14674) ((-388 . -298) T) ((-171 . -1015) 14625) ((-704 . -397) T) ((-1012 . -1010) 14609) ((-711 . -1125) T) ((-704 . -167) 14591) ((-1265 . -1113) T) ((-1244 . -1113) T) ((-324 . -1216) 14570) ((-324 . -1219) 14549) ((-1178 . -102) T) ((-324 . -970) 14528) ((-135 . -1125) T) ((-117 . -1125) T) ((-663 . -1231) T) ((-612 . -1279) 14512) ((-711 . -23) T) ((-612 . -1113) 14462) ((-324 . -95) 14441) ((-91 . -524) 14374) ((-176 . -372) T) ((-258 . -626) 14104) ((-257 . -626) 13834) ((-324 . -35) 13813) ((-618 . -499) 13747) ((-135 . -23) T) ((-117 . -23) T) ((-977 . -102) T) ((-728 . -1113) T) ((-485 . -499) 13684) ((-417 . -649) 13632) ((-663 . -1051) 13528) ((-969 . -499) 13512) ((-364 . -1071) T) ((-361 . -1071) T) ((-353 . -1071) T) ((-271 . -1071) T) ((-253 . -1071) T) ((-881 . -624) NIL) ((-881 . -623) 13494) ((-1292 . -500) 13475) ((-1291 . -500) 13456) ((-1304 . -21) T) ((-1292 . -623) 13422) ((-1291 . -623) 13388) ((-581 . -1015) T) ((-741 . -736) T) ((-1304 . -25) T) ((-258 . -1062) 13318) ((-257 . -1062) 13248) ((-72 . -1231) T) ((-258 . -239) 13200) ((-257 . -239) 13152) ((-1155 . -235) 13125) ((-40 . -102) T) ((-921 . -1071) T) ((-1195 . -102) T) ((-129 . -499) 13107) ((-1188 . -736) T) ((-1187 . -736) T) ((-1181 . -736) T) ((-1181 . -801) NIL) ((-1181 . -804) NIL) ((-965 . -102) T) ((-932 . -102) T) ((-880 . -1064) 13094) ((-1139 . -736) T) ((-781 . -102) T) ((-682 . -102) T) ((-880 . -650) 13081) ((-556 . -623) 13063) ((-484 . -1113) T) ((-348 . -1125) T) ((-176 . -1125) T) ((-327 . -931) 13042) ((-1265 . -727) 12883) ((-882 . -174) T) ((-1244 . -727) 12697) ((-853 . -21) 12649) ((-853 . -25) 12601) ((-251 . -1162) 12585) ((-127 . -524) 12518) ((-417 . -25) T) ((-417 . -21) T) ((-348 . -23) T) ((-171 . -624) 12284) ((-171 . -623) 12266) ((-176 . -23) T) ((-654 . -296) 12243) ((-530 . -34) T) ((-909 . -623) 12225) ((-89 . -1231) T) ((-851 . -623) 12207) ((-818 . -623) 12189) ((-779 . -623) 12171) ((-687 . -623) 12153) ((-246 . -658) 11938) ((-627 . -113) T) ((-1190 . -1113) T) ((-1186 . -1069) 11761) ((-1163 . -1231) T) ((-1138 . -1069) 11604) ((-864 . -1069) 11588) ((-1248 . -628) 11572) ((-1186 . -111) 11381) ((-1138 . -111) 11210) ((-864 . -111) 11189) ((-1238 . -860) T) ((-1254 . -624) NIL) ((-1254 . -623) 11171) ((-352 . -1165) T) ((-865 . -623) 11153) ((-1089 . -294) 11132) ((-80 . -1231) T) ((-916 . -1231) T) ((-1017 . -920) NIL) ((-1225 . -656) 11042) ((-618 . -294) 11018) ((-1217 . -524) 10951) ((-497 . -1231) T) ((-581 . -623) 10933) ((-485 . -294) 10912) ((-1100 . -233) 10896) ((-527 . -93) T) ((-1017 . -658) 10846) ((-219 . -1231) T) ((-1016 . -235) 10812) ((-969 . -294) 10764) ((-297 . -931) T) ((-827 . -315) 10743) ((-880 . -102) T) ((-792 . -233) 10727) ((-925 . -658) 10679) ((-721 . -656) 10629) ((-704 . -734) 10596) ((-645 . -21) T) ((-645 . -25) T) ((-617 . -21) T) ((-557 . -102) T) ((-352 . -38) 10561) ((-497 . -895) 10543) ((-497 . -897) 10525) ((-484 . -727) 10366) ((-219 . -895) 10348) ((-64 . -1231) T) ((-219 . -897) 10330) ((-617 . -25) T) ((-437 . -658) 10304) ((-1186 . -626) 10073) ((-497 . -1051) 10033) ((-882 . -524) 9945) ((-1138 . -626) 9737) ((-864 . -626) 9655) ((-219 . -1051) 9615) ((-246 . -34) T) ((-1013 . -1113) 9593) ((-590 . -1064) 9580) ((-574 . -1064) 9567) ((-505 . -1064) 9532) ((-1265 . -174) 9463) ((-1244 . -174) 9394) ((-590 . -650) 9381) ((-574 . -650) 9368) ((-505 . -650) 9333) ((-722 . -146) 9312) ((-722 . -148) 9291) ((-711 . -132) T) ((-137 . -475) 9268) ((-1160 . -623) 9200) ((-668 . -666) 9184) ((-129 . -294) 9134) ((-117 . -132) T) ((-487 . -1235) T) ((-618 . -614) 9110) ((-485 . -614) 9089) ((-345 . -344) 9058) ((-607 . -1113) T) ((-595 . -1113) T) ((-546 . -1113) T) ((-487 . -566) T) ((-1186 . -1062) T) ((-1138 . -1062) T) ((-864 . -1062) T) ((-246 . -801) 9037) ((-246 . -804) 8988) ((-246 . -803) 8967) ((-1186 . -334) 8944) ((-246 . -736) 8854) ((-969 . -19) 8838) ((-497 . -386) 8820) ((-497 . -347) 8802) ((-1138 . -334) 8774) ((-363 . -1288) 8751) ((-219 . -386) 8733) ((-219 . -347) 8715) ((-969 . -614) 8692) ((-1186 . -239) T) ((-1277 . -1113) T) ((-674 . -1113) T) ((-655 . -1113) T) ((-1203 . -1113) T) ((-1100 . -260) 8629) ((-596 . -656) 8589) ((-364 . -1113) T) ((-361 . -1113) T) ((-353 . -1113) T) ((-271 . -1113) T) ((-253 . -1113) T) ((-84 . -1231) T) ((-128 . -102) 8567) ((-122 . -102) 8545) ((-1244 . -524) 8405) ((-1203 . -620) 8384) ((-1154 . -1113) T) ((-1128 . -626) 8365) ((-1093 . -931) 8316) ((-489 . -1113) T) ((-1017 . -804) T) ((-1017 . -801) T) ((-489 . -620) 8295) ((-258 . -805) 8246) ((-258 . -802) 8197) ((-257 . -805) 8148) ((-40 . -1165) NIL) ((-257 . -802) 8099) ((-1017 . -736) T) ((-129 . -19) 8081) ((-984 . -804) T) ((-709 . -1064) 8046) ((-925 . -736) T) ((-921 . -1113) T) ((-903 . -623) 8028) ((-129 . -614) 8003) ((-709 . -650) 7968) ((-91 . -499) 7952) ((-497 . -911) NIL) ((-882 . -298) T) ((-227 . -1069) 7917) ((-846 . -294) 7896) ((-219 . -911) NIL) ((-843 . -1125) 7875) ((-59 . -1113) 7825) ((-529 . -1113) 7803) ((-526 . -1113) 7753) ((-507 . -1113) 7731) ((-506 . -1113) 7681) ((-590 . -102) T) ((-574 . -102) T) ((-505 . -102) T) ((-484 . -174) 7612) ((-368 . -931) T) ((-362 . -931) T) ((-354 . -931) T) ((-227 . -111) 7568) ((-843 . -23) 7520) ((-437 . -736) T) ((-108 . -931) T) ((-40 . -38) 7465) ((-108 . -830) T) ((-591 . -358) T) ((-528 . -358) T) ((-668 . -656) 7424) ((-324 . -462) 7403) ((-321 . -462) T) ((-612 . -524) 7336) ((-417 . -235) 7309) ((-348 . -132) T) ((-176 . -132) T) ((-302 . -25) 7173) ((-302 . -21) 7056) ((-45 . -1207) 7035) ((-66 . -623) 7017) ((-55 . -102) T) ((-345 . -656) 6999) ((-1282 . -102) T) ((-45 . -107) 6949) ((-829 . -626) 6933) ((-1281 . -102) 6883) ((-1273 . -658) 6808) ((-1266 . -658) 6705) ((-1245 . -658) 6557) ((-1245 . -920) NIL) ((-1115 . -435) 6541) ((-1115 . -377) 6520) ((-396 . -626) 6504) ((-332 . -626) 6488) ((-1212 . -623) 6470) ((-1204 . -102) T) ((-1076 . -1231) T) ((-1100 . -656) 6380) ((-1075 . -1069) 6367) ((-1075 . -111) 6352) ((-963 . -1069) 6195) ((-963 . -111) 6024) ((-792 . -656) 5934) ((-790 . -656) 5844) ((-633 . -1064) 5831) ((-674 . -727) 5815) ((-633 . -650) 5802) ((-491 . -1069) 5645) ((-487 . -372) T) ((-471 . -656) 5601) ((-464 . -656) 5511) ((-227 . -626) 5461) ((-364 . -727) 5413) ((-361 . -727) 5365) ((-118 . -1064) 5310) ((-353 . -727) 5262) ((-271 . -727) 5111) ((-253 . -727) 4960) ((-1109 . -93) T) ((-1103 . -93) T) ((-118 . -650) 4905) ((-1086 . -93) T) ((-954 . -661) 4889) ((-1079 . -93) T) ((-491 . -111) 4718) ((-1070 . -1113) 4696) ((-1049 . -93) T) ((-954 . -382) 4680) ((-254 . -102) T) ((-1032 . -93) T) ((-74 . -623) 4662) ((-974 . -47) 4641) ((-720 . -102) T) ((-709 . -102) T) ((-1 . -1113) T) ((-631 . -1125) T) ((-1101 . -623) 4623) ((-636 . -93) T) ((-1089 . -623) 4605) ((-921 . -727) 4570) ((-127 . -499) 4554) ((-493 . -93) T) ((-631 . -23) T) ((-400 . -23) T) ((-87 . -1231) T) ((-220 . -93) T) ((-618 . -623) 4536) ((-618 . -624) NIL) ((-485 . -624) NIL) ((-485 . -623) 4518) ((-360 . -25) T) ((-360 . -21) T) ((-50 . -656) 4477) ((-521 . -1113) T) ((-517 . -1113) T) ((-128 . -317) 4415) ((-122 . -317) 4353) ((-606 . -658) 4327) ((-605 . -658) 4252) ((-591 . -656) 4202) ((-227 . -1062) T) ((-528 . -656) 4132) ((-388 . -1015) T) ((-227 . -249) T) ((-227 . -239) T) ((-1075 . -626) 4104) ((-1075 . -628) 4085) ((-969 . -624) 4046) ((-969 . -623) 3958) ((-963 . -626) 3747) ((-880 . -38) 3734) ((-723 . -626) 3684) ((-1265 . -298) 3635) ((-1244 . -298) 3586) ((-491 . -626) 3371) ((-1133 . -462) T) ((-512 . -860) T) ((-324 . -1152) 3350) ((-1012 . -148) 3329) ((-1012 . -146) 3308) ((-505 . -317) 3295) ((-303 . -1207) 3274) ((-1198 . -623) 3256) ((-1197 . -623) 3238) ((-1196 . -623) 3220) ((-881 . -1069) 3165) ((-487 . -1125) T) ((-140 . -845) 3147) ((-115 . -845) 3128) ((-633 . -102) T) ((-1217 . -499) 3112) ((-258 . -377) 3091) ((-257 . -377) 3070) ((-1075 . -1062) T) ((-303 . -107) 3020) ((-131 . -623) 3002) ((-129 . -624) NIL) ((-129 . -623) 2946) ((-118 . -102) T) ((-963 . -1062) T) ((-881 . -111) 2875) ((-487 . -23) T) ((-463 . -1231) T) ((-491 . -1062) T) ((-1075 . -239) T) ((-963 . -334) 2844) ((-491 . -334) 2801) ((-364 . -174) T) ((-361 . -174) T) ((-353 . -174) T) ((-271 . -174) 2712) ((-253 . -174) 2623) ((-974 . -1051) 2519) ((-527 . -500) 2500) ((-745 . -1051) 2471) ((-527 . -623) 2437) ((-428 . -1231) 2354) ((-1118 . -102) T) ((-1105 . -623) 2313) ((-1047 . -623) 2295) ((-704 . -1064) 2245) ((-1294 . -152) 2229) ((-1292 . -626) 2210) ((-1291 . -626) 2191) ((-1286 . -623) 2173) ((-1273 . -736) T) ((-704 . -650) 2123) ((-1266 . -736) T) ((-1245 . -801) NIL) ((-1245 . -804) NIL) ((-171 . -1069) 2033) ((-921 . -174) T) ((-881 . -626) 1963) ((-1245 . -736) T) ((-1016 . -351) 1937) ((-225 . -656) 1889) ((-1013 . -524) 1822) ((-853 . -860) 1801) ((-574 . -1165) T) ((-484 . -298) 1752) ((-606 . -736) T) ((-370 . -623) 1734) ((-330 . -623) 1716) ((-428 . -1051) 1612) ((-605 . -736) T) ((-417 . -860) 1563) ((-171 . -111) 1459) ((-843 . -132) 1411) ((-747 . -152) 1395) ((-1281 . -317) 1333) ((-497 . -315) T) ((-388 . -623) 1300) ((-530 . -1023) 1284) ((-388 . -624) 1198) ((-219 . -315) T) ((-142 . -152) 1180) ((-724 . -294) 1159) ((-497 . -1035) T) ((-590 . -38) 1146) ((-574 . -38) 1133) ((-505 . -38) 1098) ((-219 . -1035) T) ((-881 . -1062) T) ((-846 . -623) 1080) ((-837 . -623) 1062) ((-835 . -623) 1044) ((-826 . -920) 1023) ((-1305 . -1125) T) ((-1254 . -1069) 846) ((-865 . -1069) 830) ((-881 . -249) T) ((-881 . -239) NIL) ((-699 . -1231) T) ((-1305 . -23) T) ((-826 . -658) 719) ((-560 . -1231) T) ((-428 . -347) 703) ((-581 . -1069) 690) ((-1254 . -111) 499) ((-711 . -649) 481) ((-865 . -111) 460) ((-390 . -23) T) ((-171 . -626) 238) ((-1203 . -524) 30) ((-886 . -1113) T) ((-691 . -1113) T) ((-686 . -1113) T) ((-672 . -1113) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index c8e8d1c5..dc5fb70c 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3485510914)
-(4457 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3485633347)
+(4459 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -68,8 +68,9 @@
|Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
|DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
|Dictionary| |DifferentialExtension&| |DifferentialExtension|
- |DifferentialDomain&| |DifferentialDomain| |DifferentialRing&|
- |DifferentialRing| |DictionaryOperations&| |DictionaryOperations|
+ |DifferentialDomain&| |DifferentialDomain| |DifferentialSpace&|
+ |DifferentialSpace| |DifferentialRing&| |DifferentialRing|
+ |DictionaryOperations&| |DictionaryOperations|
|DiophantineSolutionPackage| |DirectProductCategory&|
|DirectProductCategory| |DirectProductFunctions2| |DirectProduct|
|DisplayPackage| |DivisionRing&| |DivisionRing|
@@ -484,664 +485,664 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |direction| |resetAttributeButtons| |parents|
- |interval| |factorsOfCyclicGroupSize| |conditionP| |updatD| |curve|
- |systemCommand| |inv| |ravel| |match?| |partialNumerators| |iicos|
- |mainSquareFreePart| |startStats!| |startPolynomial| |autoCoerce|
- |updateStatus!| |linear?| |fintegrate| |normalDenom| |sechIfCan|
- |ground?| |reshape| |nthRootIfCan| |zeroDim?| |setScreenResolution3D|
- |myDegree| |OMreadFile| |UP2ifCan| |members| |assign| |intersect|
- |ground| |d01gaf| |indicialEquationAtInfinity|
- |semiSubResultantGcdEuclidean2| |setProperty| |algSplitSimple|
- |leftRecip| |showScalarValues| |cyclotomicDecomposition| |UnVectorise|
- |leadingMonomial| |normal| |s21baf| |sup| |toseLastSubResultant|
- |particularSolution| |f01rdf| |permutationGroup| |rCoord|
- |OMputEndAttr| |multisect| |leadingCoefficient| |cTanh| |index?|
- |colorDef| |rspace| |OMclose| |setRealSteps| |supDimElseRittWu?|
- |leftDivide| |totalGroebner| |primitiveMonomials| |close| |e02def|
- |primintfldpoly| |cAsech| |makeSin| F |setrest!| |e04fdf| |f01rcf|
- |chvar| |areEquivalent?| |reductum| |update| |compactFraction|
- |scalarTypeOf| |resize| |intensity| |s13aaf| |satisfy?|
- |bivariatePolynomials| |sizeMultiplication| |infinite?| |display|
- |conditionsForIdempotents| |modularGcdPrimitive| |laurentIfCan|
- |supersub| |paraboloidal| |isobaric?| |OMreadStr| |e01sef|
- |extractIfCan| |bipolarCylindrical| |exprToXXP| |revert| |extension|
- |stopTableInvSet!| |leadingExponent| |mapdiv| |ramifiedAtInfinity?|
- |tRange| |expressIdealMember| |s20acf| |reindex| |OMsend|
- |palglimint0| |pmintegrate| |radicalSimplify| |quasiRegular|
- |swapRows!| |acosIfCan| |eyeDistance| |degreePartition| |coerceImages|
- |headRemainder| |readUInt16!| |pushup| |orthonormalBasis| |pomopo!|
- |groebgen| |position| |shiftRoots| |leftScalarTimes!| |OMmakeConn|
- |expr| |totalDifferential| |deepCopy| |graphs| |viewThetaDefault|
- |createPrimitiveNormalPoly| |solveLinearPolynomialEquationByRecursion|
- |input| ** |discriminantEuclidean| |sub| |argscript| |colorFunction|
- |operation| |directSum| |critMTonD1| |nil?| |polygamma| |weierstrass|
- |library| |node?| |numerators| |algebraicOf| |closeComponent| |hMonic|
- |explicitlyEmpty?| |LyndonWordsList1| |geometric| |uniform01|
- |diagonals| |nthExpon| |testModulus| |symbol?| |SturmHabicht|
- |rootSplit| |closed?| |environment| |sqfrFactor| |localUnquote|
- |algebraic?| |ignore?| |problemPoints| |semiSubResultantGcdEuclidean1|
- |size| |variable| |sincos| |ratDenom| |rightRemainder| |pop!|
- |shiftRight| |gcdcofactprim| |factorPolynomial| |balancedBinaryTree|
- |npcoef| |over| |iterators| |fglmIfCan| |basisOfRightNucleus|
- |extractBottom!| |prindINFO| |clearTheSymbolTable| |reorder|
- |constantRight| |set| |nthFractionalTerm| |basisOfCommutingElements|
- |genericLeftTrace| |Ci| |exprHasAlgebraicWeight| |jokerMode| |d02gbf|
- |e02baf| |maxPoints3D| |conjugate| |arbitrary| |s13adf| |legendre|
- |denominator| |previous| |jordanAlgebra?| |tubePointsDefault| |updatF|
- |ddFact| |ksec| |tab1| |fullDisplay| |radicalOfLeftTraceForm| |round|
- |complexNormalize| |lowerCase?| |figureUnits| |divisorCascade|
- |f01qcf| |basicSet| |queue| |besselK| |oblateSpheroidal| |iiasec|
- |nthExponent| |stiffnessAndStabilityFactor| |integralBasisAtInfinity|
- |trivialIdeal?| |setCondition!| |iiatan| |alternative?| |resetNew|
- |basisOfRightNucloid| |cSech| |startTableInvSet!| |dequeue| |coord|
- |purelyAlgebraic?| |iFTable| |rightDivide| |say| |leftMult| |rk4a|
- |gcdPrimitive| |true| |iipow| |arguments| |createPrimitivePoly|
- |lexico| |rewriteIdealWithRemainder| |sts2stst| |internal?|
- |definingEquations| |e01daf| |inverseColeman| |unaryFunction|
- |category| |cAsec| |bandedJacobian| |expint| |bivariateSLPEBR|
- |quartic| |reset| |divideExponents| |bfEntry| |node| |evaluate|
- |acscIfCan| |loopPoints| |domain| |unary?| |mkcomm| |commutative?|
- |cCot| |frst| |internalDecompose| |insert| |patternMatch| |hdmpToP|
- |phiCoord| |package| |signAround| |linearDependence| |deriv| |write|
- |regime| |uniform| |inc| |exactQuotient| |singRicDE| |ParCondList|
- |exp| |rightTraceMatrix| |leftOne| |save| |every?| |empty| |coerceL|
- |s17agf| |roughBase?| |show| |radix| |deepestTail|
- |createNormalPrimitivePoly| |iroot| |s17ajf| |negative?|
- |OMgetEndBVar| |createThreeSpace| |d01apf| |drawComplex| |writable?|
- |btwFact| |normInvertible?| |size?| |d01akf| |bsolve| |rombergo|
- |trace| |ef2edf| |intcompBasis| |halfExtendedSubResultantGcd1|
- |palgint| |diagonalMatrix| |hermite| |exptMod| |airyBi| |badNum|
- |universe| |harmonic| |branchIfCan| |outputArgs| |innerSolve1|
- |mathieu12| |inspect| |viewSizeDefault| |varList| |radicalSolve|
- |primes| |invmod| |infieldint| |setStatus| |irreducibleRepresentation|
- |e02agf| |ldf2lst| |associative?| |normalElement| |clipParametric|
- |rootSimp| |f01brf| |buildSyntax| |f07fef| |divide| |collect|
- |recoverAfterFail| |basisOfRightAnnihilator| |elliptic| |open|
- |sequence| |clipBoolean| |adaptive| |Si| |exponent|
- |nextsousResultant2| |ran| |tanintegrate| |mainVariable?| |df2mf|
- |monicModulo| |nlde| |numberOfHues| |e02dff| |evaluateInverse|
- |mathieu24| |space| |se2rfi| |check| |obj| |retractIfCan| |delete!|
- |isOr| |nilFactor| |double| |concat!| |notelem| |localIntegralBasis|
- |spherical| |cache| |constant| |setErrorBound| |ode| |xn| |cAtan|
- |pmComplexintegrate| |content| |e02gaf| |isOp| |operations| |rightGcd|
- |gethi| |inHallBasis?| |complexIntegrate| |makingStats?| |trueEqual|
- |tan2cot| |bitLength| |showTheRoutinesTable| |solve|
- |inverseIntegralMatrix| |f02ajf| |moduleSum| |hasSolution?| |OMread|
- |singularAtInfinity?| |lepol| |log10| |rational?| |patternMatchTimes|
- |subspace| |lowerPolynomial| |extractClosed| |topFortranOutputStack|
- |iiatanh| |zeroSetSplit| |indicialEquation| |bitand|
- |zeroDimensional?| |infinity| |critM| |diagonal| |putColorInfo|
- |printTypes| |d01alf| |fortranInteger| |getExplanations| |column|
- |bitior| |doubleRank| |c06gbf| |weighted| |edf2ef|
- |reduceByQuasiMonic| |var1StepsDefault| |headAst| |keys| |mix|
- |bumptab| |ip4Address| |coerceS| |semiResultantEuclideannaif| |merge|
- UTS2UP |clipPointsDefault| |double?| |tracePowMod|
- |selectFiniteRoutines| |kmax| |kernel| |mkAnswer| |map|
- |leastMonomial| |outlineRender| |ScanArabic| |isQuotient|
- |leastAffineMultiple| |nthFlag| |seed| |isNot| |symbolTableOf|
- |OMconnOutDevice| |list| |cCos| |getRef| |halfExtendedResultant1|
- |print| |hasPredicate?| |llprop| |lhs| |subQuasiComponent?|
- |compBound| |iiacos| |pascalTriangle| |draw| |euclideanNormalForm|
- |innerint| |resolve| |cAcoth| |makeViewport3D| |startTable!| |bat1|
- |rhs| |iterationVar| |pseudoQuotient|
- |dimensionOfIrreducibleRepresentation| |lowerCase| |adjoint|
- |cylindrical| |tableForDiscreteLogarithm| |ref| |RittWuCompare|
- |mapSolve| |imagK| |trailingCoefficient| |df2fi| |rootOf| |iicsc|
- |currentEnv| |yCoordinates| |headReduce| |eigenvector| |s17adf|
- |makeTerm| |tanSum| |univariate?| |binding| |commaSeparate|
- |trigs2explogs| |derivative| |convert| |gbasis| |lexGroebner|
- |OMreceive| |height| |f02aff| |empty?| |open?| |monomials| |cos2sec|
- |makeObject| |lllip| |numberOfNormalPoly| |splitDenominator|
- |monicRightDivide| |quotientByP| |lieAlgebra?| |deepExpand|
- |parseString| |binary| |leadingCoefficientRicDE| |normalise| |coef|
- |leftPower| |pr2dmp| |setPredicates| |more?| |inconsistent?| |parts|
- |member?| |rightExtendedGcd| |chiSquare1| |lazyPremWithDefault| |dom|
- |fortranLogical| |radicalRoots| |iibinom| |mapUnivariate|
- |genericRightDiscriminant| |factorByRecursion| |finite?|
- |primitivePart| |integralDerivationMatrix| |idealiserMatrix|
- |primitiveElement| Y |complexEigenvalues| |acotIfCan| |compound?|
- |numberOfOperations| |bothWays| |one?| |maxrank| |wreath|
- |degreeSubResultant| |subset?| |coleman| |invertible?| |iidsum|
- |halfExtendedResultant2| |rootDirectory| |Hausdorff| |label|
- |makeSeries| |terms| |internalSubPolSet?| |graphCurves| |dominantTerm|
- |showRegion| |eulerPhi| |listYoungTableaus| |genericRightTrace|
- |entry| |jacobian| |e02bbf| |range| |OMputEndApp| |edf2df|
- |represents| |intPatternMatch| |setMaxPoints3D| |power!| |triangulate|
- |dark| |createMultiplicationTable| |isExpt| |sumOfSquares| |vspace|
- |eigenvectors| |modularFactor| |f04mcf| |symmetricRemainder|
- |clearTheIFTable| |subscriptedVariables| |modulus| |maxint| |d02ejf|
- |hconcat| |ListOfTerms| RF2UTS |setleaves!| |s18acf|
- |rewriteSetByReducingWithParticularGenerators| |setDifference|
- |purelyTranscendental?| |iicot| |errorKind| |hcrf| |basisOfNucleus|
- |gcdprim| |low| |matrixGcd| |constantOperator|
- |transcendentalDecompose| |rootNormalize| |c06fuf| |numFunEvals3D|
- |repSq| |incr| |cAtanh| |resultantEuclidean|
- |setLegalFortranSourceExtensions| |pdf2df| |solid| |multiEuclidean|
- |aQuadratic| |infiniteProduct| |alphanumeric| |constructor| |hi|
- |univariatePolynomialsGcds| |escape| |c05pbf| |messagePrint| |tail|
- |compdegd| |nativeModuleExtension| |meatAxe| |digamma| |saturate|
- |epilogue| |readInt16!| |f02wef| |df2ef| |option| |youngGroup|
- |selectMultiDimensionalRoutines| |inverse| |cot2trig| |showSummary|
- |less?| |indices| |ratPoly| |insertMatch| |setTex!|
- |basisOfLeftNucleus| |constantOpIfCan| |edf2fi| |leftFactor|
- |OMencodingSGML| |rules| |units| |s18adf| |resultantnaif|
- |radicalEigenvalues| |testDim| |top| |shanksDiscLogAlgorithm| |even?|
- |polyPart| |pToHdmp| |showAttributes| |sumOfDivisors| |var1Steps|
- |inrootof| |getVariableOrder| |stosePrepareSubResAlgo| |continue|
- |listBranches| |changeMeasure| |algint| |structuralConstants|
- |reopen!| |LagrangeInterpolation| |selectAndPolynomials| |removeZero|
- |normDeriv2| |bag| |f04arf| |f01maf| |wordInStrongGenerators|
- |simplifyExp| |setMinPoints3D| |norm| |mainCoefficients| |name|
- |bipolar| |unknown| |integralMatrix| |RemainderList| |monicLeftDivide|
- |insert!| |principalIdeal| |leftRank| |comment| |normalForm|
- |convergents| |body| |largest| |internalIntegrate0|
- |extendedSubResultantGcd| |iisec| |extractIndex| |code| |simplify|
- |PDESolve| |leastPower| |ptFunc| |argument| |frobenius| |sequences|
- |f2st| |pol| |binaryFunction| |support| |eulerE| |setStatus!| |recip|
- |null| |badValues| |children| |lfunc| UP2UTS |increment|
- |rationalPower| |subResultantsChain| |OMencodingBinary| |unitNormal|
- |delta| |not| EQ |exponential| |lex| |normal?| |minrank| |OMputAtp|
- |logGamma| |alphanumeric?| |torsionIfCan| |s17acf| |and|
- |removeDuplicates| |leaf?| |mathieu22| |nodes| |cCsch| |iisqrt3|
- |generate| |computeCycleEntry| |maximumExponent|
- |SturmHabichtSequence| |or| |complexSolve| |replaceKthElement|
- |binomThmExpt| |retractable?| |subSet| |chebyshevT| |tubePoints|
- |pointLists| |lambert| |outputSpacing| |xor| |assert| |surface|
- |subResultantChain| |stoseLastSubResultant| |f04asf| |incrementBy|
- |ratpart| |rightFactorIfCan| |port| |polygon?| |leftRemainder|
- |pattern| |case| |uncouplingMatrices| |pushdterm| |gensym|
- |approxSqrt| |argumentListOf| |infinityNorm| |expand| |factorial|
- |checkRur| |complexRoots| |Zero| |contract| |palgRDE0| |setUnion|
- |expandTrigProducts| |LyndonCoordinates| |complexZeros| |filterWhile|
- |cschIfCan| |reflect| |t| |quadraticNorm| |One|
- |derivationCoordinates| |countRealRoots| |setsubMatrix!| |readIfCan!|
- |supRittWu?| |perfectNthRoot| |filterUntil| |reducedContinuedFraction|
- |currentCategoryFrame| |overset?| |lambda| |groebSolve| |lflimitedint|
- |distance| |redmat| |changeWeightLevel| |search| |s15adf| |select|
- |sylvesterSequence| |physicalLength| |integers|
- |variationOfParameters| |message| |nor| |dmp2rfi| |modifyPoint|
- |df2st| |pack!| |palgRDE| |removeRoughlyRedundantFactorsInContents|
- |cRationalPower| |pointSizeDefault| |setButtonValue|
- |antisymmetricTensors| |upperCase!| |fTable| |s17dcf| |sinhIfCan|
- |pointColor| |linkToFortran| |backOldPos| |identity| |nrows| |module|
- |digits| |isAbsolutelyIrreducible?| |removeSinhSq| |splitLinear|
- |removeIrreducibleRedundantFactors| |absolutelyIrreducible?| |ncols|
- |elt| |processTemplate| |normalizedDivide| |rotatey| |separate|
- |list?| |freeOf?| |cCosh| |retract| |repeating?|
- |cyclotomicFactorization| |cAcosh| |read!| |e04mbf| |newLine| |dilog|
- |zero| |pquo| |newTypeLists| |integerIfCan| |nonLinearPart| |ocf2ocdf|
- |OMsupportsCD?| |replace| |cons| |OMlistCDs| |sin| |makeRecord|
- |returns| |lprop| |showClipRegion| |block| |restorePrecision|
- |nothing| |And| |cos| |csch2sinh| |rational| |initials| |cartesian|
- |fortranDouble| |hex| |rootBound| |abelianGroup| |Or|
- |indiceSubResultant| |tan| |bottom!| |nextSublist| |tensorProduct|
- |e02dcf| |product| |taylorQuoByVar| |showAllElements| |factorList|
- |Not| |cot| |putProperty| |nodeOf?| |nsqfree| |OMputSymbol|
- |symmetricTensors| |basisOfLeftNucloid| |mainValue| |condition|
- |mainContent| |sec| |c06ekf| |dot| |e02akf| |associator|
- |leftMinimalPolynomial| |rename| |iflist2Result| |csc| |ReduceOrder|
- |maxdeg| |scan| |sin?| |knownInfBasis| |pointData| |optAttributes|
- |qPot| |dAndcExp| |interpret| |source| |asin| |swap| |makeop|
- |cycleTail| |prime| |squareFree| |getMultiplicationMatrix|
- |fortranCarriageReturn| |dec| |isAtom| |acos| |PollardSmallFactor|
- |meshPar2Var| |taylorRep| |limitedIntegrate| |makeSUP|
- |createLowComplexityTable| |readInt32!| |atan| |plusInfinity| |reseed|
- |primeFrobenius| |complementaryBasis| |numFunEvals| |vconcat| |atoms|
- |minGbasis| |constantLeft| |acot| |minusInfinity| |startTableGcd!|
- |nullSpace| |char| |relerror| |relationsIdeal| |extractTop!|
- |prinshINFO| |inputOutputBinaryFile| |asec| |nthFactor| |xCoord|
- |infRittWu?| |innerEigenvectors| |deepestInitial| |zeroDimPrimary?|
- |horizConcat| |isList| |acsc| |target| |laguerreL| |quatern|
- |scaleRoots| |back| |mkIntegral| |reducedForm| |unitNormalize| |sinh|
- |setIntersection| |fractionPart| |wholeRagits|
- |standardBasisOfCyclicSubmodule| |primlimitedint| |preprocess|
- |zerosOf| |normalize| |normal01| |cosh| |signatureAst| |subNodeOf?|
- |generalInfiniteProduct| |typeList| |rst| |polyred| |leadingBasisTerm|
- |doubleDisc| |type| |tanh| |viewpoint| |OMgetEndApp| |resultant|
- |hclf| |subNode?| |outputList| |collectUnder| |mvar| |s14aaf| |curve?|
- |tryFunctionalDecomposition?| |coth| |binaryTree|
- |SturmHabichtCoefficients| |option?| |makeMulti| |iiperm| |tablePow|
- |computePowers| |setOfMinN| |float| |qelt| |LyndonBasis|
- |integralMatrixAtInfinity| |cSec| |sech| |primlimintfrac|
- |interpretString| |primPartElseUnitCanonical!| |second| |qsetelt|
- |roughUnitIdeal?| |cycleSplit!| |OMgetEndError| |yCoord|
- |pointColorPalette| |partialDenominators| |componentUpperBound| |csch|
- |pointPlot| |hue| |d03eef| |third| |graeffe| |interactiveEnv|
- |viewDefaults| |generators| |xRange| |s20adf| |ParCond| |asinh|
- |totolex| |lazyIntegrate| |e02ahf| |hermiteH| |compile| |s01eaf|
- |radicalEigenvector| |region| |totalDegree| |yRange| |void|
- |positiveSolve| |nary?| |acosh| |accuracyIF| |makeViewport2D|
- |numberOfFractionalTerms| |max| |linearMatrix| |complement|
- |rightScalarTimes!| |screenResolution| |zRange|
- |exprHasWeightCosWXorSinWX| |sn| |conjunction| |atanh| |leadingIndex|
- |monomial?| |identityMatrix| |point?| |sncndn| |map!|
- |internalLastSubResultant| |expPot| |univariateSolve| |pade| |f02akf|
- |acoth| |OMputString| |integralLastSubResultant| |e02ddf| |ridHack1|
- |qsetelt!| |palginfieldint| |findBinding| |rightMult|
- |pseudoRemainder| |ODESolve| |safeCeiling| |asech| |lfinfieldint|
- |prem| |f04jgf| |diagonal?| |float?| |printHeader| |OMputInteger|
- |solveLinearlyOverQ| |hdmpToDmp| |createRandomElement|
- |repeatUntilLoop| |packageCall| |orbits| |viewport3D| |qinterval|
- |fill!| |factorSFBRlcUnit| |KrullNumber| GE |d02cjf|
- |zeroSquareMatrix| |multiple| |predicates| |tab| |numberOfDivisors|
- |mindegTerm| |imports| |just| |nextPartition| GT |usingTable?|
- |s14abf| |rightCharacteristicPolynomial| |applyQuote| |rightLcm|
- |components| |mapExponents| |listexp| |exp1| |iExquo| |qroot| |head|
- LE |shallowExpand| |numberOfImproperPartitions| |setvalue!|
- |karatsubaDivide| |normalizeAtInfinity| |leftTraceMatrix| |predicate|
- |noLinearFactor?| |elRow2!| |determinant| |shallowCopy| LT |acsch|
- |nextNormalPoly| |expenseOfEvaluation| |OMputEndBind|
- |groebnerFactorize| |LowTriBddDenomInv| |powerAssociative?| |prinb|
- |minPol| |upperCase| |has?| |mathieu11| |setOrder| |critBonD|
- |ruleset| |sPol| |outputForm| |deleteRoutine!| |root?| |hyperelliptic|
- |cyclicSubmodule| |clearTheFTable| |readLineIfCan!| |subst|
- |OMputEndBVar| |associatedSystem| |possiblyNewVariety?| |mapCoef|
- |integralRepresents| |heap| |mulmod| |lintgcd| |getMatch|
- |unknownEndian| |modTree| |basisOfCentroid| |coerceP| |prinpolINFO|
- |rightTrace| |BumInSepFFE| |nextItem| |rdregime| |moebius| |s17dhf|
- |nextPrimitiveNormalPoly| |complexElementary| |iiasin| |directory|
- |makeVariable| |polyRDE| |suchThat| |presub| |currentScope|
- |monomRDEsys| |tree| |index| |computeCycleLength|
- |removeRoughlyRedundantFactorsInPols| |iiacosh| |socf2socdf|
- |completeHensel| |besselJ| |hspace| |pole?| |adaptive?| |setValue!|
- |in?| |nextPrime| |isConnected?| |OMopenFile| |initial| |const|
- |mapBivariate| |doubleFloatFormat| |complete| |normalDeriv|
- |fullPartialFraction| |multiple?| |sinh2csch| |functionIsOscillatory|
- |returnType!| |odd?| |primextintfrac| |curryLeft| |f02awf|
- |unitVector| |simpson| |squareFreePolynomial| |pair| |mapMatrixIfCan|
- |s21bdf| |bezoutResultant| |linGenPos| |vedf2vef| |objects| |biRank|
- |rightTrim| |select!| |monicDecomposeIfCan| |bright| |quasiMonic?|
- |selectPolynomials| |monomRDE| |parameters| |primitivePart!|
- |stronglyReduced?| |lagrange| |getGraph| |readUInt32!| |base|
- |leftTrim| |airyAi| |lazyEvaluate| |s18aef| |innerSolve| |sech2cosh|
- |arg1| |green| |parent| |lowerBound| |ode1| |lllp| |mergeFactors|
- |triangular?| |unrankImproperPartitions1| |eval| |linears| |plotPolar|
- |arg2| |squareTop| |isEquiv| |leftRegularRepresentation|
- |virtualDegree| |minimumDegree| |color| |irreducible?| |separant|
- |crushedSet| |endSubProgram| |functionIsContinuousAtEndPoints|
- |stoseInvertible?sqfreg| |sturmSequence| |removeSinSq| |disjunction|
- |externalList| |permutation| |varselect| |schema| |thetaCoord|
- |conditions| |identification| |squareFreeLexTriangular| |component|
- |symmetricPower| |hessian| |error| |makeFR| |rightPower| |d02bhf|
- |setProperties| |monicDivide| |addPoint2| |match| |curry| |plot|
- |setClipValue| |semiDiscriminantEuclidean| |parametersOf| |nullary?|
- |moebiusMu| |cap| |equation| |readInt8!| |wholePart| |useNagFunctions|
- |decreasePrecision| |cyclePartition| |iiacsch| |companionBlocks| |is?|
- |elColumn2!| |zero?| |SturmHabichtMultiple| |choosemon| |abs|
- |createMultiplicationMatrix| |f01ref| |smith| |removeDuplicates!|
- |function| |currentSubProgram| |optimize|
- |leftCharacteristicPolynomial| |ramified?| |numerator| |e01bhf|
- |hostPlatform| |genericLeftTraceForm| |invertIfCan| |style|
- |extractPoint| |csubst| |alternatingGroup| |completeHermite|
- |numberOfComponents| |genericRightNorm| |contours| |cPower|
- |padicallyExpand| |denomLODE| |expt| |c06frf| BY |besselI|
- |arrayStack| |alphabetic| |d01amf| |setClosed| |cycles| |prevPrime|
- |exportedOperators| |OMbindTCP| |iteratedInitials| |expintegrate|
- |totalfract| |monicCompleteDecompose| |nextNormalPrimitivePoly|
- |OMgetEndAttr| |OMgetFloat| |semiResultantEuclidean2|
- |sylvesterMatrix| |acothIfCan| |collectUpper| |minimumExponent| |cCsc|
- |s18dcf| |OMcloseConn| |prepareSubResAlgo| |c05nbf| |initiallyReduce|
- |separateDegrees| |cCoth| |trace2PowMod| |gderiv| |rightExactQuotient|
- |selectfirst| |dflist| |s14baf| |algintegrate| |s19abf| |sort|
- |tubePlot| |clearTable!| |lieAdmissible?| |irDef| |lSpaceBasis|
- |extend| |times!| |symmetricDifference| |categoryFrame| |deref|
- |idealSimplify| |enterInCache| |noValueMode| |rem| |imagk| |multiset|
- |roughSubIdeal?| |dn| |rectangularMatrix| |properties| |goto|
- |vertConcat| |stoseSquareFreePart| |showTheSymbolTable|
- |polarCoordinates| |quo| |ricDsolve| |critT| |maxRowIndex| |c06fpf|
- |padicFraction| |id| |eigenvalues| NOT |mesh?| |argumentList!|
- |translate| |child?| |tanQ| |setnext!| |fortranReal| |readLine!|
- |f01bsf| |sh| |lo| |mkPrim| OR |firstUncouplingMatrix| |random|
- |jacobiIdentity?| |getDatabase| |squareMatrix|
- |genericRightMinimalPolynomial| |div| |d01anf| |algDsolve|
- |palgextint| |quoByVar| |lcm| |ScanFloatIgnoreSpaces| AND |asimpson|
- |logIfCan| |diophantineSystem| |algebraicSort| |diag|
- |associatedEquations| |exquo| |delete| |getOperator|
- |fortranCompilerName| |OMgetVariable| |s17aef| |sign| |upDateBranches|
- |stoseInvertible?| |mapmult| |rewriteIdealWithHeadRemainder|
- |associates?| ~= |complexNumericIfCan| |hitherPlane| |var2Steps|
- |ldf2vmf| |lift| |sorted?| |leftRankPolynomial| |append| |middle|
- |sec2cos| |maxColIndex| |OMgetAtp| |ellipticCylindrical| |#| |setPoly|
- |linearlyDependentOverZ?| |arity| |monicRightFactorIfCan| |reduce|
- |pow| |OMgetSymbol| |legendreP| |midpoints| |gcd| |setlast!|
- |rightRankPolynomial| |toScale| ~ |linearPart| |fixedPoints| |quoted?|
- |car| |representationType| |solveid| |quasiAlgebraicSet| |false|
- |partitions| |rationalApproximation| |integralCoordinates| |Lazard|
- |overlabel| |reduced?| |OMputEndObject| |cfirst| |outputMeasure|
- |rightUnits| |opeval| |trunc| |cAcot| |insertTop!| |printingInfo?|
- |apply| |imagj| |subresultantSequence| |rootsOf| |dmpToP|
- |alphabetic?| |distribute| |c06gsf| |setMinPoints| |clip|
- |highCommonTerms| |/\\| |cyclicCopy| |matrix| |first| |setleft!|
- |nthCoef| |d03edf| |setPrologue!| |useEisensteinCriterion?| |shape|
- |listLoops| |mainDefiningPolynomial| |randomLC| |\\/| |rest|
- |finiteBasis| |strongGenerators| |debug3D| |lp| |sinhcosh|
- |generalizedContinuumHypothesisAssumed| |chainSubResultants|
- |writeByte!| |nthRoot| |rotatez| |makeResult| |front| |insertBottom!|
- |simpleBounds?| |raisePolynomial| |bat| |coerce| * |rangeIsFinite|
- |s17ahf| |prepareDecompose| |e02zaf| |inGroundField?|
- |generalPosition| |d01fcf| |brillhartIrreducible?| |leftUnit|
- |bezoutMatrix| |certainlySubVariety?| |construct| |delay|
- |showArrayValues| |order| |removeSquaresIfCan| |subMatrix|
- |computeBasis| |e01sff| |e04jaf| |postfix| |numer| |logical?|
- |secIfCan| |s15aef| |generator| |setAdaptive| |minPoly|
- |bezoutDiscriminant| |build| |writeUInt8!| |wordInGenerators| |denom|
- |critpOrder| |getStream| |swapColumns!| = |getOrder| |morphism|
- |clipWithRanges| |zeroVector| |leviCivitaSymbol| |lazyPrem| |submod|
- |asinhIfCan| |cAcsc| |voidMode| |rowEch| |polyRicDE|
- |changeThreshhold| |showIntensityFunctions| |reducedSystem|
- |intChoose| |OMReadError?| |Lazard2| |pi| |triangSolve| |byte|
- |complexEigenvectors| |octon| |tanhIfCan| < |drawCurves|
- |initiallyReduced?| |child| |augment| |weakBiRank| |unitCanonical|
- F2FG |width| |writeBytes!| |asecIfCan| > |mainVariables| |e02daf|
- |oddInfiniteProduct| |fixedPoint| |readByte!| |showAll?|
- |getButtonValue| |fortranCharacter| |f02bbf| |redpps|
- |evenInfiniteProduct| <= |diff| |f02bjf| |power| |cosSinInfo|
- |setAdaptive3D| |makeprod| |paren| |integrate| |push| |printCode|
- |numericIfCan| |pseudoDivide| >= |extensionDegree| |coefChoose|
- |OMputError| |rightAlternative?| |stiffnessAndStabilityOfODEIF|
- |univariatePolynomials| |setFormula!| |f04adf| |rootPower|
- |integralAtInfinity?| |makeYoungTableau| |factorset| |lowerCase!|
- |minimalPolynomial| |transpose| |multMonom| |s17dgf| |log2|
- |addMatchRestricted| |infieldIntegrate| |pureLex| |cubic|
- |OMUnknownSymbol?| |clikeUniv| |explicitlyFinite?| |polygon|
- |chiSquare| |iiexp| |stoseInternalLastSubResultant|
- |generalizedEigenvector| |fmecg| |lfextendedint| |lyndon?| |elRow1!|
- |positive?| + |rowEchelon| |doubleResultant| |printInfo!|
- |basisOfLeftAnnihilator| |value| |external?| |clearCache|
- |ScanFloatIgnoreSpacesIfCan| |findCycle| |singleFactorBound| |numeric|
- |explimitedint| |int| - |viewZoomDefault| |gramschmidt|
- |LazardQuotient2| |iicosh| |OMconnectTCP| |iicsch|
- |selectOrPolynomials| |radical| |getPickedPoints| |antiCommutator|
- |semiIndiceSubResultantEuclidean| |applyRules| |optional|
- |linearAssociatedExp| |reduction| |createNormalElement| /
- |simplifyPower| |leftFactorIfCan| |mdeg| |principalAncestors| |cTan|
- |logpart| |rk4f| |s13acf| |symmetricGroup| |log| |inverseLaplace|
- |simpsono| |createIrreduciblePoly| |rightMinimalPolynomial| |zag|
- |f2df| |sumOfKthPowerDivisors| |presuper| |cyclicParents|
- |gcdPolynomial| |connect| |resultantReduitEuclidean|
- |selectPDERoutines| |critB| |youngDiagram| |create| |reverse!|
- |rewriteIdealWithQuasiMonicGenerators| |bombieriNorm| |laguerre|
- |signature| |getMultiplicationTable| |limit| |setelt| |setPosition|
- |relativeApprox| |bernoulliB| |orbit| |callForm?| |attributeData|
- |continuedFraction| |binomial| |besselY| |incrementKthElement|
- |setEmpty!| |specialTrigs| |toseInvertible?| |brillhartTrials|
- |safeFloor| |declare!| |high| |commutativeEquality| |cscIfCan|
- |att2Result| |unit| |parabolicCylindrical| |setMaxPoints| |copy|
- |edf2efi| |mergeDifference| |stoseInvertibleSetsqfreg| |minPoints3D|
- |unmakeSUP| |whatInfinity| |qqq| |separateFactors| |e02bcf|
- |limitedint| |minIndex| |swap!| |divideIfCan| |fprindINFO|
- |OMputEndError| |baseRDEsys| |printStatement| |genericPosition|
- |coshIfCan| |cyclicEntries| |datalist| |nextPrimitivePoly|
- |normalizeIfCan| |iifact| |rightOne| |B1solve| |quadraticForm|
- |SFunction| |trapezoidalo| |mainMonomials| |perfectSqrt|
- |rationalIfCan| |outputGeneral| |An| |endOfFile?| |rischNormalize|
- |c06fqf| |modifyPointData| |wholeRadix| |henselFact|
- |tryFunctionalDecomposition| |compiledFunction| |rightZero| |iiabs|
- |options| |imagI| |curveColorPalette| |jacobi| |schwerpunkt| |trim|
- |GospersMethod| |FormatArabic| |powers| |routines| |composites|
- |unprotectedRemoveRedundantFactors| |tanh2coth| |binaryTournament|
- |integral| |basisOfCenter| |redPol| |fibonacci| |normalizedAssociate|
- |controlPanel| |approximants| |iprint| |degreeSubResultantEuclidean|
- |returnTypeOf| |gradient| |minset| |exponents| |slash| |lazy?|
- |htrigs| |segment| |flagFactor| |linearDependenceOverZ| |c02agf|
- |implies| |OMgetAttr| |output| |string| |expextendedint| |sinIfCan|
- |leftUnits| |irVar| |bitTruth| |e04dgf| |symmetricSquare| |roman|
- |graphState| |moreAlgebraic?| |bubbleSort!| |weights| |exactQuotient!|
- |drawToScale| |numberOfComputedEntries| |omError| |dequeue!|
- |bringDown| |insertRoot!| |removeSuperfluousQuasiComponents|
- |integral?| |rischDEsys| |genericLeftDiscriminant| |realEigenvalues|
- |getMeasure| |leftGcd| |newSubProgram| |f04qaf| |sqfree| |polar|
- |wronskianMatrix| |jordanAdmissible?| |nextLatticePermutation| |cond|
- |sample| |rationalFunction| |minordet| |beauzamyBound|
- |resultantReduit| |e02ajf| |stFuncN| |mainMonomial| |lazyResidueClass|
- |getOperands| |f07aef| |perspective| |linearAssociatedLog| |errorInfo|
- |pointColorDefault| |dimensionsOf| |evenlambert| |weight|
- |perfectSquare?| |pastel| |LazardQuotient| |stopTable!| |iomode|
- |imagJ| |whitePoint| |monic?| |ord| |semiLastSubResultantEuclidean|
- |c06gqf| |part?| |iitanh| |noKaratsuba| |antiAssociative?| |sort!|
- |cyclic?| |littleEndian| |f04axf| |leadingTerm| |wrregime|
- |showFortranOutputStack| |f04atf| |rationalPoints|
- |reducedDiscriminant| |cSin| |selectsecond| |invertibleSet| |lifting1|
- |s17akf| |setAttributeButtonStep| |subtractIfCan| |credPol| |remove|
- |genericRightTraceForm| |fractRadix| |splitConstant| |crest|
- |solveRetract| |skewSFunction| |acschIfCan| |factorFraction|
- |triangularSystems| |homogeneous?| |elseBranch| |listRepresentation|
- |leftNorm| |s21bbf| |integer?| |taylorIfCan| |mainForm|
- |elaborateFile| |partition| |elem?| |getCurve| |discreteLog|
- |scalarMatrix| |center| |last| |hypergeometric0F1| |s19aaf| |f04maf|
- |f02abf| |measure2Result| |symbolIfCan| |rk4qc| |initTable!| |assoc|
- |laplace| |rk4| |mainKernel| |genericLeftNorm| |top!| |OMgetEndObject|
- |iCompose| |maxIndex| |leadingIdeal| |constantIfCan| |formula|
- |extract!| |dfRange| |randnum| |allRootsOf|
- |semiResultantReduitEuclidean| |infLex?| |OMlistSymbols|
- |selectIntegrationRoutines| |hexDigit?| |screenResolution3D| |yellow|
- |changeNameToObjf| |HermiteIntegrate| |bernoulli| |coordinate| |zoom|
- |findConstructor| |rightRank| |ScanRoman| |rangePascalTriangle|
- |pushucoef| |cyclic| |numberOfFactors| |matrixConcat3D| |call| |untab|
- |imagi| |lazyGintegrate| |getGoodPrime| |removeRedundantFactors|
- |partialQuotients| |OMgetObject| |digit| |zCoord| |f04mbf|
- |nextColeman| |withPredicates| |hasHi| |kroneckerDelta| |cycleLength|
- |rischDE| |expandPower| |refine| |lquo| |changeName|
- |nextsubResultant2| |f02aef| |countable?| |realRoots| |contains?|
- |expenseOfEvaluationIF| |viewWriteDefault| |getIdentifier|
- |halfExtendedSubResultantGcd2| |lazyPseudoQuotient| |quasiComponent|
- |Aleph| |outputFloating| |leftTrace| |constantCoefficientRicDE|
- |dictionary| |hasTopPredicate?| |groebner| |s17def| |primitive?|
- |imagE| |unrankImproperPartitions0| |twoFactor| |bivariate?|
- |autoReduced?| |iicoth| |variable?| |mapDown!| |e04gcf|
- |leftDiscriminant| |subResultantGcd| |changeVar| |genus|
- |branchPointAtInfinity?| |charpol| |twist| |rur| |getProperty|
- |leftExactQuotient| |floor| |stoseInvertible?reg| |s19adf| |anfactor|
- |outputAsScript| |generalSqFr| |numberOfComposites| |viewport2D|
- |fortranLiteralLine| |numberOfChildren| |iiacoth| |fixPredicate|
- |putProperties| |acoshIfCan| |modularGcd| |squareFreePrim| |makeEq|
- |cycleEntry| |powerSum| |primeFactor| |OMputObject| |kovacic|
- |decomposeFunc| |regularRepresentation| |f01mcf| |lastSubResultant|
- |addiag| |finiteBound| |f02xef| |noncommutativeJordanAlgebra?|
- |calcRanges| |clipSurface| |seriesToOutputForm| |e04naf|
- |dualSignature| |irreducibleFactors| |psolve| |magnitude| |hexDigit|
- |setref| |identitySquareMatrix| |iiGamma| |stFunc1| |leaves|
- |contractSolve| |unvectorise| |Nul| |sturmVariationsOf| |solid?|
- |reify| |lexTriangular| |closedCurve| |rootProduct| |shufflein|
- |nextSubsetGray| |squareFreePart| |nil| |setLabelValue| |isAnd|
- |c06gcf| |asinIfCan| |macroExpand| |leftLcm| |numberOfVariables|
- |f07fdf| |coercePreimagesImages| |semicolonSeparate|
- |rightDiscriminant| |lazyVariations| |stoseInvertibleSetreg|
- |constantToUnaryFunction| |minColIndex| |flexible?|
- |selectOptimizationRoutines| |headReduced?| |discriminant| |blue|
- |numberOfCycles| |generic| |lyndon| |traverse| |mainExpression| |mat|
- |e01bgf| |listOfMonoms| |OMwrite| |approximate| |listConjugateBases|
- FG2F |irreducibleFactor| |scanOneDimSubspaces| |stopMusserTrials|
- |remove!| |axes| |fractRagits| |sum| |stronglyReduce| |complex|
- |removeZeroes| |drawStyle| |s17aff| |repeating| |OMopenString|
- |nextIrreduciblePoly| |subResultantGcdEuclidean| |isOpen?|
- |OMputFloat| |minus!| |OMsupportsSymbol?| |lazyPseudoRemainder|
- |selectNonFiniteRoutines| |atanhIfCan| |tubeRadius|
- |resetVariableOrder| |generalTwoFactor| |minPoints| |rootRadius|
- |bumprow| |corrPoly| |rank| |quickSort| |plus!| |comparison|
- |transform| |elements| |f02axf| |point| |vark| |tValues| |cn|
- |mightHaveRoots| |f02aaf| |viewPhiDefault| |showTheIFTable| |debug|
- |failed| |enqueue!| |optpair| |trigs| |exists?| |appendPoint|
- |constantKernel| |rotatex| |number?| |numericalIntegration| |radPoly|
- D |balancedFactorisation| |parabolic| |cAcos| |generalizedInverse|
- |inputBinaryFile| |ceiling| |s21bcf| |mappingAst| |idealiser|
- |Vectorise| |univcase| |series| |someBasis| |permutations| |complex?|
- |e01sbf| |completeSmith| |axesColorDefault| |firstSubsetGray|
- |inverseIntegralMatrixAtInfinity| |defineProperty| |OMgetError|
- |failed?| |extendIfCan| |froot| |fortranTypeOf| |perfectNthPower?|
- |lighting| |moduloP| |shuffle| |makeGraphImage|
- |resultantEuclideannaif| |gcdcofact| |LiePoly|
- |solveLinearPolynomialEquation| |cyclicEqual?| |patternVariable|
- |f04faf| |getBadValues| |super| |removeConstantTerm| |lists| |conical|
- |checkForZero| |d01asf| |min| |OMgetEndBind| |padecf| |chebyshevU|
- |newReduc| |connectTo| |bracket| |inf| |symFunc| |goodnessOfFit|
- |c06eaf| |isPlus| |printInfo| |transcendenceDegree| |permanent|
- |remainder| |safetyMargin| |elaboration| |singular?| |rootKerSimp|
- |iisech| |dihedral| |torsion?| |branchPoint?| |coHeight|
- |functionIsFracPolynomial?| |getProperties| |aQuartic| |close!|
- |checkPrecision| |enumerate| |d02gaf| |upperBound| |Ei| |substring?|
- |s19acf| |key| |aLinear| |powern| |enterPointData| |droot|
- |chineseRemainder| |palglimint| |d03faf| |quasiMonicPolynomials|
- |roughBasicSet| |coerceListOfPairs| |graphStates| |constant?| |leader|
- |setLength!| |unravel| |conjugates| |karatsubaOnce| |suffix?|
- |initializeGroupForWordProblem| |filename| |fixedPointExquo|
- |removeCosSq| |rewriteSetWithReduction|
- |removeRedundantFactorsInContents| |lookup| |linearlyDependent?|
- |ode2| |localAbs| |meshFun2Var| |symbolTable| |loadNativeModule|
- |dimensions| |squareFreeFactors| |zeroSetSplitIntoTriangularSystems|
- |factorGroebnerBasis| |critMonD1| |lyndonIfCan| |expintfldpoly|
- |generalLambert| |prefix?| |parametric?| |element?| |parse| |capacity|
- |setchildren!| |traceMatrix| |pleskenSplit| |fortran| |iisqrt2|
- |aspFilename| |distFact| |bandedHessian| |plus| |probablyZeroDim?|
- |pushFortranOutputStack| |bindings| |rightNorm| |red|
- |matrixDimensions| |createLowComplexityNormalBasis| |c06ecf|
- |changeBase| |intermediateResultsIF| |splitNodeOf!|
- |popFortranOutputStack| |setVariableOrder| |e02aef| |slex| |elaborate|
- |rightUnit| |internalAugment| |truncate| |createGenericMatrix|
- |definingPolynomial| |outputAsFortran| |linSolve| |toroidal| |powmod|
- |completeEval| |find| |closed| |e01bef| |s18def| |definingInequation|
- |table| |eq?| |light| |scale| |factorsOfDegree| |exponentialOrder|
- |anticoord| |precision| |s18aff| |stripCommentsAndBlanks| |times|
- |midpoint| |new| |atanIfCan| |semiResultantEuclidean1| |Frobenius|
- |linearPolynomials| |nand| |totalLex| |charClass| |rename!|
- |typeLists| |infix?| |ptree| |shrinkable| |iisinh| |principal?|
- |viewPosDefault| |domainTemplate| |flatten| |move| |rationalPoint?|
- |mathieu23| |mask| |pushuconst| |exponential1| |sortConstraints|
- |subscript| |e02bdf| |divideIfCan!| |init| |lfextlimint| |subCase?|
- |fi2df| |rightRegularRepresentation| |medialSet| |entry?|
- |minRowIndex| |scopes| |equality| |OMgetBVar| |systemSizeIF|
- |lineColorDefault| |rowEchelonLocal| |monom| |csc2sin| |recur|
- |factorSquareFree| |setright!| |iiacot| |subHeight| |bytes|
- |OMputVariable| |generateIrredPoly| |rule| |OMgetType| |optional?|
- |string?| |tanNa| |extendedResultant| |decrease| |neglist|
- |euclideanSize| |realZeros| |charthRoot| |status| |compose|
- |internalInfRittWu?| |decimal| |hasoln| |inR?| |stoseInvertibleSet|
- |common| |tanAn| |mappingMode| |iidprod| |split| |collectQuasiMonic|
- |script| |setRow!| |recolor| |groebner?| |clearFortranOutputStack|
- |monomialIntegrate| |rotate!| |validExponential|
- |generalizedEigenvectors| |mapUp!| |encodingDirectory| |title|
- |combineFeatureCompatibility| |polynomialZeros| |f01qef| |po| |prime?|
- |lastSubResultantEuclidean| |aCubic| |exprToUPS| |symmetricProduct|
- |isImplies| |toseInvertibleSet| |basisOfMiddleNucleus| |integerBound|
- |left| |vector| |c02aff| |qfactor| |merge!| |null?| |tex|
- |explogs2trigs| |outerProduct| |primintegrate| |mainCharacterization|
- |substitute| |prefixRagits| |right| |differentiate| |userOrdered?|
- |euclideanGroebner| |primPartElseUnitCanonical| |consnewpol| |e|
- |palgLODE| |monomialIntPoly| |nullary| |closedCurve?| |addMatch|
- |var2StepsDefault| |quote| |graphImage|
- |semiDegreeSubResultantEuclidean| |stopTableGcd!| |realEigenvectors|
- |Beta| |cLog| |internalSubQuasiComponent?| |functorData|
- |genericLeftMinimalPolynomial| |rquo| |lazyIrreducibleFactors|
- |multiplyCoefficients| |polCase| |mainVariable| |fortranDoubleComplex|
- |OMParseError?| |seriesSolve| |makeFloatFunction| |flexibleArray|
- |multinomial| |cSinh| |completeEchelonBasis| |roughEqualIdeals?|
- |useEisensteinCriterion| |pile| |makeSketch| |setTopPredicate|
- |addBadValue| |laplacian| |f07adf| |prolateSpheroidal| |interpolate|
- |ffactor| |unitsColorDefault| |useSingleFactorBound?|
- |selectODEIVPRoutines| |palgextint0| |box| |doublyTransitive?|
- |c06ebf| |copy!| |zeroDimPrime?| |shift| |exprHasLogarithmicWeights|
- |categoryMode| |generalizedContinuumHypothesisAssumed?|
- |rightFactorCandidate| |any| |OMputApp| |hash| |OMputEndAtp| |bounds|
- |atom?| |trapezoidal| |denomRicDE| |writeLine!| |fillPascalTriangle|
- |measure| |count| |nthr| |leftZero| |rarrow| |next| |maxPoints|
- |coefficient| |makeCos| |d02raf| |exQuo| |quotedOperators| |mapGen|
- |reciprocalPolynomial| |fractionFreeGauss!| |associatorDependence|
- |numberOfIrreduciblePoly| |e02adf| |countRealRootsMultiple|
- |cyclicGroup| |internalZeroSetSplit| |OMserve| |fixedDivisor|
- |transcendent?| |iitan| |ipow| |extendedEuclidean| |aromberg|
- |tubeRadiusDefault| |e01bff| |bumptab1| |symbol| |push!| |elementary|
- |cardinality| |cosIfCan| |divisors| |sin2csc| |rowEchLocal| |isTimes|
- |musserTrials| |cothIfCan| |expression| |solve1| |iiasech| |d01gbf|
- |eof?| |karatsuba| |difference| |tanh2trigh| |minimize| |bit?|
- |integer| |cross| |reduceBasisAtInfinity| |makeCrit| |Is|
- |rightQuotient| |reduceLODE| |tanIfCan| |linear|
- |createPrimitiveElement| |write!| |qualifier| |setFieldInfo|
- |constDsolve| |shellSort| |composite| |toseSquareFreePart|
- |algebraicVariables| |printStats!| |limitPlus| |fortranLinkerArgs|
- |reducedQPowers| |birth| |f02adf| |differentialVariables| |expIfCan|
- |superscript| |polynomial| |makeUnit| |dmpToHdmp| |complexForm|
- |possiblyInfinite?| |hostByteOrder| |FormatRoman| |equiv| |computeInt|
- |leadingSupport| |OMgetApp| |prologue| |cosh2sech| |overlap| |points|
- |subTriSet?| |digit?| |setprevious!| |erf| |primaryDecomp| |result|
- |factorAndSplit| |rroot| |atrapezoidal| |explicitEntries?|
- |multiplyExponents| |alternating| |li| |superHeight| |sumSquares|
- |mapExpon| |rootPoly| |curveColor| |oddintegers| |operators|
- |extendedint| |d01aqf| |stack| |denominators| |tower| |position!|
- |normFactors| |radicalEigenvectors| |factorOfDegree| |copyInto!|
- |OMgetInteger| |OMgetString| |putGraph| |getConstant| |HenselLift|
- |plenaryPower| |nonQsign| |writeInt8!| |thenBranch| |divergence|
- |oneDimensionalArray| |diagonalProduct| |cycle|
- |stoseIntegralLastSubResultant| |entries|
- |indiceSubResultantEuclidean| |useSingleFactorBound| |irCtor| |d02bbf|
- |solveLinear| |approxNthRoot| |setImagSteps| |antiCommutative?|
- |indicialEquations| |mapUnivariateIfCan| |eq| |complexExpand|
- |create3Space| |ideal| |cExp| |iter| |dim| |pToDmp| |realSolve|
- |lazyPseudoDivide| |purelyAlgebraicLeadingMonomial?| |e02bef| |length|
- |primextendedint| |asechIfCan| |symmetric?| |reverseLex| |dioSolve|
- |quadratic?| |solveInField| |divisor| |complexNumeric| |f02fjf| |step|
- |scripts| |groebnerIdeal| |rightRecip| |characteristicSerie|
- |distdfact| |summation| |rootOfIrreduciblePoly| |readBytes!| |isPower|
- |lookupFunction| |concat| |removeSuperfluousCases| |shiftLeft| |mesh|
- |numericalOptimization| |test| |kernels| |heapSort| |showTheFTable|
- |zeroOf| GF2FG |vectorise| |expandLog| |readUInt8!| |upperCase?|
- |increasePrecision| |operator| |row| |extractSplittingLeaf| |increase|
- |outputBinaryFile| |cyclotomic| |iisin| |setfirst!| |e01baf|
- |leftExtendedGcd| |real?| |LiePolyIfCan| |rdHack1| |overbar|
- |firstNumer| |subPolSet?| |host| |bigEndian| |decompose|
- |createZechTable| |univariate| |shade| |scripted?| |central?|
- |bitCoef| |splitSquarefree| |firstDenom| |key?|
- |getSyntaxFormsFromFile| |coth2tanh| |OMencodingUnknown|
- |resetBadValues| |d02kef| |getlo| |coth2trigh| LODO2FUN |sdf2lst|
- |subresultantVector| |palgint0| |square?| |mirror| |addmod| |prefix|
- |OMencodingXML| |quotient| |pdct| |sizeLess?| |factor| |integralBasis|
- |positiveRemainder| |bits| |redPo| |OMsetEncoding| |dimension|
- |factors| |laurentRep| |sqrt| |OMputBind|
- |solveLinearPolynomialEquationByFractions|
- |selectSumOfSquaresRoutines| |outputAsTex| |elliptic?| |readable?|
- |algebraicDecompose| |isMult| |rubiksGroup| |real| |infix|
- |extendedIntegrate| |f01qdf| |commonDenominator| |goodPoint| |exprex|
- |mainPrimitivePart| |cycleElt| |fortranLiteral| |imag| |byteBuffer|
- |characteristic| |declare| |characteristicPolynomial| |stop|
- |character?| |ranges| |setColumn!| |stirling1| |setelt!| |ratDsolve|
- |directProduct| |pushNewContour| |duplicates| |leftQuotient| |cAcsch|
- |mr| |iilog| |fortranComplex| |janko2| |coefficients| |topPredicate|
- |sizePascalTriangle| |randomR| |singularitiesOf| |createNormalPoly|
- |OMUnknownCD?| SEGMENT |Gamma| |localReal?| |cdr| |brace| |kind|
- |tube| |sparsityIF| |OMgetBind| |drawComplexVectorField| |categories|
- |complexLimit| |dihedralGroup| |interReduce| |lifting| |s17dlf|
- |destruct| |realElementary| |getZechTable| |op| |cotIfCan|
- |inRadical?| |iiacsc| |mantissa| |pushdown|
- |factorSquareFreePolynomial| |depth| |multiEuclideanTree| |lazyPquo|
- |addPointLast| |exprToGenUPS| |baseRDE| |factor1| |cup| |typeForm|
- |e04ycf| |factorSquareFreeByRecursion| |c05adf|
- |permutationRepresentation| |physicalLength!| |extractProperty|
- |oddlambert| |palgintegrate| |curryRight| |level| |romberg| |cot2tan|
- |whileLoop| |d01bbf| |numberOfPrimitivePoly| |meshPar1Var|
- |commutator| |mpsode| |cycleRagits| |coordinates| |invmultisect|
- |eisensteinIrreducible?| |duplicates?| |monomial| |unit?|
- |outputFixed| |addPoint| |dual| |normalized?| |insertionSort!|
- |viewDeltaXDefault| |doubleComplex?| |adaptive3D?| |multivariate|
- |blankSeparate| |deleteProperty!| |removeRoughlyRedundantFactorsInPol|
- |latex| |stirling2| |forLoop| |fracPart| |irForm| |boundOfCauchy|
- |variables| |f02agf| |rotate| |OMunhandledSymbol| |union|
- |partialFraction| |cAsin| |palgLODE0| |maxrow| |basis| |BasicMethod|
- |e04ucf| |setEpilogue!| |univariatePolynomial| |bfKeys|
- |numberOfMonomials| |copies| |linearAssociatedOrder| |prod| |euler|
- |quasiRegular?| |removeRedundantFactorsInPols| |stFunc2| |OMgetEndAtp|
- |algebraicCoefficients?| |sayLength| |before?| |any?| |tableau|
- |split!| |e01saf| |antisymmetric?| |tan2trig| |clearDenominator|
- |exteriorDifferential| |simplifyLog| |LyndonWordsList| |degree|
- |viewWriteAvailable| |nonSingularModel| |listOfLists| |root| |conjug|
- |OMputBVar| |removeCoshSq| |lfintegrate| |invertibleElseSplit?|
- |taylor| |leftAlternative?| |mindeg| |unparse| |comp| |property|
- |belong?| |binarySearchTree| |imaginary| |zeroMatrix| |poisson|
- |laurent| |pair?| |factorials| |internalIntegrate| |characteristicSet|
- |UpTriBddDenomInv| |eigenMatrix| |viewDeltaYDefault| |iiasinh|
- |wordsForStrongGenerators| |reverse| |puiseux| |getCode| |cAsinh|
- |generic?| |quadratic| |d01ajf| |pdf2ef| |OMputAttr| |nullity|
- |lastSubResultantElseSplit| |OMconnInDevice| |setScreenResolution|
- |unexpand| |nil| |infinite| |arbitraryExponent| |approximate|
+ |Record| |Union| |lookupFunction| |decrease| |setRealSteps| |npcoef|
+ |checkRur| |linearDependenceOverZ| |parents| |roughSubIdeal?|
+ |systemCommand| |inv| |ravel| |match?| |cylindrical|
+ |rightDiscriminant| |orbits| |removeSuperfluousCases| |autoCoerce|
+ |over| |supDimElseRittWu?| |complexRoots| |c02agf| |dn| |neglist|
+ |ground?| |reshape| |tableForDiscreteLogarithm| |lazyVariations|
+ |viewport3D| |shiftLeft| |fglmIfCan| |contract| |implies|
+ |euclideanSize| |rectangularMatrix| |ground| |ref| |qinterval|
+ |stoseInvertibleSetreg| |mesh| |basisOfRightNucleus| |palgRDE0|
+ |OMgetAttr| |goto| |realZeros| |leadingMonomial| |normal|
+ |RittWuCompare| |constantToUnaryFunction| |fill!|
+ |numericalOptimization| |extractBottom!| |expextendedint| |setUnion|
+ |vertConcat| |charthRoot| |leadingCoefficient| |mapSolve|
+ |factorSFBRlcUnit| |minColIndex| |heapSort| |prindINFO| |sinIfCan|
+ |expandTrigProducts| |stoseSquareFreePart| |status|
+ |primitiveMonomials| |close| |imagK| |flexible?| |KrullNumber|
+ |showTheFTable| F |clearTheSymbolTable| |leftUnits|
+ |LyndonCoordinates| |compose| |showTheSymbolTable| |reductum| |update|
+ |trailingCoefficient| |d02cjf| |selectOptimizationRoutines| |zeroOf|
+ |reorder| |complexZeros| |irVar| |polarCoordinates|
+ |internalInfRittWu?| |display| |df2fi| |zeroSquareMatrix|
+ |headReduced?| GF2FG |constantRight| |bitTruth| |cschIfCan| |decimal|
+ |ricDsolve| |rootOf| |predicates| |discriminant| |vectorise|
+ |nthFractionalTerm| |reflect| |e04dgf| |critT| |hasoln| |OMreadStr|
+ |iicsc| |blue| |tab| |expandLog| |basisOfCommutingElements|
+ |quadraticNorm| |symmetricSquare| |inR?| |maxRowIndex| |yCoordinates|
+ |numberOfDivisors| |numberOfCycles| |readUInt8!| |genericLeftTrace|
+ |derivationCoordinates| |roman| |c06fpf| |stoseInvertibleSet|
+ |position| |generic| |headReduce| |expr| |mindegTerm| |upperCase?|
+ |Ci| |countRealRoots| |graphState| |padicFraction| |tanAn| |input| **
+ |eigenvector| |imports| |lyndon| |increasePrecision|
+ |exprHasAlgebraicWeight| |operation| |setsubMatrix!| |moreAlgebraic?|
+ |eigenvalues| |mappingMode| |library| |s17adf| |just| |traverse| |row|
+ |iidprod| |jokerMode| |bubbleSort!| |readIfCan!| |direction| |mesh?|
+ |makeTerm| |nextPartition| |mainExpression| |extractSplittingLeaf|
+ |resetAttributeButtons| |d02gbf| |weights| |supRittWu?| |split|
+ |argumentList!| |mat| |tanSum| |size| |usingTable?| |variable|
+ |increase| |interval| |e02baf| |perfectNthRoot| |exactQuotient!|
+ |child?| |collectQuasiMonic| |e01bgf| |univariate?| |s14abf|
+ |iterators| |outputBinaryFile| |setRow!| |maxPoints3D|
+ |reducedContinuedFraction| |drawToScale| |tanQ|
+ |factorsOfCyclicGroupSize| |set| |binding|
+ |rightCharacteristicPolynomial| |listOfMonoms| |cyclotomic| |setnext!|
+ |conjugate| |numberOfComputedEntries| |currentCategoryFrame| |recolor|
+ |conditionP| |commaSeparate| |OMwrite| |rightLcm| |iisin| |arbitrary|
+ |previous| |fortranReal| |omError| |overset?| |updatD| |groebner?|
+ |trigs2explogs| |listConjugateBases| |components| |setfirst!|
+ |clearFortranOutputStack| |s13adf| |groebSolve| |dequeue!| |curve|
+ |readLine!| |derivative| |mapExponents| FG2F |e01baf|
+ |partialNumerators| |legendre| |bringDown| |lflimitedint|
+ |monomialIntegrate| |f01bsf| |gbasis| |irreducibleFactor| |listexp|
+ |leftExtendedGcd| |insertRoot!| |iicos| |distance| |rotate!| |sh|
+ |say| |exp1| |lexGroebner| |true| |scanOneDimSubspaces| |real?|
+ |arguments| |validExponential| |redmat|
+ |removeSuperfluousQuasiComponents| |mkPrim| |mainSquareFreePart|
+ |OMreceive| |stopMusserTrials| |iExquo| |LiePolyIfCan| |category|
+ |generalizedEigenvectors| |integral?| |changeWeightLevel|
+ |startStats!| |reset| |intensity| |firstUncouplingMatrix| |node|
+ |f02aff| |qroot| |remove!| |rdHack1| |domain| |mapUp!|
+ |startPolynomial| |s15adf| |rischDEsys| |jacobiIdentity?| |s13aaf|
+ |insert| |head| |axes| |overbar| |package| |encodingDirectory|
+ |genericLeftDiscriminant| |sylvesterSequence| |updateStatus!| |write|
+ |getDatabase| |inc| |content| |shallowExpand| |fractRagits| |exp|
+ |firstNumer| |combineFeatureCompatibility| |save| |physicalLength|
+ |realEigenvalues| |linear?| |squareMatrix| |e02gaf| |show|
+ |numberOfImproperPartitions| |stronglyReduce| |subPolSet?|
+ |polynomialZeros| |getMeasure| |integers|
+ |genericRightMinimalPolynomial| |fintegrate| |isOp| |rspace|
+ |setvalue!| |removeZeroes| |host| |normalDenom| |d01anf| |f01qef|
+ |rightGcd| |trace| |OMclose| |karatsubaDivide| |drawStyle| |bigEndian|
+ |setMinPoints3D| |toseInvertible?| |algDsolve| |po| |sechIfCan|
+ |gethi| |normalizeAtInfinity| |s17aff| |decompose| |brillhartTrials|
+ |norm| |palgextint| |prime?| |varList| |nthRootIfCan| |inHallBasis?|
+ |leftTraceMatrix| |repeating| |createZechTable| |safeFloor|
+ |mainCoefficients| |zeroDim?| |lastSubResultantEuclidean| |quoByVar|
+ |complexIntegrate| |shade| |bipolar| |high| |ScanFloatIgnoreSpaces|
+ |aCubic| |setScreenResolution3D| |makingStats?| |option?| |bivariate?|
+ |open| |scripted?| |integralMatrix| |commutativeEquality| |exprToUPS|
+ |myDegree| |asimpson| |trueEqual| |makeMulti| |autoReduced?|
+ |central?| |cscIfCan| |RemainderList| |symmetricProduct| |logIfCan|
+ |OMreadFile| |tan2cot| |iiperm| |iicoth| |bitCoef| |obj|
+ |retractIfCan| |att2Result| |monicLeftDivide| |UP2ifCan| |double|
+ |bitLength| |variable?| |tablePow| |splitSquarefree| |cache|
+ |constant| |unit| |insert!| |e02aef| |f01ref| |members|
+ |showTheRoutinesTable| |mapDown!| |computePowers| |operations|
+ |firstDenom| |parabolicCylindrical| |principalIdeal| |smith| |slex|
+ |assign| |solve| |e04gcf| |setOfMinN| |key?| |leftRank| |setMaxPoints|
+ |elaborate| |removeDuplicates!| |intersect| |inverseIntegralMatrix|
+ |log10| |leftDiscriminant| |LyndonBasis| |edf2efi| |normalForm|
+ |rightUnit| |currentSubProgram| |d01gaf| |integralMatrixAtInfinity|
+ |f02ajf| |bitand| |subResultantGcd| |factorAndSplit| |infinity|
+ |convergents| |mergeDifference| |leftCharacteristicPolynomial|
+ |internalAugment| |indicialEquationAtInfinity| |moduleSum| |cSec|
+ |changeVar| |bitior| |rroot| |stoseInvertibleSetsqfreg| |largest|
+ |ramified?| |truncate| |semiSubResultantGcdEuclidean2| |genus|
+ |hasSolution?| |primlimintfrac| |keys| |atrapezoidal|
+ |internalIntegrate0| |minPoints3D| |numerator| |createGenericMatrix|
+ |setProperty| |OMread| |branchPointAtInfinity?| |interpretString|
+ |kernel| |explicitEntries?| |e01bhf| |map| |extendedSubResultantGcd|
+ |unmakeSUP| |isQuotient| |definingPolynomial| |algSplitSimple|
+ |degree| |singularAtInfinity?| |charpol| |primPartElseUnitCanonical!|
+ |list| |multiplyExponents| |iisec| |linSolve| |leftRecip|
+ |whatInfinity| |print| |hostPlatform| |lhs| |viewWriteAvailable|
+ |lepol| |twist| |roughUnitIdeal?| |alternating| |draw| |toroidal|
+ |nonSingularModel| |extractIndex| |qqq| |genericLeftTraceForm|
+ |resolve| |rhs| |showScalarValues| |rational?| |rur| |cycleSplit!|
+ |superHeight| |separateFactors| |simplify| |powmod| |invertIfCan|
+ |cyclotomicDecomposition| |listOfLists| |patternMatchTimes|
+ |getProperty| |OMgetEndError| |sumSquares| |style| |e02bcf| |PDESolve|
+ |currentEnv| |completeEval| |UnVectorise| |root| |subspace|
+ |leftExactQuotient| |yCoord| |mapExpon| |find| |convert| |leastPower|
+ |limitedint| |height| |extractPoint| |s21baf| |conjug|
+ |lowerPolynomial| |pointColorPalette| |floor| |rootPoly| |makeObject|
+ |minIndex| |ptFunc| |closed| |csubst| |OMputBVar| |sup|
+ |extractClosed| |partialDenominators| |stoseInvertible?reg|
+ |curveColor| |coef| |swap!| |argument| |e01bef| |alternatingGroup|
+ |parts| |removeCoshSq| |topFortranOutputStack| |s19adf|
+ |componentUpperBound| |oddintegers| |dom| |frobenius| |divideIfCan|
+ |s18def| |completeHermite| |lfintegrate| |iiatanh| |anfactor|
+ |pointPlot| |operators| |fprindINFO| |sequences| Y
+ |definingInequation| |numberOfComponents| |invertibleElseSplit?|
+ |zeroSetSplit| |hue| |outputAsScript| |extendedint| |f2st|
+ |OMputEndError| |eq?| |genericRightNorm| |leftAlternative?|
+ |indicialEquation| |d03eef| |generalSqFr| |d01aqf| |label| |pol|
+ |baseRDEsys| |light| |contours| |mindeg| |zeroDimensional?| |graeffe|
+ |numberOfComposites| |denominators| |entry| |printStatement|
+ |binaryFunction| |cPower| |scale| |unparse| |critM| |interactiveEnv|
+ |viewport2D| |position!| |genericPosition| |support| |factorsOfDegree|
+ |padicallyExpand| |property| |diagonal| |fortranLiteralLine|
+ |viewDefaults| |normFactors| |eulerE| |coshIfCan| |exponentialOrder|
+ |denomLODE| |belong?| |toseLastSubResultant| |putColorInfo|
+ |generators| |numberOfChildren| |radicalEigenvectors| |setStatus!|
+ |cyclicEntries| |anticoord| |expt| |binarySearchTree|
+ |particularSolution| |printTypes| |iiacoth| |s20adf| |factorOfDegree|
+ |e02def| |nextPrimitivePoly| |recip| |c06frf| |s18aff| |imaginary|
+ |d01alf| |incr| |ParCond| |fixPredicate| |copyInto!| |primintfldpoly|
+ |normalizeIfCan| |badValues| |besselI| |stripCommentsAndBlanks|
+ |zeroMatrix| |constructor| |fortranInteger| |hi| |putProperties|
+ |totolex| |OMgetInteger| |tail| |iifact| |children| |arrayStack|
+ |midpoint| |poisson| |getExplanations| |acoshIfCan| |lazyIntegrate|
+ |OMgetString| |option| |rightOne| |lfunc| |alphabetic| |atanIfCan|
+ |showSummary| |pair?| |column| |modularGcd| |e02ahf| |putGraph|
+ |factorials| |B1solve| UP2UTS |d01amf| |semiResultantEuclidean1|
+ |rules| |units| |doubleRank| |squareFreePrim| |hermiteH| |getConstant|
+ |top| |increment| |quadraticForm| |setClosed| |Frobenius|
+ |showAttributes| |internalIntegrate| |c06gbf| |makeEq| |s01eaf|
+ |HenselLift| |continue| |SFunction| |rationalPower| |cycles|
+ |linearPolynomials| |characteristicSet| |weighted|
+ |radicalEigenvector| |cycleEntry| |plenaryPower| |subResultantsChain|
+ |trapezoidalo| |nand| |prevPrime| |UpTriBddDenomInv| |powerSum|
+ |edf2ef| |box| |name| |region| |unknown| |nonQsign| |OMencodingBinary|
+ |mainMonomials| |exportedOperators| |totalLex| |eigenMatrix| |comment|
+ |primeFactor| |reduceByQuasiMonic| |totalDegree| |body| |writeInt8!|
+ |unitNormal| |perfectSqrt| |charClass| |OMbindTCP| |code|
+ |viewDeltaYDefault| |var1StepsDefault| |OMputObject| |positiveSolve|
+ |thenBranch| |rationalIfCan| |exponential| |rename!|
+ |iteratedInitials| |iiasinh| |headAst| |nary?| |kovacic| |divergence|
+ |null| |outputGeneral| |lex| |expintegrate| |typeLists|
+ |wordsForStrongGenerators| |mix| |accuracyIF| |decomposeFunc|
+ |oneDimensionalArray| |delta| |not| EQ |normal?| |An| |shrinkable|
+ |totalfract| |getCode| |bumptab| |regularRepresentation|
+ |makeViewport2D| |diagonalProduct| |and| |minrank| |endOfFile?|
+ |iisinh| |monicCompleteDecompose| |cAsinh| |ip4Address| |generate|
+ |f01mcf| |numberOfFractionalTerms| |cycle| |or| |rischNormalize|
+ |OMputAtp| |principal?| |nextNormalPrimitivePoly| |generic?| |coerceS|
+ |max| |lastSubResultant| |stoseIntegralLastSubResultant| |logGamma|
+ |xor| |c06fqf| |OMgetEndAttr| |assert| |viewPosDefault| |quadratic|
+ |linearMatrix| |incrementBy| |semiResultantEuclideannaif| |port|
+ |addiag| |entries| |pattern| |case| |alphanumeric?| |modifyPointData|
+ |domainTemplate| |OMgetFloat| |d01ajf| |expand| |merge| |finiteBound|
+ |complement| |indiceSubResultantEuclidean| |Zero| |torsionIfCan|
+ |wholeRadix| |semiResultantEuclidean2| |move| |pdf2ef|
+ |rightScalarTimes!| |filterWhile| UTS2UP |f02xef| |t|
+ |useSingleFactorBound| |One| |s17acf| |henselFact| |sylvesterMatrix|
+ |rationalPoint?| |OMputAttr| |clipPointsDefault| |filterUntil|
+ |noncommutativeJordanAlgebra?| |screenResolution| |irCtor| |lambda|
+ |removeDuplicates| |tryFunctionalDecomposition| |f01rdf| |mathieu23|
+ |acothIfCan| |search| |nullity| |double?| |select|
+ |exprHasWeightCosWXorSinWX| |calcRanges| |d02bbf| |message|
+ |compiledFunction| |permutationGroup| |leaf?| |pushuconst|
+ |collectUpper| |lastSubResultantElseSplit| |tracePowMod| |conjunction|
+ |clipSurface| |solveLinear| |rightZero| |mathieu22| |minimumExponent|
+ |exponential1| |OMconnInDevice| |selectFiniteRoutines| |leadingIndex|
+ |seriesToOutputForm| |approxNthRoot| |nrows| |iiabs| |nodes|
+ |sortConstraints| |cCsc| |setScreenResolution| |e04naf| |monomial?|
+ |setImagSteps| |ncols| |elt| |cCsch| |imagI| |s18dcf| |subscript|
+ |unexpand| |outputArgs| |dualSignature| |identityMatrix| |retract|
+ |antiCommutative?| |curveColorPalette| |iisqrt3| |e02bdf|
+ |OMcloseConn| |innerSolve1| |dilog| |zero| |irreducibleFactors|
+ |point?| |indicialEquations| |computeCycleEntry| |jacobi|
+ |divideIfCan!| |prepareSubResAlgo| |cons| |mathieu12| |sin|
+ |makeRecord| |sncndn| |psolve| |mapUnivariateIfCan| |lfextlimint|
+ |c05nbf| |inspect| |nothing| |And| |cos| |internalLastSubResultant|
+ |magnitude| |complexExpand| |gramschmidt| |infiniteProduct| |subCase?|
+ |initiallyReduce| |Or| |tan| |viewSizeDefault| |hexDigit| |expPot|
+ |create3Space| |alphanumeric| |LazardQuotient2| |separateDegrees|
+ |fi2df| |Not| |radicalSolve| |cot| |setref| |univariateSolve| |ideal|
+ |iicosh| |univariatePolynomialsGcds| |rightRegularRepresentation|
+ |cCoth| |condition| |primes| |sec| |cExp| |f01rcf| |escape|
+ |OMconnectTCP| |trace2PowMod| |medialSet| |invmod| |csc|
+ |HermiteIntegrate| |numFunEvals| |pToDmp| |chvar| |iicsch| |c05pbf|
+ |entry?| |gderiv| |interpret| |infieldint| |source| |asin| |vconcat|
+ |bernoulli| |realSolve| |messagePrint| |selectOrPolynomials|
+ |rightExactQuotient| |minRowIndex| |dec| |setStatus| |acos|
+ |coordinate| |atoms| |lazyPseudoDivide| |compdegd| |getPickedPoints|
+ |minGbasis| |irreducibleRepresentation| |atan| |plusInfinity| |zoom|
+ |purelyAlgebraicLeadingMonomial?| |antiCommutator|
+ |nativeModuleExtension| |s19acf| |unrankImproperPartitions1|
+ |findConstructor| |e02agf| |acot| |constantLeft| |minusInfinity|
+ |e02bef| |char| |semiIndiceSubResultantEuclidean| |meatAxe| |linears|
+ |aLinear| |ldf2lst| |asec| |rightRank| |startTableGcd!|
+ |primextendedint| |applyRules| |digamma| |plotPolar| |powern|
+ |associative?| |acsc| |target| |ScanRoman| |nullSpace|
+ |linearAssociatedExp| |saturate| |squareTop| |enterPointData|
+ |normalElement| |sinh| |relerror| |rangePascalTriangle| |rowEchLocal|
+ |postfix| |reduction| |epilogue| |droot| |isEquiv| |clipParametric|
+ |cosh| |relationsIdeal| |pushucoef| |logical?| |isTimes|
+ |createNormalElement| |readInt16!| |leftRegularRepresentation|
+ |chineseRemainder| |rootSimp| |cyclic| |tanh| |extractTop!| |type|
+ |musserTrials| |secIfCan| |outputList| |simplifyPower| |f02wef|
+ |virtualDegree| |palglimint| |f01brf| |coth| |numberOfFactors|
+ |prinshINFO| |s15aef| |cothIfCan| |df2ef| |d03faf| |minimumDegree|
+ |leftFactorIfCan| |float| |qelt| |invmultisect| |solve1| |sech|
+ |buildSyntax| |inputOutputBinaryFile| |matrixConcat3D| |setAdaptive|
+ |second| |qsetelt| |youngGroup| |mdeg| |quasiMonicPolynomials| |color|
+ |eisensteinIrreducible?| |iiasech| |f07fef| |csch| |call| |nthFactor|
+ |minPoly| |third| |principalAncestors| |irreducible?|
+ |selectMultiDimensionalRoutines| |roughBasicSet| |xRange|
+ |duplicates?| |divide| |asinh| |xCoord| |untab| |bezoutDiscriminant|
+ |d01gbf| |separant| |compile| |cTan| |inverse| |coerceListOfPairs|
+ |yRange| |unit?| |void| |collect| |acosh| |imagi| |infRittWu?| |build|
+ |eof?| |logpart| |crushedSet| |cot2trig| |graphStates| |zRange|
+ |outputFixed| |sn| |recoverAfterFail| |atanh| |innerEigenvectors|
+ |lazyGintegrate| |writeUInt8!| |karatsuba| |map!| |rk4f| |less?|
+ |endSubProgram| |constant?| |addPoint| |basisOfRightAnnihilator|
+ |acoth| |getGoodPrime| |deepestInitial| |wordInGenerators|
+ |difference| |setLength!| |indices| |s13acf|
+ |functionIsContinuousAtEndPoints| |qsetelt!| |dual| |elliptic| |asech|
+ |zeroDimPrimary?| |removeRedundantFactors| |critpOrder| |tanh2trigh|
+ |ratPoly| |symmetricGroup| |unravel| |stoseInvertible?sqfreg|
+ |normalized?| |sequence| |partialQuotients| |horizConcat| |minimize|
+ |getStream| |inverseLaplace| |conjugates| |insertMatch|
+ |sturmSequence| GE |insertionSort!| |clipBoolean| |multiple|
+ |OMgetObject| |isList| |bit?| |swapColumns!| GT |simpsono| |setTex!|
+ |removeSinSq| |karatsubaOnce| |viewDeltaXDefault| |applyQuote|
+ |adaptive| |digit| |laguerreL| |getOrder| |cross| |basisOfLeftNucleus|
+ |createIrreduciblePoly| |initializeGroupForWordProblem| |disjunction|
+ LE |doubleComplex?| |Si| |zCoord| |quatern| |morphism|
+ |reduceBasisAtInfinity| |predicate| |constantOpIfCan|
+ |rightMinimalPolynomial| LT |externalList| |fixedPointExquo| |acsch|
+ |adaptive3D?| |clipWithRanges| |exponent| |scaleRoots| |f04mbf|
+ |makeCrit| |conditionsForIdempotents| |edf2fi| |zag| |permutation|
+ |removeCosSq| |blankSeparate| |nextsousResultant2| |ruleset| |back|
+ |nextColeman| |zeroVector| |Is| |f2df| |leftFactor| |varselect|
+ |rewriteSetWithReduction| |deleteProperty!| |subst| |leviCivitaSymbol|
+ |ran| |mkIntegral| |withPredicates| |modularGcdPrimitive|
+ |rightQuotient| |sumOfKthPowerDivisors| |OMencodingSGML| |schema|
+ |removeRedundantFactorsInContents|
+ |removeRoughlyRedundantFactorsInPol| |reducedForm| |tanintegrate|
+ |reduceLODE| |hasHi| |lazyPrem| |laurentIfCan| |s18adf| |presuper|
+ |lookup| |thetaCoord| |directory| |latex| |kroneckerDelta|
+ |mainVariable?| |suchThat| |unitNormalize| |submod| |tanIfCan| |tree|
+ |index| |resultantnaif| |cyclicParents| |identification|
+ |linearlyDependent?| |stirling2| |df2mf| |setIntersection|
+ |cycleLength| |createPrimitiveElement| |asinhIfCan| |gcdPolynomial|
+ |radicalEigenvalues| |squareFreeLexTriangular| |ode2| |initial|
+ |forLoop| |monicModulo| |rischDE| |fractionPart| |write!| |cAcsc|
+ |testDim| |connect| |localAbs| |component| |fracPart| |voidMode|
+ |nlde| |wholeRagits| |expandPower| |index?| |qualifier| |pair|
+ |shanksDiscLogAlgorithm| |resultantReduitEuclidean| |symmetricPower|
+ |meshFun2Var| |irForm| |objects| |numberOfHues| |rightTrim|
+ |setFieldInfo| |bright| |standardBasisOfCyclicSubmodule| |refine|
+ |rowEch| |colorDef| |parameters| |even?| |selectPDERoutines| |hessian|
+ |dimensions| |base| |boundOfCauchy| |leftTrim| |e02dff|
+ |primlimitedint| |lquo| |constDsolve| |polyRicDE| |arg1| |polyPart|
+ |critB| |makeFR| |squareFreeFactors| |f02agf| |changeName|
+ |evaluateInverse| |preprocess| |eval| |shellSort| |changeThreshhold|
+ |arg2| |pToHdmp| |youngDiagram| |rightPower|
+ |zeroSetSplitIntoTriangularSystems| |rotate| |mathieu24| |zerosOf|
+ |nextsubResultant2| |showIntensityFunctions| |composite|
+ |sumOfDivisors| |create| |factorGroebnerBasis| |d02bhf|
+ |OMunhandledSymbol| |space| |f02aef| |normalize| |reducedSystem|
+ |toseSquareFreePart| |conditions| |var1Steps| |reverse!|
+ |setProperties| |critMonD1| |partialFraction| |countable?| |se2rfi|
+ |error| |normal01| |intChoose| |algebraicVariables| |supersub| |match|
+ |inrootof| |rewriteIdealWithQuasiMonicGenerators| |lyndonIfCan|
+ |monicDivide| |cAsin| |realRoots| |check| |signatureAst| |equation|
+ |OMReadError?| |printStats!| |paraboloidal| |bombieriNorm|
+ |getVariableOrder| |expintfldpoly| |addPoint2| |palgLODE0| |delete!|
+ |contains?| |subNodeOf?| |Lazard2| |limitPlus| |curry|
+ |stosePrepareSubResAlgo| |laguerre| |function| |generalLambert|
+ |maxrow| |optimize| |isOr| |expenseOfEvaluationIF|
+ |generalInfiniteProduct| |fortranLinkerArgs| |triangSolve|
+ |getMultiplicationTable| |listBranches| |parametric?| |plot| |basis|
+ |nilFactor| |typeList| |viewWriteDefault| |reducedQPowers|
+ |complexEigenvectors| |limit| |changeMeasure| |setClipValue|
+ |element?| |BasicMethod| BY |concat!| |getIdentifier| |rst| |octon|
+ |birth| |setPosition| |algint| |capacity| |semiDiscriminantEuclidean|
+ |e04ucf| |notelem| |polyred| |halfExtendedSubResultantGcd2| |f02adf|
+ |tanhIfCan| |relativeApprox| |structuralConstants| |setchildren!|
+ |parametersOf| |setEpilogue!| |localIntegralBasis| |leadingBasisTerm|
+ |lazyPseudoQuotient| |differentialVariables| |drawCurves| |reopen!|
+ |bernoulliB| |nullary?| |traceMatrix| |univariatePolynomial|
+ |spherical| |doubleDisc| |quasiComponent| |expIfCan|
+ |initiallyReduced?| |orbit| |LagrangeInterpolation| |sort|
+ |pleskenSplit| |moebiusMu| |bfKeys| |setErrorBound| |Aleph|
+ |viewpoint| |child| |superscript| |callForm?| |selectAndPolynomials|
+ |cap| |iisqrt2| |numberOfMonomials| |rem| |ode| |outputFloating|
+ |OMgetEndApp| |makeUnit| |augment| |properties| |attributeData|
+ |removeZero| |readInt8!| |aspFilename| |copies| |xn| |quo| |leftTrace|
+ |resultant| |weakBiRank| |dmpToHdmp| |id| |distFact| NOT |normDeriv2|
+ |continuedFraction| |translate| |wholePart| |linearAssociatedOrder|
+ |cAtan| |hclf| |constantCoefficientRicDE| |unitCanonical|
+ |complexForm| |lo| |bag| OR |binomial| |random| |useNagFunctions|
+ |bandedHessian| |prod| |pmComplexintegrate| |div| |dictionary|
+ |subNode?| F2FG |possiblyInfinite?| |decreasePrecision| AND |f04arf|
+ |besselY| |lcm| |probablyZeroDim?| |euler| |delete| |exquo|
+ |hasTopPredicate?| |collectUnder| |writeBytes!| |hostByteOrder|
+ |f01maf| |incrementKthElement| |bindings| |cyclePartition|
+ |quasiRegular?| |evaluate| ~= |groebner| |mvar| |FormatRoman|
+ |asecIfCan| |lift| |iiacsch| |rightNorm| |wordInStrongGenerators|
+ |setEmpty!| |append| |revert| |removeRedundantFactorsInPols|
+ |acscIfCan| |#| |s14aaf| |s17def| |equiv| |mainVariables| |reduce|
+ |specialTrigs| |extension| |simplifyExp| |companionBlocks| |red| |gcd|
+ |stFunc2| |loopPoints| ~ |primitive?| |curve?| |computeInt| |e02daf|
+ |matrixDimensions| |stopTableInvSet!| |is?| |false| |OMgetEndAtp|
+ |unary?| |tryFunctionalDecomposition?| |imagE| |leadingSupport|
+ |oddInfiniteProduct| |f02bjf| |showRegion|
+ |createLowComplexityNormalBasis| |leadingExponent| |elColumn2!|
+ |algebraicCoefficients?| |mkcomm| |binaryTree|
+ |unrankImproperPartitions0| |apply| |fixedPoint| |OMgetApp| |eulerPhi|
+ |power| |c06ecf| |mapdiv| |zero?| |sayLength| |commutative?| |/\\|
+ |SturmHabichtCoefficients| |twoFactor| |matrix| |first| |readByte!|
+ |prologue| |listYoungTableaus| |cosSinInfo| |ramifiedAtInfinity?|
+ |changeBase| |SturmHabichtMultiple| |before?| |cCot| |\\/| |rest|
+ |showAll?| |cosh2sech| |genericRightTrace| |setAdaptive3D| |lp|
+ |intermediateResultsIF| |choosemon| |tRange| |any?| |frst|
+ |setAttributeButtonStep| |cartesian| |getButtonValue| |overlap|
+ |jacobian| |makeprod| |coerce| * |expressIdealMember| |abs|
+ |splitNodeOf!| |tableau| |internalDecompose| |subtractIfCan|
+ |fortranDouble| |fortranCharacter| |points| |e02bbf| |paren|
+ |construct| |createMultiplicationMatrix| |s20acf| |setVariableOrder|
+ |split!| |patternMatch| |credPol| |hex| |f02bbf| |numer| |subTriSet?|
+ |range| |integrate| |reindex| |generator| |e01saf| |hdmpToP|
+ |rootBound| |genericRightTraceForm| |digit?| |redpps| |denom| |push|
+ |socf2socdf| |OMputEndApp| |firstSubsetGray| = |OMsend|
+ |antisymmetric?| |phiCoord| |abelianGroup| |fractRadix| |setprevious!|
+ |evenInfiniteProduct| |edf2df| |printCode|
+ |inverseIntegralMatrixAtInfinity| |completeHensel| |palglimint0|
+ |tan2trig| |signAround| |splitConstant| |indiceSubResultant|
+ |primaryDecomp| |diff| |pi| |byte| |represents| |numericIfCan| <
+ |besselJ| |defineProperty| |pmintegrate| |clearDenominator|
+ |linearDependence| |bottom!| |crest| |intPatternMatch| |width|
+ |pseudoDivide| > |OMgetError| |hspace| |radicalSimplify|
+ |exteriorDifferential| |deriv| |nextSublist| |solveRetract|
+ |insertTop!| |ffactor| |setMaxPoints3D| |extensionDegree| <= |failed?|
+ |pole?| |quasiRegular| |simplifyLog| |regime| |skewSFunction|
+ |tensorProduct| |printingInfo?| |unitsColorDefault| |power!|
+ |coefChoose| |e01sef| >= |adaptive?| |extendIfCan| |swapRows!|
+ |LyndonWordsList| |uniform| |e02dcf| |acschIfCan|
+ |useSingleFactorBound?| |imagj| |triangulate| |OMputError|
+ |extractIfCan| |froot| |setValue!| |acosIfCan| |exactQuotient|
+ |factorFraction| |product| |selectODEIVPRoutines|
+ |subresultantSequence| |bipolarCylindrical| |rightAlternative?| |dark|
+ |in?| |fortranTypeOf| |cAcsch| |eyeDistance| |singRicDE|
+ |taylorQuoByVar| |triangularSystems| |rootsOf| |palgextint0|
+ |stiffnessAndStabilityOfODEIF| |createMultiplicationTable| |exprToXXP|
+ |perfectNthPower?| + |nextPrime| |iilog| |degreePartition|
+ |doublyTransitive?| |value| |ParCondList| |clearCache| |homogeneous?|
+ |showAllElements| |numeric| |dmpToP| |isConnected?| |int| |isExpt|
+ |univariatePolynomials| - |lighting| |fortranComplex| |coerceImages|
+ |alphabetic?| |rightTraceMatrix| |factorList| |elseBranch| |radical|
+ |c06ebf| |sumOfSquares| |optional| |setFormula!| / |OMopenFile|
+ |moduloP| |janko2| |headRemainder| |leftOne| |putProperty|
+ |listRepresentation| |distribute| |copy!| |f04adf| |vspace| |log|
+ |const| |shuffle| |readUInt16!| |coefficients| |every?| |leftNorm|
+ |nodeOf?| |zeroDimPrime?| |c06gsf| |rootPower| |eigenvectors|
+ |makeGraphImage| |mapBivariate| |topPredicate| |pushup| |empty|
+ |nsqfree| |s21bbf| |exprHasLogarithmicWeights| |setMinPoints|
+ |signature| |integralAtInfinity?| |modularFactor| |setelt|
+ |doubleFloatFormat| |resultantEuclideannaif| |sizePascalTriangle|
+ |orthonormalBasis| |coerceL| |OMputSymbol| |integer?| |clip|
+ |categoryMode| |f04mcf| |makeYoungTableau| |gcdcofact| |complete|
+ |pomopo!| |randomR| |declare!| |s17agf| |symmetricTensors|
+ |taylorIfCan| |generalizedContinuumHypothesisAssumed?|
+ |highCommonTerms| |symmetricRemainder| |factorset| |copy|
+ |normalDeriv| |LiePoly| |singularitiesOf| |groebgen| |roughBase?|
+ |basisOfLeftNucloid| |mainForm| |rightFactorCandidate| |cyclicCopy|
+ |clearTheIFTable| |lowerCase!| |fullPartialFraction|
+ |solveLinearPolynomialEquation| |createNormalPoly| |shiftRoots|
+ |radix| |elaborateFile| |mainValue| |setleft!| |OMputApp| |datalist|
+ |subscriptedVariables| |minimalPolynomial| |multiple?| |cyclicEqual?|
+ |leftScalarTimes!| |OMUnknownCD?| |deepestTail| |partition|
+ |mainContent| |nthCoef| |OMputEndAtp| |areEquivalent?| |modulus|
+ |transpose| |patternVariable| |sinh2csch| |Gamma| |OMmakeConn|
+ |createNormalPrimitivePoly| |elem?| |c06ekf| |d03edf| |bounds|
+ |options| |compactFraction| |multMonom| |maxint|
+ |functionIsOscillatory| |f04faf| |totalDifferential| |localReal?|
+ |iroot| |getCurve| |dot| |atom?| |setPrologue!| |d02ejf| |s17dgf|
+ |getBadValues| |returnType!| |cdr| |deepCopy| |s17ajf| |discreteLog|
+ |e02akf| |useEisensteinCriterion?| |trapezoidal| |log2| |hconcat|
+ |removeConstantTerm| |odd?| |tube| |graphs| |segment| |associator|
+ |negative?| |scalarMatrix| |denomRicDE| |shape| |output| |string|
+ |addMatchRestricted| |ListOfTerms| |conical| |primextintfrac|
+ |sparsityIF| |viewThetaDefault| |OMgetEndBVar| |hypergeometric0F1|
+ |leftMinimalPolynomial| |writeLine!| |listLoops| |infieldIntegrate|
+ RF2UTS |checkForZero| |curryLeft| |createPrimitiveNormalPoly|
+ |OMgetBind| |createThreeSpace| |s19aaf| |rename| |fillPascalTriangle|
+ |mainDefiningPolynomial| |scalarTypeOf| |setleaves!| |pureLex|
+ |d01asf| |f02awf| |drawComplexVectorField|
+ |solveLinearPolynomialEquationByRecursion| |iflist2Result| |d01apf|
+ |cond| |f04maf| |randomLC| |measure| |multisect| |resize| |s18acf|
+ |cubic| |OMgetEndBind| |unitVector| |complexLimit|
+ |discriminantEuclidean| |drawComplex| |f02abf| |ReduceOrder|
+ |finiteBasis| |nthr| |cTanh| |OMUnknownSymbol?|
+ |rewriteSetByReducingWithParticularGenerators| |simpson| |padecf|
+ |dihedralGroup| |sub| |writable?| |measure2Result| |maxdeg| |leftZero|
+ |strongGenerators| |setDifference| |clikeUniv| |squareFreePolynomial|
+ |chebyshevU| |interReduce| |argscript| |btwFact| |symbolIfCan| |scan|
+ |rarrow| |debug3D| |purelyTranscendental?| |explicitlyFinite?|
+ |newReduc| |mapMatrixIfCan| |colorFunction| |lifting|
+ |normInvertible?| |sin?| |rk4qc| |maxPoints| |sinhcosh| |iicot|
+ |leftDivide| |polygon| |remove| |s21bdf| |connectTo| |directSum|
+ |s17dlf| |size?| |knownInfBasis| |initTable!|
+ |generalizedContinuumHypothesisAssumed| |coefficient| |totalGroebner|
+ |errorKind| |chiSquare| |bezoutResultant| |bracket| |realElementary|
+ |critMTonD1| |d01akf| |laplace| |pointData| |makeCos|
+ |chainSubResultants| |iiexp| |hcrf| |center| |last| |inf| |linGenPos|
+ |getZechTable| |bsolve| |optAttributes| |rk4| |d02raf| |writeByte!|
+ |assoc| |basisOfNucleus| |stoseInternalLastSubResultant| |vedf2vef|
+ |symFunc| |cotIfCan| |rombergo| |mainKernel| |qPot| |exQuo| |nthRoot|
+ |formula| |generalizedEigenvector| |gcdprim| |biRank| |goodnessOfFit|
+ |inRadical?| |ef2edf| |genericLeftNorm| |dAndcExp| |rotatez|
+ |quotedOperators| |select!| |low| |fmecg| |c06eaf| |satisfy?| |iiacsc|
+ |intcompBasis| |top!| |swap| |mapGen| |makeResult| |matrixGcd|
+ |lfextendedint| |bivariatePolynomials| |isPlus| |monicDecomposeIfCan|
+ |pushdown| |halfExtendedSubResultantGcd1| |OMgetEndObject| |makeop|
+ |reciprocalPolynomial| |front| |constantOperator| |lyndon?|
+ |quasiMonic?| |transcendenceDegree| |factorSquareFreePolynomial|
+ |palgint| |iCompose| |cycleTail| |insertBottom!| |fractionFreeGauss!|
+ |elRow1!| |transcendentalDecompose| |permanent| |selectPolynomials|
+ |multiEuclideanTree| |diagonalMatrix| |maxIndex| |prime|
+ |simpleBounds?| |associatorDependence| |rootNormalize| |positive?|
+ |remainder| |monomRDE| |lazyPquo| |hermite| |leadingIdeal|
+ |squareFree| |raisePolynomial| |numberOfIrreduciblePoly| |c06fuf|
+ |rowEchelon| |safetyMargin| |primitivePart!| |addPointLast| |exptMod|
+ |getMultiplicationMatrix| |constantIfCan| |e02adf| |bat|
+ |doubleResultant| |numFunEvals3D| |elaboration| |stronglyReduced?|
+ |exprToGenUPS| |airyBi| |extract!| |fortranCarriageReturn|
+ |rangeIsFinite| |countRealRootsMultiple| |repSq| |printInfo!|
+ |singular?| |lagrange| |baseRDE| |badNum| |dfRange| |isAtom| |s17ahf|
+ |cyclicGroup| |basisOfLeftAnnihilator| |cAtanh| |rootKerSimp|
+ |getGraph| |factor1| |universe| |PollardSmallFactor| |randnum|
+ |prepareDecompose| |internalZeroSetSplit| |iisech| |external?|
+ |resultantEuclidean| |sizeMultiplication| |readUInt32!| |cup|
+ |harmonic| |meshPar2Var| |allRootsOf| |e02zaf| |OMserve| |dihedral|
+ |setLegalFortranSourceExtensions| |ScanFloatIgnoreSpacesIfCan|
+ |airyAi| |infinite?| |e04ycf| |branchIfCan|
+ |semiResultantReduitEuclidean| |taylorRep| |fixedDivisor|
+ |inGroundField?| |pdf2df| |lazyEvaluate| |findCycle| |torsion?|
+ |leaves| |factorSquareFreeByRecursion| |limitedIntegrate| |infLex?|
+ |generalPosition| |transcendent?| |solid| |singleFactorBound|
+ |branchPoint?| |s18aef| |c05adf| |denominator| |nil| |OMlistSymbols|
+ |makeSUP| |iitan| |d01fcf| |macroExpand| |multiEuclidean|
+ |explimitedint| |innerSolve| |coHeight| |permutationRepresentation|
+ |jordanAlgebra?| |createLowComplexityTable|
+ |selectIntegrationRoutines| |brillhartIrreducible?| |ipow|
+ |aQuadratic| |viewZoomDefault| |functionIsFracPolynomial?| |sech2cosh|
+ |physicalLength!| |tubePointsDefault| |hexDigit?| |readInt32!|
+ |extendedEuclidean| |leftUnit| |getProperties| |green|
+ |extractProperty| |updatF| |approximate| |screenResolution3D| |reseed|
+ |bezoutMatrix| |aromberg| |empty?| |aQuartic| |parent| |oddlambert|
+ |ddFact| |sum| |complex| |yellow| |primeFrobenius|
+ |certainlySubVariety?| |tubeRadiusDefault| |open?| |close!|
+ |lowerBound| |palgintegrate| |ksec| |changeNameToObjf|
+ |complementaryBasis| |e01bff| |delay| |monomials| |enumerate| |ode1|
+ |curryRight| |tab1| |showArrayValues| |bumptab1| |cos2sec| |rank|
+ |d02gaf| |lllp| |romberg| |fullDisplay| |variationOfParameters|
+ |leftGcd| |point| |push!| |order| |cn| |lllip| |mergeFactors|
+ |upperBound| |debug| |cot2tan| |radicalOfLeftTraceForm| |failed| |nor|
+ |newSubProgram| |elementary| |cAsech| |removeSquaresIfCan|
+ |numberOfNormalPoly| |Ei| |triangular?| |whileLoop| D |round| |f04qaf|
+ |dmp2rfi| |cardinality| |makeSin| |subMatrix| |splitDenominator|
+ |d01bbf| |sqfree| |complexNormalize| |modifyPoint| |series|
+ |computeBasis| |cosIfCan| |monicRightDivide| |noLinearFactor?|
+ |OMopenString| |numberOfPrimitivePoly| |lowerCase?| |polar| |df2st|
+ |divisors| |e01sff| |quotientByP| |nextIrreduciblePoly| |elRow2!|
+ |meshPar1Var| |figureUnits| |pack!| |wronskianMatrix| |e04jaf|
+ |sin2csc| |lieAlgebra?| |subResultantGcdEuclidean| |determinant|
+ |commutator| |divisorCascade| |jordanAdmissible?| |palgRDE| |super|
+ |deepExpand| |lists| |isOpen?| |shallowCopy| |mpsode| |f01qcf| |min|
+ |removeRoughlyRedundantFactorsInContents| |nextLatticePermutation|
+ |isImplies| |diophantineSystem| |parseString| |nextNormalPoly|
+ |OMputFloat| |cycleRagits| |cRationalPower| |basicSet| |printInfo|
+ |sample| |toseInvertibleSet| |algebraicSort| |binary|
+ |expenseOfEvaluation| |minus!| |coordinates| |queue|
+ |rationalFunction| |pointSizeDefault| |basisOfMiddleNucleus| |diag|
+ |leadingCoefficientRicDE| |OMputEndBind| |OMsupportsSymbol?|
+ |associatedEquations| |checkPrecision| |besselK| |setButtonValue|
+ |minordet| |integerBound| |substring?| |normalise| |key|
+ |groebnerFactorize| |lazyPseudoRemainder| |getSyntaxFormsFromFile|
+ |oblateSpheroidal| |beauzamyBound| |antisymmetricTensors| |c02aff|
+ |getOperator| |leftPower| |selectNonFiniteRoutines|
+ |LowTriBddDenomInv| |coth2tanh| |leader| |iiasec| |qfactor|
+ |resultantReduit| |upperCase!| |fortranCompilerName| |suffix?|
+ |filename| |pr2dmp| |powerAssociative?| |atanhIfCan|
+ |OMencodingUnknown| |nthExponent| |fTable| |e02ajf| |OMgetVariable|
+ |merge!| |symbolTable| |loadNativeModule| |setPredicates| |tubeRadius|
+ |prinb| |resetBadValues| |stiffnessAndStabilityFactor| |s17aef|
+ |s17dcf| |stFuncN| |prefix?| |null?| |more?| |parse| |minPol|
+ |resetVariableOrder| |d02kef| |isobaric?| |fortran|
+ |integralBasisAtInfinity| |explogs2trigs| |sinhIfCan| |mainMonomial|
+ |plus| |sign| |pushFortranOutputStack| |inconsistent?| |upperCase|
+ |generalTwoFactor| |getlo| |trivialIdeal?| |pointColor|
+ |lazyResidueClass| |primintegrate| |upDateBranches|
+ |popFortranOutputStack| |member?| |has?| |minPoints| |coth2trigh|
+ |setCondition!| |linkToFortran| |getOperands| |mainCharacterization|
+ |stoseInvertible?| |outputAsFortran| |rightExtendedGcd| |rootRadius|
+ |mathieu11| LODO2FUN |iiatan| |backOldPos| |f07aef| |substitute|
+ |mapmult| |table| |chiSquare1| |bumprow| |setOrder| |sdf2lst|
+ |identity| |alternative?| |precision| |perspective| |times|
+ |rewriteIdealWithHeadRemainder| |prefixRagits| |new|
+ |lazyPremWithDefault| |critBonD| |corrPoly| |subresultantVector|
+ |linearAssociatedLog| |resetNew| |module| |associates?| |userOrdered?|
+ |infix?| |ptree| |fortranLogical| |quickSort| |sPol| |palgint0|
+ |basisOfRightNucloid| |euclideanGroebner| |flatten| |errorInfo|
+ |digits| |mask| |complexNumericIfCan| |radicalRoots| |plus!|
+ |outputForm| |square?| |cSech| |init| |isAbsolutelyIrreducible?|
+ |pointColorDefault| |primPartElseUnitCanonical| |hitherPlane|
+ |iibinom| |comparison| |deleteRoutine!| |mirror| |var2Steps|
+ |startTableInvSet!| |dimensionsOf| |removeSinhSq| |consnewpol| |monom|
+ |mapUnivariate| |transform| |root?| |addmod| |dequeue| |splitLinear|
+ |ldf2vmf| |evenlambert| |palgLODE| |rule| |genericRightDiscriminant|
+ |hyperelliptic| |elements| |OMencodingXML| |coord| |weight|
+ |removeIrreducibleRedundantFactors| |sorted?| |monomialIntPoly|
+ |factorByRecursion| |f02axf| |cyclicSubmodule| |quotient| |common|
+ |purelyAlgebraic?| |absolutelyIrreducible?| |perfectSquare?|
+ |leftRankPolynomial| |nullary| |finite?| |clearTheFTable| |vark|
+ |pdct| |script| |iFTable| |processTemplate| |pastel| |middle|
+ |closedCurve?| |primitivePart| |tValues| |readLineIfCan!| |sizeLess?|
+ |rightDivide| |title| |normalizedDivide| |LazardQuotient| |addMatch|
+ |sec2cos| |integralDerivationMatrix| |OMputEndBVar| |mightHaveRoots|
+ |integralBasis| |leftMult| |rotatey| |stopTable!| |maxColIndex|
+ |var2StepsDefault| |left| |vector| |idealiserMatrix|
+ |associatedSystem| |f02aaf| |positiveRemainder| |tex| |rk4a|
+ |outerProduct| |iomode| |separate| |OMgetAtp| |quote| |right|
+ |differentiate| |primitiveElement| |possiblyNewVariety?|
+ |viewPhiDefault| |bits| |e| |gcdPrimitive| |rCoord| |imagJ| |list?|
+ |ellipticCylindrical| |graphImage| |complexEigenvalues| |mapCoef|
+ |showTheIFTable| |redPo| |iipow| |OMputEndAttr| |freeOf?| |whitePoint|
+ |setPoly| |semiDegreeSubResultantEuclidean| |acotIfCan|
+ |integralRepresents| |enqueue!| |OMsetEncoding| |createPrimitivePoly|
+ |cCosh| |monic?| |stopTableGcd!| |linearlyDependentOverZ?| |compound?|
+ |heap| |optpair| |dimension| |lexico| |ord| |repeating?|
+ |realEigenvectors| |arity| |numberOfOperations| |mulmod| |trigs|
+ |factors| |rewriteIdealWithRemainder| |cyclotomicFactorization|
+ |semiLastSubResultantEuclidean| |Beta| |monicRightFactorIfCan|
+ |bothWays| |exists?| |lintgcd| |laurentRep| |shift| |sts2stst|
+ |cAcosh| |c06gqf| |cLog| |pow| |any| |one?| |hash| |appendPoint|
+ |getMatch| |OMputBind| |internal?| |read!| |part?| |OMgetSymbol|
+ |internalSubQuasiComponent?| |count| |maxrank| |unknownEndian|
+ |constantKernel| |next| |solveLinearPolynomialEquationByFractions|
+ |definingEquations| |iitanh| |e04mbf| |functorData| |legendreP|
+ |wreath| |modTree| |rotatex| |selectSumOfSquaresRoutines| |e01daf|
+ |newLine| |noKaratsuba| |genericLeftMinimalPolynomial| |midpoints|
+ |degreeSubResultant| |basisOfCentroid| |number?| |outputAsTex|
+ |antiAssociative?| |inverseColeman| |pquo| |setrest!| |setlast!|
+ |rquo| |symbol| |subset?| |coerceP| |numericalIntegration| |elliptic?|
+ |sort!| |unaryFunction| |e04fdf| |newTypeLists| |rightRankPolynomial|
+ |lazyIrreducibleFactors| |expression| |coleman| |radPoly|
+ |prinpolINFO| |readable?| |cAsec| |integerIfCan| |cyclic?| |toScale|
+ |multiplyCoefficients| |integer| |invertible?| |balancedFactorisation|
+ |rightTrace| |algebraicDecompose| |littleEndian| |bandedJacobian|
+ |nonLinearPart| |linear| |linearPart| |polCase| |iidsum| |parabolic|
+ |BumInSepFFE| |isMult| |expint| |ocf2ocdf| |f04axf| |fixedPoints|
+ |mainVariable| |halfExtendedResultant2| |cAcos| |nextItem|
+ |rubiksGroup| |leadingTerm| |bivariateSLPEBR| |OMsupportsCD?|
+ |polynomial| |fortranDoubleComplex| |quoted?| |rootDirectory|
+ |generalizedInverse| |rdregime| |infix| |quartic| |wrregime| |replace|
+ |OMParseError?| |car| |Hausdorff| |inputBinaryFile| |moebius|
+ |extendedIntegrate| |showFortranOutputStack| |erf| |divideExponents|
+ |result| |OMlistCDs| |seriesSolve| |representationType| |makeSeries|
+ |s17dhf| |ceiling| |li| |f01qdf| |bfEntry| |returns| |f04atf|
+ |solveid| |makeFloatFunction| |terms| |nextPrimitiveNormalPoly|
+ |s21bcf| |stack| |commonDenominator| |tower| |rationalPoints| |lprop|
+ |flexibleArray| |quasiAlgebraicSet| |internalSubPolSet?| |mappingAst|
+ |complexElementary| |goodPoint| |nil?| |reducedDiscriminant|
+ |showClipRegion| |multinomial| |partitions| |graphCurves| |iiasin|
+ |idealiser| |exprex| |polygamma| |block| |cSin|
+ |rationalApproximation| |cSinh| |dominantTerm| |makeVariable|
+ |Vectorise| |mainPrimitivePart| |weierstrass| |integralCoordinates|
+ |restorePrecision| |selectsecond| |eq| |completeEchelonBasis|
+ |univcase| |polyRDE| |cycleElt| |node?| |iter| |dim| |invertibleSet|
+ |csch2sinh| |Lazard| |roughEqualIdeals?| |kmax| |length| |someBasis|
+ |presub| |fortranLiteral| |numerators| |useEisensteinCriterion|
+ |lifting1| |rational| |complexNumeric| |overlabel| |mkAnswer| |step|
+ |scripts| |permutations| |currentScope| |byteBuffer| |algebraicOf|
+ |s17akf| |initials| |pile| |reduced?| |leastMonomial| |concat|
+ |complex?| |monomRDEsys| |characteristic| |closeComponent|
+ |makeSketch| |test| |kernels| |OMputEndObject| |outlineRender|
+ |computeCycleLength| |e01sbf| |characteristicPolynomial| |hMonic|
+ |schwerpunkt| |maximumExponent| |operator| |setTopPredicate| |cfirst|
+ |ScanArabic| |removeRoughlyRedundantFactorsInPols| |completeSmith|
+ |character?| |explicitlyEmpty?| |SturmHabichtSequence| |trim|
+ |outputMeasure| |addBadValue| |leastAffineMultiple| |iiacosh|
+ |axesColorDefault| |ranges| |LyndonWordsList1| |complexSolve|
+ |GospersMethod| |rightUnits| |laplacian| |univariate| |nthFlag|
+ |setColumn!| |geometric| |FormatArabic| |replaceKthElement| |f07adf|
+ |opeval| |seed| |identitySquareMatrix| |pade| |stirling1| |uniform01|
+ |binomThmExpt| |powers| |prolateSpheroidal| |trunc| |isNot| |iiGamma|
+ |f02akf| |setelt!| |prefix| |diagonals| |retractable?| |routines|
+ |cAcot| |factor| |interpolate| |symbolTableOf| |OMputString| |stFunc1|
+ |ratDsolve| |nthExpon| |subSet| |composites| |sqrt| |OMconnOutDevice|
+ |integralLastSubResultant| |contractSolve| |pushNewContour|
+ |testModulus| |chebyshevT| |unprotectedRemoveRedundantFactors|
+ |scopes| |selectfirst| |real| |cCos| |e02ddf| |unvectorise|
+ |duplicates| |symbol?| |tubePoints| |tanh2coth| |equality| |dflist|
+ |imag| |Nul| |getRef| |declare| |ridHack1| |stop| |leftQuotient|
+ |SturmHabicht| |binaryTournament| |pointLists| |s14baf| |OMgetBVar|
+ |directProduct| |halfExtendedResultant1| |palginfieldint|
+ |sturmVariationsOf| |rootSplit| |mr| |integral| |lambert|
+ |systemSizeIF| |algintegrate| |hasPredicate?| |solid?| |findBinding|
+ |asechIfCan| |basisOfCenter| |closed?| |outputSpacing| SEGMENT
+ |s19abf| |lineColorDefault| |brace| |kind| |llprop| |reify|
+ |rightMult| |symmetric?| |environment| |tubePlot| |redPol| |surface|
+ |categories| |rowEchelonLocal| |destruct| |lexTriangular|
+ |subQuasiComponent?| |op| |pseudoRemainder| |reverseLex| |sqfrFactor|
+ |fibonacci| |mantissa| |subResultantChain| |depth| |clearTable!|
+ |csc2sin| |compBound| |ODESolve| |closedCurve| |dioSolve|
+ |localUnquote| |typeForm| |normalizedAssociate|
+ |stoseLastSubResultant| |lieAdmissible?| |recur| |iiacos|
+ |rootProduct| |safeCeiling| |quadratic?| |level| |algebraic?| |f04asf|
+ |controlPanel| |irDef| |factorSquareFree| |pascalTriangle|
+ |lfinfieldint| |shufflein| |solveInField| |ignore?| |approximants|
+ |ratpart| |setright!| |lSpaceBasis| |monomial| |euclideanNormalForm|
+ |nextSubsetGray| |prem| |divisor| |problemPoints| |iprint|
+ |rightFactorIfCan| |iiacot| |extend| |multivariate| |innerint|
+ |f04jgf| |squareFreePart| |f02fjf| |semiSubResultantGcdEuclidean1|
+ |degreeSubResultantEuclidean| |polygon?| |times!| |subHeight|
+ |variables| |setLabelValue| |cAcoth| |diagonal?| |union|
+ |groebnerIdeal| |sincos| |leftRemainder| |returnTypeOf| |bytes|
+ |symmetricDifference| |makeViewport3D| |isAnd| |float?| |rightRecip|
+ |ratDenom| |uncouplingMatrices| |gradient| |categoryFrame|
+ |OMputVariable| |startTable!| |c06gcf| |printHeader|
+ |characteristicSerie| |rightRemainder| |pushdterm| |minset|
+ |generateIrredPoly| |deref| |bat1| |OMputInteger| |asinIfCan|
+ |distdfact| |pop!| |exponents| |gensym| |OMgetType| |idealSimplify|
+ |iterationVar| |leftLcm| |solveLinearlyOverQ| |summation| |shiftRight|
+ |approxSqrt| |slash| |optional?| |enterInCache| |taylor| |comp|
+ |pseudoQuotient| |hdmpToDmp| |numberOfVariables|
+ |rootOfIrreduciblePoly| |gcdcofactprim| |lazy?| |argumentListOf|
+ |noValueMode| |string?| |laurent|
+ |dimensionOfIrreducibleRepresentation| |f07fdf| |createRandomElement|
+ |readBytes!| |factorPolynomial| |infinityNorm| |htrigs| |imagk|
+ |tanNa| |reverse| |puiseux| |lowerCase| |repeatUntilLoop|
+ |coercePreimagesImages| |isPower| |balancedBinaryTree| |factorial|
+ |flagFactor| |multiset| |extendedResultant| |adjoint| |packageCall|
+ |semicolonSeparate| |nil| |infinite| |arbitraryExponent| |approximate|
|complex| |shallowMutable| |canonical| |noetherian| |central|
|partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
|noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 1a469919..bada1c95 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5400 +1,5409 @@
-(3237344 . 3485510938)
-((-2852 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3314 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3140 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-1246 (-572)) |#2|) 44)) (-3133 (($ $) 80)) (-2865 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1439 (((-572) (-1 (-112) |#2|) $) 27) (((-572) |#2| $) NIL) (((-572) |#2| $ (-572)) 96)) (-1863 (((-652 |#2|) $) 13)) (-1767 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2442 (($ (-1 |#2| |#2|) $) 37)) (-1776 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1593 (($ |#2| $ (-572)) NIL) (($ $ $ (-572)) 67)) (-3770 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1612 (((-112) (-1 (-112) |#2|) $) 23)) (-2196 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-572)) NIL) (($ $ (-1246 (-572))) 66)) (-2835 (($ $ (-572)) 76) (($ $ (-1246 (-572))) 75)) (-3973 (((-779) (-1 (-112) |#2|) $) 34) (((-779) |#2| $) NIL)) (-4095 (($ $ $ (-572)) 69)) (-3164 (($ $) 68)) (-2953 (($ (-652 |#2|)) 73)) (-4155 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-652 $)) 85)) (-2940 (((-870) $) 92)) (-4380 (((-112) (-1 (-112) |#2|) $) 22)) (-2978 (((-112) $ $) 95)) (-3003 (((-112) $ $) 99)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2978 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -3003 ((-112) |#1| |#1|)) (-15 -3314 (|#1| |#1|)) (-15 -3314 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -4095 (|#1| |#1| |#1| (-572))) (-15 -2852 ((-112) |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -1439 ((-572) |#2| |#1| (-572))) (-15 -1439 ((-572) |#2| |#1|)) (-15 -1439 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -2852 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1767 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3140 (|#2| |#1| (-1246 (-572)) |#2|)) (-15 -1593 (|#1| |#1| |#1| (-572))) (-15 -1593 (|#1| |#2| |#1| (-572))) (-15 -2835 (|#1| |#1| (-1246 (-572)))) (-15 -2835 (|#1| |#1| (-572))) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4155 (|#1| (-652 |#1|))) (-15 -4155 (|#1| |#1| |#1|)) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#2|)) (-15 -2196 (|#1| |#1| (-1246 (-572)))) (-15 -2953 (|#1| (-652 |#2|))) (-15 -3770 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2196 (|#2| |#1| (-572))) (-15 -2196 (|#2| |#1| (-572) |#2|)) (-15 -3140 (|#2| |#1| (-572) |#2|)) (-15 -3973 ((-779) |#2| |#1|)) (-15 -1863 ((-652 |#2|) |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2442 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3164 (|#1| |#1|))) (-19 |#2|) (-1229)) (T -18))
+(3238065 . 3485633371)
+((-3850 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-4010 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3143 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-1248 (-574)) |#2|) 44)) (-2672 (($ $) 80)) (-2868 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1441 (((-574) (-1 (-112) |#2|) $) 27) (((-574) |#2| $) NIL) (((-574) |#2| $ (-574)) 96)) (-1864 (((-654 |#2|) $) 13)) (-2130 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2446 (($ (-1 |#2| |#2|) $) 37)) (-1778 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1595 (($ |#2| $ (-574)) NIL) (($ $ $ (-574)) 67)) (-1836 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3124 (((-112) (-1 (-112) |#2|) $) 23)) (-2200 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL) (($ $ (-1248 (-574))) 66)) (-2837 (($ $ (-574)) 76) (($ $ (-1248 (-574))) 75)) (-3975 (((-781) (-1 (-112) |#2|) $) 34) (((-781) |#2| $) NIL)) (-1958 (($ $ $ (-574)) 69)) (-3167 (($ $) 68)) (-2956 (($ (-654 |#2|)) 73)) (-4157 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-654 $)) 85)) (-2943 (((-872) $) 92)) (-2935 (((-112) (-1 (-112) |#2|) $) 22)) (-2982 (((-112) $ $) 95)) (-3005 (((-112) $ $) 99)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2982 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -4010 (|#1| |#1|)) (-15 -4010 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -1958 (|#1| |#1| |#1| (-574))) (-15 -3850 ((-112) |#1|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -3850 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2130 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3143 (|#2| |#1| (-1248 (-574)) |#2|)) (-15 -1595 (|#1| |#1| |#1| (-574))) (-15 -1595 (|#1| |#2| |#1| (-574))) (-15 -2837 (|#1| |#1| (-1248 (-574)))) (-15 -2837 (|#1| |#1| (-574))) (-15 -1778 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -2200 (|#1| |#1| (-1248 (-574)))) (-15 -2956 (|#1| (-654 |#2|))) (-15 -1836 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2200 (|#2| |#1| (-574))) (-15 -2200 (|#2| |#1| (-574) |#2|)) (-15 -3143 (|#2| |#1| (-574) |#2|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -1864 ((-654 |#2|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| |#1|))) (-19 |#2|) (-1231)) (T -18))
NIL
-(-10 -8 (-15 -2978 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -3003 ((-112) |#1| |#1|)) (-15 -3314 (|#1| |#1|)) (-15 -3314 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -4095 (|#1| |#1| |#1| (-572))) (-15 -2852 ((-112) |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -1439 ((-572) |#2| |#1| (-572))) (-15 -1439 ((-572) |#2| |#1|)) (-15 -1439 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -2852 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1767 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3140 (|#2| |#1| (-1246 (-572)) |#2|)) (-15 -1593 (|#1| |#1| |#1| (-572))) (-15 -1593 (|#1| |#2| |#1| (-572))) (-15 -2835 (|#1| |#1| (-1246 (-572)))) (-15 -2835 (|#1| |#1| (-572))) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4155 (|#1| (-652 |#1|))) (-15 -4155 (|#1| |#1| |#1|)) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#2|)) (-15 -2196 (|#1| |#1| (-1246 (-572)))) (-15 -2953 (|#1| (-652 |#2|))) (-15 -3770 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2196 (|#2| |#1| (-572))) (-15 -2196 (|#2| |#1| (-572) |#2|)) (-15 -3140 (|#2| |#1| (-572) |#2|)) (-15 -3973 ((-779) |#2| |#1|)) (-15 -1863 ((-652 |#2|) |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2442 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3164 (|#1| |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3176 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) 8)) (-3140 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-3133 (($ $) 93 (|has| $ (-6 -4455)))) (-4421 (($ $) 103)) (-2086 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 52)) (-1439 (((-572) (-1 (-112) |#1|) $) 100) (((-572) |#1| $) 99 (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) 98 (|has| |#1| (-1111)))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3787 (($ (-779) |#1|) 70)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 44 (|has| (-572) (-858)))) (-3654 (($ $ $) 90 (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 45 (|has| (-572) (-858)))) (-2427 (($ $ $) 89 (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1986 (((-652 (-572)) $) 47)) (-1370 (((-112) (-572) $) 48)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2912 ((|#1| $) 43 (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2476 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-2835 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4095 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3164 (($ $) 13)) (-1835 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 72)) (-4155 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) 87 (|has| |#1| (-858)))) (-3014 (((-112) $ $) 86 (|has| |#1| (-858)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3026 (((-112) $ $) 88 (|has| |#1| (-858)))) (-3003 (((-112) $ $) 85 (|has| |#1| (-858)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-19 |#1|) (-141) (-1229)) (T -19))
+(-10 -8 (-15 -2982 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -4010 (|#1| |#1|)) (-15 -4010 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -1958 (|#1| |#1| |#1| (-574))) (-15 -3850 ((-112) |#1|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -3850 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2130 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3143 (|#2| |#1| (-1248 (-574)) |#2|)) (-15 -1595 (|#1| |#1| |#1| (-574))) (-15 -1595 (|#1| |#2| |#1| (-574))) (-15 -2837 (|#1| |#1| (-1248 (-574)))) (-15 -2837 (|#1| |#1| (-574))) (-15 -1778 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -2200 (|#1| |#1| (-1248 (-574)))) (-15 -2956 (|#1| (-654 |#2|))) (-15 -1836 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2200 (|#2| |#1| (-574))) (-15 -2200 (|#2| |#1| (-574) |#2|)) (-15 -3143 (|#2| |#1| (-574) |#2|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -1864 ((-654 |#2|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-1860 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2672 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-2158 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1441 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 70)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 44 (|has| (-574) (-860)))) (-3658 (($ $ $) 90 (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 45 (|has| (-574) (-860)))) (-2106 (($ $ $) 89 (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2459 (((-654 (-574)) $) 47)) (-2607 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1363 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-2837 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1958 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1837 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3016 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3028 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-19 |#1|) (-141) (-1231)) (T -19))
NIL
-(-13 (-380 |t#1|) (-10 -7 (-6 -4455)))
-(((-34) . T) ((-102) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-380 |#1|) . T) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1111) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1229) . T))
-((-3330 (((-3 $ "failed") $ $) 12)) (-3089 (($ $) NIL) (($ $ $) 9)) (* (($ (-930) $) NIL) (($ (-779) $) 16) (($ (-572) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -3330 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-21)) (T -20))
+(-13 (-382 |t#1|) (-10 -7 (-6 -4457)))
+(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1231) . T))
+((-2950 (((-3 $ "failed") $ $) 12)) (-3094 (($ $) NIL) (($ $ $) 9)) (* (($ (-932) $) NIL) (($ (-781) $) 16) (($ (-574) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2950 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -3330 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24)))
+(-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2950 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24)))
(((-21) (-141)) (T -21))
-((-3089 (*1 *1 *1) (-4 *1 (-21))) (-3089 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-132) (-654 (-572)) (-10 -8 (-15 -3089 ($ $)) (-15 -3089 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-1111) . T))
-((-2697 (((-112) $) 10)) (-3281 (($) 15)) (* (($ (-930) $) 14) (($ (-779) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-779) |#1|)) (-15 -2697 ((-112) |#1|)) (-15 -3281 (|#1|)) (-15 * (|#1| (-930) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-779) |#1|)) (-15 -2697 ((-112) |#1|)) (-15 -3281 (|#1|)) (-15 * (|#1| (-930) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16)))
+((-3094 (*1 *1 *1) (-4 *1 (-21))) (-3094 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-132) (-656 (-574)) (-10 -8 (-15 -3094 ($ $)) (-15 -3094 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1113) . T))
+((-2908 (((-112) $) 10)) (-3670 (($) 15)) (* (($ (-932) $) 14) (($ (-781) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -2908 ((-112) |#1|)) (-15 -3670 (|#1|)) (-15 * (|#1| (-932) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -2908 ((-112) |#1|)) (-15 -3670 (|#1|)) (-15 * (|#1| (-932) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16)))
(((-23) (-141)) (T -23))
-((-2131 (*1 *1) (-4 *1 (-23))) (-3281 (*1 *1) (-4 *1 (-23))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-779)))))
-(-13 (-25) (-10 -8 (-15 (-2131) ($) -1705) (-15 -3281 ($) -1705) (-15 -2697 ((-112) $)) (-15 * ($ (-779) $))))
-(((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((* (($ (-930) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-930) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-930) |#1|)))
-((-2846 (((-112) $ $) 7)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14)))
+((-2134 (*1 *1) (-4 *1 (-23))) (-3670 (*1 *1) (-4 *1 (-23))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781)))))
+(-13 (-25) (-10 -8 (-15 (-2134) ($) -1707) (-15 -3670 ($) -1707) (-15 -2908 ((-112) $)) (-15 * ($ (-781) $))))
+(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((* (($ (-932) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-932) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-932) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14)))
(((-25) (-141)) (T -25))
-((-3075 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-930)))))
-(-13 (-1111) (-10 -8 (-15 -3075 ($ $ $)) (-15 * ($ (-930) $))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2345 (((-652 $) (-961 $)) 32) (((-652 $) (-1184 $)) 16) (((-652 $) (-1184 $) (-1188)) 20)) (-4164 (($ (-961 $)) 30) (($ (-1184 $)) 11) (($ (-1184 $) (-1188)) 60)) (-2901 (((-652 $) (-961 $)) 33) (((-652 $) (-1184 $)) 18) (((-652 $) (-1184 $) (-1188)) 19)) (-1821 (($ (-961 $)) 31) (($ (-1184 $)) 13) (($ (-1184 $) (-1188)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2345 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2345 ((-652 |#1|) (-1184 |#1|))) (-15 -2345 ((-652 |#1|) (-961 |#1|))) (-15 -4164 (|#1| (-1184 |#1|) (-1188))) (-15 -4164 (|#1| (-1184 |#1|))) (-15 -4164 (|#1| (-961 |#1|))) (-15 -2901 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2901 ((-652 |#1|) (-1184 |#1|))) (-15 -2901 ((-652 |#1|) (-961 |#1|))) (-15 -1821 (|#1| (-1184 |#1|) (-1188))) (-15 -1821 (|#1| (-1184 |#1|))) (-15 -1821 (|#1| (-961 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2345 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2345 ((-652 |#1|) (-1184 |#1|))) (-15 -2345 ((-652 |#1|) (-961 |#1|))) (-15 -4164 (|#1| (-1184 |#1|) (-1188))) (-15 -4164 (|#1| (-1184 |#1|))) (-15 -4164 (|#1| (-961 |#1|))) (-15 -2901 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2901 ((-652 |#1|) (-1184 |#1|))) (-15 -2901 ((-652 |#1|) (-961 |#1|))) (-15 -1821 (|#1| (-1184 |#1|) (-1188))) (-15 -1821 (|#1| (-1184 |#1|))) (-15 -1821 (|#1| (-961 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2345 (((-652 $) (-961 $)) 88) (((-652 $) (-1184 $)) 87) (((-652 $) (-1184 $) (-1188)) 86)) (-4164 (($ (-961 $)) 91) (($ (-1184 $)) 90) (($ (-1184 $) (-1188)) 89)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-4227 (($ $) 100)) (-4217 (((-112) $ $) 65)) (-3281 (($) 18 T CONST)) (-2901 (((-652 $) (-961 $)) 94) (((-652 $) (-1184 $)) 93) (((-652 $) (-1184 $) (-1188)) 92)) (-1821 (($ (-961 $)) 97) (($ (-1184 $)) 96) (($ (-1184 $) (-1188)) 95)) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-3879 (((-112) $) 79)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 99)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 78)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-4218 (((-426 $) $) 82)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77) (($ $ (-415 (-572))) 98)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
+((-3078 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-932)))))
+(-13 (-1113) (-10 -8 (-15 -3078 ($ $ $)) (-15 * ($ (-932) $))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2656 (((-654 $) (-963 $)) 32) (((-654 $) (-1186 $)) 16) (((-654 $) (-1186 $) (-1190)) 20)) (-1397 (($ (-963 $)) 30) (($ (-1186 $)) 11) (($ (-1186 $) (-1190)) 60)) (-3072 (((-654 $) (-963 $)) 33) (((-654 $) (-1186 $)) 18) (((-654 $) (-1186 $) (-1190)) 19)) (-1413 (($ (-963 $)) 31) (($ (-1186 $)) 13) (($ (-1186 $) (-1190)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -2656 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -2656 ((-654 |#1|) (-1186 |#1|))) (-15 -2656 ((-654 |#1|) (-963 |#1|))) (-15 -1397 (|#1| (-1186 |#1|) (-1190))) (-15 -1397 (|#1| (-1186 |#1|))) (-15 -1397 (|#1| (-963 |#1|))) (-15 -3072 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -3072 ((-654 |#1|) (-1186 |#1|))) (-15 -3072 ((-654 |#1|) (-963 |#1|))) (-15 -1413 (|#1| (-1186 |#1|) (-1190))) (-15 -1413 (|#1| (-1186 |#1|))) (-15 -1413 (|#1| (-963 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -2656 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -2656 ((-654 |#1|) (-1186 |#1|))) (-15 -2656 ((-654 |#1|) (-963 |#1|))) (-15 -1397 (|#1| (-1186 |#1|) (-1190))) (-15 -1397 (|#1| (-1186 |#1|))) (-15 -1397 (|#1| (-963 |#1|))) (-15 -3072 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -3072 ((-654 |#1|) (-1186 |#1|))) (-15 -3072 ((-654 |#1|) (-963 |#1|))) (-15 -1413 (|#1| (-1186 |#1|) (-1190))) (-15 -1413 (|#1| (-1186 |#1|))) (-15 -1413 (|#1| (-963 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2656 (((-654 $) (-963 $)) 88) (((-654 $) (-1186 $)) 87) (((-654 $) (-1186 $) (-1190)) 86)) (-1397 (($ (-963 $)) 91) (($ (-1186 $)) 90) (($ (-1186 $) (-1190)) 89)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-4229 (($ $) 100)) (-3875 (((-112) $ $) 65)) (-3670 (($) 18 T CONST)) (-3072 (((-654 $) (-963 $)) 94) (((-654 $) (-1186 $)) 93) (((-654 $) (-1186 $) (-1190)) 92)) (-1413 (($ (-963 $)) 97) (($ (-1186 $)) 96) (($ (-1186 $) (-1190)) 95)) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-1654 (((-112) $) 79)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 99)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 82)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
(((-27) (-141)) (T -27))
-((-1821 (*1 *1 *2) (-12 (-5 *2 (-961 *1)) (-4 *1 (-27)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-27)))) (-1821 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-5 *3 (-1188)) (-4 *1 (-27)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1188)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-4164 (*1 *1 *2) (-12 (-5 *2 (-961 *1)) (-4 *1 (-27)))) (-4164 (*1 *1 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-27)))) (-4164 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-5 *3 (-1188)) (-4 *1 (-27)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-2345 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1188)) (-4 *1 (-27)) (-5 *2 (-652 *1)))))
-(-13 (-370) (-1013) (-10 -8 (-15 -1821 ($ (-961 $))) (-15 -1821 ($ (-1184 $))) (-15 -1821 ($ (-1184 $) (-1188))) (-15 -2901 ((-652 $) (-961 $))) (-15 -2901 ((-652 $) (-1184 $))) (-15 -2901 ((-652 $) (-1184 $) (-1188))) (-15 -4164 ($ (-961 $))) (-15 -4164 ($ (-1184 $))) (-15 -4164 ($ (-1184 $) (-1188))) (-15 -2345 ((-652 $) (-961 $))) (-15 -2345 ((-652 $) (-1184 $))) (-15 -2345 ((-652 $) (-1184 $) (-1188)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1013) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
-((-2345 (((-652 $) (-961 $)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-1184 $) (-1188)) 55) (((-652 $) $) 22) (((-652 $) $ (-1188)) 46)) (-4164 (($ (-961 $)) NIL) (($ (-1184 $)) NIL) (($ (-1184 $) (-1188)) 57) (($ $) 20) (($ $ (-1188)) 40)) (-2901 (((-652 $) (-961 $)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-1184 $) (-1188)) 53) (((-652 $) $) 18) (((-652 $) $ (-1188)) 48)) (-1821 (($ (-961 $)) NIL) (($ (-1184 $)) NIL) (($ (-1184 $) (-1188)) NIL) (($ $) 15) (($ $ (-1188)) 42)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2345 ((-652 |#1|) |#1| (-1188))) (-15 -4164 (|#1| |#1| (-1188))) (-15 -2345 ((-652 |#1|) |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -2901 ((-652 |#1|) |#1| (-1188))) (-15 -1821 (|#1| |#1| (-1188))) (-15 -2901 ((-652 |#1|) |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -2345 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2345 ((-652 |#1|) (-1184 |#1|))) (-15 -2345 ((-652 |#1|) (-961 |#1|))) (-15 -4164 (|#1| (-1184 |#1|) (-1188))) (-15 -4164 (|#1| (-1184 |#1|))) (-15 -4164 (|#1| (-961 |#1|))) (-15 -2901 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2901 ((-652 |#1|) (-1184 |#1|))) (-15 -2901 ((-652 |#1|) (-961 |#1|))) (-15 -1821 (|#1| (-1184 |#1|) (-1188))) (-15 -1821 (|#1| (-1184 |#1|))) (-15 -1821 (|#1| (-961 |#1|)))) (-29 |#2|) (-564)) (T -28))
-NIL
-(-10 -8 (-15 -2345 ((-652 |#1|) |#1| (-1188))) (-15 -4164 (|#1| |#1| (-1188))) (-15 -2345 ((-652 |#1|) |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -2901 ((-652 |#1|) |#1| (-1188))) (-15 -1821 (|#1| |#1| (-1188))) (-15 -2901 ((-652 |#1|) |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -2345 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2345 ((-652 |#1|) (-1184 |#1|))) (-15 -2345 ((-652 |#1|) (-961 |#1|))) (-15 -4164 (|#1| (-1184 |#1|) (-1188))) (-15 -4164 (|#1| (-1184 |#1|))) (-15 -4164 (|#1| (-961 |#1|))) (-15 -2901 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2901 ((-652 |#1|) (-1184 |#1|))) (-15 -2901 ((-652 |#1|) (-961 |#1|))) (-15 -1821 (|#1| (-1184 |#1|) (-1188))) (-15 -1821 (|#1| (-1184 |#1|))) (-15 -1821 (|#1| (-961 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2345 (((-652 $) (-961 $)) 88) (((-652 $) (-1184 $)) 87) (((-652 $) (-1184 $) (-1188)) 86) (((-652 $) $) 136) (((-652 $) $ (-1188)) 134)) (-4164 (($ (-961 $)) 91) (($ (-1184 $)) 90) (($ (-1184 $) (-1188)) 89) (($ $) 137) (($ $ (-1188)) 135)) (-2697 (((-112) $) 17)) (-4353 (((-652 (-1188)) $) 205)) (-4191 (((-415 (-1184 $)) $ (-620 $)) 237 (|has| |#1| (-564)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-4090 (((-652 (-620 $)) $) 168)) (-3330 (((-3 $ "failed") $ $) 20)) (-2539 (($ $ (-652 (-620 $)) (-652 $)) 158) (($ $ (-652 (-300 $))) 157) (($ $ (-300 $)) 156)) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-4227 (($ $) 100)) (-4217 (((-112) $ $) 65)) (-3281 (($) 18 T CONST)) (-2901 (((-652 $) (-961 $)) 94) (((-652 $) (-1184 $)) 93) (((-652 $) (-1184 $) (-1188)) 92) (((-652 $) $) 140) (((-652 $) $ (-1188)) 138)) (-1821 (($ (-961 $)) 97) (($ (-1184 $)) 96) (($ (-1184 $) (-1188)) 95) (($ $) 141) (($ $ (-1188)) 139)) (-1695 (((-3 (-961 |#1|) "failed") $) 255 (|has| |#1| (-1060))) (((-3 (-415 (-961 |#1|)) "failed") $) 239 (|has| |#1| (-564))) (((-3 |#1| "failed") $) 201) (((-3 (-572) "failed") $) 198 (|has| |#1| (-1049 (-572)))) (((-3 (-1188) "failed") $) 192) (((-3 (-620 $) "failed") $) 143) (((-3 (-415 (-572)) "failed") $) 131 (-2813 (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572))))))) (-2204 (((-961 |#1|) $) 254 (|has| |#1| (-1060))) (((-415 (-961 |#1|)) $) 238 (|has| |#1| (-564))) ((|#1| $) 200) (((-572) $) 199 (|has| |#1| (-1049 (-572)))) (((-1188) $) 191) (((-620 $) $) 142) (((-415 (-572)) $) 132 (-2813 (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572))))))) (-2780 (($ $ $) 61)) (-2993 (((-697 |#1|) (-1279 $)) 245 (|has| |#1| (-1060))) (((-697 |#1|) (-697 $)) 244 (|has| |#1| (-1060))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 243 (|has| |#1| (-1060))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 130 (-2813 (-2085 (|has| |#1| (-1060)) (|has| |#1| (-647 (-572)))) (-2085 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (((-697 (-572)) (-697 $)) 129 (-2813 (-2085 (|has| |#1| (-1060)) (|has| |#1| (-647 (-572)))) (-2085 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (((-697 (-572)) (-1279 $)) 128 (-2813 (-2085 (|has| |#1| (-1060)) (|has| |#1| (-647 (-572)))) (-2085 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-3879 (((-112) $) 79)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 197 (|has| |#1| (-895 (-386)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 196 (|has| |#1| (-895 (-572))))) (-3033 (($ (-652 $)) 162) (($ $) 161)) (-4085 (((-652 (-115)) $) 169)) (-4171 (((-115) (-115)) 170)) (-1886 (((-112) $) 35)) (-2597 (((-112) $) 190 (|has| $ (-1049 (-572))))) (-2710 (($ $) 222 (|has| |#1| (-1060)))) (-2963 (((-1136 |#1| (-620 $)) $) 221 (|has| |#1| (-1060)))) (-2932 (($ $ (-572)) 99)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2969 (((-1184 $) (-620 $)) 187 (|has| $ (-1060)))) (-1776 (($ (-1 $ $) (-620 $)) 176)) (-3369 (((-3 (-620 $) "failed") $) 166)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-4161 (((-652 (-620 $)) $) 167)) (-1774 (($ (-115) (-652 $)) 175) (($ (-115) $) 174)) (-4011 (((-3 (-652 $) "failed") $) 216 (|has| |#1| (-1123)))) (-4153 (((-3 (-2 (|:| |val| $) (|:| -1679 (-572))) "failed") $) 225 (|has| |#1| (-1060)))) (-3665 (((-3 (-652 $) "failed") $) 218 (|has| |#1| (-25)))) (-4235 (((-3 (-2 (|:| -1857 (-572)) (|:| |var| (-620 $))) "failed") $) 219 (|has| |#1| (-25)))) (-1920 (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-1188)) 224 (|has| |#1| (-1060))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-115)) 223 (|has| |#1| (-1060))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $) 217 (|has| |#1| (-1123)))) (-2695 (((-112) $ (-1188)) 173) (((-112) $ (-115)) 172)) (-1322 (($ $) 78)) (-1839 (((-779) $) 165)) (-3964 (((-1131) $) 11)) (-1336 (((-112) $) 203)) (-1347 ((|#1| $) 204)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-2202 (((-112) $ (-1188)) 178) (((-112) $ $) 177)) (-4218 (((-426 $) $) 82)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-2003 (((-112) $) 189 (|has| $ (-1049 (-572))))) (-2641 (($ $ (-1188) (-779) (-1 $ $)) 229 (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ (-652 $))) 228 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $)))) 227 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $))) 226 (|has| |#1| (-1060))) (($ $ (-652 (-115)) (-652 $) (-1188)) 215 (|has| |#1| (-622 (-544)))) (($ $ (-115) $ (-1188)) 214 (|has| |#1| (-622 (-544)))) (($ $) 213 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188))) 212 (|has| |#1| (-622 (-544)))) (($ $ (-1188)) 211 (|has| |#1| (-622 (-544)))) (($ $ (-115) (-1 $ $)) 186) (($ $ (-115) (-1 $ (-652 $))) 185) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) 184) (($ $ (-652 (-115)) (-652 (-1 $ $))) 183) (($ $ (-1188) (-1 $ $)) 182) (($ $ (-1188) (-1 $ (-652 $))) 181) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) 180) (($ $ (-652 (-1188)) (-652 (-1 $ $))) 179) (($ $ (-652 $) (-652 $)) 150) (($ $ $ $) 149) (($ $ (-300 $)) 148) (($ $ (-652 (-300 $))) 147) (($ $ (-652 (-620 $)) (-652 $)) 146) (($ $ (-620 $) $) 145)) (-3847 (((-779) $) 64)) (-2196 (($ (-115) (-652 $)) 155) (($ (-115) $ $ $ $) 154) (($ (-115) $ $ $) 153) (($ (-115) $ $) 152) (($ (-115) $) 151)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-2904 (($ $ $) 164) (($ $) 163)) (-3902 (($ $ (-1188)) 253 (|has| |#1| (-1060))) (($ $ (-652 (-1188))) 252 (|has| |#1| (-1060))) (($ $ (-1188) (-779)) 251 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) 250 (|has| |#1| (-1060)))) (-1520 (($ $) 232 (|has| |#1| (-564)))) (-2974 (((-1136 |#1| (-620 $)) $) 231 (|has| |#1| (-564)))) (-3764 (($ $) 188 (|has| $ (-1060)))) (-1835 (((-544) $) 259 (|has| |#1| (-622 (-544)))) (($ (-426 $)) 230 (|has| |#1| (-564))) (((-901 (-386)) $) 195 (|has| |#1| (-622 (-901 (-386))))) (((-901 (-572)) $) 194 (|has| |#1| (-622 (-901 (-572)))))) (-1516 (($ $ $) 258 (|has| |#1| (-481)))) (-4326 (($ $ $) 257 (|has| |#1| (-481)))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ (-961 |#1|)) 256 (|has| |#1| (-1060))) (($ (-415 (-961 |#1|))) 240 (|has| |#1| (-564))) (($ (-415 (-961 (-415 |#1|)))) 236 (|has| |#1| (-564))) (($ (-961 (-415 |#1|))) 235 (|has| |#1| (-564))) (($ (-415 |#1|)) 234 (|has| |#1| (-564))) (($ (-1136 |#1| (-620 $))) 220 (|has| |#1| (-1060))) (($ |#1|) 202) (($ (-1188)) 193) (($ (-620 $)) 144)) (-3849 (((-3 $ "failed") $) 242 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-3952 (($ (-652 $)) 160) (($ $) 159)) (-4406 (((-112) (-115)) 171)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2494 (($ (-1188) (-652 $)) 210) (($ (-1188) $ $ $ $) 209) (($ (-1188) $ $ $) 208) (($ (-1188) $ $) 207) (($ (-1188) $) 206)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-1188)) 249 (|has| |#1| (-1060))) (($ $ (-652 (-1188))) 248 (|has| |#1| (-1060))) (($ $ (-1188) (-779)) 247 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) 246 (|has| |#1| (-1060)))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 73) (($ (-1136 |#1| (-620 $)) (-1136 |#1| (-620 $))) 233 (|has| |#1| (-564)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77) (($ $ (-415 (-572))) 98)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75) (($ $ |#1|) 241 (|has| |#1| (-174))) (($ |#1| $) 133 (|has| |#1| (-1060)))))
-(((-29 |#1|) (-141) (-564)) (T -29))
-((-1821 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-564)))) (-2901 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *3)))) (-1821 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-29 *3)) (-4 *3 (-564)))) (-2901 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *4)))) (-4164 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-564)))) (-2345 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *3)))) (-4164 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-29 *3)) (-4 *3 (-564)))) (-2345 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-438 |t#1|) (-10 -8 (-15 -1821 ($ $)) (-15 -2901 ((-652 $) $)) (-15 -1821 ($ $ (-1188))) (-15 -2901 ((-652 $) $ (-1188))) (-15 -4164 ($ $)) (-15 -2345 ((-652 $) $)) (-15 -4164 ($ $ (-1188))) (-15 -2345 ((-652 $) $ (-1188)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) . T) ((-624 #1=(-415 (-961 |#1|))) |has| |#1| (-564)) ((-624 (-572)) . T) ((-624 #2=(-620 $)) . T) ((-624 #3=(-961 |#1|)) |has| |#1| (-1060)) ((-624 #4=(-1188)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))) ((-247) . T) ((-296) . T) ((-313) . T) ((-315 $) . T) ((-308) . T) ((-370) . T) ((-384 |#1|) |has| |#1| (-1060)) ((-408 |#1|) . T) ((-419 |#1|) . T) ((-438 |#1|) . T) ((-460) . T) ((-481) |has| |#1| (-481)) ((-522 (-620 $) $) . T) ((-522 $ $) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 |#1|) -2813 (|has| |#1| (-1060)) (|has| |#1| (-174))) ((-654 $) . T) ((-656 #0#) . T) ((-656 #5=(-572)) -12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) ((-656 |#1|) -2813 (|has| |#1| (-1060)) (|has| |#1| (-174))) ((-656 $) . T) ((-648 #0#) . T) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) . T) ((-647 #5#) -12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) ((-647 |#1|) |has| |#1| (-1060)) ((-725 #0#) . T) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) . T) ((-734) . T) ((-909 (-1188)) |has| |#1| (-1060)) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-893 |#1|) . T) ((-929) . T) ((-1013) . T) ((-1049 (-415 (-572))) -2813 (|has| |#1| (-1049 (-415 (-572)))) (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) ((-1049 #1#) |has| |#1| (-564)) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 #2#) . T) ((-1049 #3#) |has| |#1| (-1060)) ((-1049 #4#) . T) ((-1049 |#1|) . T) ((-1062 #0#) . T) ((-1062 |#1|) |has| |#1| (-174)) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 |#1|) |has| |#1| (-174)) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) . T) ((-1233) . T))
-((-2419 (((-1105 (-227)) $) NIL)) (-2406 (((-1105 (-227)) $) NIL)) (-3420 (($ $ (-227)) 164)) (-3940 (($ (-961 (-572)) (-1188) (-1188) (-1105 (-415 (-572))) (-1105 (-415 (-572)))) 104)) (-2013 (((-652 (-652 (-952 (-227)))) $) 180)) (-2940 (((-870) $) 194)))
-(((-30) (-13 (-964) (-10 -8 (-15 -3940 ($ (-961 (-572)) (-1188) (-1188) (-1105 (-415 (-572))) (-1105 (-415 (-572))))) (-15 -3420 ($ $ (-227)))))) (T -30))
-((-3940 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-961 (-572))) (-5 *3 (-1188)) (-5 *4 (-1105 (-415 (-572)))) (-5 *1 (-30)))) (-3420 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))))
-(-13 (-964) (-10 -8 (-15 -3940 ($ (-961 (-572)) (-1188) (-1188) (-1105 (-415 (-572))) (-1105 (-415 (-572))))) (-15 -3420 ($ $ (-227)))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-1146) $) 11)) (-4379 (((-112) $ $) NIL)) (-2625 (((-1146) $) 9)) (-2978 (((-112) $ $) NIL)))
-(((-31) (-13 (-1094) (-10 -8 (-15 -2625 ((-1146) $)) (-15 -2042 ((-1146) $))))) (T -31))
-((-2625 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-31)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-31)))))
-(-13 (-1094) (-10 -8 (-15 -2625 ((-1146) $)) (-15 -2042 ((-1146) $))))
-((-1821 ((|#2| (-1184 |#2|) (-1188)) 41)) (-4171 (((-115) (-115)) 55)) (-2969 (((-1184 |#2|) (-620 |#2|)) 149 (|has| |#1| (-1049 (-572))))) (-1621 ((|#2| |#1| (-572)) 137 (|has| |#1| (-1049 (-572))))) (-2009 ((|#2| (-1184 |#2|) |#2|) 29)) (-3694 (((-870) (-652 |#2|)) 86)) (-3764 ((|#2| |#2|) 144 (|has| |#1| (-1049 (-572))))) (-4406 (((-112) (-115)) 17)) (** ((|#2| |#2| (-415 (-572))) 103 (|has| |#1| (-1049 (-572))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -1821 (|#2| (-1184 |#2|) (-1188))) (-15 -4171 ((-115) (-115))) (-15 -4406 ((-112) (-115))) (-15 -2009 (|#2| (-1184 |#2|) |#2|)) (-15 -3694 ((-870) (-652 |#2|))) (IF (|has| |#1| (-1049 (-572))) (PROGN (-15 ** (|#2| |#2| (-415 (-572)))) (-15 -2969 ((-1184 |#2|) (-620 |#2|))) (-15 -3764 (|#2| |#2|)) (-15 -1621 (|#2| |#1| (-572)))) |%noBranch|)) (-564) (-438 |#1|)) (T -32))
-((-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-4 *2 (-438 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1049 *4)) (-4 *3 (-564)))) (-3764 (*1 *2 *2) (-12 (-4 *3 (-1049 (-572))) (-4 *3 (-564)) (-5 *1 (-32 *3 *2)) (-4 *2 (-438 *3)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-620 *5)) (-4 *5 (-438 *4)) (-4 *4 (-1049 (-572))) (-4 *4 (-564)) (-5 *2 (-1184 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-415 (-572))) (-4 *4 (-1049 (-572))) (-4 *4 (-564)) (-5 *1 (-32 *4 *2)) (-4 *2 (-438 *4)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-652 *5)) (-4 *5 (-438 *4)) (-4 *4 (-564)) (-5 *2 (-870)) (-5 *1 (-32 *4 *5)))) (-2009 (*1 *2 *3 *2) (-12 (-5 *3 (-1184 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564)) (-5 *1 (-32 *4 *2)))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-438 *4)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-32 *3 *4)) (-4 *4 (-438 *3)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *2)) (-5 *4 (-1188)) (-4 *2 (-438 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-564)))))
-(-10 -7 (-15 -1821 (|#2| (-1184 |#2|) (-1188))) (-15 -4171 ((-115) (-115))) (-15 -4406 ((-112) (-115))) (-15 -2009 (|#2| (-1184 |#2|) |#2|)) (-15 -3694 ((-870) (-652 |#2|))) (IF (|has| |#1| (-1049 (-572))) (PROGN (-15 ** (|#2| |#2| (-415 (-572)))) (-15 -2969 ((-1184 |#2|) (-620 |#2|))) (-15 -3764 (|#2| |#2|)) (-15 -1621 (|#2| |#1| (-572)))) |%noBranch|))
-((-1631 (((-112) $ (-779)) 20)) (-3281 (($) 10)) (-1861 (((-112) $ (-779)) 19)) (-1985 (((-112) $ (-779)) 17)) (-3776 (((-112) $ $) 8)) (-1841 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -3281 (|#1|)) (-15 -1631 ((-112) |#1| (-779))) (-15 -1861 ((-112) |#1| (-779))) (-15 -1985 ((-112) |#1| (-779))) (-15 -1841 ((-112) |#1|)) (-15 -3776 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -3281 (|#1|)) (-15 -1631 ((-112) |#1| (-779))) (-15 -1861 ((-112) |#1| (-779))) (-15 -1985 ((-112) |#1| (-779))) (-15 -1841 ((-112) |#1|)) (-15 -3776 ((-112) |#1| |#1|)))
-((-1631 (((-112) $ (-779)) 8)) (-3281 (($) 7 T CONST)) (-1861 (((-112) $ (-779)) 9)) (-1985 (((-112) $ (-779)) 10)) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3164 (($ $) 13)) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
+((-1413 (*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) (-1413 (*1 *1 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-27)))) (-1413 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-5 *3 (-1190)) (-4 *1 (-27)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *1)) (-5 *4 (-1190)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-27)))) (-1397 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-5 *3 (-1190)) (-4 *1 (-27)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *1)) (-5 *4 (-1190)) (-4 *1 (-27)) (-5 *2 (-654 *1)))))
+(-13 (-372) (-1015) (-10 -8 (-15 -1413 ($ (-963 $))) (-15 -1413 ($ (-1186 $))) (-15 -1413 ($ (-1186 $) (-1190))) (-15 -3072 ((-654 $) (-963 $))) (-15 -3072 ((-654 $) (-1186 $))) (-15 -3072 ((-654 $) (-1186 $) (-1190))) (-15 -1397 ($ (-963 $))) (-15 -1397 ($ (-1186 $))) (-15 -1397 ($ (-1186 $) (-1190))) (-15 -2656 ((-654 $) (-963 $))) (-15 -2656 ((-654 $) (-1186 $))) (-15 -2656 ((-654 $) (-1186 $) (-1190)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1015) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T))
+((-2656 (((-654 $) (-963 $)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-1186 $) (-1190)) 55) (((-654 $) $) 22) (((-654 $) $ (-1190)) 46)) (-1397 (($ (-963 $)) NIL) (($ (-1186 $)) NIL) (($ (-1186 $) (-1190)) 57) (($ $) 20) (($ $ (-1190)) 40)) (-3072 (((-654 $) (-963 $)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-1186 $) (-1190)) 53) (((-654 $) $) 18) (((-654 $) $ (-1190)) 48)) (-1413 (($ (-963 $)) NIL) (($ (-1186 $)) NIL) (($ (-1186 $) (-1190)) NIL) (($ $) 15) (($ $ (-1190)) 42)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -2656 ((-654 |#1|) |#1| (-1190))) (-15 -1397 (|#1| |#1| (-1190))) (-15 -2656 ((-654 |#1|) |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -3072 ((-654 |#1|) |#1| (-1190))) (-15 -1413 (|#1| |#1| (-1190))) (-15 -3072 ((-654 |#1|) |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -2656 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -2656 ((-654 |#1|) (-1186 |#1|))) (-15 -2656 ((-654 |#1|) (-963 |#1|))) (-15 -1397 (|#1| (-1186 |#1|) (-1190))) (-15 -1397 (|#1| (-1186 |#1|))) (-15 -1397 (|#1| (-963 |#1|))) (-15 -3072 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -3072 ((-654 |#1|) (-1186 |#1|))) (-15 -3072 ((-654 |#1|) (-963 |#1|))) (-15 -1413 (|#1| (-1186 |#1|) (-1190))) (-15 -1413 (|#1| (-1186 |#1|))) (-15 -1413 (|#1| (-963 |#1|)))) (-29 |#2|) (-566)) (T -28))
+NIL
+(-10 -8 (-15 -2656 ((-654 |#1|) |#1| (-1190))) (-15 -1397 (|#1| |#1| (-1190))) (-15 -2656 ((-654 |#1|) |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -3072 ((-654 |#1|) |#1| (-1190))) (-15 -1413 (|#1| |#1| (-1190))) (-15 -3072 ((-654 |#1|) |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -2656 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -2656 ((-654 |#1|) (-1186 |#1|))) (-15 -2656 ((-654 |#1|) (-963 |#1|))) (-15 -1397 (|#1| (-1186 |#1|) (-1190))) (-15 -1397 (|#1| (-1186 |#1|))) (-15 -1397 (|#1| (-963 |#1|))) (-15 -3072 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -3072 ((-654 |#1|) (-1186 |#1|))) (-15 -3072 ((-654 |#1|) (-963 |#1|))) (-15 -1413 (|#1| (-1186 |#1|) (-1190))) (-15 -1413 (|#1| (-1186 |#1|))) (-15 -1413 (|#1| (-963 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2656 (((-654 $) (-963 $)) 88) (((-654 $) (-1186 $)) 87) (((-654 $) (-1186 $) (-1190)) 86) (((-654 $) $) 136) (((-654 $) $ (-1190)) 134)) (-1397 (($ (-963 $)) 91) (($ (-1186 $)) 90) (($ (-1186 $) (-1190)) 89) (($ $) 137) (($ $ (-1190)) 135)) (-2908 (((-112) $) 17)) (-4355 (((-654 (-1190)) $) 205)) (-4194 (((-417 (-1186 $)) $ (-622 $)) 237 (|has| |#1| (-566)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-4091 (((-654 (-622 $)) $) 168)) (-2950 (((-3 $ "failed") $ $) 20)) (-2545 (($ $ (-654 (-622 $)) (-654 $)) 158) (($ $ (-654 (-302 $))) 157) (($ $ (-302 $)) 156)) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-4229 (($ $) 100)) (-3875 (((-112) $ $) 65)) (-3670 (($) 18 T CONST)) (-3072 (((-654 $) (-963 $)) 94) (((-654 $) (-1186 $)) 93) (((-654 $) (-1186 $) (-1190)) 92) (((-654 $) $) 140) (((-654 $) $ (-1190)) 138)) (-1413 (($ (-963 $)) 97) (($ (-1186 $)) 96) (($ (-1186 $) (-1190)) 95) (($ $) 141) (($ $ (-1190)) 139)) (-1697 (((-3 (-963 |#1|) "failed") $) 255 (|has| |#1| (-1062))) (((-3 (-417 (-963 |#1|)) "failed") $) 239 (|has| |#1| (-566))) (((-3 |#1| "failed") $) 201) (((-3 (-574) "failed") $) 198 (|has| |#1| (-1051 (-574)))) (((-3 (-1190) "failed") $) 192) (((-3 (-622 $) "failed") $) 143) (((-3 (-417 (-574)) "failed") $) 131 (-2818 (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574))))))) (-2209 (((-963 |#1|) $) 254 (|has| |#1| (-1062))) (((-417 (-963 |#1|)) $) 238 (|has| |#1| (-566))) ((|#1| $) 200) (((-574) $) 199 (|has| |#1| (-1051 (-574)))) (((-1190) $) 191) (((-622 $) $) 142) (((-417 (-574)) $) 132 (-2818 (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574))))))) (-2785 (($ $ $) 61)) (-2668 (((-699 |#1|) (-1281 $)) 245 (|has| |#1| (-1062))) (((-699 |#1|) (-699 $)) 244 (|has| |#1| (-1062))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 243 (|has| |#1| (-1062))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 130 (-2818 (-2088 (|has| |#1| (-1062)) (|has| |#1| (-649 (-574)))) (-2088 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (((-699 (-574)) (-699 $)) 129 (-2818 (-2088 (|has| |#1| (-1062)) (|has| |#1| (-649 (-574)))) (-2088 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (((-699 (-574)) (-1281 $)) 128 (-2818 (-2088 (|has| |#1| (-1062)) (|has| |#1| (-649 (-574)))) (-2088 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-1654 (((-112) $) 79)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 197 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 196 (|has| |#1| (-897 (-574))))) (-2955 (($ (-654 $)) 162) (($ $) 161)) (-1879 (((-654 (-115)) $) 169)) (-4173 (((-115) (-115)) 170)) (-3965 (((-112) $) 35)) (-3239 (((-112) $) 190 (|has| $ (-1051 (-574))))) (-1769 (($ $) 222 (|has| |#1| (-1062)))) (-2965 (((-1138 |#1| (-622 $)) $) 221 (|has| |#1| (-1062)))) (-3379 (($ $ (-574)) 99)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2405 (((-1186 $) (-622 $)) 187 (|has| $ (-1062)))) (-1778 (($ (-1 $ $) (-622 $)) 176)) (-3376 (((-3 (-622 $) "failed") $) 166)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-4164 (((-654 (-622 $)) $) 167)) (-1775 (($ (-115) (-654 $)) 175) (($ (-115) $) 174)) (-2357 (((-3 (-654 $) "failed") $) 216 (|has| |#1| (-1125)))) (-4428 (((-3 (-2 (|:| |val| $) (|:| -2524 (-574))) "failed") $) 225 (|has| |#1| (-1062)))) (-3405 (((-3 (-654 $) "failed") $) 218 (|has| |#1| (-25)))) (-4040 (((-3 (-2 (|:| -1859 (-574)) (|:| |var| (-622 $))) "failed") $) 219 (|has| |#1| (-25)))) (-3092 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-1190)) 224 (|has| |#1| (-1062))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-115)) 223 (|has| |#1| (-1062))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $) 217 (|has| |#1| (-1125)))) (-2884 (((-112) $ (-1190)) 173) (((-112) $ (-115)) 172)) (-1324 (($ $) 78)) (-1840 (((-781) $) 165)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 203)) (-1349 ((|#1| $) 204)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-3923 (((-112) $ (-1190)) 178) (((-112) $ $) 177)) (-4220 (((-428 $) $) 82)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2625 (((-112) $) 189 (|has| $ (-1051 (-574))))) (-2646 (($ $ (-1190) (-781) (-1 $ $)) 229 (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ (-654 $))) 228 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 227 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $))) 226 (|has| |#1| (-1062))) (($ $ (-654 (-115)) (-654 $) (-1190)) 215 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1190)) 214 (|has| |#1| (-624 (-546)))) (($ $) 213 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190))) 212 (|has| |#1| (-624 (-546)))) (($ $ (-1190)) 211 (|has| |#1| (-624 (-546)))) (($ $ (-115) (-1 $ $)) 186) (($ $ (-115) (-1 $ (-654 $))) 185) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 184) (($ $ (-654 (-115)) (-654 (-1 $ $))) 183) (($ $ (-1190) (-1 $ $)) 182) (($ $ (-1190) (-1 $ (-654 $))) 181) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) 180) (($ $ (-654 (-1190)) (-654 (-1 $ $))) 179) (($ $ (-654 $) (-654 $)) 150) (($ $ $ $) 149) (($ $ (-302 $)) 148) (($ $ (-654 (-302 $))) 147) (($ $ (-654 (-622 $)) (-654 $)) 146) (($ $ (-622 $) $) 145)) (-1347 (((-781) $) 64)) (-2200 (($ (-115) (-654 $)) 155) (($ (-115) $ $ $ $) 154) (($ (-115) $ $ $) 153) (($ (-115) $ $) 152) (($ (-115) $) 151)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-3115 (($ $ $) 164) (($ $) 163)) (-3905 (($ $ (-1190)) 253 (|has| |#1| (-1062))) (($ $ (-654 (-1190))) 252 (|has| |#1| (-1062))) (($ $ (-1190) (-781)) 251 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) 250 (|has| |#1| (-1062)))) (-3520 (($ $) 232 (|has| |#1| (-566)))) (-2977 (((-1138 |#1| (-622 $)) $) 231 (|has| |#1| (-566)))) (-1782 (($ $) 188 (|has| $ (-1062)))) (-1837 (((-546) $) 259 (|has| |#1| (-624 (-546)))) (($ (-428 $)) 230 (|has| |#1| (-566))) (((-903 (-388)) $) 195 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 194 (|has| |#1| (-624 (-903 (-574)))))) (-1514 (($ $ $) 258 (|has| |#1| (-483)))) (-3647 (($ $ $) 257 (|has| |#1| (-483)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-963 |#1|)) 256 (|has| |#1| (-1062))) (($ (-417 (-963 |#1|))) 240 (|has| |#1| (-566))) (($ (-417 (-963 (-417 |#1|)))) 236 (|has| |#1| (-566))) (($ (-963 (-417 |#1|))) 235 (|has| |#1| (-566))) (($ (-417 |#1|)) 234 (|has| |#1| (-566))) (($ (-1138 |#1| (-622 $))) 220 (|has| |#1| (-1062))) (($ |#1|) 202) (($ (-1190)) 193) (($ (-622 $)) 144)) (-1369 (((-3 $ "failed") $) 242 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-2031 (($ (-654 $)) 160) (($ $) 159)) (-1932 (((-112) (-115)) 171)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2498 (($ (-1190) (-654 $)) 210) (($ (-1190) $ $ $ $) 209) (($ (-1190) $ $ $) 208) (($ (-1190) $ $) 207) (($ (-1190) $) 206)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-1190)) 249 (|has| |#1| (-1062))) (($ $ (-654 (-1190))) 248 (|has| |#1| (-1062))) (($ $ (-1190) (-781)) 247 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) 246 (|has| |#1| (-1062)))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 73) (($ (-1138 |#1| (-622 $)) (-1138 |#1| (-622 $))) 233 (|has| |#1| (-566)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 241 (|has| |#1| (-174))) (($ |#1| $) 133 (|has| |#1| (-1062)))))
+(((-29 |#1|) (-141) (-566)) (T -29))
+((-1413 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-3072 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-1413 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-3072 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4)))) (-1397 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-2656 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-2656 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-440 |t#1|) (-10 -8 (-15 -1413 ($ $)) (-15 -3072 ((-654 $) $)) (-15 -1413 ($ $ (-1190))) (-15 -3072 ((-654 $) $ (-1190))) (-15 -1397 ($ $)) (-15 -2656 ((-654 $) $)) (-15 -1397 ($ $ (-1190))) (-15 -2656 ((-654 $) $ (-1190)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 #1=(-417 (-963 |#1|))) |has| |#1| (-566)) ((-626 (-574)) . T) ((-626 #2=(-622 $)) . T) ((-626 #3=(-963 |#1|)) |has| |#1| (-1062)) ((-626 #4=(-1190)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) . T) ((-298) . T) ((-315) . T) ((-317 $) . T) ((-310) . T) ((-372) . T) ((-386 |#1|) |has| |#1| (-1062)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-440 |#1|) . T) ((-462) . T) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) -2818 (|has| |#1| (-1062)) (|has| |#1| (-174))) ((-656 $) . T) ((-658 #0#) . T) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) ((-658 |#1|) -2818 (|has| |#1| (-1062)) (|has| |#1| (-174))) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) . T) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) ((-649 |#1|) |has| |#1| (-1062)) ((-727 #0#) . T) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) . T) ((-736) . T) ((-911 (-1190)) |has| |#1| (-1062)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-931) . T) ((-1015) . T) ((-1051 (-417 (-574))) -2818 (|has| |#1| (-1051 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) ((-1051 #1#) |has| |#1| (-566)) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 #2#) . T) ((-1051 #3#) |has| |#1| (-1062)) ((-1051 #4#) . T) ((-1051 |#1|) . T) ((-1064 #0#) . T) ((-1064 |#1|) |has| |#1| (-174)) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 |#1|) |has| |#1| (-174)) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T) ((-1235) . T))
+((-2424 (((-1107 (-227)) $) NIL)) (-2411 (((-1107 (-227)) $) NIL)) (-2621 (($ $ (-227)) 164)) (-4162 (($ (-963 (-574)) (-1190) (-1190) (-1107 (-417 (-574))) (-1107 (-417 (-574)))) 104)) (-2719 (((-654 (-654 (-954 (-227)))) $) 180)) (-2943 (((-872) $) 194)))
+(((-30) (-13 (-966) (-10 -8 (-15 -4162 ($ (-963 (-574)) (-1190) (-1190) (-1107 (-417 (-574))) (-1107 (-417 (-574))))) (-15 -2621 ($ $ (-227)))))) (T -30))
+((-4162 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-963 (-574))) (-5 *3 (-1190)) (-5 *4 (-1107 (-417 (-574)))) (-5 *1 (-30)))) (-2621 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))))
+(-13 (-966) (-10 -8 (-15 -4162 ($ (-963 (-574)) (-1190) (-1190) (-1107 (-417 (-574))) (-1107 (-417 (-574))))) (-15 -2621 ($ $ (-227)))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-1148) $) 11)) (-2923 (((-112) $ $) NIL)) (-2629 (((-1148) $) 9)) (-2982 (((-112) $ $) NIL)))
+(((-31) (-13 (-1096) (-10 -8 (-15 -2629 ((-1148) $)) (-15 -2045 ((-1148) $))))) (T -31))
+((-2629 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31)))))
+(-13 (-1096) (-10 -8 (-15 -2629 ((-1148) $)) (-15 -2045 ((-1148) $))))
+((-1413 ((|#2| (-1186 |#2|) (-1190)) 41)) (-4173 (((-115) (-115)) 55)) (-2405 (((-1186 |#2|) (-622 |#2|)) 149 (|has| |#1| (-1051 (-574))))) (-3220 ((|#2| |#1| (-574)) 137 (|has| |#1| (-1051 (-574))))) (-2684 ((|#2| (-1186 |#2|) |#2|) 29)) (-2350 (((-872) (-654 |#2|)) 86)) (-1782 ((|#2| |#2|) 144 (|has| |#1| (-1051 (-574))))) (-1932 (((-112) (-115)) 17)) (** ((|#2| |#2| (-417 (-574))) 103 (|has| |#1| (-1051 (-574))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -1413 (|#2| (-1186 |#2|) (-1190))) (-15 -4173 ((-115) (-115))) (-15 -1932 ((-112) (-115))) (-15 -2684 (|#2| (-1186 |#2|) |#2|)) (-15 -2350 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1051 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -2405 ((-1186 |#2|) (-622 |#2|))) (-15 -1782 (|#2| |#2|)) (-15 -3220 (|#2| |#1| (-574)))) |%noBranch|)) (-566) (-440 |#1|)) (T -32))
+((-3220 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1051 *4)) (-4 *3 (-566)))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-1051 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) (-4 *2 (-440 *3)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1051 (-574))) (-4 *4 (-566)) (-5 *2 (-1186 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1051 (-574))) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) (-5 *2 (-872)) (-5 *1 (-32 *4 *5)))) (-2684 (*1 *2 *3 *2) (-12 (-5 *3 (-1186 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-440 *4)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4)) (-4 *4 (-440 *3)))) (-1413 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *2)) (-5 *4 (-1190)) (-4 *2 (-440 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-566)))))
+(-10 -7 (-15 -1413 (|#2| (-1186 |#2|) (-1190))) (-15 -4173 ((-115) (-115))) (-15 -1932 ((-112) (-115))) (-15 -2684 (|#2| (-1186 |#2|) |#2|)) (-15 -2350 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1051 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -2405 ((-1186 |#2|) (-622 |#2|))) (-15 -1782 (|#2| |#2|)) (-15 -3220 (|#2| |#1| (-574)))) |%noBranch|))
+((-3340 (((-112) $ (-781)) 20)) (-3670 (($) 10)) (-3735 (((-112) $ (-781)) 19)) (-2448 (((-112) $ (-781)) 17)) (-1892 (((-112) $ $) 8)) (-3556 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -3670 (|#1|)) (-15 -3340 ((-112) |#1| (-781))) (-15 -3735 ((-112) |#1| (-781))) (-15 -2448 ((-112) |#1| (-781))) (-15 -3556 ((-112) |#1|)) (-15 -1892 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -3670 (|#1|)) (-15 -3340 ((-112) |#1| (-781))) (-15 -3735 ((-112) |#1| (-781))) (-15 -2448 ((-112) |#1| (-781))) (-15 -3556 ((-112) |#1|)) (-15 -1892 ((-112) |#1| |#1|)))
+((-3340 (((-112) $ (-781)) 8)) (-3670 (($) 7 T CONST)) (-3735 (((-112) $ (-781)) 9)) (-2448 (((-112) $ (-781)) 10)) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-3167 (($ $) 13)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
(((-34) (-141)) (T -34))
-((-3776 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3164 (*1 *1 *1) (-4 *1 (-34))) (-1613 (*1 *1) (-4 *1 (-34))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112)))) (-1861 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112)))) (-1631 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112)))) (-3281 (*1 *1) (-4 *1 (-34))) (-2860 (*1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-34)) (-5 *2 (-779)))))
-(-13 (-1229) (-10 -8 (-15 -3776 ((-112) $ $)) (-15 -3164 ($ $)) (-15 -1613 ($)) (-15 -1841 ((-112) $)) (-15 -1985 ((-112) $ (-779))) (-15 -1861 ((-112) $ (-779))) (-15 -1631 ((-112) $ (-779))) (-15 -3281 ($) -1705) (IF (|has| $ (-6 -4454)) (-15 -2860 ((-779) $)) |%noBranch|)))
-(((-1229) . T))
-((-2436 (($ $) 11)) (-2409 (($ $) 10)) (-2460 (($ $) 9)) (-2516 (($ $) 8)) (-2448 (($ $) 7)) (-2423 (($ $) 6)))
+((-1892 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3167 (*1 *1 *1) (-4 *1 (-34))) (-3135 (*1 *1) (-4 *1 (-34))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2448 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3735 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3340 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3670 (*1 *1) (-4 *1 (-34))) (-2863 (*1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-34)) (-5 *2 (-781)))))
+(-13 (-1231) (-10 -8 (-15 -1892 ((-112) $ $)) (-15 -3167 ($ $)) (-15 -3135 ($)) (-15 -3556 ((-112) $)) (-15 -2448 ((-112) $ (-781))) (-15 -3735 ((-112) $ (-781))) (-15 -3340 ((-112) $ (-781))) (-15 -3670 ($) -1707) (IF (|has| $ (-6 -4456)) (-15 -2863 ((-781) $)) |%noBranch|)))
+(((-1231) . T))
+((-2441 (($ $) 11)) (-2414 (($ $) 10)) (-2465 (($ $) 9)) (-2521 (($ $) 8)) (-2453 (($ $) 7)) (-2428 (($ $) 6)))
(((-35) (-141)) (T -35))
-((-2436 (*1 *1 *1) (-4 *1 (-35))) (-2409 (*1 *1 *1) (-4 *1 (-35))) (-2460 (*1 *1 *1) (-4 *1 (-35))) (-2516 (*1 *1 *1) (-4 *1 (-35))) (-2448 (*1 *1 *1) (-4 *1 (-35))) (-2423 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -2423 ($ $)) (-15 -2448 ($ $)) (-15 -2516 ($ $)) (-15 -2460 ($ $)) (-15 -2409 ($ $)) (-15 -2436 ($ $))))
-((-2846 (((-112) $ $) 19 (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3080 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 127)) (-2401 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 150)) (-1969 (($ $) 148)) (-3775 (($) 73) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 72)) (-3176 (((-1284) $ |#1| |#1|) 100 (|has| $ (-6 -4455))) (((-1284) $ (-572) (-572)) 180 (|has| $ (-6 -4455)))) (-4382 (($ $ (-572)) 161 (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-3314 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 202 (|has| $ (-6 -4455))) (($ $) 201 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)) (|has| $ (-6 -4455))))) (-2766 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-1631 (((-112) $ (-779)) 8)) (-2506 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 136 (|has| $ (-6 -4455)))) (-1385 (($ $ $) 157 (|has| $ (-6 -4455)))) (-2871 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 159 (|has| $ (-6 -4455)))) (-4178 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 155 (|has| $ (-6 -4455)))) (-3140 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 191 (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-1246 (-572)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 162 (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "last" (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 160 (|has| $ (-6 -4455))) (($ $ "rest" $) 158 (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "first" (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 156 (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "value" (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 135 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 134 (|has| $ (-6 -4455)))) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 46 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 218)) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 56 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 177 (|has| $ (-6 -4454)))) (-2388 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 149)) (-2160 (((-3 |#2| "failed") |#1| $) 62)) (-3281 (($) 7 T CONST)) (-3133 (($ $) 203 (|has| $ (-6 -4455)))) (-4421 (($ $) 213)) (-2923 (($ $ (-779)) 144) (($ $) 142)) (-2704 (($ $) 216 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-2086 (($ $) 59 (-2813 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454))) (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 47 (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 222) (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 217 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 55 (|has| $ (-6 -4454))) (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 176 (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 57 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 54 (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 53 (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 178 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 175 (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 174 (|has| $ (-6 -4454)))) (-2453 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 192 (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) 89) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) 190)) (-4055 (((-112) $) 194)) (-1439 (((-572) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 210) (((-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 209 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) (((-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) 208 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 31 (|has| $ (-6 -4454))) (((-652 |#2|) $) 80 (|has| $ (-6 -4454))) (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 116 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 125)) (-1463 (((-112) $ $) 133 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-3787 (($ (-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 170)) (-1861 (((-112) $ (-779)) 9)) (-3175 ((|#1| $) 97 (|has| |#1| (-858))) (((-572) $) 182 (|has| (-572) (-858)))) (-3654 (($ $ $) 200 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-3892 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-1767 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 30 (|has| $ (-6 -4454))) (((-652 |#2|) $) 81 (|has| $ (-6 -4454))) (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 117 (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454)))) (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-3374 ((|#1| $) 96 (|has| |#1| (-858))) (((-572) $) 183 (|has| (-572) (-858)))) (-2427 (($ $ $) 199 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 35 (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4455))) (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 112 (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 111)) (-1787 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 227)) (-1985 (((-112) $ (-779)) 10)) (-3505 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 130)) (-2087 (((-112) $) 126)) (-4347 (((-1170) $) 22 (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3357 (($ $ (-779)) 147) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 145)) (-1761 (((-652 |#1|) $) 64)) (-4198 (((-112) |#1| $) 65)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 40)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 41) (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) 221) (($ $ $ (-572)) 220)) (-1593 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) 164) (($ $ $ (-572)) 163)) (-1986 (((-652 |#1|) $) 94) (((-652 (-572)) $) 185)) (-1370 (((-112) |#1| $) 93) (((-112) (-572) $) 186)) (-3964 (((-1131) $) 21 (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-2912 ((|#2| $) 98 (|has| |#1| (-858))) (($ $ (-779)) 141) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 139)) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 52) (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 173)) (-2476 (($ $ |#2|) 99 (|has| $ (-6 -4455))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 181 (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 42)) (-3064 (((-112) $) 193)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 33 (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 114 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) 27 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 26 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 25 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 24 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 87 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 85 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) 84 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 123 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 122 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 121 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) 120 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 184 (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-4110 (((-652 |#2|) $) 92) (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 187)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 189) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) 188) (($ $ (-1246 (-572))) 171) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "first") 140) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "value") 128)) (-2157 (((-572) $ $) 131)) (-3438 (($) 50) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 49)) (-1696 (($ $ (-572)) 224) (($ $ (-1246 (-572))) 223)) (-2835 (($ $ (-572)) 166) (($ $ (-1246 (-572))) 165)) (-3315 (((-112) $) 129)) (-2285 (($ $) 153)) (-2391 (($ $) 154 (|has| $ (-6 -4455)))) (-3417 (((-779) $) 152)) (-3479 (($ $) 151)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 32 (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-779) |#2| $) 82 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 115 (|has| $ (-6 -4454)))) (-4095 (($ $ $ (-572)) 204 (|has| $ (-6 -4455)))) (-3164 (($ $) 13)) (-1835 (((-544) $) 60 (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544)))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 51) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 172)) (-1700 (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 226) (($ $ $) 225)) (-4155 (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 169) (($ (-652 $)) 168) (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 138) (($ $ $) 137)) (-2940 (((-870) $) 18 (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870)))))) (-2065 (((-652 $) $) 124)) (-2804 (((-112) $ $) 132 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-4379 (((-112) $ $) 23 (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 43)) (-3366 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") |#1| $) 110)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 34 (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 113 (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) 197 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-3014 (((-112) $ $) 196 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-2978 (((-112) $ $) 20 (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3026 (((-112) $ $) 198 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-3003 (((-112) $ $) 195 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-36 |#1| |#2|) (-141) (-1111) (-1111)) (T -36))
-((-3366 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-5 *2 (-2 (|:| -3690 *3) (|:| -1907 *4))))))
-(-13 (-1205 |t#1| |t#2|) (-674 (-2 (|:| -3690 |t#1|) (|:| -1907 |t#2|))) (-10 -8 (-15 -3366 ((-3 (-2 (|:| -3690 |t#1|) (|:| -1907 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T) ((-102) -2813 (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858))) ((-621 (-870)) -2813 (|has| |#2| (-1111)) (|has| |#2| (-621 (-870))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870)))) ((-152 #1=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T) ((-622 (-544)) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))) ((-231 #0#) . T) ((-239 #0#) . T) ((-292 #2=(-572) #1#) . T) ((-292 (-1246 (-572)) $) . T) ((-292 |#1| |#2|) . T) ((-294 #2# #1#) . T) ((-294 |#1| |#2|) . T) ((-315 #1#) -12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-288 #1#) . T) ((-380 #1#) . T) ((-497 #1#) . T) ((-497 |#2|) . T) ((-612 #2# #1#) . T) ((-612 |#1| |#2|) . T) ((-522 #1# #1#) -12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-618 |#1| |#2|) . T) ((-659 #1#) . T) ((-674 #1#) . T) ((-858) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)) ((-1021 #1#) . T) ((-1111) -2813 (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858))) ((-1160 #1#) . T) ((-1205 |#1| |#2|) . T) ((-1229) . T) ((-1267 #1#) . T))
-((-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|))) (-38 |#2|) (-174)) (T -37))
-NIL
-(-10 -8 (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-2441 (*1 *1 *1) (-4 *1 (-35))) (-2414 (*1 *1 *1) (-4 *1 (-35))) (-2465 (*1 *1 *1) (-4 *1 (-35))) (-2521 (*1 *1 *1) (-4 *1 (-35))) (-2453 (*1 *1 *1) (-4 *1 (-35))) (-2428 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -2428 ($ $)) (-15 -2453 ($ $)) (-15 -2521 ($ $)) (-15 -2465 ($ $)) (-15 -2414 ($ $)) (-15 -2441 ($ $))))
+((-2849 (((-112) $ $) 19 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-3083 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 127)) (-2406 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 150)) (-1971 (($ $) 148)) (-3778 (($) 73) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 72)) (-1860 (((-1286) $ |#1| |#1|) 100 (|has| $ (-6 -4457))) (((-1286) $ (-574) (-574)) 180 (|has| $ (-6 -4457)))) (-2960 (($ $ (-574)) 161 (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-4010 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 202 (|has| $ (-6 -4457))) (($ $) 201 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-3340 (((-112) $ (-781)) 8)) (-1630 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 136 (|has| $ (-6 -4457)))) (-4002 (($ $ $) 157 (|has| $ (-6 -4457)))) (-4003 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 159 (|has| $ (-6 -4457)))) (-1533 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 155 (|has| $ (-6 -4457)))) (-3143 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 191 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-1248 (-574)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 162 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "last" (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 160 (|has| $ (-6 -4457))) (($ $ "rest" $) 158 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "first" (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 156 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "value" (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 135 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 134 (|has| $ (-6 -4457)))) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 46 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 218)) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 56 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 177 (|has| $ (-6 -4456)))) (-2393 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 149)) (-2163 (((-3 |#2| "failed") |#1| $) 62)) (-3670 (($) 7 T CONST)) (-2672 (($ $) 203 (|has| $ (-6 -4457)))) (-4423 (($ $) 213)) (-2926 (($ $ (-781)) 144) (($ $) 142)) (-1730 (($ $) 216 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-2158 (($ $) 59 (-2818 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456))) (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 47 (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 222) (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 217 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 55 (|has| $ (-6 -4456))) (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 176 (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 57 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 54 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 53 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 178 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 175 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 174 (|has| $ (-6 -4456)))) (-2462 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 192 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) 89) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) 190)) (-2829 (((-112) $) 194)) (-1441 (((-574) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 210) (((-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 209 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) (((-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) 208 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 31 (|has| $ (-6 -4456))) (((-654 |#2|) $) 80 (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 116 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 125)) (-4127 (((-112) $ $) 133 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-3790 (($ (-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 170)) (-3735 (((-112) $ (-781)) 9)) (-1849 ((|#1| $) 97 (|has| |#1| (-860))) (((-574) $) 182 (|has| (-574) (-860)))) (-3658 (($ $ $) 200 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-3722 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-2130 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 30 (|has| $ (-6 -4456))) (((-654 |#2|) $) 81 (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 117 (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456)))) (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-3429 ((|#1| $) 96 (|has| |#1| (-860))) (((-574) $) 183 (|has| (-574) (-860)))) (-2106 (($ $ $) 199 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 35 (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4457))) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 112 (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 111)) (-1788 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 227)) (-2448 (((-112) $ (-781)) 10)) (-3509 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 130)) (-2173 (((-112) $) 126)) (-2568 (((-1172) $) 22 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-3360 (($ $ (-781)) 147) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 145)) (-1765 (((-654 |#1|) $) 64)) (-1726 (((-112) |#1| $) 65)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 40)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 41) (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) 221) (($ $ $ (-574)) 220)) (-1595 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) 164) (($ $ $ (-574)) 163)) (-2459 (((-654 |#1|) $) 94) (((-654 (-574)) $) 185)) (-2607 (((-112) |#1| $) 93) (((-112) (-574) $) 186)) (-3966 (((-1133) $) 21 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-2915 ((|#2| $) 98 (|has| |#1| (-860))) (($ $ (-781)) 141) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 139)) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 52) (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 173)) (-1363 (($ $ |#2|) 99 (|has| $ (-6 -4457))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 181 (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 42)) (-3322 (((-112) $) 193)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 33 (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 114 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) 27 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 26 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 25 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 24 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 123 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 122 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 121 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) 120 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 184 (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-2121 (((-654 |#2|) $) 92) (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 187)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 189) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) 188) (($ $ (-1248 (-574))) 171) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "first") 140) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "value") 128)) (-1556 (((-574) $ $) 131)) (-2826 (($) 50) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 49)) (-2701 (($ $ (-574)) 224) (($ $ (-1248 (-574))) 223)) (-2837 (($ $ (-574)) 166) (($ $ (-1248 (-574))) 165)) (-4023 (((-112) $) 129)) (-3420 (($ $) 153)) (-1813 (($ $) 154 (|has| $ (-6 -4457)))) (-2584 (((-781) $) 152)) (-2022 (($ $) 151)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 32 (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 115 (|has| $ (-6 -4456)))) (-1958 (($ $ $ (-574)) 204 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1837 (((-546) $) 60 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546)))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 51) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 172)) (-2734 (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 226) (($ $ $) 225)) (-4157 (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 169) (($ (-654 $)) 168) (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 138) (($ $ $) 137)) (-2943 (((-872) $) 18 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872)))))) (-1973 (((-654 $) $) 124)) (-1495 (((-112) $ $) 132 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-2923 (((-112) $ $) 23 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 43)) (-3369 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") |#1| $) 110)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 34 (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 113 (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) 197 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-3016 (((-112) $ $) 196 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-2982 (((-112) $ $) 20 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-3028 (((-112) $ $) 198 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-3005 (((-112) $ $) 195 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-36 |#1| |#2|) (-141) (-1113) (-1113)) (T -36))
+((-3369 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-5 *2 (-2 (|:| -3693 *3) (|:| -1909 *4))))))
+(-13 (-1207 |t#1| |t#2|) (-676 (-2 (|:| -3693 |t#1|) (|:| -1909 |t#2|))) (-10 -8 (-15 -3369 ((-3 (-2 (|:| -3693 |t#1|) (|:| -1909 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T) ((-102) -2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860))) ((-623 (-872)) -2818 (|has| |#2| (-1113)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872)))) ((-152 #1=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T) ((-624 (-546)) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 #2=(-574) #1#) . T) ((-294 (-1248 (-574)) $) . T) ((-294 |#1| |#2|) . T) ((-296 #2# #1#) . T) ((-296 |#1| |#2|) . T) ((-317 #1#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-290 #1#) . T) ((-382 #1#) . T) ((-499 #1#) . T) ((-499 |#2|) . T) ((-614 #2# #1#) . T) ((-614 |#1| |#2|) . T) ((-524 #1# #1#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-620 |#1| |#2|) . T) ((-661 #1#) . T) ((-676 #1#) . T) ((-860) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)) ((-1023 #1#) . T) ((-1113) -2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860))) ((-1162 #1#) . T) ((-1207 |#1| |#2|) . T) ((-1231) . T) ((-1269 #1#) . T))
+((-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-38 |#2|) (-174)) (T -37))
+NIL
+(-10 -8 (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-38 |#1|) (-141) (-174)) (T -38))
NIL
-(-13 (-1060) (-725 |t#1|) (-624 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-3861 (((-426 |#1|) |#1|) 41)) (-4218 (((-426 |#1|) |#1|) 30) (((-426 |#1|) |#1| (-652 (-48))) 33)) (-3953 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -4218 ((-426 |#1|) |#1| (-652 (-48)))) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -3861 ((-426 |#1|) |#1|)) (-15 -3953 ((-112) |#1|))) (-1255 (-48))) (T -39))
-((-3953 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))) (-3861 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-48))) (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))))
-(-10 -7 (-15 -4218 ((-426 |#1|) |#1| (-652 (-48)))) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -3861 ((-426 |#1|) |#1|)) (-15 -3953 ((-112) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1824 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| (-415 |#2|) (-370)))) (-3009 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-4334 (((-112) $) NIL (|has| (-415 |#2|) (-370)))) (-3736 (((-697 (-415 |#2|)) (-1279 $)) NIL) (((-697 (-415 |#2|))) NIL)) (-1635 (((-415 |#2|) $) NIL)) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-415 |#2|) (-356)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-2287 (((-426 $) $) NIL (|has| (-415 |#2|) (-370)))) (-4217 (((-112) $ $) NIL (|has| (-415 |#2|) (-370)))) (-1486 (((-779)) NIL (|has| (-415 |#2|) (-375)))) (-1730 (((-112)) NIL)) (-3672 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| (-415 |#2|) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-3 (-415 |#2|) "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| (-415 |#2|) (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-415 |#2|) $) NIL)) (-1913 (($ (-1279 (-415 |#2|)) (-1279 $)) NIL) (($ (-1279 (-415 |#2|))) 61) (($ (-1279 |#2|) |#2|) 131)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-415 |#2|) (-356)))) (-2780 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-3485 (((-697 (-415 |#2|)) $ (-1279 $)) NIL) (((-697 (-415 |#2|)) $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-415 |#2|))) (|:| |vec| (-1279 (-415 |#2|)))) (-697 $) (-1279 $)) NIL) (((-697 (-415 |#2|)) (-697 $)) NIL) (((-697 (-415 |#2|)) (-1279 $)) NIL)) (-4026 (((-1279 $) (-1279 $)) NIL)) (-2865 (($ |#3|) NIL) (((-3 $ "failed") (-415 |#3|)) NIL (|has| (-415 |#2|) (-370)))) (-2062 (((-3 $ "failed") $) NIL)) (-3322 (((-652 (-652 |#1|))) NIL (|has| |#1| (-375)))) (-3806 (((-112) |#1| |#1|) NIL)) (-3581 (((-930)) NIL)) (-2815 (($) NIL (|has| (-415 |#2|) (-375)))) (-1418 (((-112)) NIL)) (-2709 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2792 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| (-415 |#2|) (-370)))) (-1876 (($ $) NIL)) (-1879 (($) NIL (|has| (-415 |#2|) (-356)))) (-3442 (((-112) $) NIL (|has| (-415 |#2|) (-356)))) (-2303 (($ $ (-779)) NIL (|has| (-415 |#2|) (-356))) (($ $) NIL (|has| (-415 |#2|) (-356)))) (-3879 (((-112) $) NIL (|has| (-415 |#2|) (-370)))) (-2956 (((-930) $) NIL (|has| (-415 |#2|) (-356))) (((-841 (-930)) $) NIL (|has| (-415 |#2|) (-356)))) (-1886 (((-112) $) NIL)) (-2720 (((-779)) NIL)) (-2508 (((-1279 $) (-1279 $)) 106)) (-2028 (((-415 |#2|) $) NIL)) (-4392 (((-652 (-961 |#1|)) (-1188)) NIL (|has| |#1| (-370)))) (-2556 (((-3 $ "failed") $) NIL (|has| (-415 |#2|) (-356)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-415 |#2|) (-370)))) (-3053 ((|#3| $) NIL (|has| (-415 |#2|) (-370)))) (-3715 (((-930) $) NIL (|has| (-415 |#2|) (-375)))) (-2851 ((|#3| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| (-415 |#2|) (-370))) (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-4347 (((-1170) $) NIL)) (-2275 (((-1284) (-779)) 84)) (-3628 (((-697 (-415 |#2|))) 56)) (-1725 (((-697 (-415 |#2|))) 49)) (-1322 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-2544 (($ (-1279 |#2|) |#2|) 132)) (-2382 (((-697 (-415 |#2|))) 50)) (-2033 (((-697 (-415 |#2|))) 48)) (-1877 (((-2 (|:| |num| (-697 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-2885 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) 68)) (-1543 (((-1279 $)) 47)) (-4219 (((-1279 $)) 46)) (-3049 (((-112) $) NIL)) (-3267 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3815 (($) NIL (|has| (-415 |#2|) (-356)) CONST)) (-2571 (($ (-930)) NIL (|has| (-415 |#2|) (-375)))) (-2535 (((-3 |#2| "failed")) NIL)) (-3964 (((-1131) $) NIL)) (-3455 (((-779)) NIL)) (-2967 (($) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| (-415 |#2|) (-370)))) (-2870 (($ (-652 $)) NIL (|has| (-415 |#2|) (-370))) (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| (-415 |#2|) (-356)))) (-4218 (((-426 $) $) NIL (|has| (-415 |#2|) (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-415 |#2|) (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| (-415 |#2|) (-370)))) (-2834 (((-3 $ "failed") $ $) NIL (|has| (-415 |#2|) (-370)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-415 |#2|) (-370)))) (-3847 (((-779) $) NIL (|has| (-415 |#2|) (-370)))) (-2196 ((|#1| $ |#1| |#1|) NIL)) (-1673 (((-3 |#2| "failed")) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| (-415 |#2|) (-370)))) (-3537 (((-415 |#2|) (-1279 $)) NIL) (((-415 |#2|)) 44)) (-3354 (((-779) $) NIL (|has| (-415 |#2|) (-356))) (((-3 (-779) "failed") $ $) NIL (|has| (-415 |#2|) (-356)))) (-3902 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-779)) NIL (-2813 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) NIL (-2813 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-2144 (((-697 (-415 |#2|)) (-1279 $) (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370)))) (-3764 ((|#3|) 55)) (-4033 (($) NIL (|has| (-415 |#2|) (-356)))) (-4329 (((-1279 (-415 |#2|)) $ (-1279 $)) NIL) (((-697 (-415 |#2|)) (-1279 $) (-1279 $)) NIL) (((-1279 (-415 |#2|)) $) 62) (((-697 (-415 |#2|)) (-1279 $)) 107)) (-1835 (((-1279 (-415 |#2|)) $) NIL) (($ (-1279 (-415 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-415 |#2|) (-356)))) (-2304 (((-1279 $) (-1279 $)) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 |#2|)) NIL) (($ (-415 (-572))) NIL (-2813 (|has| (-415 |#2|) (-1049 (-415 (-572)))) (|has| (-415 |#2|) (-370)))) (($ $) NIL (|has| (-415 |#2|) (-370)))) (-3849 (($ $) NIL (|has| (-415 |#2|) (-356))) (((-3 $ "failed") $) NIL (|has| (-415 |#2|) (-146)))) (-4251 ((|#3| $) NIL)) (-4249 (((-779)) NIL T CONST)) (-3456 (((-112)) 42)) (-3677 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL)) (-2845 (((-112) $ $) NIL (|has| (-415 |#2|) (-370)))) (-1352 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2194 (((-112)) NIL)) (-2131 (($) 17 T CONST)) (-2143 (($) 27 T CONST)) (-3608 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-779)) NIL (-2813 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) NIL (-2813 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| (-415 |#2|) (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 |#2|)) NIL) (($ (-415 |#2|) $) NIL) (($ (-415 (-572)) $) NIL (|has| (-415 |#2|) (-370))) (($ $ (-415 (-572))) NIL (|has| (-415 |#2|) (-370)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-349 |#1| |#2| |#3|) (-10 -7 (-15 -2275 ((-1284) (-779))))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) |#3|) (T -40))
-((-2275 (*1 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-370)) (-4 *5 (-1255 *4)) (-5 *2 (-1284)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1255 (-415 *5))) (-14 *7 *6))))
-(-13 (-349 |#1| |#2| |#3|) (-10 -7 (-15 -2275 ((-1284) (-779)))))
-((-1477 ((|#2| |#2|) 47)) (-1665 ((|#2| |#2|) 139 (-12 (|has| |#2| (-438 |#1|)) (|has| |#1| (-13 (-460) (-1049 (-572))))))) (-3514 ((|#2| |#2|) 100 (-12 (|has| |#2| (-438 |#1|)) (|has| |#1| (-13 (-460) (-1049 (-572))))))) (-3048 ((|#2| |#2|) 101 (-12 (|has| |#2| (-438 |#1|)) (|has| |#1| (-13 (-460) (-1049 (-572))))))) (-3673 ((|#2| (-115) |#2| (-779)) 135 (-12 (|has| |#2| (-438 |#1|)) (|has| |#1| (-13 (-460) (-1049 (-572))))))) (-1987 (((-1184 |#2|) |#2|) 44)) (-1489 ((|#2| |#2| (-652 (-620 |#2|))) 18) ((|#2| |#2| (-652 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -1477 (|#2| |#2|)) (-15 -1489 (|#2| |#2|)) (-15 -1489 (|#2| |#2| |#2|)) (-15 -1489 (|#2| |#2| (-652 |#2|))) (-15 -1489 (|#2| |#2| (-652 (-620 |#2|)))) (-15 -1987 ((-1184 |#2|) |#2|)) (IF (|has| |#1| (-13 (-460) (-1049 (-572)))) (IF (|has| |#2| (-438 |#1|)) (PROGN (-15 -3048 (|#2| |#2|)) (-15 -3514 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -3673 (|#2| (-115) |#2| (-779)))) |%noBranch|) |%noBranch|)) (-564) (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 |#1| (-620 $)) $)) (-15 -2974 ((-1136 |#1| (-620 $)) $)) (-15 -2940 ($ (-1136 |#1| (-620 $))))))) (T -41))
-((-3673 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-779)) (-4 *5 (-13 (-460) (-1049 (-572)))) (-4 *5 (-564)) (-5 *1 (-41 *5 *2)) (-4 *2 (-438 *5)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *5 (-620 $)) $)) (-15 -2974 ((-1136 *5 (-620 $)) $)) (-15 -2940 ($ (-1136 *5 (-620 $))))))))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $)) (-15 -2974 ((-1136 *3 (-620 $)) $)) (-15 -2940 ($ (-1136 *3 (-620 $))))))))) (-3514 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $)) (-15 -2974 ((-1136 *3 (-620 $)) $)) (-15 -2940 ($ (-1136 *3 (-620 $))))))))) (-3048 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $)) (-15 -2974 ((-1136 *3 (-620 $)) $)) (-15 -2940 ($ (-1136 *3 (-620 $))))))))) (-1987 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-1184 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *4 (-620 $)) $)) (-15 -2974 ((-1136 *4 (-620 $)) $)) (-15 -2940 ($ (-1136 *4 (-620 $))))))))) (-1489 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-620 *2))) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *4 (-620 $)) $)) (-15 -2974 ((-1136 *4 (-620 $)) $)) (-15 -2940 ($ (-1136 *4 (-620 $))))))) (-4 *4 (-564)) (-5 *1 (-41 *4 *2)))) (-1489 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *4 (-620 $)) $)) (-15 -2974 ((-1136 *4 (-620 $)) $)) (-15 -2940 ($ (-1136 *4 (-620 $))))))) (-4 *4 (-564)) (-5 *1 (-41 *4 *2)))) (-1489 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $)) (-15 -2974 ((-1136 *3 (-620 $)) $)) (-15 -2940 ($ (-1136 *3 (-620 $))))))))) (-1489 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $)) (-15 -2974 ((-1136 *3 (-620 $)) $)) (-15 -2940 ($ (-1136 *3 (-620 $))))))))) (-1477 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $)) (-15 -2974 ((-1136 *3 (-620 $)) $)) (-15 -2940 ($ (-1136 *3 (-620 $))))))))))
-(-10 -7 (-15 -1477 (|#2| |#2|)) (-15 -1489 (|#2| |#2|)) (-15 -1489 (|#2| |#2| |#2|)) (-15 -1489 (|#2| |#2| (-652 |#2|))) (-15 -1489 (|#2| |#2| (-652 (-620 |#2|)))) (-15 -1987 ((-1184 |#2|) |#2|)) (IF (|has| |#1| (-13 (-460) (-1049 (-572)))) (IF (|has| |#2| (-438 |#1|)) (PROGN (-15 -3048 (|#2| |#2|)) (-15 -3514 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -3673 (|#2| (-115) |#2| (-779)))) |%noBranch|) |%noBranch|))
-((-4218 (((-426 (-1184 |#3|)) (-1184 |#3|) (-652 (-48))) 23) (((-426 |#3|) |#3| (-652 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4218 ((-426 |#3|) |#3| (-652 (-48)))) (-15 -4218 ((-426 (-1184 |#3|)) (-1184 |#3|) (-652 (-48))))) (-858) (-801) (-958 (-48) |#2| |#1|)) (T -42))
-((-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-48))) (-4 *5 (-858)) (-4 *6 (-801)) (-4 *7 (-958 (-48) *6 *5)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-48))) (-4 *5 (-858)) (-4 *6 (-801)) (-5 *2 (-426 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-958 (-48) *6 *5)))))
-(-10 -7 (-15 -4218 ((-426 |#3|) |#3| (-652 (-48)))) (-15 -4218 ((-426 (-1184 |#3|)) (-1184 |#3|) (-652 (-48)))))
-((-3008 (((-779) |#2|) 70)) (-3395 (((-779) |#2|) 74)) (-1529 (((-652 |#2|)) 37)) (-2038 (((-779) |#2|) 73)) (-1754 (((-779) |#2|) 69)) (-2611 (((-779) |#2|) 72)) (-1549 (((-652 (-697 |#1|))) 65)) (-1500 (((-652 |#2|)) 60)) (-1672 (((-652 |#2|) |#2|) 48)) (-1943 (((-652 |#2|)) 62)) (-3886 (((-652 |#2|)) 61)) (-2258 (((-652 (-697 |#1|))) 53)) (-1990 (((-652 |#2|)) 59)) (-3079 (((-652 |#2|) |#2|) 47)) (-1508 (((-652 |#2|)) 55)) (-2551 (((-652 (-697 |#1|))) 66)) (-3224 (((-652 |#2|)) 64)) (-4362 (((-1279 |#2|) (-1279 |#2|)) 99 (|has| |#1| (-313)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -2038 ((-779) |#2|)) (-15 -3395 ((-779) |#2|)) (-15 -1754 ((-779) |#2|)) (-15 -3008 ((-779) |#2|)) (-15 -2611 ((-779) |#2|)) (-15 -1508 ((-652 |#2|))) (-15 -3079 ((-652 |#2|) |#2|)) (-15 -1672 ((-652 |#2|) |#2|)) (-15 -1990 ((-652 |#2|))) (-15 -1500 ((-652 |#2|))) (-15 -3886 ((-652 |#2|))) (-15 -1943 ((-652 |#2|))) (-15 -3224 ((-652 |#2|))) (-15 -2258 ((-652 (-697 |#1|)))) (-15 -1549 ((-652 (-697 |#1|)))) (-15 -2551 ((-652 (-697 |#1|)))) (-15 -1529 ((-652 |#2|))) (IF (|has| |#1| (-313)) (-15 -4362 ((-1279 |#2|) (-1279 |#2|))) |%noBranch|)) (-564) (-425 |#1|)) (T -43))
-((-4362 (*1 *2 *2) (-12 (-5 *2 (-1279 *4)) (-4 *4 (-425 *3)) (-4 *3 (-313)) (-4 *3 (-564)) (-5 *1 (-43 *3 *4)))) (-1529 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-2551 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-1549 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-2258 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-3224 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-1943 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-3886 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-1500 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-1990 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-3079 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-1508 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-3008 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-3395 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-2038 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))))
-(-10 -7 (-15 -2038 ((-779) |#2|)) (-15 -3395 ((-779) |#2|)) (-15 -1754 ((-779) |#2|)) (-15 -3008 ((-779) |#2|)) (-15 -2611 ((-779) |#2|)) (-15 -1508 ((-652 |#2|))) (-15 -3079 ((-652 |#2|) |#2|)) (-15 -1672 ((-652 |#2|) |#2|)) (-15 -1990 ((-652 |#2|))) (-15 -1500 ((-652 |#2|))) (-15 -3886 ((-652 |#2|))) (-15 -1943 ((-652 |#2|))) (-15 -3224 ((-652 |#2|))) (-15 -2258 ((-652 (-697 |#1|)))) (-15 -1549 ((-652 (-697 |#1|)))) (-15 -2551 ((-652 (-697 |#1|)))) (-15 -1529 ((-652 |#2|))) (IF (|has| |#1| (-313)) (-15 -4362 ((-1279 |#2|) (-1279 |#2|))) |%noBranch|))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3161 (((-3 $ "failed")) NIL (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1279 (-697 |#1|)) (-1279 $)) NIL) (((-1279 (-697 |#1|))) 24)) (-3621 (((-1279 $)) 52)) (-3281 (($) NIL T CONST)) (-2892 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL (|has| |#1| (-564)))) (-3760 (((-3 $ "failed")) NIL (|has| |#1| (-564)))) (-1609 (((-697 |#1|) (-1279 $)) NIL) (((-697 |#1|)) NIL)) (-2554 ((|#1| $) NIL)) (-3819 (((-697 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) $) NIL)) (-4147 (((-3 $ "failed") $) NIL (|has| |#1| (-564)))) (-2872 (((-1184 (-961 |#1|))) NIL (|has| |#1| (-370)))) (-2673 (($ $ (-930)) NIL)) (-3747 ((|#1| $) NIL)) (-3120 (((-1184 |#1|) $) NIL (|has| |#1| (-564)))) (-3529 ((|#1| (-1279 $)) NIL) ((|#1|) NIL)) (-2493 (((-1184 |#1|) $) NIL)) (-3043 (((-112)) 99)) (-1913 (($ (-1279 |#1|) (-1279 $)) NIL) (($ (-1279 |#1|)) NIL)) (-2062 (((-3 $ "failed") $) 14 (|has| |#1| (-564)))) (-3581 (((-930)) 53)) (-2522 (((-112)) NIL)) (-4101 (($ $ (-930)) NIL)) (-3491 (((-112)) NIL)) (-1851 (((-112)) NIL)) (-2769 (((-112)) 101)) (-3249 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL (|has| |#1| (-564)))) (-2950 (((-3 $ "failed")) NIL (|has| |#1| (-564)))) (-2509 (((-697 |#1|) (-1279 $)) NIL) (((-697 |#1|)) NIL)) (-3436 ((|#1| $) NIL)) (-2647 (((-697 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| |#1| (-564)))) (-2853 (((-1184 (-961 |#1|))) NIL (|has| |#1| (-370)))) (-1858 (($ $ (-930)) NIL)) (-3345 ((|#1| $) NIL)) (-2267 (((-1184 |#1|) $) NIL (|has| |#1| (-564)))) (-3452 ((|#1| (-1279 $)) NIL) ((|#1|) NIL)) (-2708 (((-1184 |#1|) $) NIL)) (-4401 (((-112)) 98)) (-4347 (((-1170) $) NIL)) (-1522 (((-112)) 106)) (-3278 (((-112)) 105)) (-2816 (((-112)) 107)) (-3964 (((-1131) $) NIL)) (-3534 (((-112)) 100)) (-2196 ((|#1| $ (-572)) 55)) (-4329 (((-1279 |#1|) $ (-1279 $)) 48) (((-697 |#1|) (-1279 $) (-1279 $)) NIL) (((-1279 |#1|) $) 28) (((-697 |#1|) (-1279 $)) NIL)) (-1835 (((-1279 |#1|) $) NIL) (($ (-1279 |#1|)) NIL)) (-1402 (((-652 (-961 |#1|)) (-1279 $)) NIL) (((-652 (-961 |#1|))) NIL)) (-4326 (($ $ $) NIL)) (-1589 (((-112)) 95)) (-2940 (((-870) $) 71) (($ (-1279 |#1|)) 22)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) 51)) (-3987 (((-652 (-1279 |#1|))) NIL (|has| |#1| (-564)))) (-2266 (($ $ $ $) NIL)) (-1662 (((-112)) 91)) (-2898 (($ (-697 |#1|) $) 18)) (-3099 (($ $ $) NIL)) (-4118 (((-112)) 97)) (-3313 (((-112)) 92)) (-1547 (((-112)) 90)) (-2131 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1153 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-425 |#1|) (-656 (-1153 |#2| |#1|)) (-10 -8 (-15 -2940 ($ (-1279 |#1|))))) (-370) (-930) (-652 (-1188)) (-1279 (-697 |#1|))) (T -44))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-370)) (-14 *6 (-1279 (-697 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))))))
-(-13 (-425 |#1|) (-656 (-1153 |#2| |#1|)) (-10 -8 (-15 -2940 ($ (-1279 |#1|)))))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3080 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2401 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1969 (($ $) NIL)) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3176 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455))) (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-4382 (($ $ (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-3314 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858))))) (-2766 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-2506 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455)))) (-1385 (($ $ $) 33 (|has| $ (-6 -4455)))) (-2871 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455)))) (-4178 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 35 (|has| $ (-6 -4455)))) (-3140 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-1246 (-572)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "last" (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (($ $ "rest" $) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "first" (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "value" (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2388 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2160 (((-3 |#2| "failed") |#1| $) 43)) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2923 (($ $ (-779)) NIL) (($ $) 29)) (-2704 (($ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) NIL) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) NIL)) (-4055 (((-112) $) NIL)) (-1439 (((-572) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (((-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) (((-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 20 (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454))) (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 20 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-3787 (($ (-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 ((|#1| $) NIL (|has| |#1| (-858))) (((-572) $) 38 (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-3892 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-1767 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454))) (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3374 ((|#1| $) NIL (|has| |#1| (-858))) (((-572) $) 40 (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-1787 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3505 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2087 (((-112) $) NIL)) (-4347 (((-1170) $) 49 (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3357 (($ $ (-779)) NIL) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1761 (((-652 |#1|) $) 22)) (-4198 (((-112) |#1| $) NIL)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL) (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1593 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 |#1|) $) NIL) (((-652 (-572)) $) NIL)) (-1370 (((-112) |#1| $) NIL) (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 ((|#2| $) NIL (|has| |#1| (-858))) (($ $ (-779)) NIL) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 27)) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3064 (((-112) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-4110 (((-652 |#2|) $) NIL) (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 19)) (-1841 (((-112) $) 18)) (-1613 (($) 14)) (-2196 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ (-572)) NIL) (($ $ (-1246 (-572))) NIL) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "first") NIL) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $ "value") NIL)) (-2157 (((-572) $ $) NIL)) (-3438 (($) 13) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-1696 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3315 (((-112) $) NIL)) (-2285 (($ $) NIL)) (-2391 (($ $) NIL (|has| $ (-6 -4455)))) (-3417 (((-779) $) NIL)) (-3479 (($ $) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-1700 (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL) (($ $ $) NIL)) (-4155 (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL) (($ (-652 $)) NIL) (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 31) (($ $ $) NIL)) (-2940 (((-870) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3366 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") |#1| $) 51)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3026 (((-112) $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-3003 (((-112) $ $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-858)))) (-2860 (((-779) $) 25 (|has| $ (-6 -4454)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1111) (-1111)) (T -45))
+(-13 (-1062) (-727 |t#1|) (-626 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-1483 (((-428 |#1|) |#1|) 41)) (-4220 (((-428 |#1|) |#1|) 30) (((-428 |#1|) |#1| (-654 (-48))) 33)) (-3082 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -1483 ((-428 |#1|) |#1|)) (-15 -3082 ((-112) |#1|))) (-1257 (-48))) (T -39))
+((-3082 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))) (-1483 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))))
+(-10 -7 (-15 -4220 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -1483 ((-428 |#1|) |#1|)) (-15 -3082 ((-112) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1432 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-2814 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2425 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-2762 (((-699 (-417 |#2|)) (-1281 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1637 (((-417 |#2|) $) NIL)) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3440 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3875 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1487 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-1785 (((-112)) NIL)) (-3465 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| (-417 |#2|) (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-3003 (($ (-1281 (-417 |#2|)) (-1281 $)) NIL) (($ (-1281 (-417 |#2|))) 61) (($ (-1281 |#2|) |#2|) 131)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2785 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2085 (((-699 (-417 |#2|)) $ (-1281 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-417 |#2|))) (|:| |vec| (-1281 (-417 |#2|)))) (-699 $) (-1281 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1281 $)) NIL)) (-2514 (((-1281 $) (-1281 $)) NIL)) (-2868 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-1950 (((-3 $ "failed") $) NIL)) (-4092 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-2150 (((-112) |#1| |#1|) NIL)) (-3584 (((-932)) NIL)) (-2820 (($) NIL (|has| (-417 |#2|) (-377)))) (-2920 (((-112)) NIL)) (-1759 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2798 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-3872 (($ $) NIL)) (-3906 (($) NIL (|has| (-417 |#2|) (-358)))) (-2878 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-3564 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-1654 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3593 (((-932) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-932)) $) NIL (|has| (-417 |#2|) (-358)))) (-3965 (((-112) $) NIL)) (-1884 (((-781)) NIL)) (-1648 (((-1281 $) (-1281 $)) 106)) (-1652 (((-417 |#2|) $) NIL)) (-1804 (((-654 (-963 |#1|)) (-1190)) NIL (|has| |#1| (-372)))) (-4048 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3190 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-2565 (((-932) $) NIL (|has| (-417 |#2|) (-377)))) (-2854 ((|#3| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2568 (((-1172) $) NIL)) (-3341 (((-1286) (-781)) 84)) (-2992 (((-699 (-417 |#2|))) 56)) (-1732 (((-699 (-417 |#2|))) 49)) (-1324 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3928 (($ (-1281 |#2|) |#2|) 132)) (-1741 (((-699 (-417 |#2|))) 50)) (-1678 (((-699 (-417 |#2|))) 48)) (-3882 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-4119 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) 68)) (-3742 (((-1281 $)) 47)) (-3885 (((-1281 $)) 46)) (-3141 (((-112) $) NIL)) (-1577 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3818 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2576 (($ (-932)) NIL (|has| (-417 |#2|) (-377)))) (-3844 (((-3 |#2| "failed")) NIL)) (-3966 (((-1133) $) NIL)) (-1762 (((-781)) NIL)) (-2970 (($) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| (-417 |#2|) (-372)))) (-2874 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4220 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1347 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2200 ((|#1| $ |#1| |#1|) NIL)) (-2464 (((-3 |#2| "failed")) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1415 (((-417 |#2|) (-1281 $)) NIL) (((-417 |#2|)) 44)) (-3232 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3905 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-1437 (((-699 (-417 |#2|)) (-1281 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-1782 ((|#3|) 55)) (-2585 (($) NIL (|has| (-417 |#2|) (-358)))) (-3676 (((-1281 (-417 |#2|)) $ (-1281 $)) NIL) (((-699 (-417 |#2|)) (-1281 $) (-1281 $)) NIL) (((-1281 (-417 |#2|)) $) 62) (((-699 (-417 |#2|)) (-1281 $)) 107)) (-1837 (((-1281 (-417 |#2|)) $) NIL) (($ (-1281 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-3573 (((-1281 $) (-1281 $)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| (-417 |#2|) (-1051 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1369 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-4169 ((|#3| $) NIL)) (-4160 (((-781)) NIL T CONST)) (-1773 (((-112)) 42)) (-3517 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL)) (-3798 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1783 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3858 (((-112)) NIL)) (-2134 (($) 17 T CONST)) (-2146 (($) 27 T CONST)) (-3611 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -3341 ((-1286) (-781))))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) |#3|) (T -40))
+((-3341 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1257 *4)) (-5 *2 (-1286)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1257 (-417 *5))) (-14 *7 *6))))
+(-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -3341 ((-1286) (-781)))))
+((-4265 ((|#2| |#2|) 47)) (-2362 ((|#2| |#2|) 139 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1051 (-574))))))) (-4317 ((|#2| |#2|) 100 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1051 (-574))))))) (-3129 ((|#2| |#2|) 101 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1051 (-574))))))) (-3475 ((|#2| (-115) |#2| (-781)) 135 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1051 (-574))))))) (-2470 (((-1186 |#2|) |#2|) 44)) (-4370 ((|#2| |#2| (-654 (-622 |#2|))) 18) ((|#2| |#2| (-654 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -4265 (|#2| |#2|)) (-15 -4370 (|#2| |#2|)) (-15 -4370 (|#2| |#2| |#2|)) (-15 -4370 (|#2| |#2| (-654 |#2|))) (-15 -4370 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -2470 ((-1186 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1051 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -3129 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -3475 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) (-566) (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 |#1| (-622 $)) $)) (-15 -2977 ((-1138 |#1| (-622 $)) $)) (-15 -2943 ($ (-1138 |#1| (-622 $))))))) (T -41))
+((-3475 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1051 (-574)))) (-4 *5 (-566)) (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *5 (-622 $)) $)) (-15 -2977 ((-1138 *5 (-622 $)) $)) (-15 -2943 ($ (-1138 *5 (-622 $))))))))) (-2362 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-4317 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-3129 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-2470 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1186 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *4 (-622 $)) $)) (-15 -2977 ((-1138 *4 (-622 $)) $)) (-15 -2943 ($ (-1138 *4 (-622 $))))))))) (-4370 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-622 *2))) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *4 (-622 $)) $)) (-15 -2977 ((-1138 *4 (-622 $)) $)) (-15 -2943 ($ (-1138 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-4370 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *4 (-622 $)) $)) (-15 -2977 ((-1138 *4 (-622 $)) $)) (-15 -2943 ($ (-1138 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-4370 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-4370 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-4265 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))))
+(-10 -7 (-15 -4265 (|#2| |#2|)) (-15 -4370 (|#2| |#2|)) (-15 -4370 (|#2| |#2| |#2|)) (-15 -4370 (|#2| |#2| (-654 |#2|))) (-15 -4370 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -2470 ((-1186 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1051 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -3129 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -3475 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|))
+((-4220 (((-428 (-1186 |#3|)) (-1186 |#3|) (-654 (-48))) 23) (((-428 |#3|) |#3| (-654 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4220 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4220 ((-428 (-1186 |#3|)) (-1186 |#3|) (-654 (-48))))) (-860) (-803) (-960 (-48) |#2| |#1|)) (T -42))
+((-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *7 (-960 (-48) *6 *5)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-960 (-48) *6 *5)))))
+(-10 -7 (-15 -4220 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4220 ((-428 (-1186 |#3|)) (-1186 |#3|) (-654 (-48)))))
+((-2801 (((-781) |#2|) 70)) (-2326 (((-781) |#2|) 74)) (-3600 (((-654 |#2|)) 37)) (-1727 (((-781) |#2|) 73)) (-1999 (((-781) |#2|) 69)) (-3383 (((-781) |#2|) 72)) (-3806 (((-654 (-699 |#1|))) 65)) (-1354 (((-654 |#2|)) 60)) (-2452 (((-654 |#2|) |#2|) 48)) (-3370 (((-654 |#2|)) 62)) (-3680 (((-654 |#2|)) 61)) (-3173 (((-654 (-699 |#1|))) 53)) (-2504 (((-654 |#2|)) 59)) (-3473 (((-654 |#2|) |#2|) 47)) (-1427 (((-654 |#2|)) 55)) (-3996 (((-654 (-699 |#1|))) 66)) (-4275 (((-654 |#2|)) 64)) (-2722 (((-1281 |#2|) (-1281 |#2|)) 99 (|has| |#1| (-315)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1727 ((-781) |#2|)) (-15 -2326 ((-781) |#2|)) (-15 -1999 ((-781) |#2|)) (-15 -2801 ((-781) |#2|)) (-15 -3383 ((-781) |#2|)) (-15 -1427 ((-654 |#2|))) (-15 -3473 ((-654 |#2|) |#2|)) (-15 -2452 ((-654 |#2|) |#2|)) (-15 -2504 ((-654 |#2|))) (-15 -1354 ((-654 |#2|))) (-15 -3680 ((-654 |#2|))) (-15 -3370 ((-654 |#2|))) (-15 -4275 ((-654 |#2|))) (-15 -3173 ((-654 (-699 |#1|)))) (-15 -3806 ((-654 (-699 |#1|)))) (-15 -3996 ((-654 (-699 |#1|)))) (-15 -3600 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -2722 ((-1281 |#2|) (-1281 |#2|))) |%noBranch|)) (-566) (-427 |#1|)) (T -43))
+((-2722 (*1 *2 *2) (-12 (-5 *2 (-1281 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) (-3600 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3996 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3806 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3173 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-4275 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3370 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3680 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1354 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2504 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-3473 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1427 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3383 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-2801 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1999 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-2326 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))))
+(-10 -7 (-15 -1727 ((-781) |#2|)) (-15 -2326 ((-781) |#2|)) (-15 -1999 ((-781) |#2|)) (-15 -2801 ((-781) |#2|)) (-15 -3383 ((-781) |#2|)) (-15 -1427 ((-654 |#2|))) (-15 -3473 ((-654 |#2|) |#2|)) (-15 -2452 ((-654 |#2|) |#2|)) (-15 -2504 ((-654 |#2|))) (-15 -1354 ((-654 |#2|))) (-15 -3680 ((-654 |#2|))) (-15 -3370 ((-654 |#2|))) (-15 -4275 ((-654 |#2|))) (-15 -3173 ((-654 (-699 |#1|)))) (-15 -3806 ((-654 (-699 |#1|)))) (-15 -3996 ((-654 (-699 |#1|)))) (-15 -3600 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -2722 ((-1281 |#2|) (-1281 |#2|))) |%noBranch|))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1708 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-2750 (((-1281 (-699 |#1|)) (-1281 $)) NIL) (((-1281 (-699 |#1|))) 24)) (-4136 (((-1281 $)) 52)) (-3670 (($) NIL T CONST)) (-4192 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-1738 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-3099 (((-699 |#1|) (-1281 $)) NIL) (((-699 |#1|)) NIL)) (-4029 ((|#1| $) NIL)) (-2263 (((-699 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) $) NIL)) (-4369 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-4014 (((-1186 (-963 |#1|))) NIL (|has| |#1| (-372)))) (-2652 (($ $ (-932)) NIL)) (-2856 ((|#1| $) NIL)) (-2517 (((-1186 |#1|) $) NIL (|has| |#1| (-566)))) (-1328 ((|#1| (-1281 $)) NIL) ((|#1|) NIL)) (-1510 (((-1186 |#1|) $) NIL)) (-3063 (((-112)) 99)) (-3003 (($ (-1281 |#1|) (-1281 $)) NIL) (($ (-1281 |#1|)) NIL)) (-1950 (((-3 $ "failed") $) 14 (|has| |#1| (-566)))) (-3584 (((-932)) 53)) (-3715 (((-112)) NIL)) (-2023 (($ $ (-932)) NIL)) (-2154 (((-112)) NIL)) (-3644 (((-112)) NIL)) (-4314 (((-112)) 101)) (-1388 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-3546 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-1658 (((-699 |#1|) (-1281 $)) NIL) (((-699 |#1|)) NIL)) (-2799 ((|#1| $) NIL)) (-2360 (((-699 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) $) NIL)) (-1792 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-3860 (((-1186 (-963 |#1|))) NIL (|has| |#1| (-372)))) (-3702 (($ $ (-932)) NIL)) (-3125 ((|#1| $) NIL)) (-3258 (((-1186 |#1|) $) NIL (|has| |#1| (-566)))) (-1734 ((|#1| (-1281 $)) NIL) ((|#1|) NIL)) (-1749 (((-1186 |#1|) $) NIL)) (-1894 (((-112)) 98)) (-2568 (((-1172) $) NIL)) (-3532 (((-112)) 106)) (-3649 (((-112)) 105)) (-1593 (((-112)) 107)) (-3966 (((-1133) $) NIL)) (-1383 (((-112)) 100)) (-2200 ((|#1| $ (-574)) 55)) (-3676 (((-1281 |#1|) $ (-1281 $)) 48) (((-699 |#1|) (-1281 $) (-1281 $)) NIL) (((-1281 |#1|) $) 28) (((-699 |#1|) (-1281 $)) NIL)) (-1837 (((-1281 |#1|) $) NIL) (($ (-1281 |#1|)) NIL)) (-2528 (((-654 (-963 |#1|)) (-1281 $)) NIL) (((-654 (-963 |#1|))) NIL)) (-3647 (($ $ $) NIL)) (-2910 (((-112)) 95)) (-2943 (((-872) $) 71) (($ (-1281 |#1|)) 22)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) 51)) (-3432 (((-654 (-1281 |#1|))) NIL (|has| |#1| (-566)))) (-3243 (($ $ $ $) NIL)) (-2333 (((-112)) 91)) (-2901 (($ (-699 |#1|) $) 18)) (-2309 (($ $ $) NIL)) (-2210 (((-112)) 97)) (-3999 (((-112)) 92)) (-3784 (((-112)) 90)) (-2134 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1155 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-427 |#1|) (-658 (-1155 |#2| |#1|)) (-10 -8 (-15 -2943 ($ (-1281 |#1|))))) (-372) (-932) (-654 (-1190)) (-1281 (-699 |#1|))) (T -44))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-372)) (-14 *6 (-1281 (-699 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))))))
+(-13 (-427 |#1|) (-658 (-1155 |#2| |#1|)) (-10 -8 (-15 -2943 ($ (-1281 |#1|)))))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3083 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-2406 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-1971 (($ $) NIL)) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-1860 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457))) (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-2960 (($ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-4010 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860))))) (-2771 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-1630 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4457)))) (-4002 (($ $ $) 33 (|has| $ (-6 -4457)))) (-4003 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4457)))) (-1533 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 35 (|has| $ (-6 -4457)))) (-3143 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-1248 (-574)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "last" (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4457))) (($ $ "rest" $) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "first" (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "value" (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2393 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-2163 (((-3 |#2| "failed") |#1| $) 43)) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2926 (($ $ (-781)) NIL) (($ $) 29)) (-1730 (($ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) NIL)) (-2829 (((-112) $) NIL)) (-1441 (((-574) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (((-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) (((-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 20 (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 20 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-3790 (($ (-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 38 (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-3722 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-2130 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-3429 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 40 (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-1788 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-3509 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-2173 (((-112) $) NIL)) (-2568 (((-1172) $) 49 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3360 (($ $ (-781)) NIL) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-1765 (((-654 |#1|) $) 22)) (-1726 (((-112) |#1| $) NIL)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL) (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1595 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 |#1|) $) NIL) (((-654 (-574)) $) NIL)) (-2607 (((-112) |#1| $) NIL) (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860))) (($ $ (-781)) NIL) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 27)) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-3322 (((-112) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-2121 (((-654 |#2|) $) NIL) (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 19)) (-3556 (((-112) $) 18)) (-3135 (($) 14)) (-2200 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ (-574)) NIL) (($ $ (-1248 (-574))) NIL) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "first") NIL) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $ "value") NIL)) (-1556 (((-574) $ $) NIL)) (-2826 (($) 13) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2701 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-4023 (((-112) $) NIL)) (-3420 (($ $) NIL)) (-1813 (($ $) NIL (|has| $ (-6 -4457)))) (-2584 (((-781) $) NIL)) (-2022 (($ $) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2734 (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL) (($ $ $) NIL)) (-4157 (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL) (($ (-654 $)) NIL) (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 31) (($ $ $) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-3369 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") |#1| $) 51)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3028 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-3005 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-860)))) (-2863 (((-781) $) 25 (|has| $ (-6 -4456)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1113) (-1113)) (T -45))
NIL
(-36 |#1| |#2|)
-((-2438 (((-112) $) 12)) (-1776 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-415 (-572)) $) 25) (($ $ (-415 (-572))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -2438 ((-112) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-47 |#2| |#3|) (-1060) (-800)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -2438 ((-112) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-3009 (($ $) 64 (|has| |#1| (-564)))) (-4334 (((-112) $) 66 (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1390 (($ $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-2438 (((-112) $) 74)) (-4333 (($ |#1| |#2|) 73)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1357 (($ $) 77)) (-1368 ((|#1| $) 78)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2834 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-4390 ((|#2| $) 76)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3979 ((|#1| $ |#2|) 71)) (-3849 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
-(((-47 |#1| |#2|) (-141) (-1060) (-800)) (T -47))
-((-1368 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))) (-1357 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-112)))) (-4333 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))) (-1390 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))) (-3979 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))) (-3106 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *2 (-370)))))
-(-13 (-1060) (-111 |t#1| |t#1|) (-10 -8 (-15 -1368 (|t#1| $)) (-15 -1357 ($ $)) (-15 -4390 (|t#2| $)) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -2438 ((-112) $)) (-15 -4333 ($ |t#1| |t#2|)) (-15 -1390 ($ $)) (-15 -3979 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-370)) (-15 -3106 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-564)) (-6 (-564)) |%noBranch|) (IF (|has| |t#1| (-38 (-415 (-572)))) (-6 (-38 (-415 (-572)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-296) |has| |#1| (-564)) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2345 (((-652 $) (-1184 $) (-1188)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-961 $)) NIL)) (-4164 (($ (-1184 $) (-1188)) NIL) (($ (-1184 $)) NIL) (($ (-961 $)) NIL)) (-2697 (((-112) $) 9)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-4090 (((-652 (-620 $)) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2539 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4227 (($ $) NIL)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2901 (((-652 $) (-1184 $) (-1188)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-961 $)) NIL)) (-1821 (($ (-1184 $) (-1188)) NIL) (($ (-1184 $)) NIL) (($ (-961 $)) NIL)) (-1695 (((-3 (-620 $) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL)) (-2204 (((-620 $) $) NIL) (((-572) $) NIL) (((-415 (-572)) $) NIL)) (-2780 (($ $ $) NIL)) (-2993 (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-697 (-572)) (-1279 $)) NIL) (((-2 (|:| -3544 (-697 (-415 (-572)))) (|:| |vec| (-1279 (-415 (-572))))) (-697 $) (-1279 $)) NIL) (((-697 (-415 (-572))) (-697 $)) NIL) (((-697 (-415 (-572))) (-1279 $)) NIL)) (-2865 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3033 (($ $) NIL) (($ (-652 $)) NIL)) (-4085 (((-652 (-115)) $) NIL)) (-4171 (((-115) (-115)) NIL)) (-1886 (((-112) $) 11)) (-2597 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2963 (((-1136 (-572) (-620 $)) $) NIL)) (-2932 (($ $ (-572)) NIL)) (-2028 (((-1184 $) (-1184 $) (-620 $)) NIL) (((-1184 $) (-1184 $) (-652 (-620 $))) NIL) (($ $ (-620 $)) NIL) (($ $ (-652 (-620 $))) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2969 (((-1184 $) (-620 $)) NIL (|has| $ (-1060)))) (-1776 (($ (-1 $ $) (-620 $)) NIL)) (-3369 (((-3 (-620 $) "failed") $) NIL)) (-2825 (($ (-652 $)) NIL) (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-4161 (((-652 (-620 $)) $) NIL)) (-1774 (($ (-115) $) NIL) (($ (-115) (-652 $)) NIL)) (-2695 (((-112) $ (-115)) NIL) (((-112) $ (-1188)) NIL)) (-1322 (($ $) NIL)) (-1839 (((-779) $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ (-652 $)) NIL) (($ $ $) NIL)) (-2202 (((-112) $ $) NIL) (((-112) $ (-1188)) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2003 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2641 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3847 (((-779) $) NIL)) (-2196 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2904 (($ $) NIL) (($ $ $) NIL)) (-3902 (($ $ (-779)) NIL) (($ $) NIL)) (-2974 (((-1136 (-572) (-620 $)) $) NIL)) (-3764 (($ $) NIL (|has| $ (-1060)))) (-1835 (((-386) $) NIL) (((-227) $) NIL) (((-171 (-386)) $) NIL)) (-2940 (((-870) $) NIL) (($ (-620 $)) NIL) (($ (-415 (-572))) NIL) (($ $) NIL) (($ (-572)) NIL) (($ (-1136 (-572) (-620 $))) NIL)) (-4249 (((-779)) NIL T CONST)) (-3952 (($ $) NIL) (($ (-652 $)) NIL)) (-4406 (((-112) (-115)) NIL)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2131 (($) 6 T CONST)) (-2143 (($) 10 T CONST)) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) 13)) (-3106 (($ $ $) NIL)) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-415 (-572))) NIL) (($ $ (-572)) NIL) (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ $ $) NIL) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL)))
-(((-48) (-13 (-308) (-27) (-1049 (-572)) (-1049 (-415 (-572))) (-647 (-572)) (-1033) (-647 (-415 (-572))) (-148) (-622 (-171 (-386))) (-237) (-10 -8 (-15 -2940 ($ (-1136 (-572) (-620 $)))) (-15 -2963 ((-1136 (-572) (-620 $)) $)) (-15 -2974 ((-1136 (-572) (-620 $)) $)) (-15 -2865 ($ $)) (-15 -2028 ((-1184 $) (-1184 $) (-620 $))) (-15 -2028 ((-1184 $) (-1184 $) (-652 (-620 $)))) (-15 -2028 ($ $ (-620 $))) (-15 -2028 ($ $ (-652 (-620 $))))))) (T -48))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48)))) (-2865 (*1 *1 *1) (-5 *1 (-48))) (-2028 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-48))) (-5 *3 (-620 (-48))) (-5 *1 (-48)))) (-2028 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-48))) (-5 *3 (-652 (-620 (-48)))) (-5 *1 (-48)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-48))) (-5 *1 (-48)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-620 (-48)))) (-5 *1 (-48)))))
-(-13 (-308) (-27) (-1049 (-572)) (-1049 (-415 (-572))) (-647 (-572)) (-1033) (-647 (-415 (-572))) (-148) (-622 (-171 (-386))) (-237) (-10 -8 (-15 -2940 ($ (-1136 (-572) (-620 $)))) (-15 -2963 ((-1136 (-572) (-620 $)) $)) (-15 -2974 ((-1136 (-572) (-620 $)) $)) (-15 -2865 ($ $)) (-15 -2028 ((-1184 $) (-1184 $) (-620 $))) (-15 -2028 ((-1184 $) (-1184 $) (-652 (-620 $)))) (-15 -2028 ($ $ (-620 $))) (-15 -2028 ($ $ (-652 (-620 $))))))
-((-2846 (((-112) $ $) NIL)) (-2619 (((-652 (-514)) $) 17)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 7)) (-2042 (((-1193) $) 18)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-49) (-13 (-1111) (-10 -8 (-15 -2619 ((-652 (-514)) $)) (-15 -2042 ((-1193) $))))) (T -49))
-((-2619 (*1 *2 *1) (-12 (-5 *2 (-652 (-514))) (-5 *1 (-49)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-49)))))
-(-13 (-1111) (-10 -8 (-15 -2619 ((-652 (-514)) $)) (-15 -2042 ((-1193) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 85)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2100 (((-112) $) 30)) (-1695 (((-3 |#1| "failed") $) 33)) (-2204 ((|#1| $) 34)) (-1390 (($ $) 40)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1368 ((|#1| $) 31)) (-2355 (($ $) 74)) (-4347 (((-1170) $) NIL)) (-3342 (((-112) $) 43)) (-3964 (((-1131) $) NIL)) (-2967 (($ (-779)) 72)) (-1608 (($ (-652 (-572))) 73)) (-4390 (((-779) $) 44)) (-2940 (((-870) $) 91) (($ (-572)) 69) (($ |#1|) 67)) (-3979 ((|#1| $ $) 28)) (-4249 (((-779)) 71 T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 45 T CONST)) (-2143 (($) 17 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 64)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 65) (($ |#1| $) 58)))
-(((-50 |#1| |#2|) (-13 (-628 |#1|) (-1049 |#1|) (-10 -8 (-15 -1368 (|#1| $)) (-15 -2355 ($ $)) (-15 -1390 ($ $)) (-15 -3979 (|#1| $ $)) (-15 -2967 ($ (-779))) (-15 -1608 ($ (-652 (-572)))) (-15 -3342 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -4390 ((-779) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)))) (-1060) (-652 (-1188))) (T -50))
-((-1368 (*1 *2 *1) (-12 (-4 *2 (-1060)) (-5 *1 (-50 *2 *3)) (-14 *3 (-652 (-1188))))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188))))) (-1390 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188))))) (-3979 (*1 *2 *1 *1) (-12 (-4 *2 (-1060)) (-5 *1 (-50 *2 *3)) (-14 *3 (-652 (-1188))))) (-2967 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-50 *3 *4)) (-14 *4 (-652 (-1188))))))
-(-13 (-628 |#1|) (-1049 |#1|) (-10 -8 (-15 -1368 (|#1| $)) (-15 -2355 ($ $)) (-15 -1390 ($ $)) (-15 -3979 (|#1| $ $)) (-15 -2967 ($ (-779))) (-15 -1608 ($ (-652 (-572)))) (-15 -3342 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -4390 ((-779) $)) (-15 -1776 ($ (-1 |#1| |#1|) $))))
-((-2100 (((-112) (-52)) 18)) (-1695 (((-3 |#1| "failed") (-52)) 20)) (-2204 ((|#1| (-52)) 21)) (-2940 (((-52) |#1|) 14)))
-(((-51 |#1|) (-10 -7 (-15 -2940 ((-52) |#1|)) (-15 -1695 ((-3 |#1| "failed") (-52))) (-15 -2100 ((-112) (-52))) (-15 -2204 (|#1| (-52)))) (-1229)) (T -51))
-((-2204 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1229)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1229)))) (-1695 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1229)))) (-2940 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1229)))))
-(-10 -7 (-15 -2940 ((-52) |#1|)) (-15 -1695 ((-3 |#1| "failed") (-52))) (-15 -2100 ((-112) (-52))) (-15 -2204 (|#1| (-52))))
-((-2846 (((-112) $ $) NIL)) (-1694 (((-782) $) 8)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1868 (((-1115) $) 10)) (-2940 (((-870) $) 15)) (-4379 (((-112) $ $) NIL)) (-3962 (($ (-1115) (-782)) 16)) (-2978 (((-112) $ $) 12)))
-(((-52) (-13 (-1111) (-10 -8 (-15 -3962 ($ (-1115) (-782))) (-15 -1868 ((-1115) $)) (-15 -1694 ((-782) $))))) (T -52))
-((-3962 (*1 *1 *2 *3) (-12 (-5 *2 (-1115)) (-5 *3 (-782)) (-5 *1 (-52)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-52)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-52)))))
-(-13 (-1111) (-10 -8 (-15 -3962 ($ (-1115) (-782))) (-15 -1868 ((-1115) $)) (-15 -1694 ((-782) $))))
-((-2898 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2898 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1060) (-656 |#1|) (-860 |#1|)) (T -53))
-((-2898 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-656 *5)) (-4 *5 (-1060)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-860 *5)))))
-(-10 -7 (-15 -2898 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1481 ((|#3| |#3| (-652 (-1188))) 44)) (-3101 ((|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3| (-930)) 32) ((|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3101 (|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3|)) (-15 -3101 (|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3| (-930))) (-15 -1481 (|#3| |#3| (-652 (-1188))))) (-1111) (-13 (-1060) (-895 |#1|) (-622 (-901 |#1|))) (-13 (-438 |#2|) (-895 |#1|) (-622 (-901 |#1|)))) (T -54))
-((-1481 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))) (-3101 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-652 (-1087 *5 *6 *2))) (-5 *4 (-930)) (-4 *5 (-1111)) (-4 *6 (-13 (-1060) (-895 *5) (-622 (-901 *5)))) (-4 *2 (-13 (-438 *6) (-895 *5) (-622 (-901 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3101 (*1 *2 *3 *2) (-12 (-5 *3 (-652 (-1087 *4 *5 *2))) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -3101 (|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3|)) (-15 -3101 (|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3| (-930))) (-15 -1481 (|#3| |#3| (-652 (-1188)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 14)) (-1695 (((-3 (-779) "failed") $) 34)) (-2204 (((-779) $) NIL)) (-1886 (((-112) $) 16)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) 18)) (-2940 (((-870) $) 23) (($ (-779)) 29)) (-4379 (((-112) $ $) NIL)) (-1517 (($) 11 T CONST)) (-2978 (((-112) $ $) 20)))
-(((-55) (-13 (-1111) (-1049 (-779)) (-10 -8 (-15 -1517 ($) -1705) (-15 -2697 ((-112) $)) (-15 -1886 ((-112) $))))) (T -55))
-((-1517 (*1 *1) (-5 *1 (-55))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
-(-13 (-1111) (-1049 (-779)) (-10 -8 (-15 -1517 ($) -1705) (-15 -2697 ((-112) $)) (-15 -1886 ((-112) $))))
-((-1631 (((-112) $ (-779)) 27)) (-3864 (($ $ (-572) |#3|) 66)) (-4255 (($ $ (-572) |#4|) 70)) (-4172 ((|#3| $ (-572)) 79)) (-1863 (((-652 |#2|) $) 47)) (-1861 (((-112) $ (-779)) 31)) (-1864 (((-112) |#2| $) 74)) (-2442 (($ (-1 |#2| |#2|) $) 55)) (-1776 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1985 (((-112) $ (-779)) 29)) (-2476 (($ $ |#2|) 52)) (-1612 (((-112) (-1 (-112) |#2|) $) 21)) (-2196 ((|#2| $ (-572) (-572)) NIL) ((|#2| $ (-572) (-572) |#2|) 35)) (-3973 (((-779) (-1 (-112) |#2|) $) 41) (((-779) |#2| $) 76)) (-3164 (($ $) 51)) (-1752 ((|#4| $ (-572)) 82)) (-2940 (((-870) $) 88)) (-4380 (((-112) (-1 (-112) |#2|) $) 20)) (-2978 (((-112) $ $) 73)) (-2860 (((-779) $) 32)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2442 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4255 (|#1| |#1| (-572) |#4|)) (-15 -3864 (|#1| |#1| (-572) |#3|)) (-15 -1863 ((-652 |#2|) |#1|)) (-15 -1752 (|#4| |#1| (-572))) (-15 -4172 (|#3| |#1| (-572))) (-15 -2196 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572) (-572))) (-15 -2476 (|#1| |#1| |#2|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -1864 ((-112) |#2| |#1|)) (-15 -3973 ((-779) |#2| |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2860 ((-779) |#1|)) (-15 -1631 ((-112) |#1| (-779))) (-15 -1861 ((-112) |#1| (-779))) (-15 -1985 ((-112) |#1| (-779))) (-15 -3164 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1229) (-380 |#2|) (-380 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2442 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4255 (|#1| |#1| (-572) |#4|)) (-15 -3864 (|#1| |#1| (-572) |#3|)) (-15 -1863 ((-652 |#2|) |#1|)) (-15 -1752 (|#4| |#1| (-572))) (-15 -4172 (|#3| |#1| (-572))) (-15 -2196 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572) (-572))) (-15 -2476 (|#1| |#1| |#2|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -1864 ((-112) |#2| |#1|)) (-15 -3973 ((-779) |#2| |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2860 ((-779) |#1|)) (-15 -1631 ((-112) |#1| (-779))) (-15 -1861 ((-112) |#1| (-779))) (-15 -1985 ((-112) |#1| (-779))) (-15 -3164 (|#1| |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-3140 ((|#1| $ (-572) (-572) |#1|) 45)) (-3864 (($ $ (-572) |#2|) 43)) (-4255 (($ $ (-572) |#3|) 42)) (-3281 (($) 7 T CONST)) (-4172 ((|#2| $ (-572)) 47)) (-2453 ((|#1| $ (-572) (-572) |#1|) 44)) (-2380 ((|#1| $ (-572) (-572)) 49)) (-1863 (((-652 |#1|) $) 31)) (-2187 (((-779) $) 52)) (-3787 (($ (-779) (-779) |#1|) 58)) (-2195 (((-779) $) 51)) (-1861 (((-112) $ (-779)) 9)) (-3822 (((-572) $) 56)) (-3533 (((-572) $) 54)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2795 (((-572) $) 55)) (-2857 (((-572) $) 53)) (-2442 (($ (-1 |#1| |#1|) $) 35)) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2476 (($ $ |#1|) 57)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ (-572) (-572)) 50) ((|#1| $ (-572) (-572) |#1|) 48)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1752 ((|#3| $ (-572)) 46)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-57 |#1| |#2| |#3|) (-141) (-1229) (-380 |t#1|) (-380 |t#1|)) (T -57))
-((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3787 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-779)) (-4 *3 (-1229)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2476 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-572)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-572)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-572)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-572)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-779)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-779)))) (-2196 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-1229)))) (-2380 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-1229)))) (-2196 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)))) (-4172 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1229)) (-4 *5 (-380 *4)) (-4 *2 (-380 *4)))) (-1752 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1229)) (-4 *5 (-380 *4)) (-4 *2 (-380 *4)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-652 *3)))) (-3140 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)))) (-2453 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)))) (-3864 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-572)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-380 *4)) (-4 *5 (-380 *4)))) (-4255 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-572)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1229)) (-4 *5 (-380 *4)) (-4 *3 (-380 *4)))) (-2442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-1776 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
-(-13 (-497 |t#1|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -3787 ($ (-779) (-779) |t#1|)) (-15 -2476 ($ $ |t#1|)) (-15 -3822 ((-572) $)) (-15 -2795 ((-572) $)) (-15 -3533 ((-572) $)) (-15 -2857 ((-572) $)) (-15 -2187 ((-779) $)) (-15 -2195 ((-779) $)) (-15 -2196 (|t#1| $ (-572) (-572))) (-15 -2380 (|t#1| $ (-572) (-572))) (-15 -2196 (|t#1| $ (-572) (-572) |t#1|)) (-15 -4172 (|t#2| $ (-572))) (-15 -1752 (|t#3| $ (-572))) (-15 -1863 ((-652 |t#1|) $)) (-15 -3140 (|t#1| $ (-572) (-572) |t#1|)) (-15 -2453 (|t#1| $ (-572) (-572) |t#1|)) (-15 -3864 ($ $ (-572) |t#2|)) (-15 -4255 ($ $ (-572) |t#3|)) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -2442 ($ (-1 |t#1| |t#1|) $)) (-15 -1776 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1776 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-2273 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2865 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1776 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -2273 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2865 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1776 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1229) (-1229)) (T -58))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-58 *5 *2)))) (-2273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -2273 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2865 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1776 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-1439 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4106 (($ (-652 |#1|)) 11) (($ (-779) |#1|) 14)) (-3787 (($ (-779) |#1|) 13)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2912 ((|#1| $) NIL (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 10)) (-4155 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4106 ($ (-652 |#1|))) (-15 -4106 ($ (-779) |#1|)))) (-1229)) (T -59))
-((-4106 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-59 *3)))) (-4106 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-59 *3)) (-4 *3 (-1229)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -4106 ($ (-652 |#1|))) (-15 -4106 ($ (-779) |#1|))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-572) (-572) |#1|) NIL)) (-3864 (($ $ (-572) (-59 |#1|)) NIL)) (-4255 (($ $ (-572) (-59 |#1|)) NIL)) (-3281 (($) NIL T CONST)) (-4172 (((-59 |#1|) $ (-572)) NIL)) (-2453 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2380 ((|#1| $ (-572) (-572)) NIL)) (-1863 (((-652 |#1|) $) NIL)) (-2187 (((-779) $) NIL)) (-3787 (($ (-779) (-779) |#1|) NIL)) (-2195 (((-779) $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3822 (((-572) $) NIL)) (-3533 (((-572) $) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2795 (((-572) $) NIL)) (-2857 (((-572) $) NIL)) (-2442 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2476 (($ $ |#1|) NIL)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-1752 (((-59 |#1|) $ (-572)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4455))) (-1229)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4455)))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 74) (((-3 $ "failed") (-1279 (-322 (-572)))) 63) (((-3 $ "failed") (-1279 (-961 (-386)))) 94) (((-3 $ "failed") (-1279 (-961 (-572)))) 84) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 52) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 39)) (-2204 (($ (-1279 (-322 (-386)))) 70) (($ (-1279 (-322 (-572)))) 59) (($ (-1279 (-961 (-386)))) 90) (($ (-1279 (-961 (-572)))) 80) (($ (-1279 (-415 (-961 (-386))))) 48) (($ (-1279 (-415 (-961 (-572))))) 32)) (-3765 (((-1284) $) 124)) (-2940 (((-870) $) 118) (($ (-652 (-336))) 103) (($ (-336)) 97) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 101) (($ (-1279 (-346 (-2953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2953) (-707)))) 31)))
-(((-61 |#1|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2953) (-707))))))) (-1188)) (T -61))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2953) (-707)))) (-5 *1 (-61 *3)) (-14 *3 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2953) (-707)))))))
-((-3765 (((-1284) $) 54) (((-1284)) 55)) (-2940 (((-870) $) 51)))
-(((-62 |#1|) (-13 (-403) (-10 -7 (-15 -3765 ((-1284))))) (-1188)) (T -62))
-((-3765 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-62 *3)) (-14 *3 (-1188)))))
-(-13 (-403) (-10 -7 (-15 -3765 ((-1284)))))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 150) (((-3 $ "failed") (-1279 (-322 (-572)))) 140) (((-3 $ "failed") (-1279 (-961 (-386)))) 170) (((-3 $ "failed") (-1279 (-961 (-572)))) 160) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 129) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 117)) (-2204 (($ (-1279 (-322 (-386)))) 146) (($ (-1279 (-322 (-572)))) 136) (($ (-1279 (-961 (-386)))) 166) (($ (-1279 (-961 (-572)))) 156) (($ (-1279 (-415 (-961 (-386))))) 125) (($ (-1279 (-415 (-961 (-572))))) 110)) (-3765 (((-1284) $) 103)) (-2940 (((-870) $) 97) (($ (-652 (-336))) 30) (($ (-336)) 35) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 33) (($ (-1279 (-346 (-2953) (-2953 (QUOTE XC)) (-707)))) 95)))
-(((-63 |#1|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953) (-2953 (QUOTE XC)) (-707))))))) (-1188)) (T -63))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953) (-2953 (QUOTE XC)) (-707)))) (-5 *1 (-63 *3)) (-14 *3 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953) (-2953 (QUOTE XC)) (-707)))))))
-((-1695 (((-3 $ "failed") (-322 (-386))) 41) (((-3 $ "failed") (-322 (-572))) 46) (((-3 $ "failed") (-961 (-386))) 50) (((-3 $ "failed") (-961 (-572))) 54) (((-3 $ "failed") (-415 (-961 (-386)))) 36) (((-3 $ "failed") (-415 (-961 (-572)))) 29)) (-2204 (($ (-322 (-386))) 39) (($ (-322 (-572))) 44) (($ (-961 (-386))) 48) (($ (-961 (-572))) 52) (($ (-415 (-961 (-386)))) 34) (($ (-415 (-961 (-572)))) 26)) (-3765 (((-1284) $) 76)) (-2940 (((-870) $) 69) (($ (-652 (-336))) 61) (($ (-336)) 66) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 64) (($ (-346 (-2953 (QUOTE X)) (-2953) (-707))) 25)))
-(((-64 |#1|) (-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953 (QUOTE X)) (-2953) (-707)))))) (-1188)) (T -64))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-346 (-2953 (QUOTE X)) (-2953) (-707))) (-5 *1 (-64 *3)) (-14 *3 (-1188)))))
-(-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953 (QUOTE X)) (-2953) (-707))))))
-((-1695 (((-3 $ "failed") (-697 (-322 (-386)))) 111) (((-3 $ "failed") (-697 (-322 (-572)))) 99) (((-3 $ "failed") (-697 (-961 (-386)))) 133) (((-3 $ "failed") (-697 (-961 (-572)))) 122) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 87) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 73)) (-2204 (($ (-697 (-322 (-386)))) 107) (($ (-697 (-322 (-572)))) 95) (($ (-697 (-961 (-386)))) 129) (($ (-697 (-961 (-572)))) 118) (($ (-697 (-415 (-961 (-386))))) 83) (($ (-697 (-415 (-961 (-572))))) 66)) (-3765 (((-1284) $) 141)) (-2940 (((-870) $) 135) (($ (-652 (-336))) 29) (($ (-336)) 34) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 32) (($ (-697 (-346 (-2953) (-2953 (QUOTE X) (QUOTE HESS)) (-707)))) 56)))
-(((-65 |#1|) (-13 (-391) (-624 (-697 (-346 (-2953) (-2953 (QUOTE X) (QUOTE HESS)) (-707))))) (-1188)) (T -65))
-NIL
-(-13 (-391) (-624 (-697 (-346 (-2953) (-2953 (QUOTE X) (QUOTE HESS)) (-707)))))
-((-1695 (((-3 $ "failed") (-322 (-386))) 60) (((-3 $ "failed") (-322 (-572))) 65) (((-3 $ "failed") (-961 (-386))) 69) (((-3 $ "failed") (-961 (-572))) 73) (((-3 $ "failed") (-415 (-961 (-386)))) 55) (((-3 $ "failed") (-415 (-961 (-572)))) 48)) (-2204 (($ (-322 (-386))) 58) (($ (-322 (-572))) 63) (($ (-961 (-386))) 67) (($ (-961 (-572))) 71) (($ (-415 (-961 (-386)))) 53) (($ (-415 (-961 (-572)))) 45)) (-3765 (((-1284) $) 82)) (-2940 (((-870) $) 76) (($ (-652 (-336))) 29) (($ (-336)) 34) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 32) (($ (-346 (-2953) (-2953 (QUOTE XC)) (-707))) 40)))
-(((-66 |#1|) (-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953) (-2953 (QUOTE XC)) (-707)))))) (-1188)) (T -66))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-346 (-2953) (-2953 (QUOTE XC)) (-707))) (-5 *1 (-66 *3)) (-14 *3 (-1188)))))
-(-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953) (-2953 (QUOTE XC)) (-707))))))
-((-3765 (((-1284) $) 65)) (-2940 (((-870) $) 59) (($ (-697 (-707))) 51) (($ (-652 (-336))) 50) (($ (-336)) 57) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 55)))
-(((-67 |#1|) (-390) (-1188)) (T -67))
-NIL
-(-390)
-((-3765 (((-1284) $) 66)) (-2940 (((-870) $) 60) (($ (-697 (-707))) 52) (($ (-652 (-336))) 51) (($ (-336)) 54) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 57)))
-(((-68 |#1|) (-390) (-1188)) (T -68))
-NIL
-(-390)
-((-3765 (((-1284) $) NIL) (((-1284)) 33)) (-2940 (((-870) $) NIL)))
-(((-69 |#1|) (-13 (-403) (-10 -7 (-15 -3765 ((-1284))))) (-1188)) (T -69))
-((-3765 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-69 *3)) (-14 *3 (-1188)))))
-(-13 (-403) (-10 -7 (-15 -3765 ((-1284)))))
-((-3765 (((-1284) $) 75)) (-2940 (((-870) $) 69) (($ (-697 (-707))) 61) (($ (-652 (-336))) 63) (($ (-336)) 66) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 60)))
-(((-70 |#1|) (-390) (-1188)) (T -70))
-NIL
-(-390)
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 109) (((-3 $ "failed") (-1279 (-322 (-572)))) 98) (((-3 $ "failed") (-1279 (-961 (-386)))) 129) (((-3 $ "failed") (-1279 (-961 (-572)))) 119) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 87) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 74)) (-2204 (($ (-1279 (-322 (-386)))) 105) (($ (-1279 (-322 (-572)))) 94) (($ (-1279 (-961 (-386)))) 125) (($ (-1279 (-961 (-572)))) 115) (($ (-1279 (-415 (-961 (-386))))) 83) (($ (-1279 (-415 (-961 (-572))))) 67)) (-3765 (((-1284) $) 142)) (-2940 (((-870) $) 136) (($ (-652 (-336))) 131) (($ (-336)) 134) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 59) (($ (-1279 (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707)))) 60)))
-(((-71 |#1|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707))))))) (-1188)) (T -71))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707)))) (-5 *1 (-71 *3)) (-14 *3 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707)))))))
-((-3765 (((-1284) $) 33) (((-1284)) 32)) (-2940 (((-870) $) 36)))
-(((-72 |#1|) (-13 (-403) (-10 -7 (-15 -3765 ((-1284))))) (-1188)) (T -72))
-((-3765 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-72 *3)) (-14 *3 (-1188)))))
-(-13 (-403) (-10 -7 (-15 -3765 ((-1284)))))
-((-3765 (((-1284) $) 65)) (-2940 (((-870) $) 59) (($ (-697 (-707))) 51) (($ (-652 (-336))) 53) (($ (-336)) 56) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 50)))
-(((-73 |#1|) (-390) (-1188)) (T -73))
-NIL
-(-390)
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 127) (((-3 $ "failed") (-1279 (-322 (-572)))) 117) (((-3 $ "failed") (-1279 (-961 (-386)))) 147) (((-3 $ "failed") (-1279 (-961 (-572)))) 137) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 107) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 95)) (-2204 (($ (-1279 (-322 (-386)))) 123) (($ (-1279 (-322 (-572)))) 113) (($ (-1279 (-961 (-386)))) 143) (($ (-1279 (-961 (-572)))) 133) (($ (-1279 (-415 (-961 (-386))))) 103) (($ (-1279 (-415 (-961 (-572))))) 88)) (-3765 (((-1284) $) 80)) (-2940 (((-870) $) 28) (($ (-652 (-336))) 70) (($ (-336)) 66) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 73) (($ (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707)))) 67)))
-(((-74 |#1|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707))))))) (-1188)) (T -74))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707)))) (-5 *1 (-74 *3)) (-14 *3 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707)))))))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 132) (((-3 $ "failed") (-1279 (-322 (-572)))) 121) (((-3 $ "failed") (-1279 (-961 (-386)))) 152) (((-3 $ "failed") (-1279 (-961 (-572)))) 142) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 110) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 97)) (-2204 (($ (-1279 (-322 (-386)))) 128) (($ (-1279 (-322 (-572)))) 117) (($ (-1279 (-961 (-386)))) 148) (($ (-1279 (-961 (-572)))) 138) (($ (-1279 (-415 (-961 (-386))))) 106) (($ (-1279 (-415 (-961 (-572))))) 90)) (-3765 (((-1284) $) 82)) (-2940 (((-870) $) 74) (($ (-652 (-336))) NIL) (($ (-336)) NIL) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) NIL) (($ (-1279 (-346 (-2953 (QUOTE X) (QUOTE EPS)) (-2953 (QUOTE -1880)) (-707)))) 69)))
-(((-75 |#1| |#2| |#3|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X) (QUOTE EPS)) (-2953 (QUOTE -1880)) (-707))))))) (-1188) (-1188) (-1188)) (T -75))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953 (QUOTE X) (QUOTE EPS)) (-2953 (QUOTE -1880)) (-707)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1188)) (-14 *4 (-1188)) (-14 *5 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X) (QUOTE EPS)) (-2953 (QUOTE -1880)) (-707)))))))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 138) (((-3 $ "failed") (-1279 (-322 (-572)))) 127) (((-3 $ "failed") (-1279 (-961 (-386)))) 158) (((-3 $ "failed") (-1279 (-961 (-572)))) 148) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 116) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 103)) (-2204 (($ (-1279 (-322 (-386)))) 134) (($ (-1279 (-322 (-572)))) 123) (($ (-1279 (-961 (-386)))) 154) (($ (-1279 (-961 (-572)))) 144) (($ (-1279 (-415 (-961 (-386))))) 112) (($ (-1279 (-415 (-961 (-572))))) 96)) (-3765 (((-1284) $) 88)) (-2940 (((-870) $) 80) (($ (-652 (-336))) NIL) (($ (-336)) NIL) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) NIL) (($ (-1279 (-346 (-2953 (QUOTE EPS)) (-2953 (QUOTE YA) (QUOTE YB)) (-707)))) 75)))
-(((-76 |#1| |#2| |#3|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE EPS)) (-2953 (QUOTE YA) (QUOTE YB)) (-707))))))) (-1188) (-1188) (-1188)) (T -76))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953 (QUOTE EPS)) (-2953 (QUOTE YA) (QUOTE YB)) (-707)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1188)) (-14 *4 (-1188)) (-14 *5 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE EPS)) (-2953 (QUOTE YA) (QUOTE YB)) (-707)))))))
-((-1695 (((-3 $ "failed") (-322 (-386))) 83) (((-3 $ "failed") (-322 (-572))) 88) (((-3 $ "failed") (-961 (-386))) 92) (((-3 $ "failed") (-961 (-572))) 96) (((-3 $ "failed") (-415 (-961 (-386)))) 78) (((-3 $ "failed") (-415 (-961 (-572)))) 71)) (-2204 (($ (-322 (-386))) 81) (($ (-322 (-572))) 86) (($ (-961 (-386))) 90) (($ (-961 (-572))) 94) (($ (-415 (-961 (-386)))) 76) (($ (-415 (-961 (-572)))) 68)) (-3765 (((-1284) $) 63)) (-2940 (((-870) $) 51) (($ (-652 (-336))) 47) (($ (-336)) 57) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 55) (($ (-346 (-2953) (-2953 (QUOTE X)) (-707))) 48)))
-(((-77 |#1|) (-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953) (-2953 (QUOTE X)) (-707)))))) (-1188)) (T -77))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-346 (-2953) (-2953 (QUOTE X)) (-707))) (-5 *1 (-77 *3)) (-14 *3 (-1188)))))
-(-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953) (-2953 (QUOTE X)) (-707))))))
-((-1695 (((-3 $ "failed") (-322 (-386))) 47) (((-3 $ "failed") (-322 (-572))) 52) (((-3 $ "failed") (-961 (-386))) 56) (((-3 $ "failed") (-961 (-572))) 60) (((-3 $ "failed") (-415 (-961 (-386)))) 42) (((-3 $ "failed") (-415 (-961 (-572)))) 35)) (-2204 (($ (-322 (-386))) 45) (($ (-322 (-572))) 50) (($ (-961 (-386))) 54) (($ (-961 (-572))) 58) (($ (-415 (-961 (-386)))) 40) (($ (-415 (-961 (-572)))) 32)) (-3765 (((-1284) $) 81)) (-2940 (((-870) $) 75) (($ (-652 (-336))) 67) (($ (-336)) 72) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 70) (($ (-346 (-2953) (-2953 (QUOTE X)) (-707))) 31)))
-(((-78 |#1|) (-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953) (-2953 (QUOTE X)) (-707)))))) (-1188)) (T -78))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-346 (-2953) (-2953 (QUOTE X)) (-707))) (-5 *1 (-78 *3)) (-14 *3 (-1188)))))
-(-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953) (-2953 (QUOTE X)) (-707))))))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 90) (((-3 $ "failed") (-1279 (-322 (-572)))) 79) (((-3 $ "failed") (-1279 (-961 (-386)))) 110) (((-3 $ "failed") (-1279 (-961 (-572)))) 100) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 68) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 55)) (-2204 (($ (-1279 (-322 (-386)))) 86) (($ (-1279 (-322 (-572)))) 75) (($ (-1279 (-961 (-386)))) 106) (($ (-1279 (-961 (-572)))) 96) (($ (-1279 (-415 (-961 (-386))))) 64) (($ (-1279 (-415 (-961 (-572))))) 48)) (-3765 (((-1284) $) 126)) (-2940 (((-870) $) 120) (($ (-652 (-336))) 113) (($ (-336)) 38) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 116) (($ (-1279 (-346 (-2953) (-2953 (QUOTE XC)) (-707)))) 39)))
-(((-79 |#1|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953) (-2953 (QUOTE XC)) (-707))))))) (-1188)) (T -79))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953) (-2953 (QUOTE XC)) (-707)))) (-5 *1 (-79 *3)) (-14 *3 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953) (-2953 (QUOTE XC)) (-707)))))))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 151) (((-3 $ "failed") (-1279 (-322 (-572)))) 141) (((-3 $ "failed") (-1279 (-961 (-386)))) 171) (((-3 $ "failed") (-1279 (-961 (-572)))) 161) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 131) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 119)) (-2204 (($ (-1279 (-322 (-386)))) 147) (($ (-1279 (-322 (-572)))) 137) (($ (-1279 (-961 (-386)))) 167) (($ (-1279 (-961 (-572)))) 157) (($ (-1279 (-415 (-961 (-386))))) 127) (($ (-1279 (-415 (-961 (-572))))) 112)) (-3765 (((-1284) $) 105)) (-2940 (((-870) $) 99) (($ (-652 (-336))) 90) (($ (-336)) 97) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 95) (($ (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707)))) 91)))
-(((-80 |#1|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707))))))) (-1188)) (T -80))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707)))) (-5 *1 (-80 *3)) (-14 *3 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707)))))))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 79) (((-3 $ "failed") (-1279 (-322 (-572)))) 68) (((-3 $ "failed") (-1279 (-961 (-386)))) 99) (((-3 $ "failed") (-1279 (-961 (-572)))) 89) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 57) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 44)) (-2204 (($ (-1279 (-322 (-386)))) 75) (($ (-1279 (-322 (-572)))) 64) (($ (-1279 (-961 (-386)))) 95) (($ (-1279 (-961 (-572)))) 85) (($ (-1279 (-415 (-961 (-386))))) 53) (($ (-1279 (-415 (-961 (-572))))) 37)) (-3765 (((-1284) $) 125)) (-2940 (((-870) $) 119) (($ (-652 (-336))) 110) (($ (-336)) 116) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 114) (($ (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707)))) 36)))
-(((-81 |#1|) (-13 (-449) (-624 (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707))))) (-1188)) (T -81))
-NIL
-(-13 (-449) (-624 (-1279 (-346 (-2953) (-2953 (QUOTE X)) (-707)))))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 98) (((-3 $ "failed") (-1279 (-322 (-572)))) 87) (((-3 $ "failed") (-1279 (-961 (-386)))) 118) (((-3 $ "failed") (-1279 (-961 (-572)))) 108) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 76) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 63)) (-2204 (($ (-1279 (-322 (-386)))) 94) (($ (-1279 (-322 (-572)))) 83) (($ (-1279 (-961 (-386)))) 114) (($ (-1279 (-961 (-572)))) 104) (($ (-1279 (-415 (-961 (-386))))) 72) (($ (-1279 (-415 (-961 (-572))))) 56)) (-3765 (((-1284) $) 48)) (-2940 (((-870) $) 42) (($ (-652 (-336))) 32) (($ (-336)) 35) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 38) (($ (-1279 (-346 (-2953 (QUOTE X) (QUOTE -1880)) (-2953) (-707)))) 33)))
-(((-82 |#1|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X) (QUOTE -1880)) (-2953) (-707))))))) (-1188)) (T -82))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953 (QUOTE X) (QUOTE -1880)) (-2953) (-707)))) (-5 *1 (-82 *3)) (-14 *3 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X) (QUOTE -1880)) (-2953) (-707)))))))
-((-1695 (((-3 $ "failed") (-697 (-322 (-386)))) 118) (((-3 $ "failed") (-697 (-322 (-572)))) 107) (((-3 $ "failed") (-697 (-961 (-386)))) 140) (((-3 $ "failed") (-697 (-961 (-572)))) 129) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 96) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 83)) (-2204 (($ (-697 (-322 (-386)))) 114) (($ (-697 (-322 (-572)))) 103) (($ (-697 (-961 (-386)))) 136) (($ (-697 (-961 (-572)))) 125) (($ (-697 (-415 (-961 (-386))))) 92) (($ (-697 (-415 (-961 (-572))))) 76)) (-3765 (((-1284) $) 66)) (-2940 (((-870) $) 53) (($ (-652 (-336))) 60) (($ (-336)) 49) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 58) (($ (-697 (-346 (-2953 (QUOTE X) (QUOTE -1880)) (-2953) (-707)))) 50)))
-(((-83 |#1|) (-13 (-391) (-10 -8 (-15 -2940 ($ (-697 (-346 (-2953 (QUOTE X) (QUOTE -1880)) (-2953) (-707))))))) (-1188)) (T -83))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-697 (-346 (-2953 (QUOTE X) (QUOTE -1880)) (-2953) (-707)))) (-5 *1 (-83 *3)) (-14 *3 (-1188)))))
-(-13 (-391) (-10 -8 (-15 -2940 ($ (-697 (-346 (-2953 (QUOTE X) (QUOTE -1880)) (-2953) (-707)))))))
-((-1695 (((-3 $ "failed") (-697 (-322 (-386)))) 113) (((-3 $ "failed") (-697 (-322 (-572)))) 101) (((-3 $ "failed") (-697 (-961 (-386)))) 135) (((-3 $ "failed") (-697 (-961 (-572)))) 124) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 89) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 75)) (-2204 (($ (-697 (-322 (-386)))) 109) (($ (-697 (-322 (-572)))) 97) (($ (-697 (-961 (-386)))) 131) (($ (-697 (-961 (-572)))) 120) (($ (-697 (-415 (-961 (-386))))) 85) (($ (-697 (-415 (-961 (-572))))) 68)) (-3765 (((-1284) $) 60)) (-2940 (((-870) $) 54) (($ (-652 (-336))) 48) (($ (-336)) 51) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 45) (($ (-697 (-346 (-2953 (QUOTE X)) (-2953) (-707)))) 46)))
-(((-84 |#1|) (-13 (-391) (-10 -8 (-15 -2940 ($ (-697 (-346 (-2953 (QUOTE X)) (-2953) (-707))))))) (-1188)) (T -84))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-697 (-346 (-2953 (QUOTE X)) (-2953) (-707)))) (-5 *1 (-84 *3)) (-14 *3 (-1188)))))
-(-13 (-391) (-10 -8 (-15 -2940 ($ (-697 (-346 (-2953 (QUOTE X)) (-2953) (-707)))))))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 105) (((-3 $ "failed") (-1279 (-322 (-572)))) 94) (((-3 $ "failed") (-1279 (-961 (-386)))) 125) (((-3 $ "failed") (-1279 (-961 (-572)))) 115) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 83) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 70)) (-2204 (($ (-1279 (-322 (-386)))) 101) (($ (-1279 (-322 (-572)))) 90) (($ (-1279 (-961 (-386)))) 121) (($ (-1279 (-961 (-572)))) 111) (($ (-1279 (-415 (-961 (-386))))) 79) (($ (-1279 (-415 (-961 (-572))))) 63)) (-3765 (((-1284) $) 47)) (-2940 (((-870) $) 41) (($ (-652 (-336))) 50) (($ (-336)) 37) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 53) (($ (-1279 (-346 (-2953 (QUOTE X)) (-2953) (-707)))) 38)))
-(((-85 |#1|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X)) (-2953) (-707))))))) (-1188)) (T -85))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953 (QUOTE X)) (-2953) (-707)))) (-5 *1 (-85 *3)) (-14 *3 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X)) (-2953) (-707)))))))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 80) (((-3 $ "failed") (-1279 (-322 (-572)))) 69) (((-3 $ "failed") (-1279 (-961 (-386)))) 100) (((-3 $ "failed") (-1279 (-961 (-572)))) 90) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 58) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 45)) (-2204 (($ (-1279 (-322 (-386)))) 76) (($ (-1279 (-322 (-572)))) 65) (($ (-1279 (-961 (-386)))) 96) (($ (-1279 (-961 (-572)))) 86) (($ (-1279 (-415 (-961 (-386))))) 54) (($ (-1279 (-415 (-961 (-572))))) 38)) (-3765 (((-1284) $) 126)) (-2940 (((-870) $) 120) (($ (-652 (-336))) 111) (($ (-336)) 117) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 115) (($ (-1279 (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707)))) 37)))
-(((-86 |#1|) (-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707))))))) (-1188)) (T -86))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707)))) (-5 *1 (-86 *3)) (-14 *3 (-1188)))))
-(-13 (-449) (-10 -8 (-15 -2940 ($ (-1279 (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707)))))))
-((-1695 (((-3 $ "failed") (-697 (-322 (-386)))) 117) (((-3 $ "failed") (-697 (-322 (-572)))) 105) (((-3 $ "failed") (-697 (-961 (-386)))) 139) (((-3 $ "failed") (-697 (-961 (-572)))) 128) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 93) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 79)) (-2204 (($ (-697 (-322 (-386)))) 113) (($ (-697 (-322 (-572)))) 101) (($ (-697 (-961 (-386)))) 135) (($ (-697 (-961 (-572)))) 124) (($ (-697 (-415 (-961 (-386))))) 89) (($ (-697 (-415 (-961 (-572))))) 72)) (-3765 (((-1284) $) 63)) (-2940 (((-870) $) 57) (($ (-652 (-336))) 47) (($ (-336)) 54) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 52) (($ (-697 (-346 (-2953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2953) (-707)))) 48)))
-(((-87 |#1|) (-13 (-391) (-10 -8 (-15 -2940 ($ (-697 (-346 (-2953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2953) (-707))))))) (-1188)) (T -87))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-697 (-346 (-2953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2953) (-707)))) (-5 *1 (-87 *3)) (-14 *3 (-1188)))))
-(-13 (-391) (-10 -8 (-15 -2940 ($ (-697 (-346 (-2953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2953) (-707)))))))
-((-3765 (((-1284) $) 45)) (-2940 (((-870) $) 39) (($ (-1279 (-707))) 100) (($ (-652 (-336))) 31) (($ (-336)) 36) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 34)))
-(((-88 |#1|) (-448) (-1188)) (T -88))
-NIL
-(-448)
-((-1695 (((-3 $ "failed") (-322 (-386))) 48) (((-3 $ "failed") (-322 (-572))) 53) (((-3 $ "failed") (-961 (-386))) 57) (((-3 $ "failed") (-961 (-572))) 61) (((-3 $ "failed") (-415 (-961 (-386)))) 43) (((-3 $ "failed") (-415 (-961 (-572)))) 36)) (-2204 (($ (-322 (-386))) 46) (($ (-322 (-572))) 51) (($ (-961 (-386))) 55) (($ (-961 (-572))) 59) (($ (-415 (-961 (-386)))) 41) (($ (-415 (-961 (-572)))) 33)) (-3765 (((-1284) $) 91)) (-2940 (((-870) $) 85) (($ (-652 (-336))) 79) (($ (-336)) 82) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 77) (($ (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707))) 32)))
-(((-89 |#1|) (-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707)))))) (-1188)) (T -89))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707))) (-5 *1 (-89 *3)) (-14 *3 (-1188)))))
-(-13 (-404) (-10 -8 (-15 -2940 ($ (-346 (-2953 (QUOTE X)) (-2953 (QUOTE -1880)) (-707))))))
-((-2121 (((-1279 (-697 |#1|)) (-697 |#1|)) 61)) (-2541 (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 (-652 (-930))))) |#2| (-930)) 49)) (-2833 (((-2 (|:| |minor| (-652 (-930))) (|:| -4121 |#2|) (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 |#2|))) |#2| (-930)) 72 (|has| |#1| (-370)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -2541 ((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 (-652 (-930))))) |#2| (-930))) (-15 -2121 ((-1279 (-697 |#1|)) (-697 |#1|))) (IF (|has| |#1| (-370)) (-15 -2833 ((-2 (|:| |minor| (-652 (-930))) (|:| -4121 |#2|) (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 |#2|))) |#2| (-930))) |%noBranch|)) (-564) (-664 |#1|)) (T -90))
-((-2833 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |minor| (-652 (-930))) (|:| -4121 *3) (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-930)) (-4 *3 (-664 *5)))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-697 *4)) (-4 *5 (-664 *4)))) (-2541 (*1 *2 *3 *4) (-12 (-4 *5 (-564)) (-5 *2 (-2 (|:| -3544 (-697 *5)) (|:| |vec| (-1279 (-652 (-930)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-930)) (-4 *3 (-664 *5)))))
-(-10 -7 (-15 -2541 ((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 (-652 (-930))))) |#2| (-930))) (-15 -2121 ((-1279 (-697 |#1|)) (-697 |#1|))) (IF (|has| |#1| (-370)) (-15 -2833 ((-2 (|:| |minor| (-652 (-930))) (|:| -4121 |#2|) (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 |#2|))) |#2| (-930))) |%noBranch|))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2001 ((|#1| $) 40)) (-1631 (((-112) $ (-779)) NIL)) (-3281 (($) NIL T CONST)) (-4004 ((|#1| |#1| $) 35)) (-1491 ((|#1| $) 33)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1651 ((|#1| $) NIL)) (-2036 (($ |#1| $) 36)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3378 ((|#1| $) 34)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 18)) (-1613 (($) 45)) (-4301 (((-779) $) 31)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) 17)) (-2940 (((-870) $) 30 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) NIL)) (-2730 (($ (-652 |#1|)) 42)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 15 (|has| |#1| (-1111)))) (-2860 (((-779) $) 12 (|has| $ (-6 -4454)))))
-(((-91 |#1|) (-13 (-1132 |#1|) (-10 -8 (-15 -2730 ($ (-652 |#1|))))) (-1111)) (T -91))
-((-2730 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-91 *3)))))
-(-13 (-1132 |#1|) (-10 -8 (-15 -2730 ($ (-652 |#1|)))))
-((-2940 (((-870) $) 13) (($ (-1193)) 9) (((-1193) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -2940 ((-1193) |#1|)) (-15 -2940 (|#1| (-1193))) (-15 -2940 ((-870) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -2940 ((-1193) |#1|)) (-15 -2940 (|#1| (-1193))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-1193)) 17) (((-1193) $) 16)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
+((-2197 (((-112) $) 12)) (-1778 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-417 (-574)) $) 25) (($ $ (-417 (-574))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2197 ((-112) |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-47 |#2| |#3|) (-1062) (-802)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2197 ((-112) |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2814 (($ $) 64 (|has| |#1| (-566)))) (-2425 (((-112) $) 66 (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1392 (($ $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2197 (((-112) $) 74)) (-4335 (($ |#1| |#2|) 73)) (-1778 (($ (-1 |#1| |#1|) $) 75)) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1784 ((|#2| $) 76)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3344 ((|#1| $ |#2|) 71)) (-1369 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
+(((-47 |#1| |#2|) (-141) (-1062) (-802)) (T -47))
+((-1370 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) (-1359 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-112)))) (-4335 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) (-3344 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) (-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *2 (-372)))))
+(-13 (-1062) (-111 |t#1| |t#1|) (-10 -8 (-15 -1370 (|t#1| $)) (-15 -1359 ($ $)) (-15 -1784 (|t#2| $)) (-15 -1778 ($ (-1 |t#1| |t#1|) $)) (-15 -2197 ((-112) $)) (-15 -4335 ($ |t#1| |t#2|)) (-15 -1392 ($ $)) (-15 -3344 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-372)) (-15 -3107 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-566)) (-6 (-566)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-6 (-38 (-417 (-574)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2656 (((-654 $) (-1186 $) (-1190)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-963 $)) NIL)) (-1397 (($ (-1186 $) (-1190)) NIL) (($ (-1186 $)) NIL) (($ (-963 $)) NIL)) (-2908 (((-112) $) 9)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-4091 (((-654 (-622 $)) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-4229 (($ $) NIL)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-3072 (((-654 $) (-1186 $) (-1190)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-963 $)) NIL)) (-1413 (($ (-1186 $) (-1190)) NIL) (($ (-1186 $)) NIL) (($ (-963 $)) NIL)) (-1697 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2209 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2785 (($ $ $) NIL)) (-2668 (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL) (((-2 (|:| -1485 (-699 (-417 (-574)))) (|:| |vec| (-1281 (-417 (-574))))) (-699 $) (-1281 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1281 $)) NIL)) (-2868 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-2955 (($ $) NIL) (($ (-654 $)) NIL)) (-1879 (((-654 (-115)) $) NIL)) (-4173 (((-115) (-115)) NIL)) (-3965 (((-112) $) 11)) (-3239 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2965 (((-1138 (-574) (-622 $)) $) NIL)) (-3379 (($ $ (-574)) NIL)) (-1652 (((-1186 $) (-1186 $) (-622 $)) NIL) (((-1186 $) (-1186 $) (-654 (-622 $))) NIL) (($ $ (-622 $)) NIL) (($ $ (-654 (-622 $))) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2405 (((-1186 $) (-622 $)) NIL (|has| $ (-1062)))) (-1778 (($ (-1 $ $) (-622 $)) NIL)) (-3376 (((-3 (-622 $) "failed") $) NIL)) (-2834 (($ (-654 $)) NIL) (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-4164 (((-654 (-622 $)) $) NIL)) (-1775 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-2884 (((-112) $ (-115)) NIL) (((-112) $ (-1190)) NIL)) (-1324 (($ $) NIL)) (-1840 (((-781) $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3923 (((-112) $ $) NIL) (((-112) $ (-1190)) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2625 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1347 (((-781) $) NIL)) (-2200 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3115 (($ $) NIL) (($ $ $) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2977 (((-1138 (-574) (-622 $)) $) NIL)) (-1782 (($ $) NIL (|has| $ (-1062)))) (-1837 (((-388) $) NIL) (((-227) $) NIL) (((-171 (-388)) $) NIL)) (-2943 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1138 (-574) (-622 $))) NIL)) (-4160 (((-781)) NIL T CONST)) (-2031 (($ $) NIL) (($ (-654 $)) NIL)) (-1932 (((-112) (-115)) NIL)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2134 (($) 6 T CONST)) (-2146 (($) 10 T CONST)) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-2982 (((-112) $ $) 13)) (-3107 (($ $ $) NIL)) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) NIL) (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL)))
+(((-48) (-13 (-310) (-27) (-1051 (-574)) (-1051 (-417 (-574))) (-649 (-574)) (-1035) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2943 ($ (-1138 (-574) (-622 $)))) (-15 -2965 ((-1138 (-574) (-622 $)) $)) (-15 -2977 ((-1138 (-574) (-622 $)) $)) (-15 -2868 ($ $)) (-15 -1652 ((-1186 $) (-1186 $) (-622 $))) (-15 -1652 ((-1186 $) (-1186 $) (-654 (-622 $)))) (-15 -1652 ($ $ (-622 $))) (-15 -1652 ($ $ (-654 (-622 $))))))) (T -48))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2868 (*1 *1 *1) (-5 *1 (-48))) (-1652 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) (-1652 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) (-1652 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) (-1652 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48)))))
+(-13 (-310) (-27) (-1051 (-574)) (-1051 (-417 (-574))) (-649 (-574)) (-1035) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2943 ($ (-1138 (-574) (-622 $)))) (-15 -2965 ((-1138 (-574) (-622 $)) $)) (-15 -2977 ((-1138 (-574) (-622 $)) $)) (-15 -2868 ($ $)) (-15 -1652 ((-1186 $) (-1186 $) (-622 $))) (-15 -1652 ((-1186 $) (-1186 $) (-654 (-622 $)))) (-15 -1652 ($ $ (-622 $))) (-15 -1652 ($ $ (-654 (-622 $))))))
+((-2849 (((-112) $ $) NIL)) (-2624 (((-654 (-516)) $) 17)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 7)) (-2045 (((-1195) $) 18)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-49) (-13 (-1113) (-10 -8 (-15 -2624 ((-654 (-516)) $)) (-15 -2045 ((-1195) $))))) (T -49))
+((-2624 (*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-49)))))
+(-13 (-1113) (-10 -8 (-15 -2624 ((-654 (-516)) $)) (-15 -2045 ((-1195) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 85)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-4217 (((-112) $) 30)) (-1697 (((-3 |#1| "failed") $) 33)) (-2209 ((|#1| $) 34)) (-1392 (($ $) 40)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-1370 ((|#1| $) 31)) (-2755 (($ $) 74)) (-2568 (((-1172) $) NIL)) (-3086 (((-112) $) 43)) (-3966 (((-1133) $) NIL)) (-2970 (($ (-781)) 72)) (-1610 (($ (-654 (-574))) 73)) (-1784 (((-781) $) 44)) (-2943 (((-872) $) 91) (($ (-574)) 69) (($ |#1|) 67)) (-3344 ((|#1| $ $) 28)) (-4160 (((-781)) 71 T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 45 T CONST)) (-2146 (($) 17 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 64)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ |#1| $) 58)))
+(((-50 |#1| |#2|) (-13 (-630 |#1|) (-1051 |#1|) (-10 -8 (-15 -1370 (|#1| $)) (-15 -2755 ($ $)) (-15 -1392 ($ $)) (-15 -3344 (|#1| $ $)) (-15 -2970 ($ (-781))) (-15 -1610 ($ (-654 (-574)))) (-15 -3086 ((-112) $)) (-15 -4217 ((-112) $)) (-15 -1784 ((-781) $)) (-15 -1778 ($ (-1 |#1| |#1|) $)))) (-1062) (-654 (-1190))) (T -50))
+((-1370 (*1 *2 *1) (-12 (-4 *2 (-1062)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1190))))) (-2755 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190))))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190))))) (-3344 (*1 *2 *1 *1) (-12 (-4 *2 (-1062)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1190))))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-50 *3 *4)) (-14 *4 (-654 (-1190))))))
+(-13 (-630 |#1|) (-1051 |#1|) (-10 -8 (-15 -1370 (|#1| $)) (-15 -2755 ($ $)) (-15 -1392 ($ $)) (-15 -3344 (|#1| $ $)) (-15 -2970 ($ (-781))) (-15 -1610 ($ (-654 (-574)))) (-15 -3086 ((-112) $)) (-15 -4217 ((-112) $)) (-15 -1784 ((-781) $)) (-15 -1778 ($ (-1 |#1| |#1|) $))))
+((-4217 (((-112) (-52)) 18)) (-1697 (((-3 |#1| "failed") (-52)) 20)) (-2209 ((|#1| (-52)) 21)) (-2943 (((-52) |#1|) 14)))
+(((-51 |#1|) (-10 -7 (-15 -2943 ((-52) |#1|)) (-15 -1697 ((-3 |#1| "failed") (-52))) (-15 -4217 ((-112) (-52))) (-15 -2209 (|#1| (-52)))) (-1231)) (T -51))
+((-2209 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1231)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1231)))) (-1697 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1231)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1231)))))
+(-10 -7 (-15 -2943 ((-52) |#1|)) (-15 -1697 ((-3 |#1| "failed") (-52))) (-15 -4217 ((-112) (-52))) (-15 -2209 (|#1| (-52))))
+((-2849 (((-112) $ $) NIL)) (-1696 (((-784) $) 8)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1870 (((-1117) $) 10)) (-2943 (((-872) $) 15)) (-2923 (((-112) $ $) NIL)) (-3964 (($ (-1117) (-784)) 16)) (-2982 (((-112) $ $) 12)))
+(((-52) (-13 (-1113) (-10 -8 (-15 -3964 ($ (-1117) (-784))) (-15 -1870 ((-1117) $)) (-15 -1696 ((-784) $))))) (T -52))
+((-3964 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-784)) (-5 *1 (-52)))) (-1870 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-52)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52)))))
+(-13 (-1113) (-10 -8 (-15 -3964 ($ (-1117) (-784))) (-15 -1870 ((-1117) $)) (-15 -1696 ((-784) $))))
+((-2901 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2901 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1062) (-658 |#1|) (-862 |#1|)) (T -53))
+((-2901 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1062)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5)))))
+(-10 -7 (-15 -2901 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-4310 ((|#3| |#3| (-654 (-1190))) 44)) (-2329 ((|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3| (-932)) 32) ((|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2329 (|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3|)) (-15 -2329 (|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3| (-932))) (-15 -4310 (|#3| |#3| (-654 (-1190))))) (-1113) (-13 (-1062) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -54))
+((-4310 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2329 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 (-1089 *5 *6 *2))) (-5 *4 (-932)) (-4 *5 (-1113)) (-4 *6 (-13 (-1062) (-897 *5) (-624 (-903 *5)))) (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2329 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-1089 *4 *5 *2))) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -2329 (|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3|)) (-15 -2329 (|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3| (-932))) (-15 -4310 (|#3| |#3| (-654 (-1190)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 14)) (-1697 (((-3 (-781) "failed") $) 34)) (-2209 (((-781) $) NIL)) (-3965 (((-112) $) 16)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) 18)) (-2943 (((-872) $) 23) (($ (-781)) 29)) (-2923 (((-112) $ $) NIL)) (-1523 (($) 11 T CONST)) (-2982 (((-112) $ $) 20)))
+(((-55) (-13 (-1113) (-1051 (-781)) (-10 -8 (-15 -1523 ($) -1707) (-15 -2908 ((-112) $)) (-15 -3965 ((-112) $))))) (T -55))
+((-1523 (*1 *1) (-5 *1 (-55))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
+(-13 (-1113) (-1051 (-781)) (-10 -8 (-15 -1523 ($) -1707) (-15 -2908 ((-112) $)) (-15 -3965 ((-112) $))))
+((-3340 (((-112) $ (-781)) 27)) (-1502 (($ $ (-574) |#3|) 66)) (-4196 (($ $ (-574) |#4|) 70)) (-1468 ((|#3| $ (-574)) 79)) (-1864 (((-654 |#2|) $) 47)) (-3735 (((-112) $ (-781)) 31)) (-3759 (((-112) |#2| $) 74)) (-2446 (($ (-1 |#2| |#2|) $) 55)) (-1778 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2448 (((-112) $ (-781)) 29)) (-1363 (($ $ |#2|) 52)) (-3124 (((-112) (-1 (-112) |#2|) $) 21)) (-2200 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) 35)) (-3975 (((-781) (-1 (-112) |#2|) $) 41) (((-781) |#2| $) 76)) (-3167 (($ $) 51)) (-1988 ((|#4| $ (-574)) 82)) (-2943 (((-872) $) 88)) (-2935 (((-112) (-1 (-112) |#2|) $) 20)) (-2982 (((-112) $ $) 73)) (-2863 (((-781) $) 32)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1778 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4196 (|#1| |#1| (-574) |#4|)) (-15 -1502 (|#1| |#1| (-574) |#3|)) (-15 -1864 ((-654 |#2|) |#1|)) (-15 -1988 (|#4| |#1| (-574))) (-15 -1468 (|#3| |#1| (-574))) (-15 -2200 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574) (-574))) (-15 -1363 (|#1| |#1| |#2|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -3759 ((-112) |#2| |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3340 ((-112) |#1| (-781))) (-15 -3735 ((-112) |#1| (-781))) (-15 -2448 ((-112) |#1| (-781))) (-15 -3167 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1231) (-382 |#2|) (-382 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1778 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4196 (|#1| |#1| (-574) |#4|)) (-15 -1502 (|#1| |#1| (-574) |#3|)) (-15 -1864 ((-654 |#2|) |#1|)) (-15 -1988 (|#4| |#1| (-574))) (-15 -1468 (|#3| |#1| (-574))) (-15 -2200 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574) (-574))) (-15 -1363 (|#1| |#1| |#2|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -3759 ((-112) |#2| |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3340 ((-112) |#1| (-781))) (-15 -3735 ((-112) |#1| (-781))) (-15 -2448 ((-112) |#1| (-781))) (-15 -3167 (|#1| |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) (-574) |#1|) 45)) (-1502 (($ $ (-574) |#2|) 43)) (-4196 (($ $ (-574) |#3|) 42)) (-3670 (($) 7 T CONST)) (-1468 ((|#2| $ (-574)) 47)) (-2462 ((|#1| $ (-574) (-574) |#1|) 44)) (-2385 ((|#1| $ (-574) (-574)) 49)) (-1864 (((-654 |#1|) $) 31)) (-2190 (((-781) $) 52)) (-3790 (($ (-781) (-781) |#1|) 58)) (-2199 (((-781) $) 51)) (-3735 (((-112) $ (-781)) 9)) (-2294 (((-574) $) 56)) (-1373 (((-574) $) 54)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1431 (((-574) $) 55)) (-3889 (((-574) $) 53)) (-2446 (($ (-1 |#1| |#1|) $) 35)) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1363 (($ $ |#1|) 57)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1988 ((|#3| $ (-574)) 46)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-57 |#1| |#2| |#3|) (-141) (-1231) (-382 |t#1|) (-382 |t#1|)) (T -57))
+((-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3790 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1231)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1363 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1231)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2200 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1231)))) (-2385 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1231)))) (-2200 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-1468 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1231)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-1988 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1231)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) (-3143 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-2462 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-1502 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-382 *4)) (-4 *5 (-382 *4)))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1231)) (-4 *5 (-382 *4)) (-4 *3 (-382 *4)))) (-2446 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1778 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1778 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
+(-13 (-499 |t#1|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -3790 ($ (-781) (-781) |t#1|)) (-15 -1363 ($ $ |t#1|)) (-15 -2294 ((-574) $)) (-15 -1431 ((-574) $)) (-15 -1373 ((-574) $)) (-15 -3889 ((-574) $)) (-15 -2190 ((-781) $)) (-15 -2199 ((-781) $)) (-15 -2200 (|t#1| $ (-574) (-574))) (-15 -2385 (|t#1| $ (-574) (-574))) (-15 -2200 (|t#1| $ (-574) (-574) |t#1|)) (-15 -1468 (|t#2| $ (-574))) (-15 -1988 (|t#3| $ (-574))) (-15 -1864 ((-654 |t#1|) $)) (-15 -3143 (|t#1| $ (-574) (-574) |t#1|)) (-15 -2462 (|t#1| $ (-574) (-574) |t#1|)) (-15 -1502 ($ $ (-574) |t#2|)) (-15 -4196 ($ $ (-574) |t#3|)) (-15 -1778 ($ (-1 |t#1| |t#1|) $)) (-15 -2446 ($ (-1 |t#1| |t#1|) $)) (-15 -1778 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1778 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-3318 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2868 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1778 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -3318 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1778 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1231) (-1231)) (T -58))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-58 *5 *2)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -3318 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1778 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2075 (($ (-654 |#1|)) 11) (($ (-781) |#1|) 14)) (-3790 (($ (-781) |#1|) 13)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 10)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2075 ($ (-654 |#1|))) (-15 -2075 ($ (-781) |#1|)))) (-1231)) (T -59))
+((-2075 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-59 *3)))) (-2075 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1231)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2075 ($ (-654 |#1|))) (-15 -2075 ($ (-781) |#1|))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL)) (-1502 (($ $ (-574) (-59 |#1|)) NIL)) (-4196 (($ $ (-574) (-59 |#1|)) NIL)) (-3670 (($) NIL T CONST)) (-1468 (((-59 |#1|) $ (-574)) NIL)) (-2462 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-2190 (((-781) $) NIL)) (-3790 (($ (-781) (-781) |#1|) NIL)) (-2199 (((-781) $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-2294 (((-574) $) NIL)) (-1373 (((-574) $) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1431 (((-574) $) NIL)) (-3889 (((-574) $) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1363 (($ $ |#1|) NIL)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-1988 (((-59 |#1|) $ (-574)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4457))) (-1231)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4457)))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 74) (((-3 $ "failed") (-1281 (-324 (-574)))) 63) (((-3 $ "failed") (-1281 (-963 (-388)))) 94) (((-3 $ "failed") (-1281 (-963 (-574)))) 84) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 52) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 39)) (-2209 (($ (-1281 (-324 (-388)))) 70) (($ (-1281 (-324 (-574)))) 59) (($ (-1281 (-963 (-388)))) 90) (($ (-1281 (-963 (-574)))) 80) (($ (-1281 (-417 (-963 (-388))))) 48) (($ (-1281 (-417 (-963 (-574))))) 32)) (-3768 (((-1286) $) 124)) (-2943 (((-872) $) 118) (($ (-654 (-338))) 103) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 101) (($ (-1281 (-348 (-2956 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2956) (-709)))) 31)))
+(((-61 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2956) (-709))))))) (-1190)) (T -61))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2956) (-709)))) (-5 *1 (-61 *3)) (-14 *3 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2956) (-709)))))))
+((-3768 (((-1286) $) 54) (((-1286)) 55)) (-2943 (((-872) $) 51)))
+(((-62 |#1|) (-13 (-405) (-10 -7 (-15 -3768 ((-1286))))) (-1190)) (T -62))
+((-3768 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-62 *3)) (-14 *3 (-1190)))))
+(-13 (-405) (-10 -7 (-15 -3768 ((-1286)))))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 150) (((-3 $ "failed") (-1281 (-324 (-574)))) 140) (((-3 $ "failed") (-1281 (-963 (-388)))) 170) (((-3 $ "failed") (-1281 (-963 (-574)))) 160) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 129) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 117)) (-2209 (($ (-1281 (-324 (-388)))) 146) (($ (-1281 (-324 (-574)))) 136) (($ (-1281 (-963 (-388)))) 166) (($ (-1281 (-963 (-574)))) 156) (($ (-1281 (-417 (-963 (-388))))) 125) (($ (-1281 (-417 (-963 (-574))))) 110)) (-3768 (((-1286) $) 103)) (-2943 (((-872) $) 97) (($ (-654 (-338))) 30) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 33) (($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))) 95)))
+(((-63 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709))))))) (-1190)) (T -63))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))) (-5 *1 (-63 *3)) (-14 *3 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))))))
+((-1697 (((-3 $ "failed") (-324 (-388))) 41) (((-3 $ "failed") (-324 (-574))) 46) (((-3 $ "failed") (-963 (-388))) 50) (((-3 $ "failed") (-963 (-574))) 54) (((-3 $ "failed") (-417 (-963 (-388)))) 36) (((-3 $ "failed") (-417 (-963 (-574)))) 29)) (-2209 (($ (-324 (-388))) 39) (($ (-324 (-574))) 44) (($ (-963 (-388))) 48) (($ (-963 (-574))) 52) (($ (-417 (-963 (-388)))) 34) (($ (-417 (-963 (-574)))) 26)) (-3768 (((-1286) $) 76)) (-2943 (((-872) $) 69) (($ (-654 (-338))) 61) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 64) (($ (-348 (-2956 (QUOTE X)) (-2956) (-709))) 25)))
+(((-64 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956 (QUOTE X)) (-2956) (-709)))))) (-1190)) (T -64))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956 (QUOTE X)) (-2956) (-709))) (-5 *1 (-64 *3)) (-14 *3 (-1190)))))
+(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956 (QUOTE X)) (-2956) (-709))))))
+((-1697 (((-3 $ "failed") (-699 (-324 (-388)))) 111) (((-3 $ "failed") (-699 (-324 (-574)))) 99) (((-3 $ "failed") (-699 (-963 (-388)))) 133) (((-3 $ "failed") (-699 (-963 (-574)))) 122) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 87) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 73)) (-2209 (($ (-699 (-324 (-388)))) 107) (($ (-699 (-324 (-574)))) 95) (($ (-699 (-963 (-388)))) 129) (($ (-699 (-963 (-574)))) 118) (($ (-699 (-417 (-963 (-388))))) 83) (($ (-699 (-417 (-963 (-574))))) 66)) (-3768 (((-1286) $) 141)) (-2943 (((-872) $) 135) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 32) (($ (-699 (-348 (-2956) (-2956 (QUOTE X) (QUOTE HESS)) (-709)))) 56)))
+(((-65 |#1|) (-13 (-393) (-626 (-699 (-348 (-2956) (-2956 (QUOTE X) (QUOTE HESS)) (-709))))) (-1190)) (T -65))
+NIL
+(-13 (-393) (-626 (-699 (-348 (-2956) (-2956 (QUOTE X) (QUOTE HESS)) (-709)))))
+((-1697 (((-3 $ "failed") (-324 (-388))) 60) (((-3 $ "failed") (-324 (-574))) 65) (((-3 $ "failed") (-963 (-388))) 69) (((-3 $ "failed") (-963 (-574))) 73) (((-3 $ "failed") (-417 (-963 (-388)))) 55) (((-3 $ "failed") (-417 (-963 (-574)))) 48)) (-2209 (($ (-324 (-388))) 58) (($ (-324 (-574))) 63) (($ (-963 (-388))) 67) (($ (-963 (-574))) 71) (($ (-417 (-963 (-388)))) 53) (($ (-417 (-963 (-574)))) 45)) (-3768 (((-1286) $) 82)) (-2943 (((-872) $) 76) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 32) (($ (-348 (-2956) (-2956 (QUOTE XC)) (-709))) 40)))
+(((-66 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE XC)) (-709)))))) (-1190)) (T -66))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956) (-2956 (QUOTE XC)) (-709))) (-5 *1 (-66 *3)) (-14 *3 (-1190)))))
+(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE XC)) (-709))))))
+((-3768 (((-1286) $) 65)) (-2943 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 50) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 55)))
+(((-67 |#1|) (-392) (-1190)) (T -67))
+NIL
+(-392)
+((-3768 (((-1286) $) 66)) (-2943 (((-872) $) 60) (($ (-699 (-709))) 52) (($ (-654 (-338))) 51) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 57)))
+(((-68 |#1|) (-392) (-1190)) (T -68))
+NIL
+(-392)
+((-3768 (((-1286) $) NIL) (((-1286)) 33)) (-2943 (((-872) $) NIL)))
+(((-69 |#1|) (-13 (-405) (-10 -7 (-15 -3768 ((-1286))))) (-1190)) (T -69))
+((-3768 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-69 *3)) (-14 *3 (-1190)))))
+(-13 (-405) (-10 -7 (-15 -3768 ((-1286)))))
+((-3768 (((-1286) $) 75)) (-2943 (((-872) $) 69) (($ (-699 (-709))) 61) (($ (-654 (-338))) 63) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 60)))
+(((-70 |#1|) (-392) (-1190)) (T -70))
+NIL
+(-392)
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 109) (((-3 $ "failed") (-1281 (-324 (-574)))) 98) (((-3 $ "failed") (-1281 (-963 (-388)))) 129) (((-3 $ "failed") (-1281 (-963 (-574)))) 119) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 87) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 74)) (-2209 (($ (-1281 (-324 (-388)))) 105) (($ (-1281 (-324 (-574)))) 94) (($ (-1281 (-963 (-388)))) 125) (($ (-1281 (-963 (-574)))) 115) (($ (-1281 (-417 (-963 (-388))))) 83) (($ (-1281 (-417 (-963 (-574))))) 67)) (-3768 (((-1286) $) 142)) (-2943 (((-872) $) 136) (($ (-654 (-338))) 131) (($ (-338)) 134) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 59) (($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709)))) 60)))
+(((-71 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709))))))) (-1190)) (T -71))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709)))) (-5 *1 (-71 *3)) (-14 *3 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709)))))))
+((-3768 (((-1286) $) 33) (((-1286)) 32)) (-2943 (((-872) $) 36)))
+(((-72 |#1|) (-13 (-405) (-10 -7 (-15 -3768 ((-1286))))) (-1190)) (T -72))
+((-3768 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-72 *3)) (-14 *3 (-1190)))))
+(-13 (-405) (-10 -7 (-15 -3768 ((-1286)))))
+((-3768 (((-1286) $) 65)) (-2943 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 53) (($ (-338)) 56) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 50)))
+(((-73 |#1|) (-392) (-1190)) (T -73))
+NIL
+(-392)
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 127) (((-3 $ "failed") (-1281 (-324 (-574)))) 117) (((-3 $ "failed") (-1281 (-963 (-388)))) 147) (((-3 $ "failed") (-1281 (-963 (-574)))) 137) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 107) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 95)) (-2209 (($ (-1281 (-324 (-388)))) 123) (($ (-1281 (-324 (-574)))) 113) (($ (-1281 (-963 (-388)))) 143) (($ (-1281 (-963 (-574)))) 133) (($ (-1281 (-417 (-963 (-388))))) 103) (($ (-1281 (-417 (-963 (-574))))) 88)) (-3768 (((-1286) $) 80)) (-2943 (((-872) $) 28) (($ (-654 (-338))) 70) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 73) (($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) 67)))
+(((-74 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709))))))) (-1190)) (T -74))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) (-5 *1 (-74 *3)) (-14 *3 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))))))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 132) (((-3 $ "failed") (-1281 (-324 (-574)))) 121) (((-3 $ "failed") (-1281 (-963 (-388)))) 152) (((-3 $ "failed") (-1281 (-963 (-574)))) 142) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 110) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 97)) (-2209 (($ (-1281 (-324 (-388)))) 128) (($ (-1281 (-324 (-574)))) 117) (($ (-1281 (-963 (-388)))) 148) (($ (-1281 (-963 (-574)))) 138) (($ (-1281 (-417 (-963 (-388))))) 106) (($ (-1281 (-417 (-963 (-574))))) 90)) (-3768 (((-1286) $) 82)) (-2943 (((-872) $) 74) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) NIL) (($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE EPS)) (-2956 (QUOTE -1882)) (-709)))) 69)))
+(((-75 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE EPS)) (-2956 (QUOTE -1882)) (-709))))))) (-1190) (-1190) (-1190)) (T -75))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X) (QUOTE EPS)) (-2956 (QUOTE -1882)) (-709)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1190)) (-14 *4 (-1190)) (-14 *5 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE EPS)) (-2956 (QUOTE -1882)) (-709)))))))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 138) (((-3 $ "failed") (-1281 (-324 (-574)))) 127) (((-3 $ "failed") (-1281 (-963 (-388)))) 158) (((-3 $ "failed") (-1281 (-963 (-574)))) 148) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 116) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 103)) (-2209 (($ (-1281 (-324 (-388)))) 134) (($ (-1281 (-324 (-574)))) 123) (($ (-1281 (-963 (-388)))) 154) (($ (-1281 (-963 (-574)))) 144) (($ (-1281 (-417 (-963 (-388))))) 112) (($ (-1281 (-417 (-963 (-574))))) 96)) (-3768 (((-1286) $) 88)) (-2943 (((-872) $) 80) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) NIL) (($ (-1281 (-348 (-2956 (QUOTE EPS)) (-2956 (QUOTE YA) (QUOTE YB)) (-709)))) 75)))
+(((-76 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE EPS)) (-2956 (QUOTE YA) (QUOTE YB)) (-709))))))) (-1190) (-1190) (-1190)) (T -76))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE EPS)) (-2956 (QUOTE YA) (QUOTE YB)) (-709)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1190)) (-14 *4 (-1190)) (-14 *5 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE EPS)) (-2956 (QUOTE YA) (QUOTE YB)) (-709)))))))
+((-1697 (((-3 $ "failed") (-324 (-388))) 83) (((-3 $ "failed") (-324 (-574))) 88) (((-3 $ "failed") (-963 (-388))) 92) (((-3 $ "failed") (-963 (-574))) 96) (((-3 $ "failed") (-417 (-963 (-388)))) 78) (((-3 $ "failed") (-417 (-963 (-574)))) 71)) (-2209 (($ (-324 (-388))) 81) (($ (-324 (-574))) 86) (($ (-963 (-388))) 90) (($ (-963 (-574))) 94) (($ (-417 (-963 (-388)))) 76) (($ (-417 (-963 (-574)))) 68)) (-3768 (((-1286) $) 63)) (-2943 (((-872) $) 51) (($ (-654 (-338))) 47) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 55) (($ (-348 (-2956) (-2956 (QUOTE X)) (-709))) 48)))
+(((-77 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE X)) (-709)))))) (-1190)) (T -77))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956) (-2956 (QUOTE X)) (-709))) (-5 *1 (-77 *3)) (-14 *3 (-1190)))))
+(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE X)) (-709))))))
+((-1697 (((-3 $ "failed") (-324 (-388))) 47) (((-3 $ "failed") (-324 (-574))) 52) (((-3 $ "failed") (-963 (-388))) 56) (((-3 $ "failed") (-963 (-574))) 60) (((-3 $ "failed") (-417 (-963 (-388)))) 42) (((-3 $ "failed") (-417 (-963 (-574)))) 35)) (-2209 (($ (-324 (-388))) 45) (($ (-324 (-574))) 50) (($ (-963 (-388))) 54) (($ (-963 (-574))) 58) (($ (-417 (-963 (-388)))) 40) (($ (-417 (-963 (-574)))) 32)) (-3768 (((-1286) $) 81)) (-2943 (((-872) $) 75) (($ (-654 (-338))) 67) (($ (-338)) 72) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 70) (($ (-348 (-2956) (-2956 (QUOTE X)) (-709))) 31)))
+(((-78 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE X)) (-709)))))) (-1190)) (T -78))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956) (-2956 (QUOTE X)) (-709))) (-5 *1 (-78 *3)) (-14 *3 (-1190)))))
+(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE X)) (-709))))))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 90) (((-3 $ "failed") (-1281 (-324 (-574)))) 79) (((-3 $ "failed") (-1281 (-963 (-388)))) 110) (((-3 $ "failed") (-1281 (-963 (-574)))) 100) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 68) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 55)) (-2209 (($ (-1281 (-324 (-388)))) 86) (($ (-1281 (-324 (-574)))) 75) (($ (-1281 (-963 (-388)))) 106) (($ (-1281 (-963 (-574)))) 96) (($ (-1281 (-417 (-963 (-388))))) 64) (($ (-1281 (-417 (-963 (-574))))) 48)) (-3768 (((-1286) $) 126)) (-2943 (((-872) $) 120) (($ (-654 (-338))) 113) (($ (-338)) 38) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 116) (($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))) 39)))
+(((-79 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709))))))) (-1190)) (T -79))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))) (-5 *1 (-79 *3)) (-14 *3 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))))))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 151) (((-3 $ "failed") (-1281 (-324 (-574)))) 141) (((-3 $ "failed") (-1281 (-963 (-388)))) 171) (((-3 $ "failed") (-1281 (-963 (-574)))) 161) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 131) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 119)) (-2209 (($ (-1281 (-324 (-388)))) 147) (($ (-1281 (-324 (-574)))) 137) (($ (-1281 (-963 (-388)))) 167) (($ (-1281 (-963 (-574)))) 157) (($ (-1281 (-417 (-963 (-388))))) 127) (($ (-1281 (-417 (-963 (-574))))) 112)) (-3768 (((-1286) $) 105)) (-2943 (((-872) $) 99) (($ (-654 (-338))) 90) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 95) (($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) 91)))
+(((-80 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709))))))) (-1190)) (T -80))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) (-5 *1 (-80 *3)) (-14 *3 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))))))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 79) (((-3 $ "failed") (-1281 (-324 (-574)))) 68) (((-3 $ "failed") (-1281 (-963 (-388)))) 99) (((-3 $ "failed") (-1281 (-963 (-574)))) 89) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 57) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 44)) (-2209 (($ (-1281 (-324 (-388)))) 75) (($ (-1281 (-324 (-574)))) 64) (($ (-1281 (-963 (-388)))) 95) (($ (-1281 (-963 (-574)))) 85) (($ (-1281 (-417 (-963 (-388))))) 53) (($ (-1281 (-417 (-963 (-574))))) 37)) (-3768 (((-1286) $) 125)) (-2943 (((-872) $) 119) (($ (-654 (-338))) 110) (($ (-338)) 116) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 114) (($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) 36)))
+(((-81 |#1|) (-13 (-451) (-626 (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709))))) (-1190)) (T -81))
+NIL
+(-13 (-451) (-626 (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 98) (((-3 $ "failed") (-1281 (-324 (-574)))) 87) (((-3 $ "failed") (-1281 (-963 (-388)))) 118) (((-3 $ "failed") (-1281 (-963 (-574)))) 108) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 76) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 63)) (-2209 (($ (-1281 (-324 (-388)))) 94) (($ (-1281 (-324 (-574)))) 83) (($ (-1281 (-963 (-388)))) 114) (($ (-1281 (-963 (-574)))) 104) (($ (-1281 (-417 (-963 (-388))))) 72) (($ (-1281 (-417 (-963 (-574))))) 56)) (-3768 (((-1286) $) 48)) (-2943 (((-872) $) 42) (($ (-654 (-338))) 32) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 38) (($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE -1882)) (-2956) (-709)))) 33)))
+(((-82 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE -1882)) (-2956) (-709))))))) (-1190)) (T -82))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X) (QUOTE -1882)) (-2956) (-709)))) (-5 *1 (-82 *3)) (-14 *3 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE -1882)) (-2956) (-709)))))))
+((-1697 (((-3 $ "failed") (-699 (-324 (-388)))) 118) (((-3 $ "failed") (-699 (-324 (-574)))) 107) (((-3 $ "failed") (-699 (-963 (-388)))) 140) (((-3 $ "failed") (-699 (-963 (-574)))) 129) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 96) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 83)) (-2209 (($ (-699 (-324 (-388)))) 114) (($ (-699 (-324 (-574)))) 103) (($ (-699 (-963 (-388)))) 136) (($ (-699 (-963 (-574)))) 125) (($ (-699 (-417 (-963 (-388))))) 92) (($ (-699 (-417 (-963 (-574))))) 76)) (-3768 (((-1286) $) 66)) (-2943 (((-872) $) 53) (($ (-654 (-338))) 60) (($ (-338)) 49) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 58) (($ (-699 (-348 (-2956 (QUOTE X) (QUOTE -1882)) (-2956) (-709)))) 50)))
+(((-83 |#1|) (-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE X) (QUOTE -1882)) (-2956) (-709))))))) (-1190)) (T -83))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2956 (QUOTE X) (QUOTE -1882)) (-2956) (-709)))) (-5 *1 (-83 *3)) (-14 *3 (-1190)))))
+(-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE X) (QUOTE -1882)) (-2956) (-709)))))))
+((-1697 (((-3 $ "failed") (-699 (-324 (-388)))) 113) (((-3 $ "failed") (-699 (-324 (-574)))) 101) (((-3 $ "failed") (-699 (-963 (-388)))) 135) (((-3 $ "failed") (-699 (-963 (-574)))) 124) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 89) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 75)) (-2209 (($ (-699 (-324 (-388)))) 109) (($ (-699 (-324 (-574)))) 97) (($ (-699 (-963 (-388)))) 131) (($ (-699 (-963 (-574)))) 120) (($ (-699 (-417 (-963 (-388))))) 85) (($ (-699 (-417 (-963 (-574))))) 68)) (-3768 (((-1286) $) 60)) (-2943 (((-872) $) 54) (($ (-654 (-338))) 48) (($ (-338)) 51) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 45) (($ (-699 (-348 (-2956 (QUOTE X)) (-2956) (-709)))) 46)))
+(((-84 |#1|) (-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE X)) (-2956) (-709))))))) (-1190)) (T -84))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2956 (QUOTE X)) (-2956) (-709)))) (-5 *1 (-84 *3)) (-14 *3 (-1190)))))
+(-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE X)) (-2956) (-709)))))))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 105) (((-3 $ "failed") (-1281 (-324 (-574)))) 94) (((-3 $ "failed") (-1281 (-963 (-388)))) 125) (((-3 $ "failed") (-1281 (-963 (-574)))) 115) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 83) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 70)) (-2209 (($ (-1281 (-324 (-388)))) 101) (($ (-1281 (-324 (-574)))) 90) (($ (-1281 (-963 (-388)))) 121) (($ (-1281 (-963 (-574)))) 111) (($ (-1281 (-417 (-963 (-388))))) 79) (($ (-1281 (-417 (-963 (-574))))) 63)) (-3768 (((-1286) $) 47)) (-2943 (((-872) $) 41) (($ (-654 (-338))) 50) (($ (-338)) 37) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 53) (($ (-1281 (-348 (-2956 (QUOTE X)) (-2956) (-709)))) 38)))
+(((-85 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956) (-709))))))) (-1190)) (T -85))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X)) (-2956) (-709)))) (-5 *1 (-85 *3)) (-14 *3 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956) (-709)))))))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 80) (((-3 $ "failed") (-1281 (-324 (-574)))) 69) (((-3 $ "failed") (-1281 (-963 (-388)))) 100) (((-3 $ "failed") (-1281 (-963 (-574)))) 90) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 58) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 45)) (-2209 (($ (-1281 (-324 (-388)))) 76) (($ (-1281 (-324 (-574)))) 65) (($ (-1281 (-963 (-388)))) 96) (($ (-1281 (-963 (-574)))) 86) (($ (-1281 (-417 (-963 (-388))))) 54) (($ (-1281 (-417 (-963 (-574))))) 38)) (-3768 (((-1286) $) 126)) (-2943 (((-872) $) 120) (($ (-654 (-338))) 111) (($ (-338)) 117) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 115) (($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709)))) 37)))
+(((-86 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709))))))) (-1190)) (T -86))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709)))) (-5 *1 (-86 *3)) (-14 *3 (-1190)))))
+(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709)))))))
+((-1697 (((-3 $ "failed") (-699 (-324 (-388)))) 117) (((-3 $ "failed") (-699 (-324 (-574)))) 105) (((-3 $ "failed") (-699 (-963 (-388)))) 139) (((-3 $ "failed") (-699 (-963 (-574)))) 128) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 93) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 79)) (-2209 (($ (-699 (-324 (-388)))) 113) (($ (-699 (-324 (-574)))) 101) (($ (-699 (-963 (-388)))) 135) (($ (-699 (-963 (-574)))) 124) (($ (-699 (-417 (-963 (-388))))) 89) (($ (-699 (-417 (-963 (-574))))) 72)) (-3768 (((-1286) $) 63)) (-2943 (((-872) $) 57) (($ (-654 (-338))) 47) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 52) (($ (-699 (-348 (-2956 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2956) (-709)))) 48)))
+(((-87 |#1|) (-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2956) (-709))))))) (-1190)) (T -87))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2956 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2956) (-709)))) (-5 *1 (-87 *3)) (-14 *3 (-1190)))))
+(-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2956) (-709)))))))
+((-3768 (((-1286) $) 45)) (-2943 (((-872) $) 39) (($ (-1281 (-709))) 100) (($ (-654 (-338))) 31) (($ (-338)) 36) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 34)))
+(((-88 |#1|) (-450) (-1190)) (T -88))
+NIL
+(-450)
+((-1697 (((-3 $ "failed") (-324 (-388))) 48) (((-3 $ "failed") (-324 (-574))) 53) (((-3 $ "failed") (-963 (-388))) 57) (((-3 $ "failed") (-963 (-574))) 61) (((-3 $ "failed") (-417 (-963 (-388)))) 43) (((-3 $ "failed") (-417 (-963 (-574)))) 36)) (-2209 (($ (-324 (-388))) 46) (($ (-324 (-574))) 51) (($ (-963 (-388))) 55) (($ (-963 (-574))) 59) (($ (-417 (-963 (-388)))) 41) (($ (-417 (-963 (-574)))) 33)) (-3768 (((-1286) $) 91)) (-2943 (((-872) $) 85) (($ (-654 (-338))) 79) (($ (-338)) 82) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 77) (($ (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709))) 32)))
+(((-89 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709)))))) (-1190)) (T -89))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709))) (-5 *1 (-89 *3)) (-14 *3 (-1190)))))
+(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1882)) (-709))))))
+((-4371 (((-1281 (-699 |#1|)) (-699 |#1|)) 61)) (-3894 (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 (-654 (-932))))) |#2| (-932)) 49)) (-3685 (((-2 (|:| |minor| (-654 (-932))) (|:| -4122 |#2|) (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 |#2|))) |#2| (-932)) 72 (|has| |#1| (-372)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -3894 ((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 (-654 (-932))))) |#2| (-932))) (-15 -4371 ((-1281 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -3685 ((-2 (|:| |minor| (-654 (-932))) (|:| -4122 |#2|) (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 |#2|))) |#2| (-932))) |%noBranch|)) (-566) (-666 |#1|)) (T -90))
+((-3685 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |minor| (-654 (-932))) (|:| -4122 *3) (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-932)) (-4 *3 (-666 *5)))) (-4371 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-699 *4)) (-4 *5 (-666 *4)))) (-3894 (*1 *2 *3 *4) (-12 (-4 *5 (-566)) (-5 *2 (-2 (|:| -1485 (-699 *5)) (|:| |vec| (-1281 (-654 (-932)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-932)) (-4 *3 (-666 *5)))))
+(-10 -7 (-15 -3894 ((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 (-654 (-932))))) |#2| (-932))) (-15 -4371 ((-1281 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -3685 ((-2 (|:| |minor| (-654 (-932))) (|:| -4122 |#2|) (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 |#2|))) |#2| (-932))) |%noBranch|))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2003 ((|#1| $) 40)) (-3340 (((-112) $ (-781)) NIL)) (-3670 (($) NIL T CONST)) (-3592 ((|#1| |#1| $) 35)) (-4388 ((|#1| $) 33)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2234 ((|#1| $) NIL)) (-1709 (($ |#1| $) 36)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3459 ((|#1| $) 34)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 18)) (-3135 (($) 45)) (-4303 (((-781) $) 31)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 17)) (-2943 (((-872) $) 30 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) NIL)) (-1974 (($ (-654 |#1|)) 42)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 15 (|has| |#1| (-1113)))) (-2863 (((-781) $) 12 (|has| $ (-6 -4456)))))
+(((-91 |#1|) (-13 (-1134 |#1|) (-10 -8 (-15 -1974 ($ (-654 |#1|))))) (-1113)) (T -91))
+((-1974 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-91 *3)))))
+(-13 (-1134 |#1|) (-10 -8 (-15 -1974 ($ (-654 |#1|)))))
+((-2943 (((-872) $) 13) (($ (-1195)) 9) (((-1195) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -2943 ((-1195) |#1|)) (-15 -2943 (|#1| (-1195))) (-15 -2943 ((-872) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -2943 ((-1195) |#1|)) (-15 -2943 (|#1| (-1195))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-1195)) 17) (((-1195) $) 16)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
(((-93) (-141)) (T -93))
NIL
-(-13 (-1111) (-498 (-1193)))
-(((-102) . T) ((-624 #0=(-1193)) . T) ((-621 (-870)) . T) ((-621 #0#) . T) ((-498 #0#) . T) ((-1111) . T))
-((-2320 (($ $) 10)) (-2329 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -2329 (|#1| |#1|)) (-15 -2320 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1113) (-500 (-1195)))
+(((-102) . T) ((-626 #0=(-1195)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1113) . T))
+((-2325 (($ $) 10)) (-2334 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -2334 (|#1| |#1|)) (-15 -2325 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -2329 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)))
-((-2300 (($ $) 11)) (-2282 (($ $) 10)) (-2320 (($ $) 9)) (-2329 (($ $) 8)) (-2310 (($ $) 7)) (-2292 (($ $) 6)))
+(-10 -8 (-15 -2334 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)))
+((-2305 (($ $) 11)) (-2287 (($ $) 10)) (-2325 (($ $) 9)) (-2334 (($ $) 8)) (-2315 (($ $) 7)) (-2297 (($ $) 6)))
(((-95) (-141)) (T -95))
-((-2300 (*1 *1 *1) (-4 *1 (-95))) (-2282 (*1 *1 *1) (-4 *1 (-95))) (-2320 (*1 *1 *1) (-4 *1 (-95))) (-2329 (*1 *1 *1) (-4 *1 (-95))) (-2310 (*1 *1 *1) (-4 *1 (-95))) (-2292 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -2292 ($ $)) (-15 -2310 ($ $)) (-15 -2329 ($ $)) (-15 -2320 ($ $)) (-15 -2282 ($ $)) (-15 -2300 ($ $))))
-((-2846 (((-112) $ $) NIL)) (-2030 (((-1146) $) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-96) (-13 (-1094) (-10 -8 (-15 -2030 ((-1146) $))))) (T -96))
-((-2030 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-96)))))
-(-13 (-1094) (-10 -8 (-15 -2030 ((-1146) $))))
-((-2846 (((-112) $ $) NIL)) (-2177 (((-386) (-1170) (-386)) 46) (((-386) (-1170) (-1170) (-386)) 44)) (-3329 (((-386) (-386)) 35)) (-1314 (((-1284)) 37)) (-4347 (((-1170) $) NIL)) (-4174 (((-386) (-1170) (-1170)) 50) (((-386) (-1170)) 52)) (-3964 (((-1131) $) NIL)) (-3021 (((-386) (-1170) (-1170)) 51)) (-3845 (((-386) (-1170) (-1170)) 53) (((-386) (-1170)) 54)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-97) (-13 (-1111) (-10 -7 (-15 -4174 ((-386) (-1170) (-1170))) (-15 -4174 ((-386) (-1170))) (-15 -3845 ((-386) (-1170) (-1170))) (-15 -3845 ((-386) (-1170))) (-15 -3021 ((-386) (-1170) (-1170))) (-15 -1314 ((-1284))) (-15 -3329 ((-386) (-386))) (-15 -2177 ((-386) (-1170) (-386))) (-15 -2177 ((-386) (-1170) (-1170) (-386))) (-6 -4454)))) (T -97))
-((-4174 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-3845 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-3021 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-1314 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-97)))) (-3329 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-97)))) (-2177 (*1 *2 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-1170)) (-5 *1 (-97)))) (-2177 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-1170)) (-5 *1 (-97)))))
-(-13 (-1111) (-10 -7 (-15 -4174 ((-386) (-1170) (-1170))) (-15 -4174 ((-386) (-1170))) (-15 -3845 ((-386) (-1170) (-1170))) (-15 -3845 ((-386) (-1170))) (-15 -3021 ((-386) (-1170) (-1170))) (-15 -1314 ((-1284))) (-15 -3329 ((-386) (-386))) (-15 -2177 ((-386) (-1170) (-386))) (-15 -2177 ((-386) (-1170) (-1170) (-386))) (-6 -4454)))
+((-2305 (*1 *1 *1) (-4 *1 (-95))) (-2287 (*1 *1 *1) (-4 *1 (-95))) (-2325 (*1 *1 *1) (-4 *1 (-95))) (-2334 (*1 *1 *1) (-4 *1 (-95))) (-2315 (*1 *1 *1) (-4 *1 (-95))) (-2297 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -2297 ($ $)) (-15 -2315 ($ $)) (-15 -2334 ($ $)) (-15 -2325 ($ $)) (-15 -2287 ($ $)) (-15 -2305 ($ $))))
+((-2849 (((-112) $ $) NIL)) (-2032 (((-1148) $) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-96) (-13 (-1096) (-10 -8 (-15 -2032 ((-1148) $))))) (T -96))
+((-2032 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-96)))))
+(-13 (-1096) (-10 -8 (-15 -2032 ((-1148) $))))
+((-2849 (((-112) $ $) NIL)) (-3688 (((-388) (-1172) (-388)) 46) (((-388) (-1172) (-1172) (-388)) 44)) (-2937 (((-388) (-388)) 35)) (-1479 (((-1286)) 37)) (-2568 (((-1172) $) NIL)) (-1490 (((-388) (-1172) (-1172)) 50) (((-388) (-1172)) 52)) (-3966 (((-1133) $) NIL)) (-2939 (((-388) (-1172) (-1172)) 51)) (-1316 (((-388) (-1172) (-1172)) 53) (((-388) (-1172)) 54)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-97) (-13 (-1113) (-10 -7 (-15 -1490 ((-388) (-1172) (-1172))) (-15 -1490 ((-388) (-1172))) (-15 -1316 ((-388) (-1172) (-1172))) (-15 -1316 ((-388) (-1172))) (-15 -2939 ((-388) (-1172) (-1172))) (-15 -1479 ((-1286))) (-15 -2937 ((-388) (-388))) (-15 -3688 ((-388) (-1172) (-388))) (-15 -3688 ((-388) (-1172) (-1172) (-388))) (-6 -4456)))) (T -97))
+((-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1316 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-2939 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1479 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-97)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97)))) (-3688 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1172)) (-5 *1 (-97)))) (-3688 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1172)) (-5 *1 (-97)))))
+(-13 (-1113) (-10 -7 (-15 -1490 ((-388) (-1172) (-1172))) (-15 -1490 ((-388) (-1172))) (-15 -1316 ((-388) (-1172) (-1172))) (-15 -1316 ((-388) (-1172))) (-15 -2939 ((-388) (-1172) (-1172))) (-15 -1479 ((-1286))) (-15 -2937 ((-388) (-388))) (-15 -3688 ((-388) (-1172) (-388))) (-15 -3688 ((-388) (-1172) (-1172) (-388))) (-6 -4456)))
NIL
(((-98) (-141)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4454) (-6 (-4456 "*")) (-6 -4455) (-6 -4451) (-6 -4449) (-6 -4448) (-6 -4447) (-6 -4452) (-6 -4446) (-6 -4445) (-6 -4444) (-6 -4443) (-6 -4442) (-6 -4450) (-6 -4453) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4441)))
-((-2846 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-2980 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-572))) 24)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 16)) (-3964 (((-1131) $) NIL)) (-2196 ((|#1| $ |#1|) 13)) (-1516 (($ $ $) NIL)) (-4326 (($ $ $) NIL)) (-2940 (((-870) $) 22)) (-4379 (((-112) $ $) NIL)) (-2143 (($) 8 T CONST)) (-2978 (((-112) $ $) 10)) (-3106 (($ $ $) NIL)) (** (($ $ (-930)) 32) (($ $ (-779)) NIL) (($ $ (-572)) 18)) (* (($ $ $) 33)))
-(((-99 |#1|) (-13 (-481) (-292 |#1| |#1|) (-10 -8 (-15 -2980 ($ (-1 |#1| |#1|))) (-15 -2980 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2980 ($ (-1 |#1| |#1| (-572)))))) (-1060)) (T -99))
-((-2980 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-99 *3)))) (-2980 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-99 *3)))) (-2980 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-572))) (-4 *3 (-1060)) (-5 *1 (-99 *3)))))
-(-13 (-481) (-292 |#1| |#1|) (-10 -8 (-15 -2980 ($ (-1 |#1| |#1|))) (-15 -2980 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2980 ($ (-1 |#1| |#1| (-572))))))
-((-3609 (((-426 |#2|) |#2| (-652 |#2|)) 10) (((-426 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -3609 ((-426 |#2|) |#2| |#2|)) (-15 -3609 ((-426 |#2|) |#2| (-652 |#2|)))) (-13 (-460) (-148)) (-1255 |#1|)) (T -100))
-((-3609 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-13 (-460) (-148))) (-5 *2 (-426 *3)) (-5 *1 (-100 *5 *3)))) (-3609 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-460) (-148))) (-5 *2 (-426 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -3609 ((-426 |#2|) |#2| |#2|)) (-15 -3609 ((-426 |#2|) |#2| (-652 |#2|))))
-((-2846 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -2846 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -2846 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2978 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4456) (-6 (-4458 "*")) (-6 -4457) (-6 -4453) (-6 -4451) (-6 -4450) (-6 -4449) (-6 -4454) (-6 -4448) (-6 -4447) (-6 -4446) (-6 -4445) (-6 -4444) (-6 -4452) (-6 -4455) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4443)))
+((-2849 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-2513 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-574))) 24)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 16)) (-3966 (((-1133) $) NIL)) (-2200 ((|#1| $ |#1|) 13)) (-1514 (($ $ $) NIL)) (-3647 (($ $ $) NIL)) (-2943 (((-872) $) 22)) (-2923 (((-112) $ $) NIL)) (-2146 (($) 8 T CONST)) (-2982 (((-112) $ $) 10)) (-3107 (($ $ $) NIL)) (** (($ $ (-932)) 32) (($ $ (-781)) NIL) (($ $ (-574)) 18)) (* (($ $ $) 33)))
+(((-99 |#1|) (-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -2513 ($ (-1 |#1| |#1|))) (-15 -2513 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2513 ($ (-1 |#1| |#1| (-574)))))) (-1062)) (T -99))
+((-2513 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-99 *3)))) (-2513 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-99 *3)))) (-2513 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1062)) (-5 *1 (-99 *3)))))
+(-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -2513 ($ (-1 |#1| |#1|))) (-15 -2513 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2513 ($ (-1 |#1| |#1| (-574))))))
+((-4028 (((-428 |#2|) |#2| (-654 |#2|)) 10) (((-428 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -4028 ((-428 |#2|) |#2| |#2|)) (-15 -4028 ((-428 |#2|) |#2| (-654 |#2|)))) (-13 (-462) (-148)) (-1257 |#1|)) (T -100))
+((-4028 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3)))) (-4028 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -4028 ((-428 |#2|) |#2| |#2|)) (-15 -4028 ((-428 |#2|) |#2| (-654 |#2|))))
+((-2849 (((-112) $ $) 10)))
+(((-101 |#1|) (-10 -8 (-15 -2849 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2849 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2982 (((-112) $ $) 6)))
(((-102) (-141)) (T -102))
-((-2846 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2978 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -2978 ((-112) $ $)) (-15 -2846 ((-112) $ $))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2506 ((|#1| $ |#1|) 24 (|has| $ (-6 -4455)))) (-3833 (($ $ $) NIL (|has| $ (-6 -4455)))) (-2913 (($ $ $) NIL (|has| $ (-6 -4455)))) (-1935 (($ $ (-652 |#1|)) 30)) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-3901 (($ $) 12)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1582 (($ $ |#1| $) 32)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3872 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-3450 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-652 |#1|) |#1| |#1| |#1|)) 49)) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3888 (($ $) 11)) (-3505 (((-652 |#1|) $) NIL)) (-2087 (((-112) $) 13)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 9)) (-1613 (($) 31)) (-2196 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2157 (((-572) $ $) NIL)) (-3315 (((-112) $) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1495 (($ (-779) |#1|) 33)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -1495 ($ (-779) |#1|)) (-15 -1935 ($ $ (-652 |#1|))) (-15 -3872 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3872 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3450 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3450 ($ $ |#1| (-1 (-652 |#1|) |#1| |#1| |#1|))))) (-1111)) (T -103))
-((-1495 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-103 *3)) (-4 *3 (-1111)))) (-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-103 *3)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1111)))) (-3872 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-103 *3)))) (-3450 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1111)) (-5 *1 (-103 *2)))) (-3450 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-652 *2) *2 *2 *2)) (-4 *2 (-1111)) (-5 *1 (-103 *2)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -1495 ($ (-779) |#1|)) (-15 -1935 ($ $ (-652 |#1|))) (-15 -3872 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3872 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3450 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3450 ($ $ |#1| (-1 (-652 |#1|) |#1| |#1| |#1|)))))
-((-2746 ((|#3| |#2| |#2|) 34)) (-2607 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4456 "*"))))) (-2951 ((|#3| |#2| |#2|) 36)) (-2970 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4456 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2746 (|#3| |#2| |#2|)) (-15 -2951 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4456 "*"))) (PROGN (-15 -2607 (|#1| |#2| |#2|)) (-15 -2970 (|#1| |#2|))) |%noBranch|)) (-1060) (-1255 |#1|) (-695 |#1| |#4| |#5|) (-380 |#1|) (-380 |#1|)) (T -104))
-((-2970 (*1 *2 *3) (-12 (|has| *2 (-6 (-4456 "*"))) (-4 *5 (-380 *2)) (-4 *6 (-380 *2)) (-4 *2 (-1060)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1255 *2)) (-4 *4 (-695 *2 *5 *6)))) (-2607 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4456 "*"))) (-4 *5 (-380 *2)) (-4 *6 (-380 *2)) (-4 *2 (-1060)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1255 *2)) (-4 *4 (-695 *2 *5 *6)))) (-2951 (*1 *2 *3 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-695 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1255 *4)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)))) (-2746 (*1 *2 *3 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-695 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1255 *4)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)))))
-(-10 -7 (-15 -2746 (|#3| |#2| |#2|)) (-15 -2951 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4456 "*"))) (PROGN (-15 -2607 (|#1| |#2| |#2|)) (-15 -2970 (|#1| |#2|))) |%noBranch|))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4367 (((-652 (-1188))) 37)) (-1581 (((-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227))) (|:| |singularities| (-1168 (-227)))) (-1188)) 39)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-105) (-13 (-1111) (-10 -7 (-15 -4367 ((-652 (-1188)))) (-15 -1581 ((-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227))) (|:| |singularities| (-1168 (-227)))) (-1188))) (-6 -4454)))) (T -105))
-((-4367 (*1 *2) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-105)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227))) (|:| |singularities| (-1168 (-227))))) (-5 *1 (-105)))))
-(-13 (-1111) (-10 -7 (-15 -4367 ((-652 (-1188)))) (-15 -1581 ((-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227))) (|:| |singularities| (-1168 (-227)))) (-1188))) (-6 -4454)))
-((-2022 (($ (-652 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -2022 (|#1| (-652 |#2|)))) (-107 |#2|) (-1229)) (T -106))
-NIL
-(-10 -8 (-15 -2022 (|#1| (-652 |#2|))))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-3281 (($) 7 T CONST)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 43)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-107 |#1|) (-141) (-1229)) (T -107))
-((-2022 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-107 *3)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))) (-2036 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))))
-(-13 (-497 |t#1|) (-10 -8 (-6 -4455) (-15 -2022 ($ (-652 |t#1|))) (-15 -3378 (|t#1| $)) (-15 -2036 ($ |t#1| $)) (-15 -1651 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 (((-572) $) NIL (|has| (-572) (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL (|has| (-572) (-828)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-572) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-572) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-572) (-1049 (-572))))) (-2204 (((-572) $) NIL) (((-1188) $) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-572) (-1049 (-572)))) (((-572) $) NIL (|has| (-572) (-1049 (-572))))) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-697 (-572)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-572) (-553)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3074 (((-112) $) NIL (|has| (-572) (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-572) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-572) (-895 (-386))))) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL)) (-2963 (((-572) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| (-572) (-1163)))) (-1623 (((-112) $) NIL (|has| (-572) (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| (-572) (-858)))) (-1776 (($ (-1 (-572) (-572)) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-572) (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL (|has| (-572) (-313))) (((-415 (-572)) $) NIL)) (-3462 (((-572) $) NIL (|has| (-572) (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2641 (($ $ (-652 (-572)) (-652 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-572) (-572)) NIL (|has| (-572) (-315 (-572)))) (($ $ (-300 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-300 (-572)))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-1188)) (-652 (-572))) NIL (|has| (-572) (-522 (-1188) (-572)))) (($ $ (-1188) (-572)) NIL (|has| (-572) (-522 (-1188) (-572))))) (-3847 (((-779) $) NIL)) (-2196 (($ $ (-572)) NIL (|has| (-572) (-292 (-572) (-572))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-1520 (($ $) NIL)) (-2974 (((-572) $) NIL)) (-1835 (((-901 (-572)) $) NIL (|has| (-572) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-572) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-572) (-622 (-544)))) (((-386) $) NIL (|has| (-572) (-1033))) (((-227) $) NIL (|has| (-572) (-1033)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-572) (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 8) (($ (-572)) NIL) (($ (-1188)) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL) (((-1015 2) $) 10)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| (-572) (-918))) (|has| (-572) (-146))))) (-4249 (((-779)) NIL T CONST)) (-3614 (((-572) $) NIL (|has| (-572) (-553)))) (-1854 (($ (-415 (-572))) 9)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2700 (($ $) NIL (|has| (-572) (-828)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3039 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-572) (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3003 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3106 (($ $ $) NIL) (($ (-572) (-572)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-572) $) NIL) (($ $ (-572)) NIL)))
-(((-108) (-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 2)) (-10 -8 (-15 -2340 ((-415 (-572)) $)) (-15 -1854 ($ (-415 (-572))))))) (T -108))
-((-2340 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-108)))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-108)))))
-(-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 2)) (-10 -8 (-15 -2340 ((-415 (-572)) $)) (-15 -1854 ($ (-415 (-572))))))
-((-2786 (((-652 (-974)) $) 13)) (-2030 (((-514) $) 9)) (-2940 (((-870) $) 20)) (-1831 (($ (-514) (-652 (-974))) 15)))
-(((-109) (-13 (-621 (-870)) (-10 -8 (-15 -2030 ((-514) $)) (-15 -2786 ((-652 (-974)) $)) (-15 -1831 ($ (-514) (-652 (-974))))))) (T -109))
-((-2030 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-109)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-652 (-974))) (-5 *1 (-109)))) (-1831 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-652 (-974))) (-5 *1 (-109)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2030 ((-514) $)) (-15 -2786 ((-652 (-974)) $)) (-15 -1831 ($ (-514) (-652 (-974))))))
-((-2846 (((-112) $ $) NIL)) (-2874 (($ $) NIL)) (-2107 (($ $ $) NIL)) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) $) NIL (|has| (-112) (-858))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3314 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-858)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2766 (($ $) NIL (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-3140 (((-112) $ (-1246 (-572)) (-112)) NIL (|has| $ (-6 -4455))) (((-112) $ (-572) (-112)) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-3332 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2865 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2453 (((-112) $ (-572) (-112)) NIL (|has| $ (-6 -4455)))) (-2380 (((-112) $ (-572)) NIL)) (-1439 (((-572) (-112) $ (-572)) NIL (|has| (-112) (-1111))) (((-572) (-112) $) NIL (|has| (-112) (-1111))) (((-572) (-1 (-112) (-112)) $) NIL)) (-1863 (((-652 (-112)) $) NIL (|has| $ (-6 -4454)))) (-2096 (($ $ $) NIL)) (-2074 (($ $) NIL)) (-2168 (($ $ $) NIL)) (-3787 (($ (-779) (-112)) 10)) (-3792 (($ $ $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL)) (-1767 (($ $ $) NIL (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1344 (((-652 (-112)) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL)) (-2442 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1593 (($ $ $ (-572)) NIL) (($ (-112) $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 (((-112) $) NIL (|has| (-572) (-858)))) (-3770 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2476 (($ $ (-112)) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-112)) (-652 (-112))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-300 (-112))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-652 (-300 (-112)))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-4110 (((-652 (-112)) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 (($ $ (-1246 (-572))) NIL) (((-112) $ (-572)) NIL) (((-112) $ (-572) (-112)) NIL)) (-2835 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3973 (((-779) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111)))) (((-779) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-112) (-622 (-544))))) (-2953 (($ (-652 (-112))) NIL)) (-4155 (($ (-652 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2940 (((-870) $) NIL)) (-4221 (($ (-779) (-112)) 11)) (-4379 (((-112) $ $) NIL)) (-4380 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-2085 (($ $ $) NIL)) (-2922 (($ $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)) (-2909 (($ $ $) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-110) (-13 (-124) (-10 -8 (-15 -4221 ($ (-779) (-112)))))) (T -110))
-((-4221 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-124) (-10 -8 (-15 -4221 ($ (-779) (-112)))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
-(((-111 |#1| |#2|) (-141) (-1060) (-1060)) (T -111))
-NIL
-(-13 (-656 |t#1|) (-1067 |t#2|) (-10 -7 (-6 -4449) (-6 -4448)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2874 (($ $) 10)) (-2107 (($ $ $) 15)) (-1561 (($) 7 T CONST)) (-4160 (($ $) 6)) (-1486 (((-779)) 24)) (-2815 (($) 32)) (-2096 (($ $ $) 13)) (-2074 (($ $) 9)) (-2168 (($ $ $) 16)) (-3792 (($ $ $) 17)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) 30)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) 28)) (-3243 (($ $ $) 20)) (-3964 (((-1131) $) NIL)) (-2882 (($) 8 T CONST)) (-4058 (($ $ $) 21)) (-1835 (((-544) $) 34)) (-2940 (((-870) $) 36)) (-4379 (((-112) $ $) NIL)) (-2085 (($ $ $) 11)) (-2922 (($ $ $) 14)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 19)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 22)) (-2909 (($ $ $) 12)))
-(((-112) (-13 (-852) (-669) (-978) (-622 (-544)) (-10 -8 (-15 -2107 ($ $ $)) (-15 -3792 ($ $ $)) (-15 -2168 ($ $ $)) (-15 -4160 ($ $))))) (T -112))
-((-2107 (*1 *1 *1 *1) (-5 *1 (-112))) (-3792 (*1 *1 *1 *1) (-5 *1 (-112))) (-2168 (*1 *1 *1 *1) (-5 *1 (-112))) (-4160 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-852) (-669) (-978) (-622 (-544)) (-10 -8 (-15 -2107 ($ $ $)) (-15 -3792 ($ $ $)) (-15 -2168 ($ $ $)) (-15 -4160 ($ $))))
-((-2096 (($ $ $) 6)) (-2074 (($ $) 8)) (-2085 (($ $ $) 7)))
+((-2849 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2982 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -2982 ((-112) $ $)) (-15 -2849 ((-112) $ $))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1630 ((|#1| $ |#1|) 24 (|has| $ (-6 -4457)))) (-4333 (($ $ $) NIL (|has| $ (-6 -4457)))) (-3186 (($ $ $) NIL (|has| $ (-6 -4457)))) (-3273 (($ $ (-654 |#1|)) 30)) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-3904 (($ $) 12)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1583 (($ $ |#1| $) 32)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1589 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-1714 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|)) 49)) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-3891 (($ $) 11)) (-3509 (((-654 |#1|) $) NIL)) (-2173 (((-112) $) 13)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 9)) (-3135 (($) 31)) (-2200 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1556 (((-574) $ $) NIL)) (-4023 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-4429 (($ (-781) |#1|) 33)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -4429 ($ (-781) |#1|)) (-15 -3273 ($ $ (-654 |#1|))) (-15 -1589 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1589 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1714 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1714 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) (-1113)) (T -103))
+((-4429 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1113)))) (-3273 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-103 *3)))) (-1589 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1113)))) (-1589 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-103 *3)))) (-1714 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1113)) (-5 *1 (-103 *2)))) (-1714 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1113)) (-5 *1 (-103 *2)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -4429 ($ (-781) |#1|)) (-15 -3273 ($ $ (-654 |#1|))) (-15 -1589 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1589 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1714 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1714 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|)))))
+((-2149 ((|#3| |#2| |#2|) 34)) (-3348 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4458 "*"))))) (-3554 ((|#3| |#2| |#2|) 36)) (-2417 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4458 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2149 (|#3| |#2| |#2|)) (-15 -3554 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4458 "*"))) (PROGN (-15 -3348 (|#1| |#2| |#2|)) (-15 -2417 (|#1| |#2|))) |%noBranch|)) (-1062) (-1257 |#1|) (-697 |#1| |#4| |#5|) (-382 |#1|) (-382 |#1|)) (T -104))
+((-2417 (*1 *2 *3) (-12 (|has| *2 (-6 (-4458 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1062)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1257 *2)) (-4 *4 (-697 *2 *5 *6)))) (-3348 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4458 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1062)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1257 *2)) (-4 *4 (-697 *2 *5 *6)))) (-3554 (*1 *2 *3 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1257 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)))) (-2149 (*1 *2 *3 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1257 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)))))
+(-10 -7 (-15 -2149 (|#3| |#2| |#2|)) (-15 -3554 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4458 "*"))) (PROGN (-15 -3348 (|#1| |#2| |#2|)) (-15 -2417 (|#1| |#2|))) |%noBranch|))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2774 (((-654 (-1190))) 37)) (-4081 (((-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227))) (|:| |singularities| (-1170 (-227)))) (-1190)) 39)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-105) (-13 (-1113) (-10 -7 (-15 -2774 ((-654 (-1190)))) (-15 -4081 ((-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227))) (|:| |singularities| (-1170 (-227)))) (-1190))) (-6 -4456)))) (T -105))
+((-2774 (*1 *2) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-105)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227))) (|:| |singularities| (-1170 (-227))))) (-5 *1 (-105)))))
+(-13 (-1113) (-10 -7 (-15 -2774 ((-654 (-1190)))) (-15 -4081 ((-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227))) (|:| |singularities| (-1170 (-227)))) (-1190))) (-6 -4456)))
+((-2817 (($ (-654 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -2817 (|#1| (-654 |#2|)))) (-107 |#2|) (-1231)) (T -106))
+NIL
+(-10 -8 (-15 -2817 (|#1| (-654 |#2|))))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-3670 (($) 7 T CONST)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 43)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-107 |#1|) (-141) (-1231)) (T -107))
+((-2817 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-107 *3)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231)))) (-1709 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231)))))
+(-13 (-499 |t#1|) (-10 -8 (-6 -4457) (-15 -2817 ($ (-654 |t#1|))) (-15 -3459 (|t#1| $)) (-15 -1709 ($ |t#1| $)) (-15 -2234 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 (((-574) $) NIL (|has| (-574) (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL (|has| (-574) (-830)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-574) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1051 (-574))))) (-2209 (((-574) $) NIL) (((-1190) $) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-574) (-1051 (-574)))) (((-574) $) NIL (|has| (-574) (-1051 (-574))))) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-574) (-555)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3434 (((-112) $) NIL (|has| (-574) (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL)) (-2965 (((-574) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| (-574) (-1165)))) (-3244 (((-112) $) NIL (|has| (-574) (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| (-574) (-860)))) (-1778 (($ (-1 (-574) (-574)) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-574) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-1846 (((-574) $) NIL (|has| (-574) (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1190)) (-654 (-574))) NIL (|has| (-574) (-524 (-1190) (-574)))) (($ $ (-1190) (-574)) NIL (|has| (-574) (-524 (-1190) (-574))))) (-1347 (((-781) $) NIL)) (-2200 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3520 (($ $) NIL)) (-2977 (((-574) $) NIL)) (-1837 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1035))) (((-227) $) NIL (|has| (-574) (-1035)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1190)) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL) (((-1017 2) $) 10)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-574) (-920))) (|has| (-574) (-146))))) (-4160 (((-781)) NIL T CONST)) (-4078 (((-574) $) NIL (|has| (-574) (-555)))) (-3673 (($ (-417 (-574))) 9)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2946 (($ $) NIL (|has| (-574) (-830)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3005 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3107 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL)))
+(((-108) (-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 2)) (-10 -8 (-15 -2595 ((-417 (-574)) $)) (-15 -3673 ($ (-417 (-574))))))) (T -108))
+((-2595 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))))
+(-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 2)) (-10 -8 (-15 -2595 ((-417 (-574)) $)) (-15 -3673 ($ (-417 (-574))))))
+((-2791 (((-654 (-976)) $) 13)) (-2032 (((-516) $) 9)) (-2943 (((-872) $) 20)) (-1509 (($ (-516) (-654 (-976))) 15)))
+(((-109) (-13 (-623 (-872)) (-10 -8 (-15 -2032 ((-516) $)) (-15 -2791 ((-654 (-976)) $)) (-15 -1509 ($ (-516) (-654 (-976))))))) (T -109))
+((-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-654 (-976))) (-5 *1 (-109)))) (-1509 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-976))) (-5 *1 (-109)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2032 ((-516) $)) (-15 -2791 ((-654 (-976)) $)) (-15 -1509 ($ (-516) (-654 (-976))))))
+((-2849 (((-112) $ $) NIL)) (-2877 (($ $) NIL)) (-2110 (($ $ $) NIL)) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4010 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4457)))) (-2771 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-3143 (((-112) $ (-1248 (-574)) (-112)) NIL (|has| $ (-6 -4457))) (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-3335 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2868 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2462 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4457)))) (-2385 (((-112) $ (-574)) NIL)) (-1441 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1113))) (((-574) (-112) $) NIL (|has| (-112) (-1113))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1864 (((-654 (-112)) $) NIL (|has| $ (-6 -4456)))) (-2099 (($ $ $) NIL)) (-2077 (($ $) NIL)) (-3602 (($ $ $) NIL)) (-3790 (($ (-781) (-112)) 10)) (-2026 (($ $ $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL)) (-2130 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1712 (((-654 (-112)) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL)) (-2446 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-1595 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-112) $) NIL (|has| (-574) (-860)))) (-1836 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1363 (($ $ (-112)) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2121 (((-654 (-112)) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 (($ $ (-1248 (-574))) NIL) (((-112) $ (-574)) NIL) (((-112) $ (-574) (-112)) NIL)) (-2837 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-3975 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2956 (($ (-654 (-112))) NIL)) (-4157 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2943 (((-872) $) NIL)) (-3909 (($ (-781) (-112)) 11)) (-2923 (((-112) $ $) NIL)) (-2935 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2088 (($ $ $) NIL)) (-2925 (($ $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-2911 (($ $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-110) (-13 (-124) (-10 -8 (-15 -3909 ($ (-781) (-112)))))) (T -110))
+((-3909 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-124) (-10 -8 (-15 -3909 ($ (-781) (-112)))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
+(((-111 |#1| |#2|) (-141) (-1062) (-1062)) (T -111))
+NIL
+(-13 (-658 |t#1|) (-1069 |t#2|) (-10 -7 (-6 -4451) (-6 -4450)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2877 (($ $) 10)) (-2110 (($ $ $) 15)) (-1562 (($) 7 T CONST)) (-4163 (($ $) 6)) (-1487 (((-781)) 24)) (-2820 (($) 32)) (-2099 (($ $ $) 13)) (-2077 (($ $) 9)) (-3602 (($ $ $) 16)) (-2026 (($ $ $) 17)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) 30)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) 28)) (-1346 (($ $ $) 20)) (-3966 (((-1133) $) NIL)) (-2885 (($) 8 T CONST)) (-2866 (($ $ $) 21)) (-1837 (((-546) $) 34)) (-2943 (((-872) $) 36)) (-2923 (((-112) $ $) NIL)) (-2088 (($ $ $) 11)) (-2925 (($ $ $) 14)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 19)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 22)) (-2911 (($ $ $) 12)))
+(((-112) (-13 (-854) (-671) (-980) (-624 (-546)) (-10 -8 (-15 -2110 ($ $ $)) (-15 -2026 ($ $ $)) (-15 -3602 ($ $ $)) (-15 -4163 ($ $))))) (T -112))
+((-2110 (*1 *1 *1 *1) (-5 *1 (-112))) (-2026 (*1 *1 *1 *1) (-5 *1 (-112))) (-3602 (*1 *1 *1 *1) (-5 *1 (-112))) (-4163 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-854) (-671) (-980) (-624 (-546)) (-10 -8 (-15 -2110 ($ $ $)) (-15 -2026 ($ $ $)) (-15 -3602 ($ $ $)) (-15 -4163 ($ $))))
+((-2099 (($ $ $) 6)) (-2077 (($ $) 8)) (-2088 (($ $ $) 7)))
(((-113) (-141)) (T -113))
-((-2074 (*1 *1 *1) (-4 *1 (-113))) (-2085 (*1 *1 *1 *1) (-4 *1 (-113))) (-2096 (*1 *1 *1 *1) (-4 *1 (-113))))
-(-13 (-1229) (-10 -8 (-15 -2074 ($ $)) (-15 -2085 ($ $ $)) (-15 -2096 ($ $ $))))
-(((-1229) . T))
-((-1583 (((-3 (-1 |#1| (-652 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-652 |#1|))) 11) (((-3 |#1| "failed") (-115) (-652 |#1|)) 25)) (-1834 (((-3 (-652 (-1 |#1| (-652 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-652 (-1 |#1| (-652 |#1|)))) 30)) (-1947 (((-115) |#1|) 63)) (-1991 (((-3 |#1| "failed") (-115)) 58)))
-(((-114 |#1|) (-10 -7 (-15 -1583 ((-3 |#1| "failed") (-115) (-652 |#1|))) (-15 -1583 ((-115) (-115) (-1 |#1| (-652 |#1|)))) (-15 -1583 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1583 ((-3 (-1 |#1| (-652 |#1|)) "failed") (-115))) (-15 -1834 ((-115) (-115) (-652 (-1 |#1| (-652 |#1|))))) (-15 -1834 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1834 ((-3 (-652 (-1 |#1| (-652 |#1|))) "failed") (-115))) (-15 -1947 ((-115) |#1|)) (-15 -1991 ((-3 |#1| "failed") (-115)))) (-1111)) (T -114))
-((-1991 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1111)))) (-1947 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1111)))) (-1834 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-652 (-1 *4 (-652 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1111)))) (-1834 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1111)) (-5 *1 (-114 *4)))) (-1834 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 (-1 *4 (-652 *4)))) (-4 *4 (-1111)) (-5 *1 (-114 *4)))) (-1583 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-652 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1111)))) (-1583 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1111)) (-5 *1 (-114 *4)))) (-1583 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-652 *4))) (-4 *4 (-1111)) (-5 *1 (-114 *4)))) (-1583 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-652 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1111)))))
-(-10 -7 (-15 -1583 ((-3 |#1| "failed") (-115) (-652 |#1|))) (-15 -1583 ((-115) (-115) (-1 |#1| (-652 |#1|)))) (-15 -1583 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1583 ((-3 (-1 |#1| (-652 |#1|)) "failed") (-115))) (-15 -1834 ((-115) (-115) (-652 (-1 |#1| (-652 |#1|))))) (-15 -1834 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1834 ((-3 (-652 (-1 |#1| (-652 |#1|))) "failed") (-115))) (-15 -1947 ((-115) |#1|)) (-15 -1991 ((-3 |#1| "failed") (-115))))
-((-2846 (((-112) $ $) NIL)) (-3298 (((-779) $) 91) (($ $ (-779)) 37)) (-1587 (((-112) $) 41)) (-1351 (($ $ (-1170) (-782)) 58) (($ $ (-514) (-782)) 33)) (-2675 (($ $ (-45 (-1170) (-782))) 16)) (-4405 (((-3 (-782) "failed") $ (-1170)) 27) (((-699 (-782)) $ (-514)) 32)) (-2786 (((-45 (-1170) (-782)) $) 15)) (-4171 (($ (-1188)) 20) (($ (-1188) (-779)) 23) (($ (-1188) (-55)) 24)) (-2684 (((-112) $) 39)) (-2422 (((-112) $) 43)) (-2030 (((-1188) $) 8)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-2695 (((-112) $ (-1188)) 11)) (-1450 (($ $ (-1 (-544) (-652 (-544)))) 64) (((-3 (-1 (-544) (-652 (-544))) "failed") $) 71)) (-3964 (((-1131) $) NIL)) (-2526 (((-112) $ (-514)) 36)) (-3824 (($ $ (-1 (-112) $ $)) 45)) (-1401 (((-3 (-1 (-870) (-652 (-870))) "failed") $) 69) (($ $ (-1 (-870) (-652 (-870)))) 51) (($ $ (-1 (-870) (-870))) 53)) (-4345 (($ $ (-1170)) 55) (($ $ (-514)) 56)) (-3164 (($ $) 77)) (-3584 (($ $ (-1 (-112) $ $)) 46)) (-2940 (((-870) $) 60)) (-4379 (((-112) $ $) NIL)) (-2108 (($ $ (-514)) 34)) (-2863 (((-55) $) 72)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 89)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 103)))
-(((-115) (-13 (-858) (-843 (-1188)) (-10 -8 (-15 -2786 ((-45 (-1170) (-782)) $)) (-15 -3164 ($ $)) (-15 -4171 ($ (-1188))) (-15 -4171 ($ (-1188) (-779))) (-15 -4171 ($ (-1188) (-55))) (-15 -2684 ((-112) $)) (-15 -1587 ((-112) $)) (-15 -2422 ((-112) $)) (-15 -3298 ((-779) $)) (-15 -3298 ($ $ (-779))) (-15 -3824 ($ $ (-1 (-112) $ $))) (-15 -3584 ($ $ (-1 (-112) $ $))) (-15 -1401 ((-3 (-1 (-870) (-652 (-870))) "failed") $)) (-15 -1401 ($ $ (-1 (-870) (-652 (-870))))) (-15 -1401 ($ $ (-1 (-870) (-870)))) (-15 -1450 ($ $ (-1 (-544) (-652 (-544))))) (-15 -1450 ((-3 (-1 (-544) (-652 (-544))) "failed") $)) (-15 -2526 ((-112) $ (-514))) (-15 -2108 ($ $ (-514))) (-15 -4345 ($ $ (-1170))) (-15 -4345 ($ $ (-514))) (-15 -4405 ((-3 (-782) "failed") $ (-1170))) (-15 -4405 ((-699 (-782)) $ (-514))) (-15 -1351 ($ $ (-1170) (-782))) (-15 -1351 ($ $ (-514) (-782))) (-15 -2675 ($ $ (-45 (-1170) (-782))))))) (T -115))
-((-2786 (*1 *2 *1) (-12 (-5 *2 (-45 (-1170) (-782))) (-5 *1 (-115)))) (-3164 (*1 *1 *1) (-5 *1 (-115))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-115)))) (-4171 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *1 (-115)))) (-4171 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-115)))) (-3298 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-115)))) (-3824 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1401 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-870) (-652 (-870)))) (-5 *1 (-115)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-870) (-652 (-870)))) (-5 *1 (-115)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-870) (-870))) (-5 *1 (-115)))) (-1450 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-544) (-652 (-544)))) (-5 *1 (-115)))) (-1450 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-544) (-652 (-544)))) (-5 *1 (-115)))) (-2526 (*1 *2 *1 *3) (-12 (-5 *3 (-514)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2108 (*1 *1 *1 *2) (-12 (-5 *2 (-514)) (-5 *1 (-115)))) (-4345 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-115)))) (-4345 (*1 *1 *1 *2) (-12 (-5 *2 (-514)) (-5 *1 (-115)))) (-4405 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1170)) (-5 *2 (-782)) (-5 *1 (-115)))) (-4405 (*1 *2 *1 *3) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-782))) (-5 *1 (-115)))) (-1351 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-782)) (-5 *1 (-115)))) (-1351 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-782)) (-5 *1 (-115)))) (-2675 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1170) (-782))) (-5 *1 (-115)))))
-(-13 (-858) (-843 (-1188)) (-10 -8 (-15 -2786 ((-45 (-1170) (-782)) $)) (-15 -3164 ($ $)) (-15 -4171 ($ (-1188))) (-15 -4171 ($ (-1188) (-779))) (-15 -4171 ($ (-1188) (-55))) (-15 -2684 ((-112) $)) (-15 -1587 ((-112) $)) (-15 -2422 ((-112) $)) (-15 -3298 ((-779) $)) (-15 -3298 ($ $ (-779))) (-15 -3824 ($ $ (-1 (-112) $ $))) (-15 -3584 ($ $ (-1 (-112) $ $))) (-15 -1401 ((-3 (-1 (-870) (-652 (-870))) "failed") $)) (-15 -1401 ($ $ (-1 (-870) (-652 (-870))))) (-15 -1401 ($ $ (-1 (-870) (-870)))) (-15 -1450 ($ $ (-1 (-544) (-652 (-544))))) (-15 -1450 ((-3 (-1 (-544) (-652 (-544))) "failed") $)) (-15 -2526 ((-112) $ (-514))) (-15 -2108 ($ $ (-514))) (-15 -4345 ($ $ (-1170))) (-15 -4345 ($ $ (-514))) (-15 -4405 ((-3 (-782) "failed") $ (-1170))) (-15 -4405 ((-699 (-782)) $ (-514))) (-15 -1351 ($ $ (-1170) (-782))) (-15 -1351 ($ $ (-514) (-782))) (-15 -2675 ($ $ (-45 (-1170) (-782))))))
-((-3887 (((-572) |#2|) 41)))
-(((-116 |#1| |#2|) (-10 -7 (-15 -3887 ((-572) |#2|))) (-13 (-370) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -116))
-((-3887 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-1049 (-415 *2)))) (-5 *2 (-572)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -3887 ((-572) |#2|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-4227 (($ $ (-572)) NIL)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-4394 (($ (-1184 (-572)) (-572)) NIL)) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1850 (($ $) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-2956 (((-779) $) NIL)) (-1886 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1929 (((-572)) NIL)) (-3637 (((-572) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2772 (($ $ (-572)) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2189 (((-1168 (-572)) $) NIL)) (-2590 (($ $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-3548 (((-572) $ (-572)) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL)))
-(((-117 |#1|) (-877 |#1|) (-572)) (T -117))
-NIL
-(-877 |#1|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-117 |#1|) (-918)))) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-117 |#1|) (-918)))) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL (|has| (-117 |#1|) (-828)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-117 |#1|) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-117 |#1|) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-117 |#1|) (-1049 (-572))))) (-2204 (((-117 |#1|) $) NIL) (((-1188) $) NIL (|has| (-117 |#1|) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-117 |#1|) (-1049 (-572)))) (((-572) $) NIL (|has| (-117 |#1|) (-1049 (-572))))) (-3560 (($ $) NIL) (($ (-572) $) NIL)) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| (-117 |#1|) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-117 |#1|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-117 |#1|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-117 |#1|))) (|:| |vec| (-1279 (-117 |#1|)))) (-697 $) (-1279 $)) NIL) (((-697 (-117 |#1|)) (-697 $)) NIL) (((-697 (-117 |#1|)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-117 |#1|) (-553)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3074 (((-112) $) NIL (|has| (-117 |#1|) (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-117 |#1|) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-117 |#1|) (-895 (-386))))) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL)) (-2963 (((-117 |#1|) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1163)))) (-1623 (((-112) $) NIL (|has| (-117 |#1|) (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL (|has| (-117 |#1|) (-858)))) (-2427 (($ $ $) NIL (|has| (-117 |#1|) (-858)))) (-1776 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-117 |#1|) (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL (|has| (-117 |#1|) (-313)))) (-3462 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-117 |#1|) (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-117 |#1|) (-918)))) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2641 (($ $ (-652 (-117 |#1|)) (-652 (-117 |#1|))) NIL (|has| (-117 |#1|) (-315 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-315 (-117 |#1|)))) (($ $ (-300 (-117 |#1|))) NIL (|has| (-117 |#1|) (-315 (-117 |#1|)))) (($ $ (-652 (-300 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-315 (-117 |#1|)))) (($ $ (-652 (-1188)) (-652 (-117 |#1|))) NIL (|has| (-117 |#1|) (-522 (-1188) (-117 |#1|)))) (($ $ (-1188) (-117 |#1|)) NIL (|has| (-117 |#1|) (-522 (-1188) (-117 |#1|))))) (-3847 (((-779) $) NIL)) (-2196 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-292 (-117 |#1|) (-117 |#1|))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-779)) NIL (|has| (-117 |#1|) (-237))) (($ $ (-1188)) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-779)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-1520 (($ $) NIL)) (-2974 (((-117 |#1|) $) NIL)) (-1835 (((-901 (-572)) $) NIL (|has| (-117 |#1|) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-117 |#1|) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-117 |#1|) (-622 (-544)))) (((-386) $) NIL (|has| (-117 |#1|) (-1033))) (((-227) $) NIL (|has| (-117 |#1|) (-1033)))) (-3147 (((-176 (-415 (-572))) $) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-117 |#1|)) NIL) (($ (-1188)) NIL (|has| (-117 |#1|) (-1049 (-1188))))) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-918))) (|has| (-117 |#1|) (-146))))) (-4249 (((-779)) NIL T CONST)) (-3614 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-553)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-3548 (((-415 (-572)) $ (-572)) NIL)) (-2700 (($ $) NIL (|has| (-117 |#1|) (-828)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-779)) NIL (|has| (-117 |#1|) (-237))) (($ $ (-1188)) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-779)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3039 (((-112) $ $) NIL (|has| (-117 |#1|) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-117 |#1|) (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| (-117 |#1|) (-858)))) (-3003 (((-112) $ $) NIL (|has| (-117 |#1|) (-858)))) (-3106 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL)))
-(((-118 |#1|) (-13 (-1003 (-117 |#1|)) (-10 -8 (-15 -3548 ((-415 (-572)) $ (-572))) (-15 -3147 ((-176 (-415 (-572))) $)) (-15 -3560 ($ $)) (-15 -3560 ($ (-572) $)))) (-572)) (T -118))
-((-3548 (*1 *2 *1 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-572)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-118 *3)) (-14 *3 (-572)))) (-3560 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-572)))) (-3560 (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-118 *3)) (-14 *3 *2))))
-(-13 (-1003 (-117 |#1|)) (-10 -8 (-15 -3548 ((-415 (-572)) $ (-572))) (-15 -3147 ((-176 (-415 (-572))) $)) (-15 -3560 ($ $)) (-15 -3560 ($ (-572) $))))
-((-3140 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2089 (((-652 $) $) 31)) (-1463 (((-112) $ $) 36)) (-1864 (((-112) |#2| $) 40)) (-3505 (((-652 |#2|) $) 25)) (-2087 (((-112) $) 18)) (-2196 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3315 (((-112) $) 57)) (-2940 (((-870) $) 47)) (-2065 (((-652 $) $) 32)) (-2978 (((-112) $ $) 38)) (-2860 (((-779) $) 50)))
-(((-119 |#1| |#2|) (-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -3140 (|#1| |#1| "right" |#1|)) (-15 -3140 (|#1| |#1| "left" |#1|)) (-15 -2196 (|#1| |#1| "right")) (-15 -2196 (|#1| |#1| "left")) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -1463 ((-112) |#1| |#1|)) (-15 -3505 ((-652 |#2|) |#1|)) (-15 -3315 ((-112) |#1|)) (-15 -2196 (|#2| |#1| "value")) (-15 -2087 ((-112) |#1|)) (-15 -2089 ((-652 |#1|) |#1|)) (-15 -2065 ((-652 |#1|) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -1864 ((-112) |#2| |#1|)) (-15 -2860 ((-779) |#1|))) (-120 |#2|) (-1229)) (T -119))
-NIL
-(-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -3140 (|#1| |#1| "right" |#1|)) (-15 -3140 (|#1| |#1| "left" |#1|)) (-15 -2196 (|#1| |#1| "right")) (-15 -2196 (|#1| |#1| "left")) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -1463 ((-112) |#1| |#1|)) (-15 -3505 ((-652 |#2|) |#1|)) (-15 -3315 ((-112) |#1|)) (-15 -2196 (|#2| |#1| "value")) (-15 -2087 ((-112) |#1|)) (-15 -2089 ((-652 |#1|) |#1|)) (-15 -2065 ((-652 |#1|) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -1864 ((-112) |#2| |#1|)) (-15 -2860 ((-779) |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3080 ((|#1| $) 49)) (-1631 (((-112) $ (-779)) 8)) (-2506 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-3833 (($ $ $) 53 (|has| $ (-6 -4455)))) (-2913 (($ $ $) 55 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) (($ $ "left" $) 56 (|has| $ (-6 -4455))) (($ $ "right" $) 54 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-3281 (($) 7 T CONST)) (-3901 (($ $) 58)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 51)) (-1463 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-3888 (($ $) 60)) (-3505 (((-652 |#1|) $) 46)) (-2087 (((-112) $) 50)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2157 (((-572) $ $) 45)) (-3315 (((-112) $) 47)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) 52)) (-2804 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-120 |#1|) (-141) (-1229)) (T -120))
-((-3888 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1229)))) (-2196 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1229)))) (-3901 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1229)))) (-2196 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1229)))) (-3140 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4455)) (-4 *1 (-120 *3)) (-4 *3 (-1229)))) (-2913 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-120 *2)) (-4 *2 (-1229)))) (-3140 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4455)) (-4 *1 (-120 *3)) (-4 *3 (-1229)))) (-3833 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-120 *2)) (-4 *2 (-1229)))))
-(-13 (-1021 |t#1|) (-10 -8 (-15 -3888 ($ $)) (-15 -2196 ($ $ "left")) (-15 -3901 ($ $)) (-15 -2196 ($ $ "right")) (IF (|has| $ (-6 -4455)) (PROGN (-15 -3140 ($ $ "left" $)) (-15 -2913 ($ $ $)) (-15 -3140 ($ $ "right" $)) (-15 -3833 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-2511 (((-112) |#1|) 29)) (-3154 (((-779) (-779)) 28) (((-779)) 27)) (-2949 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-121 |#1|) (-10 -7 (-15 -2949 ((-112) |#1|)) (-15 -2949 ((-112) |#1| (-112))) (-15 -3154 ((-779))) (-15 -3154 ((-779) (-779))) (-15 -2511 ((-112) |#1|))) (-1255 (-572))) (T -121))
-((-2511 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))) (-3154 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))) (-2949 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))) (-2949 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))))
-(-10 -7 (-15 -2949 ((-112) |#1|)) (-15 -2949 ((-112) |#1| (-112))) (-15 -3154 ((-779))) (-15 -3154 ((-779) (-779))) (-15 -2511 ((-112) |#1|)))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) 18)) (-3861 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1631 (((-112) $ (-779)) NIL)) (-2506 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3833 (($ $ $) 21 (|has| $ (-6 -4455)))) (-2913 (($ $ $) 23 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-3901 (($ $) 20)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1582 (($ $ |#1| $) 27)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3888 (($ $) 22)) (-3505 (((-652 |#1|) $) NIL)) (-2087 (((-112) $) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3265 (($ |#1| $) 28)) (-2036 (($ |#1| $) 15)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 17)) (-1613 (($) 11)) (-2196 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2157 (((-572) $ $) NIL)) (-3315 (((-112) $) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4407 (($ (-652 |#1|)) 16)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -4407 ($ (-652 |#1|))) (-15 -2036 ($ |#1| $)) (-15 -3265 ($ |#1| $)) (-15 -3861 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-858)) (T -122))
-((-4407 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-122 *3)))) (-2036 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-858)))) (-3265 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-858)))) (-3861 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-858)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -4407 ($ (-652 |#1|))) (-15 -2036 ($ |#1| $)) (-15 -3265 ($ |#1| $)) (-15 -3861 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2874 (($ $) 13)) (-2074 (($ $) 11)) (-2168 (($ $ $) 23)) (-3792 (($ $ $) 21)) (-2922 (($ $ $) 19)) (-2909 (($ $ $) 17)))
-(((-123 |#1|) (-10 -8 (-15 -2168 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2074 (|#1| |#1|))) (-124)) (T -123))
-NIL
-(-10 -8 (-15 -2168 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2074 (|#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2874 (($ $) 103)) (-2107 (($ $ $) 28)) (-3176 (((-1284) $ (-572) (-572)) 66 (|has| $ (-6 -4455)))) (-2852 (((-112) $) 98 (|has| (-112) (-858))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3314 (($ $) 102 (-12 (|has| (-112) (-858)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4455)))) (-2766 (($ $) 97 (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1631 (((-112) $ (-779)) 37)) (-3140 (((-112) $ (-1246 (-572)) (-112)) 88 (|has| $ (-6 -4455))) (((-112) $ (-572) (-112)) 54 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4454)))) (-3281 (($) 38 T CONST)) (-3133 (($ $) 100 (|has| $ (-6 -4455)))) (-4421 (($ $) 90)) (-2086 (($ $) 68 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4454))) (($ (-112) $) 69 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454))))) (-2865 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454))))) (-2453 (((-112) $ (-572) (-112)) 53 (|has| $ (-6 -4455)))) (-2380 (((-112) $ (-572)) 55)) (-1439 (((-572) (-112) $ (-572)) 95 (|has| (-112) (-1111))) (((-572) (-112) $) 94 (|has| (-112) (-1111))) (((-572) (-1 (-112) (-112)) $) 93)) (-1863 (((-652 (-112)) $) 45 (|has| $ (-6 -4454)))) (-2096 (($ $ $) 108)) (-2074 (($ $) 106)) (-2168 (($ $ $) 29)) (-3787 (($ (-779) (-112)) 78)) (-3792 (($ $ $) 30)) (-1861 (((-112) $ (-779)) 36)) (-3175 (((-572) $) 63 (|has| (-572) (-858)))) (-3654 (($ $ $) 14)) (-1767 (($ $ $) 96 (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1344 (((-652 (-112)) $) 46 (|has| $ (-6 -4454)))) (-1864 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 62 (|has| (-572) (-858)))) (-2427 (($ $ $) 15)) (-2442 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-1985 (((-112) $ (-779)) 35)) (-4347 (((-1170) $) 10)) (-1593 (($ $ $ (-572)) 87) (($ (-112) $ (-572)) 86)) (-1986 (((-652 (-572)) $) 60)) (-1370 (((-112) (-572) $) 59)) (-3964 (((-1131) $) 11)) (-2912 (((-112) $) 64 (|has| (-572) (-858)))) (-3770 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2476 (($ $ (-112)) 65 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-112)) (-652 (-112))) 52 (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-300 (-112))) 50 (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-652 (-300 (-112)))) 49 (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))))) (-3776 (((-112) $ $) 31)) (-3821 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-4110 (((-652 (-112)) $) 58)) (-1841 (((-112) $) 34)) (-1613 (($) 33)) (-2196 (($ $ (-1246 (-572))) 77) (((-112) $ (-572)) 57) (((-112) $ (-572) (-112)) 56)) (-2835 (($ $ (-1246 (-572))) 85) (($ $ (-572)) 84)) (-3973 (((-779) (-112) $) 47 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4454)))) (-4095 (($ $ $ (-572)) 99 (|has| $ (-6 -4455)))) (-3164 (($ $) 32)) (-1835 (((-544) $) 67 (|has| (-112) (-622 (-544))))) (-2953 (($ (-652 (-112))) 76)) (-4155 (($ (-652 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-4380 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4454)))) (-2085 (($ $ $) 107)) (-2922 (($ $ $) 105)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)) (-2909 (($ $ $) 104)) (-2860 (((-779) $) 39 (|has| $ (-6 -4454)))))
+((-2077 (*1 *1 *1) (-4 *1 (-113))) (-2088 (*1 *1 *1 *1) (-4 *1 (-113))) (-2099 (*1 *1 *1 *1) (-4 *1 (-113))))
+(-13 (-1231) (-10 -8 (-15 -2077 ($ $)) (-15 -2088 ($ $ $)) (-15 -2099 ($ $ $))))
+(((-1231) . T))
+((-2848 (((-3 (-1 |#1| (-654 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-654 |#1|))) 11) (((-3 |#1| "failed") (-115) (-654 |#1|)) 25)) (-1540 (((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-654 (-1 |#1| (-654 |#1|)))) 30)) (-3413 (((-115) |#1|) 63)) (-2516 (((-3 |#1| "failed") (-115)) 58)))
+(((-114 |#1|) (-10 -7 (-15 -2848 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -2848 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -2848 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2848 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -1540 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -1540 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1540 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -3413 ((-115) |#1|)) (-15 -2516 ((-3 |#1| "failed") (-115)))) (-1113)) (T -114))
+((-2516 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1113)))) (-3413 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1113)))) (-1540 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1113)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1113)) (-5 *1 (-114 *4)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1113)) (-5 *1 (-114 *4)))) (-2848 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1113)))) (-2848 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1113)) (-5 *1 (-114 *4)))) (-2848 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1113)) (-5 *1 (-114 *4)))) (-2848 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1113)))))
+(-10 -7 (-15 -2848 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -2848 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -2848 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2848 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -1540 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -1540 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1540 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -3413 ((-115) |#1|)) (-15 -2516 ((-3 |#1| "failed") (-115))))
+((-2849 (((-112) $ $) NIL)) (-3848 (((-781) $) 91) (($ $ (-781)) 37)) (-2887 (((-112) $) 41)) (-1771 (($ $ (-1172) (-784)) 58) (($ $ (-516) (-784)) 33)) (-2673 (($ $ (-45 (-1172) (-784))) 16)) (-1923 (((-3 (-784) "failed") $ (-1172)) 27) (((-701 (-784)) $ (-516)) 32)) (-2791 (((-45 (-1172) (-784)) $) 15)) (-4173 (($ (-1190)) 20) (($ (-1190) (-781)) 23) (($ (-1190) (-55)) 24)) (-2761 (((-112) $) 39)) (-2063 (((-112) $) 43)) (-2032 (((-1190) $) 8)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-2884 (((-112) $ (-1190)) 11)) (-1452 (($ $ (-1 (-546) (-654 (-546)))) 64) (((-3 (-1 (-546) (-654 (-546))) "failed") $) 71)) (-3966 (((-1133) $) NIL)) (-3760 (((-112) $ (-516)) 36)) (-4247 (($ $ (-1 (-112) $ $)) 45)) (-1403 (((-3 (-1 (-872) (-654 (-872))) "failed") $) 69) (($ $ (-1 (-872) (-654 (-872)))) 51) (($ $ (-1 (-872) (-872))) 53)) (-2544 (($ $ (-1172)) 55) (($ $ (-516)) 56)) (-3167 (($ $) 77)) (-3824 (($ $ (-1 (-112) $ $)) 46)) (-2943 (((-872) $) 60)) (-2923 (((-112) $ $) NIL)) (-2113 (($ $ (-516)) 34)) (-3944 (((-55) $) 72)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 89)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 103)))
+(((-115) (-13 (-860) (-845 (-1190)) (-10 -8 (-15 -2791 ((-45 (-1172) (-784)) $)) (-15 -3167 ($ $)) (-15 -4173 ($ (-1190))) (-15 -4173 ($ (-1190) (-781))) (-15 -4173 ($ (-1190) (-55))) (-15 -2761 ((-112) $)) (-15 -2887 ((-112) $)) (-15 -2063 ((-112) $)) (-15 -3848 ((-781) $)) (-15 -3848 ($ $ (-781))) (-15 -4247 ($ $ (-1 (-112) $ $))) (-15 -3824 ($ $ (-1 (-112) $ $))) (-15 -1403 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1403 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1403 ($ $ (-1 (-872) (-872)))) (-15 -1452 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1452 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -3760 ((-112) $ (-516))) (-15 -2113 ($ $ (-516))) (-15 -2544 ($ $ (-1172))) (-15 -2544 ($ $ (-516))) (-15 -1923 ((-3 (-784) "failed") $ (-1172))) (-15 -1923 ((-701 (-784)) $ (-516))) (-15 -1771 ($ $ (-1172) (-784))) (-15 -1771 ($ $ (-516) (-784))) (-15 -2673 ($ $ (-45 (-1172) (-784))))))) (T -115))
+((-2791 (*1 *2 *1) (-12 (-5 *2 (-45 (-1172) (-784))) (-5 *1 (-115)))) (-3167 (*1 *1 *1) (-5 *1 (-115))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-115)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *1 (-115)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-4247 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3824 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1403 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1403 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1403 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115)))) (-1452 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-1452 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-115)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-1923 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1172)) (-5 *2 (-784)) (-5 *1 (-115)))) (-1923 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) (-1771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-784)) (-5 *1 (-115)))) (-1771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) (-2673 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1172) (-784))) (-5 *1 (-115)))))
+(-13 (-860) (-845 (-1190)) (-10 -8 (-15 -2791 ((-45 (-1172) (-784)) $)) (-15 -3167 ($ $)) (-15 -4173 ($ (-1190))) (-15 -4173 ($ (-1190) (-781))) (-15 -4173 ($ (-1190) (-55))) (-15 -2761 ((-112) $)) (-15 -2887 ((-112) $)) (-15 -2063 ((-112) $)) (-15 -3848 ((-781) $)) (-15 -3848 ($ $ (-781))) (-15 -4247 ($ $ (-1 (-112) $ $))) (-15 -3824 ($ $ (-1 (-112) $ $))) (-15 -1403 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1403 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1403 ($ $ (-1 (-872) (-872)))) (-15 -1452 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1452 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -3760 ((-112) $ (-516))) (-15 -2113 ($ $ (-516))) (-15 -2544 ($ $ (-1172))) (-15 -2544 ($ $ (-516))) (-15 -1923 ((-3 (-784) "failed") $ (-1172))) (-15 -1923 ((-701 (-784)) $ (-516))) (-15 -1771 ($ $ (-1172) (-784))) (-15 -1771 ($ $ (-516) (-784))) (-15 -2673 ($ $ (-45 (-1172) (-784))))))
+((-3690 (((-574) |#2|) 41)))
+(((-116 |#1| |#2|) (-10 -7 (-15 -3690 ((-574) |#2|))) (-13 (-372) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -116))
+((-3690 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-1051 (-417 *2)))) (-5 *2 (-574)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -3690 ((-574) |#2|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $ (-574)) NIL)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-1831 (($ (-1186 (-574)) (-574)) NIL)) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3635 (($ $) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3593 (((-781) $) NIL)) (-3965 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3201 (((-574)) NIL)) (-3109 (((-574) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4344 (($ $ (-574)) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3810 (((-1170 (-574)) $) NIL)) (-3156 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-3551 (((-574) $ (-574)) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL)))
+(((-117 |#1|) (-879 |#1|) (-574)) (T -117))
+NIL
+(-879 |#1|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-117 |#1|) (-920)))) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-117 |#1|) (-920)))) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL (|has| (-117 |#1|) (-830)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-117 |#1|) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-117 |#1|) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-117 |#1|) (-1051 (-574))))) (-2209 (((-117 |#1|) $) NIL) (((-1190) $) NIL (|has| (-117 |#1|) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-117 |#1|) (-1051 (-574)))) (((-574) $) NIL (|has| (-117 |#1|) (-1051 (-574))))) (-1631 (($ $) NIL) (($ (-574) $) NIL)) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-117 |#1|))) (|:| |vec| (-1281 (-117 |#1|)))) (-699 $) (-1281 $)) NIL) (((-699 (-117 |#1|)) (-699 $)) NIL) (((-699 (-117 |#1|)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-117 |#1|) (-555)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3434 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-117 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-117 |#1|) (-897 (-388))))) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL)) (-2965 (((-117 |#1|) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1165)))) (-3244 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-2106 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-1778 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-117 |#1|) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL (|has| (-117 |#1|) (-315)))) (-1846 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-117 |#1|) (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-117 |#1|) (-920)))) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-117 |#1|)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-302 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-302 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-1190)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-524 (-1190) (-117 |#1|)))) (($ $ (-1190) (-117 |#1|)) NIL (|has| (-117 |#1|) (-524 (-1190) (-117 |#1|))))) (-1347 (((-781) $) NIL)) (-2200 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-294 (-117 |#1|) (-117 |#1|))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $ (-1190)) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3520 (($ $) NIL)) (-2977 (((-117 |#1|) $) NIL)) (-1837 (((-903 (-574)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-117 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-117 |#1|) (-1035))) (((-227) $) NIL (|has| (-117 |#1|) (-1035)))) (-2807 (((-176 (-417 (-574))) $) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-117 |#1|)) NIL) (($ (-1190)) NIL (|has| (-117 |#1|) (-1051 (-1190))))) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-920))) (|has| (-117 |#1|) (-146))))) (-4160 (((-781)) NIL T CONST)) (-4078 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-3551 (((-417 (-574)) $ (-574)) NIL)) (-2946 (($ $) NIL (|has| (-117 |#1|) (-830)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $ (-1190)) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3005 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3107 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL)))
+(((-118 |#1|) (-13 (-1005 (-117 |#1|)) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -2807 ((-176 (-417 (-574))) $)) (-15 -1631 ($ $)) (-15 -1631 ($ (-574) $)))) (-574)) (T -118))
+((-3551 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) (-1631 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2))))
+(-13 (-1005 (-117 |#1|)) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -2807 ((-176 (-417 (-574))) $)) (-15 -1631 ($ $)) (-15 -1631 ($ (-574) $))))
+((-3143 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2192 (((-654 $) $) 31)) (-4127 (((-112) $ $) 36)) (-3759 (((-112) |#2| $) 40)) (-3509 (((-654 |#2|) $) 25)) (-2173 (((-112) $) 18)) (-2200 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4023 (((-112) $) 57)) (-2943 (((-872) $) 47)) (-1973 (((-654 $) $) 32)) (-2982 (((-112) $ $) 38)) (-2863 (((-781) $) 50)))
+(((-119 |#1| |#2|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -3143 (|#1| |#1| "right" |#1|)) (-15 -3143 (|#1| |#1| "left" |#1|)) (-15 -2200 (|#1| |#1| "right")) (-15 -2200 (|#1| |#1| "left")) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -4127 ((-112) |#1| |#1|)) (-15 -3509 ((-654 |#2|) |#1|)) (-15 -4023 ((-112) |#1|)) (-15 -2200 (|#2| |#1| "value")) (-15 -2173 ((-112) |#1|)) (-15 -2192 ((-654 |#1|) |#1|)) (-15 -1973 ((-654 |#1|) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -3759 ((-112) |#2| |#1|)) (-15 -2863 ((-781) |#1|))) (-120 |#2|) (-1231)) (T -119))
+NIL
+(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -3143 (|#1| |#1| "right" |#1|)) (-15 -3143 (|#1| |#1| "left" |#1|)) (-15 -2200 (|#1| |#1| "right")) (-15 -2200 (|#1| |#1| "left")) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -4127 ((-112) |#1| |#1|)) (-15 -3509 ((-654 |#2|) |#1|)) (-15 -4023 ((-112) |#1|)) (-15 -2200 (|#2| |#1| "value")) (-15 -2173 ((-112) |#1|)) (-15 -2192 ((-654 |#1|) |#1|)) (-15 -1973 ((-654 |#1|) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -3759 ((-112) |#2| |#1|)) (-15 -2863 ((-781) |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-3340 (((-112) $ (-781)) 8)) (-1630 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-4333 (($ $ $) 53 (|has| $ (-6 -4457)))) (-3186 (($ $ $) 55 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) (($ $ "left" $) 56 (|has| $ (-6 -4457))) (($ $ "right" $) 54 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3670 (($) 7 T CONST)) (-3904 (($ $) 58)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 51)) (-4127 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-3891 (($ $) 60)) (-3509 (((-654 |#1|) $) 46)) (-2173 (((-112) $) 50)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1556 (((-574) $ $) 45)) (-4023 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) 52)) (-1495 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-120 |#1|) (-141) (-1231)) (T -120))
+((-3891 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1231)))) (-2200 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1231)))) (-3904 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1231)))) (-2200 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1231)))) (-3143 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4457)) (-4 *1 (-120 *3)) (-4 *3 (-1231)))) (-3186 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-120 *2)) (-4 *2 (-1231)))) (-3143 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4457)) (-4 *1 (-120 *3)) (-4 *3 (-1231)))) (-4333 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-120 *2)) (-4 *2 (-1231)))))
+(-13 (-1023 |t#1|) (-10 -8 (-15 -3891 ($ $)) (-15 -2200 ($ $ "left")) (-15 -3904 ($ $)) (-15 -2200 ($ $ "right")) (IF (|has| $ (-6 -4457)) (PROGN (-15 -3143 ($ $ "left" $)) (-15 -3186 ($ $ $)) (-15 -3143 ($ $ "right" $)) (-15 -4333 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-3627 (((-112) |#1|) 29)) (-1651 (((-781) (-781)) 28) (((-781)) 27)) (-3535 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-121 |#1|) (-10 -7 (-15 -3535 ((-112) |#1|)) (-15 -3535 ((-112) |#1| (-112))) (-15 -1651 ((-781))) (-15 -1651 ((-781) (-781))) (-15 -3627 ((-112) |#1|))) (-1257 (-574))) (T -121))
+((-3627 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) (-1651 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) (-3535 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) (-3535 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))))
+(-10 -7 (-15 -3535 ((-112) |#1|)) (-15 -3535 ((-112) |#1| (-112))) (-15 -1651 ((-781))) (-15 -1651 ((-781) (-781))) (-15 -3627 ((-112) |#1|)))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 18)) (-1483 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3340 (((-112) $ (-781)) NIL)) (-1630 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-4333 (($ $ $) 21 (|has| $ (-6 -4457)))) (-3186 (($ $ $) 23 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-3904 (($ $) 20)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1583 (($ $ |#1| $) 27)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-3891 (($ $) 22)) (-3509 (((-654 |#1|) $) NIL)) (-2173 (((-112) $) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1554 (($ |#1| $) 28)) (-1709 (($ |#1| $) 15)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 17)) (-3135 (($) 11)) (-2200 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1556 (((-574) $ $) NIL)) (-4023 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1942 (($ (-654 |#1|)) 16)) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -1942 ($ (-654 |#1|))) (-15 -1709 ($ |#1| $)) (-15 -1554 ($ |#1| $)) (-15 -1483 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-860)) (T -122))
+((-1942 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3)))) (-1709 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-1554 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-1483 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-860)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -1942 ($ (-654 |#1|))) (-15 -1709 ($ |#1| $)) (-15 -1554 ($ |#1| $)) (-15 -1483 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2877 (($ $) 13)) (-2077 (($ $) 11)) (-3602 (($ $ $) 23)) (-2026 (($ $ $) 21)) (-2925 (($ $ $) 19)) (-2911 (($ $ $) 17)))
+(((-123 |#1|) (-10 -8 (-15 -3602 (|#1| |#1| |#1|)) (-15 -2026 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2077 (|#1| |#1|))) (-124)) (T -123))
+NIL
+(-10 -8 (-15 -3602 (|#1| |#1| |#1|)) (-15 -2026 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2077 (|#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2877 (($ $) 103)) (-2110 (($ $ $) 28)) (-1860 (((-1286) $ (-574) (-574)) 66 (|has| $ (-6 -4457)))) (-3850 (((-112) $) 98 (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-4010 (($ $) 102 (-12 (|has| (-112) (-860)) (|has| $ (-6 -4457)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4457)))) (-2771 (($ $) 97 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3340 (((-112) $ (-781)) 37)) (-3143 (((-112) $ (-1248 (-574)) (-112)) 88 (|has| $ (-6 -4457))) (((-112) $ (-574) (-112)) 54 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4456)))) (-3670 (($) 38 T CONST)) (-2672 (($ $) 100 (|has| $ (-6 -4457)))) (-4423 (($ $) 90)) (-2158 (($ $) 68 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4456))) (($ (-112) $) 69 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456))))) (-2868 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456))))) (-2462 (((-112) $ (-574) (-112)) 53 (|has| $ (-6 -4457)))) (-2385 (((-112) $ (-574)) 55)) (-1441 (((-574) (-112) $ (-574)) 95 (|has| (-112) (-1113))) (((-574) (-112) $) 94 (|has| (-112) (-1113))) (((-574) (-1 (-112) (-112)) $) 93)) (-1864 (((-654 (-112)) $) 45 (|has| $ (-6 -4456)))) (-2099 (($ $ $) 108)) (-2077 (($ $) 106)) (-3602 (($ $ $) 29)) (-3790 (($ (-781) (-112)) 78)) (-2026 (($ $ $) 30)) (-3735 (((-112) $ (-781)) 36)) (-1849 (((-574) $) 63 (|has| (-574) (-860)))) (-3658 (($ $ $) 14)) (-2130 (($ $ $) 96 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1712 (((-654 (-112)) $) 46 (|has| $ (-6 -4456)))) (-3759 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 62 (|has| (-574) (-860)))) (-2106 (($ $ $) 15)) (-2446 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-2448 (((-112) $ (-781)) 35)) (-2568 (((-1172) $) 10)) (-1595 (($ $ $ (-574)) 87) (($ (-112) $ (-574)) 86)) (-2459 (((-654 (-574)) $) 60)) (-2607 (((-112) (-574) $) 59)) (-3966 (((-1133) $) 11)) (-2915 (((-112) $) 64 (|has| (-574) (-860)))) (-1836 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-1363 (($ $ (-112)) 65 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-112)) (-654 (-112))) 52 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-302 (-112))) 50 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-654 (-302 (-112)))) 49 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))))) (-1892 (((-112) $ $) 31)) (-2282 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2121 (((-654 (-112)) $) 58)) (-3556 (((-112) $) 34)) (-3135 (($) 33)) (-2200 (($ $ (-1248 (-574))) 77) (((-112) $ (-574)) 57) (((-112) $ (-574) (-112)) 56)) (-2837 (($ $ (-1248 (-574))) 85) (($ $ (-574)) 84)) (-3975 (((-781) (-112) $) 47 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4456)))) (-1958 (($ $ $ (-574)) 99 (|has| $ (-6 -4457)))) (-3167 (($ $) 32)) (-1837 (((-546) $) 67 (|has| (-112) (-624 (-546))))) (-2956 (($ (-654 (-112))) 76)) (-4157 (($ (-654 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2935 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4456)))) (-2088 (($ $ $) 107)) (-2925 (($ $ $) 105)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-2911 (($ $ $) 104)) (-2863 (((-781) $) 39 (|has| $ (-6 -4456)))))
(((-124) (-141)) (T -124))
-((-3792 (*1 *1 *1 *1) (-4 *1 (-124))) (-2168 (*1 *1 *1 *1) (-4 *1 (-124))) (-2107 (*1 *1 *1 *1) (-4 *1 (-124))))
-(-13 (-858) (-113) (-669) (-19 (-112)) (-10 -8 (-15 -3792 ($ $ $)) (-15 -2168 ($ $ $)) (-15 -2107 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-113) . T) ((-621 (-870)) . T) ((-152 #0=(-112)) . T) ((-622 (-544)) |has| (-112) (-622 (-544))) ((-292 #1=(-572) #0#) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #1# #0#) . T) ((-315 #0#) -12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))) ((-380 #0#) . T) ((-497 #0#) . T) ((-612 #1# #0#) . T) ((-522 #0# #0#) -12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))) ((-659 #0#) . T) ((-669) . T) ((-19 #0#) . T) ((-858) . T) ((-1111) . T) ((-1229) . T))
-((-2442 (($ (-1 |#2| |#2|) $) 22)) (-3164 (($ $) 16)) (-2860 (((-779) $) 25)))
-(((-125 |#1| |#2|) (-10 -8 (-15 -2442 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2860 ((-779) |#1|)) (-15 -3164 (|#1| |#1|))) (-126 |#2|) (-1111)) (T -125))
-NIL
-(-10 -8 (-15 -2442 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2860 ((-779) |#1|)) (-15 -3164 (|#1| |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3080 ((|#1| $) 49)) (-1631 (((-112) $ (-779)) 8)) (-2506 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-3833 (($ $ $) 53 (|has| $ (-6 -4455)))) (-2913 (($ $ $) 55 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) (($ $ "left" $) 56 (|has| $ (-6 -4455))) (($ $ "right" $) 54 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-3281 (($) 7 T CONST)) (-3901 (($ $) 58)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 51)) (-1463 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-1582 (($ $ |#1| $) 61)) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-3888 (($ $) 60)) (-3505 (((-652 |#1|) $) 46)) (-2087 (((-112) $) 50)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2157 (((-572) $ $) 45)) (-3315 (((-112) $) 47)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) 52)) (-2804 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-126 |#1|) (-141) (-1111)) (T -126))
-((-1582 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1111)))))
-(-13 (-120 |t#1|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -1582 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-120 |#1|) . T) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) 18)) (-1631 (((-112) $ (-779)) NIL)) (-2506 ((|#1| $ |#1|) 22 (|has| $ (-6 -4455)))) (-3833 (($ $ $) 23 (|has| $ (-6 -4455)))) (-2913 (($ $ $) 21 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-3901 (($ $) 24)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1582 (($ $ |#1| $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3888 (($ $) NIL)) (-3505 (((-652 |#1|) $) NIL)) (-2087 (((-112) $) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2036 (($ |#1| $) 15)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 17)) (-1613 (($) 11)) (-2196 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2157 (((-572) $ $) NIL)) (-3315 (((-112) $) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) 20)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3222 (($ (-652 |#1|)) 16)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4455) (-15 -3222 ($ (-652 |#1|))) (-15 -2036 ($ |#1| $)))) (-858)) (T -127))
-((-3222 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-127 *3)))) (-2036 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-858)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4455) (-15 -3222 ($ (-652 |#1|))) (-15 -2036 ($ |#1| $))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) 30)) (-1631 (((-112) $ (-779)) NIL)) (-2506 ((|#1| $ |#1|) 32 (|has| $ (-6 -4455)))) (-3833 (($ $ $) 36 (|has| $ (-6 -4455)))) (-2913 (($ $ $) 34 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-3901 (($ $) 23)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1582 (($ $ |#1| $) 16)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3888 (($ $) 22)) (-3505 (((-652 |#1|) $) NIL)) (-2087 (((-112) $) 25)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 20)) (-1613 (($) 11)) (-2196 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2157 (((-572) $ $) NIL)) (-3315 (((-112) $) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2371 (($ |#1|) 18) (($ $ |#1| $) 17)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 10 (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2371 ($ |#1|)) (-15 -2371 ($ $ |#1| $)))) (-1111)) (T -128))
-((-2371 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1111)))) (-2371 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1111)))))
-(-13 (-126 |#1|) (-10 -8 (-15 -2371 ($ |#1|)) (-15 -2371 ($ $ |#1| $))))
-((-2846 (((-112) $ $) NIL (|has| (-130) (-1111)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-858)))) (-3314 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-858))))) (-2766 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 (((-130) $ (-572) (-130)) 26 (|has| $ (-6 -4455))) (((-130) $ (-1246 (-572)) (-130)) NIL (|has| $ (-6 -4455)))) (-3704 (((-779) $ (-779)) 34)) (-2162 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111))))) (-3332 (($ (-130) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4454))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4454)))) (-2453 (((-130) $ (-572) (-130)) 25 (|has| $ (-6 -4455)))) (-2380 (((-130) $ (-572)) 20)) (-1439 (((-572) (-1 (-112) (-130)) $) NIL) (((-572) (-130) $) NIL (|has| (-130) (-1111))) (((-572) (-130) $ (-572)) NIL (|has| (-130) (-1111)))) (-1863 (((-652 (-130)) $) NIL (|has| $ (-6 -4454)))) (-3787 (($ (-779) (-130)) 14)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) 27 (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| (-130) (-858)))) (-1767 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-858)))) (-1344 (((-652 (-130)) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111))))) (-3374 (((-572) $) 30 (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| (-130) (-858)))) (-2442 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| (-130) (-1111)))) (-1593 (($ (-130) $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| (-130) (-1111)))) (-2912 (((-130) $) NIL (|has| (-572) (-858)))) (-3770 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-2476 (($ $ (-130)) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-130)))) NIL (-12 (|has| (-130) (-315 (-130))) (|has| (-130) (-1111)))) (($ $ (-300 (-130))) NIL (-12 (|has| (-130) (-315 (-130))) (|has| (-130) (-1111)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-315 (-130))) (|has| (-130) (-1111)))) (($ $ (-652 (-130)) (-652 (-130))) NIL (-12 (|has| (-130) (-315 (-130))) (|has| (-130) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111))))) (-4110 (((-652 (-130)) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) 12)) (-2196 (((-130) $ (-572) (-130)) NIL) (((-130) $ (-572)) 23) (($ $ (-1246 (-572))) NIL)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3973 (((-779) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454))) (((-779) (-130) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-130) (-622 (-544))))) (-2953 (($ (-652 (-130))) 46)) (-4155 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-652 $)) NIL)) (-2940 (((-967 (-130)) $) 35) (((-1170) $) 43) (((-870) $) NIL (|has| (-130) (-621 (-870))))) (-3734 (((-779) $) 18)) (-4248 (($ (-779)) 8)) (-4379 (((-112) $ $) NIL (|has| (-130) (-1111)))) (-4380 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| (-130) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-130) (-858)))) (-2978 (((-112) $ $) 32 (|has| (-130) (-1111)))) (-3026 (((-112) $ $) NIL (|has| (-130) (-858)))) (-3003 (((-112) $ $) NIL (|has| (-130) (-858)))) (-2860 (((-779) $) 15 (|has| $ (-6 -4454)))))
-(((-129) (-13 (-19 (-130)) (-621 (-967 (-130))) (-621 (-1170)) (-10 -8 (-15 -4248 ($ (-779))) (-15 -3734 ((-779) $)) (-15 -3704 ((-779) $ (-779))) (-6 -4454)))) (T -129))
-((-4248 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-129)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-129)))) (-3704 (*1 *2 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-129)))))
-(-13 (-19 (-130)) (-621 (-967 (-130))) (-621 (-1170)) (-10 -8 (-15 -4248 ($ (-779))) (-15 -3734 ((-779) $)) (-15 -3704 ((-779) $ (-779))) (-6 -4454)))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) 26)) (-3281 (($) NIL T CONST)) (-2815 (($) 35)) (-3654 (($ $ $) NIL) (($) 24 T CONST)) (-2427 (($ $ $) NIL) (($) 25 T CONST)) (-3715 (((-930) $) 33)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) 31)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2999 (($ (-779)) 8)) (-1753 (($ $ $) 37)) (-1742 (($ $ $) 36)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) 22)) (-3014 (((-112) $ $) 20)) (-2978 (((-112) $ $) 18)) (-3026 (((-112) $ $) 21)) (-3003 (((-112) $ $) 19)))
-(((-130) (-13 (-852) (-498 (-145)) (-10 -8 (-15 -2999 ($ (-779))) (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))) (T -130))
-((-2999 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-130)))) (-1742 (*1 *1 *1 *1) (-5 *1 (-130))) (-1753 (*1 *1 *1 *1) (-5 *1 (-130))) (-3281 (*1 *1) (-5 *1 (-130))))
-(-13 (-852) (-498 (-145)) (-10 -8 (-15 -2999 ($ (-779))) (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))
+((-2026 (*1 *1 *1 *1) (-4 *1 (-124))) (-3602 (*1 *1 *1 *1) (-4 *1 (-124))) (-2110 (*1 *1 *1 *1) (-4 *1 (-124))))
+(-13 (-860) (-113) (-671) (-19 (-112)) (-10 -8 (-15 -2026 ($ $ $)) (-15 -3602 ($ $ $)) (-15 -2110 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-152 #0=(-112)) . T) ((-624 (-546)) |has| (-112) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))) ((-661 #0#) . T) ((-671) . T) ((-19 #0#) . T) ((-860) . T) ((-1113) . T) ((-1231) . T))
+((-2446 (($ (-1 |#2| |#2|) $) 22)) (-3167 (($ $) 16)) (-2863 (((-781) $) 25)))
+(((-125 |#1| |#2|) (-10 -8 (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3167 (|#1| |#1|))) (-126 |#2|) (-1113)) (T -125))
+NIL
+(-10 -8 (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3167 (|#1| |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-3340 (((-112) $ (-781)) 8)) (-1630 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-4333 (($ $ $) 53 (|has| $ (-6 -4457)))) (-3186 (($ $ $) 55 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) (($ $ "left" $) 56 (|has| $ (-6 -4457))) (($ $ "right" $) 54 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3670 (($) 7 T CONST)) (-3904 (($ $) 58)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 51)) (-4127 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-1583 (($ $ |#1| $) 61)) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-3891 (($ $) 60)) (-3509 (((-654 |#1|) $) 46)) (-2173 (((-112) $) 50)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1556 (((-574) $ $) 45)) (-4023 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) 52)) (-1495 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-126 |#1|) (-141) (-1113)) (T -126))
+((-1583 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1113)))))
+(-13 (-120 |t#1|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -1583 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-120 |#1|) . T) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 18)) (-3340 (((-112) $ (-781)) NIL)) (-1630 ((|#1| $ |#1|) 22 (|has| $ (-6 -4457)))) (-4333 (($ $ $) 23 (|has| $ (-6 -4457)))) (-3186 (($ $ $) 21 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-3904 (($ $) 24)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1583 (($ $ |#1| $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-3891 (($ $) NIL)) (-3509 (((-654 |#1|) $) NIL)) (-2173 (((-112) $) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1709 (($ |#1| $) 15)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 17)) (-3135 (($) 11)) (-2200 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1556 (((-574) $ $) NIL)) (-4023 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 20)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-4257 (($ (-654 |#1|)) 16)) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4457) (-15 -4257 ($ (-654 |#1|))) (-15 -1709 ($ |#1| $)))) (-860)) (T -127))
+((-4257 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3)))) (-1709 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4457) (-15 -4257 ($ (-654 |#1|))) (-15 -1709 ($ |#1| $))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 30)) (-3340 (((-112) $ (-781)) NIL)) (-1630 ((|#1| $ |#1|) 32 (|has| $ (-6 -4457)))) (-4333 (($ $ $) 36 (|has| $ (-6 -4457)))) (-3186 (($ $ $) 34 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-3904 (($ $) 23)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1583 (($ $ |#1| $) 16)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-3891 (($ $) 22)) (-3509 (((-654 |#1|) $) NIL)) (-2173 (((-112) $) 25)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 20)) (-3135 (($) 11)) (-2200 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1556 (((-574) $ $) NIL)) (-4023 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2899 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 10 (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2899 ($ |#1|)) (-15 -2899 ($ $ |#1| $)))) (-1113)) (T -128))
+((-2899 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1113)))) (-2899 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1113)))))
+(-13 (-126 |#1|) (-10 -8 (-15 -2899 ($ |#1|)) (-15 -2899 ($ $ |#1| $))))
+((-2849 (((-112) $ $) NIL (|has| (-130) (-1113)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-860)))) (-4010 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-130) (-860))))) (-2771 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 (((-130) $ (-574) (-130)) 26 (|has| $ (-6 -4457))) (((-130) $ (-1248 (-574)) (-130)) NIL (|has| $ (-6 -4457)))) (-2458 (((-781) $ (-781)) 34)) (-2166 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113))))) (-3335 (($ (-130) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4456))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4456)))) (-2462 (((-130) $ (-574) (-130)) 25 (|has| $ (-6 -4457)))) (-2385 (((-130) $ (-574)) 20)) (-1441 (((-574) (-1 (-112) (-130)) $) NIL) (((-574) (-130) $) NIL (|has| (-130) (-1113))) (((-574) (-130) $ (-574)) NIL (|has| (-130) (-1113)))) (-1864 (((-654 (-130)) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-130)) 14)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) 27 (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| (-130) (-860)))) (-2130 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-860)))) (-1712 (((-654 (-130)) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113))))) (-3429 (((-574) $) 30 (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| (-130) (-860)))) (-2446 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| (-130) (-1113)))) (-1595 (($ (-130) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| (-130) (-1113)))) (-2915 (((-130) $) NIL (|has| (-574) (-860)))) (-1836 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-1363 (($ $ (-130)) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-130)))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1113)))) (($ $ (-302 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1113)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1113)))) (($ $ (-654 (-130)) (-654 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113))))) (-2121 (((-654 (-130)) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) 12)) (-2200 (((-130) $ (-574) (-130)) NIL) (((-130) $ (-574)) 23) (($ $ (-1248 (-574))) NIL)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456))) (((-781) (-130) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-130) (-624 (-546))))) (-2956 (($ (-654 (-130))) 46)) (-4157 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-654 $)) NIL)) (-2943 (((-969 (-130)) $) 35) (((-1172) $) 43) (((-872) $) NIL (|has| (-130) (-623 (-872))))) (-2741 (((-781) $) 18)) (-4150 (($ (-781)) 8)) (-2923 (((-112) $ $) NIL (|has| (-130) (-1113)))) (-2935 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2982 (((-112) $ $) 32 (|has| (-130) (-1113)))) (-3028 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3005 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2863 (((-781) $) 15 (|has| $ (-6 -4456)))))
+(((-129) (-13 (-19 (-130)) (-623 (-969 (-130))) (-623 (-1172)) (-10 -8 (-15 -4150 ($ (-781))) (-15 -2741 ((-781) $)) (-15 -2458 ((-781) $ (-781))) (-6 -4456)))) (T -129))
+((-4150 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-2458 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))))
+(-13 (-19 (-130)) (-623 (-969 (-130))) (-623 (-1172)) (-10 -8 (-15 -4150 ($ (-781))) (-15 -2741 ((-781) $)) (-15 -2458 ((-781) $ (-781))) (-6 -4456)))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) 26)) (-3670 (($) NIL T CONST)) (-2820 (($) 35)) (-3658 (($ $ $) NIL) (($) 24 T CONST)) (-2106 (($ $ $) NIL) (($) 25 T CONST)) (-2565 (((-932) $) 33)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) 31)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3002 (($ (-781)) 8)) (-1755 (($ $ $) 37)) (-1743 (($ $ $) 36)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) 22)) (-3016 (((-112) $ $) 20)) (-2982 (((-112) $ $) 18)) (-3028 (((-112) $ $) 21)) (-3005 (((-112) $ $) 19)))
+(((-130) (-13 (-854) (-500 (-145)) (-10 -8 (-15 -3002 ($ (-781))) (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))) (T -130))
+((-3002 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130)))) (-1743 (*1 *1 *1 *1) (-5 *1 (-130))) (-1755 (*1 *1 *1 *1) (-5 *1 (-130))) (-3670 (*1 *1) (-5 *1 (-130))))
+(-13 (-854) (-500 (-145)) (-10 -8 (-15 -3002 ($ (-781))) (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))
((|NonNegativeInteger|) (|%ilt| |#1| 256))
-((-2846 (((-112) $ $) NIL)) (-2549 (($) 6 T CONST)) (-3316 (($) 7 T CONST)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 14)) (-4188 (($) 8 T CONST)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 10)))
-(((-131) (-13 (-1111) (-10 -8 (-15 -3316 ($) -1705) (-15 -4188 ($) -1705) (-15 -2549 ($) -1705)))) (T -131))
-((-3316 (*1 *1) (-5 *1 (-131))) (-4188 (*1 *1) (-5 *1 (-131))) (-2549 (*1 *1) (-5 *1 (-131))))
-(-13 (-1111) (-10 -8 (-15 -3316 ($) -1705) (-15 -4188 ($) -1705) (-15 -2549 ($) -1705)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16)))
+((-2849 (((-112) $ $) NIL)) (-3977 (($) 6 T CONST)) (-4031 (($) 7 T CONST)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 14)) (-1641 (($) 8 T CONST)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 10)))
+(((-131) (-13 (-1113) (-10 -8 (-15 -4031 ($) -1707) (-15 -1641 ($) -1707) (-15 -3977 ($) -1707)))) (T -131))
+((-4031 (*1 *1) (-5 *1 (-131))) (-1641 (*1 *1) (-5 *1 (-131))) (-3977 (*1 *1) (-5 *1 (-131))))
+(-13 (-1113) (-10 -8 (-15 -4031 ($) -1707) (-15 -1641 ($) -1707) (-15 -3977 ($) -1707)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16)))
(((-132) (-141)) (T -132))
-((-3330 (*1 *1 *1 *1) (|partial| -4 *1 (-132))))
-(-13 (-23) (-10 -8 (-15 -3330 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 7)) (-3141 (((-1284) $ (-779)) 14)) (-1439 (((-779) $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
+((-2950 (*1 *1 *1 *1) (|partial| -4 *1 (-132))))
+(-13 (-23) (-10 -8 (-15 -2950 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 7)) (-2739 (((-1286) $ (-781)) 14)) (-1441 (((-781) $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
(((-133) (-141)) (T -133))
-((-1439 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-779)))) (-3141 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-779)) (-5 *2 (-1284)))))
-(-13 (-1111) (-10 -8 (-15 -1439 ((-779) $)) (-15 -3141 ((-1284) $ (-779)))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 16) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-652 (-1146)) $) 10)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-134) (-13 (-1094) (-10 -8 (-15 -2042 ((-652 (-1146)) $))))) (T -134))
-((-2042 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-134)))))
-(-13 (-1094) (-10 -8 (-15 -2042 ((-652 (-1146)) $))))
-((-2846 (((-112) $ $) 49)) (-2697 (((-112) $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-779) "failed") $) 58)) (-2204 (((-779) $) 56)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) 37)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3960 (((-112)) 59)) (-2929 (((-112) (-112)) 61)) (-1875 (((-112) $) 30)) (-3425 (((-112) $) 55)) (-2940 (((-870) $) 28) (($ (-779)) 20)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 18 T CONST)) (-2143 (($) 19 T CONST)) (-3434 (($ (-779)) 21)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 40)) (-2978 (((-112) $ $) 32)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 35)) (-3089 (((-3 $ "failed") $ $) 42)) (-3075 (($ $ $) 38)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL) (($ $ $) 54)) (* (($ (-779) $) 48) (($ (-930) $) NIL) (($ $ $) 45)))
-(((-135) (-13 (-858) (-23) (-734) (-1049 (-779)) (-10 -8 (-6 (-4456 "*")) (-15 -3089 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3434 ($ (-779))) (-15 -1875 ((-112) $)) (-15 -3425 ((-112) $)) (-15 -3960 ((-112))) (-15 -2929 ((-112) (-112)))))) (T -135))
-((-3089 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3434 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-135)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3960 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2929 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(-13 (-858) (-23) (-734) (-1049 (-779)) (-10 -8 (-6 (-4456 "*")) (-15 -3089 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3434 ($ (-779))) (-15 -1875 ((-112) $)) (-15 -3425 ((-112) $)) (-15 -3960 ((-112))) (-15 -2929 ((-112) (-112)))))
-((-1337 (((-137 |#1| |#2| |#4|) (-652 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1776 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18)))
-(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1337 ((-137 |#1| |#2| |#4|) (-652 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1776 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-572) (-779) (-174) (-174)) (T -136))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-572)) (-14 *6 (-779)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-572)) (-14 *6 (-779)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1337 ((-137 |#1| |#2| |#4|) (-652 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1776 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
-((-2846 (((-112) $ $) NIL)) (-3705 (($ (-652 |#3|)) 61)) (-3054 (($ $) 123) (($ $ (-572) (-572)) 122)) (-3281 (($) 20)) (-1695 (((-3 |#3| "failed") $) 83)) (-2204 ((|#3| $) NIL)) (-1422 (($ $ (-652 (-572))) 124)) (-1323 (((-652 |#3|) $) 56)) (-3581 (((-779) $) 66)) (-2247 (($ $ $) 117)) (-2983 (($) 65)) (-4347 (((-1170) $) NIL)) (-3416 (($) 19)) (-3964 (((-1131) $) NIL)) (-2196 ((|#3| $ (-572)) 69) ((|#3| $) 68) ((|#3| $ (-572) (-572)) 70) ((|#3| $ (-572) (-572) (-572)) 71) ((|#3| $ (-572) (-572) (-572) (-572)) 72) ((|#3| $ (-652 (-572))) 73)) (-4390 (((-779) $) 67)) (-2132 (($ $ (-572) $ (-572)) 118) (($ $ (-572) (-572)) 120)) (-2940 (((-870) $) 91) (($ |#3|) 92) (($ (-244 |#2| |#3|)) 99) (($ (-1153 |#2| |#3|)) 102) (($ (-652 |#3|)) 74) (($ (-652 $)) 80)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 93 T CONST)) (-2143 (($) 94 T CONST)) (-2978 (((-112) $ $) 104)) (-3089 (($ $) 110) (($ $ $) 108)) (-3075 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-572)) 113) (($ (-572) $) 112) (($ $ $) 119)))
-(((-137 |#1| |#2| |#3|) (-13 (-473 |#3| (-779)) (-478 (-572) (-779)) (-292 (-572) |#3|) (-10 -8 (-15 -2940 ($ (-244 |#2| |#3|))) (-15 -2940 ($ (-1153 |#2| |#3|))) (-15 -2940 ($ (-652 |#3|))) (-15 -2940 ($ (-652 $))) (-15 -3581 ((-779) $)) (-15 -2196 (|#3| $)) (-15 -2196 (|#3| $ (-572) (-572))) (-15 -2196 (|#3| $ (-572) (-572) (-572))) (-15 -2196 (|#3| $ (-572) (-572) (-572) (-572))) (-15 -2196 (|#3| $ (-652 (-572)))) (-15 -2247 ($ $ $)) (-15 * ($ $ $)) (-15 -2132 ($ $ (-572) $ (-572))) (-15 -2132 ($ $ (-572) (-572))) (-15 -3054 ($ $)) (-15 -3054 ($ $ (-572) (-572))) (-15 -1422 ($ $ (-652 (-572)))) (-15 -3416 ($)) (-15 -2983 ($)) (-15 -1323 ((-652 |#3|) $)) (-15 -3705 ($ (-652 |#3|))) (-15 -3281 ($)))) (-572) (-779) (-174)) (T -137))
-((-2247 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-244 *4 *5)) (-14 *4 (-779)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-1153 *4 *5)) (-14 *4 (-779)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)) (-4 *5 (-174)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 *2) (-4 *5 (-174)))) (-2196 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-572)) (-14 *4 (-779)))) (-2196 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-779)))) (-2196 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-779)))) (-2196 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-779)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-652 (-572))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-572)) (-14 *5 (-779)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-2132 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-779)) (-4 *5 (-174)))) (-2132 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-779)) (-4 *5 (-174)))) (-3054 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-3054 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-779)) (-4 *5 (-174)))) (-1422 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)) (-4 *5 (-174)))) (-3416 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-2983 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-652 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)) (-4 *5 (-174)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-652 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)))) (-3281 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))))
-(-13 (-473 |#3| (-779)) (-478 (-572) (-779)) (-292 (-572) |#3|) (-10 -8 (-15 -2940 ($ (-244 |#2| |#3|))) (-15 -2940 ($ (-1153 |#2| |#3|))) (-15 -2940 ($ (-652 |#3|))) (-15 -2940 ($ (-652 $))) (-15 -3581 ((-779) $)) (-15 -2196 (|#3| $)) (-15 -2196 (|#3| $ (-572) (-572))) (-15 -2196 (|#3| $ (-572) (-572) (-572))) (-15 -2196 (|#3| $ (-572) (-572) (-572) (-572))) (-15 -2196 (|#3| $ (-652 (-572)))) (-15 -2247 ($ $ $)) (-15 * ($ $ $)) (-15 -2132 ($ $ (-572) $ (-572))) (-15 -2132 ($ $ (-572) (-572))) (-15 -3054 ($ $)) (-15 -3054 ($ $ (-572) (-572))) (-15 -1422 ($ $ (-652 (-572)))) (-15 -3416 ($)) (-15 -2983 ($)) (-15 -1323 ((-652 |#3|) $)) (-15 -3705 ($ (-652 |#3|))) (-15 -3281 ($))))
-((-2846 (((-112) $ $) NIL)) (-1807 (((-1146) $) 11)) (-1794 (((-1146) $) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-138) (-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1146) $))))) (T -138))
-((-1794 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-138)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-138)))))
-(-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1146) $))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-4280 (((-188) $) 10)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 20) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-652 (-1146)) $) 13)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-139) (-13 (-1094) (-10 -8 (-15 -4280 ((-188) $)) (-15 -2042 ((-652 (-1146)) $))))) (T -139))
-((-4280 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-139)))))
-(-13 (-1094) (-10 -8 (-15 -4280 ((-188) $)) (-15 -2042 ((-652 (-1146)) $))))
-((-2846 (((-112) $ $) NIL)) (-1714 (((-652 (-873)) $) NIL)) (-2030 (((-514) $) NIL)) (-4347 (((-1170) $) NIL)) (-4280 (((-188) $) NIL)) (-2695 (((-112) $ (-514)) NIL)) (-3964 (((-1131) $) NIL)) (-3496 (((-652 (-112)) $) NIL)) (-2940 (((-870) $) NIL) (((-189) $) 6)) (-4379 (((-112) $ $) NIL)) (-2863 (((-55) $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-140) (-13 (-187) (-621 (-189)))) (T -140))
-NIL
-(-13 (-187) (-621 (-189)))
-((-3110 (((-652 (-185 (-140))) $) 13)) (-1315 (((-652 (-185 (-140))) $) 14)) (-2736 (((-652 (-846)) $) 10)) (-1963 (((-140) $) 7)) (-2940 (((-870) $) 16)))
-(((-141) (-13 (-621 (-870)) (-10 -8 (-15 -1963 ((-140) $)) (-15 -2736 ((-652 (-846)) $)) (-15 -3110 ((-652 (-185 (-140))) $)) (-15 -1315 ((-652 (-185 (-140))) $))))) (T -141))
-((-1963 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-652 (-846))) (-5 *1 (-141)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-652 (-185 (-140)))) (-5 *1 (-141)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-652 (-185 (-140)))) (-5 *1 (-141)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -1963 ((-140) $)) (-15 -2736 ((-652 (-846)) $)) (-15 -3110 ((-652 (-185 (-140))) $)) (-15 -1315 ((-652 (-185 (-140))) $))))
-((-2846 (((-112) $ $) NIL)) (-2525 (($) 17 T CONST)) (-1645 (($) NIL (|has| (-145) (-375)))) (-4357 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2774 (($ $ $) NIL)) (-1890 (((-112) $ $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-1486 (((-779)) NIL (|has| (-145) (-375)))) (-1506 (($) NIL) (($ (-652 (-145))) NIL)) (-2613 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-3554 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454))) (($ (-145) $) 60 (|has| $ (-6 -4454)))) (-3332 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2865 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2815 (($) NIL (|has| (-145) (-375)))) (-1863 (((-652 (-145)) $) 69 (|has| $ (-6 -4454)))) (-3310 (((-112) $ $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3654 (((-145) $) NIL (|has| (-145) (-858)))) (-1344 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2427 (((-145) $) NIL (|has| (-145) (-858)))) (-2442 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-145) (-145)) $) 64)) (-1811 (($) 18 T CONST)) (-3715 (((-930) $) NIL (|has| (-145) (-375)))) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1346 (($ $ $) 30)) (-1651 (((-145) $) 61)) (-2036 (($ (-145) $) 59)) (-2571 (($ (-930)) NIL (|has| (-145) (-375)))) (-3500 (($) 16 T CONST)) (-3964 (((-1131) $) NIL)) (-3770 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3378 (((-145) $) 62)) (-1612 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-145)) (-652 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-300 (-145)))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) 57)) (-3410 (($) 15 T CONST)) (-4020 (($ $ $) 32) (($ $ (-145)) NIL)) (-3438 (($ (-652 (-145))) NIL) (($) NIL)) (-3973 (((-779) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (((-779) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-1170) $) 37) (((-544) $) NIL (|has| (-145) (-622 (-544)))) (((-652 (-145)) $) 35)) (-2953 (($ (-652 (-145))) NIL)) (-2429 (($ $) 33 (|has| (-145) (-375)))) (-2940 (((-870) $) 53)) (-3794 (($ (-1170)) 14) (($ (-652 (-145))) 50)) (-4006 (((-779) $) NIL)) (-4279 (($) 58) (($ (-652 (-145))) NIL)) (-4379 (((-112) $ $) NIL)) (-2022 (($ (-652 (-145))) NIL)) (-4380 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-1962 (($) 21 T CONST)) (-2731 (($) 20 T CONST)) (-2978 (((-112) $ $) 24)) (-2860 (((-779) $) 56 (|has| $ (-6 -4454)))))
-(((-142) (-13 (-1111) (-622 (-1170)) (-433 (-145)) (-622 (-652 (-145))) (-10 -8 (-15 -3794 ($ (-1170))) (-15 -3794 ($ (-652 (-145)))) (-15 -3410 ($) -1705) (-15 -3500 ($) -1705) (-15 -2525 ($) -1705) (-15 -1811 ($) -1705) (-15 -2731 ($) -1705) (-15 -1962 ($) -1705)))) (T -142))
-((-3794 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-142)))) (-3794 (*1 *1 *2) (-12 (-5 *2 (-652 (-145))) (-5 *1 (-142)))) (-3410 (*1 *1) (-5 *1 (-142))) (-3500 (*1 *1) (-5 *1 (-142))) (-2525 (*1 *1) (-5 *1 (-142))) (-1811 (*1 *1) (-5 *1 (-142))) (-2731 (*1 *1) (-5 *1 (-142))) (-1962 (*1 *1) (-5 *1 (-142))))
-(-13 (-1111) (-622 (-1170)) (-433 (-145)) (-622 (-652 (-145))) (-10 -8 (-15 -3794 ($ (-1170))) (-15 -3794 ($ (-652 (-145)))) (-15 -3410 ($) -1705) (-15 -3500 ($) -1705) (-15 -2525 ($) -1705) (-15 -1811 ($) -1705) (-15 -2731 ($) -1705) (-15 -1962 ($) -1705)))
-((-1848 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4241 ((|#1| |#3|) 9)) (-4386 ((|#3| |#3|) 15)))
-(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -4241 (|#1| |#3|)) (-15 -4386 (|#3| |#3|)) (-15 -1848 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-564) (-1003 |#1|) (-380 |#2|)) (T -143))
-((-1848 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-380 *5)))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-564)) (-4 *4 (-1003 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-380 *4)))) (-4241 (*1 *2 *3) (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-380 *4)))))
-(-10 -7 (-15 -4241 (|#1| |#3|)) (-15 -4386 (|#3| |#3|)) (-15 -1848 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2661 (($ $ $) 8)) (-2128 (($ $) 7)) (-3148 (($ $ $) 6)))
+((-1441 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1286)))))
+(-13 (-1113) (-10 -8 (-15 -1441 ((-781) $)) (-15 -2739 ((-1286) $ (-781)))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 16) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-654 (-1148)) $) 10)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-134) (-13 (-1096) (-10 -8 (-15 -2045 ((-654 (-1148)) $))))) (T -134))
+((-2045 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-134)))))
+(-13 (-1096) (-10 -8 (-15 -2045 ((-654 (-1148)) $))))
+((-2849 (((-112) $ $) 49)) (-2908 (((-112) $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-781) "failed") $) 58)) (-2209 (((-781) $) 56)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) 37)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3163 (((-112)) 59)) (-3343 (((-112) (-112)) 61)) (-3862 (((-112) $) 30)) (-2676 (((-112) $) 55)) (-2943 (((-872) $) 28) (($ (-781)) 20)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 18 T CONST)) (-2146 (($) 19 T CONST)) (-2776 (($ (-781)) 21)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) 40)) (-2982 (((-112) $ $) 32)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 35)) (-3094 (((-3 $ "failed") $ $) 42)) (-3078 (($ $ $) 38)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL) (($ $ $) 54)) (* (($ (-781) $) 48) (($ (-932) $) NIL) (($ $ $) 45)))
+(((-135) (-13 (-860) (-23) (-736) (-1051 (-781)) (-10 -8 (-6 (-4458 "*")) (-15 -3094 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2776 ($ (-781))) (-15 -3862 ((-112) $)) (-15 -2676 ((-112) $)) (-15 -3163 ((-112))) (-15 -3343 ((-112) (-112)))))) (T -135))
+((-3094 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3163 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3343 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(-13 (-860) (-23) (-736) (-1051 (-781)) (-10 -8 (-6 (-4458 "*")) (-15 -3094 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2776 ($ (-781))) (-15 -3862 ((-112) $)) (-15 -2676 ((-112) $)) (-15 -3163 ((-112))) (-15 -3343 ((-112) (-112)))))
+((-1339 (((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1778 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18)))
+(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1339 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1778 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-574) (-781) (-174) (-174)) (T -136))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1339 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1778 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
+((-2849 (((-112) $ $) NIL)) (-2472 (($ (-654 |#3|)) 61)) (-3202 (($ $) 123) (($ $ (-574) (-574)) 122)) (-3670 (($) 20)) (-1697 (((-3 |#3| "failed") $) 83)) (-2209 ((|#3| $) NIL)) (-2969 (($ $ (-654 (-574))) 124)) (-1325 (((-654 |#3|) $) 56)) (-3584 (((-781) $) 66)) (-3059 (($ $ $) 117)) (-2546 (($) 65)) (-2568 (((-1172) $) NIL)) (-2569 (($) 19)) (-3966 (((-1133) $) NIL)) (-2200 ((|#3| $ (-574)) 69) ((|#3| $) 68) ((|#3| $ (-574) (-574)) 70) ((|#3| $ (-574) (-574) (-574)) 71) ((|#3| $ (-574) (-574) (-574) (-574)) 72) ((|#3| $ (-654 (-574))) 73)) (-1784 (((-781) $) 67)) (-1345 (($ $ (-574) $ (-574)) 118) (($ $ (-574) (-574)) 120)) (-2943 (((-872) $) 91) (($ |#3|) 92) (($ (-246 |#2| |#3|)) 99) (($ (-1155 |#2| |#3|)) 102) (($ (-654 |#3|)) 74) (($ (-654 $)) 80)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 93 T CONST)) (-2146 (($) 94 T CONST)) (-2982 (((-112) $ $) 104)) (-3094 (($ $) 110) (($ $ $) 108)) (-3078 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-574)) 113) (($ (-574) $) 112) (($ $ $) 119)))
+(((-137 |#1| |#2| |#3|) (-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2943 ($ (-246 |#2| |#3|))) (-15 -2943 ($ (-1155 |#2| |#3|))) (-15 -2943 ($ (-654 |#3|))) (-15 -2943 ($ (-654 $))) (-15 -3584 ((-781) $)) (-15 -2200 (|#3| $)) (-15 -2200 (|#3| $ (-574) (-574))) (-15 -2200 (|#3| $ (-574) (-574) (-574))) (-15 -2200 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2200 (|#3| $ (-654 (-574)))) (-15 -3059 ($ $ $)) (-15 * ($ $ $)) (-15 -1345 ($ $ (-574) $ (-574))) (-15 -1345 ($ $ (-574) (-574))) (-15 -3202 ($ $)) (-15 -3202 ($ $ (-574) (-574))) (-15 -2969 ($ $ (-654 (-574)))) (-15 -2569 ($)) (-15 -2546 ($)) (-15 -1325 ((-654 |#3|) $)) (-15 -2472 ($ (-654 |#3|))) (-15 -3670 ($)))) (-574) (-781) (-174)) (T -137))
+((-3059 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1155 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 *2) (-4 *5 (-174)))) (-2200 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2200 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2200 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2200 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-574)) (-14 *5 (-781)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1345 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-1345 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-3202 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-3202 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2969 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2569 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2546 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2472 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-3670 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))))
+(-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2943 ($ (-246 |#2| |#3|))) (-15 -2943 ($ (-1155 |#2| |#3|))) (-15 -2943 ($ (-654 |#3|))) (-15 -2943 ($ (-654 $))) (-15 -3584 ((-781) $)) (-15 -2200 (|#3| $)) (-15 -2200 (|#3| $ (-574) (-574))) (-15 -2200 (|#3| $ (-574) (-574) (-574))) (-15 -2200 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2200 (|#3| $ (-654 (-574)))) (-15 -3059 ($ $ $)) (-15 * ($ $ $)) (-15 -1345 ($ $ (-574) $ (-574))) (-15 -1345 ($ $ (-574) (-574))) (-15 -3202 ($ $)) (-15 -3202 ($ $ (-574) (-574))) (-15 -2969 ($ $ (-654 (-574)))) (-15 -2569 ($)) (-15 -2546 ($)) (-15 -1325 ((-654 |#3|) $)) (-15 -2472 ($ (-654 |#3|))) (-15 -3670 ($))))
+((-2849 (((-112) $ $) NIL)) (-1809 (((-1148) $) 11)) (-1796 (((-1148) $) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-138) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))) (T -138))
+((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-138)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-138)))))
+(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-4282 (((-188) $) 10)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-654 (-1148)) $) 13)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-139) (-13 (-1096) (-10 -8 (-15 -4282 ((-188) $)) (-15 -2045 ((-654 (-1148)) $))))) (T -139))
+((-4282 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-139)))))
+(-13 (-1096) (-10 -8 (-15 -4282 ((-188) $)) (-15 -2045 ((-654 (-1148)) $))))
+((-2849 (((-112) $ $) NIL)) (-1716 (((-654 (-875)) $) NIL)) (-2032 (((-516) $) NIL)) (-2568 (((-1172) $) NIL)) (-4282 (((-188) $) NIL)) (-2884 (((-112) $ (-516)) NIL)) (-3966 (((-1133) $) NIL)) (-2207 (((-654 (-112)) $) NIL)) (-2943 (((-872) $) NIL) (((-189) $) 6)) (-2923 (((-112) $ $) NIL)) (-3944 (((-55) $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-140) (-13 (-187) (-623 (-189)))) (T -140))
+NIL
+(-13 (-187) (-623 (-189)))
+((-2407 (((-654 (-185 (-140))) $) 13)) (-1321 (((-654 (-185 (-140))) $) 14)) (-2038 (((-654 (-848)) $) 10)) (-1965 (((-140) $) 7)) (-2943 (((-872) $) 16)))
+(((-141) (-13 (-623 (-872)) (-10 -8 (-15 -1965 ((-140) $)) (-15 -2038 ((-654 (-848)) $)) (-15 -2407 ((-654 (-185 (-140))) $)) (-15 -1321 ((-654 (-185 (-140))) $))))) (T -141))
+((-1965 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -1965 ((-140) $)) (-15 -2038 ((-654 (-848)) $)) (-15 -2407 ((-654 (-185 (-140))) $)) (-15 -1321 ((-654 (-185 (-140))) $))))
+((-2849 (((-112) $ $) NIL)) (-3750 (($) 17 T CONST)) (-3478 (($) NIL (|has| (-145) (-377)))) (-4359 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-4365 (($ $ $) NIL)) (-4006 (((-112) $ $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| (-145) (-377)))) (-1508 (($) NIL) (($ (-654 (-145))) NIL)) (-3391 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-1586 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456))) (($ (-145) $) 60 (|has| $ (-6 -4456)))) (-3335 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2820 (($) NIL (|has| (-145) (-377)))) (-1864 (((-654 (-145)) $) 69 (|has| $ (-6 -4456)))) (-3972 (((-112) $ $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-3658 (((-145) $) NIL (|has| (-145) (-860)))) (-1712 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2106 (((-145) $) NIL (|has| (-145) (-860)))) (-2446 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-145) (-145)) $) 64)) (-4425 (($) 18 T CONST)) (-2565 (((-932) $) NIL (|has| (-145) (-377)))) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-1731 (($ $ $) 30)) (-2234 (((-145) $) 61)) (-1709 (($ (-145) $) 59)) (-2576 (($ (-932)) NIL (|has| (-145) (-377)))) (-2248 (($) 16 T CONST)) (-3966 (((-1133) $) NIL)) (-1836 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3459 (((-145) $) 62)) (-3124 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) 57)) (-2500 (($) 15 T CONST)) (-2457 (($ $ $) 32) (($ $ (-145)) NIL)) (-2826 (($ (-654 (-145))) NIL) (($) NIL)) (-3975 (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-1172) $) 37) (((-546) $) NIL (|has| (-145) (-624 (-546)))) (((-654 (-145)) $) 35)) (-2956 (($ (-654 (-145))) NIL)) (-2132 (($ $) 33 (|has| (-145) (-377)))) (-2943 (((-872) $) 53)) (-2049 (($ (-1172)) 14) (($ (-654 (-145))) 50)) (-3615 (((-781) $) NIL)) (-4281 (($) 58) (($ (-654 (-145))) NIL)) (-2923 (((-112) $ $) NIL)) (-2817 (($ (-654 (-145))) NIL)) (-2935 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2251 (($) 21 T CONST)) (-1984 (($) 20 T CONST)) (-2982 (((-112) $ $) 24)) (-2863 (((-781) $) 56 (|has| $ (-6 -4456)))))
+(((-142) (-13 (-1113) (-624 (-1172)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -2049 ($ (-1172))) (-15 -2049 ($ (-654 (-145)))) (-15 -2500 ($) -1707) (-15 -2248 ($) -1707) (-15 -3750 ($) -1707) (-15 -4425 ($) -1707) (-15 -1984 ($) -1707) (-15 -2251 ($) -1707)))) (T -142))
+((-2049 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-142)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) (-2500 (*1 *1) (-5 *1 (-142))) (-2248 (*1 *1) (-5 *1 (-142))) (-3750 (*1 *1) (-5 *1 (-142))) (-4425 (*1 *1) (-5 *1 (-142))) (-1984 (*1 *1) (-5 *1 (-142))) (-2251 (*1 *1) (-5 *1 (-142))))
+(-13 (-1113) (-624 (-1172)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -2049 ($ (-1172))) (-15 -2049 ($ (-654 (-145)))) (-15 -2500 ($) -1707) (-15 -2248 ($) -1707) (-15 -3750 ($) -1707) (-15 -4425 ($) -1707) (-15 -1984 ($) -1707) (-15 -2251 ($) -1707)))
+((-3618 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4090 ((|#1| |#3|) 9)) (-3009 ((|#3| |#3|) 15)))
+(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -4090 (|#1| |#3|)) (-15 -3009 (|#3| |#3|)) (-15 -3618 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1005 |#1|) (-382 |#2|)) (T -143))
+((-3618 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-382 *5)))) (-3009 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1005 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-382 *4)))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-382 *4)))))
+(-10 -7 (-15 -4090 (|#1| |#3|)) (-15 -3009 (|#3| |#3|)) (-15 -3618 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2531 (($ $ $) 8)) (-4430 (($ $) 7)) (-2819 (($ $ $) 6)))
(((-144) (-141)) (T -144))
-((-2661 (*1 *1 *1 *1) (-4 *1 (-144))) (-2128 (*1 *1 *1) (-4 *1 (-144))) (-3148 (*1 *1 *1 *1) (-4 *1 (-144))))
-(-13 (-10 -8 (-15 -3148 ($ $ $)) (-15 -2128 ($ $)) (-15 -2661 ($ $ $))))
-((-2846 (((-112) $ $) NIL)) (-4169 (((-112) $) 39)) (-2525 (($ $) 55)) (-1691 (($) 26 T CONST)) (-1486 (((-779)) 13)) (-2815 (($) 25)) (-3914 (($) 27 T CONST)) (-3307 (((-779) $) 21)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-1532 (((-112) $) 41)) (-1811 (($ $) 56)) (-3715 (((-930) $) 23)) (-4347 (((-1170) $) 49)) (-2571 (($ (-930)) 20)) (-3386 (((-112) $) 37)) (-3964 (((-1131) $) NIL)) (-1966 (($) 28 T CONST)) (-4067 (((-112) $) 35)) (-2940 (((-870) $) 30)) (-2314 (($ (-779)) 19) (($ (-1170)) 54)) (-4379 (((-112) $ $) NIL)) (-2082 (((-112) $) 45)) (-2903 (((-112) $) 43)) (-3039 (((-112) $ $) 11)) (-3014 (((-112) $ $) 9)) (-2978 (((-112) $ $) 7)) (-3026 (((-112) $ $) 10)) (-3003 (((-112) $ $) 8)))
-(((-145) (-13 (-852) (-10 -8 (-15 -3307 ((-779) $)) (-15 -2314 ($ (-779))) (-15 -2314 ($ (-1170))) (-15 -1691 ($) -1705) (-15 -3914 ($) -1705) (-15 -1966 ($) -1705) (-15 -2525 ($ $)) (-15 -1811 ($ $)) (-15 -4067 ((-112) $)) (-15 -3386 ((-112) $)) (-15 -2903 ((-112) $)) (-15 -4169 ((-112) $)) (-15 -1532 ((-112) $)) (-15 -2082 ((-112) $))))) (T -145))
-((-3307 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-145)))) (-2314 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-145)))) (-2314 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-145)))) (-1691 (*1 *1) (-5 *1 (-145))) (-3914 (*1 *1) (-5 *1 (-145))) (-1966 (*1 *1) (-5 *1 (-145))) (-2525 (*1 *1 *1) (-5 *1 (-145))) (-1811 (*1 *1 *1) (-5 *1 (-145))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1532 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(-13 (-852) (-10 -8 (-15 -3307 ((-779) $)) (-15 -2314 ($ (-779))) (-15 -2314 ($ (-1170))) (-15 -1691 ($) -1705) (-15 -3914 ($) -1705) (-15 -1966 ($) -1705) (-15 -2525 ($ $)) (-15 -1811 ($ $)) (-15 -4067 ((-112) $)) (-15 -3386 ((-112) $)) (-15 -2903 ((-112) $)) (-15 -4169 ((-112) $)) (-15 -1532 ((-112) $)) (-15 -2082 ((-112) $))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 33)) (-3849 (((-3 $ "failed") $) 39)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+((-2531 (*1 *1 *1 *1) (-4 *1 (-144))) (-4430 (*1 *1 *1) (-4 *1 (-144))) (-2819 (*1 *1 *1 *1) (-4 *1 (-144))))
+(-13 (-10 -8 (-15 -2819 ($ $ $)) (-15 -4430 ($ $)) (-15 -2531 ($ $ $))))
+((-2849 (((-112) $ $) NIL)) (-1446 (((-112) $) 39)) (-3750 (($ $) 55)) (-2665 (($) 26 T CONST)) (-1487 (((-781)) 13)) (-2820 (($) 25)) (-3903 (($) 27 T CONST)) (-3941 (((-781) $) 21)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-3630 (((-112) $) 41)) (-4425 (($ $) 56)) (-2565 (((-932) $) 23)) (-2568 (((-1172) $) 49)) (-2576 (($ (-932)) 20)) (-3543 (((-112) $) 37)) (-3966 (((-1133) $) NIL)) (-2270 (($) 28 T CONST)) (-2975 (((-112) $) 35)) (-2943 (((-872) $) 30)) (-2319 (($ (-781)) 19) (($ (-1172)) 54)) (-2923 (((-112) $ $) NIL)) (-2124 (((-112) $) 45)) (-3098 (((-112) $) 43)) (-3041 (((-112) $ $) 11)) (-3016 (((-112) $ $) 9)) (-2982 (((-112) $ $) 7)) (-3028 (((-112) $ $) 10)) (-3005 (((-112) $ $) 8)))
+(((-145) (-13 (-854) (-10 -8 (-15 -3941 ((-781) $)) (-15 -2319 ($ (-781))) (-15 -2319 ($ (-1172))) (-15 -2665 ($) -1707) (-15 -3903 ($) -1707) (-15 -2270 ($) -1707) (-15 -3750 ($ $)) (-15 -4425 ($ $)) (-15 -2975 ((-112) $)) (-15 -3543 ((-112) $)) (-15 -3098 ((-112) $)) (-15 -1446 ((-112) $)) (-15 -3630 ((-112) $)) (-15 -2124 ((-112) $))))) (T -145))
+((-3941 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-145)))) (-2665 (*1 *1) (-5 *1 (-145))) (-3903 (*1 *1) (-5 *1 (-145))) (-2270 (*1 *1) (-5 *1 (-145))) (-3750 (*1 *1 *1) (-5 *1 (-145))) (-4425 (*1 *1 *1) (-5 *1 (-145))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(-13 (-854) (-10 -8 (-15 -3941 ((-781) $)) (-15 -2319 ($ (-781))) (-15 -2319 ($ (-1172))) (-15 -2665 ($) -1707) (-15 -3903 ($) -1707) (-15 -2270 ($) -1707) (-15 -3750 ($ $)) (-15 -4425 ($ $)) (-15 -2975 ((-112) $)) (-15 -3543 ((-112) $)) (-15 -3098 ((-112) $)) (-15 -1446 ((-112) $)) (-15 -3630 ((-112) $)) (-15 -2124 ((-112) $))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-1369 (((-3 $ "failed") $) 39)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
(((-146) (-141)) (T -146))
-((-3849 (*1 *1 *1) (|partial| -4 *1 (-146))))
-(-13 (-1060) (-10 -8 (-15 -3849 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-4251 ((|#1| (-697 |#1|) |#1|) 19)))
-(((-147 |#1|) (-10 -7 (-15 -4251 (|#1| (-697 |#1|) |#1|))) (-174)) (T -147))
-((-4251 (*1 *2 *3 *2) (-12 (-5 *3 (-697 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))))
-(-10 -7 (-15 -4251 (|#1| (-697 |#1|) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 33)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+((-1369 (*1 *1 *1) (|partial| -4 *1 (-146))))
+(-13 (-1062) (-10 -8 (-15 -1369 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-4169 ((|#1| (-699 |#1|) |#1|) 19)))
+(((-147 |#1|) (-10 -7 (-15 -4169 (|#1| (-699 |#1|) |#1|))) (-174)) (T -147))
+((-4169 (*1 *2 *3 *2) (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))))
+(-10 -7 (-15 -4169 (|#1| (-699 |#1|) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
(((-148) (-141)) (T -148))
NIL
-(-13 (-1060))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-4082 (((-2 (|:| -1679 (-779)) (|:| -1857 (-415 |#2|)) (|:| |radicand| |#2|)) (-415 |#2|) (-779)) 76)) (-3607 (((-3 (-2 (|:| |radicand| (-415 |#2|)) (|:| |deg| (-779))) "failed") |#3|) 56)) (-2335 (((-2 (|:| -1857 (-415 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-4242 ((|#1| |#3| |#3|) 44)) (-2641 ((|#3| |#3| (-415 |#2|) (-415 |#2|)) 20)) (-1388 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| |deg| (-779))) |#3| |#3|) 53)))
-(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2335 ((-2 (|:| -1857 (-415 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3607 ((-3 (-2 (|:| |radicand| (-415 |#2|)) (|:| |deg| (-779))) "failed") |#3|)) (-15 -4082 ((-2 (|:| -1679 (-779)) (|:| -1857 (-415 |#2|)) (|:| |radicand| |#2|)) (-415 |#2|) (-779))) (-15 -4242 (|#1| |#3| |#3|)) (-15 -2641 (|#3| |#3| (-415 |#2|) (-415 |#2|))) (-15 -1388 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| |deg| (-779))) |#3| |#3|))) (-1233) (-1255 |#1|) (-1255 (-415 |#2|))) (T -149))
-((-1388 (*1 *2 *3 *3) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-415 *5)) (|:| |c2| (-415 *5)) (|:| |deg| (-779)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))) (-2641 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-415 *5)) (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1255 *3)))) (-4242 (*1 *2 *3 *3) (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1233)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1255 (-415 *4))))) (-4082 (*1 *2 *3 *4) (-12 (-5 *3 (-415 *6)) (-4 *5 (-1233)) (-4 *6 (-1255 *5)) (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-779)) (-4 *7 (-1255 *3)))) (-3607 (*1 *2 *3) (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| |radicand| (-415 *5)) (|:| |deg| (-779)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))) (-2335 (*1 *2 *3) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -1857 (-415 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))))
-(-10 -7 (-15 -2335 ((-2 (|:| -1857 (-415 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3607 ((-3 (-2 (|:| |radicand| (-415 |#2|)) (|:| |deg| (-779))) "failed") |#3|)) (-15 -4082 ((-2 (|:| -1679 (-779)) (|:| -1857 (-415 |#2|)) (|:| |radicand| |#2|)) (-415 |#2|) (-779))) (-15 -4242 (|#1| |#3| |#3|)) (-15 -2641 (|#3| |#3| (-415 |#2|) (-415 |#2|))) (-15 -1388 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| |deg| (-779))) |#3| |#3|)))
-((-3643 (((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|)) 35)))
-(((-150 |#1| |#2|) (-10 -7 (-15 -3643 ((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|)))) (-553) (-167 |#1|)) (T -150))
-((-3643 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *5))) (-5 *3 (-1184 *5)) (-4 *5 (-167 *4)) (-4 *4 (-553)) (-5 *1 (-150 *4 *5)))))
-(-10 -7 (-15 -3643 ((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|))))
-((-2162 (($ (-1 (-112) |#2|) $) 37)) (-2086 (($ $) 44)) (-3332 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2865 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-3770 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-1612 (((-112) (-1 (-112) |#2|) $) 24)) (-3973 (((-779) (-1 (-112) |#2|) $) 18) (((-779) |#2| $) NIL)) (-4380 (((-112) (-1 (-112) |#2|) $) 21)) (-2860 (((-779) $) 12)))
-(((-151 |#1| |#2|) (-10 -8 (-15 -2086 (|#1| |#1|)) (-15 -3332 (|#1| |#2| |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2162 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3332 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3770 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3973 ((-779) |#2| |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2860 ((-779) |#1|))) (-152 |#2|) (-1229)) (T -151))
-NIL
-(-10 -8 (-15 -2086 (|#1| |#1|)) (-15 -3332 (|#1| |#2| |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2162 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3332 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3770 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3973 ((-779) |#2| |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2860 ((-779) |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-2162 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2086 (($ $) 42 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454))) (($ |#1| $) 43 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 41 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 50)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-152 |#1|) (-141) (-1229)) (T -152))
-((-2953 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-152 *3)))) (-3770 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1229)))) (-2865 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)))) (-2865 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)))) (-3332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *3)) (-4 *3 (-1229)))) (-2162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *3)) (-4 *3 (-1229)))) (-2865 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1111)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)))) (-3332 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)) (-4 *2 (-1111)))) (-2086 (*1 *1 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)) (-4 *2 (-1111)))))
-(-13 (-497 |t#1|) (-10 -8 (-15 -2953 ($ (-652 |t#1|))) (-15 -3770 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4454)) (PROGN (-15 -2865 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2865 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3332 ($ (-1 (-112) |t#1|) $)) (-15 -2162 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -2865 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3332 ($ |t#1| $)) (-15 -2086 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) 111)) (-1886 (((-112) $) NIL)) (-4333 (($ |#2| (-652 (-930))) 71)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3907 (($ (-930)) 57)) (-4224 (((-135)) 23)) (-2940 (((-870) $) 86) (($ (-572)) 53) (($ |#2|) 54)) (-3979 ((|#2| $ (-652 (-930))) 74)) (-4249 (((-779)) 20 T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 47 T CONST)) (-2143 (($) 51 T CONST)) (-2978 (((-112) $ $) 33)) (-3106 (($ $ |#2|) NIL)) (-3089 (($ $) 42) (($ $ $) 40)) (-3075 (($ $ $) 38)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL)))
-(((-153 |#1| |#2| |#3|) (-13 (-1060) (-38 |#2|) (-1286 |#2|) (-10 -8 (-15 -3907 ($ (-930))) (-15 -4333 ($ |#2| (-652 (-930)))) (-15 -3979 (|#2| $ (-652 (-930)))) (-15 -2062 ((-3 $ "failed") $)))) (-930) (-370) (-1004 |#1| |#2|)) (T -153))
-((-2062 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-930)) (-4 *3 (-370)) (-14 *4 (-1004 *2 *3)))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-370)) (-14 *5 (-1004 *3 *4)))) (-4333 (*1 *1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-930)) (-4 *2 (-370)) (-14 *5 (-1004 *4 *2)))) (-3979 (*1 *2 *1 *3) (-12 (-5 *3 (-652 (-930))) (-4 *2 (-370)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-930)) (-14 *5 (-1004 *4 *2)))))
-(-13 (-1060) (-38 |#2|) (-1286 |#2|) (-10 -8 (-15 -3907 ($ (-930))) (-15 -4333 ($ |#2| (-652 (-930)))) (-15 -3979 (|#2| $ (-652 (-930)))) (-15 -2062 ((-3 $ "failed") $))))
-((-2981 (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-1664 (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572))) 95) (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936)) 96)) (-2907 (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227))))) 99) (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-952 (-227)))) 98) (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572))) 90) (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936)) 91)))
-(((-154) (-10 -7 (-15 -2907 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936))) (-15 -2907 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572)))) (-15 -1664 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936))) (-15 -1664 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572)))) (-15 -2981 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2907 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-952 (-227))))) (-15 -2907 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))))))) (T -154))
-((-2907 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)) (-5 *3 (-652 (-652 (-952 (-227))))))) (-2907 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)) (-5 *3 (-652 (-952 (-227)))))) (-2981 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 *4)))) (|:| |xValues| (-1105 *4)) (|:| |yValues| (-1105 *4)))) (-5 *1 (-154)) (-5 *3 (-652 (-652 (-952 *4)))))) (-1664 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-415 (-572))) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)))) (-2907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-415 (-572))) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)))))
-(-10 -7 (-15 -2907 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936))) (-15 -2907 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572)))) (-15 -1664 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936))) (-15 -1664 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572)))) (-15 -2981 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2907 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-952 (-227))))) (-15 -2907 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-1498 (((-652 (-1146)) $) 20)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 27) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-1146) $) 9)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-155) (-13 (-1094) (-10 -8 (-15 -1498 ((-652 (-1146)) $)) (-15 -2042 ((-1146) $))))) (T -155))
-((-1498 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-155)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-155)))))
-(-13 (-1094) (-10 -8 (-15 -1498 ((-652 (-1146)) $)) (-15 -2042 ((-1146) $))))
-((-2137 (((-652 (-171 |#2|)) |#1| |#2|) 50)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -2137 ((-652 (-171 |#2|)) |#1| |#2|))) (-1255 (-171 (-572))) (-13 (-370) (-856))) (T -156))
-((-2137 (*1 *2 *3 *4) (-12 (-5 *2 (-652 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1255 (-171 (-572)))) (-4 *4 (-13 (-370) (-856))))))
-(-10 -7 (-15 -2137 ((-652 (-171 |#2|)) |#1| |#2|)))
-((-2846 (((-112) $ $) NIL)) (-1807 (((-1228) $) 12)) (-1794 (((-1146) $) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-157) (-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1228) $))))) (T -157))
-((-1794 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-157)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-157)))))
-(-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1228) $))))
-((-2846 (((-112) $ $) NIL)) (-3388 (($) 41)) (-3748 (($) 40)) (-1687 (((-930)) 46)) (-4347 (((-1170) $) NIL)) (-2399 (((-572) $) 44)) (-3964 (((-1131) $) NIL)) (-2633 (($) 42)) (-2650 (($ (-572)) 47)) (-2940 (((-870) $) 53)) (-3538 (($) 43)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 38)) (-3075 (($ $ $) 35)) (* (($ (-930) $) 45) (($ (-227) $) 11)))
-(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-930) $)) (-15 * ($ (-227) $)) (-15 -3075 ($ $ $)) (-15 -3748 ($)) (-15 -3388 ($)) (-15 -2633 ($)) (-15 -3538 ($)) (-15 -2399 ((-572) $)) (-15 -1687 ((-930))) (-15 -2650 ($ (-572)))))) (T -158))
-((-3075 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-3748 (*1 *1) (-5 *1 (-158))) (-3388 (*1 *1) (-5 *1 (-158))) (-2633 (*1 *1) (-5 *1 (-158))) (-3538 (*1 *1) (-5 *1 (-158))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-158)))) (-1687 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-158)))) (-2650 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-158)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-930) $)) (-15 * ($ (-227) $)) (-15 -3075 ($ $ $)) (-15 -3748 ($)) (-15 -3388 ($)) (-15 -2633 ($)) (-15 -3538 ($)) (-15 -2399 ((-572) $)) (-15 -1687 ((-930))) (-15 -2650 ($ (-572)))))
-((-4150 ((|#2| |#2| (-1103 |#2|)) 98) ((|#2| |#2| (-1188)) 75)) (-2247 ((|#2| |#2| (-1103 |#2|)) 97) ((|#2| |#2| (-1188)) 74)) (-2661 ((|#2| |#2| |#2|) 25)) (-4171 (((-115) (-115)) 111)) (-3997 ((|#2| (-652 |#2|)) 130)) (-1562 ((|#2| (-652 |#2|)) 151)) (-2375 ((|#2| (-652 |#2|)) 138)) (-3188 ((|#2| |#2|) 136)) (-1893 ((|#2| (-652 |#2|)) 124)) (-3860 ((|#2| (-652 |#2|)) 125)) (-1871 ((|#2| (-652 |#2|)) 149)) (-4413 ((|#2| |#2| (-1188)) 63) ((|#2| |#2|) 62)) (-2128 ((|#2| |#2|) 21)) (-3148 ((|#2| |#2| |#2|) 24)) (-4406 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-159 |#1| |#2|) (-10 -7 (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3148 (|#2| |#2| |#2|)) (-15 -2661 (|#2| |#2| |#2|)) (-15 -2128 (|#2| |#2|)) (-15 -4413 (|#2| |#2|)) (-15 -4413 (|#2| |#2| (-1188))) (-15 -4150 (|#2| |#2| (-1188))) (-15 -4150 (|#2| |#2| (-1103 |#2|))) (-15 -2247 (|#2| |#2| (-1188))) (-15 -2247 (|#2| |#2| (-1103 |#2|))) (-15 -3188 (|#2| |#2|)) (-15 -1871 (|#2| (-652 |#2|))) (-15 -2375 (|#2| (-652 |#2|))) (-15 -1562 (|#2| (-652 |#2|))) (-15 -1893 (|#2| (-652 |#2|))) (-15 -3860 (|#2| (-652 |#2|))) (-15 -3997 (|#2| (-652 |#2|)))) (-564) (-438 |#1|)) (T -159))
-((-3997 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-3188 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-2247 (*1 *2 *2 *3) (-12 (-5 *3 (-1103 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)))) (-2247 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)) (-4 *2 (-438 *4)))) (-4150 (*1 *2 *2 *3) (-12 (-5 *3 (-1103 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)))) (-4150 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)) (-4 *2 (-438 *4)))) (-4413 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)) (-4 *2 (-438 *4)))) (-4413 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-2128 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-2661 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-3148 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-159 *3 *4)) (-4 *4 (-438 *3)))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-438 *4)))))
-(-10 -7 (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3148 (|#2| |#2| |#2|)) (-15 -2661 (|#2| |#2| |#2|)) (-15 -2128 (|#2| |#2|)) (-15 -4413 (|#2| |#2|)) (-15 -4413 (|#2| |#2| (-1188))) (-15 -4150 (|#2| |#2| (-1188))) (-15 -4150 (|#2| |#2| (-1103 |#2|))) (-15 -2247 (|#2| |#2| (-1188))) (-15 -2247 (|#2| |#2| (-1103 |#2|))) (-15 -3188 (|#2| |#2|)) (-15 -1871 (|#2| (-652 |#2|))) (-15 -2375 (|#2| (-652 |#2|))) (-15 -1562 (|#2| (-652 |#2|))) (-15 -1893 (|#2| (-652 |#2|))) (-15 -3860 (|#2| (-652 |#2|))) (-15 -3997 (|#2| (-652 |#2|))))
-((-4348 ((|#1| |#1| |#1|) 64)) (-4256 ((|#1| |#1| |#1|) 61)) (-2661 ((|#1| |#1| |#1|) 55)) (-3351 ((|#1| |#1|) 42)) (-3934 ((|#1| |#1| (-652 |#1|)) 53)) (-2128 ((|#1| |#1|) 46)) (-3148 ((|#1| |#1| |#1|) 49)))
-(((-160 |#1|) (-10 -7 (-15 -3148 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -3934 (|#1| |#1| (-652 |#1|))) (-15 -3351 (|#1| |#1|)) (-15 -2661 (|#1| |#1| |#1|)) (-15 -4256 (|#1| |#1| |#1|)) (-15 -4348 (|#1| |#1| |#1|))) (-553)) (T -160))
-((-4348 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-4256 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-2661 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-3351 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-3934 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-553)) (-5 *1 (-160 *2)))) (-2128 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-3148 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
-(-10 -7 (-15 -3148 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -3934 (|#1| |#1| (-652 |#1|))) (-15 -3351 (|#1| |#1|)) (-15 -2661 (|#1| |#1| |#1|)) (-15 -4256 (|#1| |#1| |#1|)) (-15 -4348 (|#1| |#1| |#1|)))
-((-4150 (($ $ (-1188)) 12) (($ $ (-1103 $)) 11)) (-2247 (($ $ (-1188)) 10) (($ $ (-1103 $)) 9)) (-2661 (($ $ $) 8)) (-4413 (($ $) 14) (($ $ (-1188)) 13)) (-2128 (($ $) 7)) (-3148 (($ $ $) 6)))
+(-13 (-1062))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-1847 (((-2 (|:| -2524 (-781)) (|:| -1859 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781)) 76)) (-4018 (((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|) 56)) (-2548 (((-2 (|:| -1859 (-417 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-4099 ((|#1| |#3| |#3|) 44)) (-2646 ((|#3| |#3| (-417 |#2|) (-417 |#2|)) 20)) (-2279 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|) 53)))
+(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2548 ((-2 (|:| -1859 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4018 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -1847 ((-2 (|:| -2524 (-781)) (|:| -1859 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -4099 (|#1| |#3| |#3|)) (-15 -2646 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -2279 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) (-1235) (-1257 |#1|) (-1257 (-417 |#2|))) (T -149))
+((-2279 (*1 *2 *3 *3) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5))))) (-2646 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1257 *3)))) (-4099 (*1 *2 *3 *3) (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1235)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1257 (-417 *4))))) (-1847 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *6)) (-4 *5 (-1235)) (-4 *6 (-1257 *5)) (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1257 *3)))) (-4018 (*1 *2 *3) (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5))))) (-2548 (*1 *2 *3) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -1859 (-417 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5))))))
+(-10 -7 (-15 -2548 ((-2 (|:| -1859 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4018 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -1847 ((-2 (|:| -2524 (-781)) (|:| -1859 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -4099 (|#1| |#3| |#3|)) (-15 -2646 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -2279 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|)))
+((-3180 (((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|)) 35)))
+(((-150 |#1| |#2|) (-10 -7 (-15 -3180 ((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|)))) (-555) (-167 |#1|)) (T -150))
+((-3180 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *5))) (-5 *3 (-1186 *5)) (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5)))))
+(-10 -7 (-15 -3180 ((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|))))
+((-2166 (($ (-1 (-112) |#2|) $) 37)) (-2158 (($ $) 44)) (-3335 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2868 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-1836 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-3124 (((-112) (-1 (-112) |#2|) $) 24)) (-3975 (((-781) (-1 (-112) |#2|) $) 18) (((-781) |#2| $) NIL)) (-2935 (((-112) (-1 (-112) |#2|) $) 21)) (-2863 (((-781) $) 12)))
+(((-151 |#1| |#2|) (-10 -8 (-15 -2158 (|#1| |#1|)) (-15 -3335 (|#1| |#2| |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2166 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3335 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1836 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|))) (-152 |#2|) (-1231)) (T -151))
+NIL
+(-10 -8 (-15 -2158 (|#1| |#1|)) (-15 -3335 (|#1| |#2| |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2166 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3335 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1836 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-2166 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2158 (($ $) 42 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456))) (($ |#1| $) 43 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 41 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 50)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-152 |#1|) (-141) (-1231)) (T -152))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-152 *3)))) (-1836 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1231)))) (-2868 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)))) (-2868 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)))) (-3335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *3)) (-4 *3 (-1231)))) (-2166 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *3)) (-4 *3 (-1231)))) (-2868 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1113)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)))) (-3335 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)) (-4 *2 (-1113)))) (-2158 (*1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)) (-4 *2 (-1113)))))
+(-13 (-499 |t#1|) (-10 -8 (-15 -2956 ($ (-654 |t#1|))) (-15 -1836 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4456)) (PROGN (-15 -2868 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2868 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3335 ($ (-1 (-112) |t#1|) $)) (-15 -2166 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -2868 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3335 ($ |t#1| $)) (-15 -2158 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) 111)) (-3965 (((-112) $) NIL)) (-4335 (($ |#2| (-654 (-932))) 71)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3910 (($ (-932)) 57)) (-3939 (((-135)) 23)) (-2943 (((-872) $) 86) (($ (-574)) 53) (($ |#2|) 54)) (-3344 ((|#2| $ (-654 (-932))) 74)) (-4160 (((-781)) 20 T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 47 T CONST)) (-2146 (($) 51 T CONST)) (-2982 (((-112) $ $) 33)) (-3107 (($ $ |#2|) NIL)) (-3094 (($ $) 42) (($ $ $) 40)) (-3078 (($ $ $) 38)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL)))
+(((-153 |#1| |#2| |#3|) (-13 (-1062) (-38 |#2|) (-1288 |#2|) (-10 -8 (-15 -3910 ($ (-932))) (-15 -4335 ($ |#2| (-654 (-932)))) (-15 -3344 (|#2| $ (-654 (-932)))) (-15 -1950 ((-3 $ "failed") $)))) (-932) (-372) (-1006 |#1| |#2|)) (T -153))
+((-1950 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-932)) (-4 *3 (-372)) (-14 *4 (-1006 *2 *3)))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-372)) (-14 *5 (-1006 *3 *4)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-932)) (-4 *2 (-372)) (-14 *5 (-1006 *4 *2)))) (-3344 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-932))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-932)) (-14 *5 (-1006 *4 *2)))))
+(-13 (-1062) (-38 |#2|) (-1288 |#2|) (-10 -8 (-15 -3910 ($ (-932))) (-15 -4335 ($ |#2| (-654 (-932)))) (-15 -3344 (|#2| $ (-654 (-932)))) (-15 -1950 ((-3 $ "failed") $))))
+((-2523 (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2352 (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574))) 95) (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938)) 96)) (-3151 (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227))))) 99) (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-954 (-227)))) 98) (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574))) 90) (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938)) 91)))
+(((-154) (-10 -7 (-15 -3151 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938))) (-15 -3151 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574)))) (-15 -2352 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938))) (-15 -2352 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574)))) (-15 -2523 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3151 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-954 (-227))))) (-15 -3151 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227)))))))) (T -154))
+((-3151 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-954 (-227))))))) (-3151 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-954 (-227)))))) (-2523 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 *4)))) (|:| |xValues| (-1107 *4)) (|:| |yValues| (-1107 *4)))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-954 *4)))))) (-2352 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)))) (-3151 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)))))
+(-10 -7 (-15 -3151 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938))) (-15 -3151 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574)))) (-15 -2352 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938))) (-15 -2352 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574)))) (-15 -2523 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3151 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-954 (-227))))) (-15 -3151 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227)))))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-1500 (((-654 (-1148)) $) 20)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 27) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-1148) $) 9)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-155) (-13 (-1096) (-10 -8 (-15 -1500 ((-654 (-1148)) $)) (-15 -2045 ((-1148) $))))) (T -155))
+((-1500 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-155)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-155)))))
+(-13 (-1096) (-10 -8 (-15 -1500 ((-654 (-1148)) $)) (-15 -2045 ((-1148) $))))
+((-1399 (((-654 (-171 |#2|)) |#1| |#2|) 50)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -1399 ((-654 (-171 |#2|)) |#1| |#2|))) (-1257 (-171 (-574))) (-13 (-372) (-858))) (T -156))
+((-1399 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1257 (-171 (-574)))) (-4 *4 (-13 (-372) (-858))))))
+(-10 -7 (-15 -1399 ((-654 (-171 |#2|)) |#1| |#2|)))
+((-2849 (((-112) $ $) NIL)) (-1809 (((-1230) $) 12)) (-1796 (((-1148) $) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-157) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1230) $))))) (T -157))
+((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-157)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-157)))))
+(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1230) $))))
+((-2849 (((-112) $ $) NIL)) (-3563 (($) 41)) (-2873 (($) 40)) (-2616 (((-932)) 46)) (-2568 (((-1172) $) NIL)) (-1887 (((-574) $) 44)) (-3966 (((-1133) $) NIL)) (-3548 (($) 42)) (-2398 (($ (-574)) 47)) (-2943 (((-872) $) 53)) (-1424 (($) 43)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 38)) (-3078 (($ $ $) 35)) (* (($ (-932) $) 45) (($ (-227) $) 11)))
+(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-932) $)) (-15 * ($ (-227) $)) (-15 -3078 ($ $ $)) (-15 -2873 ($)) (-15 -3563 ($)) (-15 -3548 ($)) (-15 -1424 ($)) (-15 -1887 ((-574) $)) (-15 -2616 ((-932))) (-15 -2398 ($ (-574)))))) (T -158))
+((-3078 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-2873 (*1 *1) (-5 *1 (-158))) (-3563 (*1 *1) (-5 *1 (-158))) (-3548 (*1 *1) (-5 *1 (-158))) (-1424 (*1 *1) (-5 *1 (-158))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) (-2616 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-158)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-932) $)) (-15 * ($ (-227) $)) (-15 -3078 ($ $ $)) (-15 -2873 ($)) (-15 -3563 ($)) (-15 -3548 ($)) (-15 -1424 ($)) (-15 -1887 ((-574) $)) (-15 -2616 ((-932))) (-15 -2398 ($ (-574)))))
+((-4396 ((|#2| |#2| (-1105 |#2|)) 98) ((|#2| |#2| (-1190)) 75)) (-3059 ((|#2| |#2| (-1105 |#2|)) 97) ((|#2| |#2| (-1190)) 74)) (-2531 ((|#2| |#2| |#2|) 25)) (-4173 (((-115) (-115)) 111)) (-3536 ((|#2| (-654 |#2|)) 130)) (-3921 ((|#2| (-654 |#2|)) 151)) (-1693 ((|#2| (-654 |#2|)) 138)) (-1972 ((|#2| |#2|) 136)) (-4037 ((|#2| (-654 |#2|)) 124)) (-1469 ((|#2| (-654 |#2|)) 125)) (-3823 ((|#2| (-654 |#2|)) 149)) (-1992 ((|#2| |#2| (-1190)) 63) ((|#2| |#2|) 62)) (-4430 ((|#2| |#2|) 21)) (-2819 ((|#2| |#2| |#2|) 24)) (-1932 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-159 |#1| |#2|) (-10 -7 (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2819 (|#2| |#2| |#2|)) (-15 -2531 (|#2| |#2| |#2|)) (-15 -4430 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1190))) (-15 -4396 (|#2| |#2| (-1190))) (-15 -4396 (|#2| |#2| (-1105 |#2|))) (-15 -3059 (|#2| |#2| (-1190))) (-15 -3059 (|#2| |#2| (-1105 |#2|))) (-15 -1972 (|#2| |#2|)) (-15 -3823 (|#2| (-654 |#2|))) (-15 -1693 (|#2| (-654 |#2|))) (-15 -3921 (|#2| (-654 |#2|))) (-15 -4037 (|#2| (-654 |#2|))) (-15 -1469 (|#2| (-654 |#2|))) (-15 -3536 (|#2| (-654 |#2|)))) (-566) (-440 |#1|)) (T -159))
+((-3536 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3059 (*1 *2 *2 *3) (-12 (-5 *3 (-1105 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-3059 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-4396 (*1 *2 *2 *3) (-12 (-5 *3 (-1105 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-4396 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-1992 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4430 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-2531 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-2819 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4)) (-4 *4 (-440 *3)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4)))))
+(-10 -7 (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2819 (|#2| |#2| |#2|)) (-15 -2531 (|#2| |#2| |#2|)) (-15 -4430 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1190))) (-15 -4396 (|#2| |#2| (-1190))) (-15 -4396 (|#2| |#2| (-1105 |#2|))) (-15 -3059 (|#2| |#2| (-1190))) (-15 -3059 (|#2| |#2| (-1105 |#2|))) (-15 -1972 (|#2| |#2|)) (-15 -3823 (|#2| (-654 |#2|))) (-15 -1693 (|#2| (-654 |#2|))) (-15 -3921 (|#2| (-654 |#2|))) (-15 -4037 (|#2| (-654 |#2|))) (-15 -1469 (|#2| (-654 |#2|))) (-15 -3536 (|#2| (-654 |#2|))))
+((-2581 ((|#1| |#1| |#1|) 64)) (-4205 ((|#1| |#1| |#1|) 61)) (-2531 ((|#1| |#1| |#1|) 55)) (-3196 ((|#1| |#1|) 42)) (-4103 ((|#1| |#1| (-654 |#1|)) 53)) (-4430 ((|#1| |#1|) 46)) (-2819 ((|#1| |#1| |#1|) 49)))
+(((-160 |#1|) (-10 -7 (-15 -2819 (|#1| |#1| |#1|)) (-15 -4430 (|#1| |#1|)) (-15 -4103 (|#1| |#1| (-654 |#1|))) (-15 -3196 (|#1| |#1|)) (-15 -2531 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|))) (-555)) (T -160))
+((-2581 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-4205 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-2531 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3196 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-4103 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2)))) (-4430 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-2819 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
+(-10 -7 (-15 -2819 (|#1| |#1| |#1|)) (-15 -4430 (|#1| |#1|)) (-15 -4103 (|#1| |#1| (-654 |#1|))) (-15 -3196 (|#1| |#1|)) (-15 -2531 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)))
+((-4396 (($ $ (-1190)) 12) (($ $ (-1105 $)) 11)) (-3059 (($ $ (-1190)) 10) (($ $ (-1105 $)) 9)) (-2531 (($ $ $) 8)) (-1992 (($ $) 14) (($ $ (-1190)) 13)) (-4430 (($ $) 7)) (-2819 (($ $ $) 6)))
(((-161) (-141)) (T -161))
-((-4413 (*1 *1 *1) (-4 *1 (-161))) (-4413 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188)))) (-4150 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188)))) (-4150 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-161)))) (-2247 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-161)))))
-(-13 (-144) (-10 -8 (-15 -4413 ($ $)) (-15 -4413 ($ $ (-1188))) (-15 -4150 ($ $ (-1188))) (-15 -4150 ($ $ (-1103 $))) (-15 -2247 ($ $ (-1188))) (-15 -2247 ($ $ (-1103 $)))))
+((-1992 (*1 *1 *1) (-4 *1 (-161))) (-1992 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190)))) (-4396 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190)))) (-4396 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-161)))) (-3059 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190)))) (-3059 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-161)))))
+(-13 (-144) (-10 -8 (-15 -1992 ($ $)) (-15 -1992 ($ $ (-1190))) (-15 -4396 ($ $ (-1190))) (-15 -4396 ($ $ (-1105 $))) (-15 -3059 ($ $ (-1190))) (-15 -3059 ($ $ (-1105 $)))))
(((-144) . T))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 16) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-652 (-1146)) $) 10)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-162) (-13 (-1094) (-10 -8 (-15 -2042 ((-652 (-1146)) $))))) (T -162))
-((-2042 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-162)))))
-(-13 (-1094) (-10 -8 (-15 -2042 ((-652 (-1146)) $))))
-((-2846 (((-112) $ $) NIL)) (-1588 (($ (-572)) 14) (($ $ $) 15)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 18)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 9)))
-(((-163) (-13 (-1111) (-10 -8 (-15 -1588 ($ (-572))) (-15 -1588 ($ $ $))))) (T -163))
-((-1588 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-163)))) (-1588 (*1 *1 *1 *1) (-5 *1 (-163))))
-(-13 (-1111) (-10 -8 (-15 -1588 ($ (-572))) (-15 -1588 ($ $ $))))
-((-4171 (((-115) (-1188)) 102)))
-(((-164) (-10 -7 (-15 -4171 ((-115) (-1188))))) (T -164))
-((-4171 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-115)) (-5 *1 (-164)))))
-(-10 -7 (-15 -4171 ((-115) (-1188))))
-((-2283 ((|#3| |#3|) 19)))
-(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -2283 (|#3| |#3|))) (-1060) (-1255 |#1|) (-1255 |#2|)) (T -165))
-((-2283 (*1 *2 *2) (-12 (-4 *3 (-1060)) (-4 *4 (-1255 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1255 *4)))))
-(-10 -7 (-15 -2283 (|#3| |#3|)))
-((-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 223)) (-1635 ((|#2| $) 102)) (-2358 (($ $) 256)) (-2242 (($ $) 250)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 47)) (-2338 (($ $) 254)) (-2222 (($ $) 248)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2204 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#2| $) 144)) (-2780 (($ $ $) 229)) (-2993 (((-697 (-572)) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 160) (((-697 |#2|) (-697 $)) 154) (((-697 |#2|) (-1279 $)) NIL)) (-2865 (($ (-1184 |#2|)) 125) (((-3 $ "failed") (-415 (-1184 |#2|))) NIL)) (-2062 (((-3 $ "failed") $) 214)) (-3196 (((-3 (-415 (-572)) "failed") $) 204)) (-1733 (((-112) $) 199)) (-2233 (((-415 (-572)) $) 202)) (-3581 (((-930)) 96)) (-2792 (($ $ $) 231)) (-2791 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-2997 (($) 245)) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 193) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 198)) (-2028 ((|#2| $) 100)) (-3053 (((-1184 |#2|) $) 127)) (-1776 (($ (-1 |#2| |#2|) $) 108)) (-3116 (($ $) 247)) (-2851 (((-1184 |#2|) $) 126)) (-1322 (($ $) 207)) (-4408 (($) 103)) (-4300 (((-426 (-1184 $)) (-1184 $)) 95)) (-1494 (((-426 (-1184 $)) (-1184 $)) 64)) (-2834 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1608 (($ $) 246)) (-3847 (((-779) $) 226)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 236)) (-3537 ((|#2| (-1279 $)) NIL) ((|#2|) 98)) (-3902 (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-3764 (((-1184 |#2|)) 120)) (-2348 (($ $) 255)) (-2231 (($ $) 249)) (-4329 (((-1279 |#2|) $ (-1279 $)) 136) (((-697 |#2|) (-1279 $) (-1279 $)) NIL) (((-1279 |#2|) $) 116) (((-697 |#2|) (-1279 $)) NIL)) (-1835 (((-1279 |#2|) $) NIL) (($ (-1279 |#2|)) NIL) (((-1184 |#2|) $) NIL) (($ (-1184 |#2|)) NIL) (((-901 (-572)) $) 184) (((-901 (-386)) $) 188) (((-171 (-386)) $) 172) (((-171 (-227)) $) 167) (((-544) $) 180)) (-1516 (($ $) 104)) (-2940 (((-870) $) 143) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-415 (-572))) NIL) (($ $) NIL)) (-4251 (((-1184 |#2|) $) 32)) (-4249 (((-779)) 106)) (-4379 (((-112) $ $) 13)) (-2436 (($ $) 259)) (-2300 (($ $) 253)) (-2409 (($ $) 257)) (-2282 (($ $) 251)) (-2053 ((|#2| $) 242)) (-2423 (($ $) 258)) (-2292 (($ $) 252)) (-2700 (($ $) 162)) (-2978 (((-112) $ $) 110)) (-3089 (($ $) 112) (($ $ $) NIL)) (-3075 (($ $ $) 111)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-415 (-572))) 276) (($ $ $) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL)))
-(((-166 |#1| |#2|) (-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -2940 (|#1| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2072 ((-2 (|:| -3161 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3847 ((-779) |#1|)) (-15 -1669 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -2792 (|#1| |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -1322 (|#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -1835 ((-544) |#1|)) (-15 -1835 ((-171 (-227)) |#1|)) (-15 -1835 ((-171 (-386)) |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2997 (|#1|)) (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -1494 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -4300 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3643 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -2791 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2700 (|#1| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1516 (|#1| |#1|)) (-15 -4408 (|#1|)) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -1594 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -2865 ((-3 |#1| "failed") (-415 (-1184 |#2|)))) (-15 -2851 ((-1184 |#2|) |#1|)) (-15 -1835 (|#1| (-1184 |#2|))) (-15 -2865 (|#1| (-1184 |#2|))) (-15 -3764 ((-1184 |#2|))) (-15 -2993 ((-697 |#2|) (-1279 |#1|))) (-15 -2993 ((-697 |#2|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -1835 ((-1184 |#2|) |#1|)) (-15 -3537 (|#2|)) (-15 -1835 (|#1| (-1279 |#2|))) (-15 -1835 ((-1279 |#2|) |#1|)) (-15 -4329 ((-697 |#2|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1|)) (-15 -3053 ((-1184 |#2|) |#1|)) (-15 -4251 ((-1184 |#2|) |#1|)) (-15 -3537 (|#2| (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -2028 (|#2| |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -3581 ((-930))) (-15 -2940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 -2062 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -4379 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166))
-((-4249 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3581 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-930)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3537 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-3764 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1184 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))))
-(-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -2940 (|#1| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2072 ((-2 (|:| -3161 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3847 ((-779) |#1|)) (-15 -1669 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -2792 (|#1| |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -1322 (|#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -1835 ((-544) |#1|)) (-15 -1835 ((-171 (-227)) |#1|)) (-15 -1835 ((-171 (-386)) |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2997 (|#1|)) (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -1494 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -4300 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3643 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -2791 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2700 (|#1| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1516 (|#1| |#1|)) (-15 -4408 (|#1|)) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -1594 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -2865 ((-3 |#1| "failed") (-415 (-1184 |#2|)))) (-15 -2851 ((-1184 |#2|) |#1|)) (-15 -1835 (|#1| (-1184 |#2|))) (-15 -2865 (|#1| (-1184 |#2|))) (-15 -3764 ((-1184 |#2|))) (-15 -2993 ((-697 |#2|) (-1279 |#1|))) (-15 -2993 ((-697 |#2|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -1835 ((-1184 |#2|) |#1|)) (-15 -3537 (|#2|)) (-15 -1835 (|#1| (-1279 |#2|))) (-15 -1835 ((-1279 |#2|) |#1|)) (-15 -4329 ((-697 |#2|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1|)) (-15 -3053 ((-1184 |#2|) |#1|)) (-15 -4251 ((-1184 |#2|) |#1|)) (-15 -3537 (|#2| (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -2028 (|#2| |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -3581 ((-930))) (-15 -2940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 -2062 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -4379 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 103 (-2813 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-3009 (($ $) 104 (-2813 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-4334 (((-112) $) 106 (-2813 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-3736 (((-697 |#1|) (-1279 $)) 53) (((-697 |#1|)) 68)) (-1635 ((|#1| $) 59)) (-2358 (($ $) 232 (|has| |#1| (-1214)))) (-2242 (($ $) 215 (|has| |#1| (-1214)))) (-1814 (((-1201 (-930) (-779)) (-572)) 156 (|has| |#1| (-356)))) (-3330 (((-3 $ "failed") $ $) 20)) (-2603 (((-426 (-1184 $)) (-1184 $)) 246 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-3517 (($ $) 123 (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-2287 (((-426 $) $) 124 (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-4227 (($ $) 245 (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214))))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 249 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-4217 (((-112) $ $) 114 (|has| |#1| (-313)))) (-1486 (((-779)) 97 (|has| |#1| (-375)))) (-2338 (($ $) 231 (|has| |#1| (-1214)))) (-2222 (($ $) 216 (|has| |#1| (-1214)))) (-2384 (($ $) 230 (|has| |#1| (-1214)))) (-2262 (($ $) 217 (|has| |#1| (-1214)))) (-3281 (($) 18 T CONST)) (-1695 (((-3 (-572) "failed") $) 181 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 179 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 176)) (-2204 (((-572) $) 180 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 178 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 177)) (-1913 (($ (-1279 |#1|) (-1279 $)) 55) (($ (-1279 |#1|)) 71)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-356)))) (-2780 (($ $ $) 118 (|has| |#1| (-313)))) (-3485 (((-697 |#1|) $ (-1279 $)) 60) (((-697 |#1|) $) 66)) (-2993 (((-697 (-572)) (-1279 $)) 175 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 174 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 173 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 172) (((-697 |#1|) (-697 $)) 171) (((-697 |#1|) (-1279 $)) 170)) (-2865 (($ (-1184 |#1|)) 167) (((-3 $ "failed") (-415 (-1184 |#1|))) 164 (|has| |#1| (-370)))) (-2062 (((-3 $ "failed") $) 37)) (-4237 ((|#1| $) 257)) (-3196 (((-3 (-415 (-572)) "failed") $) 250 (|has| |#1| (-553)))) (-1733 (((-112) $) 252 (|has| |#1| (-553)))) (-2233 (((-415 (-572)) $) 251 (|has| |#1| (-553)))) (-3581 (((-930)) 61)) (-2815 (($) 100 (|has| |#1| (-375)))) (-2792 (($ $ $) 117 (|has| |#1| (-313)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 112 (|has| |#1| (-313)))) (-1879 (($) 158 (|has| |#1| (-356)))) (-3442 (((-112) $) 159 (|has| |#1| (-356)))) (-2303 (($ $ (-779)) 150 (|has| |#1| (-356))) (($ $) 149 (|has| |#1| (-356)))) (-3879 (((-112) $) 125 (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-2791 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 253 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1214))))) (-2997 (($) 242 (|has| |#1| (-1214)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 265 (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 264 (|has| |#1| (-895 (-386))))) (-2956 (((-930) $) 161 (|has| |#1| (-356))) (((-841 (-930)) $) 147 (|has| |#1| (-356)))) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 244 (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214))))) (-2028 ((|#1| $) 58)) (-2556 (((-3 $ "failed") $) 151 (|has| |#1| (-356)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 121 (|has| |#1| (-313)))) (-3053 (((-1184 |#1|) $) 51 (|has| |#1| (-370)))) (-1776 (($ (-1 |#1| |#1|) $) 266)) (-3715 (((-930) $) 99 (|has| |#1| (-375)))) (-3116 (($ $) 239 (|has| |#1| (-1214)))) (-2851 (((-1184 |#1|) $) 165)) (-2825 (($ (-652 $)) 110 (-2813 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (($ $ $) 109 (-2813 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-4347 (((-1170) $) 10)) (-1322 (($ $) 126 (|has| |#1| (-370)))) (-3815 (($) 152 (|has| |#1| (-356)) CONST)) (-2571 (($ (-930)) 98 (|has| |#1| (-375)))) (-4408 (($) 261)) (-4247 ((|#1| $) 258)) (-3964 (((-1131) $) 11)) (-2967 (($) 169)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 111 (-2813 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-2870 (($ (-652 $)) 108 (-2813 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (($ $ $) 107 (-2813 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) 155 (|has| |#1| (-356)))) (-4300 (((-426 (-1184 $)) (-1184 $)) 248 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-1494 (((-426 (-1184 $)) (-1184 $)) 247 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-4218 (((-426 $) $) 122 (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-313))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 119 (|has| |#1| (-313)))) (-2834 (((-3 $ "failed") $ |#1|) 256 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 102 (-2813 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 113 (|has| |#1| (-313)))) (-1608 (($ $) 240 (|has| |#1| (-1214)))) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) 272 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 271 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 270 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 269 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 268 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) 267 (|has| |#1| (-522 (-1188) |#1|)))) (-3847 (((-779) $) 115 (|has| |#1| (-313)))) (-2196 (($ $ |#1|) 273 (|has| |#1| (-292 |#1| |#1|)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 116 (|has| |#1| (-313)))) (-3537 ((|#1| (-1279 $)) 54) ((|#1|) 67)) (-3354 (((-779) $) 160 (|has| |#1| (-356))) (((-3 (-779) "failed") $ $) 148 (|has| |#1| (-356)))) (-3902 (($ $ (-1 |#1| |#1|) (-779)) 132) (($ $ (-1 |#1| |#1|)) 131) (($ $ (-652 (-1188)) (-652 (-779))) 139 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 140 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 141 (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 142 (|has| |#1| (-909 (-1188)))) (($ $ (-779)) 144 (-2813 (-2085 (|has| |#1| (-370)) (|has| |#1| (-237))) (|has| |#1| (-237)) (-2085 (|has| |#1| (-237)) (|has| |#1| (-370))))) (($ $) 145 (-2813 (-2085 (|has| |#1| (-370)) (|has| |#1| (-237))) (|has| |#1| (-237)) (-2085 (|has| |#1| (-237)) (|has| |#1| (-370)))))) (-2144 (((-697 |#1|) (-1279 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-370)))) (-3764 (((-1184 |#1|)) 168)) (-2397 (($ $) 229 (|has| |#1| (-1214)))) (-2270 (($ $) 218 (|has| |#1| (-1214)))) (-4033 (($) 157 (|has| |#1| (-356)))) (-2370 (($ $) 228 (|has| |#1| (-1214)))) (-2252 (($ $) 219 (|has| |#1| (-1214)))) (-2348 (($ $) 227 (|has| |#1| (-1214)))) (-2231 (($ $) 220 (|has| |#1| (-1214)))) (-4329 (((-1279 |#1|) $ (-1279 $)) 57) (((-697 |#1|) (-1279 $) (-1279 $)) 56) (((-1279 |#1|) $) 73) (((-697 |#1|) (-1279 $)) 72)) (-1835 (((-1279 |#1|) $) 70) (($ (-1279 |#1|)) 69) (((-1184 |#1|) $) 182) (($ (-1184 |#1|)) 166) (((-901 (-572)) $) 263 (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) 262 (|has| |#1| (-622 (-901 (-386))))) (((-171 (-386)) $) 214 (|has| |#1| (-1033))) (((-171 (-227)) $) 213 (|has| |#1| (-1033))) (((-544) $) 212 (|has| |#1| (-622 (-544))))) (-1516 (($ $) 260)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 154 (-2813 (-2085 (|has| $ (-146)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))) (|has| |#1| (-356))))) (-3559 (($ |#1| |#1|) 259)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44) (($ (-415 (-572))) 96 (-2813 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) 101 (-2813 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-3849 (($ $) 153 (|has| |#1| (-356))) (((-3 $ "failed") $) 50 (-2813 (-2085 (|has| $ (-146)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))) (|has| |#1| (-146))))) (-4251 (((-1184 |#1|) $) 52)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-4362 (((-1279 $)) 74)) (-2436 (($ $) 238 (|has| |#1| (-1214)))) (-2300 (($ $) 226 (|has| |#1| (-1214)))) (-2845 (((-112) $ $) 105 (-2813 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-2409 (($ $) 237 (|has| |#1| (-1214)))) (-2282 (($ $) 225 (|has| |#1| (-1214)))) (-2460 (($ $) 236 (|has| |#1| (-1214)))) (-2320 (($ $) 224 (|has| |#1| (-1214)))) (-2053 ((|#1| $) 254 (|has| |#1| (-1214)))) (-2516 (($ $) 235 (|has| |#1| (-1214)))) (-2329 (($ $) 223 (|has| |#1| (-1214)))) (-2448 (($ $) 234 (|has| |#1| (-1214)))) (-2310 (($ $) 222 (|has| |#1| (-1214)))) (-2423 (($ $) 233 (|has| |#1| (-1214)))) (-2292 (($ $) 221 (|has| |#1| (-1214)))) (-2700 (($ $) 255 (|has| |#1| (-1071)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-1 |#1| |#1|) (-779)) 134) (($ $ (-1 |#1| |#1|)) 133) (($ $ (-652 (-1188)) (-652 (-779))) 135 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 136 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 137 (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 138 (|has| |#1| (-909 (-1188)))) (($ $ (-779)) 143 (-2813 (-2085 (|has| |#1| (-370)) (|has| |#1| (-237))) (|has| |#1| (-237)) (-2085 (|has| |#1| (-237)) (|has| |#1| (-370))))) (($ $) 146 (-2813 (-2085 (|has| |#1| (-370)) (|has| |#1| (-237))) (|has| |#1| (-237)) (-2085 (|has| |#1| (-237)) (|has| |#1| (-370)))))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 130 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-415 (-572))) 243 (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214)))) (($ $ $) 241 (|has| |#1| (-1214))) (($ $ (-572)) 127 (|has| |#1| (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-415 (-572)) $) 129 (|has| |#1| (-370))) (($ $ (-415 (-572))) 128 (|has| |#1| (-370)))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 16) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-654 (-1148)) $) 10)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-162) (-13 (-1096) (-10 -8 (-15 -2045 ((-654 (-1148)) $))))) (T -162))
+((-2045 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-162)))))
+(-13 (-1096) (-10 -8 (-15 -2045 ((-654 (-1148)) $))))
+((-2849 (((-112) $ $) NIL)) (-2898 (($ (-574)) 14) (($ $ $) 15)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 18)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 9)))
+(((-163) (-13 (-1113) (-10 -8 (-15 -2898 ($ (-574))) (-15 -2898 ($ $ $))))) (T -163))
+((-2898 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163)))) (-2898 (*1 *1 *1 *1) (-5 *1 (-163))))
+(-13 (-1113) (-10 -8 (-15 -2898 ($ (-574))) (-15 -2898 ($ $ $))))
+((-4173 (((-115) (-1190)) 102)))
+(((-164) (-10 -7 (-15 -4173 ((-115) (-1190))))) (T -164))
+((-4173 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-115)) (-5 *1 (-164)))))
+(-10 -7 (-15 -4173 ((-115) (-1190))))
+((-3399 ((|#3| |#3|) 19)))
+(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3399 (|#3| |#3|))) (-1062) (-1257 |#1|) (-1257 |#2|)) (T -165))
+((-3399 (*1 *2 *2) (-12 (-4 *3 (-1062)) (-4 *4 (-1257 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1257 *4)))))
+(-10 -7 (-15 -3399 (|#3| |#3|)))
+((-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 223)) (-1637 ((|#2| $) 102)) (-2364 (($ $) 256)) (-2246 (($ $) 250)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 47)) (-2343 (($ $) 254)) (-2227 (($ $) 248)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2209 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 144)) (-2785 (($ $ $) 229)) (-2668 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 160) (((-699 |#2|) (-699 $)) 154) (((-699 |#2|) (-1281 $)) NIL)) (-2868 (($ (-1186 |#2|)) 125) (((-3 $ "failed") (-417 (-1186 |#2|))) NIL)) (-1950 (((-3 $ "failed") $) 214)) (-2057 (((-3 (-417 (-574)) "failed") $) 204)) (-1811 (((-112) $) 199)) (-4142 (((-417 (-574)) $) 202)) (-3584 (((-932)) 96)) (-2798 (($ $ $) 231)) (-1401 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-3001 (($) 245)) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 193) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 198)) (-1652 ((|#2| $) 100)) (-3190 (((-1186 |#2|) $) 127)) (-1778 (($ (-1 |#2| |#2|) $) 108)) (-3119 (($ $) 247)) (-2854 (((-1186 |#2|) $) 126)) (-1324 (($ $) 207)) (-1953 (($) 103)) (-3417 (((-428 (-1186 $)) (-1186 $)) 95)) (-4418 (((-428 (-1186 $)) (-1186 $)) 64)) (-2838 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1610 (($ $) 246)) (-1347 (((-781) $) 226)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 236)) (-1415 ((|#2| (-1281 $)) NIL) ((|#2|) 98)) (-3905 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-1782 (((-1186 |#2|)) 120)) (-2353 (($ $) 255)) (-2237 (($ $) 249)) (-3676 (((-1281 |#2|) $ (-1281 $)) 136) (((-699 |#2|) (-1281 $) (-1281 $)) NIL) (((-1281 |#2|) $) 116) (((-699 |#2|) (-1281 $)) NIL)) (-1837 (((-1281 |#2|) $) NIL) (($ (-1281 |#2|)) NIL) (((-1186 |#2|) $) NIL) (($ (-1186 |#2|)) NIL) (((-903 (-574)) $) 184) (((-903 (-388)) $) 188) (((-171 (-388)) $) 172) (((-171 (-227)) $) 167) (((-546) $) 180)) (-1514 (($ $) 104)) (-2943 (((-872) $) 143) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-417 (-574))) NIL) (($ $) NIL)) (-4169 (((-1186 |#2|) $) 32)) (-4160 (((-781)) 106)) (-2923 (((-112) $ $) 13)) (-2441 (($ $) 259)) (-2305 (($ $) 253)) (-2414 (($ $) 257)) (-2287 (($ $) 251)) (-1861 ((|#2| $) 242)) (-2428 (($ $) 258)) (-2297 (($ $) 252)) (-2946 (($ $) 162)) (-2982 (((-112) $ $) 110)) (-3094 (($ $) 112) (($ $ $) NIL)) (-3078 (($ $ $) 111)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) 276) (($ $ $) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL)))
+(((-166 |#1| |#2|) (-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2943 (|#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2047 ((-2 (|:| -1708 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -1347 ((-781) |#1|)) (-15 -2413 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -2798 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1837 ((-546) |#1|)) (-15 -1837 ((-171 (-227)) |#1|)) (-15 -1837 ((-171 (-388)) |#1|)) (-15 -2246 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1610 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3001 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -4418 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3417 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3180 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -1401 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1861 (|#2| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1514 (|#1| |#1|)) (-15 -1953 (|#1|)) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -2961 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2868 ((-3 |#1| "failed") (-417 (-1186 |#2|)))) (-15 -2854 ((-1186 |#2|) |#1|)) (-15 -1837 (|#1| (-1186 |#2|))) (-15 -2868 (|#1| (-1186 |#2|))) (-15 -1782 ((-1186 |#2|))) (-15 -2668 ((-699 |#2|) (-1281 |#1|))) (-15 -2668 ((-699 |#2|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -1837 ((-1186 |#2|) |#1|)) (-15 -1415 (|#2|)) (-15 -1837 (|#1| (-1281 |#2|))) (-15 -1837 ((-1281 |#2|) |#1|)) (-15 -3676 ((-699 |#2|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1|)) (-15 -3190 ((-1186 |#2|) |#1|)) (-15 -4169 ((-1186 |#2|) |#1|)) (-15 -1415 (|#2| (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -1652 (|#2| |#1|)) (-15 -1637 (|#2| |#1|)) (-15 -3584 ((-932))) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -1950 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166))
+((-4160 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3584 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-932)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1415 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-1782 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1186 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))))
+(-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2943 (|#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2047 ((-2 (|:| -1708 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -1347 ((-781) |#1|)) (-15 -2413 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -2798 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1837 ((-546) |#1|)) (-15 -1837 ((-171 (-227)) |#1|)) (-15 -1837 ((-171 (-388)) |#1|)) (-15 -2246 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1610 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3001 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -4418 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3417 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3180 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -1401 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1861 (|#2| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1514 (|#1| |#1|)) (-15 -1953 (|#1|)) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -2961 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2868 ((-3 |#1| "failed") (-417 (-1186 |#2|)))) (-15 -2854 ((-1186 |#2|) |#1|)) (-15 -1837 (|#1| (-1186 |#2|))) (-15 -2868 (|#1| (-1186 |#2|))) (-15 -1782 ((-1186 |#2|))) (-15 -2668 ((-699 |#2|) (-1281 |#1|))) (-15 -2668 ((-699 |#2|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -1837 ((-1186 |#2|) |#1|)) (-15 -1415 (|#2|)) (-15 -1837 (|#1| (-1281 |#2|))) (-15 -1837 ((-1281 |#2|) |#1|)) (-15 -3676 ((-699 |#2|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1|)) (-15 -3190 ((-1186 |#2|) |#1|)) (-15 -4169 ((-1186 |#2|) |#1|)) (-15 -1415 (|#2| (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -1652 (|#2| |#1|)) (-15 -1637 (|#2| |#1|)) (-15 -3584 ((-932))) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -1950 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 103 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2814 (($ $) 104 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2425 (((-112) $) 106 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2762 (((-699 |#1|) (-1281 $)) 53) (((-699 |#1|)) 68)) (-1637 ((|#1| $) 59)) (-2364 (($ $) 232 (|has| |#1| (-1216)))) (-2246 (($ $) 215 (|has| |#1| (-1216)))) (-1340 (((-1203 (-932) (-781)) (-574)) 156 (|has| |#1| (-358)))) (-2950 (((-3 $ "failed") $ $) 20)) (-3312 (((-428 (-1186 $)) (-1186 $)) 246 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-4348 (($ $) 123 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-3440 (((-428 $) $) 124 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-4229 (($ $) 245 (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216))))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 249 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-3875 (((-112) $ $) 114 (|has| |#1| (-315)))) (-1487 (((-781)) 97 (|has| |#1| (-377)))) (-2343 (($ $) 231 (|has| |#1| (-1216)))) (-2227 (($ $) 216 (|has| |#1| (-1216)))) (-2388 (($ $) 230 (|has| |#1| (-1216)))) (-2267 (($ $) 217 (|has| |#1| (-1216)))) (-3670 (($) 18 T CONST)) (-1697 (((-3 (-574) "failed") $) 181 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 176)) (-2209 (((-574) $) 180 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 178 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 177)) (-3003 (($ (-1281 |#1|) (-1281 $)) 55) (($ (-1281 |#1|)) 71)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-358)))) (-2785 (($ $ $) 118 (|has| |#1| (-315)))) (-2085 (((-699 |#1|) $ (-1281 $)) 60) (((-699 |#1|) $) 66)) (-2668 (((-699 (-574)) (-1281 $)) 175 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 173 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 172) (((-699 |#1|) (-699 $)) 171) (((-699 |#1|) (-1281 $)) 170)) (-2868 (($ (-1186 |#1|)) 167) (((-3 $ "failed") (-417 (-1186 |#1|))) 164 (|has| |#1| (-372)))) (-1950 (((-3 $ "failed") $) 37)) (-4239 ((|#1| $) 257)) (-2057 (((-3 (-417 (-574)) "failed") $) 250 (|has| |#1| (-555)))) (-1811 (((-112) $) 252 (|has| |#1| (-555)))) (-4142 (((-417 (-574)) $) 251 (|has| |#1| (-555)))) (-3584 (((-932)) 61)) (-2820 (($) 100 (|has| |#1| (-377)))) (-2798 (($ $ $) 117 (|has| |#1| (-315)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 112 (|has| |#1| (-315)))) (-3906 (($) 158 (|has| |#1| (-358)))) (-2878 (((-112) $) 159 (|has| |#1| (-358)))) (-3564 (($ $ (-781)) 150 (|has| |#1| (-358))) (($ $) 149 (|has| |#1| (-358)))) (-1654 (((-112) $) 125 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-1401 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 253 (-12 (|has| |#1| (-1073)) (|has| |#1| (-1216))))) (-3001 (($) 242 (|has| |#1| (-1216)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 265 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 264 (|has| |#1| (-897 (-388))))) (-3593 (((-932) $) 161 (|has| |#1| (-358))) (((-843 (-932)) $) 147 (|has| |#1| (-358)))) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 244 (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216))))) (-1652 ((|#1| $) 58)) (-4048 (((-3 $ "failed") $) 151 (|has| |#1| (-358)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| |#1| (-315)))) (-3190 (((-1186 |#1|) $) 51 (|has| |#1| (-372)))) (-1778 (($ (-1 |#1| |#1|) $) 266)) (-2565 (((-932) $) 99 (|has| |#1| (-377)))) (-3119 (($ $) 239 (|has| |#1| (-1216)))) (-2854 (((-1186 |#1|) $) 165)) (-2834 (($ (-654 $)) 110 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (($ $ $) 109 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2568 (((-1172) $) 10)) (-1324 (($ $) 126 (|has| |#1| (-372)))) (-3818 (($) 152 (|has| |#1| (-358)) CONST)) (-2576 (($ (-932)) 98 (|has| |#1| (-377)))) (-1953 (($) 261)) (-4249 ((|#1| $) 258)) (-3966 (((-1133) $) 11)) (-2970 (($) 169)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 111 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2874 (($ (-654 $)) 108 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (($ $ $) 107 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) 155 (|has| |#1| (-358)))) (-3417 (((-428 (-1186 $)) (-1186 $)) 248 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-4418 (((-428 (-1186 $)) (-1186 $)) 247 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-4220 (((-428 $) $) 122 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 119 (|has| |#1| (-315)))) (-2838 (((-3 $ "failed") $ |#1|) 256 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 102 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| |#1| (-315)))) (-1610 (($ $) 240 (|has| |#1| (-1216)))) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 272 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 271 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 270 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 269 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 268 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) 267 (|has| |#1| (-524 (-1190) |#1|)))) (-1347 (((-781) $) 115 (|has| |#1| (-315)))) (-2200 (($ $ |#1|) 273 (|has| |#1| (-294 |#1| |#1|)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 116 (|has| |#1| (-315)))) (-1415 ((|#1| (-1281 $)) 54) ((|#1|) 67)) (-3232 (((-781) $) 160 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 148 (|has| |#1| (-358)))) (-3905 (($ $ (-1 |#1| |#1|) (-781)) 132) (($ $ (-1 |#1| |#1|)) 131) (($ $ (-654 (-1190)) (-654 (-781))) 139 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 140 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 141 (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 142 (|has| |#1| (-911 (-1190)))) (($ $ (-781)) 144 (-2818 (-2088 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2088 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $) 145 (-2818 (-2088 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2088 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-1437 (((-699 |#1|) (-1281 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-372)))) (-1782 (((-1186 |#1|)) 168)) (-2402 (($ $) 229 (|has| |#1| (-1216)))) (-2275 (($ $) 218 (|has| |#1| (-1216)))) (-2585 (($) 157 (|has| |#1| (-358)))) (-2375 (($ $) 228 (|has| |#1| (-1216)))) (-2257 (($ $) 219 (|has| |#1| (-1216)))) (-2353 (($ $) 227 (|has| |#1| (-1216)))) (-2237 (($ $) 220 (|has| |#1| (-1216)))) (-3676 (((-1281 |#1|) $ (-1281 $)) 57) (((-699 |#1|) (-1281 $) (-1281 $)) 56) (((-1281 |#1|) $) 73) (((-699 |#1|) (-1281 $)) 72)) (-1837 (((-1281 |#1|) $) 70) (($ (-1281 |#1|)) 69) (((-1186 |#1|) $) 182) (($ (-1186 |#1|)) 166) (((-903 (-574)) $) 263 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 262 (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) 214 (|has| |#1| (-1035))) (((-171 (-227)) $) 213 (|has| |#1| (-1035))) (((-546) $) 212 (|has| |#1| (-624 (-546))))) (-1514 (($ $) 260)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 154 (-2818 (-2088 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))) (|has| |#1| (-358))))) (-3562 (($ |#1| |#1|) 259)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 96 (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) 101 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-1369 (($ $) 153 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (-2818 (-2088 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))) (|has| |#1| (-146))))) (-4169 (((-1186 |#1|) $) 52)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2722 (((-1281 $)) 74)) (-2441 (($ $) 238 (|has| |#1| (-1216)))) (-2305 (($ $) 226 (|has| |#1| (-1216)))) (-3798 (((-112) $ $) 105 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2414 (($ $) 237 (|has| |#1| (-1216)))) (-2287 (($ $) 225 (|has| |#1| (-1216)))) (-2465 (($ $) 236 (|has| |#1| (-1216)))) (-2325 (($ $) 224 (|has| |#1| (-1216)))) (-1861 ((|#1| $) 254 (|has| |#1| (-1216)))) (-2521 (($ $) 235 (|has| |#1| (-1216)))) (-2334 (($ $) 223 (|has| |#1| (-1216)))) (-2453 (($ $) 234 (|has| |#1| (-1216)))) (-2315 (($ $) 222 (|has| |#1| (-1216)))) (-2428 (($ $) 233 (|has| |#1| (-1216)))) (-2297 (($ $) 221 (|has| |#1| (-1216)))) (-2946 (($ $) 255 (|has| |#1| (-1073)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-1 |#1| |#1|) (-781)) 134) (($ $ (-1 |#1| |#1|)) 133) (($ $ (-654 (-1190)) (-654 (-781))) 135 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 136 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 137 (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 138 (|has| |#1| (-911 (-1190)))) (($ $ (-781)) 143 (-2818 (-2088 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2088 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $) 146 (-2818 (-2088 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2088 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 130 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-417 (-574))) 243 (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216)))) (($ $ $) 241 (|has| |#1| (-1216))) (($ $ (-574)) 127 (|has| |#1| (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 129 (|has| |#1| (-372))) (($ $ (-417 (-574))) 128 (|has| |#1| (-372)))))
(((-167 |#1|) (-141) (-174)) (T -167))
-((-2028 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4408 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1516 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3559 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2834 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-564)))) (-2700 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1214)))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1071)) (-4 *3 (-1214)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))) (-3196 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))))
-(-13 (-732 |t#1| (-1184 |t#1|)) (-419 |t#1|) (-233 |t#1|) (-345 |t#1|) (-408 |t#1|) (-893 |t#1|) (-384 |t#1|) (-174) (-10 -8 (-6 -3559) (-15 -4408 ($)) (-15 -1516 ($ $)) (-15 -3559 ($ |t#1| |t#1|)) (-15 -4247 (|t#1| $)) (-15 -4237 (|t#1| $)) (-15 -2028 (|t#1| $)) (IF (|has| |t#1| (-564)) (PROGN (-6 (-564)) (-15 -2834 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-313)) (-6 (-313)) |%noBranch|) (IF (|has| |t#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |t#1| (-6 -4450)) (-6 -4450) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1033)) (PROGN (-6 (-622 (-171 (-227)))) (-6 (-622 (-171 (-386))))) |%noBranch|) (IF (|has| |t#1| (-1071)) (-15 -2700 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1214)) (PROGN (-6 (-1214)) (-15 -2053 (|t#1| $)) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1071)) (-15 -2791 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-918)) (IF (|has| |t#1| (-313)) (-6 (-918)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-38 |#1|) . T) ((-38 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-35) |has| |#1| (-1214)) ((-95) |has| |#1| (-1214)) ((-102) . T) ((-111 #0# #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2813 (|has| |#1| (-356)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-624 #0#) -2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-356)) (|has| |#1| (-370))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-621 (-870)) . T) ((-174) . T) ((-622 (-171 (-227))) |has| |#1| (-1033)) ((-622 (-171 (-386))) |has| |#1| (-1033)) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))) ((-622 #1=(-1184 |#1|)) . T) ((-235 $) -2813 (|has| |#1| (-356)) (|has| |#1| (-237))) ((-233 |#1|) . T) ((-237) -2813 (|has| |#1| (-356)) (|has| |#1| (-237))) ((-247) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-290) |has| |#1| (-1214)) ((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-296) -2813 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-313) -2813 (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-370) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-410) |has| |#1| (-356)) ((-375) -2813 (|has| |#1| (-375)) (|has| |#1| (-356))) ((-356) |has| |#1| (-356)) ((-377 |#1| #1#) . T) ((-417 |#1| #1#) . T) ((-345 |#1|) . T) ((-384 |#1|) . T) ((-408 |#1|) . T) ((-419 |#1|) . T) ((-460) -2813 (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-501) |has| |#1| (-1214)) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-564) -2813 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-654 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-656 #2=(-572)) |has| |#1| (-647 (-572))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-648 |#1|) . T) ((-648 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-647 #2#) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-725 |#1|) . T) ((-725 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-732 |#1| #1#) . T) ((-734) . T) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-893 |#1|) . T) ((-918) -12 (|has| |#1| (-313)) (|has| |#1| (-918))) ((-929) -2813 (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-1013) -12 (|has| |#1| (-1013)) (|has| |#1| (-1214))) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-356)) ((-1214) |has| |#1| (-1214)) ((-1217) |has| |#1| (-1214)) ((-1229) . T) ((-1233) -2813 (|has| |#1| (-356)) (|has| |#1| (-370)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))
-((-4218 (((-426 |#2|) |#2|) 67)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -4218 ((-426 |#2|) |#2|))) (-313) (-1255 (-171 |#1|))) (T -168))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
-(-10 -7 (-15 -4218 ((-426 |#2|) |#2|)))
-((-3523 (((-1146) (-1146) (-297)) 8)) (-3350 (((-652 (-699 (-286))) (-1170)) 81)) (-3759 (((-699 (-286)) (-1146)) 76)))
-(((-169) (-13 (-1229) (-10 -7 (-15 -3523 ((-1146) (-1146) (-297))) (-15 -3759 ((-699 (-286)) (-1146))) (-15 -3350 ((-652 (-699 (-286))) (-1170)))))) (T -169))
-((-3523 (*1 *2 *2 *3) (-12 (-5 *2 (-1146)) (-5 *3 (-297)) (-5 *1 (-169)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1146)) (-5 *2 (-699 (-286))) (-5 *1 (-169)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-699 (-286)))) (-5 *1 (-169)))))
-(-13 (-1229) (-10 -7 (-15 -3523 ((-1146) (-1146) (-297))) (-15 -3759 ((-699 (-286)) (-1146))) (-15 -3350 ((-652 (-699 (-286))) (-1170)))))
-((-1776 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -1776 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))))
-(-10 -7 (-15 -1776 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 34)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-3009 (($ $) NIL (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-4334 (((-112) $) NIL (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-3736 (((-697 |#1|) (-1279 $)) NIL) (((-697 |#1|)) NIL)) (-1635 ((|#1| $) NIL)) (-2358 (($ $) NIL (|has| |#1| (-1214)))) (-2242 (($ $) NIL (|has| |#1| (-1214)))) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-356)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-3517 (($ $) NIL (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-2287 (((-426 $) $) NIL (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-4227 (($ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214))))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-4217 (((-112) $ $) NIL (|has| |#1| (-313)))) (-1486 (((-779)) NIL (|has| |#1| (-375)))) (-2338 (($ $) NIL (|has| |#1| (-1214)))) (-2222 (($ $) NIL (|has| |#1| (-1214)))) (-2384 (($ $) NIL (|has| |#1| (-1214)))) (-2262 (($ $) NIL (|has| |#1| (-1214)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1913 (($ (-1279 |#1|) (-1279 $)) NIL) (($ (-1279 |#1|)) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-356)))) (-2780 (($ $ $) NIL (|has| |#1| (-313)))) (-3485 (((-697 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2865 (($ (-1184 |#1|)) NIL) (((-3 $ "failed") (-415 (-1184 |#1|))) NIL (|has| |#1| (-370)))) (-2062 (((-3 $ "failed") $) NIL)) (-4237 ((|#1| $) 13)) (-3196 (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-553)))) (-1733 (((-112) $) NIL (|has| |#1| (-553)))) (-2233 (((-415 (-572)) $) NIL (|has| |#1| (-553)))) (-3581 (((-930)) NIL)) (-2815 (($) NIL (|has| |#1| (-375)))) (-2792 (($ $ $) NIL (|has| |#1| (-313)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-313)))) (-1879 (($) NIL (|has| |#1| (-356)))) (-3442 (((-112) $) NIL (|has| |#1| (-356)))) (-2303 (($ $ (-779)) NIL (|has| |#1| (-356))) (($ $) NIL (|has| |#1| (-356)))) (-3879 (((-112) $) NIL (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-2791 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1071)) (|has| |#1| (-1214))))) (-2997 (($) NIL (|has| |#1| (-1214)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| |#1| (-895 (-386))))) (-2956 (((-930) $) NIL (|has| |#1| (-356))) (((-841 (-930)) $) NIL (|has| |#1| (-356)))) (-1886 (((-112) $) 36)) (-2932 (($ $ (-572)) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214))))) (-2028 ((|#1| $) 47)) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-356)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-313)))) (-3053 (((-1184 |#1|) $) NIL (|has| |#1| (-370)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3715 (((-930) $) NIL (|has| |#1| (-375)))) (-3116 (($ $) NIL (|has| |#1| (-1214)))) (-2851 (((-1184 |#1|) $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-313))) (($ $ $) NIL (|has| |#1| (-313)))) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-3815 (($) NIL (|has| |#1| (-356)) CONST)) (-2571 (($ (-930)) NIL (|has| |#1| (-375)))) (-4408 (($) NIL)) (-4247 ((|#1| $) 15)) (-3964 (((-1131) $) NIL)) (-2967 (($) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-313)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-313))) (($ $ $) NIL (|has| |#1| (-313)))) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| |#1| (-356)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-4218 (((-426 $) $) NIL (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-313))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-313)))) (-2834 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 48 (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-313)))) (-1608 (($ $) NIL (|has| |#1| (-1214)))) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|)))) (-3847 (((-779) $) NIL (|has| |#1| (-313)))) (-2196 (($ $ |#1|) NIL (|has| |#1| (-292 |#1| |#1|)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-313)))) (-3537 ((|#1| (-1279 $)) NIL) ((|#1|) NIL)) (-3354 (((-779) $) NIL (|has| |#1| (-356))) (((-3 (-779) "failed") $ $) NIL (|has| |#1| (-356)))) (-3902 (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $) NIL (|has| |#1| (-237)))) (-2144 (((-697 |#1|) (-1279 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-370)))) (-3764 (((-1184 |#1|)) NIL)) (-2397 (($ $) NIL (|has| |#1| (-1214)))) (-2270 (($ $) NIL (|has| |#1| (-1214)))) (-4033 (($) NIL (|has| |#1| (-356)))) (-2370 (($ $) NIL (|has| |#1| (-1214)))) (-2252 (($ $) NIL (|has| |#1| (-1214)))) (-2348 (($ $) NIL (|has| |#1| (-1214)))) (-2231 (($ $) NIL (|has| |#1| (-1214)))) (-4329 (((-1279 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) (-1279 $) (-1279 $)) NIL) (((-1279 |#1|) $) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-1835 (((-1279 |#1|) $) NIL) (($ (-1279 |#1|)) NIL) (((-1184 |#1|) $) NIL) (($ (-1184 |#1|)) NIL) (((-901 (-572)) $) NIL (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| |#1| (-622 (-901 (-386))))) (((-171 (-386)) $) NIL (|has| |#1| (-1033))) (((-171 (-227)) $) NIL (|has| |#1| (-1033))) (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-1516 (($ $) 46)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-356))))) (-3559 (($ |#1| |#1|) 38)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) 37) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-3849 (($ $) NIL (|has| |#1| (-356))) (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4251 (((-1184 |#1|) $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL)) (-2436 (($ $) NIL (|has| |#1| (-1214)))) (-2300 (($ $) NIL (|has| |#1| (-1214)))) (-2845 (((-112) $ $) NIL (-2813 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-2409 (($ $) NIL (|has| |#1| (-1214)))) (-2282 (($ $) NIL (|has| |#1| (-1214)))) (-2460 (($ $) NIL (|has| |#1| (-1214)))) (-2320 (($ $) NIL (|has| |#1| (-1214)))) (-2053 ((|#1| $) NIL (|has| |#1| (-1214)))) (-2516 (($ $) NIL (|has| |#1| (-1214)))) (-2329 (($ $) NIL (|has| |#1| (-1214)))) (-2448 (($ $) NIL (|has| |#1| (-1214)))) (-2310 (($ $) NIL (|has| |#1| (-1214)))) (-2423 (($ $) NIL (|has| |#1| (-1214)))) (-2292 (($ $) NIL (|has| |#1| (-1214)))) (-2700 (($ $) NIL (|has| |#1| (-1071)))) (-2131 (($) 28 T CONST)) (-2143 (($) 30 T CONST)) (-3547 (((-1170) $) 23 (|has| |#1| (-836))) (((-1170) $ (-112)) 25 (|has| |#1| (-836))) (((-1284) (-830) $) 26 (|has| |#1| (-836))) (((-1284) (-830) $ (-112)) 27 (|has| |#1| (-836)))) (-3608 (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $) NIL (|has| |#1| (-237)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 40)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-415 (-572))) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214)))) (($ $ $) NIL (|has| |#1| (-1214))) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-370))) (($ $ (-415 (-572))) NIL (|has| |#1| (-370)))))
-(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) (-174)) (T -171))
-NIL
-(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|)))
-((-1835 (((-901 |#1|) |#3|) 22)))
-(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1835 ((-901 |#1|) |#3|))) (-1111) (-13 (-622 (-901 |#1|)) (-174)) (-167 |#2|)) (T -172))
-((-1835 (*1 *2 *3) (-12 (-4 *5 (-13 (-622 *2) (-174))) (-5 *2 (-901 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1111)) (-4 *3 (-167 *5)))))
-(-10 -7 (-15 -1835 ((-901 |#1|) |#3|)))
-((-2846 (((-112) $ $) NIL)) (-3510 (((-112) $) 9)) (-1958 (((-112) $ (-112)) 11)) (-3787 (($) 13)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3164 (($ $) 14)) (-2940 (((-870) $) 18)) (-1478 (((-112) $) 8)) (-1379 (((-112) $ (-112)) 10)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-173) (-13 (-1111) (-10 -8 (-15 -3787 ($)) (-15 -1478 ((-112) $)) (-15 -3510 ((-112) $)) (-15 -1379 ((-112) $ (-112))) (-15 -1958 ((-112) $ (-112))) (-15 -3164 ($ $))))) (T -173))
-((-3787 (*1 *1) (-5 *1 (-173))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1379 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1958 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3164 (*1 *1 *1) (-5 *1 (-173))))
-(-13 (-1111) (-10 -8 (-15 -3787 ($)) (-15 -1478 ((-112) $)) (-15 -3510 ((-112) $)) (-15 -1379 ((-112) $ (-112))) (-15 -1958 ((-112) $ (-112))) (-15 -3164 ($ $))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 33)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+((-1652 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1953 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1514 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3562 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2946 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1073)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1216)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1073)) (-4 *3 (-1216)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-2057 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))))
+(-13 (-734 |t#1| (-1186 |t#1|)) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-410 |t#1|) (-895 |t#1|) (-386 |t#1|) (-174) (-10 -8 (-6 -3562) (-15 -1953 ($)) (-15 -1514 ($ $)) (-15 -3562 ($ |t#1| |t#1|)) (-15 -4249 (|t#1| $)) (-15 -4239 (|t#1| $)) (-15 -1652 (|t#1| $)) (IF (|has| |t#1| (-566)) (PROGN (-6 (-566)) (-15 -2838 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-315)) (-6 (-315)) |%noBranch|) (IF (|has| |t#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |t#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1035)) (PROGN (-6 (-624 (-171 (-227)))) (-6 (-624 (-171 (-388))))) |%noBranch|) (IF (|has| |t#1| (-1073)) (-15 -2946 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1216)) (PROGN (-6 (-1216)) (-15 -1861 (|t#1| $)) (IF (|has| |t#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |t#1| (-1073)) (-15 -1401 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-920)) (IF (|has| |t#1| (-315)) (-6 (-920)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-35) |has| |#1| (-1216)) ((-95) |has| |#1| (-1216)) ((-102) . T) ((-111 #0# #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-623 (-872)) . T) ((-174) . T) ((-624 (-171 (-227))) |has| |#1| (-1035)) ((-624 (-171 (-388))) |has| |#1| (-1035)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-624 #1=(-1186 |#1|)) . T) ((-235 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2818 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-249) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-292) |has| |#1| (-1216)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-315) -2818 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2818 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| #1#) . T) ((-419 |#1| #1#) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-503) |has| |#1| (-1216)) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-656 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-734 |#1| #1#) . T) ((-736) . T) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-920) -12 (|has| |#1| (-315)) (|has| |#1| (-920))) ((-931) -2818 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-1015) -12 (|has| |#1| (-1015)) (|has| |#1| (-1216))) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-358)) ((-1216) |has| |#1| (-1216)) ((-1219) |has| |#1| (-1216)) ((-1231) . T) ((-1235) -2818 (|has| |#1| (-358)) (|has| |#1| (-372)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))
+((-4220 (((-428 |#2|) |#2|) 67)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -4220 ((-428 |#2|) |#2|))) (-315) (-1257 (-171 |#1|))) (T -168))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1257 (-171 *4))))))
+(-10 -7 (-15 -4220 ((-428 |#2|) |#2|)))
+((-3526 (((-1148) (-1148) (-299)) 8)) (-3184 (((-654 (-701 (-288))) (-1172)) 81)) (-1729 (((-701 (-288)) (-1148)) 76)))
+(((-169) (-13 (-1231) (-10 -7 (-15 -3526 ((-1148) (-1148) (-299))) (-15 -1729 ((-701 (-288)) (-1148))) (-15 -3184 ((-654 (-701 (-288))) (-1172)))))) (T -169))
+((-3526 (*1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-299)) (-5 *1 (-169)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-701 (-288))) (-5 *1 (-169)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169)))))
+(-13 (-1231) (-10 -7 (-15 -3526 ((-1148) (-1148) (-299))) (-15 -1729 ((-701 (-288)) (-1148))) (-15 -3184 ((-654 (-701 (-288))) (-1172)))))
+((-1778 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -1778 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))))
+(-10 -7 (-15 -1778 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 34)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-2814 (($ $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-2425 (((-112) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-2762 (((-699 |#1|) (-1281 $)) NIL) (((-699 |#1|)) NIL)) (-1637 ((|#1| $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-1216)))) (-2246 (($ $) NIL (|has| |#1| (-1216)))) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-4348 (($ $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-3440 (((-428 $) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-4229 (($ $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216))))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-3875 (((-112) $ $) NIL (|has| |#1| (-315)))) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-2343 (($ $) NIL (|has| |#1| (-1216)))) (-2227 (($ $) NIL (|has| |#1| (-1216)))) (-2388 (($ $) NIL (|has| |#1| (-1216)))) (-2267 (($ $) NIL (|has| |#1| (-1216)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-3003 (($ (-1281 |#1|) (-1281 $)) NIL) (($ (-1281 |#1|)) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2785 (($ $ $) NIL (|has| |#1| (-315)))) (-2085 (((-699 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-2868 (($ (-1186 |#1|)) NIL) (((-3 $ "failed") (-417 (-1186 |#1|))) NIL (|has| |#1| (-372)))) (-1950 (((-3 $ "failed") $) NIL)) (-4239 ((|#1| $) 13)) (-2057 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-1811 (((-112) $) NIL (|has| |#1| (-555)))) (-4142 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-3584 (((-932)) NIL)) (-2820 (($) NIL (|has| |#1| (-377)))) (-2798 (($ $ $) NIL (|has| |#1| (-315)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-315)))) (-3906 (($) NIL (|has| |#1| (-358)))) (-2878 (((-112) $) NIL (|has| |#1| (-358)))) (-3564 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-1654 (((-112) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-1401 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1073)) (|has| |#1| (-1216))))) (-3001 (($) NIL (|has| |#1| (-1216)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-3593 (((-932) $) NIL (|has| |#1| (-358))) (((-843 (-932)) $) NIL (|has| |#1| (-358)))) (-3965 (((-112) $) 36)) (-3379 (($ $ (-574)) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216))))) (-1652 ((|#1| $) 47)) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-3190 (((-1186 |#1|) $) NIL (|has| |#1| (-372)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2565 (((-932) $) NIL (|has| |#1| (-377)))) (-3119 (($ $) NIL (|has| |#1| (-1216)))) (-2854 (((-1186 |#1|) $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-3818 (($) NIL (|has| |#1| (-358)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-1953 (($) NIL)) (-4249 ((|#1| $) 15)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-315)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| |#1| (-358)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-4220 (((-428 $) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-315)))) (-2838 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 48 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-1610 (($ $) NIL (|has| |#1| (-1216)))) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|)))) (-1347 (((-781) $) NIL (|has| |#1| (-315)))) (-2200 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-315)))) (-1415 ((|#1| (-1281 $)) NIL) ((|#1|) NIL)) (-3232 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3905 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239)))) (-1437 (((-699 |#1|) (-1281 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-1782 (((-1186 |#1|)) NIL)) (-2402 (($ $) NIL (|has| |#1| (-1216)))) (-2275 (($ $) NIL (|has| |#1| (-1216)))) (-2585 (($) NIL (|has| |#1| (-358)))) (-2375 (($ $) NIL (|has| |#1| (-1216)))) (-2257 (($ $) NIL (|has| |#1| (-1216)))) (-2353 (($ $) NIL (|has| |#1| (-1216)))) (-2237 (($ $) NIL (|has| |#1| (-1216)))) (-3676 (((-1281 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) (-1281 $) (-1281 $)) NIL) (((-1281 |#1|) $) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1837 (((-1281 |#1|) $) NIL) (($ (-1281 |#1|)) NIL) (((-1186 |#1|) $) NIL) (($ (-1186 |#1|)) NIL) (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) NIL (|has| |#1| (-1035))) (((-171 (-227)) $) NIL (|has| |#1| (-1035))) (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-1514 (($ $) 46)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-358))))) (-3562 (($ |#1| |#1|) 38)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 37) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-1369 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4169 (((-1186 |#1|) $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL)) (-2441 (($ $) NIL (|has| |#1| (-1216)))) (-2305 (($ $) NIL (|has| |#1| (-1216)))) (-3798 (((-112) $ $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-2414 (($ $) NIL (|has| |#1| (-1216)))) (-2287 (($ $) NIL (|has| |#1| (-1216)))) (-2465 (($ $) NIL (|has| |#1| (-1216)))) (-2325 (($ $) NIL (|has| |#1| (-1216)))) (-1861 ((|#1| $) NIL (|has| |#1| (-1216)))) (-2521 (($ $) NIL (|has| |#1| (-1216)))) (-2334 (($ $) NIL (|has| |#1| (-1216)))) (-2453 (($ $) NIL (|has| |#1| (-1216)))) (-2315 (($ $) NIL (|has| |#1| (-1216)))) (-2428 (($ $) NIL (|has| |#1| (-1216)))) (-2297 (($ $) NIL (|has| |#1| (-1216)))) (-2946 (($ $) NIL (|has| |#1| (-1073)))) (-2134 (($) 28 T CONST)) (-2146 (($) 30 T CONST)) (-1520 (((-1172) $) 23 (|has| |#1| (-838))) (((-1172) $ (-112)) 25 (|has| |#1| (-838))) (((-1286) (-832) $) 26 (|has| |#1| (-838))) (((-1286) (-832) $ (-112)) 27 (|has| |#1| (-838)))) (-3611 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 40)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216)))) (($ $ $) NIL (|has| |#1| (-1216))) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372)))))
+(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-174)) (T -171))
+NIL
+(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|)))
+((-1837 (((-903 |#1|) |#3|) 22)))
+(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1837 ((-903 |#1|) |#3|))) (-1113) (-13 (-624 (-903 |#1|)) (-174)) (-167 |#2|)) (T -172))
+((-1837 (*1 *2 *3) (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1113)) (-4 *3 (-167 *5)))))
+(-10 -7 (-15 -1837 ((-903 |#1|) |#3|)))
+((-2849 (((-112) $ $) NIL)) (-4272 (((-112) $) 9)) (-3515 (((-112) $ (-112)) 11)) (-3790 (($) 13)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3167 (($ $) 14)) (-2943 (((-872) $) 18)) (-4276 (((-112) $) 8)) (-1381 (((-112) $ (-112)) 10)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-173) (-13 (-1113) (-10 -8 (-15 -3790 ($)) (-15 -4276 ((-112) $)) (-15 -4272 ((-112) $)) (-15 -1381 ((-112) $ (-112))) (-15 -3515 ((-112) $ (-112))) (-15 -3167 ($ $))))) (T -173))
+((-3790 (*1 *1) (-5 *1 (-173))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1381 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3515 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3167 (*1 *1 *1) (-5 *1 (-173))))
+(-13 (-1113) (-10 -8 (-15 -3790 ($)) (-15 -4276 ((-112) $)) (-15 -4272 ((-112) $)) (-15 -1381 ((-112) $ (-112))) (-15 -3515 ((-112) $ (-112))) (-15 -3167 ($ $))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
(((-174) (-141)) (T -174))
NIL
-(-13 (-1060) (-111 $ $) (-10 -7 (-6 (-4456 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-3682 (($ $) 6)))
+(-13 (-1062) (-111 $ $) (-10 -7 (-6 (-4458 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-3568 (($ $) 6)))
(((-175) (-141)) (T -175))
-((-3682 (*1 *1 *1) (-4 *1 (-175))))
-(-13 (-10 -8 (-15 -3682 ($ $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 ((|#1| $) 81)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2780 (($ $ $) NIL)) (-2336 (($ $) 21)) (-2151 (($ |#1| (-1168 |#1|)) 50)) (-2062 (((-3 $ "failed") $) 123)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3408 (((-1168 |#1|) $) 88)) (-1325 (((-1168 |#1|) $) 85)) (-2395 (((-1168 |#1|) $) 86)) (-1886 (((-112) $) NIL)) (-1464 (((-1168 |#1|) $) 94)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2825 (($ (-652 $)) NIL) (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ (-652 $)) NIL) (($ $ $) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL)) (-2772 (($ $ (-572)) 97)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-4089 (((-1168 |#1|) $) 95)) (-2041 (((-1168 (-415 |#1|)) $) 14)) (-3147 (($ (-415 |#1|)) 17) (($ |#1| (-1168 |#1|) (-1168 |#1|)) 40)) (-2590 (($ $) 99)) (-2940 (((-870) $) 139) (($ (-572)) 53) (($ |#1|) 54) (($ (-415 |#1|)) 38) (($ (-415 (-572))) NIL) (($ $) NIL)) (-4249 (((-779)) 69 T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-3229 (((-1168 (-415 |#1|)) $) 20)) (-2131 (($) 27 T CONST)) (-2143 (($) 30 T CONST)) (-2978 (((-112) $ $) 37)) (-3106 (($ $ $) 121)) (-3089 (($ $) 112) (($ $ $) 109)) (-3075 (($ $ $) 107)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-415 |#1|) $) 117) (($ $ (-415 |#1|)) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL)))
-(((-176 |#1|) (-13 (-38 |#1|) (-38 (-415 |#1|)) (-370) (-10 -8 (-15 -3147 ($ (-415 |#1|))) (-15 -3147 ($ |#1| (-1168 |#1|) (-1168 |#1|))) (-15 -2151 ($ |#1| (-1168 |#1|))) (-15 -1325 ((-1168 |#1|) $)) (-15 -2395 ((-1168 |#1|) $)) (-15 -3408 ((-1168 |#1|) $)) (-15 -2689 (|#1| $)) (-15 -2336 ($ $)) (-15 -3229 ((-1168 (-415 |#1|)) $)) (-15 -2041 ((-1168 (-415 |#1|)) $)) (-15 -1464 ((-1168 |#1|) $)) (-15 -4089 ((-1168 |#1|) $)) (-15 -2772 ($ $ (-572))) (-15 -2590 ($ $)))) (-313)) (T -176))
-((-3147 (*1 *1 *2) (-12 (-5 *2 (-415 *3)) (-4 *3 (-313)) (-5 *1 (-176 *3)))) (-3147 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1168 *2)) (-4 *2 (-313)) (-5 *1 (-176 *2)))) (-2151 (*1 *1 *2 *3) (-12 (-5 *3 (-1168 *2)) (-4 *2 (-313)) (-5 *1 (-176 *2)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-2689 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313)))) (-2336 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-1168 (-415 *3))) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-1168 (-415 *3))) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-2772 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-2590 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313)))))
-(-13 (-38 |#1|) (-38 (-415 |#1|)) (-370) (-10 -8 (-15 -3147 ($ (-415 |#1|))) (-15 -3147 ($ |#1| (-1168 |#1|) (-1168 |#1|))) (-15 -2151 ($ |#1| (-1168 |#1|))) (-15 -1325 ((-1168 |#1|) $)) (-15 -2395 ((-1168 |#1|) $)) (-15 -3408 ((-1168 |#1|) $)) (-15 -2689 (|#1| $)) (-15 -2336 ($ $)) (-15 -3229 ((-1168 (-415 |#1|)) $)) (-15 -2041 ((-1168 (-415 |#1|)) $)) (-15 -1464 ((-1168 |#1|) $)) (-15 -4089 ((-1168 |#1|) $)) (-15 -2772 ($ $ (-572))) (-15 -2590 ($ $))))
-((-3035 (($ (-109) $) 15)) (-2455 (((-699 (-109)) (-514) $) 14)) (-2940 (((-870) $) 18)) (-3746 (((-652 (-109)) $) 8)))
-(((-177) (-13 (-621 (-870)) (-10 -8 (-15 -3746 ((-652 (-109)) $)) (-15 -3035 ($ (-109) $)) (-15 -2455 ((-699 (-109)) (-514) $))))) (T -177))
-((-3746 (*1 *2 *1) (-12 (-5 *2 (-652 (-109))) (-5 *1 (-177)))) (-3035 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2455 (*1 *2 *3 *1) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-109))) (-5 *1 (-177)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -3746 ((-652 (-109)) $)) (-15 -3035 ($ (-109) $)) (-15 -2455 ((-699 (-109)) (-514) $))))
-((-3767 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 38)) (-1703 (((-952 |#1|) (-952 |#1|)) 22)) (-3945 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 34)) (-3276 (((-952 |#1|) (-952 |#1|)) 20)) (-1406 (((-952 |#1|) (-952 |#1|)) 28)) (-3162 (((-952 |#1|) (-952 |#1|)) 27)) (-3610 (((-952 |#1|) (-952 |#1|)) 26)) (-1539 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 35)) (-2859 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 33)) (-1673 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 32)) (-1813 (((-952 |#1|) (-952 |#1|)) 21)) (-3651 (((-1 (-952 |#1|) (-952 |#1|)) |#1| |#1|) 41)) (-2235 (((-952 |#1|) (-952 |#1|)) 8)) (-1411 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 37)) (-2031 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 36)))
-(((-178 |#1|) (-10 -7 (-15 -2235 ((-952 |#1|) (-952 |#1|))) (-15 -3276 ((-952 |#1|) (-952 |#1|))) (-15 -1813 ((-952 |#1|) (-952 |#1|))) (-15 -1703 ((-952 |#1|) (-952 |#1|))) (-15 -3610 ((-952 |#1|) (-952 |#1|))) (-15 -3162 ((-952 |#1|) (-952 |#1|))) (-15 -1406 ((-952 |#1|) (-952 |#1|))) (-15 -1673 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -2859 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3945 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1539 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -2031 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1411 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3767 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3651 ((-1 (-952 |#1|) (-952 |#1|)) |#1| |#1|))) (-13 (-370) (-1214) (-1013))) (T -178))
-((-3651 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-3767 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-1411 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-2031 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-1539 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-2859 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-1673 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-3162 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-3610 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-1703 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))))
-(-10 -7 (-15 -2235 ((-952 |#1|) (-952 |#1|))) (-15 -3276 ((-952 |#1|) (-952 |#1|))) (-15 -1813 ((-952 |#1|) (-952 |#1|))) (-15 -1703 ((-952 |#1|) (-952 |#1|))) (-15 -3610 ((-952 |#1|) (-952 |#1|))) (-15 -3162 ((-952 |#1|) (-952 |#1|))) (-15 -1406 ((-952 |#1|) (-952 |#1|))) (-15 -1673 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -2859 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3945 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1539 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -2031 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1411 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3767 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3651 ((-1 (-952 |#1|) (-952 |#1|)) |#1| |#1|)))
-((-4251 ((|#2| |#3|) 28)))
-(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -4251 (|#2| |#3|))) (-174) (-1255 |#1|) (-732 |#1| |#2|)) (T -179))
-((-4251 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1255 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-732 *4 *2)))))
-(-10 -7 (-15 -4251 (|#2| |#3|)))
-((-1594 (((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)) 44 (|has| (-961 |#2|) (-895 |#1|)))))
-(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-961 |#2|) (-895 |#1|)) (-15 -1594 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))) |%noBranch|)) (-1111) (-13 (-895 |#1|) (-174)) (-167 |#2|)) (T -180))
-((-1594 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *3)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *3 (-167 *6)) (-4 (-961 *6) (-895 *5)) (-4 *6 (-13 (-895 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-961 |#2|) (-895 |#1|)) (-15 -1594 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))) |%noBranch|))
-((-4302 (((-652 |#1|) (-652 |#1|) |#1|) 41)) (-2550 (((-652 |#1|) |#1| (-652 |#1|)) 20)) (-3695 (((-652 |#1|) (-652 (-652 |#1|)) (-652 |#1|)) 36) ((|#1| (-652 |#1|) (-652 |#1|)) 32)))
-(((-181 |#1|) (-10 -7 (-15 -2550 ((-652 |#1|) |#1| (-652 |#1|))) (-15 -3695 (|#1| (-652 |#1|) (-652 |#1|))) (-15 -3695 ((-652 |#1|) (-652 (-652 |#1|)) (-652 |#1|))) (-15 -4302 ((-652 |#1|) (-652 |#1|) |#1|))) (-313)) (T -181))
-((-4302 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *3)) (-4 *3 (-313)) (-5 *1 (-181 *3)))) (-3695 (*1 *2 *3 *2) (-12 (-5 *3 (-652 (-652 *4))) (-5 *2 (-652 *4)) (-4 *4 (-313)) (-5 *1 (-181 *4)))) (-3695 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-181 *2)) (-4 *2 (-313)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-313)) (-5 *1 (-181 *3)))))
-(-10 -7 (-15 -2550 ((-652 |#1|) |#1| (-652 |#1|))) (-15 -3695 (|#1| (-652 |#1|) (-652 |#1|))) (-15 -3695 ((-652 |#1|) (-652 (-652 |#1|)) (-652 |#1|))) (-15 -4302 ((-652 |#1|) (-652 |#1|) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2330 (((-1228) $) 13)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4014 (((-1146) $) 10)) (-2940 (((-870) $) 20) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-182) (-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $)) (-15 -2330 ((-1228) $))))) (T -182))
-((-4014 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-182)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-182)))))
-(-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $)) (-15 -2330 ((-1228) $))))
-((-1329 (((-2 (|:| |start| |#2|) (|:| -4225 (-426 |#2|))) |#2|) 66)) (-1706 ((|#1| |#1|) 58)) (-3213 (((-171 |#1|) |#2|) 93)) (-3578 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3985 ((|#2| |#2|) 91)) (-3737 (((-426 |#2|) |#2| |#1|) 118) (((-426 |#2|) |#2| |#1| (-112)) 88)) (-2028 ((|#1| |#2|) 117)) (-2402 ((|#2| |#2|) 130)) (-4218 (((-426 |#2|) |#2|) 153) (((-426 |#2|) |#2| |#1|) 33) (((-426 |#2|) |#2| |#1| (-112)) 152)) (-1534 (((-652 (-2 (|:| -4225 (-652 |#2|)) (|:| -2671 |#1|))) |#2| |#2|) 151) (((-652 (-2 (|:| -4225 (-652 |#2|)) (|:| -2671 |#1|))) |#2| |#2| (-112)) 81)) (-2137 (((-652 (-171 |#1|)) |#2| |#1|) 42) (((-652 (-171 |#1|)) |#2|) 43)))
-(((-183 |#1| |#2|) (-10 -7 (-15 -2137 ((-652 (-171 |#1|)) |#2|)) (-15 -2137 ((-652 (-171 |#1|)) |#2| |#1|)) (-15 -1534 ((-652 (-2 (|:| -4225 (-652 |#2|)) (|:| -2671 |#1|))) |#2| |#2| (-112))) (-15 -1534 ((-652 (-2 (|:| -4225 (-652 |#2|)) (|:| -2671 |#1|))) |#2| |#2|)) (-15 -4218 ((-426 |#2|) |#2| |#1| (-112))) (-15 -4218 ((-426 |#2|) |#2| |#1|)) (-15 -4218 ((-426 |#2|) |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2028 (|#1| |#2|)) (-15 -3737 ((-426 |#2|) |#2| |#1| (-112))) (-15 -3737 ((-426 |#2|) |#2| |#1|)) (-15 -3985 (|#2| |#2|)) (-15 -3578 (|#1| |#2| |#1|)) (-15 -3578 (|#1| |#2|)) (-15 -3213 ((-171 |#1|) |#2|)) (-15 -1706 (|#1| |#1|)) (-15 -1329 ((-2 (|:| |start| |#2|) (|:| -4225 (-426 |#2|))) |#2|))) (-13 (-370) (-856)) (-1255 (-171 |#1|))) (T -183))
-((-1329 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-2 (|:| |start| *3) (|:| -4225 (-426 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-1706 (*1 *2 *2) (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1255 (-171 *2))))) (-3213 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-370) (-856))) (-4 *3 (-1255 *2)))) (-3578 (*1 *2 *3) (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1255 (-171 *2))))) (-3578 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1255 (-171 *2))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-856))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1255 (-171 *3))))) (-3737 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-3737 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-2028 (*1 *2 *3) (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1255 (-171 *2))))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-856))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1255 (-171 *3))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-4218 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-4218 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-1534 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-2 (|:| -4225 (-652 *3)) (|:| -2671 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-1534 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-370) (-856))) (-5 *2 (-652 (-2 (|:| -4225 (-652 *3)) (|:| -2671 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1255 (-171 *5))))) (-2137 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-2137 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
-(-10 -7 (-15 -2137 ((-652 (-171 |#1|)) |#2|)) (-15 -2137 ((-652 (-171 |#1|)) |#2| |#1|)) (-15 -1534 ((-652 (-2 (|:| -4225 (-652 |#2|)) (|:| -2671 |#1|))) |#2| |#2| (-112))) (-15 -1534 ((-652 (-2 (|:| -4225 (-652 |#2|)) (|:| -2671 |#1|))) |#2| |#2|)) (-15 -4218 ((-426 |#2|) |#2| |#1| (-112))) (-15 -4218 ((-426 |#2|) |#2| |#1|)) (-15 -4218 ((-426 |#2|) |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2028 (|#1| |#2|)) (-15 -3737 ((-426 |#2|) |#2| |#1| (-112))) (-15 -3737 ((-426 |#2|) |#2| |#1|)) (-15 -3985 (|#2| |#2|)) (-15 -3578 (|#1| |#2| |#1|)) (-15 -3578 (|#1| |#2|)) (-15 -3213 ((-171 |#1|) |#2|)) (-15 -1706 (|#1| |#1|)) (-15 -1329 ((-2 (|:| |start| |#2|) (|:| -4225 (-426 |#2|))) |#2|)))
-((-4245 (((-3 |#2| "failed") |#2|) 16)) (-2572 (((-779) |#2|) 18)) (-2093 ((|#2| |#2| |#2|) 20)))
-(((-184 |#1| |#2|) (-10 -7 (-15 -4245 ((-3 |#2| "failed") |#2|)) (-15 -2572 ((-779) |#2|)) (-15 -2093 (|#2| |#2| |#2|))) (-1229) (-682 |#1|)) (T -184))
-((-2093 (*1 *2 *2 *2) (-12 (-4 *3 (-1229)) (-5 *1 (-184 *3 *2)) (-4 *2 (-682 *3)))) (-2572 (*1 *2 *3) (-12 (-4 *4 (-1229)) (-5 *2 (-779)) (-5 *1 (-184 *4 *3)) (-4 *3 (-682 *4)))) (-4245 (*1 *2 *2) (|partial| -12 (-4 *3 (-1229)) (-5 *1 (-184 *3 *2)) (-4 *2 (-682 *3)))))
-(-10 -7 (-15 -4245 ((-3 |#2| "failed") |#2|)) (-15 -2572 ((-779) |#2|)) (-15 -2093 (|#2| |#2| |#2|)))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1963 ((|#1| $) 7)) (-2940 (((-870) $) 14)) (-4379 (((-112) $ $) NIL)) (-1563 (((-652 (-1193)) $) 10)) (-2978 (((-112) $ $) 12)))
-(((-185 |#1|) (-13 (-1111) (-10 -8 (-15 -1963 (|#1| $)) (-15 -1563 ((-652 (-1193)) $)))) (-187)) (T -185))
-((-1963 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
-(-13 (-1111) (-10 -8 (-15 -1963 (|#1| $)) (-15 -1563 ((-652 (-1193)) $))))
-((-1714 (((-652 (-873)) $) 16)) (-4280 (((-188) $) 8)) (-3496 (((-652 (-112)) $) 13)) (-2863 (((-55) $) 10)))
-(((-186 |#1|) (-10 -8 (-15 -1714 ((-652 (-873)) |#1|)) (-15 -3496 ((-652 (-112)) |#1|)) (-15 -4280 ((-188) |#1|)) (-15 -2863 ((-55) |#1|))) (-187)) (T -186))
-NIL
-(-10 -8 (-15 -1714 ((-652 (-873)) |#1|)) (-15 -3496 ((-652 (-112)) |#1|)) (-15 -4280 ((-188) |#1|)) (-15 -2863 ((-55) |#1|)))
-((-2846 (((-112) $ $) 7)) (-1714 (((-652 (-873)) $) 19)) (-2030 (((-514) $) 16)) (-4347 (((-1170) $) 10)) (-4280 (((-188) $) 21)) (-2695 (((-112) $ (-514)) 14)) (-3964 (((-1131) $) 11)) (-3496 (((-652 (-112)) $) 20)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2863 (((-55) $) 15)) (-2978 (((-112) $ $) 6)))
+((-3568 (*1 *1 *1) (-4 *1 (-175))))
+(-13 (-10 -8 (-15 -3568 ($ $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 ((|#1| $) 81)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-2785 (($ $ $) NIL)) (-2557 (($ $) 21)) (-1504 (($ |#1| (-1170 |#1|)) 50)) (-1950 (((-3 $ "failed") $) 123)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-2476 (((-1170 |#1|) $) 88)) (-1544 (((-1170 |#1|) $) 85)) (-1856 (((-1170 |#1|) $) 86)) (-3965 (((-112) $) NIL)) (-4139 (((-1170 |#1|) $) 94)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2834 (($ (-654 $)) NIL) (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-4344 (($ $ (-574)) 97)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-1908 (((-1170 |#1|) $) 95)) (-1747 (((-1170 (-417 |#1|)) $) 14)) (-2807 (($ (-417 |#1|)) 17) (($ |#1| (-1170 |#1|) (-1170 |#1|)) 40)) (-3156 (($ $) 99)) (-2943 (((-872) $) 139) (($ (-574)) 53) (($ |#1|) 54) (($ (-417 |#1|)) 38) (($ (-417 (-574))) NIL) (($ $) NIL)) (-4160 (((-781)) 69 T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-4331 (((-1170 (-417 |#1|)) $) 20)) (-2134 (($) 27 T CONST)) (-2146 (($) 30 T CONST)) (-2982 (((-112) $ $) 37)) (-3107 (($ $ $) 121)) (-3094 (($ $) 112) (($ $ $) 109)) (-3078 (($ $ $) 107)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-417 |#1|) $) 117) (($ $ (-417 |#1|)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL)))
+(((-176 |#1|) (-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -2807 ($ (-417 |#1|))) (-15 -2807 ($ |#1| (-1170 |#1|) (-1170 |#1|))) (-15 -1504 ($ |#1| (-1170 |#1|))) (-15 -1544 ((-1170 |#1|) $)) (-15 -1856 ((-1170 |#1|) $)) (-15 -2476 ((-1170 |#1|) $)) (-15 -2809 (|#1| $)) (-15 -2557 ($ $)) (-15 -4331 ((-1170 (-417 |#1|)) $)) (-15 -1747 ((-1170 (-417 |#1|)) $)) (-15 -4139 ((-1170 |#1|) $)) (-15 -1908 ((-1170 |#1|) $)) (-15 -4344 ($ $ (-574))) (-15 -3156 ($ $)))) (-315)) (T -176))
+((-2807 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) (-2807 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1170 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-1504 (*1 *1 *2 *3) (-12 (-5 *3 (-1170 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2809 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-2557 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-4331 (*1 *2 *1) (-12 (-5 *2 (-1170 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-1170 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4344 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))))
+(-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -2807 ($ (-417 |#1|))) (-15 -2807 ($ |#1| (-1170 |#1|) (-1170 |#1|))) (-15 -1504 ($ |#1| (-1170 |#1|))) (-15 -1544 ((-1170 |#1|) $)) (-15 -1856 ((-1170 |#1|) $)) (-15 -2476 ((-1170 |#1|) $)) (-15 -2809 (|#1| $)) (-15 -2557 ($ $)) (-15 -4331 ((-1170 (-417 |#1|)) $)) (-15 -1747 ((-1170 (-417 |#1|)) $)) (-15 -4139 ((-1170 |#1|) $)) (-15 -1908 ((-1170 |#1|) $)) (-15 -4344 ($ $ (-574))) (-15 -3156 ($ $))))
+((-2978 (($ (-109) $) 15)) (-4273 (((-701 (-109)) (-516) $) 14)) (-2943 (((-872) $) 18)) (-2845 (((-654 (-109)) $) 8)))
+(((-177) (-13 (-623 (-872)) (-10 -8 (-15 -2845 ((-654 (-109)) $)) (-15 -2978 ($ (-109) $)) (-15 -4273 ((-701 (-109)) (-516) $))))) (T -177))
+((-2845 (*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177)))) (-2978 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-4273 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2845 ((-654 (-109)) $)) (-15 -2978 ($ (-109) $)) (-15 -4273 ((-701 (-109)) (-516) $))))
+((-1803 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 38)) (-2764 (((-954 |#1|) (-954 |#1|)) 22)) (-4209 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 34)) (-3631 (((-954 |#1|) (-954 |#1|)) 20)) (-2695 (((-954 |#1|) (-954 |#1|)) 28)) (-1718 (((-954 |#1|) (-954 |#1|)) 27)) (-4038 (((-954 |#1|) (-954 |#1|)) 26)) (-3697 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 35)) (-3915 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 33)) (-2464 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 32)) (-1327 (((-954 |#1|) (-954 |#1|)) 21)) (-3252 (((-1 (-954 |#1|) (-954 |#1|)) |#1| |#1|) 41)) (-2938 (((-954 |#1|) (-954 |#1|)) 8)) (-3062 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 37)) (-1668 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 36)))
+(((-178 |#1|) (-10 -7 (-15 -2938 ((-954 |#1|) (-954 |#1|))) (-15 -3631 ((-954 |#1|) (-954 |#1|))) (-15 -1327 ((-954 |#1|) (-954 |#1|))) (-15 -2764 ((-954 |#1|) (-954 |#1|))) (-15 -4038 ((-954 |#1|) (-954 |#1|))) (-15 -1718 ((-954 |#1|) (-954 |#1|))) (-15 -2695 ((-954 |#1|) (-954 |#1|))) (-15 -2464 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3915 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -4209 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3697 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -1668 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3062 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -1803 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3252 ((-1 (-954 |#1|) (-954 |#1|)) |#1| |#1|))) (-13 (-372) (-1216) (-1015))) (T -178))
+((-3252 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-1803 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-3062 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-1668 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-3697 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-4209 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-3915 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-2464 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-4038 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-1327 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))))
+(-10 -7 (-15 -2938 ((-954 |#1|) (-954 |#1|))) (-15 -3631 ((-954 |#1|) (-954 |#1|))) (-15 -1327 ((-954 |#1|) (-954 |#1|))) (-15 -2764 ((-954 |#1|) (-954 |#1|))) (-15 -4038 ((-954 |#1|) (-954 |#1|))) (-15 -1718 ((-954 |#1|) (-954 |#1|))) (-15 -2695 ((-954 |#1|) (-954 |#1|))) (-15 -2464 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3915 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -4209 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3697 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -1668 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3062 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -1803 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3252 ((-1 (-954 |#1|) (-954 |#1|)) |#1| |#1|)))
+((-4169 ((|#2| |#3|) 28)))
+(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -4169 (|#2| |#3|))) (-174) (-1257 |#1|) (-734 |#1| |#2|)) (T -179))
+((-4169 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1257 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-734 *4 *2)))))
+(-10 -7 (-15 -4169 (|#2| |#3|)))
+((-2961 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 44 (|has| (-963 |#2|) (-897 |#1|)))))
+(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-963 |#2|) (-897 |#1|)) (-15 -2961 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) (-1113) (-13 (-897 |#1|) (-174)) (-167 |#2|)) (T -180))
+((-2961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *3 (-167 *6)) (-4 (-963 *6) (-897 *5)) (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-963 |#2|) (-897 |#1|)) (-15 -2961 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|))
+((-3427 (((-654 |#1|) (-654 |#1|) |#1|) 41)) (-3987 (((-654 |#1|) |#1| (-654 |#1|)) 20)) (-2361 (((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|)) 36) ((|#1| (-654 |#1|) (-654 |#1|)) 32)))
+(((-181 |#1|) (-10 -7 (-15 -3987 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -2361 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -2361 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -3427 ((-654 |#1|) (-654 |#1|) |#1|))) (-315)) (T -181))
+((-3427 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))) (-2361 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) (-5 *1 (-181 *4)))) (-2361 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) (-3987 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))))
+(-10 -7 (-15 -3987 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -2361 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -2361 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -3427 ((-654 |#1|) (-654 |#1|) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2335 (((-1230) $) 13)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 10)) (-2943 (((-872) $) 20) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-182) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $))))) (T -182))
+((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-182)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-182)))))
+(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $))))
+((-1590 (((-2 (|:| |start| |#2|) (|:| -3948 (-428 |#2|))) |#2|) 66)) (-2775 ((|#1| |#1|) 58)) (-4171 (((-171 |#1|) |#2|) 93)) (-3770 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3411 ((|#2| |#2|) 91)) (-2772 (((-428 |#2|) |#2| |#1|) 118) (((-428 |#2|) |#2| |#1| (-112)) 88)) (-1652 ((|#1| |#2|) 117)) (-1906 ((|#2| |#2|) 130)) (-4220 (((-428 |#2|) |#2|) 153) (((-428 |#2|) |#2| |#1|) 33) (((-428 |#2|) |#2| |#1| (-112)) 152)) (-3648 (((-654 (-2 (|:| -3948 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2|) 151) (((-654 (-2 (|:| -3948 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2| (-112)) 81)) (-1399 (((-654 (-171 |#1|)) |#2| |#1|) 42) (((-654 (-171 |#1|)) |#2|) 43)))
+(((-183 |#1| |#2|) (-10 -7 (-15 -1399 ((-654 (-171 |#1|)) |#2|)) (-15 -1399 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -3648 ((-654 (-2 (|:| -3948 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2| (-112))) (-15 -3648 ((-654 (-2 (|:| -3948 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2|)) (-15 -4220 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4220 ((-428 |#2|) |#2| |#1|)) (-15 -4220 ((-428 |#2|) |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1652 (|#1| |#2|)) (-15 -2772 ((-428 |#2|) |#2| |#1| (-112))) (-15 -2772 ((-428 |#2|) |#2| |#1|)) (-15 -3411 (|#2| |#2|)) (-15 -3770 (|#1| |#2| |#1|)) (-15 -3770 (|#1| |#2|)) (-15 -4171 ((-171 |#1|) |#2|)) (-15 -2775 (|#1| |#1|)) (-15 -1590 ((-2 (|:| |start| |#2|) (|:| -3948 (-428 |#2|))) |#2|))) (-13 (-372) (-858)) (-1257 (-171 |#1|))) (T -183))
+((-1590 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-2 (|:| |start| *3) (|:| -3948 (-428 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-2775 (*1 *2 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1257 (-171 *2))))) (-4171 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1257 *2)))) (-3770 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1257 (-171 *2))))) (-3770 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1257 (-171 *2))))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1257 (-171 *3))))) (-2772 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-2772 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-1652 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1257 (-171 *2))))) (-1906 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1257 (-171 *3))))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-4220 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-4220 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-3648 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -3948 (-654 *3)) (|:| -2678 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-3648 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -3948 (-654 *3)) (|:| -2678 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1257 (-171 *5))))) (-1399 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-1399 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))))
+(-10 -7 (-15 -1399 ((-654 (-171 |#1|)) |#2|)) (-15 -1399 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -3648 ((-654 (-2 (|:| -3948 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2| (-112))) (-15 -3648 ((-654 (-2 (|:| -3948 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2|)) (-15 -4220 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4220 ((-428 |#2|) |#2| |#1|)) (-15 -4220 ((-428 |#2|) |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1652 (|#1| |#2|)) (-15 -2772 ((-428 |#2|) |#2| |#1| (-112))) (-15 -2772 ((-428 |#2|) |#2| |#1|)) (-15 -3411 (|#2| |#2|)) (-15 -3770 (|#1| |#2| |#1|)) (-15 -3770 (|#1| |#2|)) (-15 -4171 ((-171 |#1|) |#2|)) (-15 -2775 (|#1| |#1|)) (-15 -1590 ((-2 (|:| |start| |#2|) (|:| -3948 (-428 |#2|))) |#2|)))
+((-4126 (((-3 |#2| "failed") |#2|) 16)) (-4167 (((-781) |#2|) 18)) (-2221 ((|#2| |#2| |#2|) 20)))
+(((-184 |#1| |#2|) (-10 -7 (-15 -4126 ((-3 |#2| "failed") |#2|)) (-15 -4167 ((-781) |#2|)) (-15 -2221 (|#2| |#2| |#2|))) (-1231) (-684 |#1|)) (T -184))
+((-2221 (*1 *2 *2 *2) (-12 (-4 *3 (-1231)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-1231)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) (-4 *3 (-684 *4)))) (-4126 (*1 *2 *2) (|partial| -12 (-4 *3 (-1231)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))))
+(-10 -7 (-15 -4126 ((-3 |#2| "failed") |#2|)) (-15 -4167 ((-781) |#2|)) (-15 -2221 (|#2| |#2| |#2|)))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1965 ((|#1| $) 7)) (-2943 (((-872) $) 14)) (-2923 (((-112) $ $) NIL)) (-1565 (((-654 (-1195)) $) 10)) (-2982 (((-112) $ $) 12)))
+(((-185 |#1|) (-13 (-1113) (-10 -8 (-15 -1965 (|#1| $)) (-15 -1565 ((-654 (-1195)) $)))) (-187)) (T -185))
+((-1965 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
+(-13 (-1113) (-10 -8 (-15 -1965 (|#1| $)) (-15 -1565 ((-654 (-1195)) $))))
+((-1716 (((-654 (-875)) $) 16)) (-4282 (((-188) $) 8)) (-2207 (((-654 (-112)) $) 13)) (-3944 (((-55) $) 10)))
+(((-186 |#1|) (-10 -8 (-15 -1716 ((-654 (-875)) |#1|)) (-15 -2207 ((-654 (-112)) |#1|)) (-15 -4282 ((-188) |#1|)) (-15 -3944 ((-55) |#1|))) (-187)) (T -186))
+NIL
+(-10 -8 (-15 -1716 ((-654 (-875)) |#1|)) (-15 -2207 ((-654 (-112)) |#1|)) (-15 -4282 ((-188) |#1|)) (-15 -3944 ((-55) |#1|)))
+((-2849 (((-112) $ $) 7)) (-1716 (((-654 (-875)) $) 19)) (-2032 (((-516) $) 16)) (-2568 (((-1172) $) 10)) (-4282 (((-188) $) 21)) (-2884 (((-112) $ (-516)) 14)) (-3966 (((-1133) $) 11)) (-2207 (((-654 (-112)) $) 20)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3944 (((-55) $) 15)) (-2982 (((-112) $ $) 6)))
(((-187) (-141)) (T -187))
-((-4280 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3496 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-652 (-112))))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-652 (-873))))))
-(-13 (-843 (-514)) (-10 -8 (-15 -4280 ((-188) $)) (-15 -3496 ((-652 (-112)) $)) (-15 -1714 ((-652 (-873)) $))))
-(((-102) . T) ((-621 (-870)) . T) ((-843 (-514)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-8 (($) 7 T CONST)) (-2940 (((-870) $) 12)) (-9 (($) 6 T CONST)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 10)))
-(((-188) (-13 (-1111) (-10 -8 (-15 -9 ($) -1705) (-15 -8 ($) -1705) (-15 -7 ($) -1705)))) (T -188))
+((-4282 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112))))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875))))))
+(-13 (-845 (-516)) (-10 -8 (-15 -4282 ((-188) $)) (-15 -2207 ((-654 (-112)) $)) (-15 -1716 ((-654 (-875)) $))))
+(((-102) . T) ((-623 (-872)) . T) ((-845 (-516)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-8 (($) 7 T CONST)) (-2943 (((-872) $) 12)) (-9 (($) 6 T CONST)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 10)))
+(((-188) (-13 (-1113) (-10 -8 (-15 -9 ($) -1707) (-15 -8 ($) -1707) (-15 -7 ($) -1707)))) (T -188))
((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188))))
-(-13 (-1111) (-10 -8 (-15 -9 ($) -1705) (-15 -8 ($) -1705) (-15 -7 ($) -1705)))
-((-2846 (((-112) $ $) NIL)) (-1714 (((-652 (-873)) $) NIL)) (-2030 (((-514) $) 8)) (-4347 (((-1170) $) NIL)) (-4280 (((-188) $) 10)) (-2695 (((-112) $ (-514)) NIL)) (-3964 (((-1131) $) NIL)) (-3394 (((-699 $) (-514)) 17)) (-3496 (((-652 (-112)) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2863 (((-55) $) 12)) (-2978 (((-112) $ $) NIL)))
-(((-189) (-13 (-187) (-10 -8 (-15 -3394 ((-699 $) (-514)))))) (T -189))
-((-3394 (*1 *2 *3) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-189))) (-5 *1 (-189)))))
-(-13 (-187) (-10 -8 (-15 -3394 ((-699 $) (-514)))))
-((-3600 ((|#2| |#2|) 28)) (-4181 (((-112) |#2|) 19)) (-4237 (((-322 |#1|) |#2|) 12)) (-4247 (((-322 |#1|) |#2|) 14)) (-1531 ((|#2| |#2| (-1188)) 69) ((|#2| |#2|) 70)) (-4054 (((-171 (-322 |#1|)) |#2|) 10)) (-2561 ((|#2| |#2| (-1188)) 66) ((|#2| |#2|) 60)))
-(((-190 |#1| |#2|) (-10 -7 (-15 -1531 (|#2| |#2|)) (-15 -1531 (|#2| |#2| (-1188))) (-15 -2561 (|#2| |#2|)) (-15 -2561 (|#2| |#2| (-1188))) (-15 -4237 ((-322 |#1|) |#2|)) (-15 -4247 ((-322 |#1|) |#2|)) (-15 -4181 ((-112) |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -4054 ((-171 (-322 |#1|)) |#2|))) (-13 (-564) (-1049 (-572))) (-13 (-27) (-1214) (-438 (-171 |#1|)))) (T -190))
-((-4054 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-171 (-322 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-3600 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3)))))) (-4181 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-4247 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-322 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-4237 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-322 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-2561 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3)))))) (-1531 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3)))))))
-(-10 -7 (-15 -1531 (|#2| |#2|)) (-15 -1531 (|#2| |#2| (-1188))) (-15 -2561 (|#2| |#2|)) (-15 -2561 (|#2| |#2| (-1188))) (-15 -4237 ((-322 |#1|) |#2|)) (-15 -4247 ((-322 |#1|) |#2|)) (-15 -4181 ((-112) |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -4054 ((-171 (-322 |#1|)) |#2|)))
-((-2552 (((-1279 (-697 (-961 |#1|))) (-1279 (-697 |#1|))) 26)) (-2940 (((-1279 (-697 (-415 (-961 |#1|)))) (-1279 (-697 |#1|))) 37)))
-(((-191 |#1|) (-10 -7 (-15 -2552 ((-1279 (-697 (-961 |#1|))) (-1279 (-697 |#1|)))) (-15 -2940 ((-1279 (-697 (-415 (-961 |#1|)))) (-1279 (-697 |#1|))))) (-174)) (T -191))
-((-2940 (*1 *2 *3) (-12 (-5 *3 (-1279 (-697 *4))) (-4 *4 (-174)) (-5 *2 (-1279 (-697 (-415 (-961 *4))))) (-5 *1 (-191 *4)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-1279 (-697 *4))) (-4 *4 (-174)) (-5 *2 (-1279 (-697 (-961 *4)))) (-5 *1 (-191 *4)))))
-(-10 -7 (-15 -2552 ((-1279 (-697 (-961 |#1|))) (-1279 (-697 |#1|)))) (-15 -2940 ((-1279 (-697 (-415 (-961 |#1|)))) (-1279 (-697 |#1|)))))
-((-1888 (((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572)))) 93)) (-3338 (((-1190 (-415 (-572))) (-652 (-572)) (-652 (-572))) 107)) (-3480 (((-1190 (-415 (-572))) (-930)) 54)) (-1446 (((-1190 (-415 (-572))) (-930)) 79)) (-2641 (((-415 (-572)) (-1190 (-415 (-572)))) 89)) (-4005 (((-1190 (-415 (-572))) (-930)) 37)) (-3675 (((-1190 (-415 (-572))) (-930)) 66)) (-3399 (((-1190 (-415 (-572))) (-930)) 61)) (-4308 (((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572)))) 87)) (-2590 (((-1190 (-415 (-572))) (-930)) 29)) (-2686 (((-415 (-572)) (-1190 (-415 (-572))) (-1190 (-415 (-572)))) 91)) (-4077 (((-1190 (-415 (-572))) (-930)) 35)) (-3192 (((-1190 (-415 (-572))) (-652 (-930))) 100)))
-(((-192) (-10 -7 (-15 -2590 ((-1190 (-415 (-572))) (-930))) (-15 -3480 ((-1190 (-415 (-572))) (-930))) (-15 -4005 ((-1190 (-415 (-572))) (-930))) (-15 -4077 ((-1190 (-415 (-572))) (-930))) (-15 -3399 ((-1190 (-415 (-572))) (-930))) (-15 -3675 ((-1190 (-415 (-572))) (-930))) (-15 -1446 ((-1190 (-415 (-572))) (-930))) (-15 -2686 ((-415 (-572)) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -4308 ((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -2641 ((-415 (-572)) (-1190 (-415 (-572))))) (-15 -1888 ((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -3192 ((-1190 (-415 (-572))) (-652 (-930)))) (-15 -3338 ((-1190 (-415 (-572))) (-652 (-572)) (-652 (-572)))))) (T -192))
-((-3338 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-1888 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-1190 (-415 (-572)))) (-5 *2 (-415 (-572))) (-5 *1 (-192)))) (-4308 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-2686 (*1 *2 *3 *3) (-12 (-5 *3 (-1190 (-415 (-572)))) (-5 *2 (-415 (-572))) (-5 *1 (-192)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-2590 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
-(-10 -7 (-15 -2590 ((-1190 (-415 (-572))) (-930))) (-15 -3480 ((-1190 (-415 (-572))) (-930))) (-15 -4005 ((-1190 (-415 (-572))) (-930))) (-15 -4077 ((-1190 (-415 (-572))) (-930))) (-15 -3399 ((-1190 (-415 (-572))) (-930))) (-15 -3675 ((-1190 (-415 (-572))) (-930))) (-15 -1446 ((-1190 (-415 (-572))) (-930))) (-15 -2686 ((-415 (-572)) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -4308 ((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -2641 ((-415 (-572)) (-1190 (-415 (-572))))) (-15 -1888 ((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -3192 ((-1190 (-415 (-572))) (-652 (-930)))) (-15 -3338 ((-1190 (-415 (-572))) (-652 (-572)) (-652 (-572)))))
-((-2206 (((-426 (-1184 (-572))) (-572)) 38)) (-1355 (((-652 (-1184 (-572))) (-572)) 33)) (-4176 (((-1184 (-572)) (-572)) 28)))
-(((-193) (-10 -7 (-15 -1355 ((-652 (-1184 (-572))) (-572))) (-15 -4176 ((-1184 (-572)) (-572))) (-15 -2206 ((-426 (-1184 (-572))) (-572))))) (T -193))
-((-2206 (*1 *2 *3) (-12 (-5 *2 (-426 (-1184 (-572)))) (-5 *1 (-193)) (-5 *3 (-572)))) (-4176 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-193)) (-5 *3 (-572)))) (-1355 (*1 *2 *3) (-12 (-5 *2 (-652 (-1184 (-572)))) (-5 *1 (-193)) (-5 *3 (-572)))))
-(-10 -7 (-15 -1355 ((-652 (-1184 (-572))) (-572))) (-15 -4176 ((-1184 (-572)) (-572))) (-15 -2206 ((-426 (-1184 (-572))) (-572))))
-((-4272 (((-1168 (-227)) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-4207 (((-652 (-1170)) (-1168 (-227))) NIL)) (-2942 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1484 (((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227)))) NIL)) (-1661 (((-652 (-1170)) (-652 (-227))) NIL)) (-4204 (((-227) (-1105 (-851 (-227)))) 31)) (-1716 (((-227) (-1105 (-851 (-227)))) 32)) (-2595 (((-386) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2655 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-2171 (((-1170) (-227)) NIL)) (-1832 (((-1170) (-652 (-1170))) 27)) (-3422 (((-1046) (-1188) (-1188) (-1046)) 13)))
-(((-194) (-10 -7 (-15 -2942 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2655 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4204 ((-227) (-1105 (-851 (-227))))) (-15 -1716 ((-227) (-1105 (-851 (-227))))) (-15 -2595 ((-386) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1484 ((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227))))) (-15 -4272 ((-1168 (-227)) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2171 ((-1170) (-227))) (-15 -1661 ((-652 (-1170)) (-652 (-227)))) (-15 -4207 ((-652 (-1170)) (-1168 (-227)))) (-15 -1832 ((-1170) (-652 (-1170)))) (-15 -3422 ((-1046) (-1188) (-1188) (-1046))))) (T -194))
-((-3422 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1046)) (-5 *3 (-1188)) (-5 *1 (-194)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-194)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-194)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-194)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-194)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-194)))) (-1484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-1188)) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-194)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-194)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194)))))
-(-10 -7 (-15 -2942 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2655 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4204 ((-227) (-1105 (-851 (-227))))) (-15 -1716 ((-227) (-1105 (-851 (-227))))) (-15 -2595 ((-386) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1484 ((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227))))) (-15 -4272 ((-1168 (-227)) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2171 ((-1170) (-227))) (-15 -1661 ((-652 (-1170)) (-652 (-227)))) (-15 -4207 ((-652 (-1170)) (-1168 (-227)))) (-15 -1832 ((-1170) (-652 (-1170)))) (-15 -3422 ((-1046) (-1188) (-1188) (-1046))))
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 61) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-195) (-795)) (T -195))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 66) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-196) (-795)) (T -196))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 81) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-197) (-795)) (T -197))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 63) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-198) (-795)) (T -198))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 75) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-199) (-795)) (T -199))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 93) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-200) (-795)) (T -200))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 90) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-201) (-795)) (T -201))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 77) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-202) (-795)) (T -202))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 76)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-203) (-795)) (T -203))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 77)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-204) (-795)) (T -204))
-NIL
-(-795)
-((-2846 (((-112) $ $) NIL)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 105) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-205) (-795)) (T -205))
-NIL
-(-795)
-((-2433 (((-3 (-2 (|:| -4294 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3958 (((-572) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-1511 (((-3 (-652 (-227)) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90)))
-(((-206) (-10 -7 (-15 -2433 ((-3 (-2 (|:| -4294 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1511 ((-3 (-652 (-227)) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3958 ((-572) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206))
-((-3958 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-572)) (-5 *1 (-206)))) (-1511 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-206)))) (-2433 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4294 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
-(-10 -7 (-15 -2433 ((-3 (-2 (|:| -4294 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1511 ((-3 (-652 (-227)) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3958 ((-572) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-3826 (((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3044 (((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-1542 (((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-697 (-322 (-227)))) 112)) (-4282 (((-386) (-697 (-322 (-227)))) 140)) (-1908 (((-697 (-322 (-227))) (-1279 (-322 (-227))) (-652 (-1188))) 136)) (-3753 (((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-3428 (((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2641 (((-697 (-322 (-227))) (-697 (-322 (-227))) (-652 (-1188)) (-1279 (-322 (-227)))) 125)) (-3875 (((-386) (-386) (-652 (-386))) 133) (((-386) (-386) (-386)) 128)) (-2424 (((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45)))
-(((-207) (-10 -7 (-15 -3875 ((-386) (-386) (-386))) (-15 -3875 ((-386) (-386) (-652 (-386)))) (-15 -4282 ((-386) (-697 (-322 (-227))))) (-15 -1908 ((-697 (-322 (-227))) (-1279 (-322 (-227))) (-652 (-1188)))) (-15 -2641 ((-697 (-322 (-227))) (-697 (-322 (-227))) (-652 (-1188)) (-1279 (-322 (-227))))) (-15 -1542 ((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-697 (-322 (-227))))) (-15 -3044 ((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3826 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3428 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2424 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3753 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207))
-((-3753 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386)))) (-5 *1 (-207)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-697 (-322 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386)))) (-5 *1 (-207)))) (-2641 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-697 (-322 (-227)))) (-5 *3 (-652 (-1188))) (-5 *4 (-1279 (-322 (-227)))) (-5 *1 (-207)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *4 (-652 (-1188))) (-5 *2 (-697 (-322 (-227)))) (-5 *1 (-207)))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-697 (-322 (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-3875 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-386))) (-5 *2 (-386)) (-5 *1 (-207)))) (-3875 (*1 *2 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-207)))))
-(-10 -7 (-15 -3875 ((-386) (-386) (-386))) (-15 -3875 ((-386) (-386) (-652 (-386)))) (-15 -4282 ((-386) (-697 (-322 (-227))))) (-15 -1908 ((-697 (-322 (-227))) (-1279 (-322 (-227))) (-652 (-1188)))) (-15 -2641 ((-697 (-322 (-227))) (-697 (-322 (-227))) (-652 (-1188)) (-1279 (-322 (-227))))) (-15 -1542 ((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-697 (-322 (-227))))) (-15 -3044 ((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3826 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3428 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2424 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3753 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-2846 (((-112) $ $) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2458 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2978 (((-112) $ $) NIL)))
-(((-208) (-808)) (T -208))
-NIL
-(-808)
-((-2846 (((-112) $ $) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2458 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2978 (((-112) $ $) NIL)))
-(((-209) (-808)) (T -209))
-NIL
-(-808)
-((-2846 (((-112) $ $) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2458 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2978 (((-112) $ $) NIL)))
-(((-210) (-808)) (T -210))
-NIL
-(-808)
-((-2846 (((-112) $ $) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2458 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2978 (((-112) $ $) NIL)))
-(((-211) (-808)) (T -211))
-NIL
-(-808)
-((-1653 (((-652 (-1188)) (-1188) (-779)) 26)) (-1928 (((-322 (-227)) (-322 (-227))) 35)) (-4232 (((-112) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 87)) (-4194 (((-112) (-227) (-227) (-652 (-322 (-227)))) 47)))
-(((-212) (-10 -7 (-15 -1653 ((-652 (-1188)) (-1188) (-779))) (-15 -1928 ((-322 (-227)) (-322 (-227)))) (-15 -4194 ((-112) (-227) (-227) (-652 (-322 (-227))))) (-15 -4232 ((-112) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))))) (T -212))
-((-4232 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-4194 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-652 (-322 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-1928 (*1 *2 *2) (-12 (-5 *2 (-322 (-227))) (-5 *1 (-212)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-5 *2 (-652 (-1188))) (-5 *1 (-212)) (-5 *3 (-1188)))))
-(-10 -7 (-15 -1653 ((-652 (-1188)) (-1188) (-779))) (-15 -1928 ((-322 (-227)) (-322 (-227)))) (-15 -4194 ((-112) (-227) (-227) (-652 (-322 (-227))))) (-15 -4232 ((-112) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))))
-((-2846 (((-112) $ $) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 28)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2050 (((-1046) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 70)) (-2978 (((-112) $ $) NIL)))
-(((-213) (-904)) (T -213))
-NIL
-(-904)
-((-2846 (((-112) $ $) NIL)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 24)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2050 (((-1046) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-214) (-904)) (T -214))
-NIL
-(-904)
-((-2846 (((-112) $ $) NIL)) (-2389 ((|#2| $ (-779) |#2|) 11)) (-2380 ((|#2| $ (-779)) 10)) (-3787 (($) 8)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 23)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 13)))
-(((-215 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -3787 ($)) (-15 -2380 (|#2| $ (-779))) (-15 -2389 (|#2| $ (-779) |#2|)))) (-930) (-1111)) (T -215))
-((-3787 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1111)))) (-2380 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *2 (-1111)) (-5 *1 (-215 *4 *2)) (-14 *4 (-930)))) (-2389 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-215 *4 *2)) (-14 *4 (-930)) (-4 *2 (-1111)))))
-(-13 (-1111) (-10 -8 (-15 -3787 ($)) (-15 -2380 (|#2| $ (-779))) (-15 -2389 (|#2| $ (-779) |#2|))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1528 (((-1284) $) 37) (((-1284) $ (-930) (-930)) 41)) (-2196 (($ $ (-1000)) 19) (((-249 (-1170)) $ (-1188)) 15)) (-1401 (((-1284) $) 35)) (-2940 (((-870) $) 32) (($ (-652 |#1|)) 8)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $ $) 27)) (-3075 (($ $ $) 22)))
-(((-216 |#1|) (-13 (-1111) (-624 (-652 |#1|)) (-10 -8 (-15 -2196 ($ $ (-1000))) (-15 -2196 ((-249 (-1170)) $ (-1188))) (-15 -3075 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -1401 ((-1284) $)) (-15 -1528 ((-1284) $)) (-15 -1528 ((-1284) $ (-930) (-930))))) (-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 ((-1284) $)) (-15 -1528 ((-1284) $))))) (T -216))
-((-2196 (*1 *1 *1 *2) (-12 (-5 *2 (-1000)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 ((-1284) $)) (-15 -1528 ((-1284) $))))))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-249 (-1170))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ *3)) (-15 -1401 ((-1284) $)) (-15 -1528 ((-1284) $))))))) (-3075 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 ((-1284) $)) (-15 -1528 ((-1284) $))))))) (-3089 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 ((-1284) $)) (-15 -1528 ((-1284) $))))))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 (*2 $)) (-15 -1528 (*2 $))))))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 (*2 $)) (-15 -1528 (*2 $))))))) (-1528 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 (*2 $)) (-15 -1528 (*2 $))))))))
-(-13 (-1111) (-624 (-652 |#1|)) (-10 -8 (-15 -2196 ($ $ (-1000))) (-15 -2196 ((-249 (-1170)) $ (-1188))) (-15 -3075 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -1401 ((-1284) $)) (-15 -1528 ((-1284) $)) (-15 -1528 ((-1284) $ (-930) (-930)))))
-((-3077 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3077 (|#2| |#4| (-1 |#2| |#2|)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -217))
-((-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-370)) (-4 *6 (-1255 (-415 *2))) (-4 *2 (-1255 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-349 *5 *2 *6)))))
-(-10 -7 (-15 -3077 (|#2| |#4| (-1 |#2| |#2|))))
-((-1771 ((|#2| |#2| (-779) |#2|) 55)) (-2758 ((|#2| |#2| (-779) |#2|) 51)) (-3172 (((-652 |#2|) (-652 (-2 (|:| |deg| (-779)) (|:| -4371 |#2|)))) 79)) (-2756 (((-652 (-2 (|:| |deg| (-779)) (|:| -4371 |#2|))) |#2|) 73)) (-2651 (((-112) |#2|) 71)) (-3832 (((-426 |#2|) |#2|) 91)) (-4218 (((-426 |#2|) |#2|) 90)) (-1642 ((|#2| |#2| (-779) |#2|) 49)) (-4149 (((-2 (|:| |cont| |#1|) (|:| -4225 (-652 (-2 (|:| |irr| |#2|) (|:| -2866 (-572)))))) |#2| (-112)) 85)))
-(((-218 |#1| |#2|) (-10 -7 (-15 -4218 ((-426 |#2|) |#2|)) (-15 -3832 ((-426 |#2|) |#2|)) (-15 -4149 ((-2 (|:| |cont| |#1|) (|:| -4225 (-652 (-2 (|:| |irr| |#2|) (|:| -2866 (-572)))))) |#2| (-112))) (-15 -2756 ((-652 (-2 (|:| |deg| (-779)) (|:| -4371 |#2|))) |#2|)) (-15 -3172 ((-652 |#2|) (-652 (-2 (|:| |deg| (-779)) (|:| -4371 |#2|))))) (-15 -1642 (|#2| |#2| (-779) |#2|)) (-15 -2758 (|#2| |#2| (-779) |#2|)) (-15 -1771 (|#2| |#2| (-779) |#2|)) (-15 -2651 ((-112) |#2|))) (-356) (-1255 |#1|)) (T -218))
-((-2651 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))) (-1771 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1255 *4)))) (-2758 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1255 *4)))) (-1642 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1255 *4)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| |deg| (-779)) (|:| -4371 *5)))) (-4 *5 (-1255 *4)) (-4 *4 (-356)) (-5 *2 (-652 *5)) (-5 *1 (-218 *4 *5)))) (-2756 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-652 (-2 (|:| |deg| (-779)) (|:| -4371 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4225 (-652 (-2 (|:| |irr| *3) (|:| -2866 (-572))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1255 *5)))) (-3832 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -4218 ((-426 |#2|) |#2|)) (-15 -3832 ((-426 |#2|) |#2|)) (-15 -4149 ((-2 (|:| |cont| |#1|) (|:| -4225 (-652 (-2 (|:| |irr| |#2|) (|:| -2866 (-572)))))) |#2| (-112))) (-15 -2756 ((-652 (-2 (|:| |deg| (-779)) (|:| -4371 |#2|))) |#2|)) (-15 -3172 ((-652 |#2|) (-652 (-2 (|:| |deg| (-779)) (|:| -4371 |#2|))))) (-15 -1642 (|#2| |#2| (-779) |#2|)) (-15 -2758 (|#2| |#2| (-779) |#2|)) (-15 -1771 (|#2| |#2| (-779) |#2|)) (-15 -2651 ((-112) |#2|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 (((-572) $) NIL (|has| (-572) (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL (|has| (-572) (-828)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-572) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-572) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-572) (-1049 (-572))))) (-2204 (((-572) $) NIL) (((-1188) $) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-572) (-1049 (-572)))) (((-572) $) NIL (|has| (-572) (-1049 (-572))))) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-697 (-572)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-572) (-553)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3074 (((-112) $) NIL (|has| (-572) (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-572) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-572) (-895 (-386))))) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL)) (-2963 (((-572) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| (-572) (-1163)))) (-1623 (((-112) $) NIL (|has| (-572) (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| (-572) (-858)))) (-1776 (($ (-1 (-572) (-572)) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-572) (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL (|has| (-572) (-313))) (((-415 (-572)) $) NIL)) (-3462 (((-572) $) NIL (|has| (-572) (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2641 (($ $ (-652 (-572)) (-652 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-572) (-572)) NIL (|has| (-572) (-315 (-572)))) (($ $ (-300 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-300 (-572)))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-1188)) (-652 (-572))) NIL (|has| (-572) (-522 (-1188) (-572)))) (($ $ (-1188) (-572)) NIL (|has| (-572) (-522 (-1188) (-572))))) (-3847 (((-779) $) NIL)) (-2196 (($ $ (-572)) NIL (|has| (-572) (-292 (-572) (-572))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-1520 (($ $) NIL)) (-2974 (((-572) $) NIL)) (-3853 (($ (-415 (-572))) 9)) (-1835 (((-901 (-572)) $) NIL (|has| (-572) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-572) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-572) (-622 (-544)))) (((-386) $) NIL (|has| (-572) (-1033))) (((-227) $) NIL (|has| (-572) (-1033)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-572) (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 8) (($ (-572)) NIL) (($ (-1188)) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL) (((-1015 10) $) 10)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| (-572) (-918))) (|has| (-572) (-146))))) (-4249 (((-779)) NIL T CONST)) (-3614 (((-572) $) NIL (|has| (-572) (-553)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2700 (($ $) NIL (|has| (-572) (-828)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3039 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-572) (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3003 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3106 (($ $ $) NIL) (($ (-572) (-572)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-572) $) NIL) (($ $ (-572)) NIL)))
-(((-219) (-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 10)) (-10 -8 (-15 -2340 ((-415 (-572)) $)) (-15 -3853 ($ (-415 (-572))))))) (T -219))
-((-2340 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-219)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-219)))))
-(-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 10)) (-10 -8 (-15 -2340 ((-415 (-572)) $)) (-15 -3853 ($ (-415 (-572))))))
-((-2846 (((-112) $ $) NIL)) (-3137 (((-1129) $) 13)) (-4347 (((-1170) $) NIL)) (-2502 (((-491) $) 10)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 23) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-1146) $) 15)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-220) (-13 (-1094) (-10 -8 (-15 -2502 ((-491) $)) (-15 -3137 ((-1129) $)) (-15 -2042 ((-1146) $))))) (T -220))
-((-2502 (*1 *2 *1) (-12 (-5 *2 (-491)) (-5 *1 (-220)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-220)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-220)))))
-(-13 (-1094) (-10 -8 (-15 -2502 ((-491) $)) (-15 -3137 ((-1129) $)) (-15 -2042 ((-1146) $))))
-((-3034 (((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)) (-1170)) 29) (((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|))) 25)) (-1801 (((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1188) (-851 |#2|) (-851 |#2|) (-112)) 17)))
-(((-221 |#1| |#2|) (-10 -7 (-15 -3034 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)))) (-15 -3034 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)) (-1170))) (-15 -1801 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1188) (-851 |#2|) (-851 |#2|) (-112)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-968) (-29 |#1|))) (T -221))
-((-1801 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1188)) (-5 *6 (-112)) (-4 *7 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-4 *3 (-13 (-1214) (-968) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-851 *3)))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1103 (-851 *3))) (-5 *5 (-1170)) (-4 *3 (-13 (-1214) (-968) (-29 *6))) (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-3034 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-851 *3))) (-4 *3 (-13 (-1214) (-968) (-29 *5))) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3)))))
-(-10 -7 (-15 -3034 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)))) (-15 -3034 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)) (-1170))) (-15 -1801 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1188) (-851 |#2|) (-851 |#2|) (-112))))
-((-3034 (((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))) (-1170)) 49) (((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|))))) 46) (((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))) (-1170)) 50) (((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|)))) 22)))
-(((-222 |#1|) (-10 -7 (-15 -3034 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))))) (-15 -3034 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))) (-1170))) (-15 -3034 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))))) (-15 -3034 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))) (-1170)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (T -222))
-((-3034 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1103 (-851 (-415 (-961 *6))))) (-5 *5 (-1170)) (-5 *3 (-415 (-961 *6))) (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 (-322 *6))) (|:| |f2| (-652 (-851 (-322 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3034 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-851 (-415 (-961 *5))))) (-5 *3 (-415 (-961 *5))) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 (-322 *5))) (|:| |f2| (-652 (-851 (-322 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-415 (-961 *6))) (-5 *4 (-1103 (-851 (-322 *6)))) (-5 *5 (-1170)) (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 (-322 *6))) (|:| |f2| (-652 (-851 (-322 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3034 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1103 (-851 (-322 *5)))) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 (-322 *5))) (|:| |f2| (-652 (-851 (-322 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))))
-(-10 -7 (-15 -3034 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))))) (-15 -3034 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))) (-1170))) (-15 -3034 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))))) (-15 -3034 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))) (-1170))))
-((-2865 (((-2 (|:| -2057 (-1184 |#1|)) (|:| |deg| (-930))) (-1184 |#1|)) 26)) (-2127 (((-652 (-322 |#2|)) (-322 |#2|) (-930)) 51)))
-(((-223 |#1| |#2|) (-10 -7 (-15 -2865 ((-2 (|:| -2057 (-1184 |#1|)) (|:| |deg| (-930))) (-1184 |#1|))) (-15 -2127 ((-652 (-322 |#2|)) (-322 |#2|) (-930)))) (-1060) (-564)) (T -223))
-((-2127 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-4 *6 (-564)) (-5 *2 (-652 (-322 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-322 *6)) (-4 *5 (-1060)))) (-2865 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-2 (|:| -2057 (-1184 *4)) (|:| |deg| (-930)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1184 *4)) (-4 *5 (-564)))))
-(-10 -7 (-15 -2865 ((-2 (|:| -2057 (-1184 |#1|)) (|:| |deg| (-930))) (-1184 |#1|))) (-15 -2127 ((-652 (-322 |#2|)) (-322 |#2|) (-930))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3371 ((|#1| $) NIL)) (-2001 ((|#1| $) 30)) (-1631 (((-112) $ (-779)) NIL)) (-3281 (($) NIL T CONST)) (-3869 (($ $) NIL)) (-3133 (($ $) 39)) (-4004 ((|#1| |#1| $) NIL)) (-1491 ((|#1| $) NIL)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4133 (((-779) $) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1651 ((|#1| $) NIL)) (-2896 ((|#1| |#1| $) 35)) (-2936 ((|#1| |#1| $) 37)) (-2036 (($ |#1| $) NIL)) (-1839 (((-779) $) 33)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2935 ((|#1| $) NIL)) (-2317 ((|#1| $) 31)) (-1501 ((|#1| $) 29)) (-3378 ((|#1| $) NIL)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3598 ((|#1| |#1| $) NIL)) (-1841 (((-112) $) 9)) (-1613 (($) NIL)) (-3263 ((|#1| $) NIL)) (-1552 (($) NIL) (($ (-652 |#1|)) 16)) (-4301 (((-779) $) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-2243 ((|#1| $) 13)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) NIL)) (-2334 ((|#1| $) NIL)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-224 |#1|) (-13 (-259 |#1|) (-10 -8 (-15 -1552 ($ (-652 |#1|))))) (-1111)) (T -224))
-((-1552 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-224 *3)))))
-(-13 (-259 |#1|) (-10 -8 (-15 -1552 ($ (-652 |#1|)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1444 (($ (-322 |#1|)) 24)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2100 (((-112) $) NIL)) (-1695 (((-3 (-322 |#1|) "failed") $) NIL)) (-2204 (((-322 |#1|) $) NIL)) (-1390 (($ $) 32)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-1776 (($ (-1 (-322 |#1|) (-322 |#1|)) $) NIL)) (-1368 (((-322 |#1|) $) NIL)) (-2355 (($ $) 31)) (-4347 (((-1170) $) NIL)) (-3342 (((-112) $) NIL)) (-3964 (((-1131) $) NIL)) (-2967 (($ (-779)) NIL)) (-4387 (($ $) 33)) (-4390 (((-572) $) NIL)) (-2940 (((-870) $) 65) (($ (-572)) NIL) (($ (-322 |#1|)) NIL)) (-3979 (((-322 |#1|) $ $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 26 T CONST)) (-2143 (($) NIL T CONST)) (-2978 (((-112) $ $) 29)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 20)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 25) (($ (-322 |#1|) $) 19)))
-(((-225 |#1| |#2|) (-13 (-628 (-322 |#1|)) (-1049 (-322 |#1|)) (-10 -8 (-15 -1368 ((-322 |#1|) $)) (-15 -2355 ($ $)) (-15 -1390 ($ $)) (-15 -3979 ((-322 |#1|) $ $)) (-15 -2967 ($ (-779))) (-15 -3342 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -4390 ((-572) $)) (-15 -1776 ($ (-1 (-322 |#1|) (-322 |#1|)) $)) (-15 -1444 ($ (-322 |#1|))) (-15 -4387 ($ $)))) (-13 (-1060) (-858)) (-652 (-1188))) (T -225))
-((-1368 (*1 *2 *1) (-12 (-5 *2 (-322 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858))) (-14 *3 (-652 (-1188))))) (-1390 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858))) (-14 *3 (-652 (-1188))))) (-3979 (*1 *2 *1 *1) (-12 (-5 *2 (-322 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-2967 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-322 *3) (-322 *3))) (-4 *3 (-13 (-1060) (-858))) (-5 *1 (-225 *3 *4)) (-14 *4 (-652 (-1188))))) (-1444 (*1 *1 *2) (-12 (-5 *2 (-322 *3)) (-4 *3 (-13 (-1060) (-858))) (-5 *1 (-225 *3 *4)) (-14 *4 (-652 (-1188))))) (-4387 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858))) (-14 *3 (-652 (-1188))))))
-(-13 (-628 (-322 |#1|)) (-1049 (-322 |#1|)) (-10 -8 (-15 -1368 ((-322 |#1|) $)) (-15 -2355 ($ $)) (-15 -1390 ($ $)) (-15 -3979 ((-322 |#1|) $ $)) (-15 -2967 ($ (-779))) (-15 -3342 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -4390 ((-572) $)) (-15 -1776 ($ (-1 (-322 |#1|) (-322 |#1|)) $)) (-15 -1444 ($ (-322 |#1|))) (-15 -4387 ($ $))))
-((-1483 (((-112) (-1170)) 26)) (-4059 (((-3 (-851 |#2|) "failed") (-620 |#2|) |#2| (-851 |#2|) (-851 |#2|) (-112)) 35)) (-3652 (((-3 (-112) "failed") (-1184 |#2|) (-851 |#2|) (-851 |#2|) (-112)) 84) (((-3 (-112) "failed") (-961 |#1|) (-1188) (-851 |#2|) (-851 |#2|) (-112)) 85)))
-(((-226 |#1| |#2|) (-10 -7 (-15 -1483 ((-112) (-1170))) (-15 -4059 ((-3 (-851 |#2|) "failed") (-620 |#2|) |#2| (-851 |#2|) (-851 |#2|) (-112))) (-15 -3652 ((-3 (-112) "failed") (-961 |#1|) (-1188) (-851 |#2|) (-851 |#2|) (-112))) (-15 -3652 ((-3 (-112) "failed") (-1184 |#2|) (-851 |#2|) (-851 |#2|) (-112)))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-29 |#1|))) (T -226))
-((-3652 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1184 *6)) (-5 *4 (-851 *6)) (-4 *6 (-13 (-1214) (-29 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-226 *5 *6)))) (-3652 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-961 *6)) (-5 *4 (-1188)) (-5 *5 (-851 *7)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-4 *7 (-13 (-1214) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-4059 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-851 *4)) (-5 *3 (-620 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1214) (-29 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-226 *6 *4)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1214) (-29 *4))))))
-(-10 -7 (-15 -1483 ((-112) (-1170))) (-15 -4059 ((-3 (-851 |#2|) "failed") (-620 |#2|) |#2| (-851 |#2|) (-851 |#2|) (-112))) (-15 -3652 ((-3 (-112) "failed") (-961 |#1|) (-1188) (-851 |#2|) (-851 |#2|) (-112))) (-15 -3652 ((-3 (-112) "failed") (-1184 |#2|) (-851 |#2|) (-851 |#2|) (-112))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 98)) (-2689 (((-572) $) 35)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3762 (($ $) NIL)) (-2358 (($ $) 87)) (-2242 (($ $) 75)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4227 (($ $) 66)) (-4217 (((-112) $ $) NIL)) (-2338 (($ $) 85)) (-2222 (($ $) 73)) (-2840 (((-572) $) 128)) (-2384 (($ $) 90)) (-2262 (($ $) 77)) (-3281 (($) NIL T CONST)) (-1530 (($ $) NIL)) (-1695 (((-3 (-572) "failed") $) 127) (((-3 (-415 (-572)) "failed") $) 124)) (-2204 (((-572) $) 125) (((-415 (-572)) $) 122)) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) 103)) (-2884 (((-415 (-572)) $ (-779)) 117) (((-415 (-572)) $ (-779) (-779)) 116)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3782 (((-930)) 29) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-3074 (((-112) $) NIL)) (-2997 (($) 46)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL)) (-2956 (((-572) $) 42)) (-1886 (((-112) $) 99)) (-2932 (($ $ (-572)) NIL)) (-2028 (($ $) NIL)) (-1623 (((-112) $) 97)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) 63) (($) 38 (-12 (-2074 (|has| $ (-6 -4437))) (-2074 (|has| $ (-6 -4445)))))) (-2427 (($ $ $) 62) (($) 37 (-12 (-2074 (|has| $ (-6 -4437))) (-2074 (|has| $ (-6 -4445)))))) (-4298 (((-572) $) 27)) (-3057 (($ $) 33)) (-1732 (($ $) 67)) (-3116 (($ $) 72)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-4170 (((-930) (-572)) NIL (|has| $ (-6 -4445)))) (-3964 (((-1131) $) 101)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL)) (-3462 (($ $) NIL)) (-2379 (($ (-572) (-572)) NIL) (($ (-572) (-572) (-930)) 110)) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1679 (((-572) $) 28)) (-2499 (($) 45)) (-1608 (($ $) 71)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2189 (((-930)) NIL) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-3902 (($ $ (-779)) NIL) (($ $) 104)) (-2691 (((-930) (-572)) NIL (|has| $ (-6 -4445)))) (-2397 (($ $) 88)) (-2270 (($ $) 78)) (-2370 (($ $) 89)) (-2252 (($ $) 76)) (-2348 (($ $) 86)) (-2231 (($ $) 74)) (-1835 (((-386) $) 113) (((-227) $) 14) (((-901 (-386)) $) NIL) (((-544) $) 52)) (-2940 (((-870) $) 49) (($ (-572)) 70) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-572)) 70) (($ (-415 (-572))) NIL)) (-4249 (((-779)) NIL T CONST)) (-3614 (($ $) NIL)) (-4221 (((-930)) 36) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-4379 (((-112) $ $) NIL)) (-2625 (((-930)) 25)) (-2436 (($ $) 93)) (-2300 (($ $) 81) (($ $ $) 120)) (-2845 (((-112) $ $) NIL)) (-2409 (($ $) 91)) (-2282 (($ $) 79)) (-2460 (($ $) 96)) (-2320 (($ $) 84)) (-2516 (($ $) 94)) (-2329 (($ $) 82)) (-2448 (($ $) 95)) (-2310 (($ $) 83)) (-2423 (($ $) 92)) (-2292 (($ $) 80)) (-2700 (($ $) 119)) (-2131 (($) 23 T CONST)) (-2143 (($) 43 T CONST)) (-3547 (((-1170) $) 18) (((-1170) $ (-112)) 20) (((-1284) (-830) $) 21) (((-1284) (-830) $ (-112)) 22)) (-4276 (($ $) 107)) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-3919 (($ $ $) 109)) (-3039 (((-112) $ $) 56)) (-3014 (((-112) $ $) 54)) (-2978 (((-112) $ $) 64)) (-3026 (((-112) $ $) 55)) (-3003 (((-112) $ $) 53)) (-3106 (($ $ $) 44) (($ $ (-572)) 65)) (-3089 (($ $) 57) (($ $ $) 59)) (-3075 (($ $ $) 58)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 68) (($ $ (-415 (-572))) 152) (($ $ $) 69)) (* (($ (-930) $) 34) (($ (-779) $) NIL) (($ (-572) $) 61) (($ $ $) 60) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
-(((-227) (-13 (-412) (-237) (-836) (-1214) (-622 (-544)) (-10 -8 (-15 -3106 ($ $ (-572))) (-15 ** ($ $ $)) (-15 -2499 ($)) (-15 -3057 ($ $)) (-15 -1732 ($ $)) (-15 -2300 ($ $ $)) (-15 -4276 ($ $)) (-15 -3919 ($ $ $)) (-15 -2884 ((-415 (-572)) $ (-779))) (-15 -2884 ((-415 (-572)) $ (-779) (-779)))))) (T -227))
-((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3106 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-227)))) (-2499 (*1 *1) (-5 *1 (-227))) (-3057 (*1 *1 *1) (-5 *1 (-227))) (-1732 (*1 *1 *1) (-5 *1 (-227))) (-2300 (*1 *1 *1 *1) (-5 *1 (-227))) (-4276 (*1 *1 *1) (-5 *1 (-227))) (-3919 (*1 *1 *1 *1) (-5 *1 (-227))) (-2884 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-227)))) (-2884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-227)))))
-(-13 (-412) (-237) (-836) (-1214) (-622 (-544)) (-10 -8 (-15 -3106 ($ $ (-572))) (-15 ** ($ $ $)) (-15 -2499 ($)) (-15 -3057 ($ $)) (-15 -1732 ($ $)) (-15 -2300 ($ $ $)) (-15 -4276 ($ $)) (-15 -3919 ($ $ $)) (-15 -2884 ((-415 (-572)) $ (-779))) (-15 -2884 ((-415 (-572)) $ (-779) (-779)))))
-((-1460 (((-171 (-227)) (-779) (-171 (-227))) 11) (((-227) (-779) (-227)) 12)) (-2081 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-3358 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-1973 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3149 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-1538 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-2577 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2729 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-1643 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-2627 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-4276 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-3919 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31)))
-(((-228) (-10 -7 (-15 -4276 ((-227) (-227))) (-15 -4276 ((-171 (-227)) (-171 (-227)))) (-15 -3919 ((-227) (-227) (-227))) (-15 -3919 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2081 ((-227) (-227))) (-15 -2081 ((-171 (-227)) (-171 (-227)))) (-15 -1973 ((-227) (-227))) (-15 -1973 ((-171 (-227)) (-171 (-227)))) (-15 -1460 ((-227) (-779) (-227))) (-15 -1460 ((-171 (-227)) (-779) (-171 (-227)))) (-15 -2577 ((-227) (-227) (-227))) (-15 -2577 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3149 ((-227) (-227) (-227))) (-15 -3149 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2729 ((-227) (-227) (-227))) (-15 -2729 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1538 ((-227) (-227) (-227))) (-15 -1538 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2627 ((-171 (-227)) (-171 (-227)))) (-15 -2627 ((-227) (-227))) (-15 -1643 ((-227) (-227))) (-15 -1643 ((-171 (-227)) (-171 (-227)))) (-15 -3358 ((-227) (-227) (-227))) (-15 -3358 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228))
-((-3358 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3358 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1643 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1643 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1538 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1538 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2729 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2729 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3149 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3149 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2577 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2577 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1460 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-779)) (-5 *1 (-228)))) (-1460 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-779)) (-5 *1 (-228)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3919 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3919 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4276 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4276 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))))
-(-10 -7 (-15 -4276 ((-227) (-227))) (-15 -4276 ((-171 (-227)) (-171 (-227)))) (-15 -3919 ((-227) (-227) (-227))) (-15 -3919 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2081 ((-227) (-227))) (-15 -2081 ((-171 (-227)) (-171 (-227)))) (-15 -1973 ((-227) (-227))) (-15 -1973 ((-171 (-227)) (-171 (-227)))) (-15 -1460 ((-227) (-779) (-227))) (-15 -1460 ((-171 (-227)) (-779) (-171 (-227)))) (-15 -2577 ((-227) (-227) (-227))) (-15 -2577 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3149 ((-227) (-227) (-227))) (-15 -3149 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2729 ((-227) (-227) (-227))) (-15 -2729 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1538 ((-227) (-227) (-227))) (-15 -1538 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2627 ((-171 (-227)) (-171 (-227)))) (-15 -2627 ((-227) (-227))) (-15 -1643 ((-227) (-227))) (-15 -1643 ((-171 (-227)) (-171 (-227)))) (-15 -3358 ((-227) (-227) (-227))) (-15 -3358 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2212 (($ (-779) (-779)) NIL)) (-2788 (($ $ $) NIL)) (-3054 (($ (-1279 |#1|)) NIL) (($ $) NIL)) (-2803 (($ |#1| |#1| |#1|) 33)) (-4136 (((-112) $) NIL)) (-1428 (($ $ (-572) (-572)) NIL)) (-2977 (($ $ (-572) (-572)) NIL)) (-2958 (($ $ (-572) (-572) (-572) (-572)) NIL)) (-2645 (($ $) NIL)) (-4210 (((-112) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2146 (($ $ (-572) (-572) $) NIL)) (-3140 ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572)) $) NIL)) (-3864 (($ $ (-572) (-1279 |#1|)) NIL)) (-4255 (($ $ (-572) (-1279 |#1|)) NIL)) (-3778 (($ |#1| |#1| |#1|) 32)) (-3355 (($ (-779) |#1|) NIL)) (-3281 (($) NIL T CONST)) (-3076 (($ $) NIL (|has| |#1| (-313)))) (-4172 (((-1279 |#1|) $ (-572)) NIL)) (-2933 (($ |#1|) 31)) (-2199 (($ |#1|) 30)) (-3604 (($ |#1|) 29)) (-3581 (((-779) $) NIL (|has| |#1| (-564)))) (-2453 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2380 ((|#1| $ (-572) (-572)) NIL)) (-1863 (((-652 |#1|) $) NIL)) (-4430 (((-779) $) NIL (|has| |#1| (-564)))) (-2313 (((-652 (-1279 |#1|)) $) NIL (|has| |#1| (-564)))) (-2187 (((-779) $) NIL)) (-3787 (($ (-779) (-779) |#1|) NIL)) (-2195 (((-779) $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3283 ((|#1| $) NIL (|has| |#1| (-6 (-4456 "*"))))) (-3822 (((-572) $) NIL)) (-3533 (((-572) $) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2795 (((-572) $) NIL)) (-2857 (((-572) $) NIL)) (-2911 (($ (-652 (-652 |#1|))) 11)) (-2442 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4393 (((-652 (-652 |#1|)) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1982 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-2186 (($) 12)) (-2327 (($ $ $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2476 (($ $ |#1|) NIL)) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572))) NIL)) (-1640 (($ (-652 |#1|)) NIL) (($ (-652 $)) NIL)) (-2464 (((-112) $) NIL)) (-2513 ((|#1| $) NIL (|has| |#1| (-6 (-4456 "*"))))) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-1752 (((-1279 |#1|) $ (-572)) NIL)) (-2940 (($ (-1279 |#1|)) NIL) (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-4384 (((-112) $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-572) $) NIL) (((-1279 |#1|) $ (-1279 |#1|)) 15) (((-1279 |#1|) (-1279 |#1|) $) NIL) (((-952 |#1|) $ (-952 |#1|)) 21)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-229 |#1|) (-13 (-695 |#1| (-1279 |#1|) (-1279 |#1|)) (-10 -8 (-15 * ((-952 |#1|) $ (-952 |#1|))) (-15 -2186 ($)) (-15 -3604 ($ |#1|)) (-15 -2199 ($ |#1|)) (-15 -2933 ($ |#1|)) (-15 -3778 ($ |#1| |#1| |#1|)) (-15 -2803 ($ |#1| |#1| |#1|)))) (-13 (-370) (-1214))) (T -229))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214))) (-5 *1 (-229 *3)))) (-2186 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-3604 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-2199 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-2933 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-3778 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-2803 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
-(-13 (-695 |#1| (-1279 |#1|) (-1279 |#1|)) (-10 -8 (-15 * ((-952 |#1|) $ (-952 |#1|))) (-15 -2186 ($)) (-15 -3604 ($ |#1|)) (-15 -2199 ($ |#1|)) (-15 -2933 ($ |#1|)) (-15 -3778 ($ |#1| |#1| |#1|)) (-15 -2803 ($ |#1| |#1| |#1|))))
-((-2613 (($ (-1 (-112) |#2|) $) 16)) (-3554 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-3438 (($) NIL) (($ (-652 |#2|)) 11)) (-2978 (((-112) $ $) 26)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -2613 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3554 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3554 (|#1| |#2| |#1|)) (-15 -3438 (|#1| (-652 |#2|))) (-15 -3438 (|#1|)) (-15 -2978 ((-112) |#1| |#1|))) (-231 |#2|) (-1111)) (T -230))
-NIL
-(-10 -8 (-15 -2613 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3554 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3554 (|#1| |#2| |#1|)) (-15 -3438 (|#1| (-652 |#2|))) (-15 -3438 (|#1|)) (-15 -2978 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-2613 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2086 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-3332 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3438 (($) 50) (($ (-652 |#1|)) 49)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 51)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 43)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-231 |#1|) (-141) (-1111)) (T -231))
-NIL
-(-13 (-239 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-3902 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) 11) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) 19) (($ $ (-779)) NIL) (($ $) 16)) (-3608 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-779)) 14) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)))
-(((-232 |#1| |#2|) (-10 -8 (-15 -3608 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3608 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3608 (|#1| |#1| (-1188))) (-15 -3608 (|#1| |#1| (-652 (-1188)))) (-15 -3608 (|#1| |#1| (-1188) (-779))) (-15 -3608 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3608 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3608 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1060)) (T -232))
-NIL
-(-10 -8 (-15 -3608 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3608 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3608 (|#1| |#1| (-1188))) (-15 -3608 (|#1| |#1| (-652 (-1188)))) (-15 -3608 (|#1| |#1| (-1188) (-779))) (-15 -3608 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3608 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3608 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3902 (($ $ (-1 |#1| |#1|)) 57) (($ $ (-1 |#1| |#1|) (-779)) 56) (($ $ (-652 (-1188)) (-652 (-779))) 49 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 48 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 47 (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 46 (|has| |#1| (-909 (-1188)))) (($ $ (-779)) 44 (|has| |#1| (-237))) (($ $) 43 (|has| |#1| (-237)))) (-2940 (((-870) $) 12) (($ (-572)) 33)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-1 |#1| |#1|)) 55) (($ $ (-1 |#1| |#1|) (-779)) 54) (($ $ (-652 (-1188)) (-652 (-779))) 53 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 52 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 51 (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 50 (|has| |#1| (-909 (-1188)))) (($ $ (-779)) 45 (|has| |#1| (-237))) (($ $) 42 (|has| |#1| (-237)))) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-233 |#1|) (-141) (-1060)) (T -233))
-((-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1060)))) (-3902 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *1 (-233 *4)) (-4 *4 (-1060)))) (-3608 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1060)))) (-3608 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *1 (-233 *4)) (-4 *4 (-1060)))))
-(-13 (-1060) (-10 -8 (-15 -3902 ($ $ (-1 |t#1| |t#1|))) (-15 -3902 ($ $ (-1 |t#1| |t#1|) (-779))) (-15 -3608 ($ $ (-1 |t#1| |t#1|))) (-15 -3608 ($ $ (-1 |t#1| |t#1|) (-779))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-909 (-1188))) (-6 (-909 (-1188))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-235 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) |has| |#1| (-237)))
-((-3608 ((|#2| $) 9)))
-(((-234 |#1| |#2|) (-10 -8 (-15 -3608 (|#2| |#1|))) (-235 |#2|) (-1229)) (T -234))
-NIL
-(-10 -8 (-15 -3608 (|#2| |#1|)))
-((-3902 ((|#1| $) 7)) (-3608 ((|#1| $) 6)))
-(((-235 |#1|) (-141) (-1229)) (T -235))
-((-3902 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1229)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1229)))))
-(-13 (-1229) (-10 -8 (-15 -3902 (|t#1| $)) (-15 -3608 (|t#1| $))))
-(((-1229) . T))
-((-3902 (($ $) NIL) (($ $ (-779)) 9)) (-3608 (($ $) NIL) (($ $ (-779)) 11)))
-(((-236 |#1|) (-10 -8 (-15 -3608 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -3608 (|#1| |#1|))) (-237)) (T -236))
-NIL
-(-10 -8 (-15 -3608 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -3608 (|#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3902 (($ $) 42) (($ $ (-779)) 41)) (-2940 (((-870) $) 12) (($ (-572)) 33)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $) 43) (($ $ (-779)) 40)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(-13 (-1113) (-10 -8 (-15 -9 ($) -1707) (-15 -8 ($) -1707) (-15 -7 ($) -1707)))
+((-2849 (((-112) $ $) NIL)) (-1716 (((-654 (-875)) $) NIL)) (-2032 (((-516) $) 8)) (-2568 (((-1172) $) NIL)) (-4282 (((-188) $) 10)) (-2884 (((-112) $ (-516)) NIL)) (-3966 (((-1133) $) NIL)) (-2313 (((-701 $) (-516)) 17)) (-2207 (((-654 (-112)) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3944 (((-55) $) 12)) (-2982 (((-112) $ $) NIL)))
+(((-189) (-13 (-187) (-10 -8 (-15 -2313 ((-701 $) (-516)))))) (T -189))
+((-2313 (*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189)))))
+(-13 (-187) (-10 -8 (-15 -2313 ((-701 $) (-516)))))
+((-3947 ((|#2| |#2|) 28)) (-1564 (((-112) |#2|) 19)) (-4239 (((-324 |#1|) |#2|) 12)) (-4249 (((-324 |#1|) |#2|) 14)) (-3621 ((|#2| |#2| (-1190)) 69) ((|#2| |#2|) 70)) (-2815 (((-171 (-324 |#1|)) |#2|) 10)) (-4098 ((|#2| |#2| (-1190)) 66) ((|#2| |#2|) 60)))
+(((-190 |#1| |#2|) (-10 -7 (-15 -3621 (|#2| |#2|)) (-15 -3621 (|#2| |#2| (-1190))) (-15 -4098 (|#2| |#2|)) (-15 -4098 (|#2| |#2| (-1190))) (-15 -4239 ((-324 |#1|) |#2|)) (-15 -4249 ((-324 |#1|) |#2|)) (-15 -1564 ((-112) |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2815 ((-171 (-324 |#1|)) |#2|))) (-13 (-566) (-1051 (-574))) (-13 (-27) (-1216) (-440 (-171 |#1|)))) (T -190))
+((-2815 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-171 (-324 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3)))))) (-1564 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-4249 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-4239 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-4098 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3)))))) (-3621 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3)))))))
+(-10 -7 (-15 -3621 (|#2| |#2|)) (-15 -3621 (|#2| |#2| (-1190))) (-15 -4098 (|#2| |#2|)) (-15 -4098 (|#2| |#2| (-1190))) (-15 -4239 ((-324 |#1|) |#2|)) (-15 -4249 ((-324 |#1|) |#2|)) (-15 -1564 ((-112) |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2815 ((-171 (-324 |#1|)) |#2|)))
+((-4007 (((-1281 (-699 (-963 |#1|))) (-1281 (-699 |#1|))) 26)) (-2943 (((-1281 (-699 (-417 (-963 |#1|)))) (-1281 (-699 |#1|))) 37)))
+(((-191 |#1|) (-10 -7 (-15 -4007 ((-1281 (-699 (-963 |#1|))) (-1281 (-699 |#1|)))) (-15 -2943 ((-1281 (-699 (-417 (-963 |#1|)))) (-1281 (-699 |#1|))))) (-174)) (T -191))
+((-2943 (*1 *2 *3) (-12 (-5 *3 (-1281 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1281 (-699 (-417 (-963 *4))))) (-5 *1 (-191 *4)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-1281 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1281 (-699 (-963 *4)))) (-5 *1 (-191 *4)))))
+(-10 -7 (-15 -4007 ((-1281 (-699 (-963 |#1|))) (-1281 (-699 |#1|)))) (-15 -2943 ((-1281 (-699 (-417 (-963 |#1|)))) (-1281 (-699 |#1|)))))
+((-3986 (((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574)))) 93)) (-3034 (((-1192 (-417 (-574))) (-654 (-574)) (-654 (-574))) 107)) (-2029 (((-1192 (-417 (-574))) (-932)) 54)) (-3241 (((-1192 (-417 (-574))) (-932)) 79)) (-2646 (((-417 (-574)) (-1192 (-417 (-574)))) 89)) (-3604 (((-1192 (-417 (-574))) (-932)) 37)) (-3494 (((-1192 (-417 (-574))) (-932)) 66)) (-2363 (((-1192 (-417 (-574))) (-932)) 61)) (-3488 (((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574)))) 87)) (-3156 (((-1192 (-417 (-574))) (-932)) 29)) (-2782 (((-417 (-574)) (-1192 (-417 (-574))) (-1192 (-417 (-574)))) 91)) (-1801 (((-1192 (-417 (-574))) (-932)) 35)) (-2015 (((-1192 (-417 (-574))) (-654 (-932))) 100)))
+(((-192) (-10 -7 (-15 -3156 ((-1192 (-417 (-574))) (-932))) (-15 -2029 ((-1192 (-417 (-574))) (-932))) (-15 -3604 ((-1192 (-417 (-574))) (-932))) (-15 -1801 ((-1192 (-417 (-574))) (-932))) (-15 -2363 ((-1192 (-417 (-574))) (-932))) (-15 -3494 ((-1192 (-417 (-574))) (-932))) (-15 -3241 ((-1192 (-417 (-574))) (-932))) (-15 -2782 ((-417 (-574)) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -3488 ((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2646 ((-417 (-574)) (-1192 (-417 (-574))))) (-15 -3986 ((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2015 ((-1192 (-417 (-574))) (-654 (-932)))) (-15 -3034 ((-1192 (-417 (-574))) (-654 (-574)) (-654 (-574)))))) (T -192))
+((-3034 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-3986 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-1192 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-3488 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-2782 (*1 *2 *3 *3) (-12 (-5 *3 (-1192 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))))
+(-10 -7 (-15 -3156 ((-1192 (-417 (-574))) (-932))) (-15 -2029 ((-1192 (-417 (-574))) (-932))) (-15 -3604 ((-1192 (-417 (-574))) (-932))) (-15 -1801 ((-1192 (-417 (-574))) (-932))) (-15 -2363 ((-1192 (-417 (-574))) (-932))) (-15 -3494 ((-1192 (-417 (-574))) (-932))) (-15 -3241 ((-1192 (-417 (-574))) (-932))) (-15 -2782 ((-417 (-574)) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -3488 ((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2646 ((-417 (-574)) (-1192 (-417 (-574))))) (-15 -3986 ((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2015 ((-1192 (-417 (-574))) (-654 (-932)))) (-15 -3034 ((-1192 (-417 (-574))) (-654 (-574)) (-654 (-574)))))
+((-3950 (((-428 (-1186 (-574))) (-574)) 38)) (-1819 (((-654 (-1186 (-574))) (-574)) 33)) (-1512 (((-1186 (-574)) (-574)) 28)))
+(((-193) (-10 -7 (-15 -1819 ((-654 (-1186 (-574))) (-574))) (-15 -1512 ((-1186 (-574)) (-574))) (-15 -3950 ((-428 (-1186 (-574))) (-574))))) (T -193))
+((-3950 (*1 *2 *3) (-12 (-5 *2 (-428 (-1186 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))) (-1512 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) (-1819 (*1 *2 *3) (-12 (-5 *2 (-654 (-1186 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))))
+(-10 -7 (-15 -1819 ((-654 (-1186 (-574))) (-574))) (-15 -1512 ((-1186 (-574)) (-574))) (-15 -3950 ((-428 (-1186 (-574))) (-574))))
+((-3170 (((-1170 (-227)) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-3782 (((-654 (-1172)) (-1170 (-227))) NIL)) (-3461 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-4340 (((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227)))) NIL)) (-2324 (((-654 (-1172)) (-654 (-227))) NIL)) (-3752 (((-227) (-1107 (-853 (-227)))) 31)) (-1647 (((-227) (-1107 (-853 (-227)))) 32)) (-3216 (((-388) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2461 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3632 (((-1172) (-227)) NIL)) (-1519 (((-1172) (-654 (-1172))) 27)) (-2643 (((-1048) (-1190) (-1190) (-1048)) 13)))
+(((-194) (-10 -7 (-15 -3461 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2461 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3752 ((-227) (-1107 (-853 (-227))))) (-15 -1647 ((-227) (-1107 (-853 (-227))))) (-15 -3216 ((-388) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4340 ((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227))))) (-15 -3170 ((-1170 (-227)) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3632 ((-1172) (-227))) (-15 -2324 ((-654 (-1172)) (-654 (-227)))) (-15 -3782 ((-654 (-1172)) (-1170 (-227)))) (-15 -1519 ((-1172) (-654 (-1172)))) (-15 -2643 ((-1048) (-1190) (-1190) (-1048))))) (T -194))
+((-2643 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048)) (-5 *3 (-1190)) (-5 *1 (-194)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-194)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-194)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-194)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-194)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-194)))) (-4340 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1190)) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-194)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194)))))
+(-10 -7 (-15 -3461 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2461 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3752 ((-227) (-1107 (-853 (-227))))) (-15 -1647 ((-227) (-1107 (-853 (-227))))) (-15 -3216 ((-388) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4340 ((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227))))) (-15 -3170 ((-1170 (-227)) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3632 ((-1172) (-227))) (-15 -2324 ((-654 (-1172)) (-654 (-227)))) (-15 -3782 ((-654 (-1172)) (-1170 (-227)))) (-15 -1519 ((-1172) (-654 (-1172)))) (-15 -2643 ((-1048) (-1190) (-1190) (-1048))))
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 61) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-195) (-797)) (T -195))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 66) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-196) (-797)) (T -196))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 81) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-197) (-797)) (T -197))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 63) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-198) (-797)) (T -198))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 75) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-199) (-797)) (T -199))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 93) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-200) (-797)) (T -200))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 90) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-201) (-797)) (T -201))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 77) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-202) (-797)) (T -202))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 76)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-203) (-797)) (T -203))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 77)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-204) (-797)) (T -204))
+NIL
+(-797)
+((-2849 (((-112) $ $) NIL)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 105) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-205) (-797)) (T -205))
+NIL
+(-797)
+((-2167 (((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3138 (((-574) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-1458 (((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90)))
+(((-206) (-10 -7 (-15 -2167 ((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1458 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3138 ((-574) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206))
+((-3138 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-574)) (-5 *1 (-206)))) (-1458 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-206)))) (-2167 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4296 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
+(-10 -7 (-15 -2167 ((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1458 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3138 ((-574) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-4269 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3074 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-3729 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227)))) 112)) (-3254 (((-388) (-699 (-324 (-227)))) 140)) (-2941 (((-699 (-324 (-227))) (-1281 (-324 (-227))) (-654 (-1190))) 136)) (-2932 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-2714 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2646 (((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1190)) (-1281 (-324 (-227)))) 125)) (-1612 (((-388) (-388) (-654 (-388))) 133) (((-388) (-388) (-388)) 128)) (-2073 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45)))
+(((-207) (-10 -7 (-15 -1612 ((-388) (-388) (-388))) (-15 -1612 ((-388) (-388) (-654 (-388)))) (-15 -3254 ((-388) (-699 (-324 (-227))))) (-15 -2941 ((-699 (-324 (-227))) (-1281 (-324 (-227))) (-654 (-1190)))) (-15 -2646 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1190)) (-1281 (-324 (-227))))) (-15 -3729 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -3074 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4269 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2714 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2073 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2932 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207))
+((-2932 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-2646 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1190))) (-5 *4 (-1281 (-324 (-227)))) (-5 *1 (-207)))) (-2941 (*1 *2 *3 *4) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *4 (-654 (-1190))) (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1612 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1612 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207)))))
+(-10 -7 (-15 -1612 ((-388) (-388) (-388))) (-15 -1612 ((-388) (-388) (-654 (-388)))) (-15 -3254 ((-388) (-699 (-324 (-227))))) (-15 -2941 ((-699 (-324 (-227))) (-1281 (-324 (-227))) (-654 (-1190)))) (-15 -2646 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1190)) (-1281 (-324 (-227))))) (-15 -3729 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -3074 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4269 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2714 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2073 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2932 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-2849 (((-112) $ $) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-4307 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2982 (((-112) $ $) NIL)))
+(((-208) (-810)) (T -208))
+NIL
+(-810)
+((-2849 (((-112) $ $) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-4307 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2982 (((-112) $ $) NIL)))
+(((-209) (-810)) (T -209))
+NIL
+(-810)
+((-2849 (((-112) $ $) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-4307 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2982 (((-112) $ $) NIL)))
+(((-210) (-810)) (T -210))
+NIL
+(-810)
+((-2849 (((-112) $ $) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-4307 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2982 (((-112) $ $) NIL)))
+(((-211) (-810)) (T -211))
+NIL
+(-810)
+((-1655 (((-654 (-1190)) (-1190) (-781)) 26)) (-3189 (((-324 (-227)) (-324 (-227))) 35)) (-4009 (((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 87)) (-1686 (((-112) (-227) (-227) (-654 (-324 (-227)))) 47)))
+(((-212) (-10 -7 (-15 -1655 ((-654 (-1190)) (-1190) (-781))) (-15 -3189 ((-324 (-227)) (-324 (-227)))) (-15 -1686 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -4009 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))))) (T -212))
+((-4009 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-1686 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-3189 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1190))) (-5 *1 (-212)) (-5 *3 (-1190)))))
+(-10 -7 (-15 -1655 ((-654 (-1190)) (-1190) (-781))) (-15 -3189 ((-324 (-227)) (-324 (-227)))) (-15 -1686 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -4009 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))))
+((-2849 (((-112) $ $) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 28)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-1827 (((-1048) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 70)) (-2982 (((-112) $ $) NIL)))
+(((-213) (-906)) (T -213))
+NIL
+(-906)
+((-2849 (((-112) $ $) NIL)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 24)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-1827 (((-1048) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-214) (-906)) (T -214))
+NIL
+(-906)
+((-2849 (((-112) $ $) NIL)) (-2394 ((|#2| $ (-781) |#2|) 11)) (-2385 ((|#2| $ (-781)) 10)) (-3790 (($) 8)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 23)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 13)))
+(((-215 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -3790 ($)) (-15 -2385 (|#2| $ (-781))) (-15 -2394 (|#2| $ (-781) |#2|)))) (-932) (-1113)) (T -215))
+((-3790 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1113)))) (-2385 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-1113)) (-5 *1 (-215 *4 *2)) (-14 *4 (-932)))) (-2394 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-932)) (-4 *2 (-1113)))))
+(-13 (-1113) (-10 -8 (-15 -3790 ($)) (-15 -2385 (|#2| $ (-781))) (-15 -2394 (|#2| $ (-781) |#2|))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3588 (((-1286) $) 37) (((-1286) $ (-932) (-932)) 41)) (-2200 (($ $ (-1002)) 19) (((-251 (-1172)) $ (-1190)) 15)) (-1403 (((-1286) $) 35)) (-2943 (((-872) $) 32) (($ (-654 |#1|)) 8)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $ $) 27)) (-3078 (($ $ $) 22)))
+(((-216 |#1|) (-13 (-1113) (-626 (-654 |#1|)) (-10 -8 (-15 -2200 ($ $ (-1002))) (-15 -2200 ((-251 (-1172)) $ (-1190))) (-15 -3078 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -1403 ((-1286) $)) (-15 -3588 ((-1286) $)) (-15 -3588 ((-1286) $ (-932) (-932))))) (-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3588 ((-1286) $))))) (T -216))
+((-2200 (*1 *1 *1 *2) (-12 (-5 *2 (-1002)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3588 ((-1286) $))))))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-251 (-1172))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ *3)) (-15 -1403 ((-1286) $)) (-15 -3588 ((-1286) $))))))) (-3078 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3588 ((-1286) $))))))) (-3094 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3588 ((-1286) $))))))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 (*2 $)) (-15 -3588 (*2 $))))))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 (*2 $)) (-15 -3588 (*2 $))))))) (-3588 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 (*2 $)) (-15 -3588 (*2 $))))))))
+(-13 (-1113) (-626 (-654 |#1|)) (-10 -8 (-15 -2200 ($ $ (-1002))) (-15 -2200 ((-251 (-1172)) $ (-1190))) (-15 -3078 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -1403 ((-1286) $)) (-15 -3588 ((-1286) $)) (-15 -3588 ((-1286) $ (-932) (-932)))))
+((-3453 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3453 (|#2| |#4| (-1 |#2| |#2|)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -217))
+((-3453 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1257 (-417 *2))) (-4 *2 (-1257 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-351 *5 *2 *6)))))
+(-10 -7 (-15 -3453 (|#2| |#4| (-1 |#2| |#2|))))
+((-2177 ((|#2| |#2| (-781) |#2|) 55)) (-2272 ((|#2| |#2| (-781) |#2|) 51)) (-1815 (((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -2823 |#2|)))) 79)) (-2253 (((-654 (-2 (|:| |deg| (-781)) (|:| -2823 |#2|))) |#2|) 73)) (-2408 (((-112) |#2|) 71)) (-4325 (((-428 |#2|) |#2|) 91)) (-4220 (((-428 |#2|) |#2|) 90)) (-3448 ((|#2| |#2| (-781) |#2|) 49)) (-4387 (((-2 (|:| |cont| |#1|) (|:| -3948 (-654 (-2 (|:| |irr| |#2|) (|:| -3963 (-574)))))) |#2| (-112)) 85)))
+(((-218 |#1| |#2|) (-10 -7 (-15 -4220 ((-428 |#2|) |#2|)) (-15 -4325 ((-428 |#2|) |#2|)) (-15 -4387 ((-2 (|:| |cont| |#1|) (|:| -3948 (-654 (-2 (|:| |irr| |#2|) (|:| -3963 (-574)))))) |#2| (-112))) (-15 -2253 ((-654 (-2 (|:| |deg| (-781)) (|:| -2823 |#2|))) |#2|)) (-15 -1815 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -2823 |#2|))))) (-15 -3448 (|#2| |#2| (-781) |#2|)) (-15 -2272 (|#2| |#2| (-781) |#2|)) (-15 -2177 (|#2| |#2| (-781) |#2|)) (-15 -2408 ((-112) |#2|))) (-358) (-1257 |#1|)) (T -218))
+((-2408 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4)))) (-2177 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1257 *4)))) (-2272 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1257 *4)))) (-3448 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1257 *4)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -2823 *5)))) (-4 *5 (-1257 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) (-5 *1 (-218 *4 *5)))) (-2253 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -2823 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3948 (-654 (-2 (|:| |irr| *3) (|:| -3963 (-574))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1257 *5)))) (-4325 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4)))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -4220 ((-428 |#2|) |#2|)) (-15 -4325 ((-428 |#2|) |#2|)) (-15 -4387 ((-2 (|:| |cont| |#1|) (|:| -3948 (-654 (-2 (|:| |irr| |#2|) (|:| -3963 (-574)))))) |#2| (-112))) (-15 -2253 ((-654 (-2 (|:| |deg| (-781)) (|:| -2823 |#2|))) |#2|)) (-15 -1815 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -2823 |#2|))))) (-15 -3448 (|#2| |#2| (-781) |#2|)) (-15 -2272 (|#2| |#2| (-781) |#2|)) (-15 -2177 (|#2| |#2| (-781) |#2|)) (-15 -2408 ((-112) |#2|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 (((-574) $) NIL (|has| (-574) (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL (|has| (-574) (-830)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-574) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1051 (-574))))) (-2209 (((-574) $) NIL) (((-1190) $) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-574) (-1051 (-574)))) (((-574) $) NIL (|has| (-574) (-1051 (-574))))) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-574) (-555)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3434 (((-112) $) NIL (|has| (-574) (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL)) (-2965 (((-574) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| (-574) (-1165)))) (-3244 (((-112) $) NIL (|has| (-574) (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| (-574) (-860)))) (-1778 (($ (-1 (-574) (-574)) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-574) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-1846 (((-574) $) NIL (|has| (-574) (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1190)) (-654 (-574))) NIL (|has| (-574) (-524 (-1190) (-574)))) (($ $ (-1190) (-574)) NIL (|has| (-574) (-524 (-1190) (-574))))) (-1347 (((-781) $) NIL)) (-2200 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3520 (($ $) NIL)) (-2977 (((-574) $) NIL)) (-1411 (($ (-417 (-574))) 9)) (-1837 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1035))) (((-227) $) NIL (|has| (-574) (-1035)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1190)) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL) (((-1017 10) $) 10)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-574) (-920))) (|has| (-574) (-146))))) (-4160 (((-781)) NIL T CONST)) (-4078 (((-574) $) NIL (|has| (-574) (-555)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2946 (($ $) NIL (|has| (-574) (-830)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3005 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3107 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL)))
+(((-219) (-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 10)) (-10 -8 (-15 -2595 ((-417 (-574)) $)) (-15 -1411 ($ (-417 (-574))))))) (T -219))
+((-2595 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))))
+(-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 10)) (-10 -8 (-15 -2595 ((-417 (-574)) $)) (-15 -1411 ($ (-417 (-574))))))
+((-2849 (((-112) $ $) NIL)) (-3140 (((-1131) $) 13)) (-2568 (((-1172) $) NIL)) (-1596 (((-493) $) 10)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 23) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-1148) $) 15)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-220) (-13 (-1096) (-10 -8 (-15 -1596 ((-493) $)) (-15 -3140 ((-1131) $)) (-15 -2045 ((-1148) $))))) (T -220))
+((-1596 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-220)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-220)))))
+(-13 (-1096) (-10 -8 (-15 -1596 ((-493) $)) (-15 -3140 ((-1131) $)) (-15 -2045 ((-1148) $))))
+((-2968 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)) (-1172)) 29) (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|))) 25)) (-4346 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1190) (-853 |#2|) (-853 |#2|) (-112)) 17)))
+(((-221 |#1| |#2|) (-10 -7 (-15 -2968 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)))) (-15 -2968 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)) (-1172))) (-15 -4346 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1190) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-970) (-29 |#1|))) (T -221))
+((-4346 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1190)) (-5 *6 (-112)) (-4 *7 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-4 *3 (-13 (-1216) (-970) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3)))) (-2968 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1105 (-853 *3))) (-5 *5 (-1172)) (-4 *3 (-13 (-1216) (-970) (-29 *6))) (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-853 *3))) (-4 *3 (-13 (-1216) (-970) (-29 *5))) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3)))))
+(-10 -7 (-15 -2968 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)))) (-15 -2968 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)) (-1172))) (-15 -4346 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1190) (-853 |#2|) (-853 |#2|) (-112))))
+((-2968 (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))) (-1172)) 49) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|))))) 46) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))) (-1172)) 50) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|)))) 22)))
+(((-222 |#1|) (-10 -7 (-15 -2968 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))))) (-15 -2968 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))) (-1172))) (-15 -2968 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))))) (-15 -2968 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))) (-1172)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (T -222))
+((-2968 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1105 (-853 (-417 (-963 *6))))) (-5 *5 (-1172)) (-5 *3 (-417 (-963 *6))) (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-853 (-417 (-963 *5))))) (-5 *3 (-417 (-963 *5))) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-2968 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-417 (-963 *6))) (-5 *4 (-1105 (-853 (-324 *6)))) (-5 *5 (-1172)) (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1105 (-853 (-324 *5)))) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))))
+(-10 -7 (-15 -2968 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))))) (-15 -2968 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))) (-1172))) (-15 -2968 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))))) (-15 -2968 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))) (-1172))))
+((-2868 (((-2 (|:| -1900 (-1186 |#1|)) (|:| |deg| (-932))) (-1186 |#1|)) 26)) (-2129 (((-654 (-324 |#2|)) (-324 |#2|) (-932)) 51)))
+(((-223 |#1| |#2|) (-10 -7 (-15 -2868 ((-2 (|:| -1900 (-1186 |#1|)) (|:| |deg| (-932))) (-1186 |#1|))) (-15 -2129 ((-654 (-324 |#2|)) (-324 |#2|) (-932)))) (-1062) (-566)) (T -223))
+((-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1062)))) (-2868 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-2 (|:| -1900 (-1186 *4)) (|:| |deg| (-932)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1186 *4)) (-4 *5 (-566)))))
+(-10 -7 (-15 -2868 ((-2 (|:| -1900 (-1186 |#1|)) (|:| |deg| (-932))) (-1186 |#1|))) (-15 -2129 ((-654 (-324 |#2|)) (-324 |#2|) (-932))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3398 ((|#1| $) NIL)) (-2003 ((|#1| $) 30)) (-3340 (((-112) $ (-781)) NIL)) (-3670 (($) NIL T CONST)) (-1557 (($ $) NIL)) (-2672 (($ $) 39)) (-3592 ((|#1| |#1| $) NIL)) (-4388 ((|#1| $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-4135 (((-781) $) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2234 ((|#1| $) NIL)) (-3024 ((|#1| |#1| $) 35)) (-3421 ((|#1| |#1| $) 37)) (-1709 (($ |#1| $) NIL)) (-1840 (((-781) $) 33)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3412 ((|#1| $) NIL)) (-2365 ((|#1| $) 31)) (-1365 ((|#1| $) 29)) (-3459 ((|#1| $) NIL)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3929 ((|#1| |#1| $) NIL)) (-3556 (((-112) $) 9)) (-3135 (($) NIL)) (-1537 ((|#1| $) NIL)) (-3837 (($) NIL) (($ (-654 |#1|)) 16)) (-4303 (((-781) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3011 ((|#1| $) 13)) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) NIL)) (-2536 ((|#1| $) NIL)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -3837 ($ (-654 |#1|))))) (-1113)) (T -224))
+((-3837 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-224 *3)))))
+(-13 (-261 |#1|) (-10 -8 (-15 -3837 ($ (-654 |#1|)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-3218 (($ (-324 |#1|)) 24)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-4217 (((-112) $) NIL)) (-1697 (((-3 (-324 |#1|) "failed") $) NIL)) (-2209 (((-324 |#1|) $) NIL)) (-1392 (($ $) 32)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-1778 (($ (-1 (-324 |#1|) (-324 |#1|)) $) NIL)) (-1370 (((-324 |#1|) $) NIL)) (-2755 (($ $) 31)) (-2568 (((-1172) $) NIL)) (-3086 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($ (-781)) NIL)) (-3020 (($ $) 33)) (-1784 (((-574) $) NIL)) (-2943 (((-872) $) 65) (($ (-574)) NIL) (($ (-324 |#1|)) NIL)) (-3344 (((-324 |#1|) $ $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 26 T CONST)) (-2146 (($) NIL T CONST)) (-2982 (((-112) $ $) 29)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 20)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 25) (($ (-324 |#1|) $) 19)))
+(((-225 |#1| |#2|) (-13 (-630 (-324 |#1|)) (-1051 (-324 |#1|)) (-10 -8 (-15 -1370 ((-324 |#1|) $)) (-15 -2755 ($ $)) (-15 -1392 ($ $)) (-15 -3344 ((-324 |#1|) $ $)) (-15 -2970 ($ (-781))) (-15 -3086 ((-112) $)) (-15 -4217 ((-112) $)) (-15 -1784 ((-574) $)) (-15 -1778 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -3218 ($ (-324 |#1|))) (-15 -3020 ($ $)))) (-13 (-1062) (-860)) (-654 (-1190))) (T -225))
+((-1370 (*1 *2 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-2755 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860))) (-14 *3 (-654 (-1190))))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860))) (-14 *3 (-654 (-1190))))) (-3344 (*1 *2 *1 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1062) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1190))))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1062) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1190))))) (-3020 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860))) (-14 *3 (-654 (-1190))))))
+(-13 (-630 (-324 |#1|)) (-1051 (-324 |#1|)) (-10 -8 (-15 -1370 ((-324 |#1|) $)) (-15 -2755 ($ $)) (-15 -1392 ($ $)) (-15 -3344 ((-324 |#1|) $ $)) (-15 -2970 ($ (-781))) (-15 -3086 ((-112) $)) (-15 -4217 ((-112) $)) (-15 -1784 ((-574) $)) (-15 -1778 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -3218 ($ (-324 |#1|))) (-15 -3020 ($ $))))
+((-4330 (((-112) (-1172)) 26)) (-2880 (((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112)) 35)) (-3263 (((-3 (-112) "failed") (-1186 |#2|) (-853 |#2|) (-853 |#2|) (-112)) 84) (((-3 (-112) "failed") (-963 |#1|) (-1190) (-853 |#2|) (-853 |#2|) (-112)) 85)))
+(((-226 |#1| |#2|) (-10 -7 (-15 -4330 ((-112) (-1172))) (-15 -2880 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -3263 ((-3 (-112) "failed") (-963 |#1|) (-1190) (-853 |#2|) (-853 |#2|) (-112))) (-15 -3263 ((-3 (-112) "failed") (-1186 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-29 |#1|))) (T -226))
+((-3263 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1186 *6)) (-5 *4 (-853 *6)) (-4 *6 (-13 (-1216) (-29 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-226 *5 *6)))) (-3263 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-963 *6)) (-5 *4 (-1190)) (-5 *5 (-853 *7)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-4 *7 (-13 (-1216) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-2880 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1216) (-29 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-226 *6 *4)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1216) (-29 *4))))))
+(-10 -7 (-15 -4330 ((-112) (-1172))) (-15 -2880 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -3263 ((-3 (-112) "failed") (-963 |#1|) (-1190) (-853 |#2|) (-853 |#2|) (-112))) (-15 -3263 ((-3 (-112) "failed") (-1186 |#2|) (-853 |#2|) (-853 |#2|) (-112))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 98)) (-2809 (((-574) $) 35)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-1760 (($ $) NIL)) (-2364 (($ $) 87)) (-2246 (($ $) 75)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-4229 (($ $) 66)) (-3875 (((-112) $ $) NIL)) (-2343 (($ $) 85)) (-2227 (($ $) 73)) (-3747 (((-574) $) 128)) (-2388 (($ $) 90)) (-2267 (($ $) 77)) (-3670 (($) NIL T CONST)) (-3612 (($ $) NIL)) (-1697 (((-3 (-574) "failed") $) 127) (((-3 (-417 (-574)) "failed") $) 124)) (-2209 (((-574) $) 125) (((-417 (-574)) $) 122)) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) 103)) (-4112 (((-417 (-574)) $ (-781)) 117) (((-417 (-574)) $ (-781) (-781)) 116)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3785 (((-932)) 29) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-3434 (((-112) $) NIL)) (-3001 (($) 46)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3593 (((-574) $) 42)) (-3965 (((-112) $) 99)) (-3379 (($ $ (-574)) NIL)) (-1652 (($ $) NIL)) (-3244 (((-112) $) 97)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) 63) (($) 38 (-12 (-2077 (|has| $ (-6 -4439))) (-2077 (|has| $ (-6 -4447)))))) (-2106 (($ $ $) 62) (($) 37 (-12 (-2077 (|has| $ (-6 -4439))) (-2077 (|has| $ (-6 -4447)))))) (-4301 (((-574) $) 27)) (-3236 (($ $) 33)) (-1733 (($ $) 67)) (-3119 (($ $) 72)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-1457 (((-932) (-574)) NIL (|has| $ (-6 -4447)))) (-3966 (((-1133) $) 101)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL)) (-1846 (($ $) NIL)) (-2384 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-932)) 110)) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2524 (((-574) $) 28)) (-1560 (($) 45)) (-1610 (($ $) 71)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3810 (((-932)) NIL) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-3905 (($ $ (-781)) NIL) (($ $) 104)) (-2830 (((-932) (-574)) NIL (|has| $ (-6 -4447)))) (-2402 (($ $) 88)) (-2275 (($ $) 78)) (-2375 (($ $) 89)) (-2257 (($ $) 76)) (-2353 (($ $) 86)) (-2237 (($ $) 74)) (-1837 (((-388) $) 113) (((-227) $) 14) (((-903 (-388)) $) NIL) (((-546) $) 52)) (-2943 (((-872) $) 49) (($ (-574)) 70) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 70) (($ (-417 (-574))) NIL)) (-4160 (((-781)) NIL T CONST)) (-4078 (($ $) NIL)) (-3909 (((-932)) 36) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-2923 (((-112) $ $) NIL)) (-2629 (((-932)) 25)) (-2441 (($ $) 93)) (-2305 (($ $) 81) (($ $ $) 120)) (-3798 (((-112) $ $) NIL)) (-2414 (($ $) 91)) (-2287 (($ $) 79)) (-2465 (($ $) 96)) (-2325 (($ $) 84)) (-2521 (($ $) 94)) (-2334 (($ $) 82)) (-2453 (($ $) 95)) (-2315 (($ $) 83)) (-2428 (($ $) 92)) (-2297 (($ $) 80)) (-2946 (($ $) 119)) (-2134 (($) 23 T CONST)) (-2146 (($) 43 T CONST)) (-1520 (((-1172) $) 18) (((-1172) $ (-112)) 20) (((-1286) (-832) $) 21) (((-1286) (-832) $ (-112)) 22)) (-3205 (($ $) 107)) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-3952 (($ $ $) 109)) (-3041 (((-112) $ $) 56)) (-3016 (((-112) $ $) 54)) (-2982 (((-112) $ $) 64)) (-3028 (((-112) $ $) 55)) (-3005 (((-112) $ $) 53)) (-3107 (($ $ $) 44) (($ $ (-574)) 65)) (-3094 (($ $) 57) (($ $ $) 59)) (-3078 (($ $ $) 58)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 68) (($ $ (-417 (-574))) 152) (($ $ $) 69)) (* (($ (-932) $) 34) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 60) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
+(((-227) (-13 (-414) (-239) (-838) (-1216) (-624 (-546)) (-10 -8 (-15 -3107 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1560 ($)) (-15 -3236 ($ $)) (-15 -1733 ($ $)) (-15 -2305 ($ $ $)) (-15 -3205 ($ $)) (-15 -3952 ($ $ $)) (-15 -4112 ((-417 (-574)) $ (-781))) (-15 -4112 ((-417 (-574)) $ (-781) (-781)))))) (T -227))
+((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3107 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227)))) (-1560 (*1 *1) (-5 *1 (-227))) (-3236 (*1 *1 *1) (-5 *1 (-227))) (-1733 (*1 *1 *1) (-5 *1 (-227))) (-2305 (*1 *1 *1 *1) (-5 *1 (-227))) (-3205 (*1 *1 *1) (-5 *1 (-227))) (-3952 (*1 *1 *1 *1) (-5 *1 (-227))) (-4112 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) (-4112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))))
+(-13 (-414) (-239) (-838) (-1216) (-624 (-546)) (-10 -8 (-15 -3107 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1560 ($)) (-15 -3236 ($ $)) (-15 -1733 ($ $)) (-15 -2305 ($ $ $)) (-15 -3205 ($ $)) (-15 -3952 ($ $ $)) (-15 -4112 ((-417 (-574)) $ (-781))) (-15 -4112 ((-417 (-574)) $ (-781) (-781)))))
+((-4109 (((-171 (-227)) (-781) (-171 (-227))) 11) (((-227) (-781) (-227)) 12)) (-2109 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-3257 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-2330 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-2833 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-3687 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-3006 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-1962 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-3458 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-3497 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-3205 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-3952 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31)))
+(((-228) (-10 -7 (-15 -3205 ((-227) (-227))) (-15 -3205 ((-171 (-227)) (-171 (-227)))) (-15 -3952 ((-227) (-227) (-227))) (-15 -3952 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2109 ((-227) (-227))) (-15 -2109 ((-171 (-227)) (-171 (-227)))) (-15 -2330 ((-227) (-227))) (-15 -2330 ((-171 (-227)) (-171 (-227)))) (-15 -4109 ((-227) (-781) (-227))) (-15 -4109 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -3006 ((-227) (-227) (-227))) (-15 -3006 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2833 ((-227) (-227) (-227))) (-15 -2833 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1962 ((-227) (-227) (-227))) (-15 -1962 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3687 ((-227) (-227) (-227))) (-15 -3687 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3497 ((-171 (-227)) (-171 (-227)))) (-15 -3497 ((-227) (-227))) (-15 -3458 ((-227) (-227))) (-15 -3458 ((-171 (-227)) (-171 (-227)))) (-15 -3257 ((-227) (-227) (-227))) (-15 -3257 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228))
+((-3257 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3257 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3458 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3458 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3687 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3687 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1962 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1962 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2833 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2833 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3006 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3006 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4109 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) (-4109 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3952 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3952 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))))
+(-10 -7 (-15 -3205 ((-227) (-227))) (-15 -3205 ((-171 (-227)) (-171 (-227)))) (-15 -3952 ((-227) (-227) (-227))) (-15 -3952 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2109 ((-227) (-227))) (-15 -2109 ((-171 (-227)) (-171 (-227)))) (-15 -2330 ((-227) (-227))) (-15 -2330 ((-171 (-227)) (-171 (-227)))) (-15 -4109 ((-227) (-781) (-227))) (-15 -4109 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -3006 ((-227) (-227) (-227))) (-15 -3006 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2833 ((-227) (-227) (-227))) (-15 -2833 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1962 ((-227) (-227) (-227))) (-15 -1962 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3687 ((-227) (-227) (-227))) (-15 -3687 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3497 ((-171 (-227)) (-171 (-227)))) (-15 -3497 ((-227) (-227))) (-15 -3458 ((-227) (-227))) (-15 -3458 ((-171 (-227)) (-171 (-227)))) (-15 -3257 ((-227) (-227) (-227))) (-15 -3257 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2217 (($ (-781) (-781)) NIL)) (-1368 (($ $ $) NIL)) (-3202 (($ (-1281 |#1|)) NIL) (($ $) NIL)) (-2808 (($ |#1| |#1| |#1|) 33)) (-4286 (((-112) $) NIL)) (-3044 (($ $ (-574) (-574)) NIL)) (-2491 (($ $ (-574) (-574)) NIL)) (-3617 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-2340 (($ $) NIL)) (-3816 (((-112) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1460 (($ $ (-574) (-574) $) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-1502 (($ $ (-574) (-1281 |#1|)) NIL)) (-4196 (($ $ (-574) (-1281 |#1|)) NIL)) (-1913 (($ |#1| |#1| |#1|) 32)) (-3245 (($ (-781) |#1|) NIL)) (-3670 (($) NIL T CONST)) (-3444 (($ $) NIL (|has| |#1| (-315)))) (-1468 (((-1281 |#1|) $ (-574)) NIL)) (-3389 (($ |#1|) 31)) (-3887 (($ |#1|) 30)) (-3988 (($ |#1|) 29)) (-3584 (((-781) $) NIL (|has| |#1| (-566)))) (-2462 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-2164 (((-781) $) NIL (|has| |#1| (-566)))) (-2337 (((-654 (-1281 |#1|)) $) NIL (|has| |#1| (-566)))) (-2190 (((-781) $) NIL)) (-3790 (($ (-781) (-781) |#1|) NIL)) (-2199 (((-781) $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-3689 ((|#1| $) NIL (|has| |#1| (-6 (-4458 "*"))))) (-2294 (((-574) $) NIL)) (-1373 (((-574) $) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1431 (((-574) $) NIL)) (-3889 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#1|))) 11)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1820 (((-654 (-654 |#1|)) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2422 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3783 (($) 12)) (-2477 (($ $ $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1363 (($ $ |#1|) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-3428 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-4358 (((-112) $) NIL)) (-3646 ((|#1| $) NIL (|has| |#1| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-1988 (((-1281 |#1|) $ (-574)) NIL)) (-2943 (($ (-1281 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2984 (((-112) $) NIL)) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1281 |#1|) $ (-1281 |#1|)) 15) (((-1281 |#1|) (-1281 |#1|) $) NIL) (((-954 |#1|) $ (-954 |#1|)) 21)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-229 |#1|) (-13 (-697 |#1| (-1281 |#1|) (-1281 |#1|)) (-10 -8 (-15 * ((-954 |#1|) $ (-954 |#1|))) (-15 -3783 ($)) (-15 -3988 ($ |#1|)) (-15 -3887 ($ |#1|)) (-15 -3389 ($ |#1|)) (-15 -1913 ($ |#1| |#1| |#1|)) (-15 -2808 ($ |#1| |#1| |#1|)))) (-13 (-372) (-1216))) (T -229))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216))) (-5 *1 (-229 *3)))) (-3783 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-3988 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-3887 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-3389 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-1913 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-2808 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))))
+(-13 (-697 |#1| (-1281 |#1|) (-1281 |#1|)) (-10 -8 (-15 * ((-954 |#1|) $ (-954 |#1|))) (-15 -3783 ($)) (-15 -3988 ($ |#1|)) (-15 -3887 ($ |#1|)) (-15 -3389 ($ |#1|)) (-15 -1913 ($ |#1| |#1| |#1|)) (-15 -2808 ($ |#1| |#1| |#1|))))
+((-3391 (($ (-1 (-112) |#2|) $) 16)) (-1586 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-2826 (($) NIL) (($ (-654 |#2|)) 11)) (-2982 (((-112) $ $) 26)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -3391 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1586 (|#1| |#2| |#1|)) (-15 -2826 (|#1| (-654 |#2|))) (-15 -2826 (|#1|)) (-15 -2982 ((-112) |#1| |#1|))) (-231 |#2|) (-1113)) (T -230))
+NIL
+(-10 -8 (-15 -3391 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1586 (|#1| |#2| |#1|)) (-15 -2826 (|#1| (-654 |#2|))) (-15 -2826 (|#1|)) (-15 -2982 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-3391 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2158 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2826 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 43)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-231 |#1|) (-141) (-1113)) (T -231))
+NIL
+(-13 (-241 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-3905 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) 11) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) 19) (($ $ (-781)) NIL) (($ $) 16)) (-3611 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-781)) 14) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)))
+(((-232 |#1| |#2|) (-10 -8 (-15 -3611 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3611 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3611 (|#1| |#1| (-1190))) (-15 -3611 (|#1| |#1| (-654 (-1190)))) (-15 -3611 (|#1| |#1| (-1190) (-781))) (-15 -3611 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3611 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3611 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1062)) (T -232))
+NIL
+(-10 -8 (-15 -3611 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3611 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3611 (|#1| |#1| (-1190))) (-15 -3611 (|#1| |#1| (-654 (-1190)))) (-15 -3611 (|#1| |#1| (-1190) (-781))) (-15 -3611 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3611 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3611 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3905 (($ $ (-1 |#1| |#1|)) 57) (($ $ (-1 |#1| |#1|) (-781)) 56) (($ $ (-654 (-1190)) (-654 (-781))) 49 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 48 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 47 (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 46 (|has| |#1| (-911 (-1190)))) (($ $ (-781)) 44 (|has| |#1| (-239))) (($ $) 43 (|has| |#1| (-239)))) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-1 |#1| |#1|)) 55) (($ $ (-1 |#1| |#1|) (-781)) 54) (($ $ (-654 (-1190)) (-654 (-781))) 53 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 52 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 51 (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 50 (|has| |#1| (-911 (-1190)))) (($ $ (-781)) 45 (|has| |#1| (-239))) (($ $) 42 (|has| |#1| (-239)))) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-233 |#1|) (-141) (-1062)) (T -233))
+((-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1062)))) (-3905 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1062)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1062)))) (-3611 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1062)))))
+(-13 (-1062) (-10 -8 (-15 -3905 ($ $ (-1 |t#1| |t#1|))) (-15 -3905 ($ $ (-1 |t#1| |t#1|) (-781))) (-15 -3611 ($ $ (-1 |t#1| |t#1|))) (-15 -3611 ($ $ (-1 |t#1| |t#1|) (-781))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-911 (-1190))) (-6 (-911 (-1190))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) |has| |#1| (-239)))
+((-3611 ((|#2| $) 9)))
+(((-234 |#1| |#2|) (-10 -8 (-15 -3611 (|#2| |#1|))) (-235 |#2|) (-1231)) (T -234))
+NIL
+(-10 -8 (-15 -3611 (|#2| |#1|)))
+((-3905 ((|#1| $) 7)) (-3611 ((|#1| $) 6)))
+(((-235 |#1|) (-141) (-1231)) (T -235))
+((-3905 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1231)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1231)))))
+(-13 (-1231) (-10 -8 (-15 -3905 (|t#1| $)) (-15 -3611 (|t#1| $))))
+(((-1231) . T))
+((-3905 (($ $) NIL) (($ $ (-781)) 9)) (-3611 (($ $) NIL) (($ $ (-781)) 11)))
+(((-236 |#1|) (-10 -8 (-15 -3611 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3611 (|#1| |#1|)) (-15 -3905 (|#1| |#1|))) (-237)) (T -236))
+NIL
+(-10 -8 (-15 -3611 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3611 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)))
+((-3905 (($ $) 7) (($ $ (-781)) 10)) (-3611 (($ $) 6) (($ $ (-781)) 9)))
(((-237) (-141)) (T -237))
-((-3902 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-779)))) (-3608 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-779)))))
-(-13 (-1060) (-235 $) (-10 -8 (-15 -3902 ($ $ (-779))) (-15 -3608 ($ $ (-779)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-235 $) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) . T))
-((-3438 (($) 12) (($ (-652 |#2|)) NIL)) (-3164 (($ $) 14)) (-2953 (($ (-652 |#2|)) 10)) (-2940 (((-870) $) 21)))
-(((-238 |#1| |#2|) (-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -3438 (|#1| (-652 |#2|))) (-15 -3438 (|#1|)) (-15 -2953 (|#1| (-652 |#2|))) (-15 -3164 (|#1| |#1|))) (-239 |#2|) (-1111)) (T -238))
-NIL
-(-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -3438 (|#1| (-652 |#2|))) (-15 -3438 (|#1|)) (-15 -2953 (|#1| (-652 |#2|))) (-15 -3164 (|#1| |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-2613 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2086 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-3332 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3438 (($) 50) (($ (-652 |#1|)) 49)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 51)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 43)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-239 |#1|) (-141) (-1111)) (T -239))
-((-3438 (*1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1111)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-239 *3)))) (-3554 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-239 *2)) (-4 *2 (-1111)))) (-3554 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-239 *3)) (-4 *3 (-1111)))) (-2613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-239 *3)) (-4 *3 (-1111)))))
-(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3438 ($)) (-15 -3438 ($ (-652 |t#1|))) (IF (|has| $ (-6 -4454)) (PROGN (-15 -3554 ($ |t#1| $)) (-15 -3554 ($ (-1 (-112) |t#1|) $)) (-15 -2613 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-4138 (((-2 (|:| |varOrder| (-652 (-1188))) (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed")) (|:| |hom| (-652 (-1279 (-779))))) (-300 (-961 (-572)))) 42)))
-(((-240) (-10 -7 (-15 -4138 ((-2 (|:| |varOrder| (-652 (-1188))) (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed")) (|:| |hom| (-652 (-1279 (-779))))) (-300 (-961 (-572))))))) (T -240))
-((-4138 (*1 *2 *3) (-12 (-5 *3 (-300 (-961 (-572)))) (-5 *2 (-2 (|:| |varOrder| (-652 (-1188))) (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed")) (|:| |hom| (-652 (-1279 (-779)))))) (-5 *1 (-240)))))
-(-10 -7 (-15 -4138 ((-2 (|:| |varOrder| (-652 (-1188))) (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed")) (|:| |hom| (-652 (-1279 (-779))))) (-300 (-961 (-572))))))
-((-1486 (((-779)) 56)) (-2993 (((-2 (|:| -3544 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 $) (-1279 $)) 53) (((-697 |#3|) (-697 $)) 44) (((-697 |#3|) (-1279 $)) NIL) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-697 (-572)) (-1279 $)) NIL)) (-4224 (((-135)) 62)) (-3902 (($ $ (-1 |#3| |#3|) (-779)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-2940 (((-1279 |#3|) $) NIL) (($ |#3|) NIL) (((-870) $) NIL) (($ (-572)) 12) (($ (-415 (-572))) NIL)) (-4249 (((-779)) 15)) (-3106 (($ $ |#3|) 59)))
-(((-241 |#1| |#2| |#3|) (-10 -8 (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)) (-15 -4249 ((-779))) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2940 (|#1| |#3|)) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|) (-779))) (-15 -2993 ((-697 |#3|) (-1279 |#1|))) (-15 -2993 ((-697 |#3|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 |#1|) (-1279 |#1|))) (-15 -1486 ((-779))) (-15 -3106 (|#1| |#1| |#3|)) (-15 -4224 ((-135))) (-15 -2940 ((-1279 |#3|) |#1|))) (-242 |#2| |#3|) (-779) (-1229)) (T -241))
-((-4224 (*1 *2) (-12 (-14 *4 (-779)) (-4 *5 (-1229)) (-5 *2 (-135)) (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5)))) (-1486 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1229)) (-5 *2 (-779)) (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5)))) (-4249 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1229)) (-5 *2 (-779)) (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5)))))
-(-10 -8 (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)) (-15 -4249 ((-779))) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2940 (|#1| |#3|)) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|) (-779))) (-15 -2993 ((-697 |#3|) (-1279 |#1|))) (-15 -2993 ((-697 |#3|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 |#1|) (-1279 |#1|))) (-15 -1486 ((-779))) (-15 -3106 (|#1| |#1| |#3|)) (-15 -4224 ((-135))) (-15 -2940 ((-1279 |#3|) |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#2| (-1111)))) (-2697 (((-112) $) 74 (|has| |#2| (-132)))) (-2601 (($ (-930)) 129 (|has| |#2| (-1060)))) (-3176 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-1360 (($ $ $) 125 (|has| |#2| (-801)))) (-3330 (((-3 $ "failed") $ $) 76 (|has| |#2| (-132)))) (-1631 (((-112) $ (-779)) 8)) (-1486 (((-779)) 111 (|has| |#2| (-375)))) (-2840 (((-572) $) 123 (|has| |#2| (-856)))) (-3140 ((|#2| $ (-572) |#2|) 53 (|has| $ (-6 -4455)))) (-3281 (($) 7 T CONST)) (-1695 (((-3 (-572) "failed") $) 69 (-2085 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-3 (-415 (-572)) "failed") $) 66 (-2085 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (((-3 |#2| "failed") $) 63 (|has| |#2| (-1111)))) (-2204 (((-572) $) 68 (-2085 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-415 (-572)) $) 65 (-2085 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) ((|#2| $) 64 (|has| |#2| (-1111)))) (-2993 (((-697 (-572)) (-1279 $)) 110 (-2085 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-697 (-572)) (-697 $)) 109 (-2085 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 108 (-2085 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 107 (|has| |#2| (-1060))) (((-697 |#2|) (-697 $)) 106 (|has| |#2| (-1060))) (((-697 |#2|) (-1279 $)) 105 (|has| |#2| (-1060)))) (-2062 (((-3 $ "failed") $) 81 (|has| |#2| (-734)))) (-2815 (($) 114 (|has| |#2| (-375)))) (-2453 ((|#2| $ (-572) |#2|) 54 (|has| $ (-6 -4455)))) (-2380 ((|#2| $ (-572)) 52)) (-3074 (((-112) $) 121 (|has| |#2| (-856)))) (-1863 (((-652 |#2|) $) 31 (|has| $ (-6 -4454)))) (-1886 (((-112) $) 83 (|has| |#2| (-734)))) (-1623 (((-112) $) 122 (|has| |#2| (-856)))) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 44 (|has| (-572) (-858)))) (-3654 (($ $ $) 120 (-2813 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-1344 (((-652 |#2|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 45 (|has| (-572) (-858)))) (-2427 (($ $ $) 119 (-2813 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-2442 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#2| |#2|) $) 36)) (-3715 (((-930) $) 113 (|has| |#2| (-375)))) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#2| (-1111)))) (-1986 (((-652 (-572)) $) 47)) (-1370 (((-112) (-572) $) 48)) (-2571 (($ (-930)) 112 (|has| |#2| (-375)))) (-3964 (((-1131) $) 21 (|has| |#2| (-1111)))) (-2912 ((|#2| $) 43 (|has| (-572) (-858)))) (-2476 (($ $ |#2|) 42 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#2|))) 27 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 26 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 24 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#2| $ (-572) |#2|) 51) ((|#2| $ (-572)) 50)) (-2264 ((|#2| $ $) 128 (|has| |#2| (-1060)))) (-4259 (($ (-1279 |#2|)) 130)) (-4224 (((-135)) 127 (|has| |#2| (-370)))) (-3902 (($ $) 100 (-2085 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) 99 (-2085 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) 97 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) 96 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) 95 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) 94 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) 87 (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1060)))) (-3973 (((-779) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4454))) (((-779) |#2| $) 29 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-1279 |#2|) $) 131) (($ (-572)) 70 (-2813 (-2085 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060)))) (($ (-415 (-572))) 67 (-2085 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (($ |#2|) 62 (|has| |#2| (-1111))) (((-870) $) 18 (|has| |#2| (-621 (-870))))) (-4249 (((-779)) 85 (|has| |#2| (-1060)) CONST)) (-4379 (((-112) $ $) 23 (|has| |#2| (-1111)))) (-4380 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4454)))) (-2700 (($ $) 124 (|has| |#2| (-856)))) (-2131 (($) 73 (|has| |#2| (-132)) CONST)) (-2143 (($) 84 (|has| |#2| (-734)) CONST)) (-3608 (($ $) 101 (-2085 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) 98 (-2085 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) 93 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) 92 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) 91 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) 90 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) 89 (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) 88 (|has| |#2| (-1060)))) (-3039 (((-112) $ $) 117 (-2813 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-3014 (((-112) $ $) 116 (-2813 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-2978 (((-112) $ $) 20 (|has| |#2| (-1111)))) (-3026 (((-112) $ $) 118 (-2813 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-3003 (((-112) $ $) 115 (-2813 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-3106 (($ $ |#2|) 126 (|has| |#2| (-370)))) (-3089 (($ $ $) 104 (|has| |#2| (-1060))) (($ $) 103 (|has| |#2| (-1060)))) (-3075 (($ $ $) 71 (|has| |#2| (-25)))) (** (($ $ (-779)) 82 (|has| |#2| (-734))) (($ $ (-930)) 79 (|has| |#2| (-734)))) (* (($ (-572) $) 102 (|has| |#2| (-1060))) (($ $ $) 80 (|has| |#2| (-734))) (($ $ |#2|) 78 (|has| |#2| (-734))) (($ |#2| $) 77 (|has| |#2| (-734))) (($ (-779) $) 75 (|has| |#2| (-132))) (($ (-930) $) 72 (|has| |#2| (-25)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-242 |#1| |#2|) (-141) (-779) (-1229)) (T -242))
-((-4259 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1229)) (-4 *1 (-242 *3 *4)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-242 *3 *4)) (-4 *4 (-1060)) (-4 *4 (-1229)))) (-2264 (*1 *2 *1 *1) (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-734)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-734)))))
-(-13 (-612 (-572) |t#2|) (-621 (-1279 |t#2|)) (-10 -8 (-6 -4454) (-15 -4259 ($ (-1279 |t#2|))) (IF (|has| |t#2| (-1111)) (-6 (-419 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1060)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-384 |t#2|)) (-15 -2601 ($ (-930))) (-15 -2264 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-734)) (PROGN (-6 (-734)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |t#2| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#2| (-801)) (-6 (-801)) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-1286 |t#2|)) |%noBranch|)))
-(((-21) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-23) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -2813 (|has| |#2| (-1111)) (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-734)) (|has| |#2| (-375)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2813 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-624 #0=(-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))) ((-624 (-572)) -2813 (|has| |#2| (-1060)) (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-624 |#2|) -2813 (|has| |#2| (-1111)) (|has| |#2| (-174))) ((-621 (-870)) -2813 (|has| |#2| (-1111)) (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-734)) (|has| |#2| (-375)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-621 (-870))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-621 (-1279 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-235 $) -12 (|has| |#2| (-237)) (|has| |#2| (-1060))) ((-233 |#2|) |has| |#2| (-1060)) ((-237) -12 (|has| |#2| (-237)) (|has| |#2| (-1060))) ((-292 #1=(-572) |#2|) . T) ((-294 #1# |#2|) . T) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-375) |has| |#2| (-375)) ((-384 |#2|) |has| |#2| (-1060)) ((-419 |#2|) |has| |#2| (-1111)) ((-497 |#2|) . T) ((-612 #1# |#2|) . T) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-654 (-572)) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-654 |#2|) -2813 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-654 $) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-656 #2=(-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))) ((-656 |#2|) -2813 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-656 $) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-648 |#2|) -2813 (|has| |#2| (-370)) (|has| |#2| (-174))) ((-647 #2#) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))) ((-647 |#2|) |has| |#2| (-1060)) ((-725 |#2|) -2813 (|has| |#2| (-370)) (|has| |#2| (-174))) ((-734) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-734)) (|has| |#2| (-174))) ((-799) |has| |#2| (-856)) ((-800) -2813 (|has| |#2| (-856)) (|has| |#2| (-801))) ((-801) |has| |#2| (-801)) ((-802) -2813 (|has| |#2| (-856)) (|has| |#2| (-801))) ((-803) -2813 (|has| |#2| (-856)) (|has| |#2| (-801))) ((-856) |has| |#2| (-856)) ((-858) -2813 (|has| |#2| (-856)) (|has| |#2| (-801))) ((-909 (-1188)) -12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060))) ((-1049 #0#) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))) ((-1049 (-572)) -12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) ((-1049 |#2|) |has| |#2| (-1111)) ((-1062 |#2|) -2813 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-1062 $) |has| |#2| (-174)) ((-1067 |#2|) -2813 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-1067 $) |has| |#2| (-174)) ((-1060) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-1069) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-1123) -2813 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-734)) (|has| |#2| (-174))) ((-1111) -2813 (|has| |#2| (-1111)) (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-734)) (|has| |#2| (-375)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1229) . T) ((-1286 |#2|) |has| |#2| (-370)))
-((-2273 (((-244 |#1| |#3|) (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|) 21)) (-2865 ((|#3| (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|) 23)) (-1776 (((-244 |#1| |#3|) (-1 |#3| |#2|) (-244 |#1| |#2|)) 18)))
-(((-243 |#1| |#2| |#3|) (-10 -7 (-15 -2273 ((-244 |#1| |#3|) (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|)) (-15 -2865 (|#3| (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|)) (-15 -1776 ((-244 |#1| |#3|) (-1 |#3| |#2|) (-244 |#1| |#2|)))) (-779) (-1229) (-1229)) (T -243))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-244 *5 *6)) (-14 *5 (-779)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-5 *2 (-244 *5 *7)) (-5 *1 (-243 *5 *6 *7)))) (-2865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-244 *5 *6)) (-14 *5 (-779)) (-4 *6 (-1229)) (-4 *2 (-1229)) (-5 *1 (-243 *5 *6 *2)))) (-2273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-244 *6 *7)) (-14 *6 (-779)) (-4 *7 (-1229)) (-4 *5 (-1229)) (-5 *2 (-244 *6 *5)) (-5 *1 (-243 *6 *7 *5)))))
-(-10 -7 (-15 -2273 ((-244 |#1| |#3|) (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|)) (-15 -2865 (|#3| (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|)) (-15 -1776 ((-244 |#1| |#3|) (-1 |#3| |#2|) (-244 |#1| |#2|))))
-((-2846 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-2697 (((-112) $) NIL (|has| |#2| (-132)))) (-2601 (($ (-930)) 62 (|has| |#2| (-1060)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-1360 (($ $ $) 68 (|has| |#2| (-801)))) (-3330 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-1631 (((-112) $ (-779)) NIL)) (-1486 (((-779)) NIL (|has| |#2| (-375)))) (-2840 (((-572) $) NIL (|has| |#2| (-856)))) (-3140 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1111)))) (-2204 (((-572) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) ((|#2| $) 28 (|has| |#2| (-1111)))) (-2993 (((-697 (-572)) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL (|has| |#2| (-1060))) (((-697 |#2|) (-697 $)) NIL (|has| |#2| (-1060))) (((-697 |#2|) (-1279 $)) NIL (|has| |#2| (-1060)))) (-2062 (((-3 $ "failed") $) 58 (|has| |#2| (-734)))) (-2815 (($) NIL (|has| |#2| (-375)))) (-2453 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ (-572)) 56)) (-3074 (((-112) $) NIL (|has| |#2| (-856)))) (-1863 (((-652 |#2|) $) 14 (|has| $ (-6 -4454)))) (-1886 (((-112) $) NIL (|has| |#2| (-734)))) (-1623 (((-112) $) NIL (|has| |#2| (-856)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) 19 (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-1344 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-2442 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3715 (((-930) $) NIL (|has| |#2| (-375)))) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#2| (-1111)))) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-2571 (($ (-930)) NIL (|has| |#2| (-375)))) (-3964 (((-1131) $) NIL (|has| |#2| (-1111)))) (-2912 ((|#2| $) NIL (|has| (-572) (-858)))) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-572)) 20)) (-2264 ((|#2| $ $) NIL (|has| |#2| (-1060)))) (-4259 (($ (-1279 |#2|)) 17)) (-4224 (((-135)) NIL (|has| |#2| (-370)))) (-3902 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-3973 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-1279 |#2|) $) 9) (($ (-572)) NIL (-2813 (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (($ |#2|) 12 (|has| |#2| (-1111))) (((-870) $) NIL (|has| |#2| (-621 (-870))))) (-4249 (((-779)) NIL (|has| |#2| (-1060)) CONST)) (-4379 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-4380 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2700 (($ $) NIL (|has| |#2| (-856)))) (-2131 (($) 36 (|has| |#2| (-132)) CONST)) (-2143 (($) 40 (|has| |#2| (-734)) CONST)) (-3608 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-3039 (((-112) $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3014 (((-112) $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-2978 (((-112) $ $) 27 (|has| |#2| (-1111)))) (-3026 (((-112) $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3003 (((-112) $ $) 66 (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $ $) NIL (|has| |#2| (-1060))) (($ $) NIL (|has| |#2| (-1060)))) (-3075 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-779)) NIL (|has| |#2| (-734))) (($ $ (-930)) NIL (|has| |#2| (-734)))) (* (($ (-572) $) NIL (|has| |#2| (-1060))) (($ $ $) 46 (|has| |#2| (-734))) (($ $ |#2|) 44 (|has| |#2| (-734))) (($ |#2| $) 45 (|has| |#2| (-734))) (($ (-779) $) NIL (|has| |#2| (-132))) (($ (-930) $) NIL (|has| |#2| (-25)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-244 |#1| |#2|) (-242 |#1| |#2|) (-779) (-1229)) (T -244))
-NIL
-(-242 |#1| |#2|)
-((-4378 (((-572) (-652 (-1170))) 36) (((-572) (-1170)) 29)) (-1557 (((-1284) (-652 (-1170))) 40) (((-1284) (-1170)) 39)) (-2210 (((-1170)) 16)) (-4369 (((-1170) (-572) (-1170)) 23)) (-3356 (((-652 (-1170)) (-652 (-1170)) (-572) (-1170)) 37) (((-1170) (-1170) (-572) (-1170)) 35)) (-2615 (((-652 (-1170)) (-652 (-1170))) 15) (((-652 (-1170)) (-1170)) 11)))
-(((-245) (-10 -7 (-15 -2615 ((-652 (-1170)) (-1170))) (-15 -2615 ((-652 (-1170)) (-652 (-1170)))) (-15 -2210 ((-1170))) (-15 -4369 ((-1170) (-572) (-1170))) (-15 -3356 ((-1170) (-1170) (-572) (-1170))) (-15 -3356 ((-652 (-1170)) (-652 (-1170)) (-572) (-1170))) (-15 -1557 ((-1284) (-1170))) (-15 -1557 ((-1284) (-652 (-1170)))) (-15 -4378 ((-572) (-1170))) (-15 -4378 ((-572) (-652 (-1170)))))) (T -245))
-((-4378 (*1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-572)) (-5 *1 (-245)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-572)) (-5 *1 (-245)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1284)) (-5 *1 (-245)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-245)))) (-3356 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-652 (-1170))) (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *1 (-245)))) (-3356 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-245)))) (-4369 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-245)))) (-2210 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-245)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-245)))) (-2615 (*1 *2 *3) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-245)) (-5 *3 (-1170)))))
-(-10 -7 (-15 -2615 ((-652 (-1170)) (-1170))) (-15 -2615 ((-652 (-1170)) (-652 (-1170)))) (-15 -2210 ((-1170))) (-15 -4369 ((-1170) (-572) (-1170))) (-15 -3356 ((-1170) (-1170) (-572) (-1170))) (-15 -3356 ((-652 (-1170)) (-652 (-1170)) (-572) (-1170))) (-15 -1557 ((-1284) (-1170))) (-15 -1557 ((-1284) (-652 (-1170)))) (-15 -4378 ((-572) (-1170))) (-15 -4378 ((-572) (-652 (-1170)))))
-((** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 20)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ (-415 (-572)) $) 27) (($ $ (-415 (-572))) NIL)))
-(((-246 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-572))) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-247)) (T -246))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-572))) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 47)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 51)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 48)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ (-415 (-572)) $) 50) (($ $ (-415 (-572))) 49)))
-(((-247) (-141)) (T -247))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-247)) (-5 *2 (-572)))) (-1322 (*1 *1 *1) (-4 *1 (-247))))
-(-13 (-296) (-38 (-415 (-572))) (-10 -8 (-15 ** ($ $ (-572))) (-15 -1322 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-296) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-725 #0#) . T) ((-734) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3080 ((|#1| $) 49)) (-1969 (($ $) 58)) (-1631 (((-112) $ (-779)) 8)) (-2506 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-4068 (($ $ $) 54 (|has| $ (-6 -4455)))) (-2806 (($ $ $) 53 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-3281 (($) 7 T CONST)) (-1521 (($ $) 57)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 51)) (-1463 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-3977 (($ $) 56)) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-3505 (((-652 |#1|) $) 46)) (-2087 (((-112) $) 50)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3357 ((|#1| $) 60)) (-2502 (($ $) 59)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ "value") 48)) (-2157 (((-572) $ $) 45)) (-3315 (((-112) $) 47)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1700 (($ $ $) 55 (|has| $ (-6 -4455)))) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) 52)) (-2804 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-248 |#1|) (-141) (-1229)) (T -248))
-((-3357 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-2502 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-1521 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-3977 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-1700 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-4068 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-2806 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
-(-13 (-1021 |t#1|) (-10 -8 (-15 -3357 (|t#1| $)) (-15 -2502 ($ $)) (-15 -1969 ($ $)) (-15 -1521 ($ $)) (-15 -3977 ($ $)) (IF (|has| $ (-6 -4455)) (PROGN (-15 -1700 ($ $ $)) (-15 -4068 ($ $ $)) (-15 -2806 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) NIL)) (-2401 ((|#1| $) NIL)) (-1969 (($ $) NIL)) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-4382 (($ $ (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) $) NIL (|has| |#1| (-858))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3314 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2766 (($ $) 10 (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2506 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-1385 (($ $ $) NIL (|has| $ (-6 -4455)))) (-2871 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-4178 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "rest" $) NIL (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-2613 (($ (-1 (-112) |#1|) $) NIL)) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2388 ((|#1| $) NIL)) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2923 (($ $) NIL) (($ $ (-779)) NIL)) (-2704 (($ $) NIL (|has| |#1| (-1111)))) (-2086 (($ $) 7 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3554 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) NIL)) (-3332 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-4055 (((-112) $) NIL)) (-1439 (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111))) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) (-1 (-112) |#1|) $) NIL)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3787 (($ (-779) |#1|) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-3892 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1767 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1787 (($ |#1|) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3505 (((-652 |#1|) $) NIL)) (-2087 (((-112) $) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3357 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-2036 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1593 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2912 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3064 (((-112) $) NIL)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1246 (-572))) NIL) ((|#1| $ (-572)) NIL) ((|#1| $ (-572) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-779) $ "count") 16)) (-2157 (((-572) $ $) NIL)) (-1696 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-2835 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3185 (($ (-652 |#1|)) 22)) (-3315 (((-112) $) NIL)) (-2285 (($ $) NIL)) (-2391 (($ $) NIL (|has| $ (-6 -4455)))) (-3417 (((-779) $) NIL)) (-3479 (($ $) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) NIL)) (-1700 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4155 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-652 $)) NIL) (($ $ |#1|) NIL)) (-2940 (($ (-652 |#1|)) 17) (((-652 |#1|) $) 18) (((-870) $) 21 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2860 (((-779) $) 14 (|has| $ (-6 -4454)))))
-(((-249 |#1|) (-13 (-674 |#1|) (-498 (-652 |#1|)) (-10 -8 (-15 -3185 ($ (-652 |#1|))) (-15 -2196 ($ $ "unique")) (-15 -2196 ($ $ "sort")) (-15 -2196 ((-779) $ "count")))) (-858)) (T -249))
-((-3185 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-249 *3)))) (-2196 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-249 *3)) (-4 *3 (-858)))) (-2196 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-249 *3)) (-4 *3 (-858)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-779)) (-5 *1 (-249 *4)) (-4 *4 (-858)))))
-(-13 (-674 |#1|) (-498 (-652 |#1|)) (-10 -8 (-15 -3185 ($ (-652 |#1|))) (-15 -2196 ($ $ "unique")) (-15 -2196 ($ $ "sort")) (-15 -2196 ((-779) $ "count"))))
-((-2002 (((-3 (-779) "failed") |#1| |#1| (-779)) 40)))
-(((-250 |#1|) (-10 -7 (-15 -2002 ((-3 (-779) "failed") |#1| |#1| (-779)))) (-13 (-734) (-375) (-10 -7 (-15 ** (|#1| |#1| (-572)))))) (T -250))
-((-2002 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-779)) (-4 *3 (-13 (-734) (-375) (-10 -7 (-15 ** (*3 *3 (-572)))))) (-5 *1 (-250 *3)))))
-(-10 -7 (-15 -2002 ((-3 (-779) "failed") |#1| |#1| (-779))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-872 |#1|)) $) NIL)) (-4191 (((-1184 $) $ (-872 |#1|)) NIL) (((-1184 |#2|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-3009 (($ $) NIL (|has| |#2| (-564)))) (-4334 (((-112) $) NIL (|has| |#2| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-872 |#1|))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3517 (($ $) NIL (|has| |#2| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-872 |#1|) "failed") $) NIL)) (-2204 ((|#2| $) NIL) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-872 |#1|) $) NIL)) (-2361 (($ $ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-1504 (($ $ (-652 (-572))) NIL)) (-1390 (($ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#2| (-918)))) (-1437 (($ $ |#2| (-244 (-2860 |#1|) (-779)) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-4343 (($ (-1184 |#2|) (-872 |#1|)) NIL) (($ (-1184 $) (-872 |#1|)) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#2| (-244 (-2860 |#1|) (-779))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-872 |#1|)) NIL)) (-2649 (((-244 (-2860 |#1|) (-779)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-2497 (($ (-1 (-244 (-2860 |#1|) (-779)) (-244 (-2860 |#1|) (-779))) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3928 (((-3 (-872 |#1|) "failed") $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#2| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-4347 (((-1170) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-872 |#1|)) (|:| -1679 (-779))) "failed") $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#2| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#2| (-918)))) (-2834 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-872 |#1|) |#2|) NIL) (($ $ (-652 (-872 |#1|)) (-652 |#2|)) NIL) (($ $ (-872 |#1|) $) NIL) (($ $ (-652 (-872 |#1|)) (-652 $)) NIL)) (-3537 (($ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-3902 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-4390 (((-244 (-2860 |#1|) (-779)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-872 |#1|) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-1711 ((|#2| $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-872 |#1|)) NIL) (($ (-415 (-572))) NIL (-2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#2| (-564)))) (-4268 (((-652 |#2|) $) NIL)) (-3979 ((|#2| $ (-244 (-2860 |#1|) (-779))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-251 |#1| |#2|) (-13 (-958 |#2| (-244 (-2860 |#1|) (-779)) (-872 |#1|)) (-10 -8 (-15 -1504 ($ $ (-652 (-572)))))) (-652 (-1188)) (-1060)) (T -251))
-((-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-251 *3 *4)) (-14 *3 (-652 (-1188))) (-4 *4 (-1060)))))
-(-13 (-958 |#2| (-244 (-2860 |#1|) (-779)) (-872 |#1|)) (-10 -8 (-15 -1504 ($ $ (-652 (-572))))))
-((-2846 (((-112) $ $) NIL)) (-1984 (((-1284) $) 17)) (-3511 (((-185 (-253)) $) 11)) (-2140 (($ (-185 (-253))) 12)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1963 (((-253) $) 7)) (-2940 (((-870) $) 9)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 15)))
-(((-252) (-13 (-1111) (-10 -8 (-15 -1963 ((-253) $)) (-15 -3511 ((-185 (-253)) $)) (-15 -2140 ($ (-185 (-253)))) (-15 -1984 ((-1284) $))))) (T -252))
-((-1963 (*1 *2 *1) (-12 (-5 *2 (-253)) (-5 *1 (-252)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-185 (-253))) (-5 *1 (-252)))) (-2140 (*1 *1 *2) (-12 (-5 *2 (-185 (-253))) (-5 *1 (-252)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-252)))))
-(-13 (-1111) (-10 -8 (-15 -1963 ((-253) $)) (-15 -3511 ((-185 (-253)) $)) (-15 -2140 ($ (-185 (-253)))) (-15 -1984 ((-1284) $))))
-((-2846 (((-112) $ $) NIL)) (-1714 (((-652 (-873)) $) NIL)) (-2030 (((-514) $) NIL)) (-4347 (((-1170) $) NIL)) (-4280 (((-188) $) NIL)) (-2695 (((-112) $ (-514)) NIL)) (-3964 (((-1131) $) NIL)) (-3922 (((-339) $) 7)) (-3496 (((-652 (-112)) $) NIL)) (-2940 (((-870) $) NIL) (((-189) $) 8)) (-4379 (((-112) $ $) NIL)) (-2863 (((-55) $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-253) (-13 (-187) (-621 (-189)) (-10 -8 (-15 -3922 ((-339) $))))) (T -253))
-((-3922 (*1 *2 *1) (-12 (-5 *2 (-339)) (-5 *1 (-253)))))
-(-13 (-187) (-621 (-189)) (-10 -8 (-15 -3922 ((-339) $))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2196 (((-1193) $ (-779)) 13)) (-2940 (((-870) $) 20)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 16)) (-2860 (((-779) $) 9)))
-(((-254) (-13 (-1111) (-292 (-779) (-1193)) (-10 -8 (-15 -2860 ((-779) $))))) (T -254))
-((-2860 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-254)))))
-(-13 (-1111) (-292 (-779) (-1193)) (-10 -8 (-15 -2860 ((-779) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2601 (($ (-930)) NIL (|has| |#4| (-1060)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-1360 (($ $ $) NIL (|has| |#4| (-801)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-1486 (((-779)) NIL (|has| |#4| (-375)))) (-2840 (((-572) $) NIL (|has| |#4| (-856)))) (-3140 ((|#4| $ (-572) |#4|) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1111))) (((-3 (-572) "failed") $) NIL (-12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))) (-2204 ((|#4| $) NIL (|has| |#4| (-1111))) (((-572) $) NIL (-12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))) (-2993 (((-2 (|:| -3544 (-697 |#4|)) (|:| |vec| (-1279 |#4|))) (-697 $) (-1279 $)) NIL (|has| |#4| (-1060))) (((-697 |#4|) (-697 $)) NIL (|has| |#4| (-1060))) (((-697 |#4|) (-1279 $)) NIL (|has| |#4| (-1060))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060)))) (((-697 (-572)) (-1279 $)) NIL (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))))) (-2062 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))))) (-2815 (($) NIL (|has| |#4| (-375)))) (-2453 ((|#4| $ (-572) |#4|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#4| $ (-572)) NIL)) (-3074 (((-112) $) NIL (|has| |#4| (-856)))) (-1863 (((-652 |#4|) $) NIL (|has| $ (-6 -4454)))) (-1886 (((-112) $) NIL (-2813 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))))) (-1623 (((-112) $) NIL (|has| |#4| (-856)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (-2813 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-1344 (((-652 |#4|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (-2813 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-2442 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) NIL)) (-3715 (((-930) $) NIL (|has| |#4| (-375)))) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-2571 (($ (-930)) NIL (|has| |#4| (-375)))) (-3964 (((-1131) $) NIL)) (-2912 ((|#4| $) NIL (|has| (-572) (-858)))) (-2476 (($ $ |#4|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-4110 (((-652 |#4|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#4| $ (-572) |#4|) NIL) ((|#4| $ (-572)) 12)) (-2264 ((|#4| $ $) NIL (|has| |#4| (-1060)))) (-4259 (($ (-1279 |#4|)) NIL)) (-4224 (((-135)) NIL (|has| |#4| (-370)))) (-3902 (($ $ (-1 |#4| |#4|) (-779)) NIL (|has| |#4| (-1060))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#4| (-237)) (|has| |#4| (-1060)))) (($ $) NIL (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))))) (-3973 (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-1279 |#4|) $) NIL) (((-870) $) NIL) (($ |#4|) NIL (|has| |#4| (-1111))) (($ (-572)) NIL (-2813 (-12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111))) (|has| |#4| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))) (-4249 (((-779)) NIL (|has| |#4| (-1060)) CONST)) (-4379 (((-112) $ $) NIL)) (-4380 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2700 (($ $) NIL (|has| |#4| (-856)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL (-2813 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) CONST)) (-3608 (($ $ (-1 |#4| |#4|) (-779)) NIL (|has| |#4| (-1060))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#4| (-237)) (|has| |#4| (-1060)))) (($ $) NIL (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))))) (-3039 (((-112) $ $) NIL (-2813 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-3014 (((-112) $ $) NIL (-2813 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (-2813 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-3003 (((-112) $ $) NIL (-2813 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-3106 (($ $ |#4|) NIL (|has| |#4| (-370)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-779)) NIL (-2813 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060))))) (($ $ (-930)) NIL (-2813 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))))) (* (($ |#2| $) 14) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-734))) (($ |#4| $) NIL (|has| |#4| (-734))) (($ $ $) NIL (-2813 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-255 |#1| |#2| |#3| |#4|) (-13 (-242 |#1| |#4|) (-656 |#2|) (-656 |#3|)) (-930) (-1060) (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-656 |#2|)) (T -255))
-NIL
-(-13 (-242 |#1| |#4|) (-656 |#2|) (-656 |#3|))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2601 (($ (-930)) NIL (|has| |#3| (-1060)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-1360 (($ $ $) NIL (|has| |#3| (-801)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-1486 (((-779)) NIL (|has| |#3| (-375)))) (-2840 (((-572) $) NIL (|has| |#3| (-856)))) (-3140 ((|#3| $ (-572) |#3|) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1111))) (((-3 (-572) "failed") $) NIL (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))) (-2204 ((|#3| $) NIL (|has| |#3| (-1111))) (((-572) $) NIL (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))) (-2993 (((-2 (|:| -3544 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 $) (-1279 $)) NIL (|has| |#3| (-1060))) (((-697 |#3|) (-697 $)) NIL (|has| |#3| (-1060))) (((-697 |#3|) (-1279 $)) NIL (|has| |#3| (-1060))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060)))) (((-697 (-572)) (-1279 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))))) (-2062 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))))) (-2815 (($) NIL (|has| |#3| (-375)))) (-2453 ((|#3| $ (-572) |#3|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#3| $ (-572)) NIL)) (-3074 (((-112) $) NIL (|has| |#3| (-856)))) (-1863 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-1886 (((-112) $) NIL (-2813 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))))) (-1623 (((-112) $) NIL (|has| |#3| (-856)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-1344 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-2442 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#3| |#3|) $) NIL)) (-3715 (((-930) $) NIL (|has| |#3| (-375)))) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-2571 (($ (-930)) NIL (|has| |#3| (-375)))) (-3964 (((-1131) $) NIL)) (-2912 ((|#3| $) NIL (|has| (-572) (-858)))) (-2476 (($ $ |#3|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#3|))) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-300 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-652 |#3|) (-652 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-4110 (((-652 |#3|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#3| $ (-572) |#3|) NIL) ((|#3| $ (-572)) 11)) (-2264 ((|#3| $ $) NIL (|has| |#3| (-1060)))) (-4259 (($ (-1279 |#3|)) NIL)) (-4224 (((-135)) NIL (|has| |#3| (-370)))) (-3902 (($ $ (-1 |#3| |#3|) (-779)) NIL (|has| |#3| (-1060))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))))) (-3973 (((-779) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454))) (((-779) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-1279 |#3|) $) NIL) (((-870) $) NIL) (($ |#3|) NIL (|has| |#3| (-1111))) (($ (-572)) NIL (-2813 (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (|has| |#3| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))) (-4249 (((-779)) NIL (|has| |#3| (-1060)) CONST)) (-4379 (((-112) $ $) NIL)) (-4380 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-2700 (($ $) NIL (|has| |#3| (-856)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL (-2813 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) CONST)) (-3608 (($ $ (-1 |#3| |#3|) (-779)) NIL (|has| |#3| (-1060))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))))) (-3039 (((-112) $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3014 (((-112) $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3003 (((-112) $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3106 (($ $ |#3|) NIL (|has| |#3| (-370)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-779)) NIL (-2813 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060))))) (($ $ (-930)) NIL (-2813 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))))) (* (($ |#2| $) 13) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-734))) (($ |#3| $) NIL (|has| |#3| (-734))) (($ $ $) NIL (-2813 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-256 |#1| |#2| |#3|) (-13 (-242 |#1| |#3|) (-656 |#2|)) (-779) (-1060) (-656 |#2|)) (T -256))
-NIL
-(-13 (-242 |#1| |#3|) (-656 |#2|))
-((-3258 (((-652 (-779)) $) 56) (((-652 (-779)) $ |#3|) 59)) (-3298 (((-779) $) 58) (((-779) $ |#3|) 61)) (-2652 (($ $) 76)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2956 (((-779) $ |#3|) 43) (((-779) $) 38)) (-2564 (((-1 $ (-779)) |#3|) 15) (((-1 $ (-779)) $) 88)) (-3703 ((|#4| $) 69)) (-1407 (((-112) $) 67)) (-2586 (($ $) 75)) (-2641 (($ $ (-652 (-300 $))) 111) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-652 |#4|) (-652 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-652 |#4|) (-652 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-652 |#3|) (-652 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-652 |#3|) (-652 |#2|)) 97)) (-3902 (($ $ |#4|) NIL) (($ $ (-652 |#4|)) NIL) (($ $ |#4| (-779)) NIL) (($ $ (-652 |#4|) (-652 (-779))) NIL) (($ $) NIL) (($ $ (-779)) NIL) (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4048 (((-652 |#3|) $) 86)) (-4390 ((|#5| $) NIL) (((-779) $ |#4|) NIL) (((-652 (-779)) $ (-652 |#4|)) NIL) (((-779) $ |#3|) 49)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-415 (-572))) NIL) (($ $) NIL)))
-(((-257 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2940 (|#1| |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2641 (|#1| |#1| (-652 |#3|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#3| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#3|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#3| |#1|)) (-15 -2564 ((-1 |#1| (-779)) |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -2586 (|#1| |#1|)) (-15 -3703 (|#4| |#1|)) (-15 -1407 ((-112) |#1|)) (-15 -3298 ((-779) |#1| |#3|)) (-15 -3258 ((-652 (-779)) |#1| |#3|)) (-15 -3298 ((-779) |#1|)) (-15 -3258 ((-652 (-779)) |#1|)) (-15 -4390 ((-779) |#1| |#3|)) (-15 -2956 ((-779) |#1|)) (-15 -2956 ((-779) |#1| |#3|)) (-15 -4048 ((-652 |#3|) |#1|)) (-15 -2564 ((-1 |#1| (-779)) |#3|)) (-15 -2940 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -4390 ((-652 (-779)) |#1| (-652 |#4|))) (-15 -4390 ((-779) |#1| |#4|)) (-15 -2940 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2641 (|#1| |#1| (-652 |#4|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#4| |#1|)) (-15 -2641 (|#1| |#1| (-652 |#4|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#4| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -4390 (|#5| |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -3902 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -3902 (|#1| |#1| |#4| (-779))) (-15 -3902 (|#1| |#1| (-652 |#4|))) (-15 -3902 (|#1| |#1| |#4|)) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|))) (-258 |#2| |#3| |#4| |#5|) (-1060) (-858) (-271 |#3|) (-801)) (T -257))
-NIL
-(-10 -8 (-15 -2940 (|#1| |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2641 (|#1| |#1| (-652 |#3|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#3| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#3|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#3| |#1|)) (-15 -2564 ((-1 |#1| (-779)) |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -2586 (|#1| |#1|)) (-15 -3703 (|#4| |#1|)) (-15 -1407 ((-112) |#1|)) (-15 -3298 ((-779) |#1| |#3|)) (-15 -3258 ((-652 (-779)) |#1| |#3|)) (-15 -3298 ((-779) |#1|)) (-15 -3258 ((-652 (-779)) |#1|)) (-15 -4390 ((-779) |#1| |#3|)) (-15 -2956 ((-779) |#1|)) (-15 -2956 ((-779) |#1| |#3|)) (-15 -4048 ((-652 |#3|) |#1|)) (-15 -2564 ((-1 |#1| (-779)) |#3|)) (-15 -2940 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -4390 ((-652 (-779)) |#1| (-652 |#4|))) (-15 -4390 ((-779) |#1| |#4|)) (-15 -2940 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2641 (|#1| |#1| (-652 |#4|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#4| |#1|)) (-15 -2641 (|#1| |#1| (-652 |#4|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#4| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -4390 (|#5| |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -3902 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -3902 (|#1| |#1| |#4| (-779))) (-15 -3902 (|#1| |#1| (-652 |#4|))) (-15 -3902 (|#1| |#1| |#4|)) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3258 (((-652 (-779)) $) 219) (((-652 (-779)) $ |#2|) 217)) (-3298 (((-779) $) 218) (((-779) $ |#2|) 216)) (-4353 (((-652 |#3|) $) 112)) (-4191 (((-1184 $) $ |#3|) 127) (((-1184 |#1|) $) 126)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 89 (|has| |#1| (-564)))) (-3009 (($ $) 90 (|has| |#1| (-564)))) (-4334 (((-112) $) 92 (|has| |#1| (-564)))) (-2418 (((-779) $) 114) (((-779) $ (-652 |#3|)) 113)) (-3330 (((-3 $ "failed") $ $) 20)) (-2603 (((-426 (-1184 $)) (-1184 $)) 102 (|has| |#1| (-918)))) (-3517 (($ $) 100 (|has| |#1| (-460)))) (-2287 (((-426 $) $) 99 (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 105 (|has| |#1| (-918)))) (-2652 (($ $) 212)) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-415 (-572)) "failed") $) 165 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 163 (|has| |#1| (-1049 (-572)))) (((-3 |#3| "failed") $) 140) (((-3 |#2| "failed") $) 226)) (-2204 ((|#1| $) 167) (((-415 (-572)) $) 166 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 164 (|has| |#1| (-1049 (-572)))) ((|#3| $) 141) ((|#2| $) 227)) (-2361 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1390 (($ $) 158)) (-2993 (((-697 (-572)) (-1279 $)) 138 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 137 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 136 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 135) (((-697 |#1|) (-697 $)) 134) (((-697 |#1|) (-1279 $)) 133)) (-2062 (((-3 $ "failed") $) 37)) (-1876 (($ $) 180 (|has| |#1| (-460))) (($ $ |#3|) 107 (|has| |#1| (-460)))) (-1378 (((-652 $) $) 111)) (-3879 (((-112) $) 98 (|has| |#1| (-918)))) (-1437 (($ $ |#1| |#4| $) 176)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 86 (-12 (|has| |#3| (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 85 (-12 (|has| |#3| (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2956 (((-779) $ |#2|) 222) (((-779) $) 221)) (-1886 (((-112) $) 35)) (-4368 (((-779) $) 173)) (-4343 (($ (-1184 |#1|) |#3|) 119) (($ (-1184 $) |#3|) 118)) (-1843 (((-652 $) $) 128)) (-2438 (((-112) $) 156)) (-4333 (($ |#1| |#4|) 157) (($ $ |#3| (-779)) 121) (($ $ (-652 |#3|) (-652 (-779))) 120)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ |#3|) 122)) (-2649 ((|#4| $) 174) (((-779) $ |#3|) 124) (((-652 (-779)) $ (-652 |#3|)) 123)) (-2497 (($ (-1 |#4| |#4|) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-2564 (((-1 $ (-779)) |#2|) 224) (((-1 $ (-779)) $) 211 (|has| |#1| (-237)))) (-3928 (((-3 |#3| "failed") $) 125)) (-1357 (($ $) 153)) (-1368 ((|#1| $) 152)) (-3703 ((|#3| $) 214)) (-2825 (($ (-652 $)) 96 (|has| |#1| (-460))) (($ $ $) 95 (|has| |#1| (-460)))) (-4347 (((-1170) $) 10)) (-1407 (((-112) $) 215)) (-4011 (((-3 (-652 $) "failed") $) 116)) (-3665 (((-3 (-652 $) "failed") $) 117)) (-1920 (((-3 (-2 (|:| |var| |#3|) (|:| -1679 (-779))) "failed") $) 115)) (-2586 (($ $) 213)) (-3964 (((-1131) $) 11)) (-1336 (((-112) $) 170)) (-1347 ((|#1| $) 171)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 97 (|has| |#1| (-460)))) (-2870 (($ (-652 $)) 94 (|has| |#1| (-460))) (($ $ $) 93 (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) 104 (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) 103 (|has| |#1| (-918)))) (-4218 (((-426 $) $) 101 (|has| |#1| (-918)))) (-2834 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-564)))) (-2641 (($ $ (-652 (-300 $))) 149) (($ $ (-300 $)) 148) (($ $ $ $) 147) (($ $ (-652 $) (-652 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-652 |#3|) (-652 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-652 |#3|) (-652 $)) 142) (($ $ |#2| $) 210 (|has| |#1| (-237))) (($ $ (-652 |#2|) (-652 $)) 209 (|has| |#1| (-237))) (($ $ |#2| |#1|) 208 (|has| |#1| (-237))) (($ $ (-652 |#2|) (-652 |#1|)) 207 (|has| |#1| (-237)))) (-3537 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3902 (($ $ |#3|) 46) (($ $ (-652 |#3|)) 45) (($ $ |#3| (-779)) 44) (($ $ (-652 |#3|) (-652 (-779))) 43) (($ $) 242 (|has| |#1| (-237))) (($ $ (-779)) 241 (|has| |#1| (-237))) (($ $ (-1188)) 239 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 238 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 237 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 236 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 229) (($ $ (-1 |#1| |#1|)) 228)) (-4048 (((-652 |#2|) $) 223)) (-4390 ((|#4| $) 154) (((-779) $ |#3|) 132) (((-652 (-779)) $ (-652 |#3|)) 131) (((-779) $ |#2|) 220)) (-1835 (((-901 (-386)) $) 84 (-12 (|has| |#3| (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) 83 (-12 (|has| |#3| (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) 82 (-12 (|has| |#3| (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-1711 ((|#1| $) 179 (|has| |#1| (-460))) (($ $ |#3|) 108 (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 106 (-2085 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ |#2|) 225) (($ (-415 (-572))) 80 (-2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572)))))) (($ $) 87 (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) 172)) (-3979 ((|#1| $ |#4|) 159) (($ $ |#3| (-779)) 130) (($ $ (-652 |#3|) (-652 (-779))) 129)) (-3849 (((-3 $ "failed") $) 81 (-2813 (-2085 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) 32 T CONST)) (-2099 (($ $ $ (-779)) 177 (|has| |#1| (-174)))) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 91 (|has| |#1| (-564)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ |#3|) 42) (($ $ (-652 |#3|)) 41) (($ $ |#3| (-779)) 40) (($ $ (-652 |#3|) (-652 (-779))) 39) (($ $) 243 (|has| |#1| (-237))) (($ $ (-779)) 240 (|has| |#1| (-237))) (($ $ (-1188)) 235 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 234 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 233 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 232 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 160 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 162 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 161 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 151) (($ $ |#1|) 150)))
-(((-258 |#1| |#2| |#3| |#4|) (-141) (-1060) (-858) (-271 |t#2|) (-801)) (T -258))
-((-2564 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-1 *1 (-779))) (-4 *1 (-258 *4 *3 *5 *6)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-652 *4)))) (-2956 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-779)))) (-4390 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-652 (-779))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-779)))) (-3258 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-652 (-779))))) (-3298 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-112)))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-801)) (-4 *2 (-271 *4)))) (-2586 (*1 *1 *1) (-12 (-4 *1 (-258 *2 *3 *4 *5)) (-4 *2 (-1060)) (-4 *3 (-858)) (-4 *4 (-271 *3)) (-4 *5 (-801)))) (-2652 (*1 *1 *1) (-12 (-4 *1 (-258 *2 *3 *4 *5)) (-4 *2 (-1060)) (-4 *3 (-858)) (-4 *4 (-271 *3)) (-4 *5 (-801)))) (-2564 (*1 *2 *1) (-12 (-4 *3 (-237)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-1 *1 (-779))) (-4 *1 (-258 *3 *4 *5 *6)))))
-(-13 (-958 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1049 |t#2|) (-10 -8 (-15 -2564 ((-1 $ (-779)) |t#2|)) (-15 -4048 ((-652 |t#2|) $)) (-15 -2956 ((-779) $ |t#2|)) (-15 -2956 ((-779) $)) (-15 -4390 ((-779) $ |t#2|)) (-15 -3258 ((-652 (-779)) $)) (-15 -3298 ((-779) $)) (-15 -3258 ((-652 (-779)) $ |t#2|)) (-15 -3298 ((-779) $ |t#2|)) (-15 -1407 ((-112) $)) (-15 -3703 (|t#3| $)) (-15 -2586 ($ $)) (-15 -2652 ($ $)) (IF (|has| |t#1| (-237)) (PROGN (-6 (-522 |t#2| |t#1|)) (-6 (-522 |t#2| $)) (-6 (-315 $)) (-15 -2564 ((-1 $ (-779)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 |#2|) . T) ((-624 |#3|) . T) ((-624 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-622 (-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572))))) ((-235 $) |has| |#1| (-237)) ((-233 |#1|) . T) ((-237) |has| |#1| (-237)) ((-296) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-315 $) . T) ((-332 |#1| |#4|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -2813 (|has| |#1| (-918)) (|has| |#1| (-460))) ((-522 |#2| |#1|) |has| |#1| (-237)) ((-522 |#2| $) |has| |#1| (-237)) ((-522 |#3| |#1|) . T) ((-522 |#3| $) . T) ((-522 $ $) . T) ((-564) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 #1=(-572)) |has| |#1| (-647 (-572))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-647 #1#) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-734) . T) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-909 |#3|) . T) ((-895 (-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386)))) ((-895 (-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))) ((-958 |#1| |#4| |#3|) . T) ((-918) |has| |#1| (-918)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1049 |#2|) . T) ((-1049 |#3|) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) |has| |#1| (-237)) ((-1233) |has| |#1| (-918)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3371 ((|#1| $) 55)) (-2001 ((|#1| $) 45)) (-1631 (((-112) $ (-779)) 8)) (-3281 (($) 7 T CONST)) (-3869 (($ $) 61)) (-3133 (($ $) 49)) (-4004 ((|#1| |#1| $) 47)) (-1491 ((|#1| $) 46)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4133 (((-779) $) 62)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1651 ((|#1| $) 40)) (-2896 ((|#1| |#1| $) 53)) (-2936 ((|#1| |#1| $) 52)) (-2036 (($ |#1| $) 41)) (-1839 (((-779) $) 56)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2935 ((|#1| $) 63)) (-2317 ((|#1| $) 51)) (-1501 ((|#1| $) 50)) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3598 ((|#1| |#1| $) 59)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3263 ((|#1| $) 60)) (-1552 (($) 58) (($ (-652 |#1|)) 57)) (-4301 (((-779) $) 44)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-2243 ((|#1| $) 54)) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 43)) (-2334 ((|#1| $) 64)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-259 |#1|) (-141) (-1229)) (T -259))
-((-1552 (*1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-259 *3)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-2896 (*1 *2 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-2936 (*1 *2 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-1501 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-3133 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
-(-13 (-1132 |t#1|) (-1006 |t#1|) (-10 -8 (-15 -1552 ($)) (-15 -1552 ($ (-652 |t#1|))) (-15 -1839 ((-779) $)) (-15 -3371 (|t#1| $)) (-15 -2243 (|t#1| $)) (-15 -2896 (|t#1| |t#1| $)) (-15 -2936 (|t#1| |t#1| $)) (-15 -2317 (|t#1| $)) (-15 -1501 (|t#1| $)) (-15 -3133 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1006 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1132 |#1|) . T) ((-1229) . T))
-((-3865 (((-1 (-952 (-227)) (-227) (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1845 (((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386))) 173) (((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 171) (((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386))) 176) (((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 172) (((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386))) 164) (((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 163) (((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386))) 145) (((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268))) 143) (((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386))) 144) (((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268))) 141)) (-1799 (((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386))) 175) (((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 174) (((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386))) 178) (((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 177) (((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386))) 166) (((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 165) (((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386))) 151) (((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268))) 150) (((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386))) 149) (((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268))) 148) (((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386))) 113) (((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268))) 112) (((-1280) (-1 (-227) (-227)) (-1105 (-386))) 107) (((-1280) (-1 (-227) (-227)) (-1105 (-386)) (-652 (-268))) 105)))
-(((-260) (-10 -7 (-15 -1799 ((-1280) (-1 (-227) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1280) (-1 (-227) (-227)) (-1105 (-386)))) (-15 -1799 ((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -1799 ((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -1799 ((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)))) (-15 -1799 ((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -1799 ((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -1799 ((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)))) (-15 -3865 ((-1 (-952 (-227)) (-227) (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -260))
-((-3865 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1280)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1280)) (-5 *1 (-260)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-260)))))
-(-10 -7 (-15 -1799 ((-1280) (-1 (-227) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1280) (-1 (-227) (-227)) (-1105 (-386)))) (-15 -1799 ((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -1799 ((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -1799 ((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)))) (-15 -1799 ((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -1799 ((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -1799 ((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)))) (-15 -1845 ((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)))) (-15 -3865 ((-1 (-952 (-227)) (-227) (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
-((-1799 (((-1280) (-300 |#2|) (-1188) (-1188) (-652 (-268))) 101)))
-(((-261 |#1| |#2|) (-10 -7 (-15 -1799 ((-1280) (-300 |#2|) (-1188) (-1188) (-652 (-268))))) (-13 (-564) (-858) (-1049 (-572))) (-438 |#1|)) (T -261))
-((-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-300 *7)) (-5 *4 (-1188)) (-5 *5 (-652 (-268))) (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-858) (-1049 (-572)))) (-5 *2 (-1280)) (-5 *1 (-261 *6 *7)))))
-(-10 -7 (-15 -1799 ((-1280) (-300 |#2|) (-1188) (-1188) (-652 (-268)))))
-((-1374 (((-572) (-572)) 71)) (-4117 (((-572) (-572)) 72)) (-2681 (((-227) (-227)) 73)) (-4284 (((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227))) 70)) (-1627 (((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)) (-112)) 68)))
-(((-262) (-10 -7 (-15 -1627 ((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)) (-112))) (-15 -4284 ((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)))) (-15 -1374 ((-572) (-572))) (-15 -4117 ((-572) (-572))) (-15 -2681 ((-227) (-227))))) (T -262))
-((-2681 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-262)))) (-4117 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-262)))) (-1374 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-262)))) (-4284 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1105 (-227))) (-5 *2 (-1281)) (-5 *1 (-262)))) (-1627 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1105 (-227))) (-5 *5 (-112)) (-5 *2 (-1281)) (-5 *1 (-262)))))
-(-10 -7 (-15 -1627 ((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)) (-112))) (-15 -4284 ((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)))) (-15 -1374 ((-572) (-572))) (-15 -4117 ((-572) (-572))) (-15 -2681 ((-227) (-227))))
-((-2940 (((-1103 (-386)) (-1103 (-322 |#1|))) 16)))
-(((-263 |#1|) (-10 -7 (-15 -2940 ((-1103 (-386)) (-1103 (-322 |#1|))))) (-13 (-858) (-564) (-622 (-386)))) (T -263))
-((-2940 (*1 *2 *3) (-12 (-5 *3 (-1103 (-322 *4))) (-4 *4 (-13 (-858) (-564) (-622 (-386)))) (-5 *2 (-1103 (-386))) (-5 *1 (-263 *4)))))
-(-10 -7 (-15 -2940 ((-1103 (-386)) (-1103 (-322 |#1|)))))
-((-1845 (((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386))) 75) (((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268))) 74) (((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386))) 65) (((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268))) 64) (((-1144 (-227)) (-888 |#1|) (-1103 (-386))) 56) (((-1144 (-227)) (-888 |#1|) (-1103 (-386)) (-652 (-268))) 55)) (-1799 (((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386))) 78) (((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268))) 77) (((-1281) |#1| (-1103 (-386)) (-1103 (-386))) 68) (((-1281) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268))) 67) (((-1281) (-888 |#1|) (-1103 (-386))) 60) (((-1281) (-888 |#1|) (-1103 (-386)) (-652 (-268))) 59) (((-1280) (-886 |#1|) (-1103 (-386))) 47) (((-1280) (-886 |#1|) (-1103 (-386)) (-652 (-268))) 46) (((-1280) |#1| (-1103 (-386))) 38) (((-1280) |#1| (-1103 (-386)) (-652 (-268))) 36)))
-(((-264 |#1|) (-10 -7 (-15 -1799 ((-1280) |#1| (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1280) |#1| (-1103 (-386)))) (-15 -1799 ((-1280) (-886 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1280) (-886 |#1|) (-1103 (-386)))) (-15 -1799 ((-1281) (-888 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-888 |#1|) (-1103 (-386)))) (-15 -1845 ((-1144 (-227)) (-888 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-888 |#1|) (-1103 (-386)))) (-15 -1799 ((-1281) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) |#1| (-1103 (-386)) (-1103 (-386)))) (-15 -1845 ((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)))) (-15 -1799 ((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)))) (-15 -1845 ((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386))))) (-13 (-622 (-544)) (-1111))) (T -264))
-((-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *5)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *6)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281)) (-5 *1 (-264 *5)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281)) (-5 *1 (-264 *6)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1281)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *5)))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281)) (-5 *1 (-264 *5)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281)) (-5 *1 (-264 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1280)) (-5 *1 (-264 *5)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1280)) (-5 *1 (-264 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1280)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))))
-(-10 -7 (-15 -1799 ((-1280) |#1| (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1280) |#1| (-1103 (-386)))) (-15 -1799 ((-1280) (-886 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1280) (-886 |#1|) (-1103 (-386)))) (-15 -1799 ((-1281) (-888 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-888 |#1|) (-1103 (-386)))) (-15 -1845 ((-1144 (-227)) (-888 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-888 |#1|) (-1103 (-386)))) (-15 -1799 ((-1281) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) |#1| (-1103 (-386)) (-1103 (-386)))) (-15 -1845 ((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)))) (-15 -1799 ((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -1799 ((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)))) (-15 -1845 ((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -1845 ((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386)))))
-((-1799 (((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)) (-652 (-268))) 23) (((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227))) 24) (((-1280) (-652 (-952 (-227))) (-652 (-268))) 16) (((-1280) (-652 (-952 (-227)))) 17) (((-1280) (-652 (-227)) (-652 (-227)) (-652 (-268))) 20) (((-1280) (-652 (-227)) (-652 (-227))) 21)))
-(((-265) (-10 -7 (-15 -1799 ((-1280) (-652 (-227)) (-652 (-227)))) (-15 -1799 ((-1280) (-652 (-227)) (-652 (-227)) (-652 (-268)))) (-15 -1799 ((-1280) (-652 (-952 (-227))))) (-15 -1799 ((-1280) (-652 (-952 (-227))) (-652 (-268)))) (-15 -1799 ((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)))) (-15 -1799 ((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)) (-652 (-268)))))) (T -265))
-((-1799 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-652 (-227))) (-5 *4 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-265)))) (-1799 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1281)) (-5 *1 (-265)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *4 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-265)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *2 (-1280)) (-5 *1 (-265)))) (-1799 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-652 (-227))) (-5 *4 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-265)))) (-1799 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1280)) (-5 *1 (-265)))))
-(-10 -7 (-15 -1799 ((-1280) (-652 (-227)) (-652 (-227)))) (-15 -1799 ((-1280) (-652 (-227)) (-652 (-227)) (-652 (-268)))) (-15 -1799 ((-1280) (-652 (-952 (-227))))) (-15 -1799 ((-1280) (-652 (-952 (-227))) (-652 (-268)))) (-15 -1799 ((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)))) (-15 -1799 ((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)) (-652 (-268)))))
-((-2359 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-652 (-268)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2849 (((-930) (-652 (-268)) (-930)) 52)) (-2008 (((-930) (-652 (-268)) (-930)) 51)) (-1996 (((-652 (-386)) (-652 (-268)) (-652 (-386))) 68)) (-3574 (((-386) (-652 (-268)) (-386)) 57)) (-2103 (((-930) (-652 (-268)) (-930)) 53)) (-2873 (((-112) (-652 (-268)) (-112)) 27)) (-3874 (((-1170) (-652 (-268)) (-1170)) 19)) (-2715 (((-1170) (-652 (-268)) (-1170)) 26)) (-1691 (((-1144 (-227)) (-652 (-268))) 46)) (-4254 (((-652 (-1105 (-386))) (-652 (-268)) (-652 (-1105 (-386)))) 40)) (-2394 (((-882) (-652 (-268)) (-882)) 32)) (-3211 (((-882) (-652 (-268)) (-882)) 33)) (-1553 (((-1 (-952 (-227)) (-952 (-227))) (-652 (-268)) (-1 (-952 (-227)) (-952 (-227)))) 63)) (-1676 (((-112) (-652 (-268)) (-112)) 14)) (-1677 (((-112) (-652 (-268)) (-112)) 13)))
-(((-266) (-10 -7 (-15 -1677 ((-112) (-652 (-268)) (-112))) (-15 -1676 ((-112) (-652 (-268)) (-112))) (-15 -2359 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-652 (-268)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3874 ((-1170) (-652 (-268)) (-1170))) (-15 -2715 ((-1170) (-652 (-268)) (-1170))) (-15 -2873 ((-112) (-652 (-268)) (-112))) (-15 -2394 ((-882) (-652 (-268)) (-882))) (-15 -3211 ((-882) (-652 (-268)) (-882))) (-15 -4254 ((-652 (-1105 (-386))) (-652 (-268)) (-652 (-1105 (-386))))) (-15 -2008 ((-930) (-652 (-268)) (-930))) (-15 -2849 ((-930) (-652 (-268)) (-930))) (-15 -1691 ((-1144 (-227)) (-652 (-268)))) (-15 -2103 ((-930) (-652 (-268)) (-930))) (-15 -3574 ((-386) (-652 (-268)) (-386))) (-15 -1553 ((-1 (-952 (-227)) (-952 (-227))) (-652 (-268)) (-1 (-952 (-227)) (-952 (-227))))) (-15 -1996 ((-652 (-386)) (-652 (-268)) (-652 (-386)))))) (T -266))
-((-1996 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-386))) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-1553 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3574 (*1 *2 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-2103 (*1 *2 *3 *2) (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-266)))) (-2849 (*1 *2 *3 *2) (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-2008 (*1 *2 *3 *2) (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-4254 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3211 (*1 *2 *3 *2) (-12 (-5 *2 (-882)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-2394 (*1 *2 *3 *2) (-12 (-5 *2 (-882)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-2873 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-2715 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3874 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-2359 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-1676 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-1677 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))))
-(-10 -7 (-15 -1677 ((-112) (-652 (-268)) (-112))) (-15 -1676 ((-112) (-652 (-268)) (-112))) (-15 -2359 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-652 (-268)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3874 ((-1170) (-652 (-268)) (-1170))) (-15 -2715 ((-1170) (-652 (-268)) (-1170))) (-15 -2873 ((-112) (-652 (-268)) (-112))) (-15 -2394 ((-882) (-652 (-268)) (-882))) (-15 -3211 ((-882) (-652 (-268)) (-882))) (-15 -4254 ((-652 (-1105 (-386))) (-652 (-268)) (-652 (-1105 (-386))))) (-15 -2008 ((-930) (-652 (-268)) (-930))) (-15 -2849 ((-930) (-652 (-268)) (-930))) (-15 -1691 ((-1144 (-227)) (-652 (-268)))) (-15 -2103 ((-930) (-652 (-268)) (-930))) (-15 -3574 ((-386) (-652 (-268)) (-386))) (-15 -1553 ((-1 (-952 (-227)) (-952 (-227))) (-652 (-268)) (-1 (-952 (-227)) (-952 (-227))))) (-15 -1996 ((-652 (-386)) (-652 (-268)) (-652 (-386)))))
-((-1979 (((-3 |#1| "failed") (-652 (-268)) (-1188)) 17)))
-(((-267 |#1|) (-10 -7 (-15 -1979 ((-3 |#1| "failed") (-652 (-268)) (-1188)))) (-1229)) (T -267))
-((-1979 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *1 (-267 *2)) (-4 *2 (-1229)))))
-(-10 -7 (-15 -1979 ((-3 |#1| "failed") (-652 (-268)) (-1188))))
-((-2846 (((-112) $ $) NIL)) (-2359 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2849 (($ (-930)) 81)) (-2008 (($ (-930)) 80)) (-3161 (($ (-652 (-386))) 87)) (-3574 (($ (-386)) 66)) (-2103 (($ (-930)) 82)) (-2873 (($ (-112)) 33)) (-3874 (($ (-1170)) 28)) (-2715 (($ (-1170)) 29)) (-1691 (($ (-1144 (-227))) 76)) (-4254 (($ (-652 (-1105 (-386)))) 72)) (-1910 (($ (-652 (-1105 (-386)))) 68) (($ (-652 (-1105 (-415 (-572))))) 71)) (-2183 (($ (-386)) 38) (($ (-882)) 42)) (-2373 (((-112) (-652 $) (-1188)) 100)) (-1979 (((-3 (-52) "failed") (-652 $) (-1188)) 102)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4083 (($ (-386)) 43) (($ (-882)) 44)) (-4329 (($ (-1 (-952 (-227)) (-952 (-227)))) 65)) (-1553 (($ (-1 (-952 (-227)) (-952 (-227)))) 83)) (-1455 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2940 (((-870) $) 93)) (-2907 (($ (-112)) 34) (($ (-652 (-1105 (-386)))) 60)) (-4379 (((-112) $ $) NIL)) (-1677 (($ (-112)) 35)) (-2978 (((-112) $ $) 97)))
-(((-268) (-13 (-1111) (-10 -8 (-15 -1677 ($ (-112))) (-15 -2907 ($ (-112))) (-15 -2359 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3874 ($ (-1170))) (-15 -2715 ($ (-1170))) (-15 -2873 ($ (-112))) (-15 -2907 ($ (-652 (-1105 (-386))))) (-15 -4329 ($ (-1 (-952 (-227)) (-952 (-227))))) (-15 -2183 ($ (-386))) (-15 -2183 ($ (-882))) (-15 -4083 ($ (-386))) (-15 -4083 ($ (-882))) (-15 -1455 ($ (-1 (-227) (-227)))) (-15 -1455 ($ (-1 (-227) (-227) (-227)))) (-15 -1455 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3574 ($ (-386))) (-15 -1910 ($ (-652 (-1105 (-386))))) (-15 -1910 ($ (-652 (-1105 (-415 (-572)))))) (-15 -4254 ($ (-652 (-1105 (-386))))) (-15 -1691 ($ (-1144 (-227)))) (-15 -2008 ($ (-930))) (-15 -2849 ($ (-930))) (-15 -2103 ($ (-930))) (-15 -1553 ($ (-1 (-952 (-227)) (-952 (-227))))) (-15 -3161 ($ (-652 (-386)))) (-15 -1979 ((-3 (-52) "failed") (-652 $) (-1188))) (-15 -2373 ((-112) (-652 $) (-1188)))))) (T -268))
-((-1677 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))) (-2907 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))) (-2359 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-268)))) (-3874 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-268)))) (-2715 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-268)))) (-2873 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))) (-2907 (*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268)))) (-4329 (*1 *1 *2) (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *1 (-268)))) (-2183 (*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))) (-2183 (*1 *1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-268)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-268)))) (-1455 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-268)))) (-1455 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-268)))) (-1455 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-268)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268)))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-415 (-572))))) (-5 *1 (-268)))) (-4254 (*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-268)))) (-2008 (*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))) (-2103 (*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))) (-1553 (*1 *1 *2) (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *1 (-268)))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-268)))) (-1979 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *2 (-52)) (-5 *1 (-268)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *2 (-112)) (-5 *1 (-268)))))
-(-13 (-1111) (-10 -8 (-15 -1677 ($ (-112))) (-15 -2907 ($ (-112))) (-15 -2359 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3874 ($ (-1170))) (-15 -2715 ($ (-1170))) (-15 -2873 ($ (-112))) (-15 -2907 ($ (-652 (-1105 (-386))))) (-15 -4329 ($ (-1 (-952 (-227)) (-952 (-227))))) (-15 -2183 ($ (-386))) (-15 -2183 ($ (-882))) (-15 -4083 ($ (-386))) (-15 -4083 ($ (-882))) (-15 -1455 ($ (-1 (-227) (-227)))) (-15 -1455 ($ (-1 (-227) (-227) (-227)))) (-15 -1455 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3574 ($ (-386))) (-15 -1910 ($ (-652 (-1105 (-386))))) (-15 -1910 ($ (-652 (-1105 (-415 (-572)))))) (-15 -4254 ($ (-652 (-1105 (-386))))) (-15 -1691 ($ (-1144 (-227)))) (-15 -2008 ($ (-930))) (-15 -2849 ($ (-930))) (-15 -2103 ($ (-930))) (-15 -1553 ($ (-1 (-952 (-227)) (-952 (-227))))) (-15 -3161 ($ (-652 (-386)))) (-15 -1979 ((-3 (-52) "failed") (-652 $) (-1188))) (-15 -2373 ((-112) (-652 $) (-1188)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3258 (((-652 (-779)) $) NIL) (((-652 (-779)) $ |#2|) NIL)) (-3298 (((-779) $) NIL) (((-779) $ |#2|) NIL)) (-4353 (((-652 |#3|) $) NIL)) (-4191 (((-1184 $) $ |#3|) NIL) (((-1184 |#1|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 |#3|)) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3517 (($ $) NIL (|has| |#1| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2652 (($ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1136 |#1| |#2|) "failed") $) 23)) (-2204 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1136 |#1| |#2|) $) NIL)) (-2361 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1390 (($ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-460))) (($ $ |#3|) NIL (|has| |#1| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#1| (-918)))) (-1437 (($ $ |#1| (-539 |#3|) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))))) (-2956 (((-779) $ |#2|) NIL) (((-779) $) 10)) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-4343 (($ (-1184 |#1|) |#3|) NIL) (($ (-1184 $) |#3|) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-539 |#3|)) NIL) (($ $ |#3| (-779)) NIL) (($ $ (-652 |#3|) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ |#3|) NIL)) (-2649 (((-539 |#3|) $) NIL) (((-779) $ |#3|) NIL) (((-652 (-779)) $ (-652 |#3|)) NIL)) (-2497 (($ (-1 (-539 |#3|) (-539 |#3|)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2564 (((-1 $ (-779)) |#2|) NIL) (((-1 $ (-779)) $) NIL (|has| |#1| (-237)))) (-3928 (((-3 |#3| "failed") $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-3703 ((|#3| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4347 (((-1170) $) NIL)) (-1407 (((-112) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| |#3|) (|:| -1679 (-779))) "failed") $) NIL)) (-2586 (($ $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#1| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-918)))) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-652 |#3|) (-652 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-652 |#3|) (-652 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-237))) (($ $ (-652 |#2|) (-652 $)) NIL (|has| |#1| (-237))) (($ $ |#2| |#1|) NIL (|has| |#1| (-237))) (($ $ (-652 |#2|) (-652 |#1|)) NIL (|has| |#1| (-237)))) (-3537 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3902 (($ $ |#3|) NIL) (($ $ (-652 |#3|)) NIL) (($ $ |#3| (-779)) NIL) (($ $ (-652 |#3|) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4048 (((-652 |#2|) $) NIL)) (-4390 (((-539 |#3|) $) NIL) (((-779) $ |#3|) NIL) (((-652 (-779)) $ (-652 |#3|)) NIL) (((-779) $ |#2|) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))))) (-1711 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ |#3|) NIL (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1136 |#1| |#2|)) 32) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-539 |#3|)) NIL) (($ $ |#3| (-779)) NIL) (($ $ (-652 |#3|) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ |#3|) NIL) (($ $ (-652 |#3|)) NIL) (($ $ |#3| (-779)) NIL) (($ $ (-652 |#3|) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-269 |#1| |#2| |#3|) (-13 (-258 |#1| |#2| |#3| (-539 |#3|)) (-1049 (-1136 |#1| |#2|))) (-1060) (-858) (-271 |#2|)) (T -269))
-NIL
-(-13 (-258 |#1| |#2| |#3| (-539 |#3|)) (-1049 (-1136 |#1| |#2|)))
-((-3298 (((-779) $) 37)) (-1695 (((-3 |#2| "failed") $) 22)) (-2204 ((|#2| $) 33)) (-3902 (($ $) 14) (($ $ (-779)) 18)) (-2940 (((-870) $) 32) (($ |#2|) 11)) (-2978 (((-112) $ $) 26)) (-3003 (((-112) $ $) 36)))
-(((-270 |#1| |#2|) (-10 -8 (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -3298 ((-779) |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -3003 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|))) (-271 |#2|) (-858)) (T -270))
-NIL
-(-10 -8 (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -3298 ((-779) |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -3003 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-3298 (((-779) $) 23)) (-1487 ((|#1| $) 24)) (-1695 (((-3 |#1| "failed") $) 28)) (-2204 ((|#1| $) 29)) (-2956 (((-779) $) 25)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-2564 (($ |#1| (-779)) 26)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3902 (($ $) 22) (($ $ (-779)) 21)) (-2940 (((-870) $) 12) (($ |#1|) 27)) (-4379 (((-112) $ $) 9)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)))
-(((-271 |#1|) (-141) (-858)) (T -271))
-((-2940 (*1 *1 *2) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858)))) (-2564 (*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-271 *2)) (-4 *2 (-858)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-271 *3)) (-4 *3 (-858)) (-5 *2 (-779)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-271 *3)) (-4 *3 (-858)) (-5 *2 (-779)))) (-3902 (*1 *1 *1) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-271 *3)) (-4 *3 (-858)))))
-(-13 (-858) (-1049 |t#1|) (-10 -8 (-15 -2564 ($ |t#1| (-779))) (-15 -2956 ((-779) $)) (-15 -1487 (|t#1| $)) (-15 -3298 ((-779) $)) (-15 -3902 ($ $)) (-15 -3902 ($ $ (-779))) (-15 -2940 ($ |t#1|))))
-(((-102) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-858) . T) ((-1049 |#1|) . T) ((-1111) . T))
-((-4353 (((-652 (-1188)) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) 53)) (-1653 (((-652 (-1188)) (-322 (-227)) (-779)) 94)) (-1921 (((-3 (-322 (-227)) "failed") (-322 (-227))) 63)) (-2192 (((-322 (-227)) (-322 (-227))) 79)) (-3811 (((-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 38)) (-2937 (((-112) (-652 (-322 (-227)))) 104)) (-4139 (((-112) (-322 (-227))) 36)) (-2277 (((-652 (-1170)) (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))))) 132)) (-2216 (((-652 (-322 (-227))) (-652 (-322 (-227)))) 108)) (-2875 (((-652 (-322 (-227))) (-652 (-322 (-227)))) 106)) (-2428 (((-697 (-227)) (-652 (-322 (-227))) (-779)) 120)) (-1332 (((-112) (-322 (-227))) 31) (((-112) (-652 (-322 (-227)))) 105)) (-3489 (((-652 (-227)) (-652 (-851 (-227))) (-227)) 15)) (-2518 (((-386) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) 126)) (-3389 (((-1046) (-1188) (-1046)) 46)))
-(((-272) (-10 -7 (-15 -3489 ((-652 (-227)) (-652 (-851 (-227))) (-227))) (-15 -3811 ((-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -1921 ((-3 (-322 (-227)) "failed") (-322 (-227)))) (-15 -2192 ((-322 (-227)) (-322 (-227)))) (-15 -2937 ((-112) (-652 (-322 (-227))))) (-15 -1332 ((-112) (-652 (-322 (-227))))) (-15 -1332 ((-112) (-322 (-227)))) (-15 -2428 ((-697 (-227)) (-652 (-322 (-227))) (-779))) (-15 -2875 ((-652 (-322 (-227))) (-652 (-322 (-227))))) (-15 -2216 ((-652 (-322 (-227))) (-652 (-322 (-227))))) (-15 -4139 ((-112) (-322 (-227)))) (-15 -4353 ((-652 (-1188)) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) (-15 -1653 ((-652 (-1188)) (-322 (-227)) (-779))) (-15 -3389 ((-1046) (-1188) (-1046))) (-15 -2518 ((-386) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) (-15 -2277 ((-652 (-1170)) (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))))))) (T -272))
-((-2277 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))))) (-5 *2 (-652 (-1170))) (-5 *1 (-272)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) (-5 *2 (-386)) (-5 *1 (-272)))) (-3389 (*1 *2 *3 *2) (-12 (-5 *2 (-1046)) (-5 *3 (-1188)) (-5 *1 (-272)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-779)) (-5 *2 (-652 (-1188))) (-5 *1 (-272)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) (-5 *2 (-652 (-1188))) (-5 *1 (-272)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-112)) (-5 *1 (-272)))) (-2216 (*1 *2 *2) (-12 (-5 *2 (-652 (-322 (-227)))) (-5 *1 (-272)))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-652 (-322 (-227)))) (-5 *1 (-272)))) (-2428 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *4 (-779)) (-5 *2 (-697 (-227))) (-5 *1 (-272)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-112)) (-5 *1 (-272)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *2 (-112)) (-5 *1 (-272)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *2 (-112)) (-5 *1 (-272)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-322 (-227))) (-5 *1 (-272)))) (-1921 (*1 *2 *2) (|partial| -12 (-5 *2 (-322 (-227))) (-5 *1 (-272)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (-5 *1 (-272)))) (-3489 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-851 (-227)))) (-5 *4 (-227)) (-5 *2 (-652 *4)) (-5 *1 (-272)))))
-(-10 -7 (-15 -3489 ((-652 (-227)) (-652 (-851 (-227))) (-227))) (-15 -3811 ((-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -1921 ((-3 (-322 (-227)) "failed") (-322 (-227)))) (-15 -2192 ((-322 (-227)) (-322 (-227)))) (-15 -2937 ((-112) (-652 (-322 (-227))))) (-15 -1332 ((-112) (-652 (-322 (-227))))) (-15 -1332 ((-112) (-322 (-227)))) (-15 -2428 ((-697 (-227)) (-652 (-322 (-227))) (-779))) (-15 -2875 ((-652 (-322 (-227))) (-652 (-322 (-227))))) (-15 -2216 ((-652 (-322 (-227))) (-652 (-322 (-227))))) (-15 -4139 ((-112) (-322 (-227)))) (-15 -4353 ((-652 (-1188)) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) (-15 -1653 ((-652 (-1188)) (-322 (-227)) (-779))) (-15 -3389 ((-1046) (-1188) (-1046))) (-15 -2518 ((-386) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) (-15 -2277 ((-652 (-1170)) (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))))))
-((-2846 (((-112) $ $) NIL)) (-4159 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 56)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 32) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-273) (-847)) (T -273))
-NIL
-(-847)
-((-2846 (((-112) $ $) NIL)) (-4159 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) 72) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 63)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 41) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) 43)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-274) (-847)) (T -274))
-NIL
-(-847)
-((-2846 (((-112) $ $) NIL)) (-4159 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) 90) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 85)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 52) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) 65)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-275) (-847)) (T -275))
-NIL
-(-847)
-((-2846 (((-112) $ $) NIL)) (-4159 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 73)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 45) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-276) (-847)) (T -276))
-NIL
-(-847)
-((-2846 (((-112) $ $) NIL)) (-4159 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 65)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 31) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-277) (-847)) (T -277))
-NIL
-(-847)
-((-2846 (((-112) $ $) NIL)) (-4159 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 90)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 33) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-278) (-847)) (T -278))
-NIL
-(-847)
-((-2846 (((-112) $ $) NIL)) (-4159 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 87)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 32) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-279) (-847)) (T -279))
-NIL
-(-847)
-((-2846 (((-112) $ $) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3235 (((-652 (-572)) $) 29)) (-4390 (((-779) $) 27)) (-2940 (((-870) $) 33) (($ (-652 (-572))) 23)) (-4379 (((-112) $ $) NIL)) (-3508 (($ (-779)) 30)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 9)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 17)))
-(((-280) (-13 (-858) (-10 -8 (-15 -2940 ($ (-652 (-572)))) (-15 -4390 ((-779) $)) (-15 -3235 ((-652 (-572)) $)) (-15 -3508 ($ (-779)))))) (T -280))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-280)))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-280)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-280)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-280)))))
-(-13 (-858) (-10 -8 (-15 -2940 ($ (-652 (-572)))) (-15 -4390 ((-779) $)) (-15 -3235 ((-652 (-572)) $)) (-15 -3508 ($ (-779)))))
-((-2358 ((|#2| |#2|) 77)) (-2242 ((|#2| |#2|) 65)) (-3152 (((-3 |#2| "failed") |#2| (-652 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2338 ((|#2| |#2|) 75)) (-2222 ((|#2| |#2|) 63)) (-2384 ((|#2| |#2|) 79)) (-2262 ((|#2| |#2|) 67)) (-2997 ((|#2|) 46)) (-4171 (((-115) (-115)) 100)) (-3116 ((|#2| |#2|) 61)) (-4277 (((-112) |#2|) 147)) (-3311 ((|#2| |#2|) 195)) (-3996 ((|#2| |#2|) 171)) (-2091 ((|#2|) 59)) (-3739 ((|#2|) 58)) (-3800 ((|#2| |#2|) 191)) (-4177 ((|#2| |#2|) 167)) (-3674 ((|#2| |#2|) 199)) (-2046 ((|#2| |#2|) 175)) (-4265 ((|#2| |#2|) 163)) (-3067 ((|#2| |#2|) 165)) (-3095 ((|#2| |#2|) 201)) (-1822 ((|#2| |#2|) 177)) (-3448 ((|#2| |#2|) 197)) (-1940 ((|#2| |#2|) 173)) (-3093 ((|#2| |#2|) 193)) (-1326 ((|#2| |#2|) 169)) (-1739 ((|#2| |#2|) 207)) (-1546 ((|#2| |#2|) 183)) (-4419 ((|#2| |#2|) 203)) (-2562 ((|#2| |#2|) 179)) (-4016 ((|#2| |#2|) 211)) (-1540 ((|#2| |#2|) 187)) (-2693 ((|#2| |#2|) 213)) (-4297 ((|#2| |#2|) 189)) (-3472 ((|#2| |#2|) 209)) (-3834 ((|#2| |#2|) 185)) (-2574 ((|#2| |#2|) 205)) (-1797 ((|#2| |#2|) 181)) (-1608 ((|#2| |#2|) 62)) (-2397 ((|#2| |#2|) 80)) (-2270 ((|#2| |#2|) 68)) (-2370 ((|#2| |#2|) 78)) (-2252 ((|#2| |#2|) 66)) (-2348 ((|#2| |#2|) 76)) (-2231 ((|#2| |#2|) 64)) (-4406 (((-112) (-115)) 98)) (-2436 ((|#2| |#2|) 83)) (-2300 ((|#2| |#2|) 71)) (-2409 ((|#2| |#2|) 81)) (-2282 ((|#2| |#2|) 69)) (-2460 ((|#2| |#2|) 85)) (-2320 ((|#2| |#2|) 73)) (-2516 ((|#2| |#2|) 86)) (-2329 ((|#2| |#2|) 74)) (-2448 ((|#2| |#2|) 84)) (-2310 ((|#2| |#2|) 72)) (-2423 ((|#2| |#2|) 82)) (-2292 ((|#2| |#2|) 70)))
-(((-281 |#1| |#2|) (-10 -7 (-15 -1608 (|#2| |#2|)) (-15 -3116 (|#2| |#2|)) (-15 -2222 (|#2| |#2|)) (-15 -2231 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2252 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -2270 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -2292 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2348 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2423 (|#2| |#2|)) (-15 -2436 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2997 (|#2|)) (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -3739 (|#2|)) (-15 -2091 (|#2|)) (-15 -3067 (|#2| |#2|)) (-15 -4265 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -1326 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -1940 (|#2| |#2|)) (-15 -2046 (|#2| |#2|)) (-15 -1822 (|#2| |#2|)) (-15 -2562 (|#2| |#2|)) (-15 -1797 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3095 (|#2| |#2|)) (-15 -4419 (|#2| |#2|)) (-15 -2574 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -3472 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -2693 (|#2| |#2|)) (-15 -3152 ((-3 |#2| "failed") |#2| (-652 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4277 ((-112) |#2|))) (-564) (-13 (-438 |#1|) (-1013))) (T -281))
-((-4277 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-281 *4 *3)) (-4 *3 (-13 (-438 *4) (-1013))))) (-3152 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-652 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-438 *4) (-1013))) (-4 *4 (-564)) (-5 *1 (-281 *4 *2)))) (-2693 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4016 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1739 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2574 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4419 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3311 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1797 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2562 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1822 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2046 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1326 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4265 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2091 (*1 *2) (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2)) (-4 *3 (-564)))) (-3739 (*1 *2) (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2)) (-4 *3 (-564)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-281 *3 *4)) (-4 *4 (-13 (-438 *3) (-1013))))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-281 *4 *5)) (-4 *5 (-13 (-438 *4) (-1013))))) (-2997 (*1 *2) (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2)) (-4 *3 (-564)))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2436 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2423 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2397 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2270 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2252 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3116 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))))
-(-10 -7 (-15 -1608 (|#2| |#2|)) (-15 -3116 (|#2| |#2|)) (-15 -2222 (|#2| |#2|)) (-15 -2231 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2252 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -2270 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -2292 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2348 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2423 (|#2| |#2|)) (-15 -2436 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2997 (|#2|)) (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -3739 (|#2|)) (-15 -2091 (|#2|)) (-15 -3067 (|#2| |#2|)) (-15 -4265 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -1326 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -1940 (|#2| |#2|)) (-15 -2046 (|#2| |#2|)) (-15 -1822 (|#2| |#2|)) (-15 -2562 (|#2| |#2|)) (-15 -1797 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3095 (|#2| |#2|)) (-15 -4419 (|#2| |#2|)) (-15 -2574 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -3472 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -2693 (|#2| |#2|)) (-15 -3152 ((-3 |#2| "failed") |#2| (-652 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4277 ((-112) |#2|)))
-((-3870 (((-3 |#2| "failed") (-652 (-620 |#2|)) |#2| (-1188)) 151)) (-2805 ((|#2| (-415 (-572)) |#2|) 49)) (-1949 ((|#2| |#2| (-620 |#2|)) 144)) (-3200 (((-2 (|:| |func| |#2|) (|:| |kers| (-652 (-620 |#2|))) (|:| |vals| (-652 |#2|))) |#2| (-1188)) 143)) (-4292 ((|#2| |#2| (-1188)) 20) ((|#2| |#2|) 23)) (-2346 ((|#2| |#2| (-1188)) 157) ((|#2| |#2|) 155)))
-(((-282 |#1| |#2|) (-10 -7 (-15 -2346 (|#2| |#2|)) (-15 -2346 (|#2| |#2| (-1188))) (-15 -3200 ((-2 (|:| |func| |#2|) (|:| |kers| (-652 (-620 |#2|))) (|:| |vals| (-652 |#2|))) |#2| (-1188))) (-15 -4292 (|#2| |#2|)) (-15 -4292 (|#2| |#2| (-1188))) (-15 -3870 ((-3 |#2| "failed") (-652 (-620 |#2|)) |#2| (-1188))) (-15 -1949 (|#2| |#2| (-620 |#2|))) (-15 -2805 (|#2| (-415 (-572)) |#2|))) (-13 (-564) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -282))
-((-2805 (*1 *2 *3 *2) (-12 (-5 *3 (-415 (-572))) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-1949 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *4 *2)))) (-3870 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-652 (-620 *2))) (-5 *4 (-1188)) (-4 *2 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *5 *2)))) (-4292 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-4292 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-3200 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-652 (-620 *3))) (|:| |vals| (-652 *3)))) (-5 *1 (-282 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-2346 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
-(-10 -7 (-15 -2346 (|#2| |#2|)) (-15 -2346 (|#2| |#2| (-1188))) (-15 -3200 ((-2 (|:| |func| |#2|) (|:| |kers| (-652 (-620 |#2|))) (|:| |vals| (-652 |#2|))) |#2| (-1188))) (-15 -4292 (|#2| |#2|)) (-15 -4292 (|#2| |#2| (-1188))) (-15 -3870 ((-3 |#2| "failed") (-652 (-620 |#2|)) |#2| (-1188))) (-15 -1949 (|#2| |#2| (-620 |#2|))) (-15 -2805 (|#2| (-415 (-572)) |#2|)))
-((-3002 (((-3 |#3| "failed") |#3|) 120)) (-2358 ((|#3| |#3|) 142)) (-4031 (((-3 |#3| "failed") |#3|) 89)) (-2242 ((|#3| |#3|) 132)) (-2182 (((-3 |#3| "failed") |#3|) 65)) (-2338 ((|#3| |#3|) 140)) (-3248 (((-3 |#3| "failed") |#3|) 53)) (-2222 ((|#3| |#3|) 130)) (-1335 (((-3 |#3| "failed") |#3|) 122)) (-2384 ((|#3| |#3|) 144)) (-2965 (((-3 |#3| "failed") |#3|) 91)) (-2262 ((|#3| |#3|) 134)) (-1338 (((-3 |#3| "failed") |#3| (-779)) 41)) (-2829 (((-3 |#3| "failed") |#3|) 81)) (-3116 ((|#3| |#3|) 129)) (-4049 (((-3 |#3| "failed") |#3|) 51)) (-1608 ((|#3| |#3|) 128)) (-2139 (((-3 |#3| "failed") |#3|) 123)) (-2397 ((|#3| |#3|) 145)) (-3159 (((-3 |#3| "failed") |#3|) 92)) (-2270 ((|#3| |#3|) 135)) (-4013 (((-3 |#3| "failed") |#3|) 121)) (-2370 ((|#3| |#3|) 143)) (-4295 (((-3 |#3| "failed") |#3|) 90)) (-2252 ((|#3| |#3|) 133)) (-3183 (((-3 |#3| "failed") |#3|) 67)) (-2348 ((|#3| |#3|) 141)) (-4007 (((-3 |#3| "failed") |#3|) 55)) (-2231 ((|#3| |#3|) 131)) (-3573 (((-3 |#3| "failed") |#3|) 73)) (-2436 ((|#3| |#3|) 148)) (-3788 (((-3 |#3| "failed") |#3|) 114)) (-2300 ((|#3| |#3|) 152)) (-2986 (((-3 |#3| "failed") |#3|) 69)) (-2409 ((|#3| |#3|) 146)) (-3522 (((-3 |#3| "failed") |#3|) 57)) (-2282 ((|#3| |#3|) 136)) (-4135 (((-3 |#3| "failed") |#3|) 77)) (-2460 ((|#3| |#3|) 150)) (-3013 (((-3 |#3| "failed") |#3|) 61)) (-2320 ((|#3| |#3|) 138)) (-3339 (((-3 |#3| "failed") |#3|) 79)) (-2516 ((|#3| |#3|) 151)) (-1584 (((-3 |#3| "failed") |#3|) 63)) (-2329 ((|#3| |#3|) 139)) (-2747 (((-3 |#3| "failed") |#3|) 75)) (-2448 ((|#3| |#3|) 149)) (-1882 (((-3 |#3| "failed") |#3|) 117)) (-2310 ((|#3| |#3|) 153)) (-3475 (((-3 |#3| "failed") |#3|) 71)) (-2423 ((|#3| |#3|) 147)) (-1429 (((-3 |#3| "failed") |#3|) 59)) (-2292 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-415 (-572))) 47 (|has| |#1| (-370)))))
-(((-283 |#1| |#2| |#3|) (-13 (-994 |#3|) (-10 -7 (IF (|has| |#1| (-370)) (-15 ** (|#3| |#3| (-415 (-572)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3116 (|#3| |#3|)) (-15 -2222 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2252 (|#3| |#3|)) (-15 -2262 (|#3| |#3|)) (-15 -2270 (|#3| |#3|)) (-15 -2282 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2300 (|#3| |#3|)) (-15 -2310 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2338 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -2397 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2423 (|#3| |#3|)) (-15 -2436 (|#3| |#3|)) (-15 -2448 (|#3| |#3|)) (-15 -2460 (|#3| |#3|)) (-15 -2516 (|#3| |#3|)))) (-38 (-415 (-572))) (-1270 |#1|) (-1241 |#1| |#2|)) (T -283))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-415 (-572))) (-4 *4 (-370)) (-4 *4 (-38 *3)) (-4 *5 (-1270 *4)) (-5 *1 (-283 *4 *5 *2)) (-4 *2 (-1241 *4 *5)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3116 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2252 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2270 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2397 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2423 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2436 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))))
-(-13 (-994 |#3|) (-10 -7 (IF (|has| |#1| (-370)) (-15 ** (|#3| |#3| (-415 (-572)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3116 (|#3| |#3|)) (-15 -2222 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2252 (|#3| |#3|)) (-15 -2262 (|#3| |#3|)) (-15 -2270 (|#3| |#3|)) (-15 -2282 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2300 (|#3| |#3|)) (-15 -2310 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2338 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -2397 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2423 (|#3| |#3|)) (-15 -2436 (|#3| |#3|)) (-15 -2448 (|#3| |#3|)) (-15 -2460 (|#3| |#3|)) (-15 -2516 (|#3| |#3|))))
-((-3002 (((-3 |#3| "failed") |#3|) 70)) (-2358 ((|#3| |#3|) 137)) (-4031 (((-3 |#3| "failed") |#3|) 54)) (-2242 ((|#3| |#3|) 125)) (-2182 (((-3 |#3| "failed") |#3|) 66)) (-2338 ((|#3| |#3|) 135)) (-3248 (((-3 |#3| "failed") |#3|) 50)) (-2222 ((|#3| |#3|) 123)) (-1335 (((-3 |#3| "failed") |#3|) 74)) (-2384 ((|#3| |#3|) 139)) (-2965 (((-3 |#3| "failed") |#3|) 58)) (-2262 ((|#3| |#3|) 127)) (-1338 (((-3 |#3| "failed") |#3| (-779)) 38)) (-2829 (((-3 |#3| "failed") |#3|) 48)) (-3116 ((|#3| |#3|) 111)) (-4049 (((-3 |#3| "failed") |#3|) 46)) (-1608 ((|#3| |#3|) 122)) (-2139 (((-3 |#3| "failed") |#3|) 76)) (-2397 ((|#3| |#3|) 140)) (-3159 (((-3 |#3| "failed") |#3|) 60)) (-2270 ((|#3| |#3|) 128)) (-4013 (((-3 |#3| "failed") |#3|) 72)) (-2370 ((|#3| |#3|) 138)) (-4295 (((-3 |#3| "failed") |#3|) 56)) (-2252 ((|#3| |#3|) 126)) (-3183 (((-3 |#3| "failed") |#3|) 68)) (-2348 ((|#3| |#3|) 136)) (-4007 (((-3 |#3| "failed") |#3|) 52)) (-2231 ((|#3| |#3|) 124)) (-3573 (((-3 |#3| "failed") |#3|) 78)) (-2436 ((|#3| |#3|) 143)) (-3788 (((-3 |#3| "failed") |#3|) 62)) (-2300 ((|#3| |#3|) 131)) (-2986 (((-3 |#3| "failed") |#3|) 112)) (-2409 ((|#3| |#3|) 141)) (-3522 (((-3 |#3| "failed") |#3|) 100)) (-2282 ((|#3| |#3|) 129)) (-4135 (((-3 |#3| "failed") |#3|) 116)) (-2460 ((|#3| |#3|) 145)) (-3013 (((-3 |#3| "failed") |#3|) 107)) (-2320 ((|#3| |#3|) 133)) (-3339 (((-3 |#3| "failed") |#3|) 117)) (-2516 ((|#3| |#3|) 146)) (-1584 (((-3 |#3| "failed") |#3|) 109)) (-2329 ((|#3| |#3|) 134)) (-2747 (((-3 |#3| "failed") |#3|) 80)) (-2448 ((|#3| |#3|) 144)) (-1882 (((-3 |#3| "failed") |#3|) 64)) (-2310 ((|#3| |#3|) 132)) (-3475 (((-3 |#3| "failed") |#3|) 113)) (-2423 ((|#3| |#3|) 142)) (-1429 (((-3 |#3| "failed") |#3|) 103)) (-2292 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-415 (-572))) 44 (|has| |#1| (-370)))))
-(((-284 |#1| |#2| |#3| |#4|) (-13 (-994 |#3|) (-10 -7 (IF (|has| |#1| (-370)) (-15 ** (|#3| |#3| (-415 (-572)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3116 (|#3| |#3|)) (-15 -2222 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2252 (|#3| |#3|)) (-15 -2262 (|#3| |#3|)) (-15 -2270 (|#3| |#3|)) (-15 -2282 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2300 (|#3| |#3|)) (-15 -2310 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2338 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -2397 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2423 (|#3| |#3|)) (-15 -2436 (|#3| |#3|)) (-15 -2448 (|#3| |#3|)) (-15 -2460 (|#3| |#3|)) (-15 -2516 (|#3| |#3|)))) (-38 (-415 (-572))) (-1239 |#1|) (-1262 |#1| |#2|) (-994 |#2|)) (T -284))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-415 (-572))) (-4 *4 (-370)) (-4 *4 (-38 *3)) (-4 *5 (-1239 *4)) (-5 *1 (-284 *4 *5 *2 *6)) (-4 *2 (-1262 *4 *5)) (-4 *6 (-994 *5)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3116 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2252 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2270 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2397 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2423 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2436 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))))
-(-13 (-994 |#3|) (-10 -7 (IF (|has| |#1| (-370)) (-15 ** (|#3| |#3| (-415 (-572)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3116 (|#3| |#3|)) (-15 -2222 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2252 (|#3| |#3|)) (-15 -2262 (|#3| |#3|)) (-15 -2270 (|#3| |#3|)) (-15 -2282 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2300 (|#3| |#3|)) (-15 -2310 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2338 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -2397 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2423 (|#3| |#3|)) (-15 -2436 (|#3| |#3|)) (-15 -2448 (|#3| |#3|)) (-15 -2460 (|#3| |#3|)) (-15 -2516 (|#3| |#3|))))
-((-3449 (((-112) $) 20)) (-2357 (((-1193) $) 7)) (-2836 (((-3 (-514) "failed") $) 14)) (-3290 (((-3 (-652 $) "failed") $) NIL)) (-3430 (((-3 (-514) "failed") $) 21)) (-4099 (((-3 (-1115) "failed") $) 18)) (-3702 (((-112) $) 16)) (-2940 (((-870) $) NIL)) (-3145 (((-112) $) 9)))
-(((-285) (-13 (-621 (-870)) (-10 -8 (-15 -2357 ((-1193) $)) (-15 -3702 ((-112) $)) (-15 -4099 ((-3 (-1115) "failed") $)) (-15 -3449 ((-112) $)) (-15 -3430 ((-3 (-514) "failed") $)) (-15 -3145 ((-112) $)) (-15 -2836 ((-3 (-514) "failed") $)) (-15 -3290 ((-3 (-652 $) "failed") $))))) (T -285))
-((-2357 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-285)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))) (-4099 (*1 *2 *1) (|partial| -12 (-5 *2 (-1115)) (-5 *1 (-285)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))) (-3430 (*1 *2 *1) (|partial| -12 (-5 *2 (-514)) (-5 *1 (-285)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))) (-2836 (*1 *2 *1) (|partial| -12 (-5 *2 (-514)) (-5 *1 (-285)))) (-3290 (*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-285))) (-5 *1 (-285)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2357 ((-1193) $)) (-15 -3702 ((-112) $)) (-15 -4099 ((-3 (-1115) "failed") $)) (-15 -3449 ((-112) $)) (-15 -3430 ((-3 (-514) "failed") $)) (-15 -3145 ((-112) $)) (-15 -2836 ((-3 (-514) "failed") $)) (-15 -3290 ((-3 (-652 $) "failed") $))))
-((-4309 (((-605) $) 10)) (-4351 (((-593) $) 8)) (-1479 (((-297) $) 12)) (-3671 (($ (-593) (-605) (-297)) NIL)) (-2940 (((-870) $) 19)))
-(((-286) (-13 (-621 (-870)) (-10 -8 (-15 -3671 ($ (-593) (-605) (-297))) (-15 -4351 ((-593) $)) (-15 -4309 ((-605) $)) (-15 -1479 ((-297) $))))) (T -286))
-((-3671 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-593)) (-5 *3 (-605)) (-5 *4 (-297)) (-5 *1 (-286)))) (-4351 (*1 *2 *1) (-12 (-5 *2 (-593)) (-5 *1 (-286)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-605)) (-5 *1 (-286)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-297)) (-5 *1 (-286)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -3671 ($ (-593) (-605) (-297))) (-15 -4351 ((-593) $)) (-15 -4309 ((-605) $)) (-15 -1479 ((-297) $))))
-((-2162 (($ (-1 (-112) |#2|) $) 24)) (-2086 (($ $) 38)) (-3554 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3332 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3892 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1593 (($ |#2| $ (-572)) 20) (($ $ $ (-572)) 22)) (-2835 (($ $ (-572)) 11) (($ $ (-1246 (-572))) 14)) (-1700 (($ $ |#2|) 32) (($ $ $) NIL)) (-4155 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-652 $)) NIL)))
-(((-287 |#1| |#2|) (-10 -8 (-15 -3892 (|#1| |#1| |#1|)) (-15 -3554 (|#1| |#2| |#1|)) (-15 -3892 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3554 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| |#1| (-572))) (-15 -1593 (|#1| |#2| |#1| (-572))) (-15 -2835 (|#1| |#1| (-1246 (-572)))) (-15 -2835 (|#1| |#1| (-572))) (-15 -4155 (|#1| (-652 |#1|))) (-15 -4155 (|#1| |#1| |#1|)) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#2|)) (-15 -3332 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2162 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3332 (|#1| |#2| |#1|)) (-15 -2086 (|#1| |#1|))) (-288 |#2|) (-1229)) (T -287))
-NIL
-(-10 -8 (-15 -3892 (|#1| |#1| |#1|)) (-15 -3554 (|#1| |#2| |#1|)) (-15 -3892 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3554 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| |#1| (-572))) (-15 -1593 (|#1| |#2| |#1| (-572))) (-15 -2835 (|#1| |#1| (-1246 (-572)))) (-15 -2835 (|#1| |#1| (-572))) (-15 -4155 (|#1| (-652 |#1|))) (-15 -4155 (|#1| |#1| |#1|)) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#2|)) (-15 -3332 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2162 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3332 (|#1| |#2| |#1|)) (-15 -2086 (|#1| |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3176 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) 8)) (-3140 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-2613 (($ (-1 (-112) |#1|) $) 88)) (-2162 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2704 (($ $) 86 (|has| |#1| (-1111)))) (-2086 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1111)))) (-3332 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 52)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3787 (($ (-779) |#1|) 70)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 44 (|has| (-572) (-858)))) (-3892 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 45 (|has| (-572) (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2036 (($ |#1| $ (-572)) 91) (($ $ $ (-572)) 90)) (-1593 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1986 (((-652 (-572)) $) 47)) (-1370 (((-112) (-572) $) 48)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2912 ((|#1| $) 43 (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2476 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-1696 (($ $ (-572)) 94) (($ $ (-1246 (-572))) 93)) (-2835 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 72)) (-1700 (($ $ |#1|) 96) (($ $ $) 95)) (-4155 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-288 |#1|) (-141) (-1229)) (T -288))
-((-1700 (*1 *1 *1 *2) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)))) (-1700 (*1 *1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)))) (-1696 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-1696 (*1 *1 *1 *2) (-12 (-5 *2 (-1246 (-572))) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-3554 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-2036 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-288 *2)) (-4 *2 (-1229)))) (-2036 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-3892 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-2613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-3554 (*1 *1 *2 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-1111)))) (-2704 (*1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-1111)))) (-3892 (*1 *1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-858)))))
-(-13 (-659 |t#1|) (-10 -8 (-6 -4455) (-15 -1700 ($ $ |t#1|)) (-15 -1700 ($ $ $)) (-15 -1696 ($ $ (-572))) (-15 -1696 ($ $ (-1246 (-572)))) (-15 -3554 ($ (-1 (-112) |t#1|) $)) (-15 -2036 ($ |t#1| $ (-572))) (-15 -2036 ($ $ $ (-572))) (-15 -3892 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2613 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -3554 ($ |t#1| $)) (-15 -2704 ($ $))) |%noBranch|) (IF (|has| |t#1| (-858)) (-15 -3892 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3905 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-781)))) (-3611 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-781)))))
+(-13 (-235 $) (-10 -8 (-15 -3905 ($ $ (-781))) (-15 -3611 ($ $ (-781)))))
+(((-235 $) . T) ((-1231) . T))
+((-3905 (($ $) NIL) (($ $ (-781)) 9)) (-3611 (($ $) NIL) (($ $ (-781)) 11)))
+(((-238 |#1|) (-10 -8 (-15 -3611 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -3611 (|#1| |#1|))) (-239)) (T -238))
+NIL
+(-10 -8 (-15 -3611 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -3611 (|#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3905 (($ $) 42) (($ $ (-781)) 41)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $) 43) (($ $ (-781)) 40)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-239) (-141)) (T -239))
+((-3905 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-781)))) (-3611 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-781)))))
+(-13 (-1062) (-235 $) (-10 -8 (-15 -3905 ($ $ (-781))) (-15 -3611 ($ $ (-781)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T))
+((-2826 (($) 12) (($ (-654 |#2|)) NIL)) (-3167 (($ $) 14)) (-2956 (($ (-654 |#2|)) 10)) (-2943 (((-872) $) 21)))
+(((-240 |#1| |#2|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2826 (|#1| (-654 |#2|))) (-15 -2826 (|#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -3167 (|#1| |#1|))) (-241 |#2|) (-1113)) (T -240))
+NIL
+(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2826 (|#1| (-654 |#2|))) (-15 -2826 (|#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -3167 (|#1| |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-3391 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2158 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2826 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 43)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-241 |#1|) (-141) (-1113)) (T -241))
+((-2826 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1113)))) (-2826 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-241 *3)))) (-1586 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-241 *2)) (-4 *2 (-1113)))) (-1586 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-241 *3)) (-4 *3 (-1113)))) (-3391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-241 *3)) (-4 *3 (-1113)))))
+(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2826 ($)) (-15 -2826 ($ (-654 |t#1|))) (IF (|has| $ (-6 -4456)) (PROGN (-15 -1586 ($ |t#1| $)) (-15 -1586 ($ (-1 (-112) |t#1|) $)) (-15 -3391 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-4309 (((-2 (|:| |varOrder| (-654 (-1190))) (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed")) (|:| |hom| (-654 (-1281 (-781))))) (-302 (-963 (-574)))) 42)))
+(((-242) (-10 -7 (-15 -4309 ((-2 (|:| |varOrder| (-654 (-1190))) (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed")) (|:| |hom| (-654 (-1281 (-781))))) (-302 (-963 (-574))))))) (T -242))
+((-4309 (*1 *2 *3) (-12 (-5 *3 (-302 (-963 (-574)))) (-5 *2 (-2 (|:| |varOrder| (-654 (-1190))) (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed")) (|:| |hom| (-654 (-1281 (-781)))))) (-5 *1 (-242)))))
+(-10 -7 (-15 -4309 ((-2 (|:| |varOrder| (-654 (-1190))) (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed")) (|:| |hom| (-654 (-1281 (-781))))) (-302 (-963 (-574))))))
+((-1487 (((-781)) 56)) (-2668 (((-2 (|:| -1485 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 $) (-1281 $)) 53) (((-699 |#3|) (-699 $)) 44) (((-699 |#3|) (-1281 $)) NIL) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-3939 (((-135)) 62)) (-3905 (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-2943 (((-1281 |#3|) $) NIL) (($ |#3|) NIL) (((-872) $) NIL) (($ (-574)) 12) (($ (-417 (-574))) NIL)) (-4160 (((-781)) 15)) (-3107 (($ $ |#3|) 59)))
+(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)) (-15 -4160 ((-781))) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2943 (|#1| |#3|)) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -2668 ((-699 |#3|) (-1281 |#1|))) (-15 -2668 ((-699 |#3|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 |#1|) (-1281 |#1|))) (-15 -1487 ((-781))) (-15 -3107 (|#1| |#1| |#3|)) (-15 -3939 ((-135))) (-15 -2943 ((-1281 |#3|) |#1|))) (-244 |#2| |#3|) (-781) (-1231)) (T -243))
+((-3939 (*1 *2) (-12 (-14 *4 (-781)) (-4 *5 (-1231)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1487 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1231)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-4160 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1231)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))))
+(-10 -8 (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)) (-15 -4160 ((-781))) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2943 (|#1| |#3|)) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -2668 ((-699 |#3|) (-1281 |#1|))) (-15 -2668 ((-699 |#3|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 |#1|) (-1281 |#1|))) (-15 -1487 ((-781))) (-15 -3107 (|#1| |#1| |#3|)) (-15 -3939 ((-135))) (-15 -2943 ((-1281 |#3|) |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#2| (-1113)))) (-2908 (((-112) $) 74 (|has| |#2| (-132)))) (-3290 (($ (-932)) 129 (|has| |#2| (-1062)))) (-1860 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-1854 (($ $ $) 125 (|has| |#2| (-803)))) (-2950 (((-3 $ "failed") $ $) 76 (|has| |#2| (-132)))) (-3340 (((-112) $ (-781)) 8)) (-1487 (((-781)) 111 (|has| |#2| (-377)))) (-3747 (((-574) $) 123 (|has| |#2| (-858)))) (-3143 ((|#2| $ (-574) |#2|) 53 (|has| $ (-6 -4457)))) (-3670 (($) 7 T CONST)) (-1697 (((-3 (-574) "failed") $) 69 (-2088 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-3 (-417 (-574)) "failed") $) 66 (-2088 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (((-3 |#2| "failed") $) 63 (|has| |#2| (-1113)))) (-2209 (((-574) $) 68 (-2088 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-417 (-574)) $) 65 (-2088 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) ((|#2| $) 64 (|has| |#2| (-1113)))) (-2668 (((-699 (-574)) (-1281 $)) 110 (-2088 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-699 (-574)) (-699 $)) 109 (-2088 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 108 (-2088 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 107 (|has| |#2| (-1062))) (((-699 |#2|) (-699 $)) 106 (|has| |#2| (-1062))) (((-699 |#2|) (-1281 $)) 105 (|has| |#2| (-1062)))) (-1950 (((-3 $ "failed") $) 81 (|has| |#2| (-736)))) (-2820 (($) 114 (|has| |#2| (-377)))) (-2462 ((|#2| $ (-574) |#2|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ (-574)) 52)) (-3434 (((-112) $) 121 (|has| |#2| (-858)))) (-1864 (((-654 |#2|) $) 31 (|has| $ (-6 -4456)))) (-3965 (((-112) $) 83 (|has| |#2| (-736)))) (-3244 (((-112) $) 122 (|has| |#2| (-858)))) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 44 (|has| (-574) (-860)))) (-3658 (($ $ $) 120 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-1712 (((-654 |#2|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 45 (|has| (-574) (-860)))) (-2106 (($ $ $) 119 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-2446 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#2| |#2|) $) 36)) (-2565 (((-932) $) 113 (|has| |#2| (-377)))) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#2| (-1113)))) (-2459 (((-654 (-574)) $) 47)) (-2607 (((-112) (-574) $) 48)) (-2576 (($ (-932)) 112 (|has| |#2| (-377)))) (-3966 (((-1133) $) 21 (|has| |#2| (-1113)))) (-2915 ((|#2| $) 43 (|has| (-574) (-860)))) (-1363 (($ $ |#2|) 42 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#2| $ (-574) |#2|) 51) ((|#2| $ (-574)) 50)) (-3222 ((|#2| $ $) 128 (|has| |#2| (-1062)))) (-4261 (($ (-1281 |#2|)) 130)) (-3939 (((-135)) 127 (|has| |#2| (-372)))) (-3905 (($ $) 100 (-2088 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) 99 (-2088 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) 97 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) 96 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) 95 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) 94 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) 87 (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1062)))) (-3975 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4456))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-1281 |#2|) $) 131) (($ (-574)) 70 (-2818 (-2088 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062)))) (($ (-417 (-574))) 67 (-2088 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (($ |#2|) 62 (|has| |#2| (-1113))) (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-4160 (((-781)) 85 (|has| |#2| (-1062)) CONST)) (-2923 (((-112) $ $) 23 (|has| |#2| (-1113)))) (-2935 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4456)))) (-2946 (($ $) 124 (|has| |#2| (-858)))) (-2134 (($) 73 (|has| |#2| (-132)) CONST)) (-2146 (($) 84 (|has| |#2| (-736)) CONST)) (-3611 (($ $) 101 (-2088 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) 98 (-2088 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) 93 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) 92 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) 91 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) 90 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) 89 (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) 88 (|has| |#2| (-1062)))) (-3041 (((-112) $ $) 117 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-3016 (((-112) $ $) 116 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-2982 (((-112) $ $) 20 (|has| |#2| (-1113)))) (-3028 (((-112) $ $) 118 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-3005 (((-112) $ $) 115 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-3107 (($ $ |#2|) 126 (|has| |#2| (-372)))) (-3094 (($ $ $) 104 (|has| |#2| (-1062))) (($ $) 103 (|has| |#2| (-1062)))) (-3078 (($ $ $) 71 (|has| |#2| (-25)))) (** (($ $ (-781)) 82 (|has| |#2| (-736))) (($ $ (-932)) 79 (|has| |#2| (-736)))) (* (($ (-574) $) 102 (|has| |#2| (-1062))) (($ $ $) 80 (|has| |#2| (-736))) (($ $ |#2|) 78 (|has| |#2| (-736))) (($ |#2| $) 77 (|has| |#2| (-736))) (($ (-781) $) 75 (|has| |#2| (-132))) (($ (-932) $) 72 (|has| |#2| (-25)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-244 |#1| |#2|) (-141) (-781) (-1231)) (T -244))
+((-4261 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1231)) (-4 *1 (-244 *3 *4)))) (-3290 (*1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1062)) (-4 *4 (-1231)))) (-3222 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-1062)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))))
+(-13 (-614 (-574) |t#2|) (-623 (-1281 |t#2|)) (-10 -8 (-6 -4456) (-15 -4261 ($ (-1281 |t#2|))) (IF (|has| |t#2| (-1113)) (-6 (-421 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1062)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-386 |t#2|)) (-15 -3290 ($ (-932))) (-15 -3222 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-736)) (PROGN (-6 (-736)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |t#2| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#2| (-803)) (-6 (-803)) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-1288 |t#2|)) |%noBranch|)))
+(((-21) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-23) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -2818 (|has| |#2| (-1113)) (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-626 #0=(-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))) ((-626 (-574)) -2818 (|has| |#2| (-1062)) (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-626 |#2|) -2818 (|has| |#2| (-1113)) (|has| |#2| (-174))) ((-623 (-872)) -2818 (|has| |#2| (-1113)) (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-623 (-872))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-623 (-1281 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-235 $) -12 (|has| |#2| (-239)) (|has| |#2| (-1062))) ((-233 |#2|) |has| |#2| (-1062)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1062))) ((-294 #1=(-574) |#2|) . T) ((-296 #1# |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-377) |has| |#2| (-377)) ((-386 |#2|) |has| |#2| (-1062)) ((-421 |#2|) |has| |#2| (-1113)) ((-499 |#2|) . T) ((-614 #1# |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-656 (-574)) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 $) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-658 #2=(-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))) ((-658 |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-658 $) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-650 |#2|) -2818 (|has| |#2| (-372)) (|has| |#2| (-174))) ((-649 #2#) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))) ((-649 |#2|) |has| |#2| (-1062)) ((-727 |#2|) -2818 (|has| |#2| (-372)) (|has| |#2| (-174))) ((-736) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-736)) (|has| |#2| (-174))) ((-801) |has| |#2| (-858)) ((-802) -2818 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-803) |has| |#2| (-803)) ((-804) -2818 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-805) -2818 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-858) |has| |#2| (-858)) ((-860) -2818 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-911 (-1190)) -12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062))) ((-1051 #0#) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))) ((-1051 (-574)) -12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) ((-1051 |#2|) |has| |#2| (-1113)) ((-1064 |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1064 $) |has| |#2| (-174)) ((-1069 |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1069 $) |has| |#2| (-174)) ((-1062) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-1071) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-1125) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-736)) (|has| |#2| (-174))) ((-1113) -2818 (|has| |#2| (-1113)) (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1231) . T) ((-1288 |#2|) |has| |#2| (-372)))
+((-3318 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21)) (-2868 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23)) (-1778 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18)))
+(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -3318 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2868 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1778 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-781) (-1231) (-1231)) (T -245))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1231)) (-4 *2 (-1231)) (-5 *1 (-245 *5 *6 *2)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) (-4 *7 (-1231)) (-4 *5 (-1231)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5)))))
+(-10 -7 (-15 -3318 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2868 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1778 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|))))
+((-2849 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-2908 (((-112) $) NIL (|has| |#2| (-132)))) (-3290 (($ (-932)) 62 (|has| |#2| (-1062)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1854 (($ $ $) 68 (|has| |#2| (-803)))) (-2950 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3340 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#2| (-377)))) (-3747 (((-574) $) NIL (|has| |#2| (-858)))) (-3143 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1113)))) (-2209 (((-574) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) ((|#2| $) 28 (|has| |#2| (-1113)))) (-2668 (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-1281 $)) NIL (|has| |#2| (-1062)))) (-1950 (((-3 $ "failed") $) 58 (|has| |#2| (-736)))) (-2820 (($) NIL (|has| |#2| (-377)))) (-2462 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ (-574)) 56)) (-3434 (((-112) $) NIL (|has| |#2| (-858)))) (-1864 (((-654 |#2|) $) 14 (|has| $ (-6 -4456)))) (-3965 (((-112) $) NIL (|has| |#2| (-736)))) (-3244 (((-112) $) NIL (|has| |#2| (-858)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) 19 (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-1712 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-2565 (((-932) $) NIL (|has| |#2| (-377)))) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#2| (-1113)))) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#2| (-377)))) (-3966 (((-1133) $) NIL (|has| |#2| (-1113)))) (-2915 ((|#2| $) NIL (|has| (-574) (-860)))) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) 20)) (-3222 ((|#2| $ $) NIL (|has| |#2| (-1062)))) (-4261 (($ (-1281 |#2|)) 17)) (-3939 (((-135)) NIL (|has| |#2| (-372)))) (-3905 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#2|) $) 9) (($ (-574)) NIL (-2818 (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (($ |#2|) 12 (|has| |#2| (-1113))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-4160 (((-781)) NIL (|has| |#2| (-1062)) CONST)) (-2923 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-2935 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2946 (($ $) NIL (|has| |#2| (-858)))) (-2134 (($) 36 (|has| |#2| (-132)) CONST)) (-2146 (($) 40 (|has| |#2| (-736)) CONST)) (-3611 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3041 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3016 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2982 (((-112) $ $) 27 (|has| |#2| (-1113)))) (-3028 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3005 (((-112) $ $) 66 (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $ $) NIL (|has| |#2| (-1062))) (($ $) NIL (|has| |#2| (-1062)))) (-3078 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-736))) (($ $ (-932)) NIL (|has| |#2| (-736)))) (* (($ (-574) $) NIL (|has| |#2| (-1062))) (($ $ $) 46 (|has| |#2| (-736))) (($ $ |#2|) 44 (|has| |#2| (-736))) (($ |#2| $) 45 (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-932) $) NIL (|has| |#2| (-25)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-246 |#1| |#2|) (-244 |#1| |#2|) (-781) (-1231)) (T -246))
+NIL
+(-244 |#1| |#2|)
+((-2909 (((-574) (-654 (-1172))) 36) (((-574) (-1172)) 29)) (-1559 (((-1286) (-654 (-1172))) 40) (((-1286) (-1172)) 39)) (-3991 (((-1172)) 16)) (-2796 (((-1172) (-574) (-1172)) 23)) (-3359 (((-654 (-1172)) (-654 (-1172)) (-574) (-1172)) 37) (((-1172) (-1172) (-574) (-1172)) 35)) (-2619 (((-654 (-1172)) (-654 (-1172))) 15) (((-654 (-1172)) (-1172)) 11)))
+(((-247) (-10 -7 (-15 -2619 ((-654 (-1172)) (-1172))) (-15 -2619 ((-654 (-1172)) (-654 (-1172)))) (-15 -3991 ((-1172))) (-15 -2796 ((-1172) (-574) (-1172))) (-15 -3359 ((-1172) (-1172) (-574) (-1172))) (-15 -3359 ((-654 (-1172)) (-654 (-1172)) (-574) (-1172))) (-15 -1559 ((-1286) (-1172))) (-15 -1559 ((-1286) (-654 (-1172)))) (-15 -2909 ((-574) (-1172))) (-15 -2909 ((-574) (-654 (-1172)))))) (T -247))
+((-2909 (*1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-574)) (-5 *1 (-247)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-574)) (-5 *1 (-247)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1286)) (-5 *1 (-247)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-247)))) (-3359 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 (-1172))) (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *1 (-247)))) (-3359 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-247)))) (-2796 (*1 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-247)))) (-3991 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-247)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-247)))) (-2619 (*1 *2 *3) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-247)) (-5 *3 (-1172)))))
+(-10 -7 (-15 -2619 ((-654 (-1172)) (-1172))) (-15 -2619 ((-654 (-1172)) (-654 (-1172)))) (-15 -3991 ((-1172))) (-15 -2796 ((-1172) (-574) (-1172))) (-15 -3359 ((-1172) (-1172) (-574) (-1172))) (-15 -3359 ((-654 (-1172)) (-654 (-1172)) (-574) (-1172))) (-15 -1559 ((-1286) (-1172))) (-15 -1559 ((-1286) (-654 (-1172)))) (-15 -2909 ((-574) (-1172))) (-15 -2909 ((-574) (-654 (-1172)))))
+((** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 20)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) NIL)))
+(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-249)) (T -248))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 47)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 51)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 48)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 50) (($ $ (-417 (-574))) 49)))
+(((-249) (-141)) (T -249))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574)))) (-1324 (*1 *1 *1) (-4 *1 (-249))))
+(-13 (-298) (-38 (-417 (-574))) (-10 -8 (-15 ** ($ $ (-574))) (-15 -1324 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-298) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-727 #0#) . T) ((-736) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-1971 (($ $) 58)) (-3340 (((-112) $ (-781)) 8)) (-1630 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-2988 (($ $ $) 54 (|has| $ (-6 -4457)))) (-1513 (($ $ $) 53 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3670 (($) 7 T CONST)) (-1524 (($ $) 57)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 51)) (-4127 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3979 (($ $) 56)) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-3509 (((-654 |#1|) $) 46)) (-2173 (((-112) $) 50)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 60)) (-1596 (($ $) 59)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ "value") 48)) (-1556 (((-574) $ $) 45)) (-4023 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2734 (($ $ $) 55 (|has| $ (-6 -4457)))) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) 52)) (-1495 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-250 |#1|) (-141) (-1231)) (T -250))
+((-3360 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-1596 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-1971 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-1524 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-3979 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-2734 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-2988 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-1513 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231)))))
+(-13 (-1023 |t#1|) (-10 -8 (-15 -3360 (|t#1| $)) (-15 -1596 ($ $)) (-15 -1971 ($ $)) (-15 -1524 ($ $)) (-15 -3979 ($ $)) (IF (|has| $ (-6 -4457)) (PROGN (-15 -2734 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -1513 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-2406 ((|#1| $) NIL)) (-1971 (($ $) NIL)) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-2960 (($ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4010 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-2771 (($ $) 10 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1630 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-4002 (($ $ $) NIL (|has| $ (-6 -4457)))) (-4003 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-1533 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "rest" $) NIL (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3391 (($ (-1 (-112) |#1|) $) NIL)) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2393 ((|#1| $) NIL)) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2926 (($ $) NIL) (($ $ (-781)) NIL)) (-1730 (($ $) NIL (|has| |#1| (-1113)))) (-2158 (($ $) 7 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1586 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) NIL)) (-3335 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-2829 (((-112) $) NIL)) (-1441 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113))) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-3722 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2130 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1788 (($ |#1|) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-3509 (((-654 |#1|) $) NIL)) (-2173 (((-112) $) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3360 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1709 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1595 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-3322 (((-112) $) NIL)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1248 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-781) $ "count") 16)) (-1556 (((-574) $ $) NIL)) (-2701 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2837 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-3188 (($ (-654 |#1|)) 22)) (-4023 (((-112) $) NIL)) (-3420 (($ $) NIL)) (-1813 (($ $) NIL (|has| $ (-6 -4457)))) (-2584 (((-781) $) NIL)) (-2022 (($ $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-2734 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4157 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2943 (($ (-654 |#1|)) 17) (((-654 |#1|) $) 18) (((-872) $) 21 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 14 (|has| $ (-6 -4456)))))
+(((-251 |#1|) (-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3188 ($ (-654 |#1|))) (-15 -2200 ($ $ "unique")) (-15 -2200 ($ $ "sort")) (-15 -2200 ((-781) $ "count")))) (-860)) (T -251))
+((-3188 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3)))) (-2200 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2200 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860)))))
+(-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3188 ($ (-654 |#1|))) (-15 -2200 ($ $ "unique")) (-15 -2200 ($ $ "sort")) (-15 -2200 ((-781) $ "count"))))
+((-2610 (((-3 (-781) "failed") |#1| |#1| (-781)) 40)))
+(((-252 |#1|) (-10 -7 (-15 -2610 ((-3 (-781) "failed") |#1| |#1| (-781)))) (-13 (-736) (-377) (-10 -7 (-15 ** (|#1| |#1| (-574)))))) (T -252))
+((-2610 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-781)) (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) (-5 *1 (-252 *3)))))
+(-10 -7 (-15 -2610 ((-3 (-781) "failed") |#1| |#1| (-781))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-874 |#1|)) $) NIL)) (-4194 (((-1186 $) $ (-874 |#1|)) NIL) (((-1186 |#2|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2814 (($ $) NIL (|has| |#2| (-566)))) (-2425 (((-112) $) NIL (|has| |#2| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4348 (($ $) NIL (|has| |#2| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2209 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-874 |#1|) $) NIL)) (-2800 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-1398 (($ $ (-654 (-574))) NIL)) (-1392 (($ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#2| (-920)))) (-3157 (($ $ |#2| (-246 (-2863 |#1|) (-781)) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4345 (($ (-1186 |#2|) (-874 |#1|)) NIL) (($ (-1186 $) (-874 |#1|)) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#2| (-246 (-2863 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-874 |#1|)) NIL)) (-2382 (((-246 (-2863 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1541 (($ (-1 (-246 (-2863 |#1|) (-781)) (-246 (-2863 |#1|) (-781))) $) NIL)) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-4045 (((-3 (-874 |#1|) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2568 (((-1172) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2524 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#2| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-1415 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-1784 (((-246 (-2863 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1607 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3123 (((-654 |#2|) $) NIL)) (-3344 ((|#2| $ (-246 (-2863 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-253 |#1| |#2|) (-13 (-960 |#2| (-246 (-2863 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -1398 ($ $ (-654 (-574)))))) (-654 (-1190)) (-1062)) (T -253))
+((-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4)) (-14 *3 (-654 (-1190))) (-4 *4 (-1062)))))
+(-13 (-960 |#2| (-246 (-2863 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -1398 ($ $ (-654 (-574))))))
+((-2849 (((-112) $ $) NIL)) (-1986 (((-1286) $) 17)) (-4284 (((-185 (-255)) $) 11)) (-1418 (($ (-185 (-255))) 12)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1965 (((-255) $) 7)) (-2943 (((-872) $) 9)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 15)))
+(((-254) (-13 (-1113) (-10 -8 (-15 -1965 ((-255) $)) (-15 -4284 ((-185 (-255)) $)) (-15 -1418 ($ (-185 (-255)))) (-15 -1986 ((-1286) $))))) (T -254))
+((-1965 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1418 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-254)))))
+(-13 (-1113) (-10 -8 (-15 -1965 ((-255) $)) (-15 -4284 ((-185 (-255)) $)) (-15 -1418 ($ (-185 (-255)))) (-15 -1986 ((-1286) $))))
+((-2849 (((-112) $ $) NIL)) (-1716 (((-654 (-875)) $) NIL)) (-2032 (((-516) $) NIL)) (-2568 (((-1172) $) NIL)) (-4282 (((-188) $) NIL)) (-2884 (((-112) $ (-516)) NIL)) (-3966 (((-1133) $) NIL)) (-3984 (((-341) $) 7)) (-2207 (((-654 (-112)) $) NIL)) (-2943 (((-872) $) NIL) (((-189) $) 8)) (-2923 (((-112) $ $) NIL)) (-3944 (((-55) $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-255) (-13 (-187) (-623 (-189)) (-10 -8 (-15 -3984 ((-341) $))))) (T -255))
+((-3984 (*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255)))))
+(-13 (-187) (-623 (-189)) (-10 -8 (-15 -3984 ((-341) $))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2200 (((-1195) $ (-781)) 13)) (-2943 (((-872) $) 20)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 16)) (-2863 (((-781) $) 9)))
+(((-256) (-13 (-1113) (-294 (-781) (-1195)) (-10 -8 (-15 -2863 ((-781) $))))) (T -256))
+((-2863 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256)))))
+(-13 (-1113) (-294 (-781) (-1195)) (-10 -8 (-15 -2863 ((-781) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-3290 (($ (-932)) NIL (|has| |#4| (-1062)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1854 (($ $ $) NIL (|has| |#4| (-803)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#4| (-377)))) (-3747 (((-574) $) NIL (|has| |#4| (-858)))) (-3143 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1113))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113))))) (-2209 ((|#4| $) NIL (|has| |#4| (-1113))) (((-574) $) NIL (-12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113))))) (-2668 (((-2 (|:| -1485 (-699 |#4|)) (|:| |vec| (-1281 |#4|))) (-699 $) (-1281 $)) NIL (|has| |#4| (-1062))) (((-699 |#4|) (-699 $)) NIL (|has| |#4| (-1062))) (((-699 |#4|) (-1281 $)) NIL (|has| |#4| (-1062))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062))))) (-1950 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))))) (-2820 (($) NIL (|has| |#4| (-377)))) (-2462 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#4| $ (-574)) NIL)) (-3434 (((-112) $) NIL (|has| |#4| (-858)))) (-1864 (((-654 |#4|) $) NIL (|has| $ (-6 -4456)))) (-3965 (((-112) $) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))))) (-3244 (((-112) $) NIL (|has| |#4| (-858)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-1712 (((-654 |#4|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-2446 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) NIL)) (-2565 (((-932) $) NIL (|has| |#4| (-377)))) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#4| (-377)))) (-3966 (((-1133) $) NIL)) (-2915 ((|#4| $) NIL (|has| (-574) (-860)))) (-1363 (($ $ |#4|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2121 (((-654 |#4|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#4| $ (-574) |#4|) NIL) ((|#4| $ (-574)) 12)) (-3222 ((|#4| $ $) NIL (|has| |#4| (-1062)))) (-4261 (($ (-1281 |#4|)) NIL)) (-3939 (((-135)) NIL (|has| |#4| (-372)))) (-3905 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1062))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1062)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))))) (-3975 (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#4|) $) NIL) (((-872) $) NIL) (($ |#4|) NIL (|has| |#4| (-1113))) (($ (-574)) NIL (-2818 (-12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113))) (|has| |#4| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113))))) (-4160 (((-781)) NIL (|has| |#4| (-1062)) CONST)) (-2923 (((-112) $ $) NIL)) (-2935 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2946 (($ $) NIL (|has| |#4| (-858)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) CONST)) (-3611 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1062))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1062)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))))) (-3041 (((-112) $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-3016 (((-112) $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-3005 (((-112) $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-3107 (($ $ |#4|) NIL (|has| |#4| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-781)) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062))))) (($ $ (-932)) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))))) (* (($ |#2| $) 14) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-736))) (($ |#4| $) NIL (|has| |#4| (-736))) (($ $ $) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-257 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|)) (-932) (-1062) (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-658 |#2|)) (T -257))
+NIL
+(-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-3290 (($ (-932)) NIL (|has| |#3| (-1062)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1854 (($ $ $) NIL (|has| |#3| (-803)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#3| (-377)))) (-3747 (((-574) $) NIL (|has| |#3| (-858)))) (-3143 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1113))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))) (-2209 ((|#3| $) NIL (|has| |#3| (-1113))) (((-574) $) NIL (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))) (-2668 (((-2 (|:| -1485 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 $) (-1281 $)) NIL (|has| |#3| (-1062))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1062))) (((-699 |#3|) (-1281 $)) NIL (|has| |#3| (-1062))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062))))) (-1950 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))))) (-2820 (($) NIL (|has| |#3| (-377)))) (-2462 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#3| $ (-574)) NIL)) (-3434 (((-112) $) NIL (|has| |#3| (-858)))) (-1864 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-3965 (((-112) $) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))))) (-3244 (((-112) $) NIL (|has| |#3| (-858)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-1712 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2446 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#3| |#3|) $) NIL)) (-2565 (((-932) $) NIL (|has| |#3| (-377)))) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#3| (-377)))) (-3966 (((-1133) $) NIL)) (-2915 ((|#3| $) NIL (|has| (-574) (-860)))) (-1363 (($ $ |#3|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-2121 (((-654 |#3|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) 11)) (-3222 ((|#3| $ $) NIL (|has| |#3| (-1062)))) (-4261 (($ (-1281 |#3|)) NIL)) (-3939 (((-135)) NIL (|has| |#3| (-372)))) (-3905 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1062))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))))) (-3975 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#3|) $) NIL) (((-872) $) NIL) (($ |#3|) NIL (|has| |#3| (-1113))) (($ (-574)) NIL (-2818 (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (|has| |#3| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))) (-4160 (((-781)) NIL (|has| |#3| (-1062)) CONST)) (-2923 (((-112) $ $) NIL)) (-2935 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2946 (($ $) NIL (|has| |#3| (-858)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) CONST)) (-3611 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1062))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))))) (-3041 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3016 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3005 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3107 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-781)) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062))))) (($ $ (-932)) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))))) (* (($ |#2| $) 13) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ $ $) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-258 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-658 |#2|)) (-781) (-1062) (-658 |#2|)) (T -258))
+NIL
+(-13 (-244 |#1| |#3|) (-658 |#2|))
+((-1481 (((-654 (-781)) $) 56) (((-654 (-781)) $ |#3|) 59)) (-3848 (((-781) $) 58) (((-781) $ |#3|) 61)) (-2419 (($ $) 76)) (-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3593 (((-781) $ |#3|) 43) (((-781) $) 38)) (-4115 (((-1 $ (-781)) |#3|) 15) (((-1 $ (-781)) $) 88)) (-3706 ((|#4| $) 69)) (-3740 (((-112) $) 67)) (-2591 (($ $) 75)) (-2646 (($ $ (-654 (-302 $))) 111) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-654 |#3|) (-654 |#2|)) 97)) (-3905 (($ $ |#4|) NIL) (($ $ (-654 |#4|)) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2757 (((-654 |#3|) $) 86)) (-1784 ((|#5| $) NIL) (((-781) $ |#4|) NIL) (((-654 (-781)) $ (-654 |#4|)) NIL) (((-781) $ |#3|) 49)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-417 (-574))) NIL) (($ $) NIL)))
+(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2646 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#3| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#3| |#1|)) (-15 -4115 ((-1 |#1| (-781)) |#1|)) (-15 -2419 (|#1| |#1|)) (-15 -2591 (|#1| |#1|)) (-15 -3706 (|#4| |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -3848 ((-781) |#1| |#3|)) (-15 -1481 ((-654 (-781)) |#1| |#3|)) (-15 -3848 ((-781) |#1|)) (-15 -1481 ((-654 (-781)) |#1|)) (-15 -1784 ((-781) |#1| |#3|)) (-15 -3593 ((-781) |#1|)) (-15 -3593 ((-781) |#1| |#3|)) (-15 -2757 ((-654 |#3|) |#1|)) (-15 -4115 ((-1 |#1| (-781)) |#3|)) (-15 -2943 (|#1| |#3|)) (-15 -1697 ((-3 |#3| "failed") |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1784 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -1784 ((-781) |#1| |#4|)) (-15 -2943 (|#1| |#4|)) (-15 -1697 ((-3 |#4| "failed") |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#4| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -1784 (|#5| |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -3905 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3905 (|#1| |#1| |#4| (-781))) (-15 -3905 (|#1| |#1| (-654 |#4|))) (-15 -3905 (|#1| |#1| |#4|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1062) (-860) (-273 |#3|) (-803)) (T -259))
+NIL
+(-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2646 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#3| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#3| |#1|)) (-15 -4115 ((-1 |#1| (-781)) |#1|)) (-15 -2419 (|#1| |#1|)) (-15 -2591 (|#1| |#1|)) (-15 -3706 (|#4| |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -3848 ((-781) |#1| |#3|)) (-15 -1481 ((-654 (-781)) |#1| |#3|)) (-15 -3848 ((-781) |#1|)) (-15 -1481 ((-654 (-781)) |#1|)) (-15 -1784 ((-781) |#1| |#3|)) (-15 -3593 ((-781) |#1|)) (-15 -3593 ((-781) |#1| |#3|)) (-15 -2757 ((-654 |#3|) |#1|)) (-15 -4115 ((-1 |#1| (-781)) |#3|)) (-15 -2943 (|#1| |#3|)) (-15 -1697 ((-3 |#3| "failed") |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1784 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -1784 ((-781) |#1| |#4|)) (-15 -2943 (|#1| |#4|)) (-15 -1697 ((-3 |#4| "failed") |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#4| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -1784 (|#5| |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -3905 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3905 (|#1| |#1| |#4| (-781))) (-15 -3905 (|#1| |#1| (-654 |#4|))) (-15 -3905 (|#1| |#1| |#4|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1481 (((-654 (-781)) $) 219) (((-654 (-781)) $ |#2|) 217)) (-3848 (((-781) $) 218) (((-781) $ |#2|) 216)) (-4355 (((-654 |#3|) $) 112)) (-4194 (((-1186 $) $ |#3|) 127) (((-1186 |#1|) $) 126)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-2814 (($ $) 90 (|has| |#1| (-566)))) (-2425 (((-112) $) 92 (|has| |#1| (-566)))) (-2044 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-2950 (((-3 $ "failed") $ $) 20)) (-3312 (((-428 (-1186 $)) (-1186 $)) 102 (|has| |#1| (-920)))) (-4348 (($ $) 100 (|has| |#1| (-462)))) (-3440 (((-428 $) $) 99 (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 105 (|has| |#1| (-920)))) (-2419 (($ $) 212)) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1051 (-574)))) (((-3 |#3| "failed") $) 140) (((-3 |#2| "failed") $) 226)) (-2209 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1051 (-574)))) ((|#3| $) 141) ((|#2| $) 227)) (-2800 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1392 (($ $) 158)) (-2668 (((-699 (-574)) (-1281 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1281 $)) 133)) (-1950 (((-3 $ "failed") $) 37)) (-3872 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1380 (((-654 $) $) 111)) (-1654 (((-112) $) 98 (|has| |#1| (-920)))) (-3157 (($ $ |#1| |#4| $) 176)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3593 (((-781) $ |#2|) 222) (((-781) $) 221)) (-3965 (((-112) $) 35)) (-2784 (((-781) $) 173)) (-4345 (($ (-1186 |#1|) |#3|) 119) (($ (-1186 $) |#3|) 118)) (-3576 (((-654 $) $) 128)) (-2197 (((-112) $) 156)) (-4335 (($ |#1| |#4|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ |#3|) 122)) (-2382 ((|#4| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-1541 (($ (-1 |#4| |#4|) $) 175)) (-1778 (($ (-1 |#1| |#1|) $) 155)) (-4115 (((-1 $ (-781)) |#2|) 224) (((-1 $ (-781)) $) 211 (|has| |#1| (-239)))) (-4045 (((-3 |#3| "failed") $) 125)) (-1359 (($ $) 153)) (-1370 ((|#1| $) 152)) (-3706 ((|#3| $) 214)) (-2834 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-2568 (((-1172) $) 10)) (-3740 (((-112) $) 215)) (-2357 (((-3 (-654 $) "failed") $) 116)) (-3405 (((-3 (-654 $) "failed") $) 117)) (-3092 (((-3 (-2 (|:| |var| |#3|) (|:| -2524 (-781))) "failed") $) 115)) (-2591 (($ $) 213)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 170)) (-1349 ((|#1| $) 171)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 97 (|has| |#1| (-462)))) (-2874 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) 104 (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) 103 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 101 (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142) (($ $ |#2| $) 210 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) 209 (|has| |#1| (-239))) (($ $ |#2| |#1|) 208 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) 207 (|has| |#1| (-239)))) (-1415 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3905 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43) (($ $) 242 (|has| |#1| (-239))) (($ $ (-781)) 241 (|has| |#1| (-239))) (($ $ (-1190)) 239 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 238 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 237 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 236 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 229) (($ $ (-1 |#1| |#1|)) 228)) (-2757 (((-654 |#2|) $) 223)) (-1784 ((|#4| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131) (((-781) $ |#2|) 220)) (-1837 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1607 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 106 (-2088 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ |#2|) 225) (($ (-417 (-574))) 80 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) 172)) (-3344 ((|#1| $ |#4|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-1369 (((-3 $ "failed") $) 81 (-2818 (-2088 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) 32 T CONST)) (-4207 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39) (($ $) 243 (|has| |#1| (-239))) (($ $ (-781)) 240 (|has| |#1| (-239))) (($ $ (-1190)) 235 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 234 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 233 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 232 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150)))
+(((-260 |#1| |#2| |#3| |#4|) (-141) (-1062) (-860) (-273 |t#2|) (-803)) (T -260))
+((-4115 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4)))) (-3593 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-1784 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-1481 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-3848 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-803)) (-4 *2 (-273 *4)))) (-2591 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1062)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-2419 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1062)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-4115 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6)))))
+(-13 (-960 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1051 |t#2|) (-10 -8 (-15 -4115 ((-1 $ (-781)) |t#2|)) (-15 -2757 ((-654 |t#2|) $)) (-15 -3593 ((-781) $ |t#2|)) (-15 -3593 ((-781) $)) (-15 -1784 ((-781) $ |t#2|)) (-15 -1481 ((-654 (-781)) $)) (-15 -3848 ((-781) $)) (-15 -1481 ((-654 (-781)) $ |t#2|)) (-15 -3848 ((-781) $ |t#2|)) (-15 -3740 ((-112) $)) (-15 -3706 (|t#3| $)) (-15 -2591 ($ $)) (-15 -2419 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-524 |t#2| |t#1|)) (-6 (-524 |t#2| $)) (-6 (-317 $)) (-15 -4115 ((-1 $ (-781)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#2|) . T) ((-626 |#3|) . T) ((-626 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-298) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#4|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-920)) (|has| |#1| (-462))) ((-524 |#2| |#1|) |has| |#1| (-239)) ((-524 |#2| $) |has| |#1| (-239)) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-911 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-960 |#1| |#4| |#3|) . T) ((-920) |has| |#1| (-920)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1051 |#2|) . T) ((-1051 |#3|) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) |has| |#1| (-239)) ((-1235) |has| |#1| (-920)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3398 ((|#1| $) 55)) (-2003 ((|#1| $) 45)) (-3340 (((-112) $ (-781)) 8)) (-3670 (($) 7 T CONST)) (-1557 (($ $) 61)) (-2672 (($ $) 49)) (-3592 ((|#1| |#1| $) 47)) (-4388 ((|#1| $) 46)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-4135 (((-781) $) 62)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2234 ((|#1| $) 40)) (-3024 ((|#1| |#1| $) 53)) (-3421 ((|#1| |#1| $) 52)) (-1709 (($ |#1| $) 41)) (-1840 (((-781) $) 56)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3412 ((|#1| $) 63)) (-2365 ((|#1| $) 51)) (-1365 ((|#1| $) 50)) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3929 ((|#1| |#1| $) 59)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-1537 ((|#1| $) 60)) (-3837 (($) 58) (($ (-654 |#1|)) 57)) (-4303 (((-781) $) 44)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3011 ((|#1| $) 54)) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 43)) (-2536 ((|#1| $) 64)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-261 |#1|) (-141) (-1231)) (T -261))
+((-3837 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-261 *3)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-3024 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-3421 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-2365 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-2672 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))))
+(-13 (-1134 |t#1|) (-1008 |t#1|) (-10 -8 (-15 -3837 ($)) (-15 -3837 ($ (-654 |t#1|))) (-15 -1840 ((-781) $)) (-15 -3398 (|t#1| $)) (-15 -3011 (|t#1| $)) (-15 -3024 (|t#1| |t#1| $)) (-15 -3421 (|t#1| |t#1| $)) (-15 -2365 (|t#1| $)) (-15 -1365 (|t#1| $)) (-15 -2672 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1008 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1134 |#1|) . T) ((-1231) . T))
+((-1517 (((-1 (-954 (-227)) (-227) (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1848 (((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388))) 173) (((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 171) (((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388))) 176) (((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 172) (((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388))) 164) (((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 163) (((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388))) 145) (((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270))) 143) (((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388))) 144) (((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270))) 141)) (-1802 (((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388))) 175) (((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 174) (((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388))) 178) (((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 177) (((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388))) 166) (((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 165) (((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388))) 151) (((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270))) 150) (((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388))) 149) (((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270))) 148) (((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388))) 113) (((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270))) 112) (((-1282) (-1 (-227) (-227)) (-1107 (-388))) 107) (((-1282) (-1 (-227) (-227)) (-1107 (-388)) (-654 (-270))) 105)))
+(((-262) (-10 -7 (-15 -1802 ((-1282) (-1 (-227) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1282) (-1 (-227) (-227)) (-1107 (-388)))) (-15 -1802 ((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1802 ((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1802 ((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)))) (-15 -1802 ((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1802 ((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1802 ((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)))) (-15 -1517 ((-1 (-954 (-227)) (-227) (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262))
+((-1517 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1282)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1282)) (-5 *1 (-262)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-262)))))
+(-10 -7 (-15 -1802 ((-1282) (-1 (-227) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1282) (-1 (-227) (-227)) (-1107 (-388)))) (-15 -1802 ((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1802 ((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1802 ((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)))) (-15 -1802 ((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1802 ((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1802 ((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)))) (-15 -1848 ((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)))) (-15 -1517 ((-1 (-954 (-227)) (-227) (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
+((-1802 (((-1282) (-302 |#2|) (-1190) (-1190) (-654 (-270))) 101)))
+(((-263 |#1| |#2|) (-10 -7 (-15 -1802 ((-1282) (-302 |#2|) (-1190) (-1190) (-654 (-270))))) (-13 (-566) (-860) (-1051 (-574))) (-440 |#1|)) (T -263))
+((-1802 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-1190)) (-5 *5 (-654 (-270))) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1051 (-574)))) (-5 *2 (-1282)) (-5 *1 (-263 *6 *7)))))
+(-10 -7 (-15 -1802 ((-1282) (-302 |#2|) (-1190) (-1190) (-654 (-270)))))
+((-1317 (((-574) (-574)) 71)) (-2198 (((-574) (-574)) 72)) (-2730 (((-227) (-227)) 73)) (-3277 (((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227))) 70)) (-3293 (((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)) (-112)) 68)))
+(((-264) (-10 -7 (-15 -3293 ((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)) (-112))) (-15 -3277 ((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)))) (-15 -1317 ((-574) (-574))) (-15 -2198 ((-574) (-574))) (-15 -2730 ((-227) (-227))))) (T -264))
+((-2730 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-1317 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-3277 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1107 (-227))) (-5 *2 (-1283)) (-5 *1 (-264)))) (-3293 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1107 (-227))) (-5 *5 (-112)) (-5 *2 (-1283)) (-5 *1 (-264)))))
+(-10 -7 (-15 -3293 ((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)) (-112))) (-15 -3277 ((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)))) (-15 -1317 ((-574) (-574))) (-15 -2198 ((-574) (-574))) (-15 -2730 ((-227) (-227))))
+((-2943 (((-1105 (-388)) (-1105 (-324 |#1|))) 16)))
+(((-265 |#1|) (-10 -7 (-15 -2943 ((-1105 (-388)) (-1105 (-324 |#1|))))) (-13 (-860) (-566) (-624 (-388)))) (T -265))
+((-2943 (*1 *2 *3) (-12 (-5 *3 (-1105 (-324 *4))) (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1105 (-388))) (-5 *1 (-265 *4)))))
+(-10 -7 (-15 -2943 ((-1105 (-388)) (-1105 (-324 |#1|)))))
+((-1848 (((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388))) 75) (((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270))) 74) (((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388))) 65) (((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270))) 64) (((-1146 (-227)) (-890 |#1|) (-1105 (-388))) 56) (((-1146 (-227)) (-890 |#1|) (-1105 (-388)) (-654 (-270))) 55)) (-1802 (((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388))) 78) (((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270))) 77) (((-1283) |#1| (-1105 (-388)) (-1105 (-388))) 68) (((-1283) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270))) 67) (((-1283) (-890 |#1|) (-1105 (-388))) 60) (((-1283) (-890 |#1|) (-1105 (-388)) (-654 (-270))) 59) (((-1282) (-888 |#1|) (-1105 (-388))) 47) (((-1282) (-888 |#1|) (-1105 (-388)) (-654 (-270))) 46) (((-1282) |#1| (-1105 (-388))) 38) (((-1282) |#1| (-1105 (-388)) (-654 (-270))) 36)))
+(((-266 |#1|) (-10 -7 (-15 -1802 ((-1282) |#1| (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1282) |#1| (-1105 (-388)))) (-15 -1802 ((-1282) (-888 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1282) (-888 |#1|) (-1105 (-388)))) (-15 -1802 ((-1283) (-890 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-890 |#1|) (-1105 (-388)))) (-15 -1848 ((-1146 (-227)) (-890 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-890 |#1|) (-1105 (-388)))) (-15 -1802 ((-1283) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) |#1| (-1105 (-388)) (-1105 (-388)))) (-15 -1848 ((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)))) (-15 -1802 ((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)))) (-15 -1848 ((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388))))) (-13 (-624 (-546)) (-1113))) (T -266))
+((-1848 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *5)))) (-1848 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *6)))) (-1802 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) (-5 *1 (-266 *5)))) (-1802 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) (-5 *1 (-266 *6)))) (-1848 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1848 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1802 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1283)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1802 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *5)))) (-1848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *6)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) (-5 *1 (-266 *5)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) (-5 *1 (-266 *6)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1282)) (-5 *1 (-266 *5)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1282)) (-5 *1 (-266 *6)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1282)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))))
+(-10 -7 (-15 -1802 ((-1282) |#1| (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1282) |#1| (-1105 (-388)))) (-15 -1802 ((-1282) (-888 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1282) (-888 |#1|) (-1105 (-388)))) (-15 -1802 ((-1283) (-890 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-890 |#1|) (-1105 (-388)))) (-15 -1848 ((-1146 (-227)) (-890 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-890 |#1|) (-1105 (-388)))) (-15 -1802 ((-1283) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) |#1| (-1105 (-388)) (-1105 (-388)))) (-15 -1848 ((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)))) (-15 -1802 ((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1802 ((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)))) (-15 -1848 ((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1848 ((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388)))))
+((-1802 (((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))) 23) (((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227))) 24) (((-1282) (-654 (-954 (-227))) (-654 (-270))) 16) (((-1282) (-654 (-954 (-227)))) 17) (((-1282) (-654 (-227)) (-654 (-227)) (-654 (-270))) 20) (((-1282) (-654 (-227)) (-654 (-227))) 21)))
+(((-267) (-10 -7 (-15 -1802 ((-1282) (-654 (-227)) (-654 (-227)))) (-15 -1802 ((-1282) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1802 ((-1282) (-654 (-954 (-227))))) (-15 -1802 ((-1282) (-654 (-954 (-227))) (-654 (-270)))) (-15 -1802 ((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1802 ((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270)))))) (T -267))
+((-1802 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-267)))) (-1802 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1283)) (-5 *1 (-267)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *4 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-267)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *2 (-1282)) (-5 *1 (-267)))) (-1802 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-267)))) (-1802 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1282)) (-5 *1 (-267)))))
+(-10 -7 (-15 -1802 ((-1282) (-654 (-227)) (-654 (-227)))) (-15 -1802 ((-1282) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1802 ((-1282) (-654 (-954 (-227))))) (-15 -1802 ((-1282) (-654 (-954 (-227))) (-654 (-270)))) (-15 -1802 ((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1802 ((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270)))))
+((-2777 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-3827 (((-932) (-654 (-270)) (-932)) 52)) (-2671 (((-932) (-654 (-270)) (-932)) 51)) (-1998 (((-654 (-388)) (-654 (-270)) (-654 (-388))) 68)) (-3726 (((-388) (-654 (-270)) (-388)) 57)) (-4245 (((-932) (-654 (-270)) (-932)) 53)) (-4024 (((-112) (-654 (-270)) (-112)) 27)) (-3877 (((-1172) (-654 (-270)) (-1172)) 19)) (-1825 (((-1172) (-654 (-270)) (-1172)) 26)) (-2665 (((-1146 (-227)) (-654 (-270))) 46)) (-4188 (((-654 (-1107 (-388))) (-654 (-270)) (-654 (-1107 (-388)))) 40)) (-1845 (((-884) (-654 (-270)) (-884)) 32)) (-2211 (((-884) (-654 (-270)) (-884)) 33)) (-3847 (((-1 (-954 (-227)) (-954 (-227))) (-654 (-270)) (-1 (-954 (-227)) (-954 (-227)))) 63)) (-2486 (((-112) (-654 (-270)) (-112)) 14)) (-2499 (((-112) (-654 (-270)) (-112)) 13)))
+(((-268) (-10 -7 (-15 -2499 ((-112) (-654 (-270)) (-112))) (-15 -2486 ((-112) (-654 (-270)) (-112))) (-15 -2777 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3877 ((-1172) (-654 (-270)) (-1172))) (-15 -1825 ((-1172) (-654 (-270)) (-1172))) (-15 -4024 ((-112) (-654 (-270)) (-112))) (-15 -1845 ((-884) (-654 (-270)) (-884))) (-15 -2211 ((-884) (-654 (-270)) (-884))) (-15 -4188 ((-654 (-1107 (-388))) (-654 (-270)) (-654 (-1107 (-388))))) (-15 -2671 ((-932) (-654 (-270)) (-932))) (-15 -3827 ((-932) (-654 (-270)) (-932))) (-15 -2665 ((-1146 (-227)) (-654 (-270)))) (-15 -4245 ((-932) (-654 (-270)) (-932))) (-15 -3726 ((-388) (-654 (-270)) (-388))) (-15 -3847 ((-1 (-954 (-227)) (-954 (-227))) (-654 (-270)) (-1 (-954 (-227)) (-954 (-227))))) (-15 -1998 ((-654 (-388)) (-654 (-270)) (-654 (-388)))))) (T -268))
+((-1998 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3847 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3726 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4245 (*1 *2 *3 *2) (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-268)))) (-3827 (*1 *2 *3 *2) (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2671 (*1 *2 *3 *2) (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4188 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2211 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1845 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4024 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1825 (*1 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3877 (*1 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2777 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2486 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2499 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))))
+(-10 -7 (-15 -2499 ((-112) (-654 (-270)) (-112))) (-15 -2486 ((-112) (-654 (-270)) (-112))) (-15 -2777 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3877 ((-1172) (-654 (-270)) (-1172))) (-15 -1825 ((-1172) (-654 (-270)) (-1172))) (-15 -4024 ((-112) (-654 (-270)) (-112))) (-15 -1845 ((-884) (-654 (-270)) (-884))) (-15 -2211 ((-884) (-654 (-270)) (-884))) (-15 -4188 ((-654 (-1107 (-388))) (-654 (-270)) (-654 (-1107 (-388))))) (-15 -2671 ((-932) (-654 (-270)) (-932))) (-15 -3827 ((-932) (-654 (-270)) (-932))) (-15 -2665 ((-1146 (-227)) (-654 (-270)))) (-15 -4245 ((-932) (-654 (-270)) (-932))) (-15 -3726 ((-388) (-654 (-270)) (-388))) (-15 -3847 ((-1 (-954 (-227)) (-954 (-227))) (-654 (-270)) (-1 (-954 (-227)) (-954 (-227))))) (-15 -1998 ((-654 (-388)) (-654 (-270)) (-654 (-388)))))
+((-1981 (((-3 |#1| "failed") (-654 (-270)) (-1190)) 17)))
+(((-269 |#1|) (-10 -7 (-15 -1981 ((-3 |#1| "failed") (-654 (-270)) (-1190)))) (-1231)) (T -269))
+((-1981 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *1 (-269 *2)) (-4 *2 (-1231)))))
+(-10 -7 (-15 -1981 ((-3 |#1| "failed") (-654 (-270)) (-1190))))
+((-2849 (((-112) $ $) NIL)) (-2777 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-3827 (($ (-932)) 81)) (-2671 (($ (-932)) 80)) (-1708 (($ (-654 (-388))) 87)) (-3726 (($ (-388)) 66)) (-4245 (($ (-932)) 82)) (-4024 (($ (-112)) 33)) (-3877 (($ (-1172)) 28)) (-1825 (($ (-1172)) 29)) (-2665 (($ (-1146 (-227))) 76)) (-4188 (($ (-654 (-1107 (-388)))) 72)) (-2967 (($ (-654 (-1107 (-388)))) 68) (($ (-654 (-1107 (-417 (-574))))) 71)) (-3754 (($ (-388)) 38) (($ (-884)) 42)) (-1674 (((-112) (-654 $) (-1190)) 100)) (-1981 (((-3 (-52) "failed") (-654 $) (-1190)) 102)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1858 (($ (-388)) 43) (($ (-884)) 44)) (-3676 (($ (-1 (-954 (-227)) (-954 (-227)))) 65)) (-3847 (($ (-1 (-954 (-227)) (-954 (-227)))) 83)) (-3325 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2943 (((-872) $) 93)) (-3151 (($ (-112)) 34) (($ (-654 (-1107 (-388)))) 60)) (-2923 (((-112) $ $) NIL)) (-2499 (($ (-112)) 35)) (-2982 (((-112) $ $) 97)))
+(((-270) (-13 (-1113) (-10 -8 (-15 -2499 ($ (-112))) (-15 -3151 ($ (-112))) (-15 -2777 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3877 ($ (-1172))) (-15 -1825 ($ (-1172))) (-15 -4024 ($ (-112))) (-15 -3151 ($ (-654 (-1107 (-388))))) (-15 -3676 ($ (-1 (-954 (-227)) (-954 (-227))))) (-15 -3754 ($ (-388))) (-15 -3754 ($ (-884))) (-15 -1858 ($ (-388))) (-15 -1858 ($ (-884))) (-15 -3325 ($ (-1 (-227) (-227)))) (-15 -3325 ($ (-1 (-227) (-227) (-227)))) (-15 -3325 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3726 ($ (-388))) (-15 -2967 ($ (-654 (-1107 (-388))))) (-15 -2967 ($ (-654 (-1107 (-417 (-574)))))) (-15 -4188 ($ (-654 (-1107 (-388))))) (-15 -2665 ($ (-1146 (-227)))) (-15 -2671 ($ (-932))) (-15 -3827 ($ (-932))) (-15 -4245 ($ (-932))) (-15 -3847 ($ (-1 (-954 (-227)) (-954 (-227))))) (-15 -1708 ($ (-654 (-388)))) (-15 -1981 ((-3 (-52) "failed") (-654 $) (-1190))) (-15 -1674 ((-112) (-654 $) (-1190)))))) (T -270))
+((-2499 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-270)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-270)))) (-4024 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270)))) (-3676 (*1 *1 *2) (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *1 (-270)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-1858 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-1858 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-3726 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-2967 (*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270)))) (-2967 (*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-417 (-574))))) (-5 *1 (-270)))) (-4188 (*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270)))) (-2665 (*1 *1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-270)))) (-2671 (*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270)))) (-3827 (*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270)))) (-4245 (*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270)))) (-3847 (*1 *1 *2) (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *1 (-270)))) (-1708 (*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) (-1981 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *2 (-52)) (-5 *1 (-270)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *2 (-112)) (-5 *1 (-270)))))
+(-13 (-1113) (-10 -8 (-15 -2499 ($ (-112))) (-15 -3151 ($ (-112))) (-15 -2777 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3877 ($ (-1172))) (-15 -1825 ($ (-1172))) (-15 -4024 ($ (-112))) (-15 -3151 ($ (-654 (-1107 (-388))))) (-15 -3676 ($ (-1 (-954 (-227)) (-954 (-227))))) (-15 -3754 ($ (-388))) (-15 -3754 ($ (-884))) (-15 -1858 ($ (-388))) (-15 -1858 ($ (-884))) (-15 -3325 ($ (-1 (-227) (-227)))) (-15 -3325 ($ (-1 (-227) (-227) (-227)))) (-15 -3325 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3726 ($ (-388))) (-15 -2967 ($ (-654 (-1107 (-388))))) (-15 -2967 ($ (-654 (-1107 (-417 (-574)))))) (-15 -4188 ($ (-654 (-1107 (-388))))) (-15 -2665 ($ (-1146 (-227)))) (-15 -2671 ($ (-932))) (-15 -3827 ($ (-932))) (-15 -4245 ($ (-932))) (-15 -3847 ($ (-1 (-954 (-227)) (-954 (-227))))) (-15 -1708 ($ (-654 (-388)))) (-15 -1981 ((-3 (-52) "failed") (-654 $) (-1190))) (-15 -1674 ((-112) (-654 $) (-1190)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1481 (((-654 (-781)) $) NIL) (((-654 (-781)) $ |#2|) NIL)) (-3848 (((-781) $) NIL) (((-781) $ |#2|) NIL)) (-4355 (((-654 |#3|) $) NIL)) (-4194 (((-1186 $) $ |#3|) NIL) (((-1186 |#1|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 |#3|)) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4348 (($ $) NIL (|has| |#1| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2419 (($ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1138 |#1| |#2|) "failed") $) 23)) (-2209 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1138 |#1| |#2|) $) NIL)) (-2800 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1392 (($ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#1| (-920)))) (-3157 (($ $ |#1| (-541 |#3|) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))))) (-3593 (((-781) $ |#2|) NIL) (((-781) $) 10)) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4345 (($ (-1186 |#1|) |#3|) NIL) (($ (-1186 $) |#3|) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ |#3|) NIL)) (-2382 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL)) (-1541 (($ (-1 (-541 |#3|) (-541 |#3|)) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-4115 (((-1 $ (-781)) |#2|) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-4045 (((-3 |#3| "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-3706 ((|#3| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2568 (((-1172) $) NIL)) (-3740 (((-112) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| |#3|) (|:| -2524 (-781))) "failed") $) NIL)) (-2591 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-654 |#3|) (-654 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) NIL (|has| |#1| (-239))) (($ $ |#2| |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-1415 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3905 (($ $ |#3|) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2757 (((-654 |#2|) $) NIL)) (-1784 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL) (((-781) $ |#2|) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))))) (-1607 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1138 |#1| |#2|)) 32) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ |#3|) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-271 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1051 (-1138 |#1| |#2|))) (-1062) (-860) (-273 |#2|)) (T -271))
+NIL
+(-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1051 (-1138 |#1| |#2|)))
+((-3848 (((-781) $) 37)) (-1697 (((-3 |#2| "failed") $) 22)) (-2209 ((|#2| $) 33)) (-3905 (($ $) 14) (($ $ (-781)) 18)) (-2943 (((-872) $) 32) (($ |#2|) 11)) (-2982 (((-112) $ $) 26)) (-3005 (((-112) $ $) 36)))
+(((-272 |#1| |#2|) (-10 -8 (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -3848 ((-781) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|))) (-273 |#2|) (-860)) (T -272))
+NIL
+(-10 -8 (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -3848 ((-781) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-3848 (((-781) $) 23)) (-1489 ((|#1| $) 24)) (-1697 (((-3 |#1| "failed") $) 28)) (-2209 ((|#1| $) 29)) (-3593 (((-781) $) 25)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-4115 (($ |#1| (-781)) 26)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3905 (($ $) 22) (($ $ (-781)) 21)) (-2943 (((-872) $) 12) (($ |#1|) 27)) (-2923 (((-112) $ $) 9)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)))
+(((-273 |#1|) (-141) (-860)) (T -273))
+((-2943 (*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-4115 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) (-3905 (*1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-273 *3)) (-4 *3 (-860)))))
+(-13 (-860) (-1051 |t#1|) (-10 -8 (-15 -4115 ($ |t#1| (-781))) (-15 -3593 ((-781) $)) (-15 -1489 (|t#1| $)) (-15 -3848 ((-781) $)) (-15 -3905 ($ $)) (-15 -3905 ($ $ (-781))) (-15 -2943 ($ |t#1|))))
+(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-860) . T) ((-1051 |#1|) . T) ((-1113) . T))
+((-4355 (((-654 (-1190)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 53)) (-1655 (((-654 (-1190)) (-324 (-227)) (-781)) 94)) (-3104 (((-3 (-324 (-227)) "failed") (-324 (-227))) 63)) (-3838 (((-324 (-227)) (-324 (-227))) 79)) (-2193 (((-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 38)) (-3431 (((-112) (-654 (-324 (-227)))) 104)) (-4319 (((-112) (-324 (-227))) 36)) (-3365 (((-654 (-1172)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) 132)) (-4033 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 108)) (-4035 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 106)) (-2116 (((-699 (-227)) (-654 (-324 (-227))) (-781)) 120)) (-1616 (((-112) (-324 (-227))) 31) (((-112) (-654 (-324 (-227)))) 105)) (-2131 (((-654 (-227)) (-654 (-853 (-227))) (-227)) 15)) (-3674 (((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 126)) (-3572 (((-1048) (-1190) (-1048)) 46)))
+(((-274) (-10 -7 (-15 -2131 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -2193 ((-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -3104 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3838 ((-324 (-227)) (-324 (-227)))) (-15 -3431 ((-112) (-654 (-324 (-227))))) (-15 -1616 ((-112) (-654 (-324 (-227))))) (-15 -1616 ((-112) (-324 (-227)))) (-15 -2116 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -4035 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -4033 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -4319 ((-112) (-324 (-227)))) (-15 -4355 ((-654 (-1190)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -1655 ((-654 (-1190)) (-324 (-227)) (-781))) (-15 -3572 ((-1048) (-1190) (-1048))) (-15 -3674 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -3365 ((-654 (-1172)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))))))) (T -274))
+((-3365 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) (-5 *2 (-654 (-1172))) (-5 *1 (-274)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *2 (-388)) (-5 *1 (-274)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *2 (-1048)) (-5 *3 (-1190)) (-5 *1 (-274)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1190))) (-5 *1 (-274)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *2 (-654 (-1190))) (-5 *1 (-274)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-4033 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-2116 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-274)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-3104 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-274)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) (-5 *1 (-274)))))
+(-10 -7 (-15 -2131 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -2193 ((-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -3104 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3838 ((-324 (-227)) (-324 (-227)))) (-15 -3431 ((-112) (-654 (-324 (-227))))) (-15 -1616 ((-112) (-654 (-324 (-227))))) (-15 -1616 ((-112) (-324 (-227)))) (-15 -2116 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -4035 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -4033 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -4319 ((-112) (-324 (-227)))) (-15 -4355 ((-654 (-1190)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -1655 ((-654 (-1190)) (-324 (-227)) (-781))) (-15 -3572 ((-1048) (-1190) (-1048))) (-15 -3674 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -3365 ((-654 (-1172)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))))))
+((-2849 (((-112) $ $) NIL)) (-1364 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 56)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-275) (-849)) (T -275))
+NIL
+(-849)
+((-2849 (((-112) $ $) NIL)) (-1364 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 72) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 63)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 41) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 43)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-276) (-849)) (T -276))
+NIL
+(-849)
+((-2849 (((-112) $ $) NIL)) (-1364 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 90) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 85)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 52) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 65)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-277) (-849)) (T -277))
+NIL
+(-849)
+((-2849 (((-112) $ $) NIL)) (-1364 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 73)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 45) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-278) (-849)) (T -278))
+NIL
+(-849)
+((-2849 (((-112) $ $) NIL)) (-1364 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 65)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 31) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-279) (-849)) (T -279))
+NIL
+(-849)
+((-2849 (((-112) $ $) NIL)) (-1364 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 90)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 33) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-280) (-849)) (T -280))
+NIL
+(-849)
+((-2849 (((-112) $ $) NIL)) (-1364 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 87)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-281) (-849)) (T -281))
+NIL
+(-849)
+((-2849 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4389 (((-654 (-574)) $) 29)) (-1784 (((-781) $) 27)) (-2943 (((-872) $) 33) (($ (-654 (-574))) 23)) (-2923 (((-112) $ $) NIL)) (-4250 (($ (-781)) 30)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 9)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 17)))
+(((-282) (-13 (-860) (-10 -8 (-15 -2943 ($ (-654 (-574)))) (-15 -1784 ((-781) $)) (-15 -4389 ((-654 (-574)) $)) (-15 -4250 ($ (-781)))))) (T -282))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282)))) (-4389 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282)))))
+(-13 (-860) (-10 -8 (-15 -2943 ($ (-654 (-574)))) (-15 -1784 ((-781) $)) (-15 -4389 ((-654 (-574)) $)) (-15 -4250 ($ (-781)))))
+((-2364 ((|#2| |#2|) 77)) (-2246 ((|#2| |#2|) 65)) (-2869 (((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2343 ((|#2| |#2|) 75)) (-2227 ((|#2| |#2|) 63)) (-2388 ((|#2| |#2|) 79)) (-2267 ((|#2| |#2|) 67)) (-3001 ((|#2|) 46)) (-4173 (((-115) (-115)) 100)) (-3119 ((|#2| |#2|) 61)) (-3219 (((-112) |#2|) 147)) (-3982 ((|#2| |#2|) 195)) (-3524 ((|#2| |#2|) 171)) (-2212 ((|#2|) 59)) (-2783 ((|#2|) 58)) (-2091 ((|#2| |#2|) 191)) (-1522 ((|#2| |#2|) 167)) (-3483 ((|#2| |#2|) 199)) (-1790 ((|#2| |#2|) 175)) (-3080 ((|#2| |#2|) 163)) (-3357 ((|#2| |#2|) 165)) (-2280 ((|#2| |#2|) 201)) (-1423 ((|#2| |#2|) 177)) (-1694 ((|#2| |#2|) 197)) (-3332 ((|#2| |#2|) 173)) (-2261 ((|#2| |#2|) 193)) (-1555 ((|#2| |#2|) 169)) (-1876 ((|#2| |#2|) 207)) (-3773 ((|#2| |#2|) 183)) (-2061 ((|#2| |#2|) 203)) (-4106 ((|#2| |#2|) 179)) (-2400 ((|#2| |#2|) 211)) (-3707 ((|#2| |#2|) 187)) (-2855 ((|#2| |#2|) 213)) (-3396 ((|#2| |#2|) 189)) (-1945 ((|#2| |#2|) 209)) (-4343 ((|#2| |#2|) 185)) (-4186 ((|#2| |#2|) 205)) (-4316 ((|#2| |#2|) 181)) (-1610 ((|#2| |#2|) 62)) (-2402 ((|#2| |#2|) 80)) (-2275 ((|#2| |#2|) 68)) (-2375 ((|#2| |#2|) 78)) (-2257 ((|#2| |#2|) 66)) (-2353 ((|#2| |#2|) 76)) (-2237 ((|#2| |#2|) 64)) (-1932 (((-112) (-115)) 98)) (-2441 ((|#2| |#2|) 83)) (-2305 ((|#2| |#2|) 71)) (-2414 ((|#2| |#2|) 81)) (-2287 ((|#2| |#2|) 69)) (-2465 ((|#2| |#2|) 85)) (-2325 ((|#2| |#2|) 73)) (-2521 ((|#2| |#2|) 86)) (-2334 ((|#2| |#2|) 74)) (-2453 ((|#2| |#2|) 84)) (-2315 ((|#2| |#2|) 72)) (-2428 ((|#2| |#2|) 82)) (-2297 ((|#2| |#2|) 70)))
+(((-283 |#1| |#2|) (-10 -7 (-15 -1610 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2325 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -2375 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2453 (|#2| |#2|)) (-15 -2465 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -3001 (|#2|)) (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -2783 (|#2|)) (-15 -2212 (|#2|)) (-15 -3357 (|#2| |#2|)) (-15 -3080 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4316 (|#2| |#2|)) (-15 -3773 (|#2| |#2|)) (-15 -4343 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2061 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1945 (|#2| |#2|)) (-15 -2400 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -2869 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3219 ((-112) |#2|))) (-566) (-13 (-440 |#1|) (-1015))) (T -283))
+((-3219 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) (-4 *3 (-13 (-440 *4) (-1015))))) (-2869 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-440 *4) (-1015))) (-4 *4 (-566)) (-5 *1 (-283 *4 *2)))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2400 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1945 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2061 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3396 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-4343 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3773 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-4316 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1790 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3524 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3080 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2212 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-2783 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4)) (-4 *4 (-13 (-440 *3) (-1015))))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1015))))) (-3001 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2465 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2453 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2375 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2364 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))))
+(-10 -7 (-15 -1610 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2325 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -2375 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2453 (|#2| |#2|)) (-15 -2465 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -3001 (|#2|)) (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -2783 (|#2|)) (-15 -2212 (|#2|)) (-15 -3357 (|#2| |#2|)) (-15 -3080 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4316 (|#2| |#2|)) (-15 -3773 (|#2| |#2|)) (-15 -4343 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2061 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1945 (|#2| |#2|)) (-15 -2400 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -2869 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3219 ((-112) |#2|)))
+((-1566 (((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1190)) 151)) (-1506 ((|#2| (-417 (-574)) |#2|) 49)) (-3433 ((|#2| |#2| (-622 |#2|)) 144)) (-2100 (((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1190)) 143)) (-3350 ((|#2| |#2| (-1190)) 20) ((|#2| |#2|) 23)) (-2667 ((|#2| |#2| (-1190)) 157) ((|#2| |#2|) 155)))
+(((-284 |#1| |#2|) (-10 -7 (-15 -2667 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-1190))) (-15 -2100 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1190))) (-15 -3350 (|#2| |#2|)) (-15 -3350 (|#2| |#2| (-1190))) (-15 -1566 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1190))) (-15 -3433 (|#2| |#2| (-622 |#2|))) (-15 -1506 (|#2| (-417 (-574)) |#2|))) (-13 (-566) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -284))
+((-1506 (*1 *2 *3 *2) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-3433 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)))) (-1566 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1190)) (-4 *2 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *5 *2)))) (-3350 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-3350 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) (|:| |vals| (-654 *3)))) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-2667 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-2667 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))))
+(-10 -7 (-15 -2667 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-1190))) (-15 -2100 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1190))) (-15 -3350 (|#2| |#2|)) (-15 -3350 (|#2| |#2| (-1190))) (-15 -1566 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1190))) (-15 -3433 (|#2| |#2| (-622 |#2|))) (-15 -1506 (|#2| (-417 (-574)) |#2|)))
+((-2748 (((-3 |#3| "failed") |#3|) 120)) (-2364 ((|#3| |#3|) 142)) (-2574 (((-3 |#3| "failed") |#3|) 89)) (-2246 ((|#3| |#3|) 132)) (-3744 (((-3 |#3| "failed") |#3|) 65)) (-2343 ((|#3| |#3|) 140)) (-1376 (((-3 |#3| "failed") |#3|) 53)) (-2227 ((|#3| |#3|) 130)) (-1646 (((-3 |#3| "failed") |#3|) 122)) (-2388 ((|#3| |#3|) 144)) (-2368 (((-3 |#3| "failed") |#3|) 91)) (-2267 ((|#3| |#3|) 134)) (-1656 (((-3 |#3| "failed") |#3| (-781)) 41)) (-1690 (((-3 |#3| "failed") |#3|) 81)) (-3119 ((|#3| |#3|) 129)) (-2767 (((-3 |#3| "failed") |#3|) 51)) (-1610 ((|#3| |#3|) 128)) (-1410 (((-3 |#3| "failed") |#3|) 123)) (-2402 ((|#3| |#3|) 145)) (-1687 (((-3 |#3| "failed") |#3|) 92)) (-2275 ((|#3| |#3|) 135)) (-2379 (((-3 |#3| "failed") |#3|) 121)) (-2375 ((|#3| |#3|) 143)) (-3374 (((-3 |#3| "failed") |#3|) 90)) (-2257 ((|#3| |#3|) 133)) (-1929 (((-3 |#3| "failed") |#3|) 67)) (-2353 ((|#3| |#3|) 141)) (-3625 (((-3 |#3| "failed") |#3|) 55)) (-2237 ((|#3| |#3|) 131)) (-3716 (((-3 |#3| "failed") |#3|) 73)) (-2441 ((|#3| |#3|) 148)) (-1985 (((-3 |#3| "failed") |#3|) 114)) (-2305 ((|#3| |#3|) 152)) (-2586 (((-3 |#3| "failed") |#3|) 69)) (-2414 ((|#3| |#3|) 146)) (-4386 (((-3 |#3| "failed") |#3|) 57)) (-2287 ((|#3| |#3|) 136)) (-4274 (((-3 |#3| "failed") |#3|) 77)) (-2465 ((|#3| |#3|) 150)) (-2853 (((-3 |#3| "failed") |#3|) 61)) (-2325 ((|#3| |#3|) 138)) (-3048 (((-3 |#3| "failed") |#3|) 79)) (-2521 ((|#3| |#3|) 151)) (-2862 (((-3 |#3| "failed") |#3|) 63)) (-2334 ((|#3| |#3|) 139)) (-2162 (((-3 |#3| "failed") |#3|) 75)) (-2453 ((|#3| |#3|) 149)) (-3927 (((-3 |#3| "failed") |#3|) 117)) (-2315 ((|#3| |#3|) 153)) (-1978 (((-3 |#3| "failed") |#3|) 71)) (-2428 ((|#3| |#3|) 147)) (-3056 (((-3 |#3| "failed") |#3|) 59)) (-2297 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-417 (-574))) 47 (|has| |#1| (-372)))))
+(((-285 |#1| |#2| |#3|) (-13 (-996 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1610 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2267 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2353 (|#3| |#3|)) (-15 -2364 (|#3| |#3|)) (-15 -2375 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2402 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2441 (|#3| |#3|)) (-15 -2453 (|#3| |#3|)) (-15 -2465 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)))) (-38 (-417 (-574))) (-1272 |#1|) (-1243 |#1| |#2|)) (T -285))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1272 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1243 *4 *5)))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2364 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2375 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2453 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2465 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))))
+(-13 (-996 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1610 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2267 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2353 (|#3| |#3|)) (-15 -2364 (|#3| |#3|)) (-15 -2375 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2402 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2441 (|#3| |#3|)) (-15 -2453 (|#3| |#3|)) (-15 -2465 (|#3| |#3|)) (-15 -2521 (|#3| |#3|))))
+((-2748 (((-3 |#3| "failed") |#3|) 70)) (-2364 ((|#3| |#3|) 137)) (-2574 (((-3 |#3| "failed") |#3|) 54)) (-2246 ((|#3| |#3|) 125)) (-3744 (((-3 |#3| "failed") |#3|) 66)) (-2343 ((|#3| |#3|) 135)) (-1376 (((-3 |#3| "failed") |#3|) 50)) (-2227 ((|#3| |#3|) 123)) (-1646 (((-3 |#3| "failed") |#3|) 74)) (-2388 ((|#3| |#3|) 139)) (-2368 (((-3 |#3| "failed") |#3|) 58)) (-2267 ((|#3| |#3|) 127)) (-1656 (((-3 |#3| "failed") |#3| (-781)) 38)) (-1690 (((-3 |#3| "failed") |#3|) 48)) (-3119 ((|#3| |#3|) 111)) (-2767 (((-3 |#3| "failed") |#3|) 46)) (-1610 ((|#3| |#3|) 122)) (-1410 (((-3 |#3| "failed") |#3|) 76)) (-2402 ((|#3| |#3|) 140)) (-1687 (((-3 |#3| "failed") |#3|) 60)) (-2275 ((|#3| |#3|) 128)) (-2379 (((-3 |#3| "failed") |#3|) 72)) (-2375 ((|#3| |#3|) 138)) (-3374 (((-3 |#3| "failed") |#3|) 56)) (-2257 ((|#3| |#3|) 126)) (-1929 (((-3 |#3| "failed") |#3|) 68)) (-2353 ((|#3| |#3|) 136)) (-3625 (((-3 |#3| "failed") |#3|) 52)) (-2237 ((|#3| |#3|) 124)) (-3716 (((-3 |#3| "failed") |#3|) 78)) (-2441 ((|#3| |#3|) 143)) (-1985 (((-3 |#3| "failed") |#3|) 62)) (-2305 ((|#3| |#3|) 131)) (-2586 (((-3 |#3| "failed") |#3|) 112)) (-2414 ((|#3| |#3|) 141)) (-4386 (((-3 |#3| "failed") |#3|) 100)) (-2287 ((|#3| |#3|) 129)) (-4274 (((-3 |#3| "failed") |#3|) 116)) (-2465 ((|#3| |#3|) 145)) (-2853 (((-3 |#3| "failed") |#3|) 107)) (-2325 ((|#3| |#3|) 133)) (-3048 (((-3 |#3| "failed") |#3|) 117)) (-2521 ((|#3| |#3|) 146)) (-2862 (((-3 |#3| "failed") |#3|) 109)) (-2334 ((|#3| |#3|) 134)) (-2162 (((-3 |#3| "failed") |#3|) 80)) (-2453 ((|#3| |#3|) 144)) (-3927 (((-3 |#3| "failed") |#3|) 64)) (-2315 ((|#3| |#3|) 132)) (-1978 (((-3 |#3| "failed") |#3|) 113)) (-2428 ((|#3| |#3|) 142)) (-3056 (((-3 |#3| "failed") |#3|) 103)) (-2297 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-417 (-574))) 44 (|has| |#1| (-372)))))
+(((-286 |#1| |#2| |#3| |#4|) (-13 (-996 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1610 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2267 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2353 (|#3| |#3|)) (-15 -2364 (|#3| |#3|)) (-15 -2375 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2402 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2441 (|#3| |#3|)) (-15 -2453 (|#3| |#3|)) (-15 -2465 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)))) (-38 (-417 (-574))) (-1241 |#1|) (-1264 |#1| |#2|) (-996 |#2|)) (T -286))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1241 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1264 *4 *5)) (-4 *6 (-996 *5)))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2364 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2375 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2453 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2465 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))))
+(-13 (-996 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1610 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2267 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2353 (|#3| |#3|)) (-15 -2364 (|#3| |#3|)) (-15 -2375 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2402 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2441 (|#3| |#3|)) (-15 -2453 (|#3| |#3|)) (-15 -2465 (|#3| |#3|)) (-15 -2521 (|#3| |#3|))))
+((-1703 (((-112) $) 20)) (-2366 (((-1195) $) 7)) (-3701 (((-3 (-516) "failed") $) 14)) (-3765 (((-3 (-654 $) "failed") $) NIL)) (-2735 (((-3 (-516) "failed") $) 21)) (-2002 (((-3 (-1117) "failed") $) 18)) (-2450 (((-112) $) 16)) (-2943 (((-872) $) NIL)) (-2780 (((-112) $) 9)))
+(((-287) (-13 (-623 (-872)) (-10 -8 (-15 -2366 ((-1195) $)) (-15 -2450 ((-112) $)) (-15 -2002 ((-3 (-1117) "failed") $)) (-15 -1703 ((-112) $)) (-15 -2735 ((-3 (-516) "failed") $)) (-15 -2780 ((-112) $)) (-15 -3701 ((-3 (-516) "failed") $)) (-15 -3765 ((-3 (-654 $) "failed") $))))) (T -287))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-287)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2002 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-287)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2735 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-3701 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-3765 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2366 ((-1195) $)) (-15 -2450 ((-112) $)) (-15 -2002 ((-3 (-1117) "failed") $)) (-15 -1703 ((-112) $)) (-15 -2735 ((-3 (-516) "failed") $)) (-15 -2780 ((-112) $)) (-15 -3701 ((-3 (-516) "failed") $)) (-15 -3765 ((-3 (-654 $) "failed") $))))
+((-4311 (((-607) $) 10)) (-2614 (((-595) $) 8)) (-4287 (((-299) $) 12)) (-3455 (($ (-595) (-607) (-299)) NIL)) (-2943 (((-872) $) 19)))
+(((-288) (-13 (-623 (-872)) (-10 -8 (-15 -3455 ($ (-595) (-607) (-299))) (-15 -2614 ((-595) $)) (-15 -4311 ((-607) $)) (-15 -4287 ((-299) $))))) (T -288))
+((-3455 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -3455 ($ (-595) (-607) (-299))) (-15 -2614 ((-595) $)) (-15 -4311 ((-607) $)) (-15 -4287 ((-299) $))))
+((-2166 (($ (-1 (-112) |#2|) $) 24)) (-2158 (($ $) 38)) (-1586 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3335 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3722 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1595 (($ |#2| $ (-574)) 20) (($ $ $ (-574)) 22)) (-2837 (($ $ (-574)) 11) (($ $ (-1248 (-574))) 14)) (-2734 (($ $ |#2|) 32) (($ $ $) NIL)) (-4157 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-654 $)) NIL)))
+(((-289 |#1| |#2|) (-10 -8 (-15 -3722 (|#1| |#1| |#1|)) (-15 -1586 (|#1| |#2| |#1|)) (-15 -3722 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2734 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1| |#2|)) (-15 -1595 (|#1| |#1| |#1| (-574))) (-15 -1595 (|#1| |#2| |#1| (-574))) (-15 -2837 (|#1| |#1| (-1248 (-574)))) (-15 -2837 (|#1| |#1| (-574))) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -3335 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2166 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3335 (|#1| |#2| |#1|)) (-15 -2158 (|#1| |#1|))) (-290 |#2|) (-1231)) (T -289))
+NIL
+(-10 -8 (-15 -3722 (|#1| |#1| |#1|)) (-15 -1586 (|#1| |#2| |#1|)) (-15 -3722 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2734 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1| |#2|)) (-15 -1595 (|#1| |#1| |#1| (-574))) (-15 -1595 (|#1| |#2| |#1| (-574))) (-15 -2837 (|#1| |#1| (-1248 (-574)))) (-15 -2837 (|#1| |#1| (-574))) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -3335 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2166 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3335 (|#1| |#2| |#1|)) (-15 -2158 (|#1| |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-1860 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-3391 (($ (-1 (-112) |#1|) $) 88)) (-2166 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-1730 (($ $) 86 (|has| |#1| (-1113)))) (-2158 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1113)))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 70)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 44 (|has| (-574) (-860)))) (-3722 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 45 (|has| (-574) (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1709 (($ |#1| $ (-574)) 91) (($ $ $ (-574)) 90)) (-1595 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2459 (((-654 (-574)) $) 47)) (-2607 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1363 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-2701 (($ $ (-574)) 94) (($ $ (-1248 (-574))) 93)) (-2837 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-2734 (($ $ |#1|) 96) (($ $ $) 95)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-290 |#1|) (-141) (-1231)) (T -290))
+((-2734 (*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)))) (-2734 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-1248 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-1586 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-1709 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1231)))) (-1709 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-3722 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-3391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-1586 (*1 *1 *2 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-1113)))) (-1730 (*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-1113)))) (-3722 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-860)))))
+(-13 (-661 |t#1|) (-10 -8 (-6 -4457) (-15 -2734 ($ $ |t#1|)) (-15 -2734 ($ $ $)) (-15 -2701 ($ $ (-574))) (-15 -2701 ($ $ (-1248 (-574)))) (-15 -1586 ($ (-1 (-112) |t#1|) $)) (-15 -1709 ($ |t#1| $ (-574))) (-15 -1709 ($ $ $ (-574))) (-15 -3722 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3391 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -1586 ($ |t#1| $)) (-15 -1730 ($ $))) |%noBranch|) (IF (|has| |t#1| (-860)) (-15 -3722 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
((** (($ $ $) 10)))
-(((-289 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-290)) (T -289))
+(((-291 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-292)) (T -291))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-3116 (($ $) 6)) (-1608 (($ $) 7)) (** (($ $ $) 8)))
-(((-290) (-141)) (T -290))
-((** (*1 *1 *1 *1) (-4 *1 (-290))) (-1608 (*1 *1 *1) (-4 *1 (-290))) (-3116 (*1 *1 *1) (-4 *1 (-290))))
-(-13 (-10 -8 (-15 -3116 ($ $)) (-15 -1608 ($ $)) (-15 ** ($ $ $))))
-((-2441 (((-652 (-1168 |#1|)) (-1168 |#1|) |#1|) 35)) (-2434 ((|#2| |#2| |#1|) 39)) (-2784 ((|#2| |#2| |#1|) 41)) (-3591 ((|#2| |#2| |#1|) 40)))
-(((-291 |#1| |#2|) (-10 -7 (-15 -2434 (|#2| |#2| |#1|)) (-15 -3591 (|#2| |#2| |#1|)) (-15 -2784 (|#2| |#2| |#1|)) (-15 -2441 ((-652 (-1168 |#1|)) (-1168 |#1|) |#1|))) (-370) (-1270 |#1|)) (T -291))
-((-2441 (*1 *2 *3 *4) (-12 (-4 *4 (-370)) (-5 *2 (-652 (-1168 *4))) (-5 *1 (-291 *4 *5)) (-5 *3 (-1168 *4)) (-4 *5 (-1270 *4)))) (-2784 (*1 *2 *2 *3) (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))) (-3591 (*1 *2 *2 *3) (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))) (-2434 (*1 *2 *2 *3) (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))))
-(-10 -7 (-15 -2434 (|#2| |#2| |#1|)) (-15 -3591 (|#2| |#2| |#1|)) (-15 -2784 (|#2| |#2| |#1|)) (-15 -2441 ((-652 (-1168 |#1|)) (-1168 |#1|) |#1|)))
-((-2196 ((|#2| $ |#1|) 6)))
-(((-292 |#1| |#2|) (-141) (-1229) (-1229)) (T -292))
-((-2196 (*1 *2 *1 *3) (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1229)) (-4 *2 (-1229)))))
-(-13 (-1229) (-10 -8 (-15 -2196 (|t#2| $ |t#1|))))
-(((-1229) . T))
-((-2453 ((|#3| $ |#2| |#3|) 12)) (-2380 ((|#3| $ |#2|) 10)))
-(((-293 |#1| |#2| |#3|) (-10 -8 (-15 -2453 (|#3| |#1| |#2| |#3|)) (-15 -2380 (|#3| |#1| |#2|))) (-294 |#2| |#3|) (-1111) (-1229)) (T -293))
-NIL
-(-10 -8 (-15 -2453 (|#3| |#1| |#2| |#3|)) (-15 -2380 (|#3| |#1| |#2|)))
-((-3140 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4455)))) (-2453 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) 11)) (-2196 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-294 |#1| |#2|) (-141) (-1111) (-1229)) (T -294))
-((-2196 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))) (-2380 (*1 *2 *1 *3) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))) (-3140 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))) (-2453 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))))
-(-13 (-292 |t#1| |t#2|) (-10 -8 (-15 -2196 (|t#2| $ |t#1| |t#2|)) (-15 -2380 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4455)) (PROGN (-15 -3140 (|t#2| $ |t#1| |t#2|)) (-15 -2453 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-292 |#1| |#2|) . T) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 37)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 44)) (-3009 (($ $) 41)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2780 (($ $ $) 35)) (-2865 (($ |#2| |#3|) 18)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1886 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1929 ((|#3| $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 19)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3982 (((-3 $ "failed") $ $) NIL)) (-3847 (((-779) $) 36)) (-2196 ((|#2| $ |#2|) 46)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 23)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2131 (($) 31 T CONST)) (-2143 (($) 39 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 40)))
-(((-295 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-313) (-292 |#2| |#2|) (-10 -8 (-15 -1929 (|#3| $)) (-15 -2940 (|#2| $)) (-15 -2865 ($ |#2| |#3|)) (-15 -3982 ((-3 $ "failed") $ $)) (-15 -2062 ((-3 $ "failed") $)) (-15 -1322 ($ $)))) (-174) (-1255 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -295))
-((-2062 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1929 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-295 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1255 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2940 (*1 *2 *1) (-12 (-4 *2 (-1255 *3)) (-5 *1 (-295 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2865 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-295 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1255 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3982 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1322 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
-(-13 (-313) (-292 |#2| |#2|) (-10 -8 (-15 -1929 (|#3| $)) (-15 -2940 (|#2| $)) (-15 -2865 ($ |#2| |#3|)) (-15 -3982 ((-3 $ "failed") $ $)) (-15 -2062 ((-3 $ "failed") $)) (-15 -1322 ($ $))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 33)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-296) (-141)) (T -296))
-NIL
-(-13 (-1060) (-111 $ $) (-10 -7 (-6 -4447)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-3823 (((-652 (-1096)) $) 10)) (-2253 (($ (-514) (-514) (-1115) $) 19)) (-3474 (($ (-514) (-652 (-974)) $) 23)) (-2403 (($) 25)) (-3460 (((-699 (-1115)) (-514) (-514) $) 18)) (-3680 (((-652 (-974)) (-514) $) 22)) (-1613 (($) 7)) (-1823 (($) 24)) (-2940 (((-870) $) 29)) (-2775 (($) 26)))
-(((-297) (-13 (-621 (-870)) (-10 -8 (-15 -1613 ($)) (-15 -3823 ((-652 (-1096)) $)) (-15 -3460 ((-699 (-1115)) (-514) (-514) $)) (-15 -2253 ($ (-514) (-514) (-1115) $)) (-15 -3680 ((-652 (-974)) (-514) $)) (-15 -3474 ($ (-514) (-652 (-974)) $)) (-15 -1823 ($)) (-15 -2403 ($)) (-15 -2775 ($))))) (T -297))
-((-1613 (*1 *1) (-5 *1 (-297))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-652 (-1096))) (-5 *1 (-297)))) (-3460 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-1115))) (-5 *1 (-297)))) (-2253 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-514)) (-5 *3 (-1115)) (-5 *1 (-297)))) (-3680 (*1 *2 *3 *1) (-12 (-5 *3 (-514)) (-5 *2 (-652 (-974))) (-5 *1 (-297)))) (-3474 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-514)) (-5 *3 (-652 (-974))) (-5 *1 (-297)))) (-1823 (*1 *1) (-5 *1 (-297))) (-2403 (*1 *1) (-5 *1 (-297))) (-2775 (*1 *1) (-5 *1 (-297))))
-(-13 (-621 (-870)) (-10 -8 (-15 -1613 ($)) (-15 -3823 ((-652 (-1096)) $)) (-15 -3460 ((-699 (-1115)) (-514) (-514) $)) (-15 -2253 ($ (-514) (-514) (-1115) $)) (-15 -3680 ((-652 (-974)) (-514) $)) (-15 -3474 ($ (-514) (-652 (-974)) $)) (-15 -1823 ($)) (-15 -2403 ($)) (-15 -2775 ($))))
-((-3871 (((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |geneigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|)))) 102)) (-3069 (((-652 (-697 (-415 (-961 |#1|)))) (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|)))))) (-697 (-415 (-961 |#1|)))) 97) (((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))) (-779) (-779)) 41)) (-1923 (((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|)))) 99)) (-1826 (((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|)))) 75)) (-2799 (((-652 (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (-697 (-415 (-961 |#1|)))) 74)) (-4251 (((-961 |#1|) (-697 (-415 (-961 |#1|)))) 55) (((-961 |#1|) (-697 (-415 (-961 |#1|))) (-1188)) 56)))
-(((-298 |#1|) (-10 -7 (-15 -4251 ((-961 |#1|) (-697 (-415 (-961 |#1|))) (-1188))) (-15 -4251 ((-961 |#1|) (-697 (-415 (-961 |#1|))))) (-15 -2799 ((-652 (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (-697 (-415 (-961 |#1|))))) (-15 -1826 ((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))))) (-15 -3069 ((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))) (-779) (-779))) (-15 -3069 ((-652 (-697 (-415 (-961 |#1|)))) (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|)))))) (-697 (-415 (-961 |#1|))))) (-15 -3871 ((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |geneigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|))))) (-15 -1923 ((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|)))))) (-460)) (T -298))
-((-1923 (*1 *2 *3) (-12 (-4 *4 (-460)) (-5 *2 (-652 (-2 (|:| |eigval| (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 *4)))))))) (-5 *1 (-298 *4)) (-5 *3 (-697 (-415 (-961 *4)))))) (-3871 (*1 *2 *3) (-12 (-4 *4 (-460)) (-5 *2 (-652 (-2 (|:| |eigval| (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4)))) (|:| |geneigvec| (-652 (-697 (-415 (-961 *4)))))))) (-5 *1 (-298 *4)) (-5 *3 (-697 (-415 (-961 *4)))))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-415 (-961 *5)) (-1177 (-1188) (-961 *5)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 *4)))) (-4 *5 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *5))))) (-5 *1 (-298 *5)) (-5 *4 (-697 (-415 (-961 *5)))))) (-3069 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-415 (-961 *6)) (-1177 (-1188) (-961 *6)))) (-5 *5 (-779)) (-4 *6 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *6))))) (-5 *1 (-298 *6)) (-5 *4 (-697 (-415 (-961 *6)))))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-415 (-961 *5)) (-1177 (-1188) (-961 *5)))) (-4 *5 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *5))))) (-5 *1 (-298 *5)) (-5 *4 (-697 (-415 (-961 *5)))))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 *4)))) (-4 *4 (-460)) (-5 *2 (-652 (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4))))) (-5 *1 (-298 *4)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 *4)))) (-5 *2 (-961 *4)) (-5 *1 (-298 *4)) (-4 *4 (-460)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-415 (-961 *5)))) (-5 *4 (-1188)) (-5 *2 (-961 *5)) (-5 *1 (-298 *5)) (-4 *5 (-460)))))
-(-10 -7 (-15 -4251 ((-961 |#1|) (-697 (-415 (-961 |#1|))) (-1188))) (-15 -4251 ((-961 |#1|) (-697 (-415 (-961 |#1|))))) (-15 -2799 ((-652 (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (-697 (-415 (-961 |#1|))))) (-15 -1826 ((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))))) (-15 -3069 ((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))) (-779) (-779))) (-15 -3069 ((-652 (-697 (-415 (-961 |#1|)))) (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|)))))) (-697 (-415 (-961 |#1|))))) (-15 -3871 ((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |geneigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|))))) (-15 -1923 ((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|))))))
-((-1776 (((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)) 14)))
-(((-299 |#1| |#2|) (-10 -7 (-15 -1776 ((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)))) (-1229) (-1229)) (T -299))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-300 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-300 *6)) (-5 *1 (-299 *5 *6)))))
-(-10 -7 (-15 -1776 ((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2697 (((-112) $) NIL (|has| |#1| (-21)))) (-2283 (($ $) 12)) (-3330 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2539 (($ $ $) 95 (|has| |#1| (-308)))) (-3281 (($) NIL (-2813 (|has| |#1| (-21)) (|has| |#1| (-734))) CONST)) (-3207 (($ $) 51 (|has| |#1| (-21)))) (-3189 (((-3 $ "failed") $) 62 (|has| |#1| (-734)))) (-1807 ((|#1| $) 11)) (-2062 (((-3 $ "failed") $) 60 (|has| |#1| (-734)))) (-1886 (((-112) $) NIL (|has| |#1| (-734)))) (-1776 (($ (-1 |#1| |#1|) $) 14)) (-1794 ((|#1| $) 10)) (-3975 (($ $) 50 (|has| |#1| (-21)))) (-1610 (((-3 $ "failed") $) 61 (|has| |#1| (-734)))) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1322 (($ $) 64 (-2813 (|has| |#1| (-370)) (|has| |#1| (-481))))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-4072 (((-652 $) $) 85 (|has| |#1| (-564)))) (-2641 (($ $ $) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 $)) 28 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-1188) |#1|) 17 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 21 (|has| |#1| (-522 (-1188) |#1|)))) (-2687 (($ |#1| |#1|) 9)) (-4224 (((-135)) 90 (|has| |#1| (-370)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 87 (|has| |#1| (-909 (-1188))))) (-1516 (($ $ $) NIL (|has| |#1| (-481)))) (-4326 (($ $ $) NIL (|has| |#1| (-481)))) (-2940 (($ (-572)) NIL (|has| |#1| (-1060))) (((-112) $) 37 (|has| |#1| (-1111))) (((-870) $) 36 (|has| |#1| (-1111)))) (-4249 (((-779)) 67 (|has| |#1| (-1060)) CONST)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2131 (($) 47 (|has| |#1| (-21)) CONST)) (-2143 (($) 57 (|has| |#1| (-734)) CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188))))) (-2978 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1111)))) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) 92 (-2813 (|has| |#1| (-370)) (|has| |#1| (-481))))) (-3089 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3075 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-572)) NIL (|has| |#1| (-481))) (($ $ (-779)) NIL (|has| |#1| (-734))) (($ $ (-930)) NIL (|has| |#1| (-1123)))) (* (($ $ |#1|) 55 (|has| |#1| (-1123))) (($ |#1| $) 54 (|has| |#1| (-1123))) (($ $ $) 53 (|has| |#1| (-1123))) (($ (-572) $) 70 (|has| |#1| (-21))) (($ (-779) $) NIL (|has| |#1| (-21))) (($ (-930) $) NIL (|has| |#1| (-25)))))
-(((-300 |#1|) (-13 (-1229) (-10 -8 (-15 -2978 ($ |#1| |#1|)) (-15 -2687 ($ |#1| |#1|)) (-15 -2283 ($ $)) (-15 -1794 (|#1| $)) (-15 -1807 (|#1| $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-522 (-1188) |#1|)) (-6 (-522 (-1188) |#1|)) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-6 (-621 (-112))) (IF (|has| |#1| (-315 |#1|)) (PROGN (-15 -2641 ($ $ $)) (-15 -2641 ($ $ (-652 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3075 ($ |#1| $)) (-15 -3075 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3975 ($ $)) (-15 -3207 ($ $)) (-15 -3089 ($ |#1| $)) (-15 -3089 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1123)) (PROGN (-6 (-1123)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-734)) (PROGN (-6 (-734)) (-15 -1610 ((-3 $ "failed") $)) (-15 -3189 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-481)) (PROGN (-6 (-481)) (-15 -1610 ((-3 $ "failed") $)) (-15 -3189 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-6 (-1060)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-725 |#1|)) |%noBranch|) (IF (|has| |#1| (-564)) (-15 -4072 ((-652 $) $)) |%noBranch|) (IF (|has| |#1| (-909 (-1188))) (-6 (-909 (-1188))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-6 (-1286 |#1|)) (-15 -3106 ($ $ $)) (-15 -1322 ($ $))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -2539 ($ $ $)) |%noBranch|))) (-1229)) (T -300))
-((-2978 (*1 *1 *2 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-2687 (*1 *1 *2 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-2283 (*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-1794 (*1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-1807 (*1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-300 *3)))) (-2641 (*1 *1 *1 *1) (-12 (-4 *2 (-315 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)) (-5 *1 (-300 *2)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-300 *3))) (-4 *3 (-315 *3)) (-4 *3 (-1111)) (-4 *3 (-1229)) (-5 *1 (-300 *3)))) (-3075 (*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-25)) (-4 *2 (-1229)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-25)) (-4 *2 (-1229)))) (-3975 (*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))) (-3207 (*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))) (-3089 (*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))) (-1610 (*1 *1 *1) (|partial| -12 (-5 *1 (-300 *2)) (-4 *2 (-734)) (-4 *2 (-1229)))) (-3189 (*1 *1 *1) (|partial| -12 (-5 *1 (-300 *2)) (-4 *2 (-734)) (-4 *2 (-1229)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-652 (-300 *3))) (-5 *1 (-300 *3)) (-4 *3 (-564)) (-4 *3 (-1229)))) (-2539 (*1 *1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-308)) (-4 *2 (-1229)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1123)) (-4 *2 (-1229)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1123)) (-4 *2 (-1229)))) (-3106 (*1 *1 *1 *1) (-2813 (-12 (-5 *1 (-300 *2)) (-4 *2 (-370)) (-4 *2 (-1229))) (-12 (-5 *1 (-300 *2)) (-4 *2 (-481)) (-4 *2 (-1229))))) (-1322 (*1 *1 *1) (-2813 (-12 (-5 *1 (-300 *2)) (-4 *2 (-370)) (-4 *2 (-1229))) (-12 (-5 *1 (-300 *2)) (-4 *2 (-481)) (-4 *2 (-1229))))))
-(-13 (-1229) (-10 -8 (-15 -2978 ($ |#1| |#1|)) (-15 -2687 ($ |#1| |#1|)) (-15 -2283 ($ $)) (-15 -1794 (|#1| $)) (-15 -1807 (|#1| $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-522 (-1188) |#1|)) (-6 (-522 (-1188) |#1|)) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-6 (-621 (-112))) (IF (|has| |#1| (-315 |#1|)) (PROGN (-15 -2641 ($ $ $)) (-15 -2641 ($ $ (-652 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3075 ($ |#1| $)) (-15 -3075 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3975 ($ $)) (-15 -3207 ($ $)) (-15 -3089 ($ |#1| $)) (-15 -3089 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1123)) (PROGN (-6 (-1123)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-734)) (PROGN (-6 (-734)) (-15 -1610 ((-3 $ "failed") $)) (-15 -3189 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-481)) (PROGN (-6 (-481)) (-15 -1610 ((-3 $ "failed") $)) (-15 -3189 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-6 (-1060)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-725 |#1|)) |%noBranch|) (IF (|has| |#1| (-564)) (-15 -4072 ((-652 $) $)) |%noBranch|) (IF (|has| |#1| (-909 (-1188))) (-6 (-909 (-1188))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-6 (-1286 |#1|)) (-15 -3106 ($ $ $)) (-15 -1322 ($ $))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -2539 ($ $ $)) |%noBranch|)))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3176 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#2| $ |#1| |#2|) NIL)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 |#2| "failed") |#1| $) NIL)) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) NIL)) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) NIL)) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 ((|#1| $) NIL (|has| |#1| (-858)))) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3374 ((|#1| $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-1761 (((-652 |#1|) $) NIL)) (-4198 (((-112) |#1| $) NIL)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1986 (((-652 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 ((|#2| $) NIL (|has| |#1| (-858)))) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-2940 (((-870) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-301 |#1| |#2|) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454))) (-1111) (-1111)) (T -301))
-NIL
-(-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))
-((-2671 (((-318) (-1170) (-652 (-1170))) 17) (((-318) (-1170) (-1170)) 16) (((-318) (-652 (-1170))) 15) (((-318) (-1170)) 14)))
-(((-302) (-10 -7 (-15 -2671 ((-318) (-1170))) (-15 -2671 ((-318) (-652 (-1170)))) (-15 -2671 ((-318) (-1170) (-1170))) (-15 -2671 ((-318) (-1170) (-652 (-1170)))))) (T -302))
-((-2671 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-1170))) (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302)))) (-2671 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-318)) (-5 *1 (-302)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302)))))
-(-10 -7 (-15 -2671 ((-318) (-1170))) (-15 -2671 ((-318) (-652 (-1170)))) (-15 -2671 ((-318) (-1170) (-1170))) (-15 -2671 ((-318) (-1170) (-652 (-1170)))))
-((-1776 ((|#2| (-1 |#2| |#1|) (-1170) (-620 |#1|)) 18)))
-(((-303 |#1| |#2|) (-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-1170) (-620 |#1|)))) (-308) (-1229)) (T -303))
-((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1170)) (-5 *5 (-620 *6)) (-4 *6 (-308)) (-4 *2 (-1229)) (-5 *1 (-303 *6 *2)))))
-(-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-1170) (-620 |#1|))))
-((-1776 ((|#2| (-1 |#2| |#1|) (-620 |#1|)) 17)))
-(((-304 |#1| |#2|) (-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-620 |#1|)))) (-308) (-308)) (T -304))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-620 *5)) (-4 *5 (-308)) (-4 *2 (-308)) (-5 *1 (-304 *5 *2)))))
-(-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-620 |#1|))))
-((-2582 (((-112) (-227)) 12)))
-(((-305 |#1| |#2|) (-10 -7 (-15 -2582 ((-112) (-227)))) (-227) (-227)) (T -305))
-((-2582 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-305 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2582 ((-112) (-227))))
-((-2345 (((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227)))) 118)) (-4272 (((-1168 (-227)) (-1279 (-322 (-227))) (-652 (-1188)) (-1105 (-851 (-227)))) 135) (((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227)))) 72)) (-4207 (((-652 (-1170)) (-1168 (-227))) NIL)) (-1484 (((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227)))) 69)) (-3876 (((-652 (-227)) (-961 (-415 (-572))) (-1188) (-1105 (-851 (-227)))) 59)) (-1661 (((-652 (-1170)) (-652 (-227))) NIL)) (-4204 (((-227) (-1105 (-851 (-227)))) 29)) (-1716 (((-227) (-1105 (-851 (-227)))) 30)) (-3679 (((-112) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-2171 (((-1170) (-227)) NIL)))
-(((-306) (-10 -7 (-15 -4204 ((-227) (-1105 (-851 (-227))))) (-15 -1716 ((-227) (-1105 (-851 (-227))))) (-15 -3679 ((-112) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1484 ((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227))))) (-15 -2345 ((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -4272 ((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -4272 ((-1168 (-227)) (-1279 (-322 (-227))) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -3876 ((-652 (-227)) (-961 (-415 (-572))) (-1188) (-1105 (-851 (-227))))) (-15 -2171 ((-1170) (-227))) (-15 -1661 ((-652 (-1170)) (-652 (-227)))) (-15 -4207 ((-652 (-1170)) (-1168 (-227)))))) (T -306))
-((-4207 (*1 *2 *3) (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-306)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-306)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-306)))) (-3876 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *4 (-1188)) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-306)))) (-4272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *4 (-652 (-1188))) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))) (-4272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-652 (-1188))) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))) (-2345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-652 (-1188))) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))) (-1484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-1188)) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-306)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-306)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-306)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-306)))))
-(-10 -7 (-15 -4204 ((-227) (-1105 (-851 (-227))))) (-15 -1716 ((-227) (-1105 (-851 (-227))))) (-15 -3679 ((-112) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1484 ((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227))))) (-15 -2345 ((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -4272 ((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -4272 ((-1168 (-227)) (-1279 (-322 (-227))) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -3876 ((-652 (-227)) (-961 (-415 (-572))) (-1188) (-1105 (-851 (-227))))) (-15 -2171 ((-1170) (-227))) (-15 -1661 ((-652 (-1170)) (-652 (-227)))) (-15 -4207 ((-652 (-1170)) (-1168 (-227)))))
-((-4090 (((-652 (-620 $)) $) 27)) (-2539 (($ $ (-300 $)) 78) (($ $ (-652 (-300 $))) 139) (($ $ (-652 (-620 $)) (-652 $)) NIL)) (-1695 (((-3 (-620 $) "failed") $) 127)) (-2204 (((-620 $) $) 126)) (-3033 (($ $) 17) (($ (-652 $)) 54)) (-4085 (((-652 (-115)) $) 35)) (-4171 (((-115) (-115)) 88)) (-2597 (((-112) $) 150)) (-1776 (($ (-1 $ $) (-620 $)) 86)) (-3369 (((-3 (-620 $) "failed") $) 94)) (-1774 (($ (-115) $) 59) (($ (-115) (-652 $)) 110)) (-2695 (((-112) $ (-115)) 132) (((-112) $ (-1188)) 131)) (-1839 (((-779) $) 44)) (-2202 (((-112) $ $) 57) (((-112) $ (-1188)) 49)) (-2003 (((-112) $) 148)) (-2641 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL) (($ $ (-652 (-300 $))) 137) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) 81) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) 67) (($ $ (-1188) (-1 $ $)) 72) (($ $ (-652 (-115)) (-652 (-1 $ $))) 80) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) 82) (($ $ (-115) (-1 $ (-652 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2196 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-652 $)) 123)) (-2904 (($ $) 51) (($ $ $) 135)) (-3952 (($ $) 15) (($ (-652 $)) 53)) (-4406 (((-112) (-115)) 21)))
-(((-307 |#1|) (-10 -8 (-15 -2597 ((-112) |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -2641 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-115) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| |#1|)))) (-15 -2641 (|#1| |#1| (-1188) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-1188) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| |#1|)))) (-15 -2202 ((-112) |#1| (-1188))) (-15 -2202 ((-112) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#1| |#1|) (-620 |#1|))) (-15 -1774 (|#1| (-115) (-652 |#1|))) (-15 -1774 (|#1| (-115) |#1|)) (-15 -2695 ((-112) |#1| (-1188))) (-15 -2695 ((-112) |#1| (-115))) (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -4085 ((-652 (-115)) |#1|)) (-15 -4090 ((-652 (-620 |#1|)) |#1|)) (-15 -3369 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -1839 ((-779) |#1|)) (-15 -2904 (|#1| |#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -3033 (|#1| (-652 |#1|))) (-15 -3033 (|#1| |#1|)) (-15 -3952 (|#1| (-652 |#1|))) (-15 -3952 (|#1| |#1|)) (-15 -2539 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -2539 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -2539 (|#1| |#1| (-300 |#1|))) (-15 -2196 (|#1| (-115) (-652 |#1|))) (-15 -2196 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -2641 (|#1| |#1| (-620 |#1|) |#1|)) (-15 -1695 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -2204 ((-620 |#1|) |#1|))) (-308)) (T -307))
-((-4171 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-307 *3)) (-4 *3 (-308)))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-307 *4)) (-4 *4 (-308)))))
-(-10 -8 (-15 -2597 ((-112) |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -2641 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-115) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| |#1|)))) (-15 -2641 (|#1| |#1| (-1188) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-1188) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| |#1|)))) (-15 -2202 ((-112) |#1| (-1188))) (-15 -2202 ((-112) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#1| |#1|) (-620 |#1|))) (-15 -1774 (|#1| (-115) (-652 |#1|))) (-15 -1774 (|#1| (-115) |#1|)) (-15 -2695 ((-112) |#1| (-1188))) (-15 -2695 ((-112) |#1| (-115))) (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -4085 ((-652 (-115)) |#1|)) (-15 -4090 ((-652 (-620 |#1|)) |#1|)) (-15 -3369 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -1839 ((-779) |#1|)) (-15 -2904 (|#1| |#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -3033 (|#1| (-652 |#1|))) (-15 -3033 (|#1| |#1|)) (-15 -3952 (|#1| (-652 |#1|))) (-15 -3952 (|#1| |#1|)) (-15 -2539 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -2539 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -2539 (|#1| |#1| (-300 |#1|))) (-15 -2196 (|#1| (-115) (-652 |#1|))) (-15 -2196 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -2641 (|#1| |#1| (-620 |#1|) |#1|)) (-15 -1695 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -2204 ((-620 |#1|) |#1|)))
-((-2846 (((-112) $ $) 7)) (-4090 (((-652 (-620 $)) $) 39)) (-2539 (($ $ (-300 $)) 51) (($ $ (-652 (-300 $))) 50) (($ $ (-652 (-620 $)) (-652 $)) 49)) (-1695 (((-3 (-620 $) "failed") $) 64)) (-2204 (((-620 $) $) 65)) (-3033 (($ $) 46) (($ (-652 $)) 45)) (-4085 (((-652 (-115)) $) 38)) (-4171 (((-115) (-115)) 37)) (-2597 (((-112) $) 17 (|has| $ (-1049 (-572))))) (-2969 (((-1184 $) (-620 $)) 20 (|has| $ (-1060)))) (-1776 (($ (-1 $ $) (-620 $)) 31)) (-3369 (((-3 (-620 $) "failed") $) 41)) (-4347 (((-1170) $) 10)) (-4161 (((-652 (-620 $)) $) 40)) (-1774 (($ (-115) $) 33) (($ (-115) (-652 $)) 32)) (-2695 (((-112) $ (-115)) 35) (((-112) $ (-1188)) 34)) (-1839 (((-779) $) 42)) (-3964 (((-1131) $) 11)) (-2202 (((-112) $ $) 30) (((-112) $ (-1188)) 29)) (-2003 (((-112) $) 18 (|has| $ (-1049 (-572))))) (-2641 (($ $ (-620 $) $) 62) (($ $ (-652 (-620 $)) (-652 $)) 61) (($ $ (-652 (-300 $))) 60) (($ $ (-300 $)) 59) (($ $ $ $) 58) (($ $ (-652 $) (-652 $)) 57) (($ $ (-652 (-1188)) (-652 (-1 $ $))) 28) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) 27) (($ $ (-1188) (-1 $ (-652 $))) 26) (($ $ (-1188) (-1 $ $)) 25) (($ $ (-652 (-115)) (-652 (-1 $ $))) 24) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) 23) (($ $ (-115) (-1 $ (-652 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2196 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-652 $)) 52)) (-2904 (($ $) 44) (($ $ $) 43)) (-3764 (($ $) 19 (|has| $ (-1060)))) (-2940 (((-870) $) 12) (($ (-620 $)) 63)) (-3952 (($ $) 48) (($ (-652 $)) 47)) (-4406 (((-112) (-115)) 36)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-308) (-141)) (T -308))
-((-2196 (*1 *1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-2196 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-2196 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-2196 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-2196 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 *1)) (-4 *1 (-308)))) (-2539 (*1 *1 *1 *2) (-12 (-5 *2 (-300 *1)) (-4 *1 (-308)))) (-2539 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-300 *1))) (-4 *1 (-308)))) (-2539 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-620 *1))) (-5 *3 (-652 *1)) (-4 *1 (-308)))) (-3952 (*1 *1 *1) (-4 *1 (-308))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-308)))) (-3033 (*1 *1 *1) (-4 *1 (-308))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-308)))) (-2904 (*1 *1 *1) (-4 *1 (-308))) (-2904 (*1 *1 *1 *1) (-4 *1 (-308))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-779)))) (-3369 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-308)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-652 (-620 *1))) (-4 *1 (-308)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-652 (-620 *1))) (-4 *1 (-308)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-652 (-115))))) (-4171 (*1 *2 *2) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-4406 (*1 *2 *3) (-12 (-4 *1 (-308)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2695 (*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2695 (*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-1188)) (-5 *2 (-112)))) (-1774 (*1 *1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 *1)) (-4 *1 (-308)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-620 *1)) (-4 *1 (-308)))) (-2202 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-2202 (*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-1188)) (-5 *2 (-112)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-1 *1 *1))) (-4 *1 (-308)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-1 *1 (-652 *1)))) (-4 *1 (-308)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1 *1 (-652 *1))) (-4 *1 (-308)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1 *1 *1)) (-4 *1 (-308)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 (-1 *1 *1))) (-4 *1 (-308)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 (-1 *1 (-652 *1)))) (-4 *1 (-308)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-652 *1))) (-4 *1 (-308)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-308)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1060)) (-4 *1 (-308)) (-5 *2 (-1184 *1)))) (-3764 (*1 *1 *1) (-12 (-4 *1 (-1060)) (-4 *1 (-308)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1049 (-572))) (-4 *1 (-308)) (-5 *2 (-112)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-1049 (-572))) (-4 *1 (-308)) (-5 *2 (-112)))))
-(-13 (-1111) (-1049 (-620 $)) (-522 (-620 $) $) (-315 $) (-10 -8 (-15 -2196 ($ (-115) $)) (-15 -2196 ($ (-115) $ $)) (-15 -2196 ($ (-115) $ $ $)) (-15 -2196 ($ (-115) $ $ $ $)) (-15 -2196 ($ (-115) (-652 $))) (-15 -2539 ($ $ (-300 $))) (-15 -2539 ($ $ (-652 (-300 $)))) (-15 -2539 ($ $ (-652 (-620 $)) (-652 $))) (-15 -3952 ($ $)) (-15 -3952 ($ (-652 $))) (-15 -3033 ($ $)) (-15 -3033 ($ (-652 $))) (-15 -2904 ($ $)) (-15 -2904 ($ $ $)) (-15 -1839 ((-779) $)) (-15 -3369 ((-3 (-620 $) "failed") $)) (-15 -4161 ((-652 (-620 $)) $)) (-15 -4090 ((-652 (-620 $)) $)) (-15 -4085 ((-652 (-115)) $)) (-15 -4171 ((-115) (-115))) (-15 -4406 ((-112) (-115))) (-15 -2695 ((-112) $ (-115))) (-15 -2695 ((-112) $ (-1188))) (-15 -1774 ($ (-115) $)) (-15 -1774 ($ (-115) (-652 $))) (-15 -1776 ($ (-1 $ $) (-620 $))) (-15 -2202 ((-112) $ $)) (-15 -2202 ((-112) $ (-1188))) (-15 -2641 ($ $ (-652 (-1188)) (-652 (-1 $ $)))) (-15 -2641 ($ $ (-652 (-1188)) (-652 (-1 $ (-652 $))))) (-15 -2641 ($ $ (-1188) (-1 $ (-652 $)))) (-15 -2641 ($ $ (-1188) (-1 $ $))) (-15 -2641 ($ $ (-652 (-115)) (-652 (-1 $ $)))) (-15 -2641 ($ $ (-652 (-115)) (-652 (-1 $ (-652 $))))) (-15 -2641 ($ $ (-115) (-1 $ (-652 $)))) (-15 -2641 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1060)) (PROGN (-15 -2969 ((-1184 $) (-620 $))) (-15 -3764 ($ $))) |%noBranch|) (IF (|has| $ (-1049 (-572))) (PROGN (-15 -2003 ((-112) $)) (-15 -2597 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-624 #0=(-620 $)) . T) ((-621 (-870)) . T) ((-315 $) . T) ((-522 (-620 $) $) . T) ((-522 $ $) . T) ((-1049 #0#) . T) ((-1111) . T))
-((-3846 (((-652 |#1|) (-652 |#1|)) 10)))
-(((-309 |#1|) (-10 -7 (-15 -3846 ((-652 |#1|) (-652 |#1|)))) (-856)) (T -309))
-((-3846 (*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-856)) (-5 *1 (-309 *3)))))
-(-10 -7 (-15 -3846 ((-652 |#1|) (-652 |#1|))))
-((-1776 (((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|)) 17)))
-(((-310 |#1| |#2|) (-10 -7 (-15 -1776 ((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|)))) (-1060) (-1060)) (T -310))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-697 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-697 *6)) (-5 *1 (-310 *5 *6)))))
-(-10 -7 (-15 -1776 ((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|))))
-((-2609 (((-1279 (-322 (-386))) (-1279 (-322 (-227)))) 110)) (-2575 (((-1105 (-851 (-227))) (-1105 (-851 (-386)))) 43)) (-4207 (((-652 (-1170)) (-1168 (-227))) 92)) (-4428 (((-322 (-386)) (-961 (-227))) 53)) (-1957 (((-227) (-961 (-227))) 49)) (-2891 (((-1170) (-386)) 195)) (-2217 (((-851 (-227)) (-851 (-386))) 37)) (-1884 (((-2 (|:| |additions| (-572)) (|:| |multiplications| (-572)) (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572))) (-1279 (-322 (-227)))) 165)) (-3362 (((-1046) (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046)))) 207) (((-1046) (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))))) 205)) (-3544 (((-697 (-227)) (-652 (-227)) (-779)) 19)) (-2850 (((-1279 (-707)) (-652 (-227))) 99)) (-1661 (((-652 (-1170)) (-652 (-227))) 79)) (-1780 (((-3 (-322 (-227)) "failed") (-322 (-227))) 128)) (-2582 (((-112) (-227) (-1105 (-851 (-227)))) 117)) (-2269 (((-1046) (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))) 224)) (-4204 (((-227) (-1105 (-851 (-227)))) 112)) (-1716 (((-227) (-1105 (-851 (-227)))) 113)) (-3818 (((-227) (-415 (-572))) 31)) (-2056 (((-1170) (-386)) 77)) (-3122 (((-227) (-386)) 22)) (-2518 (((-386) (-1279 (-322 (-227)))) 177)) (-1636 (((-322 (-227)) (-322 (-386))) 28)) (-1992 (((-415 (-572)) (-322 (-227))) 56)) (-3165 (((-322 (-415 (-572))) (-322 (-227))) 73)) (-1757 (((-322 (-386)) (-322 (-227))) 103)) (-1912 (((-227) (-322 (-227))) 57)) (-2762 (((-652 (-227)) (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) 68)) (-3379 (((-1105 (-851 (-227))) (-1105 (-851 (-227)))) 65)) (-2171 (((-1170) (-227)) 76)) (-1684 (((-707) (-227)) 95)) (-1820 (((-415 (-572)) (-227)) 58)) (-1978 (((-322 (-386)) (-227)) 52)) (-1835 (((-652 (-1105 (-851 (-227)))) (-652 (-1105 (-851 (-386))))) 46)) (-4155 (((-1046) (-652 (-1046))) 191) (((-1046) (-1046) (-1046)) 185)) (-3160 (((-1046) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221)))
-(((-311) (-10 -7 (-15 -3122 ((-227) (-386))) (-15 -1636 ((-322 (-227)) (-322 (-386)))) (-15 -2217 ((-851 (-227)) (-851 (-386)))) (-15 -2575 ((-1105 (-851 (-227))) (-1105 (-851 (-386))))) (-15 -1835 ((-652 (-1105 (-851 (-227)))) (-652 (-1105 (-851 (-386)))))) (-15 -1820 ((-415 (-572)) (-227))) (-15 -1992 ((-415 (-572)) (-322 (-227)))) (-15 -1912 ((-227) (-322 (-227)))) (-15 -1780 ((-3 (-322 (-227)) "failed") (-322 (-227)))) (-15 -2518 ((-386) (-1279 (-322 (-227))))) (-15 -1884 ((-2 (|:| |additions| (-572)) (|:| |multiplications| (-572)) (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572))) (-1279 (-322 (-227))))) (-15 -3165 ((-322 (-415 (-572))) (-322 (-227)))) (-15 -3379 ((-1105 (-851 (-227))) (-1105 (-851 (-227))))) (-15 -2762 ((-652 (-227)) (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))) (-15 -1684 ((-707) (-227))) (-15 -2850 ((-1279 (-707)) (-652 (-227)))) (-15 -1757 ((-322 (-386)) (-322 (-227)))) (-15 -2609 ((-1279 (-322 (-386))) (-1279 (-322 (-227))))) (-15 -2582 ((-112) (-227) (-1105 (-851 (-227))))) (-15 -2171 ((-1170) (-227))) (-15 -2056 ((-1170) (-386))) (-15 -1661 ((-652 (-1170)) (-652 (-227)))) (-15 -4207 ((-652 (-1170)) (-1168 (-227)))) (-15 -4204 ((-227) (-1105 (-851 (-227))))) (-15 -1716 ((-227) (-1105 (-851 (-227))))) (-15 -4155 ((-1046) (-1046) (-1046))) (-15 -4155 ((-1046) (-652 (-1046)))) (-15 -2891 ((-1170) (-386))) (-15 -3362 ((-1046) (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))))) (-15 -3362 ((-1046) (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))) (-15 -3160 ((-1046) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2269 ((-1046) (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))) (-15 -4428 ((-322 (-386)) (-961 (-227)))) (-15 -1957 ((-227) (-961 (-227)))) (-15 -1978 ((-322 (-386)) (-227))) (-15 -3818 ((-227) (-415 (-572)))) (-15 -3544 ((-697 (-227)) (-652 (-227)) (-779))))) (T -311))
-((-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-227))) (-5 *4 (-779)) (-5 *2 (-697 (-227))) (-5 *1 (-311)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-415 (-572))) (-5 *2 (-227)) (-5 *1 (-311)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-322 (-386))) (-5 *1 (-311)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-961 (-227))) (-5 *2 (-227)) (-5 *1 (-311)))) (-4428 (*1 *2 *3) (-12 (-5 *3 (-961 (-227))) (-5 *2 (-322 (-386))) (-5 *1 (-311)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046)))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1170)) (-5 *1 (-311)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-652 (-1046))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-4155 (*1 *2 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-311)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-311)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-311)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-311)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1170)) (-5 *1 (-311)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-311)))) (-2582 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-851 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-311)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-1279 (-322 (-386)))) (-5 *1 (-311)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-322 (-386))) (-5 *1 (-311)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1279 (-707))) (-5 *1 (-311)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-707)) (-5 *1 (-311)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-5 *2 (-652 (-227))) (-5 *1 (-311)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-1105 (-851 (-227)))) (-5 *1 (-311)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-322 (-415 (-572)))) (-5 *1 (-311)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-2 (|:| |additions| (-572)) (|:| |multiplications| (-572)) (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572)))) (-5 *1 (-311)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-386)) (-5 *1 (-311)))) (-1780 (*1 *2 *2) (|partial| -12 (-5 *2 (-322 (-227))) (-5 *1 (-311)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-227)) (-5 *1 (-311)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-415 (-572))) (-5 *1 (-311)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-415 (-572))) (-5 *1 (-311)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-652 (-1105 (-851 (-386))))) (-5 *2 (-652 (-1105 (-851 (-227))))) (-5 *1 (-311)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-386)))) (-5 *2 (-1105 (-851 (-227)))) (-5 *1 (-311)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-851 (-386))) (-5 *2 (-851 (-227))) (-5 *1 (-311)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-322 (-386))) (-5 *2 (-322 (-227))) (-5 *1 (-311)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-227)) (-5 *1 (-311)))))
-(-10 -7 (-15 -3122 ((-227) (-386))) (-15 -1636 ((-322 (-227)) (-322 (-386)))) (-15 -2217 ((-851 (-227)) (-851 (-386)))) (-15 -2575 ((-1105 (-851 (-227))) (-1105 (-851 (-386))))) (-15 -1835 ((-652 (-1105 (-851 (-227)))) (-652 (-1105 (-851 (-386)))))) (-15 -1820 ((-415 (-572)) (-227))) (-15 -1992 ((-415 (-572)) (-322 (-227)))) (-15 -1912 ((-227) (-322 (-227)))) (-15 -1780 ((-3 (-322 (-227)) "failed") (-322 (-227)))) (-15 -2518 ((-386) (-1279 (-322 (-227))))) (-15 -1884 ((-2 (|:| |additions| (-572)) (|:| |multiplications| (-572)) (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572))) (-1279 (-322 (-227))))) (-15 -3165 ((-322 (-415 (-572))) (-322 (-227)))) (-15 -3379 ((-1105 (-851 (-227))) (-1105 (-851 (-227))))) (-15 -2762 ((-652 (-227)) (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))) (-15 -1684 ((-707) (-227))) (-15 -2850 ((-1279 (-707)) (-652 (-227)))) (-15 -1757 ((-322 (-386)) (-322 (-227)))) (-15 -2609 ((-1279 (-322 (-386))) (-1279 (-322 (-227))))) (-15 -2582 ((-112) (-227) (-1105 (-851 (-227))))) (-15 -2171 ((-1170) (-227))) (-15 -2056 ((-1170) (-386))) (-15 -1661 ((-652 (-1170)) (-652 (-227)))) (-15 -4207 ((-652 (-1170)) (-1168 (-227)))) (-15 -4204 ((-227) (-1105 (-851 (-227))))) (-15 -1716 ((-227) (-1105 (-851 (-227))))) (-15 -4155 ((-1046) (-1046) (-1046))) (-15 -4155 ((-1046) (-652 (-1046)))) (-15 -2891 ((-1170) (-386))) (-15 -3362 ((-1046) (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))))) (-15 -3362 ((-1046) (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))) (-15 -3160 ((-1046) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2269 ((-1046) (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))) (-15 -4428 ((-322 (-386)) (-961 (-227)))) (-15 -1957 ((-227) (-961 (-227)))) (-15 -1978 ((-322 (-386)) (-227))) (-15 -3818 ((-227) (-415 (-572)))) (-15 -3544 ((-697 (-227)) (-652 (-227)) (-779))))
-((-4217 (((-112) $ $) 14)) (-2780 (($ $ $) 18)) (-2792 (($ $ $) 17)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 50)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 65)) (-2870 (($ $ $) 25) (($ (-652 $)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2834 (((-3 $ "failed") $ $) 21)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 53)))
-(((-312 |#1|) (-10 -8 (-15 -1959 ((-3 (-652 |#1|) "failed") (-652 |#1|) |#1|)) (-15 -3998 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3998 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2967 |#1|)) |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -2792 (|#1| |#1| |#1|)) (-15 -4217 ((-112) |#1| |#1|)) (-15 -1420 ((-3 (-652 |#1|) "failed") (-652 |#1|) |#1|)) (-15 -2037 ((-2 (|:| -1857 (-652 |#1|)) (|:| -2967 |#1|)) (-652 |#1|))) (-15 -2870 (|#1| (-652 |#1|))) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#1|))) (-313)) (T -312))
-NIL
-(-10 -8 (-15 -1959 ((-3 (-652 |#1|) "failed") (-652 |#1|) |#1|)) (-15 -3998 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3998 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2967 |#1|)) |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -2792 (|#1| |#1| |#1|)) (-15 -4217 ((-112) |#1| |#1|)) (-15 -1420 ((-3 (-652 |#1|) "failed") (-652 |#1|) |#1|)) (-15 -2037 ((-2 (|:| -1857 (-652 |#1|)) (|:| -2967 |#1|)) (-652 |#1|))) (-15 -2870 (|#1| (-652 |#1|))) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-4217 (((-112) $ $) 65)) (-3281 (($) 18 T CONST)) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-1886 (((-112) $) 35)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-313) (-141)) (T -313))
-((-4217 (*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-779)))) (-1669 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-313)))) (-2792 (*1 *1 *1 *1) (-4 *1 (-313))) (-2780 (*1 *1 *1 *1) (-4 *1 (-313))) (-3998 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2967 *1))) (-4 *1 (-313)))) (-3998 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-313)))) (-1959 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-652 *1)) (-4 *1 (-313)))))
-(-13 (-929) (-10 -8 (-15 -4217 ((-112) $ $)) (-15 -3847 ((-779) $)) (-15 -1669 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -2792 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -3998 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $)) (-15 -3998 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1959 ((-3 (-652 $) "failed") (-652 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2641 (($ $ (-652 |#2|) (-652 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-300 |#2|)) 11) (($ $ (-652 (-300 |#2|))) NIL)))
-(((-314 |#1| |#2|) (-10 -8 (-15 -2641 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -2641 (|#1| |#1| (-300 |#2|))) (-15 -2641 (|#1| |#1| |#2| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#2|) (-652 |#2|)))) (-315 |#2|) (-1111)) (T -314))
-NIL
-(-10 -8 (-15 -2641 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -2641 (|#1| |#1| (-300 |#2|))) (-15 -2641 (|#1| |#1| |#2| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#2|) (-652 |#2|))))
-((-2641 (($ $ (-652 |#1|) (-652 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-300 |#1|)) 11) (($ $ (-652 (-300 |#1|))) 10)))
-(((-315 |#1|) (-141) (-1111)) (T -315))
-((-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-300 *3)) (-4 *1 (-315 *3)) (-4 *3 (-1111)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-300 *3))) (-4 *1 (-315 *3)) (-4 *3 (-1111)))))
-(-13 (-522 |t#1| |t#1|) (-10 -8 (-15 -2641 ($ $ (-300 |t#1|))) (-15 -2641 ($ $ (-652 (-300 |t#1|))))))
-(((-522 |#1| |#1|) . T))
-((-2641 ((|#1| (-1 |#1| (-572)) (-1190 (-415 (-572)))) 26)))
-(((-316 |#1|) (-10 -7 (-15 -2641 (|#1| (-1 |#1| (-572)) (-1190 (-415 (-572)))))) (-38 (-415 (-572)))) (T -316))
-((-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-572))) (-5 *4 (-1190 (-415 (-572)))) (-5 *1 (-316 *2)) (-4 *2 (-38 (-415 (-572)))))))
-(-10 -7 (-15 -2641 (|#1| (-1 |#1| (-572)) (-1190 (-415 (-572))))))
-((-2846 (((-112) $ $) NIL)) (-4319 (((-572) $) 12)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4014 (((-1146) $) 9)) (-2940 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-317) (-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $)) (-15 -4319 ((-572) $))))) (T -317))
-((-4014 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-317)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-317)))))
-(-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $)) (-15 -4319 ((-572) $))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 7)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 9)))
-(((-318) (-1111)) (T -318))
-NIL
-(-1111)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 60)) (-2689 (((-1265 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-918)))) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-918)))) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-828)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-1265 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-572)))) (((-3 (-1264 |#2| |#3| |#4|) "failed") $) 26)) (-2204 (((-1265 |#1| |#2| |#3| |#4|) $) NIL) (((-1188) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-572)))) (((-572) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-572)))) (((-1264 |#2| |#3| |#4|) $) NIL)) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-1265 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1279 (-1265 |#1| |#2| |#3| |#4|)))) (-697 $) (-1279 $)) NIL) (((-697 (-1265 |#1| |#2| |#3| |#4|)) (-697 $)) NIL) (((-697 (-1265 |#1| |#2| |#3| |#4|)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-553)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3074 (((-112) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-895 (-386))))) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL)) (-2963 (((-1265 |#1| |#2| |#3| |#4|) $) 22)) (-2556 (((-3 $ "failed") $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1163)))) (-1623 (((-112) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-2427 (($ $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-1776 (($ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) $) NIL)) (-4043 (((-3 (-851 |#2|) "failed") $) 80)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-313)))) (-3462 (((-1265 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-918)))) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2641 (($ $ (-652 (-1265 |#1| |#2| |#3| |#4|)) (-652 (-1265 |#1| |#2| |#3| |#4|))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-315 (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-315 (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-300 (-1265 |#1| |#2| |#3| |#4|))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-315 (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-652 (-300 (-1265 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-315 (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-652 (-1188)) (-652 (-1265 |#1| |#2| |#3| |#4|))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-522 (-1188) (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-1188) (-1265 |#1| |#2| |#3| |#4|)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-522 (-1188) (-1265 |#1| |#2| |#3| |#4|))))) (-3847 (((-779) $) NIL)) (-2196 (($ $ (-1265 |#1| |#2| |#3| |#4|)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-292 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-779)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-1188)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) (-779)) NIL) (($ $ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|))) NIL)) (-1520 (($ $) NIL)) (-2974 (((-1265 |#1| |#2| |#3| |#4|) $) 19)) (-1835 (((-901 (-572)) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-622 (-544)))) (((-386) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1033))) (((-227) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1033)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-1265 |#1| |#2| |#3| |#4|) (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-1265 |#1| |#2| |#3| |#4|)) 30) (($ (-1188)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-1188)))) (($ (-1264 |#2| |#3| |#4|)) 37)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| (-1265 |#1| |#2| |#3| |#4|) (-918))) (|has| (-1265 |#1| |#2| |#3| |#4|) (-146))))) (-4249 (((-779)) NIL T CONST)) (-3614 (((-1265 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-553)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2700 (($ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-828)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-779)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-1188)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) (-779)) NIL) (($ $ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|))) NIL)) (-3039 (((-112) $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-3003 (((-112) $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-3106 (($ $ $) 35) (($ (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) 32)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-1265 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1265 |#1| |#2| |#3| |#4|)) NIL)))
-(((-319 |#1| |#2| |#3| |#4|) (-13 (-1003 (-1265 |#1| |#2| |#3| |#4|)) (-1049 (-1264 |#2| |#3| |#4|)) (-10 -8 (-15 -4043 ((-3 (-851 |#2|) "failed") $)) (-15 -2940 ($ (-1264 |#2| |#3| |#4|))))) (-13 (-1049 (-572)) (-647 (-572)) (-460)) (-13 (-27) (-1214) (-438 |#1|)) (-1188) |#2|) (T -319))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1264 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188)) (-14 *6 *4) (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460))) (-5 *1 (-319 *3 *4 *5 *6)))) (-4043 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460))) (-5 *2 (-851 *4)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188)) (-14 *6 *4))))
-(-13 (-1003 (-1265 |#1| |#2| |#3| |#4|)) (-1049 (-1264 |#2| |#3| |#4|)) (-10 -8 (-15 -4043 ((-3 (-851 |#2|) "failed") $)) (-15 -2940 ($ (-1264 |#2| |#3| |#4|)))))
-((-1776 (((-322 |#2|) (-1 |#2| |#1|) (-322 |#1|)) 13)))
-(((-320 |#1| |#2|) (-10 -7 (-15 -1776 ((-322 |#2|) (-1 |#2| |#1|) (-322 |#1|)))) (-1111) (-1111)) (T -320))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-322 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-322 *6)) (-5 *1 (-320 *5 *6)))))
-(-10 -7 (-15 -1776 ((-322 |#2|) (-1 |#2| |#1|) (-322 |#1|))))
-((-4400 (((-52) |#2| (-300 |#2|) (-779)) 40) (((-52) |#2| (-300 |#2|)) 32) (((-52) |#2| (-779)) 35) (((-52) |#2|) 33) (((-52) (-1188)) 26)) (-3620 (((-52) |#2| (-300 |#2|) (-415 (-572))) 59) (((-52) |#2| (-300 |#2|)) 56) (((-52) |#2| (-415 (-572))) 58) (((-52) |#2|) 57) (((-52) (-1188)) 55)) (-4422 (((-52) |#2| (-300 |#2|) (-415 (-572))) 54) (((-52) |#2| (-300 |#2|)) 51) (((-52) |#2| (-415 (-572))) 53) (((-52) |#2|) 52) (((-52) (-1188)) 50)) (-4411 (((-52) |#2| (-300 |#2|) (-572)) 47) (((-52) |#2| (-300 |#2|)) 44) (((-52) |#2| (-572)) 46) (((-52) |#2|) 45) (((-52) (-1188)) 43)))
-(((-321 |#1| |#2|) (-10 -7 (-15 -4400 ((-52) (-1188))) (-15 -4400 ((-52) |#2|)) (-15 -4400 ((-52) |#2| (-779))) (-15 -4400 ((-52) |#2| (-300 |#2|))) (-15 -4400 ((-52) |#2| (-300 |#2|) (-779))) (-15 -4411 ((-52) (-1188))) (-15 -4411 ((-52) |#2|)) (-15 -4411 ((-52) |#2| (-572))) (-15 -4411 ((-52) |#2| (-300 |#2|))) (-15 -4411 ((-52) |#2| (-300 |#2|) (-572))) (-15 -4422 ((-52) (-1188))) (-15 -4422 ((-52) |#2|)) (-15 -4422 ((-52) |#2| (-415 (-572)))) (-15 -4422 ((-52) |#2| (-300 |#2|))) (-15 -4422 ((-52) |#2| (-300 |#2|) (-415 (-572)))) (-15 -3620 ((-52) (-1188))) (-15 -3620 ((-52) |#2|)) (-15 -3620 ((-52) |#2| (-415 (-572)))) (-15 -3620 ((-52) |#2| (-300 |#2|))) (-15 -3620 ((-52) |#2| (-300 |#2|) (-415 (-572))))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -321))
-((-3620 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-300 *3)) (-5 *5 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *4 (-415 (-572))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-3620 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4))))) (-4422 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-300 *3)) (-5 *5 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-4422 (*1 *2 *3 *4) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)))) (-4422 (*1 *2 *3 *4) (-12 (-5 *4 (-415 (-572))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-4422 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-4422 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4))))) (-4411 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 *5) (-647 *5))) (-5 *5 (-572)) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-4411 (*1 *2 *3 *4) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)))) (-4411 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-4 *5 (-13 (-460) (-1049 *4) (-647 *4))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-4411 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-4411 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4))))) (-4400 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-300 *3)) (-5 *5 (-779)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-4400 (*1 *2 *3 *4) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)))) (-4400 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-4400 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4))))))
-(-10 -7 (-15 -4400 ((-52) (-1188))) (-15 -4400 ((-52) |#2|)) (-15 -4400 ((-52) |#2| (-779))) (-15 -4400 ((-52) |#2| (-300 |#2|))) (-15 -4400 ((-52) |#2| (-300 |#2|) (-779))) (-15 -4411 ((-52) (-1188))) (-15 -4411 ((-52) |#2|)) (-15 -4411 ((-52) |#2| (-572))) (-15 -4411 ((-52) |#2| (-300 |#2|))) (-15 -4411 ((-52) |#2| (-300 |#2|) (-572))) (-15 -4422 ((-52) (-1188))) (-15 -4422 ((-52) |#2|)) (-15 -4422 ((-52) |#2| (-415 (-572)))) (-15 -4422 ((-52) |#2| (-300 |#2|))) (-15 -4422 ((-52) |#2| (-300 |#2|) (-415 (-572)))) (-15 -3620 ((-52) (-1188))) (-15 -3620 ((-52) |#2|)) (-15 -3620 ((-52) |#2| (-415 (-572)))) (-15 -3620 ((-52) |#2| (-300 |#2|))) (-15 -3620 ((-52) |#2| (-300 |#2|) (-415 (-572)))))
-((-2846 (((-112) $ $) NIL)) (-2345 (((-652 $) $ (-1188)) NIL (|has| |#1| (-564))) (((-652 $) $) NIL (|has| |#1| (-564))) (((-652 $) (-1184 $) (-1188)) NIL (|has| |#1| (-564))) (((-652 $) (-1184 $)) NIL (|has| |#1| (-564))) (((-652 $) (-961 $)) NIL (|has| |#1| (-564)))) (-4164 (($ $ (-1188)) NIL (|has| |#1| (-564))) (($ $) NIL (|has| |#1| (-564))) (($ (-1184 $) (-1188)) NIL (|has| |#1| (-564))) (($ (-1184 $)) NIL (|has| |#1| (-564))) (($ (-961 $)) NIL (|has| |#1| (-564)))) (-2697 (((-112) $) 27 (-2813 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (-4353 (((-652 (-1188)) $) 368)) (-4191 (((-415 (-1184 $)) $ (-620 $)) NIL (|has| |#1| (-564)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-4090 (((-652 (-620 $)) $) NIL)) (-2358 (($ $) 171 (|has| |#1| (-564)))) (-2242 (($ $) 147 (|has| |#1| (-564)))) (-4150 (($ $ (-1103 $)) 232 (|has| |#1| (-564))) (($ $ (-1188)) 228 (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) NIL (-2813 (|has| |#1| (-21)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (-2539 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) 386) (($ $ (-652 (-620 $)) (-652 $)) 430)) (-2603 (((-426 (-1184 $)) (-1184 $)) 308 (-12 (|has| |#1| (-460)) (|has| |#1| (-564))))) (-3517 (($ $) NIL (|has| |#1| (-564)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-564)))) (-4227 (($ $) NIL (|has| |#1| (-564)))) (-4217 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2338 (($ $) 167 (|has| |#1| (-564)))) (-2222 (($ $) 143 (|has| |#1| (-564)))) (-3107 (($ $ (-572)) 73 (|has| |#1| (-564)))) (-2384 (($ $) 175 (|has| |#1| (-564)))) (-2262 (($ $) 151 (|has| |#1| (-564)))) (-3281 (($) NIL (-2813 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) (|has| |#1| (-1123))) CONST)) (-2901 (((-652 $) $ (-1188)) NIL (|has| |#1| (-564))) (((-652 $) $) NIL (|has| |#1| (-564))) (((-652 $) (-1184 $) (-1188)) NIL (|has| |#1| (-564))) (((-652 $) (-1184 $)) NIL (|has| |#1| (-564))) (((-652 $) (-961 $)) NIL (|has| |#1| (-564)))) (-1821 (($ $ (-1188)) NIL (|has| |#1| (-564))) (($ $) NIL (|has| |#1| (-564))) (($ (-1184 $) (-1188)) 134 (|has| |#1| (-564))) (($ (-1184 $)) NIL (|has| |#1| (-564))) (($ (-961 $)) NIL (|has| |#1| (-564)))) (-1695 (((-3 (-620 $) "failed") $) 18) (((-3 (-1188) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-961 |#1|)) "failed") $) NIL (|has| |#1| (-564))) (((-3 (-961 |#1|) "failed") $) NIL (|has| |#1| (-1060))) (((-3 (-415 (-572)) "failed") $) 46 (-2813 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-2204 (((-620 $) $) 12) (((-1188) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-961 |#1|)) $) NIL (|has| |#1| (-564))) (((-961 |#1|) $) NIL (|has| |#1| (-1060))) (((-415 (-572)) $) 319 (-2813 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-2780 (($ $ $) NIL (|has| |#1| (-564)))) (-2993 (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 125 (|has| |#1| (-1060))) (((-697 |#1|) (-697 $)) 115 (|has| |#1| (-1060))) (((-697 |#1|) (-1279 $)) NIL (|has| |#1| (-1060))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) (((-697 (-572)) (-1279 $)) NIL (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (-2865 (($ $) 96 (|has| |#1| (-564)))) (-2062 (((-3 $ "failed") $) NIL (|has| |#1| (-1123)))) (-2792 (($ $ $) NIL (|has| |#1| (-564)))) (-2247 (($ $ (-1103 $)) 236 (|has| |#1| (-564))) (($ $ (-1188)) 234 (|has| |#1| (-564)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-564)))) (-3879 (((-112) $) NIL (|has| |#1| (-564)))) (-1460 (($ $ $) 202 (|has| |#1| (-564)))) (-2997 (($) 137 (|has| |#1| (-564)))) (-2661 (($ $ $) 222 (|has| |#1| (-564)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 392 (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 399 (|has| |#1| (-895 (-386))))) (-3033 (($ $) NIL) (($ (-652 $)) NIL)) (-4085 (((-652 (-115)) $) NIL)) (-4171 (((-115) (-115)) 276)) (-1886 (((-112) $) 25 (|has| |#1| (-1123)))) (-2597 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2710 (($ $) 72 (|has| |#1| (-1060)))) (-2963 (((-1136 |#1| (-620 $)) $) 91 (|has| |#1| (-1060)))) (-3605 (((-112) $) 62 (|has| |#1| (-564)))) (-2932 (($ $ (-572)) NIL (|has| |#1| (-564)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-564)))) (-2969 (((-1184 $) (-620 $)) 277 (|has| $ (-1060)))) (-1776 (($ (-1 $ $) (-620 $)) 426)) (-3369 (((-3 (-620 $) "failed") $) NIL)) (-3116 (($ $) 141 (|has| |#1| (-564)))) (-4078 (($ $) 247 (|has| |#1| (-564)))) (-2825 (($ (-652 $)) NIL (|has| |#1| (-564))) (($ $ $) NIL (|has| |#1| (-564)))) (-4347 (((-1170) $) NIL)) (-4161 (((-652 (-620 $)) $) 49)) (-1774 (($ (-115) $) NIL) (($ (-115) (-652 $)) 431)) (-4011 (((-3 (-652 $) "failed") $) NIL (|has| |#1| (-1123)))) (-4153 (((-3 (-2 (|:| |val| $) (|:| -1679 (-572))) "failed") $) NIL (|has| |#1| (-1060)))) (-3665 (((-3 (-652 $) "failed") $) 436 (|has| |#1| (-25)))) (-4235 (((-3 (-2 (|:| -1857 (-572)) (|:| |var| (-620 $))) "failed") $) 440 (|has| |#1| (-25)))) (-1920 (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $) NIL (|has| |#1| (-1123))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-115)) NIL (|has| |#1| (-1060))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-1188)) NIL (|has| |#1| (-1060)))) (-2695 (((-112) $ (-115)) NIL) (((-112) $ (-1188)) 51)) (-1322 (($ $) NIL (-2813 (|has| |#1| (-481)) (|has| |#1| (-564))))) (-3223 (($ $ (-1188)) 251 (|has| |#1| (-564))) (($ $ (-1103 $)) 253 (|has| |#1| (-564)))) (-1839 (((-779) $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) 43)) (-1347 ((|#1| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 301 (|has| |#1| (-564)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-564))) (($ $ $) NIL (|has| |#1| (-564)))) (-2202 (((-112) $ $) NIL) (((-112) $ (-1188)) NIL)) (-4413 (($ $ (-1188)) 226 (|has| |#1| (-564))) (($ $) 224 (|has| |#1| (-564)))) (-2128 (($ $) 218 (|has| |#1| (-564)))) (-1494 (((-426 (-1184 $)) (-1184 $)) 306 (-12 (|has| |#1| (-460)) (|has| |#1| (-564))))) (-4218 (((-426 $) $) NIL (|has| |#1| (-564)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-564))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-564)))) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-564)))) (-1608 (($ $) 139 (|has| |#1| (-564)))) (-2003 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2641 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) 425) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) 379) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1188)) NIL (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-622 (-544)))) (($ $) NIL (|has| |#1| (-622 (-544)))) (($ $ (-115) $ (-1188)) 366 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-115)) (-652 $) (-1188)) 365 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $))) NIL (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $)))) NIL (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ (-652 $))) NIL (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ $)) NIL (|has| |#1| (-1060)))) (-3847 (((-779) $) NIL (|has| |#1| (-564)))) (-4069 (($ $) 239 (|has| |#1| (-564)))) (-2196 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-564)))) (-2904 (($ $) NIL) (($ $ $) NIL)) (-2211 (($ $) 249 (|has| |#1| (-564)))) (-1973 (($ $) 200 (|has| |#1| (-564)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-1060))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-1060))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-1060))) (($ $ (-1188)) NIL (|has| |#1| (-1060)))) (-1520 (($ $) 74 (|has| |#1| (-564)))) (-2974 (((-1136 |#1| (-620 $)) $) 93 (|has| |#1| (-564)))) (-3764 (($ $) 317 (|has| $ (-1060)))) (-2397 (($ $) 177 (|has| |#1| (-564)))) (-2270 (($ $) 153 (|has| |#1| (-564)))) (-2370 (($ $) 173 (|has| |#1| (-564)))) (-2252 (($ $) 149 (|has| |#1| (-564)))) (-2348 (($ $) 169 (|has| |#1| (-564)))) (-2231 (($ $) 145 (|has| |#1| (-564)))) (-1835 (((-901 (-572)) $) NIL (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| |#1| (-622 (-901 (-386))))) (($ (-426 $)) NIL (|has| |#1| (-564))) (((-544) $) 363 (|has| |#1| (-622 (-544))))) (-1516 (($ $ $) NIL (|has| |#1| (-481)))) (-4326 (($ $ $) NIL (|has| |#1| (-481)))) (-2940 (((-870) $) 424) (($ (-620 $)) 415) (($ (-1188)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-564))) (($ (-48)) 312 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) (($ (-1136 |#1| (-620 $))) 95 (|has| |#1| (-1060))) (($ (-415 |#1|)) NIL (|has| |#1| (-564))) (($ (-961 (-415 |#1|))) NIL (|has| |#1| (-564))) (($ (-415 (-961 (-415 |#1|)))) NIL (|has| |#1| (-564))) (($ (-415 (-961 |#1|))) NIL (|has| |#1| (-564))) (($ (-961 |#1|)) NIL (|has| |#1| (-1060))) (($ (-572)) 34 (-2813 (|has| |#1| (-1049 (-572))) (|has| |#1| (-1060)))) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-564)) (|has| |#1| (-1049 (-415 (-572))))))) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL (|has| |#1| (-1060)) CONST)) (-3952 (($ $) NIL) (($ (-652 $)) NIL)) (-3148 (($ $ $) 220 (|has| |#1| (-564)))) (-3149 (($ $ $) 206 (|has| |#1| (-564)))) (-1538 (($ $ $) 210 (|has| |#1| (-564)))) (-2577 (($ $ $) 204 (|has| |#1| (-564)))) (-2729 (($ $ $) 208 (|has| |#1| (-564)))) (-4406 (((-112) (-115)) 10)) (-4379 (((-112) $ $) 86)) (-2436 (($ $) 183 (|has| |#1| (-564)))) (-2300 (($ $) 159 (|has| |#1| (-564)))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) 179 (|has| |#1| (-564)))) (-2282 (($ $) 155 (|has| |#1| (-564)))) (-2460 (($ $) 187 (|has| |#1| (-564)))) (-2320 (($ $) 163 (|has| |#1| (-564)))) (-2494 (($ (-1188) $) NIL) (($ (-1188) $ $) NIL) (($ (-1188) $ $ $) NIL) (($ (-1188) $ $ $ $) NIL) (($ (-1188) (-652 $)) NIL)) (-1643 (($ $) 214 (|has| |#1| (-564)))) (-2627 (($ $) 212 (|has| |#1| (-564)))) (-2516 (($ $) 189 (|has| |#1| (-564)))) (-2329 (($ $) 165 (|has| |#1| (-564)))) (-2448 (($ $) 185 (|has| |#1| (-564)))) (-2310 (($ $) 161 (|has| |#1| (-564)))) (-2423 (($ $) 181 (|has| |#1| (-564)))) (-2292 (($ $) 157 (|has| |#1| (-564)))) (-2700 (($ $) 192 (|has| |#1| (-564)))) (-2131 (($) 21 (-2813 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) CONST)) (-1678 (($ $) 243 (|has| |#1| (-564)))) (-2143 (($) 23 (|has| |#1| (-1123)) CONST)) (-4276 (($ $) 194 (|has| |#1| (-564))) (($ $ $) 196 (|has| |#1| (-564)))) (-3687 (($ $) 241 (|has| |#1| (-564)))) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-1060))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-1060))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-1060))) (($ $ (-1188)) NIL (|has| |#1| (-1060)))) (-1510 (($ $) 245 (|has| |#1| (-564)))) (-3919 (($ $ $) 198 (|has| |#1| (-564)))) (-2978 (((-112) $ $) 88)) (-3106 (($ (-1136 |#1| (-620 $)) (-1136 |#1| (-620 $))) 106 (|has| |#1| (-564))) (($ $ $) 42 (-2813 (|has| |#1| (-481)) (|has| |#1| (-564))))) (-3089 (($ $ $) 40 (-2813 (|has| |#1| (-21)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (($ $) 29 (-2813 (|has| |#1| (-21)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (-3075 (($ $ $) 38 (-2813 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (** (($ $ $) 64 (|has| |#1| (-564))) (($ $ (-415 (-572))) 314 (|has| |#1| (-564))) (($ $ (-572)) 80 (-2813 (|has| |#1| (-481)) (|has| |#1| (-564)))) (($ $ (-779)) 75 (|has| |#1| (-1123))) (($ $ (-930)) 84 (|has| |#1| (-1123)))) (* (($ (-415 (-572)) $) NIL (|has| |#1| (-564))) (($ $ (-415 (-572))) NIL (|has| |#1| (-564))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1060))) (($ $ $) 36 (|has| |#1| (-1123))) (($ (-572) $) 32 (-2813 (|has| |#1| (-21)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (($ (-779) $) NIL (-2813 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (($ (-930) $) NIL (-2813 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))))
-(((-322 |#1|) (-13 (-438 |#1|) (-10 -8 (IF (|has| |#1| (-564)) (PROGN (-6 (-29 |#1|)) (-6 (-1214)) (-6 (-161)) (-6 (-637)) (-6 (-1150)) (-15 -2865 ($ $)) (-15 -3605 ((-112) $)) (-15 -3107 ($ $ (-572))) (IF (|has| |#1| (-460)) (PROGN (-15 -1494 ((-426 (-1184 $)) (-1184 $))) (-15 -2603 ((-426 (-1184 $)) (-1184 $)))) |%noBranch|) (IF (|has| |#1| (-1049 (-572))) (-6 (-1049 (-48))) |%noBranch|)) |%noBranch|))) (-1111)) (T -322))
-((-2865 (*1 *1 *1) (-12 (-5 *1 (-322 *2)) (-4 *2 (-564)) (-4 *2 (-1111)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))) (-3107 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-322 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))) (-1494 (*1 *2 *3) (-12 (-5 *2 (-426 (-1184 *1))) (-5 *1 (-322 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-460)) (-4 *4 (-564)) (-4 *4 (-1111)))) (-2603 (*1 *2 *3) (-12 (-5 *2 (-426 (-1184 *1))) (-5 *1 (-322 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-460)) (-4 *4 (-564)) (-4 *4 (-1111)))))
-(-13 (-438 |#1|) (-10 -8 (IF (|has| |#1| (-564)) (PROGN (-6 (-29 |#1|)) (-6 (-1214)) (-6 (-161)) (-6 (-637)) (-6 (-1150)) (-15 -2865 ($ $)) (-15 -3605 ((-112) $)) (-15 -3107 ($ $ (-572))) (IF (|has| |#1| (-460)) (PROGN (-15 -1494 ((-426 (-1184 $)) (-1184 $))) (-15 -2603 ((-426 (-1184 $)) (-1184 $)))) |%noBranch|) (IF (|has| |#1| (-1049 (-572))) (-6 (-1049 (-48))) |%noBranch|)) |%noBranch|)))
-((-3931 (((-52) |#2| (-115) (-300 |#2|) (-652 |#2|)) 89) (((-52) |#2| (-115) (-300 |#2|) (-300 |#2|)) 85) (((-52) |#2| (-115) (-300 |#2|) |#2|) 87) (((-52) (-300 |#2|) (-115) (-300 |#2|) |#2|) 88) (((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|))) 81) (((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 |#2|)) 83) (((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 |#2|)) 84) (((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|))) 82) (((-52) (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|)) 90) (((-52) (-300 |#2|) (-115) (-300 |#2|) (-300 |#2|)) 86)))
-(((-323 |#1| |#2|) (-10 -7 (-15 -3931 ((-52) (-300 |#2|) (-115) (-300 |#2|) (-300 |#2|))) (-15 -3931 ((-52) (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|))) (-15 -3931 ((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|)))) (-15 -3931 ((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 |#2|))) (-15 -3931 ((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 |#2|))) (-15 -3931 ((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|)))) (-15 -3931 ((-52) (-300 |#2|) (-115) (-300 |#2|) |#2|)) (-15 -3931 ((-52) |#2| (-115) (-300 |#2|) |#2|)) (-15 -3931 ((-52) |#2| (-115) (-300 |#2|) (-300 |#2|))) (-15 -3931 ((-52) |#2| (-115) (-300 |#2|) (-652 |#2|)))) (-13 (-564) (-622 (-544))) (-438 |#1|)) (T -323))
-((-3931 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-5 *6 (-652 *3)) (-4 *3 (-438 *7)) (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *7 *3)))) (-3931 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-4 *3 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-3931 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-4 *3 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-3931 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-300 *5)) (-5 *4 (-115)) (-4 *5 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *5)))) (-3931 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-115))) (-5 *6 (-652 (-300 *8))) (-4 *8 (-438 *7)) (-5 *5 (-300 *8)) (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *7 *8)))) (-3931 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-652 *7)) (-5 *4 (-652 (-115))) (-5 *5 (-300 *7)) (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *7)))) (-3931 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-652 (-300 *8))) (-5 *4 (-652 (-115))) (-5 *5 (-300 *8)) (-5 *6 (-652 *8)) (-4 *8 (-438 *7)) (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *7 *8)))) (-3931 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-652 (-300 *7))) (-5 *4 (-652 (-115))) (-5 *5 (-300 *7)) (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *7)))) (-3931 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-300 *7)) (-5 *4 (-115)) (-5 *5 (-652 *7)) (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *7)))) (-3931 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-300 *6)) (-5 *4 (-115)) (-4 *6 (-438 *5)) (-4 *5 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *6)))))
-(-10 -7 (-15 -3931 ((-52) (-300 |#2|) (-115) (-300 |#2|) (-300 |#2|))) (-15 -3931 ((-52) (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|))) (-15 -3931 ((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|)))) (-15 -3931 ((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 |#2|))) (-15 -3931 ((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 |#2|))) (-15 -3931 ((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|)))) (-15 -3931 ((-52) (-300 |#2|) (-115) (-300 |#2|) |#2|)) (-15 -3931 ((-52) |#2| (-115) (-300 |#2|) |#2|)) (-15 -3931 ((-52) |#2| (-115) (-300 |#2|) (-300 |#2|))) (-15 -3931 ((-52) |#2| (-115) (-300 |#2|) (-652 |#2|))))
-((-2767 (((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572) (-1170)) 67) (((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572)) 68) (((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572) (-1170)) 64) (((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572)) 65)) (-3532 (((-1 (-227) (-227)) (-227)) 66)))
-(((-324) (-10 -7 (-15 -3532 ((-1 (-227) (-227)) (-227))) (-15 -2767 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572))) (-15 -2767 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572) (-1170))) (-15 -2767 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572))) (-15 -2767 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572) (-1170))))) (T -324))
-((-2767 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-227)) (-5 *7 (-572)) (-5 *8 (-1170)) (-5 *2 (-1224 (-935))) (-5 *1 (-324)))) (-2767 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-227)) (-5 *7 (-572)) (-5 *2 (-1224 (-935))) (-5 *1 (-324)))) (-2767 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-572)) (-5 *7 (-1170)) (-5 *2 (-1224 (-935))) (-5 *1 (-324)))) (-2767 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-572)) (-5 *2 (-1224 (-935))) (-5 *1 (-324)))) (-3532 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-324)) (-5 *3 (-227)))))
-(-10 -7 (-15 -3532 ((-1 (-227) (-227)) (-227))) (-15 -2767 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572))) (-15 -2767 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572) (-1170))) (-15 -2767 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572))) (-15 -2767 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572) (-1170))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 26)) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3762 (($ $ (-415 (-572))) NIL) (($ $ (-415 (-572)) (-415 (-572))) NIL)) (-1899 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) 20)) (-2358 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) 36)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3879 (((-112) $) NIL (|has| |#1| (-370)))) (-2579 (((-112) $) NIL)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-415 (-572)) $) NIL) (((-415 (-572)) $ (-415 (-572))) 16)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) NIL) (($ $ (-415 (-572))) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-415 (-572))) NIL) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3116 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-3034 (($ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214)))))) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2772 (($ $ (-415 (-572))) NIL)) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3780 (((-415 (-572)) $) 17)) (-2076 (($ (-1264 |#1| |#2| |#3|)) 11)) (-1679 (((-1264 |#1| |#2| |#3|) $) 12)) (-1608 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ (-415 (-572))) NIL) (($ $ $) NIL (|has| (-415 (-572)) (-1123)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-4390 (((-415 (-572)) $) NIL)) (-2397 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) 10)) (-2940 (((-870) $) 42) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-3979 ((|#1| $ (-415 (-572))) 34)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-3356 ((|#1| $) NIL)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-415 (-572))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 28)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 37)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-325 |#1| |#2| |#3|) (-13 (-1260 |#1|) (-800) (-10 -8 (-15 -2076 ($ (-1264 |#1| |#2| |#3|))) (-15 -1679 ((-1264 |#1| |#2| |#3|) $)) (-15 -3780 ((-415 (-572)) $)))) (-370) (-1188) |#1|) (T -325))
-((-2076 (*1 *1 *2) (-12 (-5 *2 (-1264 *3 *4 *5)) (-4 *3 (-370)) (-14 *4 (-1188)) (-14 *5 *3) (-5 *1 (-325 *3 *4 *5)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-1264 *3 *4 *5)) (-5 *1 (-325 *3 *4 *5)) (-4 *3 (-370)) (-14 *4 (-1188)) (-14 *5 *3))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-325 *3 *4 *5)) (-4 *3 (-370)) (-14 *4 (-1188)) (-14 *5 *3))))
-(-13 (-1260 |#1|) (-800) (-10 -8 (-15 -2076 ($ (-1264 |#1| |#2| |#3|))) (-15 -1679 ((-1264 |#1| |#2| |#3|) $)) (-15 -3780 ((-415 (-572)) $))))
-((-2932 (((-2 (|:| -1679 (-779)) (|:| -1857 |#1|) (|:| |radicand| (-652 |#1|))) (-426 |#1|) (-779)) 35)) (-3116 (((-652 (-2 (|:| -1857 (-779)) (|:| |logand| |#1|))) (-426 |#1|)) 40)))
-(((-326 |#1|) (-10 -7 (-15 -2932 ((-2 (|:| -1679 (-779)) (|:| -1857 |#1|) (|:| |radicand| (-652 |#1|))) (-426 |#1|) (-779))) (-15 -3116 ((-652 (-2 (|:| -1857 (-779)) (|:| |logand| |#1|))) (-426 |#1|)))) (-564)) (T -326))
-((-3116 (*1 *2 *3) (-12 (-5 *3 (-426 *4)) (-4 *4 (-564)) (-5 *2 (-652 (-2 (|:| -1857 (-779)) (|:| |logand| *4)))) (-5 *1 (-326 *4)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-426 *5)) (-4 *5 (-564)) (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *5) (|:| |radicand| (-652 *5)))) (-5 *1 (-326 *5)) (-5 *4 (-779)))))
-(-10 -7 (-15 -2932 ((-2 (|:| -1679 (-779)) (|:| -1857 |#1|) (|:| |radicand| (-652 |#1|))) (-426 |#1|) (-779))) (-15 -3116 ((-652 (-2 (|:| -1857 (-779)) (|:| |logand| |#1|))) (-426 |#1|))))
-((-4353 (((-652 |#2|) (-1184 |#4|)) 44)) (-1681 ((|#3| (-572)) 47)) (-2938 (((-1184 |#4|) (-1184 |#3|)) 30)) (-2591 (((-1184 |#4|) (-1184 |#4|) (-572)) 66)) (-1736 (((-1184 |#3|) (-1184 |#4|)) 21)) (-4390 (((-652 (-779)) (-1184 |#4|) (-652 |#2|)) 41)) (-3769 (((-1184 |#3|) (-1184 |#4|) (-652 |#2|) (-652 |#3|)) 35)))
-(((-327 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3769 ((-1184 |#3|) (-1184 |#4|) (-652 |#2|) (-652 |#3|))) (-15 -4390 ((-652 (-779)) (-1184 |#4|) (-652 |#2|))) (-15 -4353 ((-652 |#2|) (-1184 |#4|))) (-15 -1736 ((-1184 |#3|) (-1184 |#4|))) (-15 -2938 ((-1184 |#4|) (-1184 |#3|))) (-15 -2591 ((-1184 |#4|) (-1184 |#4|) (-572))) (-15 -1681 (|#3| (-572)))) (-801) (-858) (-1060) (-958 |#3| |#1| |#2|)) (T -327))
-((-1681 (*1 *2 *3) (-12 (-5 *3 (-572)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1060)) (-5 *1 (-327 *4 *5 *2 *6)) (-4 *6 (-958 *2 *4 *5)))) (-2591 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *7)) (-5 *3 (-572)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *1 (-327 *4 *5 *6 *7)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-1184 *6)) (-4 *6 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-1184 *7)) (-5 *1 (-327 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-1184 *7)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *2 (-1184 *6)) (-5 *1 (-327 *4 *5 *6 *7)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-1184 *7)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *2 (-652 *5)) (-5 *1 (-327 *4 *5 *6 *7)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *8)) (-5 *4 (-652 *6)) (-4 *6 (-858)) (-4 *8 (-958 *7 *5 *6)) (-4 *5 (-801)) (-4 *7 (-1060)) (-5 *2 (-652 (-779))) (-5 *1 (-327 *5 *6 *7 *8)))) (-3769 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-5 *5 (-652 *8)) (-4 *7 (-858)) (-4 *8 (-1060)) (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801)) (-5 *2 (-1184 *8)) (-5 *1 (-327 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3769 ((-1184 |#3|) (-1184 |#4|) (-652 |#2|) (-652 |#3|))) (-15 -4390 ((-652 (-779)) (-1184 |#4|) (-652 |#2|))) (-15 -4353 ((-652 |#2|) (-1184 |#4|))) (-15 -1736 ((-1184 |#3|) (-1184 |#4|))) (-15 -2938 ((-1184 |#4|) (-1184 |#3|))) (-15 -2591 ((-1184 |#4|) (-1184 |#4|) (-572))) (-15 -1681 (|#3| (-572))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 19)) (-1899 (((-652 (-2 (|:| |gen| |#1|) (|:| -1608 (-572)))) $) 21)) (-3330 (((-3 $ "failed") $ $) NIL)) (-1486 (((-779) $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-2321 ((|#1| $ (-572)) NIL)) (-2914 (((-572) $ (-572)) NIL)) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-3984 (($ (-1 |#1| |#1|) $) NIL)) (-2543 (($ (-1 (-572) (-572)) $) 11)) (-4347 (((-1170) $) NIL)) (-2908 (($ $ $) NIL (|has| (-572) (-800)))) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL) (($ |#1|) NIL)) (-3979 (((-572) |#1| $) NIL)) (-4379 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) 29 (|has| |#1| (-858)))) (-3089 (($ $) 12) (($ $ $) 28)) (-3075 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ (-572)) NIL) (($ (-572) |#1|) 27)))
-(((-328 |#1|) (-13 (-21) (-725 (-572)) (-329 |#1| (-572)) (-10 -7 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|))) (-1111)) (T -328))
-NIL
-(-13 (-21) (-725 (-572)) (-329 |#1| (-572)) (-10 -7 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-1899 (((-652 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $) 28)) (-3330 (((-3 $ "failed") $ $) 20)) (-1486 (((-779) $) 29)) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 33)) (-2204 ((|#1| $) 34)) (-2321 ((|#1| $ (-572)) 26)) (-2914 ((|#2| $ (-572)) 27)) (-3984 (($ (-1 |#1| |#1|) $) 23)) (-2543 (($ (-1 |#2| |#2|) $) 24)) (-4347 (((-1170) $) 10)) (-2908 (($ $ $) 22 (|has| |#2| (-800)))) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ |#1|) 32)) (-3979 ((|#2| |#1| $) 25)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3075 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ |#2| |#1|) 30)))
-(((-329 |#1| |#2|) (-141) (-1111) (-132)) (T -329))
-((-3075 (*1 *1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-132)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132)) (-5 *2 (-779)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132)) (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 *4)))))) (-2914 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-329 *4 *2)) (-4 *4 (-1111)) (-4 *2 (-132)))) (-2321 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-329 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1111)))) (-3979 (*1 *2 *3 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-132)))) (-2543 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132)))) (-3984 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132)))) (-2908 (*1 *1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-132)) (-4 *3 (-800)))))
-(-13 (-132) (-1049 |t#1|) (-10 -8 (-15 -3075 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1486 ((-779) $)) (-15 -1899 ((-652 (-2 (|:| |gen| |t#1|) (|:| -1608 |t#2|))) $)) (-15 -2914 (|t#2| $ (-572))) (-15 -2321 (|t#1| $ (-572))) (-15 -3979 (|t#2| |t#1| $)) (-15 -2543 ($ (-1 |t#2| |t#2|) $)) (-15 -3984 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-800)) (-15 -2908 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-1049 |#1|) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1899 (((-652 (-2 (|:| |gen| |#1|) (|:| -1608 (-779)))) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-1486 (((-779) $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-2321 ((|#1| $ (-572)) NIL)) (-2914 (((-779) $ (-572)) NIL)) (-3984 (($ (-1 |#1| |#1|) $) NIL)) (-2543 (($ (-1 (-779) (-779)) $) NIL)) (-4347 (((-1170) $) NIL)) (-2908 (($ $ $) NIL (|has| (-779) (-800)))) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL) (($ |#1|) NIL)) (-3979 (((-779) |#1| $) NIL)) (-4379 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3075 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-779) |#1|) NIL)))
-(((-330 |#1|) (-329 |#1| (-779)) (-1111)) (T -330))
-NIL
-(-329 |#1| (-779))
-((-1876 (($ $) 72)) (-1437 (($ $ |#2| |#3| $) 14)) (-2497 (($ (-1 |#3| |#3|) $) 51)) (-1336 (((-112) $) 42)) (-1347 ((|#2| $) 44)) (-2834 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1711 ((|#2| $) 68)) (-4268 (((-652 |#2|) $) 56)) (-2099 (($ $ $ (-779)) 37)) (-3106 (($ $ |#2|) 60)))
-(((-331 |#1| |#2| |#3|) (-10 -8 (-15 -1876 (|#1| |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2099 (|#1| |#1| |#1| (-779))) (-15 -1437 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2497 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4268 ((-652 |#2|) |#1|)) (-15 -1347 (|#2| |#1|)) (-15 -1336 ((-112) |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3106 (|#1| |#1| |#2|))) (-332 |#2| |#3|) (-1060) (-800)) (T -331))
-NIL
-(-10 -8 (-15 -1876 (|#1| |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2099 (|#1| |#1| |#1| (-779))) (-15 -1437 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2497 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4268 ((-652 |#2|) |#1|)) (-15 -1347 (|#2| |#1|)) (-15 -1336 ((-112) |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3106 (|#1| |#1| |#2|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-3009 (($ $) 64 (|has| |#1| (-564)))) (-4334 (((-112) $) 66 (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1695 (((-3 (-572) "failed") $) 100 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 98 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 95)) (-2204 (((-572) $) 99 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 97 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 96)) (-1390 (($ $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-1876 (($ $) 84 (|has| |#1| (-460)))) (-1437 (($ $ |#1| |#2| $) 88)) (-1886 (((-112) $) 35)) (-4368 (((-779) $) 91)) (-2438 (((-112) $) 74)) (-4333 (($ |#1| |#2|) 73)) (-2649 ((|#2| $) 90)) (-2497 (($ (-1 |#2| |#2|) $) 89)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1357 (($ $) 77)) (-1368 ((|#1| $) 78)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-1336 (((-112) $) 94)) (-1347 ((|#1| $) 93)) (-2834 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-564)))) (-4390 ((|#2| $) 76)) (-1711 ((|#1| $) 85 (|has| |#1| (-460)))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59) (($ (-415 (-572))) 69 (-2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))))) (-4268 (((-652 |#1|) $) 92)) (-3979 ((|#1| $ |#2|) 71)) (-3849 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-2099 (($ $ $ (-779)) 87 (|has| |#1| (-174)))) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
-(((-332 |#1| |#2|) (-141) (-1060) (-800)) (T -332))
-((-1336 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-112)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-652 *3)))) (-4368 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-779)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-2497 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)))) (-1437 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))) (-2099 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-4 *3 (-174)))) (-2834 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *2 (-564)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)) (-4 *2 (-460)))) (-1876 (*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *2 (-460)))))
-(-13 (-47 |t#1| |t#2|) (-419 |t#1|) (-10 -8 (-15 -1336 ((-112) $)) (-15 -1347 (|t#1| $)) (-15 -4268 ((-652 |t#1|) $)) (-15 -4368 ((-779) $)) (-15 -2649 (|t#2| $)) (-15 -2497 ($ (-1 |t#2| |t#2|) $)) (-15 -1437 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2099 ($ $ $ (-779))) |%noBranch|) (IF (|has| |t#1| (-564)) (-15 -2834 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-460)) (PROGN (-15 -1711 (|t#1| $)) (-15 -1876 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-296) |has| |#1| (-564)) ((-419 |#1|) . T) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3799 (((-112) (-112)) NIL)) (-3140 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2613 (($ (-1 (-112) |#1|) $) NIL)) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2704 (($ $) NIL (|has| |#1| (-1111)))) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3554 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) NIL)) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-1439 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-4314 (($ $ (-572)) NIL)) (-2164 (((-779) $) NIL)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-3787 (($ (-779) |#1|) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-3892 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2036 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1593 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3933 (($ (-652 |#1|)) NIL)) (-2912 ((|#1| $) NIL (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1696 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) NIL)) (-1700 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4155 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-333 |#1|) (-13 (-19 |#1|) (-288 |#1|) (-10 -8 (-15 -3933 ($ (-652 |#1|))) (-15 -2164 ((-779) $)) (-15 -4314 ($ $ (-572))) (-15 -3799 ((-112) (-112))))) (-1229)) (T -333))
-((-3933 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-333 *3)))) (-2164 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-333 *3)) (-4 *3 (-1229)))) (-4314 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-333 *3)) (-4 *3 (-1229)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-333 *3)) (-4 *3 (-1229)))))
-(-13 (-19 |#1|) (-288 |#1|) (-10 -8 (-15 -3933 ($ (-652 |#1|))) (-15 -2164 ((-779) $)) (-15 -4314 ($ $ (-572))) (-15 -3799 ((-112) (-112)))))
-((-3995 (((-112) $) 47)) (-3667 (((-779)) 23)) (-1635 ((|#2| $) 51) (($ $ (-930)) 121)) (-1486 (((-779)) 122)) (-1913 (($ (-1279 |#2|)) 20)) (-2078 (((-112) $) 134)) (-2028 ((|#2| $) 53) (($ $ (-930)) 118)) (-3053 (((-1184 |#2|) $) NIL) (((-1184 $) $ (-930)) 109)) (-4370 (((-1184 |#2|) $) 95)) (-3293 (((-1184 |#2|) $) 91) (((-3 (-1184 |#2|) "failed") $ $) 88)) (-3103 (($ $ (-1184 |#2|)) 58)) (-3040 (((-841 (-930))) 30) (((-930)) 48)) (-4224 (((-135)) 27)) (-4390 (((-841 (-930)) $) 32) (((-930) $) 137)) (-3105 (($) 128)) (-4329 (((-1279 |#2|) $) NIL) (((-697 |#2|) (-1279 $)) 42)) (-3849 (($ $) NIL) (((-3 $ "failed") $) 98)) (-1482 (((-112) $) 45)))
-(((-334 |#1| |#2|) (-10 -8 (-15 -3849 ((-3 |#1| "failed") |#1|)) (-15 -1486 ((-779))) (-15 -3849 (|#1| |#1|)) (-15 -3293 ((-3 (-1184 |#2|) "failed") |#1| |#1|)) (-15 -3293 ((-1184 |#2|) |#1|)) (-15 -4370 ((-1184 |#2|) |#1|)) (-15 -3103 (|#1| |#1| (-1184 |#2|))) (-15 -2078 ((-112) |#1|)) (-15 -3105 (|#1|)) (-15 -1635 (|#1| |#1| (-930))) (-15 -2028 (|#1| |#1| (-930))) (-15 -3053 ((-1184 |#1|) |#1| (-930))) (-15 -1635 (|#2| |#1|)) (-15 -2028 (|#2| |#1|)) (-15 -4390 ((-930) |#1|)) (-15 -3040 ((-930))) (-15 -3053 ((-1184 |#2|) |#1|)) (-15 -1913 (|#1| (-1279 |#2|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1|)) (-15 -3667 ((-779))) (-15 -3040 ((-841 (-930)))) (-15 -4390 ((-841 (-930)) |#1|)) (-15 -3995 ((-112) |#1|)) (-15 -1482 ((-112) |#1|)) (-15 -4224 ((-135)))) (-335 |#2|) (-370)) (T -334))
-((-4224 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-135)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3040 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-841 (-930))) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3667 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3040 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-930)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-1486 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))))
-(-10 -8 (-15 -3849 ((-3 |#1| "failed") |#1|)) (-15 -1486 ((-779))) (-15 -3849 (|#1| |#1|)) (-15 -3293 ((-3 (-1184 |#2|) "failed") |#1| |#1|)) (-15 -3293 ((-1184 |#2|) |#1|)) (-15 -4370 ((-1184 |#2|) |#1|)) (-15 -3103 (|#1| |#1| (-1184 |#2|))) (-15 -2078 ((-112) |#1|)) (-15 -3105 (|#1|)) (-15 -1635 (|#1| |#1| (-930))) (-15 -2028 (|#1| |#1| (-930))) (-15 -3053 ((-1184 |#1|) |#1| (-930))) (-15 -1635 (|#2| |#1|)) (-15 -2028 (|#2| |#1|)) (-15 -4390 ((-930) |#1|)) (-15 -3040 ((-930))) (-15 -3053 ((-1184 |#2|) |#1|)) (-15 -1913 (|#1| (-1279 |#2|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1|)) (-15 -3667 ((-779))) (-15 -3040 ((-841 (-930)))) (-15 -4390 ((-841 (-930)) |#1|)) (-15 -3995 ((-112) |#1|)) (-15 -1482 ((-112) |#1|)) (-15 -4224 ((-135))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3995 (((-112) $) 104)) (-3667 (((-779)) 100)) (-1635 ((|#1| $) 151) (($ $ (-930)) 148 (|has| |#1| (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) 133 (|has| |#1| (-375)))) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-4217 (((-112) $ $) 65)) (-1486 (((-779)) 123 (|has| |#1| (-375)))) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 111)) (-2204 ((|#1| $) 112)) (-1913 (($ (-1279 |#1|)) 157)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-375)))) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-2815 (($) 120 (|has| |#1| (-375)))) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-1879 (($) 135 (|has| |#1| (-375)))) (-3442 (((-112) $) 136 (|has| |#1| (-375)))) (-2303 (($ $ (-779)) 97 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) 96 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3879 (((-112) $) 79)) (-2956 (((-930) $) 138 (|has| |#1| (-375))) (((-841 (-930)) $) 94 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1886 (((-112) $) 35)) (-1663 (($) 146 (|has| |#1| (-375)))) (-2078 (((-112) $) 145 (|has| |#1| (-375)))) (-2028 ((|#1| $) 152) (($ $ (-930)) 149 (|has| |#1| (-375)))) (-2556 (((-3 $ "failed") $) 124 (|has| |#1| (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-3053 (((-1184 |#1|) $) 156) (((-1184 $) $ (-930)) 150 (|has| |#1| (-375)))) (-3715 (((-930) $) 121 (|has| |#1| (-375)))) (-4370 (((-1184 |#1|) $) 142 (|has| |#1| (-375)))) (-3293 (((-1184 |#1|) $) 141 (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) 140 (|has| |#1| (-375)))) (-3103 (($ $ (-1184 |#1|)) 143 (|has| |#1| (-375)))) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 78)) (-3815 (($) 125 (|has| |#1| (-375)) CONST)) (-2571 (($ (-930)) 122 (|has| |#1| (-375)))) (-2946 (((-112) $) 103)) (-3964 (((-1131) $) 11)) (-2967 (($) 144 (|has| |#1| (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) 132 (|has| |#1| (-375)))) (-4218 (((-426 $) $) 82)) (-3040 (((-841 (-930))) 101) (((-930)) 154)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-3354 (((-779) $) 137 (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) 95 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4224 (((-135)) 109)) (-3902 (($ $) 128 (|has| |#1| (-375))) (($ $ (-779)) 127 (|has| |#1| (-375)))) (-4390 (((-841 (-930)) $) 102) (((-930) $) 153)) (-3764 (((-1184 |#1|)) 155)) (-4033 (($) 134 (|has| |#1| (-375)))) (-3105 (($) 147 (|has| |#1| (-375)))) (-4329 (((-1279 |#1|) $) 159) (((-697 |#1|) (-1279 $)) 158)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 131 (|has| |#1| (-375)))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ |#1|) 110)) (-3849 (($ $) 130 (|has| |#1| (-375))) (((-3 $ "failed") $) 93 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-4362 (((-1279 $)) 161) (((-1279 $) (-930)) 160)) (-2845 (((-112) $ $) 45)) (-1482 (((-112) $) 105)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3790 (($ $) 99 (|has| |#1| (-375))) (($ $ (-779)) 98 (|has| |#1| (-375)))) (-3608 (($ $) 129 (|has| |#1| (-375))) (($ $ (-779)) 126 (|has| |#1| (-375)))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 73) (($ $ |#1|) 108)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-335 |#1|) (-141) (-370)) (T -335))
-((-4362 (*1 *2) (-12 (-4 *3 (-370)) (-5 *2 (-1279 *1)) (-4 *1 (-335 *3)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-930)) (-4 *4 (-370)) (-5 *2 (-1279 *1)) (-4 *1 (-335 *4)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1279 *3)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-335 *4)) (-4 *4 (-370)) (-5 *2 (-697 *4)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-370)) (-4 *1 (-335 *3)))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1184 *3)))) (-3764 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1184 *3)))) (-3040 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-930)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-930)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-370)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-370)))) (-3053 (*1 *2 *1 *3) (-12 (-5 *3 (-930)) (-4 *4 (-375)) (-4 *4 (-370)) (-5 *2 (-1184 *1)) (-4 *1 (-335 *4)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)))) (-1635 (*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)))) (-3105 (*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370)))) (-1663 (*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-112)))) (-2967 (*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370)))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-375)) (-4 *1 (-335 *3)) (-4 *3 (-370)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-1184 *3)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-1184 *3)))) (-3293 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-1184 *3)))))
-(-13 (-1298 |t#1|) (-1049 |t#1|) (-10 -8 (-15 -4362 ((-1279 $))) (-15 -4362 ((-1279 $) (-930))) (-15 -4329 ((-1279 |t#1|) $)) (-15 -4329 ((-697 |t#1|) (-1279 $))) (-15 -1913 ($ (-1279 |t#1|))) (-15 -3053 ((-1184 |t#1|) $)) (-15 -3764 ((-1184 |t#1|))) (-15 -3040 ((-930))) (-15 -4390 ((-930) $)) (-15 -2028 (|t#1| $)) (-15 -1635 (|t#1| $)) (IF (|has| |t#1| (-375)) (PROGN (-6 (-356)) (-15 -3053 ((-1184 $) $ (-930))) (-15 -2028 ($ $ (-930))) (-15 -1635 ($ $ (-930))) (-15 -3105 ($)) (-15 -1663 ($)) (-15 -2078 ((-112) $)) (-15 -2967 ($)) (-15 -3103 ($ $ (-1184 |t#1|))) (-15 -4370 ((-1184 |t#1|) $)) (-15 -3293 ((-1184 |t#1|) $)) (-15 -3293 ((-3 (-1184 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2813 (|has| |#1| (-375)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-235 $) |has| |#1| (-375)) ((-237) |has| |#1| (-375)) ((-247) . T) ((-296) . T) ((-313) . T) ((-1298 |#1|) . T) ((-370) . T) ((-410) -2813 (|has| |#1| (-375)) (|has| |#1| (-146))) ((-375) |has| |#1| (-375)) ((-356) |has| |#1| (-375)) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 |#1|) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1049 |#1|) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-375)) ((-1229) |has| |#1| (-375)) ((-1233) . T) ((-1286 |#1|) . T))
-((-2846 (((-112) $ $) NIL)) (-4322 (($ (-1187) $) 100)) (-4252 (($) 89)) (-3519 (((-1131) (-1131)) 9)) (-1611 (($) 90)) (-2224 (($) 104) (($ (-322 (-707))) 112) (($ (-322 (-709))) 108) (($ (-322 (-702))) 116) (($ (-322 (-386))) 123) (($ (-322 (-572))) 119) (($ (-322 (-171 (-386)))) 127)) (-2471 (($ (-1187) $) 101)) (-3181 (($ (-652 (-870))) 91)) (-3036 (((-1284) $) 87)) (-1456 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2787 (($ (-1131)) 58)) (-4423 (((-1115) $) 30)) (-4349 (($ (-1103 (-961 (-572))) $) 97) (($ (-1103 (-961 (-572))) (-961 (-572)) $) 98)) (-2012 (($ (-1131)) 99)) (-3280 (($ (-1187) $) 129) (($ (-1187) $ $) 130)) (-3857 (($ (-1188) (-652 (-1188))) 88)) (-2039 (($ (-1170)) 94) (($ (-652 (-1170))) 92)) (-2940 (((-870) $) 132)) (-2048 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1188)) (|:| |arrayIndex| (-652 (-961 (-572)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1188)) (|:| |rand| (-870)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1187)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1841 (-112)) (|:| -3080 (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870)))))) (|:| |blockBranch| (-652 $)) (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170)) (|:| |forBranch| (-2 (|:| -1910 (-1103 (-961 (-572)))) (|:| |span| (-961 (-572))) (|:| -2042 $))) (|:| |labelBranch| (-1131)) (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2042 $))) (|:| |commonBranch| (-2 (|:| -2030 (-1188)) (|:| |contents| (-652 (-1188))))) (|:| |printBranch| (-652 (-870)))) $) 50)) (-3402 (($ (-1170)) 202)) (-2227 (($ (-652 $)) 128)) (-4379 (((-112) $ $) NIL)) (-1345 (($ (-1188) (-1170)) 135) (($ (-1188) (-322 (-709))) 175) (($ (-1188) (-322 (-707))) 176) (($ (-1188) (-322 (-702))) 177) (($ (-1188) (-697 (-709))) 138) (($ (-1188) (-697 (-707))) 141) (($ (-1188) (-697 (-702))) 144) (($ (-1188) (-1279 (-709))) 147) (($ (-1188) (-1279 (-707))) 150) (($ (-1188) (-1279 (-702))) 153) (($ (-1188) (-697 (-322 (-709)))) 156) (($ (-1188) (-697 (-322 (-707)))) 159) (($ (-1188) (-697 (-322 (-702)))) 162) (($ (-1188) (-1279 (-322 (-709)))) 165) (($ (-1188) (-1279 (-322 (-707)))) 168) (($ (-1188) (-1279 (-322 (-702)))) 171) (($ (-1188) (-652 (-961 (-572))) (-322 (-709))) 172) (($ (-1188) (-652 (-961 (-572))) (-322 (-707))) 173) (($ (-1188) (-652 (-961 (-572))) (-322 (-702))) 174) (($ (-1188) (-322 (-572))) 199) (($ (-1188) (-322 (-386))) 200) (($ (-1188) (-322 (-171 (-386)))) 201) (($ (-1188) (-697 (-322 (-572)))) 180) (($ (-1188) (-697 (-322 (-386)))) 183) (($ (-1188) (-697 (-322 (-171 (-386))))) 186) (($ (-1188) (-1279 (-322 (-572)))) 189) (($ (-1188) (-1279 (-322 (-386)))) 192) (($ (-1188) (-1279 (-322 (-171 (-386))))) 195) (($ (-1188) (-652 (-961 (-572))) (-322 (-572))) 196) (($ (-1188) (-652 (-961 (-572))) (-322 (-386))) 197) (($ (-1188) (-652 (-961 (-572))) (-322 (-171 (-386)))) 198)) (-2978 (((-112) $ $) NIL)))
-(((-336) (-13 (-1111) (-10 -8 (-15 -4349 ($ (-1103 (-961 (-572))) $)) (-15 -4349 ($ (-1103 (-961 (-572))) (-961 (-572)) $)) (-15 -4322 ($ (-1187) $)) (-15 -2471 ($ (-1187) $)) (-15 -2787 ($ (-1131))) (-15 -2012 ($ (-1131))) (-15 -2039 ($ (-1170))) (-15 -2039 ($ (-652 (-1170)))) (-15 -3402 ($ (-1170))) (-15 -2224 ($)) (-15 -2224 ($ (-322 (-707)))) (-15 -2224 ($ (-322 (-709)))) (-15 -2224 ($ (-322 (-702)))) (-15 -2224 ($ (-322 (-386)))) (-15 -2224 ($ (-322 (-572)))) (-15 -2224 ($ (-322 (-171 (-386))))) (-15 -3280 ($ (-1187) $)) (-15 -3280 ($ (-1187) $ $)) (-15 -1345 ($ (-1188) (-1170))) (-15 -1345 ($ (-1188) (-322 (-709)))) (-15 -1345 ($ (-1188) (-322 (-707)))) (-15 -1345 ($ (-1188) (-322 (-702)))) (-15 -1345 ($ (-1188) (-697 (-709)))) (-15 -1345 ($ (-1188) (-697 (-707)))) (-15 -1345 ($ (-1188) (-697 (-702)))) (-15 -1345 ($ (-1188) (-1279 (-709)))) (-15 -1345 ($ (-1188) (-1279 (-707)))) (-15 -1345 ($ (-1188) (-1279 (-702)))) (-15 -1345 ($ (-1188) (-697 (-322 (-709))))) (-15 -1345 ($ (-1188) (-697 (-322 (-707))))) (-15 -1345 ($ (-1188) (-697 (-322 (-702))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-709))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-707))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-702))))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-709)))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-707)))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-702)))) (-15 -1345 ($ (-1188) (-322 (-572)))) (-15 -1345 ($ (-1188) (-322 (-386)))) (-15 -1345 ($ (-1188) (-322 (-171 (-386))))) (-15 -1345 ($ (-1188) (-697 (-322 (-572))))) (-15 -1345 ($ (-1188) (-697 (-322 (-386))))) (-15 -1345 ($ (-1188) (-697 (-322 (-171 (-386)))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-572))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-386))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-171 (-386)))))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-572)))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-386)))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-171 (-386))))) (-15 -2227 ($ (-652 $))) (-15 -4252 ($)) (-15 -1611 ($)) (-15 -3181 ($ (-652 (-870)))) (-15 -3857 ($ (-1188) (-652 (-1188)))) (-15 -1456 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2048 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1188)) (|:| |arrayIndex| (-652 (-961 (-572)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1188)) (|:| |rand| (-870)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1187)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1841 (-112)) (|:| -3080 (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870)))))) (|:| |blockBranch| (-652 $)) (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170)) (|:| |forBranch| (-2 (|:| -1910 (-1103 (-961 (-572)))) (|:| |span| (-961 (-572))) (|:| -2042 $))) (|:| |labelBranch| (-1131)) (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2042 $))) (|:| |commonBranch| (-2 (|:| -2030 (-1188)) (|:| |contents| (-652 (-1188))))) (|:| |printBranch| (-652 (-870)))) $)) (-15 -3036 ((-1284) $)) (-15 -4423 ((-1115) $)) (-15 -3519 ((-1131) (-1131)))))) (T -336))
-((-4349 (*1 *1 *2 *1) (-12 (-5 *2 (-1103 (-961 (-572)))) (-5 *1 (-336)))) (-4349 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1103 (-961 (-572)))) (-5 *3 (-961 (-572))) (-5 *1 (-336)))) (-4322 (*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))) (-2471 (*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))) (-2787 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))) (-2039 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-336)))) (-2039 (*1 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-336)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-336)))) (-2224 (*1 *1) (-5 *1 (-336))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-322 (-707))) (-5 *1 (-336)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-322 (-709))) (-5 *1 (-336)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-322 (-702))) (-5 *1 (-336)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-5 *1 (-336)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-5 *1 (-336)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-322 (-171 (-386)))) (-5 *1 (-336)))) (-3280 (*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))) (-3280 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1170)) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-709))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-707))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-702))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-709))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-707))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-702))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-709))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-707))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-702))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-709)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-707)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-702)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-709)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-707)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-702)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-709))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-707))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-702))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-572))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-386))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-171 (-386)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-572)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-386)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-171 (-386))))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-572)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-386)))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-171 (-386))))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-572))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-386))) (-5 *1 (-336)))) (-1345 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-171 (-386)))) (-5 *1 (-336)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-5 *1 (-336)))) (-4252 (*1 *1) (-5 *1 (-336))) (-1611 (*1 *1) (-5 *1 (-336))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-336)))) (-3857 (*1 *1 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1188)) (-5 *1 (-336)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-336)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1188)) (|:| |arrayIndex| (-652 (-961 (-572)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1188)) (|:| |rand| (-870)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1187)) (|:| |thenClause| (-336)) (|:| |elseClause| (-336)))) (|:| |returnBranch| (-2 (|:| -1841 (-112)) (|:| -3080 (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870)))))) (|:| |blockBranch| (-652 (-336))) (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170)) (|:| |forBranch| (-2 (|:| -1910 (-1103 (-961 (-572)))) (|:| |span| (-961 (-572))) (|:| -2042 (-336)))) (|:| |labelBranch| (-1131)) (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2042 (-336)))) (|:| |commonBranch| (-2 (|:| -2030 (-1188)) (|:| |contents| (-652 (-1188))))) (|:| |printBranch| (-652 (-870))))) (-5 *1 (-336)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-336)))) (-4423 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-336)))) (-3519 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))))
-(-13 (-1111) (-10 -8 (-15 -4349 ($ (-1103 (-961 (-572))) $)) (-15 -4349 ($ (-1103 (-961 (-572))) (-961 (-572)) $)) (-15 -4322 ($ (-1187) $)) (-15 -2471 ($ (-1187) $)) (-15 -2787 ($ (-1131))) (-15 -2012 ($ (-1131))) (-15 -2039 ($ (-1170))) (-15 -2039 ($ (-652 (-1170)))) (-15 -3402 ($ (-1170))) (-15 -2224 ($)) (-15 -2224 ($ (-322 (-707)))) (-15 -2224 ($ (-322 (-709)))) (-15 -2224 ($ (-322 (-702)))) (-15 -2224 ($ (-322 (-386)))) (-15 -2224 ($ (-322 (-572)))) (-15 -2224 ($ (-322 (-171 (-386))))) (-15 -3280 ($ (-1187) $)) (-15 -3280 ($ (-1187) $ $)) (-15 -1345 ($ (-1188) (-1170))) (-15 -1345 ($ (-1188) (-322 (-709)))) (-15 -1345 ($ (-1188) (-322 (-707)))) (-15 -1345 ($ (-1188) (-322 (-702)))) (-15 -1345 ($ (-1188) (-697 (-709)))) (-15 -1345 ($ (-1188) (-697 (-707)))) (-15 -1345 ($ (-1188) (-697 (-702)))) (-15 -1345 ($ (-1188) (-1279 (-709)))) (-15 -1345 ($ (-1188) (-1279 (-707)))) (-15 -1345 ($ (-1188) (-1279 (-702)))) (-15 -1345 ($ (-1188) (-697 (-322 (-709))))) (-15 -1345 ($ (-1188) (-697 (-322 (-707))))) (-15 -1345 ($ (-1188) (-697 (-322 (-702))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-709))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-707))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-702))))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-709)))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-707)))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-702)))) (-15 -1345 ($ (-1188) (-322 (-572)))) (-15 -1345 ($ (-1188) (-322 (-386)))) (-15 -1345 ($ (-1188) (-322 (-171 (-386))))) (-15 -1345 ($ (-1188) (-697 (-322 (-572))))) (-15 -1345 ($ (-1188) (-697 (-322 (-386))))) (-15 -1345 ($ (-1188) (-697 (-322 (-171 (-386)))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-572))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-386))))) (-15 -1345 ($ (-1188) (-1279 (-322 (-171 (-386)))))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-572)))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-386)))) (-15 -1345 ($ (-1188) (-652 (-961 (-572))) (-322 (-171 (-386))))) (-15 -2227 ($ (-652 $))) (-15 -4252 ($)) (-15 -1611 ($)) (-15 -3181 ($ (-652 (-870)))) (-15 -3857 ($ (-1188) (-652 (-1188)))) (-15 -1456 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2048 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1188)) (|:| |arrayIndex| (-652 (-961 (-572)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1188)) (|:| |rand| (-870)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1187)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1841 (-112)) (|:| -3080 (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870)))))) (|:| |blockBranch| (-652 $)) (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170)) (|:| |forBranch| (-2 (|:| -1910 (-1103 (-961 (-572)))) (|:| |span| (-961 (-572))) (|:| -2042 $))) (|:| |labelBranch| (-1131)) (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2042 $))) (|:| |commonBranch| (-2 (|:| -2030 (-1188)) (|:| |contents| (-652 (-1188))))) (|:| |printBranch| (-652 (-870)))) $)) (-15 -3036 ((-1284) $)) (-15 -4423 ((-1115) $)) (-15 -3519 ((-1131) (-1131)))))
-((-2846 (((-112) $ $) NIL)) (-2274 (((-112) $) 13)) (-2222 (($ |#1|) 10)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2231 (($ |#1|) 12)) (-2940 (((-870) $) 19)) (-4379 (((-112) $ $) NIL)) (-2053 ((|#1| $) 14)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 21)))
-(((-337 |#1|) (-13 (-858) (-10 -8 (-15 -2222 ($ |#1|)) (-15 -2231 ($ |#1|)) (-15 -2274 ((-112) $)) (-15 -2053 (|#1| $)))) (-858)) (T -337))
-((-2222 (*1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858)))) (-2231 (*1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-858)))) (-2053 (*1 *2 *1) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858)))))
-(-13 (-858) (-10 -8 (-15 -2222 ($ |#1|)) (-15 -2231 ($ |#1|)) (-15 -2274 ((-112) $)) (-15 -2053 (|#1| $))))
-((-2982 (((-336) (-1188) (-961 (-572))) 23)) (-2481 (((-336) (-1188) (-961 (-572))) 27)) (-4409 (((-336) (-1188) (-1103 (-961 (-572))) (-1103 (-961 (-572)))) 26) (((-336) (-1188) (-961 (-572)) (-961 (-572))) 24)) (-3502 (((-336) (-1188) (-961 (-572))) 31)))
-(((-338) (-10 -7 (-15 -2982 ((-336) (-1188) (-961 (-572)))) (-15 -4409 ((-336) (-1188) (-961 (-572)) (-961 (-572)))) (-15 -4409 ((-336) (-1188) (-1103 (-961 (-572))) (-1103 (-961 (-572))))) (-15 -2481 ((-336) (-1188) (-961 (-572)))) (-15 -3502 ((-336) (-1188) (-961 (-572)))))) (T -338))
-((-3502 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336)) (-5 *1 (-338)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336)) (-5 *1 (-338)))) (-4409 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-1103 (-961 (-572)))) (-5 *2 (-336)) (-5 *1 (-338)))) (-4409 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336)) (-5 *1 (-338)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336)) (-5 *1 (-338)))))
-(-10 -7 (-15 -2982 ((-336) (-1188) (-961 (-572)))) (-15 -4409 ((-336) (-1188) (-961 (-572)) (-961 (-572)))) (-15 -4409 ((-336) (-1188) (-1103 (-961 (-572))) (-1103 (-961 (-572))))) (-15 -2481 ((-336) (-1188) (-961 (-572)))) (-15 -3502 ((-336) (-1188) (-961 (-572)))))
-((-2846 (((-112) $ $) NIL)) (-4154 (((-514) $) 20)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3873 (((-967 (-779)) $) 18)) (-3803 (((-254) $) 7)) (-2940 (((-870) $) 26)) (-4285 (((-967 (-185 (-140))) $) 16)) (-4379 (((-112) $ $) NIL)) (-3146 (((-652 (-881 (-1193) (-779))) $) 12)) (-2978 (((-112) $ $) 22)))
-(((-339) (-13 (-1111) (-10 -8 (-15 -3803 ((-254) $)) (-15 -3146 ((-652 (-881 (-1193) (-779))) $)) (-15 -3873 ((-967 (-779)) $)) (-15 -4285 ((-967 (-185 (-140))) $)) (-15 -4154 ((-514) $))))) (T -339))
-((-3803 (*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-339)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-652 (-881 (-1193) (-779)))) (-5 *1 (-339)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-967 (-779))) (-5 *1 (-339)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-967 (-185 (-140)))) (-5 *1 (-339)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-339)))))
-(-13 (-1111) (-10 -8 (-15 -3803 ((-254) $)) (-15 -3146 ((-652 (-881 (-1193) (-779))) $)) (-15 -3873 ((-967 (-779)) $)) (-15 -4285 ((-967 (-185 (-140))) $)) (-15 -4154 ((-514) $))))
-((-1776 (((-343 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-343 |#1| |#2| |#3| |#4|)) 33)))
-(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 ((-343 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-343 |#1| |#2| |#3| |#4|)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|) (-370) (-1255 |#5|) (-1255 (-415 |#6|)) (-349 |#5| |#6| |#7|)) (T -340))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-343 *5 *6 *7 *8)) (-4 *5 (-370)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7)) (-4 *9 (-370)) (-4 *10 (-1255 *9)) (-4 *11 (-1255 (-415 *10))) (-5 *2 (-343 *9 *10 *11 *12)) (-5 *1 (-340 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-349 *9 *10 *11)))))
-(-10 -7 (-15 -1776 ((-343 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-343 |#1| |#2| |#3| |#4|))))
-((-3801 (((-112) $) 14)))
-(((-341 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3801 ((-112) |#1|))) (-342 |#2| |#3| |#4| |#5|) (-370) (-1255 |#2|) (-1255 (-415 |#3|)) (-349 |#2| |#3| |#4|)) (T -341))
-NIL
-(-10 -8 (-15 -3801 ((-112) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2865 (($ $) 29)) (-3801 (((-112) $) 28)) (-4347 (((-1170) $) 10)) (-4124 (((-421 |#2| (-415 |#2|) |#3| |#4|) $) 35)) (-3964 (((-1131) $) 11)) (-2967 (((-3 |#4| "failed") $) 27)) (-4141 (($ (-421 |#2| (-415 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-572)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-4189 (((-2 (|:| -2798 (-421 |#2| (-415 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24)))
-(((-342 |#1| |#2| |#3| |#4|) (-141) (-370) (-1255 |t#1|) (-1255 (-415 |t#2|)) (-349 |t#1| |t#2| |t#3|)) (T -342))
-((-4124 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-5 *2 (-421 *4 (-415 *4) *5 *6)))) (-4141 (*1 *1 *2) (-12 (-5 *2 (-421 *4 (-415 *4) *5 *6)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-4 *3 (-370)) (-4 *1 (-342 *3 *4 *5 *6)))) (-4141 (*1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *1 (-342 *3 *4 *5 *2)) (-4 *2 (-349 *3 *4 *5)))) (-4141 (*1 *1 *2 *2) (-12 (-4 *2 (-370)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3))) (-4 *1 (-342 *2 *3 *4 *5)) (-4 *5 (-349 *2 *3 *4)))) (-4141 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-572)) (-4 *2 (-370)) (-4 *4 (-1255 *2)) (-4 *5 (-1255 (-415 *4))) (-4 *1 (-342 *2 *4 *5 *6)) (-4 *6 (-349 *2 *4 *5)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-5 *2 (-2 (|:| -2798 (-421 *4 (-415 *4) *5 *6)) (|:| |principalPart| *6))))) (-2865 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4 *5)) (-4 *2 (-370)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3))) (-4 *5 (-349 *2 *3 *4)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-5 *2 (-112)))) (-2967 (*1 *2 *1) (|partial| -12 (-4 *1 (-342 *3 *4 *5 *2)) (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *2 (-349 *3 *4 *5)))) (-4141 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-370)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-4 *1 (-342 *4 *3 *5 *2)) (-4 *2 (-349 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -4124 ((-421 |t#2| (-415 |t#2|) |t#3| |t#4|) $)) (-15 -4141 ($ (-421 |t#2| (-415 |t#2|) |t#3| |t#4|))) (-15 -4141 ($ |t#4|)) (-15 -4141 ($ |t#1| |t#1|)) (-15 -4141 ($ |t#1| |t#1| (-572))) (-15 -4189 ((-2 (|:| -2798 (-421 |t#2| (-415 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2865 ($ $)) (-15 -3801 ((-112) $)) (-15 -2967 ((-3 |t#4| "failed") $)) (-15 -4141 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2865 (($ $) 33)) (-3801 (((-112) $) NIL)) (-4347 (((-1170) $) NIL)) (-2771 (((-1279 |#4|) $) 134)) (-4124 (((-421 |#2| (-415 |#2|) |#3| |#4|) $) 31)) (-3964 (((-1131) $) NIL)) (-2967 (((-3 |#4| "failed") $) 36)) (-2924 (((-1279 |#4|) $) 126)) (-4141 (($ (-421 |#2| (-415 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-572)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4189 (((-2 (|:| -2798 (-421 |#2| (-415 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2940 (((-870) $) 17)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 14 T CONST)) (-2978 (((-112) $ $) 20)) (-3089 (($ $) 27) (($ $ $) NIL)) (-3075 (($ $ $) 25)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 23)))
-(((-343 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2924 ((-1279 |#4|) $)) (-15 -2771 ((-1279 |#4|) $)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -343))
-((-2924 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-1279 *6)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *6 (-349 *3 *4 *5)))) (-2771 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-1279 *6)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *6 (-349 *3 *4 *5)))))
-(-13 (-342 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2924 ((-1279 |#4|) $)) (-15 -2771 ((-1279 |#4|) $))))
-((-2641 (($ $ (-1188) |#2|) NIL) (($ $ (-652 (-1188)) (-652 |#2|)) 20) (($ $ (-652 (-300 |#2|))) 15) (($ $ (-300 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-652 |#2|) (-652 |#2|)) NIL)) (-2196 (($ $ |#2|) 11)))
-(((-344 |#1| |#2|) (-10 -8 (-15 -2196 (|#1| |#1| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#2|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#2| |#2|)) (-15 -2641 (|#1| |#1| (-300 |#2|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 |#2|))) (-15 -2641 (|#1| |#1| (-1188) |#2|))) (-345 |#2|) (-1111)) (T -344))
-NIL
-(-10 -8 (-15 -2196 (|#1| |#1| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#2|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#2| |#2|)) (-15 -2641 (|#1| |#1| (-300 |#2|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 |#2|))) (-15 -2641 (|#1| |#1| (-1188) |#2|)))
-((-1776 (($ (-1 |#1| |#1|) $) 6)) (-2641 (($ $ (-1188) |#1|) 17 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 16 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-652 (-300 |#1|))) 15 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 14 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-315 |#1|))) (($ $ (-652 |#1|) (-652 |#1|)) 12 (|has| |#1| (-315 |#1|)))) (-2196 (($ $ |#1|) 11 (|has| |#1| (-292 |#1| |#1|)))))
-(((-345 |#1|) (-141) (-1111)) (T -345))
-((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-345 *3)) (-4 *3 (-1111)))))
-(-13 (-10 -8 (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-292 |t#1| |t#1|)) (-6 (-292 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-315 |t#1|)) (-6 (-315 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-522 (-1188) |t#1|)) (-6 (-522 (-1188) |t#1|)) |%noBranch|)))
-(((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-1229) |has| |#1| (-292 |#1| |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-1188)) $) NIL)) (-2690 (((-112)) 96) (((-112) (-112)) 97)) (-4090 (((-652 (-620 $)) $) NIL)) (-2358 (($ $) NIL)) (-2242 (($ $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2539 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL)) (-4227 (($ $) NIL)) (-2338 (($ $) NIL)) (-2222 (($ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-620 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-322 |#3|)) 76) (((-3 $ "failed") (-1188)) 103) (((-3 $ "failed") (-322 (-572))) 64 (|has| |#3| (-1049 (-572)))) (((-3 $ "failed") (-415 (-961 (-572)))) 70 (|has| |#3| (-1049 (-572)))) (((-3 $ "failed") (-961 (-572))) 65 (|has| |#3| (-1049 (-572)))) (((-3 $ "failed") (-322 (-386))) 94 (|has| |#3| (-1049 (-386)))) (((-3 $ "failed") (-415 (-961 (-386)))) 88 (|has| |#3| (-1049 (-386)))) (((-3 $ "failed") (-961 (-386))) 83 (|has| |#3| (-1049 (-386))))) (-2204 (((-620 $) $) NIL) ((|#3| $) NIL) (($ (-322 |#3|)) 77) (($ (-1188)) 104) (($ (-322 (-572))) 66 (|has| |#3| (-1049 (-572)))) (($ (-415 (-961 (-572)))) 71 (|has| |#3| (-1049 (-572)))) (($ (-961 (-572))) 67 (|has| |#3| (-1049 (-572)))) (($ (-322 (-386))) 95 (|has| |#3| (-1049 (-386)))) (($ (-415 (-961 (-386)))) 89 (|has| |#3| (-1049 (-386)))) (($ (-961 (-386))) 85 (|has| |#3| (-1049 (-386))))) (-2062 (((-3 $ "failed") $) NIL)) (-2997 (($) 101)) (-3033 (($ $) NIL) (($ (-652 $)) NIL)) (-4085 (((-652 (-115)) $) NIL)) (-4171 (((-115) (-115)) NIL)) (-1886 (((-112) $) NIL)) (-2597 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2969 (((-1184 $) (-620 $)) NIL (|has| $ (-1060)))) (-1776 (($ (-1 $ $) (-620 $)) NIL)) (-3369 (((-3 (-620 $) "failed") $) NIL)) (-1732 (($ $) 99)) (-3116 (($ $) NIL)) (-4347 (((-1170) $) NIL)) (-4161 (((-652 (-620 $)) $) NIL)) (-1774 (($ (-115) $) 98) (($ (-115) (-652 $)) NIL)) (-2695 (((-112) $ (-115)) NIL) (((-112) $ (-1188)) NIL)) (-1839 (((-779) $) NIL)) (-3964 (((-1131) $) NIL)) (-2202 (((-112) $ $) NIL) (((-112) $ (-1188)) NIL)) (-1608 (($ $) NIL)) (-2003 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2641 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2196 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) NIL)) (-2904 (($ $) NIL) (($ $ $) NIL)) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL)) (-3764 (($ $) NIL (|has| $ (-1060)))) (-2348 (($ $) NIL)) (-2231 (($ $) NIL)) (-2940 (((-870) $) NIL) (($ (-620 $)) NIL) (($ |#3|) NIL) (($ (-572)) NIL) (((-322 |#3|) $) 102)) (-4249 (((-779)) NIL T CONST)) (-3952 (($ $) NIL) (($ (-652 $)) NIL)) (-4406 (((-112) (-115)) NIL)) (-4379 (((-112) $ $) NIL)) (-2300 (($ $) NIL)) (-2282 (($ $) NIL)) (-2292 (($ $) NIL)) (-2700 (($ $) NIL)) (-2131 (($) 100 T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL)))
-(((-346 |#1| |#2| |#3|) (-13 (-308) (-38 |#3|) (-1049 |#3|) (-909 (-1188)) (-10 -8 (-15 -2204 ($ (-322 |#3|))) (-15 -1695 ((-3 $ "failed") (-322 |#3|))) (-15 -2204 ($ (-1188))) (-15 -1695 ((-3 $ "failed") (-1188))) (-15 -2940 ((-322 |#3|) $)) (IF (|has| |#3| (-1049 (-572))) (PROGN (-15 -2204 ($ (-322 (-572)))) (-15 -1695 ((-3 $ "failed") (-322 (-572)))) (-15 -2204 ($ (-415 (-961 (-572))))) (-15 -1695 ((-3 $ "failed") (-415 (-961 (-572))))) (-15 -2204 ($ (-961 (-572)))) (-15 -1695 ((-3 $ "failed") (-961 (-572))))) |%noBranch|) (IF (|has| |#3| (-1049 (-386))) (PROGN (-15 -2204 ($ (-322 (-386)))) (-15 -1695 ((-3 $ "failed") (-322 (-386)))) (-15 -2204 ($ (-415 (-961 (-386))))) (-15 -1695 ((-3 $ "failed") (-415 (-961 (-386))))) (-15 -2204 ($ (-961 (-386)))) (-15 -1695 ((-3 $ "failed") (-961 (-386))))) |%noBranch|) (-15 -2700 ($ $)) (-15 -4227 ($ $)) (-15 -1608 ($ $)) (-15 -3116 ($ $)) (-15 -1732 ($ $)) (-15 -2222 ($ $)) (-15 -2231 ($ $)) (-15 -2242 ($ $)) (-15 -2282 ($ $)) (-15 -2292 ($ $)) (-15 -2300 ($ $)) (-15 -2338 ($ $)) (-15 -2348 ($ $)) (-15 -2358 ($ $)) (-15 -2997 ($)) (-15 -4353 ((-652 (-1188)) $)) (-15 -2690 ((-112))) (-15 -2690 ((-112) (-112))))) (-652 (-1188)) (-652 (-1188)) (-395)) (T -346))
-((-2204 (*1 *1 *2) (-12 (-5 *2 (-322 *5)) (-4 *5 (-395)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 *5)) (-4 *5 (-395)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 *2)) (-14 *4 (-652 *2)) (-4 *5 (-395)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 *2)) (-14 *4 (-652 *2)) (-4 *5 (-395)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-322 *5)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-572))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-572)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 (-961 (-572)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-961 (-572))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-572))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-386))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-386)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 (-961 (-386)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-961 (-386))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-386))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2700 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-4227 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-1608 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3116 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-1732 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2222 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2231 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2242 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2292 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2300 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2338 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2348 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2997 (*1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-395)))) (-2690 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2690 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))))
-(-13 (-308) (-38 |#3|) (-1049 |#3|) (-909 (-1188)) (-10 -8 (-15 -2204 ($ (-322 |#3|))) (-15 -1695 ((-3 $ "failed") (-322 |#3|))) (-15 -2204 ($ (-1188))) (-15 -1695 ((-3 $ "failed") (-1188))) (-15 -2940 ((-322 |#3|) $)) (IF (|has| |#3| (-1049 (-572))) (PROGN (-15 -2204 ($ (-322 (-572)))) (-15 -1695 ((-3 $ "failed") (-322 (-572)))) (-15 -2204 ($ (-415 (-961 (-572))))) (-15 -1695 ((-3 $ "failed") (-415 (-961 (-572))))) (-15 -2204 ($ (-961 (-572)))) (-15 -1695 ((-3 $ "failed") (-961 (-572))))) |%noBranch|) (IF (|has| |#3| (-1049 (-386))) (PROGN (-15 -2204 ($ (-322 (-386)))) (-15 -1695 ((-3 $ "failed") (-322 (-386)))) (-15 -2204 ($ (-415 (-961 (-386))))) (-15 -1695 ((-3 $ "failed") (-415 (-961 (-386))))) (-15 -2204 ($ (-961 (-386)))) (-15 -1695 ((-3 $ "failed") (-961 (-386))))) |%noBranch|) (-15 -2700 ($ $)) (-15 -4227 ($ $)) (-15 -1608 ($ $)) (-15 -3116 ($ $)) (-15 -1732 ($ $)) (-15 -2222 ($ $)) (-15 -2231 ($ $)) (-15 -2242 ($ $)) (-15 -2282 ($ $)) (-15 -2292 ($ $)) (-15 -2300 ($ $)) (-15 -2338 ($ $)) (-15 -2348 ($ $)) (-15 -2358 ($ $)) (-15 -2997 ($)) (-15 -4353 ((-652 (-1188)) $)) (-15 -2690 ((-112))) (-15 -2690 ((-112) (-112)))))
-((-1776 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|))) (-1233) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|) (-1233) (-1255 |#5|) (-1255 (-415 |#6|)) (-349 |#5| |#6| |#7|)) (T -347))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1233)) (-4 *8 (-1233)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *9 (-1255 *8)) (-4 *2 (-349 *8 *9 *10)) (-5 *1 (-347 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-349 *5 *6 *7)) (-4 *10 (-1255 (-415 *9))))))
-(-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|)))
-((-1824 (((-2 (|:| |num| (-1279 |#3|)) (|:| |den| |#3|)) $) 39)) (-1913 (($ (-1279 (-415 |#3|)) (-1279 $)) NIL) (($ (-1279 (-415 |#3|))) NIL) (($ (-1279 |#3|) |#3|) 173)) (-4026 (((-1279 $) (-1279 $)) 156)) (-3322 (((-652 (-652 |#2|))) 126)) (-3806 (((-112) |#2| |#2|) 76)) (-1876 (($ $) 148)) (-2720 (((-779)) 172)) (-2508 (((-1279 $) (-1279 $)) 218)) (-4392 (((-652 (-961 |#2|)) (-1188)) 115)) (-3049 (((-112) $) 169)) (-3267 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2535 (((-3 |#3| "failed")) 52)) (-3455 (((-779)) 184)) (-2196 ((|#2| $ |#2| |#2|) 140)) (-1673 (((-3 |#3| "failed")) 71)) (-3902 (($ $ (-1 (-415 |#3|) (-415 |#3|)) (-779)) NIL) (($ $ (-1 (-415 |#3|) (-415 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-2304 (((-1279 $) (-1279 $)) 162)) (-1352 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-2194 (((-112)) 34)))
-(((-348 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3322 ((-652 (-652 |#2|)))) (-15 -4392 ((-652 (-961 |#2|)) (-1188))) (-15 -1352 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2535 ((-3 |#3| "failed"))) (-15 -1673 ((-3 |#3| "failed"))) (-15 -2196 (|#2| |#1| |#2| |#2|)) (-15 -1876 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3267 ((-112) |#1| |#3|)) (-15 -3267 ((-112) |#1| |#2|)) (-15 -1913 (|#1| (-1279 |#3|) |#3|)) (-15 -1824 ((-2 (|:| |num| (-1279 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4026 ((-1279 |#1|) (-1279 |#1|))) (-15 -2508 ((-1279 |#1|) (-1279 |#1|))) (-15 -2304 ((-1279 |#1|) (-1279 |#1|))) (-15 -3267 ((-112) |#1|)) (-15 -3049 ((-112) |#1|)) (-15 -3806 ((-112) |#2| |#2|)) (-15 -2194 ((-112))) (-15 -3455 ((-779))) (-15 -2720 ((-779))) (-15 -3902 (|#1| |#1| (-1 (-415 |#3|) (-415 |#3|)))) (-15 -3902 (|#1| |#1| (-1 (-415 |#3|) (-415 |#3|)) (-779))) (-15 -1913 (|#1| (-1279 (-415 |#3|)))) (-15 -1913 (|#1| (-1279 (-415 |#3|)) (-1279 |#1|)))) (-349 |#2| |#3| |#4|) (-1233) (-1255 |#2|) (-1255 (-415 |#3|))) (T -348))
-((-2720 (*1 *2) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-779)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6)))) (-3455 (*1 *2) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-779)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6)))) (-2194 (*1 *2) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6)))) (-3806 (*1 *2 *3 *3) (-12 (-4 *3 (-1233)) (-4 *5 (-1255 *3)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-112)) (-5 *1 (-348 *4 *3 *5 *6)) (-4 *4 (-349 *3 *5 *6)))) (-1673 (*1 *2) (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-348 *3 *4 *2 *5)) (-4 *3 (-349 *4 *2 *5)))) (-2535 (*1 *2) (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-348 *3 *4 *2 *5)) (-4 *3 (-349 *4 *2 *5)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *5 (-1233)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-5 *2 (-652 (-961 *5))) (-5 *1 (-348 *4 *5 *6 *7)) (-4 *4 (-349 *5 *6 *7)))) (-3322 (*1 *2) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-652 (-652 *4))) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6)))))
-(-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3322 ((-652 (-652 |#2|)))) (-15 -4392 ((-652 (-961 |#2|)) (-1188))) (-15 -1352 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2535 ((-3 |#3| "failed"))) (-15 -1673 ((-3 |#3| "failed"))) (-15 -2196 (|#2| |#1| |#2| |#2|)) (-15 -1876 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3267 ((-112) |#1| |#3|)) (-15 -3267 ((-112) |#1| |#2|)) (-15 -1913 (|#1| (-1279 |#3|) |#3|)) (-15 -1824 ((-2 (|:| |num| (-1279 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4026 ((-1279 |#1|) (-1279 |#1|))) (-15 -2508 ((-1279 |#1|) (-1279 |#1|))) (-15 -2304 ((-1279 |#1|) (-1279 |#1|))) (-15 -3267 ((-112) |#1|)) (-15 -3049 ((-112) |#1|)) (-15 -3806 ((-112) |#2| |#2|)) (-15 -2194 ((-112))) (-15 -3455 ((-779))) (-15 -2720 ((-779))) (-15 -3902 (|#1| |#1| (-1 (-415 |#3|) (-415 |#3|)))) (-15 -3902 (|#1| |#1| (-1 (-415 |#3|) (-415 |#3|)) (-779))) (-15 -1913 (|#1| (-1279 (-415 |#3|)))) (-15 -1913 (|#1| (-1279 (-415 |#3|)) (-1279 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-1824 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) 207)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 103 (|has| (-415 |#2|) (-370)))) (-3009 (($ $) 104 (|has| (-415 |#2|) (-370)))) (-4334 (((-112) $) 106 (|has| (-415 |#2|) (-370)))) (-3736 (((-697 (-415 |#2|)) (-1279 $)) 53) (((-697 (-415 |#2|))) 68)) (-1635 (((-415 |#2|) $) 59)) (-1814 (((-1201 (-930) (-779)) (-572)) 156 (|has| (-415 |#2|) (-356)))) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 123 (|has| (-415 |#2|) (-370)))) (-2287 (((-426 $) $) 124 (|has| (-415 |#2|) (-370)))) (-4217 (((-112) $ $) 114 (|has| (-415 |#2|) (-370)))) (-1486 (((-779)) 97 (|has| (-415 |#2|) (-375)))) (-1730 (((-112)) 224)) (-3672 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3281 (($) 18 T CONST)) (-1695 (((-3 (-572) "failed") $) 181 (|has| (-415 |#2|) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 179 (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-3 (-415 |#2|) "failed") $) 176)) (-2204 (((-572) $) 180 (|has| (-415 |#2|) (-1049 (-572)))) (((-415 (-572)) $) 178 (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-415 |#2|) $) 177)) (-1913 (($ (-1279 (-415 |#2|)) (-1279 $)) 55) (($ (-1279 (-415 |#2|))) 71) (($ (-1279 |#2|) |#2|) 206)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| (-415 |#2|) (-356)))) (-2780 (($ $ $) 118 (|has| (-415 |#2|) (-370)))) (-3485 (((-697 (-415 |#2|)) $ (-1279 $)) 60) (((-697 (-415 |#2|)) $) 66)) (-2993 (((-697 (-572)) (-1279 $)) 175 (|has| (-415 |#2|) (-647 (-572)))) (((-697 (-572)) (-697 $)) 174 (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 173 (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-415 |#2|))) (|:| |vec| (-1279 (-415 |#2|)))) (-697 $) (-1279 $)) 172) (((-697 (-415 |#2|)) (-697 $)) 171) (((-697 (-415 |#2|)) (-1279 $)) 170)) (-4026 (((-1279 $) (-1279 $)) 212)) (-2865 (($ |#3|) 167) (((-3 $ "failed") (-415 |#3|)) 164 (|has| (-415 |#2|) (-370)))) (-2062 (((-3 $ "failed") $) 37)) (-3322 (((-652 (-652 |#1|))) 193 (|has| |#1| (-375)))) (-3806 (((-112) |#1| |#1|) 228)) (-3581 (((-930)) 61)) (-2815 (($) 100 (|has| (-415 |#2|) (-375)))) (-1418 (((-112)) 221)) (-2709 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2792 (($ $ $) 117 (|has| (-415 |#2|) (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 112 (|has| (-415 |#2|) (-370)))) (-1876 (($ $) 199)) (-1879 (($) 158 (|has| (-415 |#2|) (-356)))) (-3442 (((-112) $) 159 (|has| (-415 |#2|) (-356)))) (-2303 (($ $ (-779)) 150 (|has| (-415 |#2|) (-356))) (($ $) 149 (|has| (-415 |#2|) (-356)))) (-3879 (((-112) $) 125 (|has| (-415 |#2|) (-370)))) (-2956 (((-930) $) 161 (|has| (-415 |#2|) (-356))) (((-841 (-930)) $) 147 (|has| (-415 |#2|) (-356)))) (-1886 (((-112) $) 35)) (-2720 (((-779)) 231)) (-2508 (((-1279 $) (-1279 $)) 213)) (-2028 (((-415 |#2|) $) 58)) (-4392 (((-652 (-961 |#1|)) (-1188)) 194 (|has| |#1| (-370)))) (-2556 (((-3 $ "failed") $) 151 (|has| (-415 |#2|) (-356)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 121 (|has| (-415 |#2|) (-370)))) (-3053 ((|#3| $) 51 (|has| (-415 |#2|) (-370)))) (-3715 (((-930) $) 99 (|has| (-415 |#2|) (-375)))) (-2851 ((|#3| $) 165)) (-2825 (($ (-652 $)) 110 (|has| (-415 |#2|) (-370))) (($ $ $) 109 (|has| (-415 |#2|) (-370)))) (-4347 (((-1170) $) 10)) (-3628 (((-697 (-415 |#2|))) 208)) (-1725 (((-697 (-415 |#2|))) 210)) (-1322 (($ $) 126 (|has| (-415 |#2|) (-370)))) (-2544 (($ (-1279 |#2|) |#2|) 204)) (-2382 (((-697 (-415 |#2|))) 209)) (-2033 (((-697 (-415 |#2|))) 211)) (-1877 (((-2 (|:| |num| (-697 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 203)) (-2885 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) 205)) (-1543 (((-1279 $)) 217)) (-4219 (((-1279 $)) 218)) (-3049 (((-112) $) 216)) (-3267 (((-112) $) 215) (((-112) $ |#1|) 202) (((-112) $ |#2|) 201)) (-3815 (($) 152 (|has| (-415 |#2|) (-356)) CONST)) (-2571 (($ (-930)) 98 (|has| (-415 |#2|) (-375)))) (-2535 (((-3 |#2| "failed")) 196)) (-3964 (((-1131) $) 11)) (-3455 (((-779)) 230)) (-2967 (($) 169)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 111 (|has| (-415 |#2|) (-370)))) (-2870 (($ (-652 $)) 108 (|has| (-415 |#2|) (-370))) (($ $ $) 107 (|has| (-415 |#2|) (-370)))) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) 155 (|has| (-415 |#2|) (-356)))) (-4218 (((-426 $) $) 122 (|has| (-415 |#2|) (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| (-415 |#2|) (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 119 (|has| (-415 |#2|) (-370)))) (-2834 (((-3 $ "failed") $ $) 102 (|has| (-415 |#2|) (-370)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 113 (|has| (-415 |#2|) (-370)))) (-3847 (((-779) $) 115 (|has| (-415 |#2|) (-370)))) (-2196 ((|#1| $ |#1| |#1|) 198)) (-1673 (((-3 |#2| "failed")) 197)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 116 (|has| (-415 |#2|) (-370)))) (-3537 (((-415 |#2|) (-1279 $)) 54) (((-415 |#2|)) 67)) (-3354 (((-779) $) 160 (|has| (-415 |#2|) (-356))) (((-3 (-779) "failed") $ $) 148 (|has| (-415 |#2|) (-356)))) (-3902 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) 132 (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) 131 (|has| (-415 |#2|) (-370))) (($ $ (-1 |#2| |#2|)) 200) (($ $ (-652 (-1188)) (-652 (-779))) 139 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-2085 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-1188) (-779)) 140 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-2085 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-652 (-1188))) 141 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-2085 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-1188)) 142 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-2085 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-779)) 144 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-237))) (-2085 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) 145 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-237))) (-2085 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-2144 (((-697 (-415 |#2|)) (-1279 $) (-1 (-415 |#2|) (-415 |#2|))) 163 (|has| (-415 |#2|) (-370)))) (-3764 ((|#3|) 168)) (-4033 (($) 157 (|has| (-415 |#2|) (-356)))) (-4329 (((-1279 (-415 |#2|)) $ (-1279 $)) 57) (((-697 (-415 |#2|)) (-1279 $) (-1279 $)) 56) (((-1279 (-415 |#2|)) $) 73) (((-697 (-415 |#2|)) (-1279 $)) 72)) (-1835 (((-1279 (-415 |#2|)) $) 70) (($ (-1279 (-415 |#2|))) 69) ((|#3| $) 182) (($ |#3|) 166)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 154 (|has| (-415 |#2|) (-356)))) (-2304 (((-1279 $) (-1279 $)) 214)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 |#2|)) 44) (($ (-415 (-572))) 96 (-2813 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-1049 (-415 (-572)))))) (($ $) 101 (|has| (-415 |#2|) (-370)))) (-3849 (($ $) 153 (|has| (-415 |#2|) (-356))) (((-3 $ "failed") $) 50 (|has| (-415 |#2|) (-146)))) (-4251 ((|#3| $) 52)) (-4249 (((-779)) 32 T CONST)) (-3456 (((-112)) 227)) (-3677 (((-112) |#1|) 226) (((-112) |#2|) 225)) (-4379 (((-112) $ $) 9)) (-4362 (((-1279 $)) 74)) (-2845 (((-112) $ $) 105 (|has| (-415 |#2|) (-370)))) (-1352 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 195)) (-2194 (((-112)) 229)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) 134 (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) 133 (|has| (-415 |#2|) (-370))) (($ $ (-652 (-1188)) (-652 (-779))) 135 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-2085 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-1188) (-779)) 136 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-2085 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-652 (-1188))) 137 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-2085 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-1188)) 138 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-2085 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-779)) 143 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-237))) (-2085 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) 146 (-2813 (-2085 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-237))) (-2085 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 130 (|has| (-415 |#2|) (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 127 (|has| (-415 |#2|) (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 |#2|)) 46) (($ (-415 |#2|) $) 45) (($ (-415 (-572)) $) 129 (|has| (-415 |#2|) (-370))) (($ $ (-415 (-572))) 128 (|has| (-415 |#2|) (-370)))))
-(((-349 |#1| |#2| |#3|) (-141) (-1233) (-1255 |t#1|) (-1255 (-415 |t#2|))) (T -349))
-((-2720 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-779)))) (-3455 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-779)))) (-2194 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-3806 (*1 *2 *3 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-3456 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-3677 (*1 *2 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-3677 (*1 *2 *3) (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112)))) (-1730 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-3672 (*1 *2 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-3672 (*1 *2 *3) (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112)))) (-1418 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-2709 (*1 *2 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-2709 (*1 *2 *3) (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112)))) (-4219 (*1 *2) (-12 (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)))) (-1543 (*1 *2) (-12 (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))) (-2508 (*1 *2 *2) (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))) (-4026 (*1 *2 *2) (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))) (-2033 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))) (-1725 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))) (-2382 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))) (-3628 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-2 (|:| |num| (-1279 *4)) (|:| |den| *4))))) (-1913 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1255 *4)) (-4 *4 (-1233)) (-4 *1 (-349 *4 *3 *5)) (-4 *5 (-1255 (-415 *3))))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-2 (|:| |num| (-1279 *4)) (|:| |den| *4))))) (-2544 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1255 *4)) (-4 *4 (-1233)) (-4 *1 (-349 *4 *3 *5)) (-4 *5 (-1255 (-415 *3))))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-349 *4 *5 *6)) (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-2 (|:| |num| (-697 *5)) (|:| |den| *5))))) (-3267 (*1 *2 *1 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-3267 (*1 *2 *1 *3) (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))) (-1876 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3))))) (-2196 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-349 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3))))) (-1673 (*1 *2) (|partial| -12 (-4 *1 (-349 *3 *2 *4)) (-4 *3 (-1233)) (-4 *4 (-1255 (-415 *2))) (-4 *2 (-1255 *3)))) (-2535 (*1 *2) (|partial| -12 (-4 *1 (-349 *3 *2 *4)) (-4 *3 (-1233)) (-4 *4 (-1255 (-415 *2))) (-4 *2 (-1255 *3)))) (-1352 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-1233)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-349 *4 *5 *6)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *1 (-349 *4 *5 *6)) (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-4 *4 (-370)) (-5 *2 (-652 (-961 *4))))) (-3322 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *3 (-375)) (-5 *2 (-652 (-652 *3))))))
-(-13 (-732 (-415 |t#2|) |t#3|) (-10 -8 (-15 -2720 ((-779))) (-15 -3455 ((-779))) (-15 -2194 ((-112))) (-15 -3806 ((-112) |t#1| |t#1|)) (-15 -3456 ((-112))) (-15 -3677 ((-112) |t#1|)) (-15 -3677 ((-112) |t#2|)) (-15 -1730 ((-112))) (-15 -3672 ((-112) |t#1|)) (-15 -3672 ((-112) |t#2|)) (-15 -1418 ((-112))) (-15 -2709 ((-112) |t#1|)) (-15 -2709 ((-112) |t#2|)) (-15 -4219 ((-1279 $))) (-15 -1543 ((-1279 $))) (-15 -3049 ((-112) $)) (-15 -3267 ((-112) $)) (-15 -2304 ((-1279 $) (-1279 $))) (-15 -2508 ((-1279 $) (-1279 $))) (-15 -4026 ((-1279 $) (-1279 $))) (-15 -2033 ((-697 (-415 |t#2|)))) (-15 -1725 ((-697 (-415 |t#2|)))) (-15 -2382 ((-697 (-415 |t#2|)))) (-15 -3628 ((-697 (-415 |t#2|)))) (-15 -1824 ((-2 (|:| |num| (-1279 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1913 ($ (-1279 |t#2|) |t#2|)) (-15 -2885 ((-2 (|:| |num| (-1279 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2544 ($ (-1279 |t#2|) |t#2|)) (-15 -1877 ((-2 (|:| |num| (-697 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3267 ((-112) $ |t#1|)) (-15 -3267 ((-112) $ |t#2|)) (-15 -3902 ($ $ (-1 |t#2| |t#2|))) (-15 -1876 ($ $)) (-15 -2196 (|t#1| $ |t#1| |t#1|)) (-15 -1673 ((-3 |t#2| "failed"))) (-15 -2535 ((-3 |t#2| "failed"))) (-15 -1352 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-370)) (-15 -4392 ((-652 (-961 |t#1|)) (-1188))) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -3322 ((-652 (-652 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-38 #1=(-415 |#2|)) . T) ((-38 $) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-102) . T) ((-111 #0# #0#) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-146))) ((-148) |has| (-415 |#2|) (-148)) ((-624 #0#) -2813 (|has| (-415 |#2|) (-1049 (-415 (-572)))) (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-624 #1#) . T) ((-624 (-572)) . T) ((-624 $) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-621 (-870)) . T) ((-174) . T) ((-622 |#3|) . T) ((-235 $) -2813 (|has| (-415 |#2|) (-356)) (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370)))) ((-233 #1#) |has| (-415 |#2|) (-370)) ((-237) -2813 (|has| (-415 |#2|) (-356)) (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370)))) ((-247) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-296) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-313) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-370) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-410) |has| (-415 |#2|) (-356)) ((-375) -2813 (|has| (-415 |#2|) (-375)) (|has| (-415 |#2|) (-356))) ((-356) |has| (-415 |#2|) (-356)) ((-377 #1# |#3|) . T) ((-417 #1# |#3|) . T) ((-384 #1#) . T) ((-419 #1#) . T) ((-460) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-564) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-654 #0#) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-654 #1#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-656 #1#) . T) ((-656 #2=(-572)) |has| (-415 |#2|) (-647 (-572))) ((-656 $) . T) ((-648 #0#) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-648 #1#) . T) ((-648 $) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-647 #1#) . T) ((-647 #2#) |has| (-415 |#2|) (-647 (-572))) ((-725 #0#) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-725 #1#) . T) ((-725 $) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-732 #1# |#3|) . T) ((-734) . T) ((-909 (-1188)) -12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) ((-929) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-1049 (-415 (-572))) |has| (-415 |#2|) (-1049 (-415 (-572)))) ((-1049 #1#) . T) ((-1049 (-572)) |has| (-415 |#2|) (-1049 (-572))) ((-1062 #0#) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-1062 #1#) . T) ((-1062 $) . T) ((-1067 #0#) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-1067 #1#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| (-415 |#2|) (-356)) ((-1229) -2813 (|has| (-415 |#2|) (-356)) (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370)))) ((-1233) -2813 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-919 |#1|) (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL (|has| (-919 |#1|) (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-919 |#1|) "failed") $) NIL)) (-2204 (((-919 |#1|) $) NIL)) (-1913 (($ (-1279 (-919 |#1|))) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-919 |#1|) (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-919 |#1|) (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) NIL (|has| (-919 |#1|) (-375)))) (-3442 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375)))) (($ $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) NIL (|has| (-919 |#1|) (-375))) (((-841 (-930)) $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-1886 (((-112) $) NIL)) (-1663 (($) NIL (|has| (-919 |#1|) (-375)))) (-2078 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-2028 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| (-919 |#1|) (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 (-919 |#1|)) $) NIL) (((-1184 $) $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-3715 (((-930) $) NIL (|has| (-919 |#1|) (-375)))) (-4370 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375)))) (-3293 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-1184 (-919 |#1|)) "failed") $ $) NIL (|has| (-919 |#1|) (-375)))) (-3103 (($ $ (-1184 (-919 |#1|))) NIL (|has| (-919 |#1|) (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-919 |#1|) (-375)) CONST)) (-2571 (($ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-2946 (((-112) $) NIL)) (-3964 (((-1131) $) NIL)) (-4293 (((-967 (-1131))) NIL)) (-2967 (($) NIL (|has| (-919 |#1|) (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| (-919 |#1|) (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) NIL) (((-930)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-779) "failed") $ $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3764 (((-1184 (-919 |#1|))) NIL)) (-4033 (($) NIL (|has| (-919 |#1|) (-375)))) (-3105 (($) NIL (|has| (-919 |#1|) (-375)))) (-4329 (((-1279 (-919 |#1|)) $) NIL) (((-697 (-919 |#1|)) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-919 |#1|) (-375)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-919 |#1|)) NIL)) (-3849 (($ $) NIL (|has| (-919 |#1|) (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-3608 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL) (($ $ (-919 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-919 |#1|)) NIL) (($ (-919 |#1|) $) NIL)))
-(((-350 |#1| |#2|) (-13 (-335 (-919 |#1|)) (-10 -7 (-15 -4293 ((-967 (-1131)))))) (-930) (-930)) (T -350))
-((-4293 (*1 *2) (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-350 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))))
-(-13 (-335 (-919 |#1|)) (-10 -7 (-15 -4293 ((-967 (-1131))))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 58)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) 56 (|has| |#1| (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL (|has| |#1| (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 142)) (-2204 ((|#1| $) 113)) (-1913 (($ (-1279 |#1|)) 130)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) 124 (|has| |#1| (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) 160 (|has| |#1| (-375)))) (-3442 (((-112) $) 66 (|has| |#1| (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) 60 (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1886 (((-112) $) 62)) (-1663 (($) 162 (|has| |#1| (-375)))) (-2078 (((-112) $) NIL (|has| |#1| (-375)))) (-2028 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 |#1|) $) 117) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-3715 (((-930) $) 171 (|has| |#1| (-375)))) (-4370 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-3293 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-3103 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 178)) (-3815 (($) NIL (|has| |#1| (-375)) CONST)) (-2571 (($ (-930)) 96 (|has| |#1| (-375)))) (-2946 (((-112) $) 147)) (-3964 (((-1131) $) NIL)) (-4293 (((-967 (-1131))) 57)) (-2967 (($) 158 (|has| |#1| (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) 119 (|has| |#1| (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) 90) (((-930)) 91)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) 161 (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) 154 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3764 (((-1184 |#1|)) 122)) (-4033 (($) 159 (|has| |#1| (-375)))) (-3105 (($) 167 (|has| |#1| (-375)))) (-4329 (((-1279 |#1|) $) 77) (((-697 |#1|) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-2940 (((-870) $) 174) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 100)) (-3849 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4249 (((-779)) 155 T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) 144) (((-1279 $) (-930)) 98)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) 67 T CONST)) (-2143 (($) 103 T CONST)) (-3790 (($ $) 107 (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3608 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-2978 (((-112) $ $) 65)) (-3106 (($ $ $) 176) (($ $ |#1|) 177)) (-3089 (($ $) 157) (($ $ $) NIL)) (-3075 (($ $ $) 86)) (** (($ $ (-930)) 180) (($ $ (-779)) 181) (($ $ (-572)) 179)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 102) (($ $ $) 101) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
-(((-351 |#1| |#2|) (-13 (-335 |#1|) (-10 -7 (-15 -4293 ((-967 (-1131)))))) (-356) (-1184 |#1|)) (T -351))
-((-4293 (*1 *2) (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-351 *3 *4)) (-4 *3 (-356)) (-14 *4 (-1184 *3)))))
-(-13 (-335 |#1|) (-10 -7 (-15 -4293 ((-967 (-1131))))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL (|has| |#1| (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-1913 (($ (-1279 |#1|)) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| |#1| (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) NIL (|has| |#1| (-375)))) (-3442 (((-112) $) NIL (|has| |#1| (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1886 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-375)))) (-2078 (((-112) $) NIL (|has| |#1| (-375)))) (-2028 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 |#1|) $) NIL) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-3715 (((-930) $) NIL (|has| |#1| (-375)))) (-4370 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-3293 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-3103 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| |#1| (-375)) CONST)) (-2571 (($ (-930)) NIL (|has| |#1| (-375)))) (-2946 (((-112) $) NIL)) (-3964 (((-1131) $) NIL)) (-4293 (((-967 (-1131))) NIL)) (-2967 (($) NIL (|has| |#1| (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| |#1| (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) NIL) (((-930)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3764 (((-1184 |#1|)) NIL)) (-4033 (($) NIL (|has| |#1| (-375)))) (-3105 (($) NIL (|has| |#1| (-375)))) (-4329 (((-1279 |#1|) $) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) NIL)) (-3849 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3608 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-352 |#1| |#2|) (-13 (-335 |#1|) (-10 -7 (-15 -4293 ((-967 (-1131)))))) (-356) (-930)) (T -352))
-((-4293 (*1 *2) (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-352 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))))
-(-13 (-335 |#1|) (-10 -7 (-15 -4293 ((-967 (-1131))))))
-((-1399 (((-779) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131)))))) 61)) (-4190 (((-967 (-1131)) (-1184 |#1|)) 112)) (-1919 (((-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))) (-1184 |#1|)) 103)) (-2701 (((-697 |#1|) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131)))))) 113)) (-2298 (((-3 (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))) "failed") (-930)) 13)) (-3750 (((-3 (-1184 |#1|) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131)))))) (-930)) 18)))
-(((-353 |#1|) (-10 -7 (-15 -4190 ((-967 (-1131)) (-1184 |#1|))) (-15 -1919 ((-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))) (-1184 |#1|))) (-15 -2701 ((-697 |#1|) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))))) (-15 -1399 ((-779) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))))) (-15 -2298 ((-3 (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))) "failed") (-930))) (-15 -3750 ((-3 (-1184 |#1|) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131)))))) (-930)))) (-356)) (T -353))
-((-3750 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-3 (-1184 *4) (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131))))))) (-5 *1 (-353 *4)) (-4 *4 (-356)))) (-2298 (*1 *2 *3) (|partial| -12 (-5 *3 (-930)) (-5 *2 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131)))))) (-5 *1 (-353 *4)) (-4 *4 (-356)))) (-1399 (*1 *2 *3) (-12 (-5 *3 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131)))))) (-4 *4 (-356)) (-5 *2 (-779)) (-5 *1 (-353 *4)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131)))))) (-4 *4 (-356)) (-5 *2 (-697 *4)) (-5 *1 (-353 *4)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131)))))) (-5 *1 (-353 *4)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-967 (-1131))) (-5 *1 (-353 *4)))))
-(-10 -7 (-15 -4190 ((-967 (-1131)) (-1184 |#1|))) (-15 -1919 ((-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))) (-1184 |#1|))) (-15 -2701 ((-697 |#1|) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))))) (-15 -1399 ((-779) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))))) (-15 -2298 ((-3 (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))) "failed") (-930))) (-15 -3750 ((-3 (-1184 |#1|) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131)))))) (-930))))
-((-2940 ((|#1| |#3|) 104) ((|#3| |#1|) 87)))
-(((-354 |#1| |#2| |#3|) (-10 -7 (-15 -2940 (|#3| |#1|)) (-15 -2940 (|#1| |#3|))) (-335 |#2|) (-356) (-335 |#2|)) (T -354))
-((-2940 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *2 (-335 *4)) (-5 *1 (-354 *2 *4 *3)) (-4 *3 (-335 *4)))) (-2940 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *2 (-335 *4)) (-5 *1 (-354 *3 *4 *2)) (-4 *3 (-335 *4)))))
-(-10 -7 (-15 -2940 (|#3| |#1|)) (-15 -2940 (|#1| |#3|)))
-((-3442 (((-112) $) 60)) (-2956 (((-841 (-930)) $) 23) (((-930) $) 64)) (-2556 (((-3 $ "failed") $) 18)) (-3815 (($) 9)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 114)) (-3354 (((-3 (-779) "failed") $ $) 92) (((-779) $) 79)) (-3902 (($ $ (-779)) NIL) (($ $) 8)) (-4033 (($) 53)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 38)) (-3849 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-355 |#1|) (-10 -8 (-15 -2956 ((-930) |#1|)) (-15 -3354 ((-779) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -4033 (|#1|)) (-15 -1318 ((-3 (-1279 |#1|) "failed") (-697 |#1|))) (-15 -3849 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3815 (|#1|)) (-15 -2556 ((-3 |#1| "failed") |#1|)) (-15 -3354 ((-3 (-779) "failed") |#1| |#1|)) (-15 -2956 ((-841 (-930)) |#1|)) (-15 -3849 ((-3 |#1| "failed") |#1|)) (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|)))) (-356)) (T -355))
-NIL
-(-10 -8 (-15 -2956 ((-930) |#1|)) (-15 -3354 ((-779) |#1|)) (-15 -3442 ((-112) |#1|)) (-15 -4033 (|#1|)) (-15 -1318 ((-3 (-1279 |#1|) "failed") (-697 |#1|))) (-15 -3849 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3815 (|#1|)) (-15 -2556 ((-3 |#1| "failed") |#1|)) (-15 -3354 ((-3 (-779) "failed") |#1| |#1|)) (-15 -2956 ((-841 (-930)) |#1|)) (-15 -3849 ((-3 |#1| "failed") |#1|)) (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-1814 (((-1201 (-930) (-779)) (-572)) 102)) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-4217 (((-112) $ $) 65)) (-1486 (((-779)) 112)) (-3281 (($) 18 T CONST)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-2815 (($) 115)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-1879 (($) 100)) (-3442 (((-112) $) 99)) (-2303 (($ $) 87) (($ $ (-779)) 86)) (-3879 (((-112) $) 79)) (-2956 (((-841 (-930)) $) 89) (((-930) $) 97)) (-1886 (((-112) $) 35)) (-2556 (((-3 $ "failed") $) 111)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-3715 (((-930) $) 114)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 78)) (-3815 (($) 110 T CONST)) (-2571 (($ (-930)) 113)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) 103)) (-4218 (((-426 $) $) 82)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-3354 (((-3 (-779) "failed") $ $) 88) (((-779) $) 98)) (-3902 (($ $ (-779)) 108) (($ $) 107)) (-4033 (($) 101)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 104)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74)) (-3849 (((-3 $ "failed") $) 90) (($ $) 105)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-779)) 109) (($ $) 106)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
-(((-356) (-141)) (T -356))
-((-3849 (*1 *1 *1) (-4 *1 (-356))) (-1318 (*1 *2 *3) (|partial| -12 (-5 *3 (-697 *1)) (-4 *1 (-356)) (-5 *2 (-1279 *1)))) (-1317 (*1 *2) (-12 (-4 *1 (-356)) (-5 *2 (-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))))) (-1814 (*1 *2 *3) (-12 (-4 *1 (-356)) (-5 *3 (-572)) (-5 *2 (-1201 (-930) (-779))))) (-4033 (*1 *1) (-4 *1 (-356))) (-1879 (*1 *1) (-4 *1 (-356))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-112)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-779)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-930)))) (-2879 (*1 *2) (-12 (-4 *1 (-356)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-410) (-375) (-1163) (-237) (-10 -8 (-15 -3849 ($ $)) (-15 -1318 ((-3 (-1279 $) "failed") (-697 $))) (-15 -1317 ((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572)))))) (-15 -1814 ((-1201 (-930) (-779)) (-572))) (-15 -4033 ($)) (-15 -1879 ($)) (-15 -3442 ((-112) $)) (-15 -3354 ((-779) $)) (-15 -2956 ((-930) $)) (-15 -2879 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-235 $) . T) ((-237) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-410) . T) ((-375) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) . T) ((-1229) . T) ((-1233) . T))
-((-1702 (((-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) |#1|) 55)) (-4219 (((-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|)))) 53)))
-(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -4219 ((-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))))) (-15 -1702 ((-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) |#1|))) (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))) (-1255 |#1|) (-417 |#1| |#2|)) (T -357))
-((-1702 (*1 *2 *3) (-12 (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *2 (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-357 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-4219 (*1 *2) (-12 (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *2 (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-357 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
-(-10 -7 (-15 -4219 ((-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))))) (-15 -1702 ((-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-919 |#1|) (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-1399 (((-779)) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL (|has| (-919 |#1|) (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-919 |#1|) "failed") $) NIL)) (-2204 (((-919 |#1|) $) NIL)) (-1913 (($ (-1279 (-919 |#1|))) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-919 |#1|) (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-919 |#1|) (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) NIL (|has| (-919 |#1|) (-375)))) (-3442 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375)))) (($ $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) NIL (|has| (-919 |#1|) (-375))) (((-841 (-930)) $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-1886 (((-112) $) NIL)) (-1663 (($) NIL (|has| (-919 |#1|) (-375)))) (-2078 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-2028 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| (-919 |#1|) (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 (-919 |#1|)) $) NIL) (((-1184 $) $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-3715 (((-930) $) NIL (|has| (-919 |#1|) (-375)))) (-4370 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375)))) (-3293 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-1184 (-919 |#1|)) "failed") $ $) NIL (|has| (-919 |#1|) (-375)))) (-3103 (($ $ (-1184 (-919 |#1|))) NIL (|has| (-919 |#1|) (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-919 |#1|) (-375)) CONST)) (-2571 (($ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-2946 (((-112) $) NIL)) (-3964 (((-1131) $) NIL)) (-3138 (((-1279 (-652 (-2 (|:| -3080 (-919 |#1|)) (|:| -2571 (-1131)))))) NIL)) (-2288 (((-697 (-919 |#1|))) NIL)) (-2967 (($) NIL (|has| (-919 |#1|) (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| (-919 |#1|) (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) NIL) (((-930)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-779) "failed") $ $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3764 (((-1184 (-919 |#1|))) NIL)) (-4033 (($) NIL (|has| (-919 |#1|) (-375)))) (-3105 (($) NIL (|has| (-919 |#1|) (-375)))) (-4329 (((-1279 (-919 |#1|)) $) NIL) (((-697 (-919 |#1|)) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-919 |#1|) (-375)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-919 |#1|)) NIL)) (-3849 (($ $) NIL (|has| (-919 |#1|) (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-3608 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL) (($ $ (-919 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-919 |#1|)) NIL) (($ (-919 |#1|) $) NIL)))
-(((-358 |#1| |#2|) (-13 (-335 (-919 |#1|)) (-10 -7 (-15 -3138 ((-1279 (-652 (-2 (|:| -3080 (-919 |#1|)) (|:| -2571 (-1131))))))) (-15 -2288 ((-697 (-919 |#1|)))) (-15 -1399 ((-779))))) (-930) (-930)) (T -358))
-((-3138 (*1 *2) (-12 (-5 *2 (-1279 (-652 (-2 (|:| -3080 (-919 *3)) (|:| -2571 (-1131)))))) (-5 *1 (-358 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-2288 (*1 *2) (-12 (-5 *2 (-697 (-919 *3))) (-5 *1 (-358 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-1399 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-358 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))))
-(-13 (-335 (-919 |#1|)) (-10 -7 (-15 -3138 ((-1279 (-652 (-2 (|:| -3080 (-919 |#1|)) (|:| -2571 (-1131))))))) (-15 -2288 ((-697 (-919 |#1|)))) (-15 -1399 ((-779)))))
-((-2846 (((-112) $ $) 73)) (-2697 (((-112) $) 88)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 ((|#1| $) 106) (($ $ (-930)) 104 (|has| |#1| (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) 170 (|has| |#1| (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-1399 (((-779)) 103)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) 187 (|has| |#1| (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 127)) (-2204 ((|#1| $) 105)) (-1913 (($ (-1279 |#1|)) 71)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) 182 (|has| |#1| (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) 171 (|has| |#1| (-375)))) (-3442 (((-112) $) NIL (|has| |#1| (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1886 (((-112) $) NIL)) (-1663 (($) 113 (|has| |#1| (-375)))) (-2078 (((-112) $) 200 (|has| |#1| (-375)))) (-2028 ((|#1| $) 108) (($ $ (-930)) 107 (|has| |#1| (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 |#1|) $) 214) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-3715 (((-930) $) 148 (|has| |#1| (-375)))) (-4370 (((-1184 |#1|) $) 87 (|has| |#1| (-375)))) (-3293 (((-1184 |#1|) $) 84 (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) 96 (|has| |#1| (-375)))) (-3103 (($ $ (-1184 |#1|)) 83 (|has| |#1| (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 218)) (-3815 (($) NIL (|has| |#1| (-375)) CONST)) (-2571 (($ (-930)) 150 (|has| |#1| (-375)))) (-2946 (((-112) $) 123)) (-3964 (((-1131) $) NIL)) (-3138 (((-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131)))))) 97)) (-2288 (((-697 |#1|)) 101)) (-2967 (($) 110 (|has| |#1| (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) 173 (|has| |#1| (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) NIL) (((-930)) 174)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) 75)) (-3764 (((-1184 |#1|)) 175)) (-4033 (($) 147 (|has| |#1| (-375)))) (-3105 (($) NIL (|has| |#1| (-375)))) (-4329 (((-1279 |#1|) $) 121) (((-697 |#1|) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-2940 (((-870) $) 140) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 70)) (-3849 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4249 (((-779)) 180 T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) 197) (((-1279 $) (-930)) 116)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) 186 T CONST)) (-2143 (($) 161 T CONST)) (-3790 (($ $) 122 (|has| |#1| (-375))) (($ $ (-779)) 114 (|has| |#1| (-375)))) (-3608 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-2978 (((-112) $ $) 208)) (-3106 (($ $ $) 119) (($ $ |#1|) 120)) (-3089 (($ $) 202) (($ $ $) 206)) (-3075 (($ $ $) 204)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 153)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 211) (($ $ $) 164) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118)))
-(((-359 |#1| |#2|) (-13 (-335 |#1|) (-10 -7 (-15 -3138 ((-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))))) (-15 -2288 ((-697 |#1|))) (-15 -1399 ((-779))))) (-356) (-3 (-1184 |#1|) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))))) (T -359))
-((-3138 (*1 *2) (-12 (-5 *2 (-1279 (-652 (-2 (|:| -3080 *3) (|:| -2571 (-1131)))))) (-5 *1 (-359 *3 *4)) (-4 *3 (-356)) (-14 *4 (-3 (-1184 *3) *2)))) (-2288 (*1 *2) (-12 (-5 *2 (-697 *3)) (-5 *1 (-359 *3 *4)) (-4 *3 (-356)) (-14 *4 (-3 (-1184 *3) (-1279 (-652 (-2 (|:| -3080 *3) (|:| -2571 (-1131))))))))) (-1399 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-359 *3 *4)) (-4 *3 (-356)) (-14 *4 (-3 (-1184 *3) (-1279 (-652 (-2 (|:| -3080 *3) (|:| -2571 (-1131))))))))))
-(-13 (-335 |#1|) (-10 -7 (-15 -3138 ((-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))))) (-15 -2288 ((-697 |#1|))) (-15 -1399 ((-779)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-1399 (((-779)) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL (|has| |#1| (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-1913 (($ (-1279 |#1|)) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| |#1| (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) NIL (|has| |#1| (-375)))) (-3442 (((-112) $) NIL (|has| |#1| (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1886 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-375)))) (-2078 (((-112) $) NIL (|has| |#1| (-375)))) (-2028 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 |#1|) $) NIL) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-3715 (((-930) $) NIL (|has| |#1| (-375)))) (-4370 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-3293 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-3103 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| |#1| (-375)) CONST)) (-2571 (($ (-930)) NIL (|has| |#1| (-375)))) (-2946 (((-112) $) NIL)) (-3964 (((-1131) $) NIL)) (-3138 (((-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131)))))) NIL)) (-2288 (((-697 |#1|)) NIL)) (-2967 (($) NIL (|has| |#1| (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| |#1| (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) NIL) (((-930)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3764 (((-1184 |#1|)) NIL)) (-4033 (($) NIL (|has| |#1| (-375)))) (-3105 (($) NIL (|has| |#1| (-375)))) (-4329 (((-1279 |#1|) $) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) NIL)) (-3849 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3608 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-360 |#1| |#2|) (-13 (-335 |#1|) (-10 -7 (-15 -3138 ((-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))))) (-15 -2288 ((-697 |#1|))) (-15 -1399 ((-779))))) (-356) (-930)) (T -360))
-((-3138 (*1 *2) (-12 (-5 *2 (-1279 (-652 (-2 (|:| -3080 *3) (|:| -2571 (-1131)))))) (-5 *1 (-360 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))) (-2288 (*1 *2) (-12 (-5 *2 (-697 *3)) (-5 *1 (-360 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))) (-1399 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-360 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))))
-(-13 (-335 |#1|) (-10 -7 (-15 -3138 ((-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))))) (-15 -2288 ((-697 |#1|))) (-15 -1399 ((-779)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-919 |#1|) (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL (|has| (-919 |#1|) (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-919 |#1|) "failed") $) NIL)) (-2204 (((-919 |#1|) $) NIL)) (-1913 (($ (-1279 (-919 |#1|))) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-919 |#1|) (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-919 |#1|) (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) NIL (|has| (-919 |#1|) (-375)))) (-3442 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375)))) (($ $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) NIL (|has| (-919 |#1|) (-375))) (((-841 (-930)) $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-1886 (((-112) $) NIL)) (-1663 (($) NIL (|has| (-919 |#1|) (-375)))) (-2078 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-2028 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| (-919 |#1|) (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 (-919 |#1|)) $) NIL) (((-1184 $) $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-3715 (((-930) $) NIL (|has| (-919 |#1|) (-375)))) (-4370 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375)))) (-3293 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-1184 (-919 |#1|)) "failed") $ $) NIL (|has| (-919 |#1|) (-375)))) (-3103 (($ $ (-1184 (-919 |#1|))) NIL (|has| (-919 |#1|) (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-919 |#1|) (-375)) CONST)) (-2571 (($ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-2946 (((-112) $) NIL)) (-3964 (((-1131) $) NIL)) (-2967 (($) NIL (|has| (-919 |#1|) (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| (-919 |#1|) (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) NIL) (((-930)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-779) "failed") $ $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3764 (((-1184 (-919 |#1|))) NIL)) (-4033 (($) NIL (|has| (-919 |#1|) (-375)))) (-3105 (($) NIL (|has| (-919 |#1|) (-375)))) (-4329 (((-1279 (-919 |#1|)) $) NIL) (((-697 (-919 |#1|)) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-919 |#1|) (-375)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-919 |#1|)) NIL)) (-3849 (($ $) NIL (|has| (-919 |#1|) (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-3608 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL) (($ $ (-919 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-919 |#1|)) NIL) (($ (-919 |#1|) $) NIL)))
-(((-361 |#1| |#2|) (-335 (-919 |#1|)) (-930) (-930)) (T -361))
-NIL
-(-335 (-919 |#1|))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) 129 (|has| |#1| (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) 155 (|has| |#1| (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 103)) (-2204 ((|#1| $) 100)) (-1913 (($ (-1279 |#1|)) 95)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) 92 (|has| |#1| (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) 51 (|has| |#1| (-375)))) (-3442 (((-112) $) NIL (|has| |#1| (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1886 (((-112) $) NIL)) (-1663 (($) 130 (|has| |#1| (-375)))) (-2078 (((-112) $) 84 (|has| |#1| (-375)))) (-2028 ((|#1| $) 47) (($ $ (-930)) 52 (|has| |#1| (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 |#1|) $) 75) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-3715 (((-930) $) 107 (|has| |#1| (-375)))) (-4370 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-3293 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-3103 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| |#1| (-375)) CONST)) (-2571 (($ (-930)) 105 (|has| |#1| (-375)))) (-2946 (((-112) $) 157)) (-3964 (((-1131) $) NIL)) (-2967 (($) 44 (|has| |#1| (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) 124 (|has| |#1| (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) NIL) (((-930)) 154)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) 67)) (-3764 (((-1184 |#1|)) 98)) (-4033 (($) 135 (|has| |#1| (-375)))) (-3105 (($) NIL (|has| |#1| (-375)))) (-4329 (((-1279 |#1|) $) 63) (((-697 |#1|) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-2940 (((-870) $) 153) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 97)) (-3849 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4249 (((-779)) 159 T CONST)) (-4379 (((-112) $ $) 161)) (-4362 (((-1279 $)) 119) (((-1279 $) (-930)) 58)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) 121 T CONST)) (-2143 (($) 40 T CONST)) (-3790 (($ $) 78 (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3608 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-2978 (((-112) $ $) 117)) (-3106 (($ $ $) 109) (($ $ |#1|) 110)) (-3089 (($ $) 90) (($ $ $) 115)) (-3075 (($ $ $) 113)) (** (($ $ (-930)) NIL) (($ $ (-779)) 53) (($ $ (-572)) 138)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 88) (($ $ $) 65) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86)))
-(((-362 |#1| |#2|) (-335 |#1|) (-356) (-1184 |#1|)) (T -362))
-NIL
-(-335 |#1|)
-((-4151 ((|#1| (-1184 |#2|)) 59)))
-(((-363 |#1| |#2|) (-10 -7 (-15 -4151 (|#1| (-1184 |#2|)))) (-13 (-410) (-10 -7 (-15 -2940 (|#1| |#2|)) (-15 -3715 ((-930) |#1|)) (-15 -4362 ((-1279 |#1|) (-930))) (-15 -3790 (|#1| |#1|)))) (-356)) (T -363))
-((-4151 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-4 *2 (-13 (-410) (-10 -7 (-15 -2940 (*2 *4)) (-15 -3715 ((-930) *2)) (-15 -4362 ((-1279 *2) (-930))) (-15 -3790 (*2 *2))))) (-5 *1 (-363 *2 *4)))))
-(-10 -7 (-15 -4151 (|#1| (-1184 |#2|))))
-((-4045 (((-967 (-1184 |#1|)) (-1184 |#1|)) 49)) (-2815 (((-1184 |#1|) (-930) (-930)) 154) (((-1184 |#1|) (-930)) 150)) (-3442 (((-112) (-1184 |#1|)) 107)) (-4324 (((-930) (-930)) 85)) (-1847 (((-930) (-930)) 92)) (-3988 (((-930) (-930)) 83)) (-2078 (((-112) (-1184 |#1|)) 111)) (-3186 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 135)) (-2560 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 140)) (-2742 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 139)) (-2517 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 138)) (-3565 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 131)) (-1781 (((-1184 |#1|) (-1184 |#1|)) 71)) (-1564 (((-1184 |#1|) (-930)) 145)) (-1448 (((-1184 |#1|) (-930)) 148)) (-1620 (((-1184 |#1|) (-930)) 147)) (-4273 (((-1184 |#1|) (-930)) 146)) (-3119 (((-1184 |#1|) (-930)) 143)))
-(((-364 |#1|) (-10 -7 (-15 -3442 ((-112) (-1184 |#1|))) (-15 -2078 ((-112) (-1184 |#1|))) (-15 -3988 ((-930) (-930))) (-15 -4324 ((-930) (-930))) (-15 -1847 ((-930) (-930))) (-15 -3119 ((-1184 |#1|) (-930))) (-15 -1564 ((-1184 |#1|) (-930))) (-15 -4273 ((-1184 |#1|) (-930))) (-15 -1620 ((-1184 |#1|) (-930))) (-15 -1448 ((-1184 |#1|) (-930))) (-15 -3565 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -3186 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2517 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2742 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2560 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2815 ((-1184 |#1|) (-930))) (-15 -2815 ((-1184 |#1|) (-930) (-930))) (-15 -1781 ((-1184 |#1|) (-1184 |#1|))) (-15 -4045 ((-967 (-1184 |#1|)) (-1184 |#1|)))) (-356)) (T -364))
-((-4045 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-967 (-1184 *4))) (-5 *1 (-364 *4)) (-5 *3 (-1184 *4)))) (-1781 (*1 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-2815 (*1 *2 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-2560 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-2742 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-2517 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-3186 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-3565 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))) (-3988 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-364 *4)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-364 *4)))))
-(-10 -7 (-15 -3442 ((-112) (-1184 |#1|))) (-15 -2078 ((-112) (-1184 |#1|))) (-15 -3988 ((-930) (-930))) (-15 -4324 ((-930) (-930))) (-15 -1847 ((-930) (-930))) (-15 -3119 ((-1184 |#1|) (-930))) (-15 -1564 ((-1184 |#1|) (-930))) (-15 -4273 ((-1184 |#1|) (-930))) (-15 -1620 ((-1184 |#1|) (-930))) (-15 -1448 ((-1184 |#1|) (-930))) (-15 -3565 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -3186 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2517 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2742 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2560 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2815 ((-1184 |#1|) (-930))) (-15 -2815 ((-1184 |#1|) (-930) (-930))) (-15 -1781 ((-1184 |#1|) (-1184 |#1|))) (-15 -4045 ((-967 (-1184 |#1|)) (-1184 |#1|))))
-((-3643 (((-3 (-652 |#3|) "failed") (-652 |#3|) |#3|) 38)))
-(((-365 |#1| |#2| |#3|) (-10 -7 (-15 -3643 ((-3 (-652 |#3|) "failed") (-652 |#3|) |#3|))) (-356) (-1255 |#1|) (-1255 |#2|)) (T -365))
-((-3643 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-356)) (-5 *1 (-365 *4 *5 *3)))))
-(-10 -7 (-15 -3643 ((-3 (-652 |#3|) "failed") (-652 |#3|) |#3|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL (|has| |#1| (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-1913 (($ (-1279 |#1|)) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| |#1| (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) NIL (|has| |#1| (-375)))) (-3442 (((-112) $) NIL (|has| |#1| (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1886 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-375)))) (-2078 (((-112) $) NIL (|has| |#1| (-375)))) (-2028 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 |#1|) $) NIL) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-3715 (((-930) $) NIL (|has| |#1| (-375)))) (-4370 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-3293 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-3103 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| |#1| (-375)) CONST)) (-2571 (($ (-930)) NIL (|has| |#1| (-375)))) (-2946 (((-112) $) NIL)) (-3964 (((-1131) $) NIL)) (-2967 (($) NIL (|has| |#1| (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| |#1| (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) NIL) (((-930)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3764 (((-1184 |#1|)) NIL)) (-4033 (($) NIL (|has| |#1| (-375)))) (-3105 (($) NIL (|has| |#1| (-375)))) (-4329 (((-1279 |#1|) $) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) NIL)) (-3849 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3608 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-366 |#1| |#2|) (-335 |#1|) (-356) (-930)) (T -366))
-NIL
-(-335 |#1|)
-((-1743 (((-112) (-652 (-961 |#1|))) 41)) (-3440 (((-652 (-961 |#1|)) (-652 (-961 |#1|))) 53)) (-1499 (((-3 (-652 (-961 |#1|)) "failed") (-652 (-961 |#1|))) 48)))
-(((-367 |#1| |#2|) (-10 -7 (-15 -1743 ((-112) (-652 (-961 |#1|)))) (-15 -1499 ((-3 (-652 (-961 |#1|)) "failed") (-652 (-961 |#1|)))) (-15 -3440 ((-652 (-961 |#1|)) (-652 (-961 |#1|))))) (-460) (-652 (-1188))) (T -367))
-((-3440 (*1 *2 *2) (-12 (-5 *2 (-652 (-961 *3))) (-4 *3 (-460)) (-5 *1 (-367 *3 *4)) (-14 *4 (-652 (-1188))))) (-1499 (*1 *2 *2) (|partial| -12 (-5 *2 (-652 (-961 *3))) (-4 *3 (-460)) (-5 *1 (-367 *3 *4)) (-14 *4 (-652 (-1188))))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-460)) (-5 *2 (-112)) (-5 *1 (-367 *4 *5)) (-14 *5 (-652 (-1188))))))
-(-10 -7 (-15 -1743 ((-112) (-652 (-961 |#1|)))) (-15 -1499 ((-3 (-652 (-961 |#1|)) "failed") (-652 (-961 |#1|)))) (-15 -3440 ((-652 (-961 |#1|)) (-652 (-961 |#1|)))))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779) $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) 17)) (-2321 ((|#1| $ (-572)) NIL)) (-1473 (((-572) $ (-572)) NIL)) (-3984 (($ (-1 |#1| |#1|) $) 34)) (-4081 (($ (-1 (-572) (-572)) $) 26)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 28)) (-3964 (((-1131) $) NIL)) (-4225 (((-652 (-2 (|:| |gen| |#1|) (|:| -1608 (-572)))) $) 30)) (-1516 (($ $ $) NIL)) (-4326 (($ $ $) NIL)) (-2940 (((-870) $) 40) (($ |#1|) NIL)) (-4379 (((-112) $ $) NIL)) (-2143 (($) 11 T CONST)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL) (($ |#1| (-572)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-368 |#1|) (-13 (-481) (-1049 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-572))) (-15 -1486 ((-779) $)) (-15 -1473 ((-572) $ (-572))) (-15 -2321 (|#1| $ (-572))) (-15 -4081 ($ (-1 (-572) (-572)) $)) (-15 -3984 ($ (-1 |#1| |#1|) $)) (-15 -4225 ((-652 (-2 (|:| |gen| |#1|) (|:| -1608 (-572)))) $)))) (-1111)) (T -368))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-368 *2)) (-4 *2 (-1111)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-368 *2)) (-4 *2 (-1111)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-368 *2)) (-4 *2 (-1111)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-368 *3)) (-4 *3 (-1111)))) (-1473 (*1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-368 *3)) (-4 *3 (-1111)))) (-2321 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-368 *2)) (-4 *2 (-1111)))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-572) (-572))) (-5 *1 (-368 *3)) (-4 *3 (-1111)))) (-3984 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-368 *3)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 (-572))))) (-5 *1 (-368 *3)) (-4 *3 (-1111)))))
-(-13 (-481) (-1049 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-572))) (-15 -1486 ((-779) $)) (-15 -1473 ((-572) $ (-572))) (-15 -2321 (|#1| $ (-572))) (-15 -4081 ($ (-1 (-572) (-572)) $)) (-15 -3984 ($ (-1 |#1| |#1|) $)) (-15 -4225 ((-652 (-2 (|:| |gen| |#1|) (|:| -1608 (-572)))) $))))
-((-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 13)) (-3009 (($ $) 14)) (-2287 (((-426 $) $) 34)) (-3879 (((-112) $) 30)) (-1322 (($ $) 19)) (-2870 (($ $ $) 25) (($ (-652 $)) NIL)) (-4218 (((-426 $) $) 35)) (-2834 (((-3 $ "failed") $ $) 24)) (-3847 (((-779) $) 28)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 39)) (-2845 (((-112) $ $) 16)) (-3106 (($ $ $) 37)))
-(((-369 |#1|) (-10 -8 (-15 -3106 (|#1| |#1| |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -3879 ((-112) |#1|)) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -1669 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -3847 ((-779) |#1|)) (-15 -2870 (|#1| (-652 |#1|))) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2845 ((-112) |#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -2072 ((-2 (|:| -3161 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#1|))) (-370)) (T -369))
-NIL
-(-10 -8 (-15 -3106 (|#1| |#1| |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -3879 ((-112) |#1|)) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -1669 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -3847 ((-779) |#1|)) (-15 -2870 (|#1| (-652 |#1|))) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2845 ((-112) |#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -2072 ((-2 (|:| -3161 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-4217 (((-112) $ $) 65)) (-3281 (($) 18 T CONST)) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-3879 (((-112) $) 79)) (-1886 (((-112) $) 35)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 78)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-4218 (((-426 $) $) 82)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
-(((-370) (-141)) (T -370))
-((-3106 (*1 *1 *1 *1) (-4 *1 (-370))))
-(-13 (-313) (-1233) (-247) (-10 -8 (-15 -3106 ($ $ $)) (-6 -4452) (-6 -4446)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
-((-2846 (((-112) $ $) 7)) (-4034 ((|#2| $ |#2|) 14)) (-2017 (($ $ (-1170)) 19)) (-2208 ((|#2| $) 15)) (-1674 (($ |#1|) 21) (($ |#1| (-1170)) 20)) (-2030 ((|#1| $) 17)) (-4347 (((-1170) $) 10)) (-3303 (((-1170) $) 16)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-3682 (($ $) 18)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-371 |#1| |#2|) (-141) (-1111) (-1111)) (T -371))
-((-1674 (*1 *1 *2) (-12 (-4 *1 (-371 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-1674 (*1 *1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *1 (-371 *2 *4)) (-4 *2 (-1111)) (-4 *4 (-1111)))) (-2017 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-371 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-3682 (*1 *1 *1) (-12 (-4 *1 (-371 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-2030 (*1 *2 *1) (-12 (-4 *1 (-371 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-371 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-5 *2 (-1170)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-371 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-4034 (*1 *2 *1 *2) (-12 (-4 *1 (-371 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
-(-13 (-1111) (-10 -8 (-15 -1674 ($ |t#1|)) (-15 -1674 ($ |t#1| (-1170))) (-15 -2017 ($ $ (-1170))) (-15 -3682 ($ $)) (-15 -2030 (|t#1| $)) (-15 -3303 ((-1170) $)) (-15 -2208 (|t#2| $)) (-15 -4034 (|t#2| $ |t#2|))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-4034 ((|#1| $ |#1|) 31)) (-2017 (($ $ (-1170)) 23)) (-2147 (((-3 |#1| "failed") $) 30)) (-2208 ((|#1| $) 28)) (-1674 (($ (-396)) 22) (($ (-396) (-1170)) 21)) (-2030 (((-396) $) 25)) (-4347 (((-1170) $) NIL)) (-3303 (((-1170) $) 26)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 20)) (-3682 (($ $) 24)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 19)))
-(((-372 |#1|) (-13 (-371 (-396) |#1|) (-10 -8 (-15 -2147 ((-3 |#1| "failed") $)))) (-1111)) (T -372))
-((-2147 (*1 *2 *1) (|partial| -12 (-5 *1 (-372 *2)) (-4 *2 (-1111)))))
-(-13 (-371 (-396) |#1|) (-10 -8 (-15 -2147 ((-3 |#1| "failed") $))))
-((-2016 (((-1279 (-697 |#2|)) (-1279 $)) 67)) (-1609 (((-697 |#2|) (-1279 $)) 139)) (-2554 ((|#2| $) 36)) (-3819 (((-697 |#2|) $ (-1279 $)) 142)) (-4147 (((-3 $ "failed") $) 89)) (-3747 ((|#2| $) 39)) (-3120 (((-1184 |#2|) $) 98)) (-3529 ((|#2| (-1279 $)) 122)) (-2493 (((-1184 |#2|) $) 32)) (-3043 (((-112)) 116)) (-1913 (($ (-1279 |#2|) (-1279 $)) 132)) (-2062 (((-3 $ "failed") $) 93)) (-3491 (((-112)) 111)) (-1851 (((-112)) 106)) (-2769 (((-112)) 58)) (-2509 (((-697 |#2|) (-1279 $)) 137)) (-3436 ((|#2| $) 35)) (-2647 (((-697 |#2|) $ (-1279 $)) 141)) (-1353 (((-3 $ "failed") $) 87)) (-3345 ((|#2| $) 38)) (-2267 (((-1184 |#2|) $) 97)) (-3452 ((|#2| (-1279 $)) 120)) (-2708 (((-1184 |#2|) $) 30)) (-4401 (((-112)) 115)) (-1522 (((-112)) 108)) (-3278 (((-112)) 56)) (-2816 (((-112)) 103)) (-3534 (((-112)) 117)) (-4329 (((-1279 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) 128)) (-1589 (((-112)) 113)) (-3987 (((-652 (-1279 |#2|))) 102)) (-1662 (((-112)) 114)) (-4118 (((-112)) 112)) (-3313 (((-112)) 51)) (-1547 (((-112)) 118)))
-(((-373 |#1| |#2|) (-10 -8 (-15 -3120 ((-1184 |#2|) |#1|)) (-15 -2267 ((-1184 |#2|) |#1|)) (-15 -3987 ((-652 (-1279 |#2|)))) (-15 -4147 ((-3 |#1| "failed") |#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -2062 ((-3 |#1| "failed") |#1|)) (-15 -1851 ((-112))) (-15 -1522 ((-112))) (-15 -3491 ((-112))) (-15 -3278 ((-112))) (-15 -2769 ((-112))) (-15 -2816 ((-112))) (-15 -1547 ((-112))) (-15 -3534 ((-112))) (-15 -3043 ((-112))) (-15 -4401 ((-112))) (-15 -3313 ((-112))) (-15 -1662 ((-112))) (-15 -4118 ((-112))) (-15 -1589 ((-112))) (-15 -2493 ((-1184 |#2|) |#1|)) (-15 -2708 ((-1184 |#2|) |#1|)) (-15 -1609 ((-697 |#2|) (-1279 |#1|))) (-15 -2509 ((-697 |#2|) (-1279 |#1|))) (-15 -3529 (|#2| (-1279 |#1|))) (-15 -3452 (|#2| (-1279 |#1|))) (-15 -1913 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -3747 (|#2| |#1|)) (-15 -3345 (|#2| |#1|)) (-15 -2554 (|#2| |#1|)) (-15 -3436 (|#2| |#1|)) (-15 -3819 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2647 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2016 ((-1279 (-697 |#2|)) (-1279 |#1|)))) (-374 |#2|) (-174)) (T -373))
-((-1589 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-4118 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-1662 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3313 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-4401 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3043 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3534 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-1547 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-2816 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-2769 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3278 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3491 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-1522 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-1851 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3987 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-652 (-1279 *4))) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))))
-(-10 -8 (-15 -3120 ((-1184 |#2|) |#1|)) (-15 -2267 ((-1184 |#2|) |#1|)) (-15 -3987 ((-652 (-1279 |#2|)))) (-15 -4147 ((-3 |#1| "failed") |#1|)) (-15 -1353 ((-3 |#1| "failed") |#1|)) (-15 -2062 ((-3 |#1| "failed") |#1|)) (-15 -1851 ((-112))) (-15 -1522 ((-112))) (-15 -3491 ((-112))) (-15 -3278 ((-112))) (-15 -2769 ((-112))) (-15 -2816 ((-112))) (-15 -1547 ((-112))) (-15 -3534 ((-112))) (-15 -3043 ((-112))) (-15 -4401 ((-112))) (-15 -3313 ((-112))) (-15 -1662 ((-112))) (-15 -4118 ((-112))) (-15 -1589 ((-112))) (-15 -2493 ((-1184 |#2|) |#1|)) (-15 -2708 ((-1184 |#2|) |#1|)) (-15 -1609 ((-697 |#2|) (-1279 |#1|))) (-15 -2509 ((-697 |#2|) (-1279 |#1|))) (-15 -3529 (|#2| (-1279 |#1|))) (-15 -3452 (|#2| (-1279 |#1|))) (-15 -1913 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -3747 (|#2| |#1|)) (-15 -3345 (|#2| |#1|)) (-15 -2554 (|#2| |#1|)) (-15 -3436 (|#2| |#1|)) (-15 -3819 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2647 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2016 ((-1279 (-697 |#2|)) (-1279 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3161 (((-3 $ "failed")) 42 (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) 20)) (-2016 (((-1279 (-697 |#1|)) (-1279 $)) 83)) (-3621 (((-1279 $)) 86)) (-3281 (($) 18 T CONST)) (-2892 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) 45 (|has| |#1| (-564)))) (-3760 (((-3 $ "failed")) 43 (|has| |#1| (-564)))) (-1609 (((-697 |#1|) (-1279 $)) 70)) (-2554 ((|#1| $) 79)) (-3819 (((-697 |#1|) $ (-1279 $)) 81)) (-4147 (((-3 $ "failed") $) 50 (|has| |#1| (-564)))) (-2673 (($ $ (-930)) 31)) (-3747 ((|#1| $) 77)) (-3120 (((-1184 |#1|) $) 47 (|has| |#1| (-564)))) (-3529 ((|#1| (-1279 $)) 72)) (-2493 (((-1184 |#1|) $) 68)) (-3043 (((-112)) 62)) (-1913 (($ (-1279 |#1|) (-1279 $)) 74)) (-2062 (((-3 $ "failed") $) 52 (|has| |#1| (-564)))) (-3581 (((-930)) 85)) (-2522 (((-112)) 59)) (-4101 (($ $ (-930)) 38)) (-3491 (((-112)) 55)) (-1851 (((-112)) 53)) (-2769 (((-112)) 57)) (-3249 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) 46 (|has| |#1| (-564)))) (-2950 (((-3 $ "failed")) 44 (|has| |#1| (-564)))) (-2509 (((-697 |#1|) (-1279 $)) 71)) (-3436 ((|#1| $) 80)) (-2647 (((-697 |#1|) $ (-1279 $)) 82)) (-1353 (((-3 $ "failed") $) 51 (|has| |#1| (-564)))) (-1858 (($ $ (-930)) 32)) (-3345 ((|#1| $) 78)) (-2267 (((-1184 |#1|) $) 48 (|has| |#1| (-564)))) (-3452 ((|#1| (-1279 $)) 73)) (-2708 (((-1184 |#1|) $) 69)) (-4401 (((-112)) 63)) (-4347 (((-1170) $) 10)) (-1522 (((-112)) 54)) (-3278 (((-112)) 56)) (-2816 (((-112)) 58)) (-3964 (((-1131) $) 11)) (-3534 (((-112)) 61)) (-4329 (((-1279 |#1|) $ (-1279 $)) 76) (((-697 |#1|) (-1279 $) (-1279 $)) 75)) (-1402 (((-652 (-961 |#1|)) (-1279 $)) 84)) (-4326 (($ $ $) 28)) (-1589 (((-112)) 67)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-3987 (((-652 (-1279 |#1|))) 49 (|has| |#1| (-564)))) (-2266 (($ $ $ $) 29)) (-1662 (((-112)) 65)) (-3099 (($ $ $) 27)) (-4118 (((-112)) 66)) (-3313 (((-112)) 64)) (-1547 (((-112)) 60)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 33)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-374 |#1|) (-141) (-174)) (T -374))
-((-3621 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1279 *1)) (-4 *1 (-374 *3)))) (-3581 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-930)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-652 (-961 *4))))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-1279 (-697 *4))))) (-2647 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-3819 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-4329 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-1279 *4)))) (-4329 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-1913 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1279 *1)) (-4 *4 (-174)) (-4 *1 (-374 *4)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-1609 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-1184 *3)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-1184 *3)))) (-1589 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4118 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1662 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3313 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4401 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3043 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3534 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1547 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2522 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2816 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2769 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3278 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3491 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1522 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1851 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2062 (*1 *1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564)))) (-1353 (*1 *1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564)))) (-4147 (*1 *1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564)))) (-3987 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564)) (-5 *2 (-652 (-1279 *3))))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564)) (-5 *2 (-1184 *3)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564)) (-5 *2 (-1184 *3)))) (-3249 (*1 *2) (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4362 (-652 *1)))) (-4 *1 (-374 *3)))) (-2892 (*1 *2) (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4362 (-652 *1)))) (-4 *1 (-374 *3)))) (-2950 (*1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))) (-3760 (*1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))) (-3161 (*1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))))
-(-13 (-752 |t#1|) (-10 -8 (-15 -3621 ((-1279 $))) (-15 -3581 ((-930))) (-15 -1402 ((-652 (-961 |t#1|)) (-1279 $))) (-15 -2016 ((-1279 (-697 |t#1|)) (-1279 $))) (-15 -2647 ((-697 |t#1|) $ (-1279 $))) (-15 -3819 ((-697 |t#1|) $ (-1279 $))) (-15 -3436 (|t#1| $)) (-15 -2554 (|t#1| $)) (-15 -3345 (|t#1| $)) (-15 -3747 (|t#1| $)) (-15 -4329 ((-1279 |t#1|) $ (-1279 $))) (-15 -4329 ((-697 |t#1|) (-1279 $) (-1279 $))) (-15 -1913 ($ (-1279 |t#1|) (-1279 $))) (-15 -3452 (|t#1| (-1279 $))) (-15 -3529 (|t#1| (-1279 $))) (-15 -2509 ((-697 |t#1|) (-1279 $))) (-15 -1609 ((-697 |t#1|) (-1279 $))) (-15 -2708 ((-1184 |t#1|) $)) (-15 -2493 ((-1184 |t#1|) $)) (-15 -1589 ((-112))) (-15 -4118 ((-112))) (-15 -1662 ((-112))) (-15 -3313 ((-112))) (-15 -4401 ((-112))) (-15 -3043 ((-112))) (-15 -3534 ((-112))) (-15 -1547 ((-112))) (-15 -2522 ((-112))) (-15 -2816 ((-112))) (-15 -2769 ((-112))) (-15 -3278 ((-112))) (-15 -3491 ((-112))) (-15 -1522 ((-112))) (-15 -1851 ((-112))) (IF (|has| |t#1| (-564)) (PROGN (-15 -2062 ((-3 $ "failed") $)) (-15 -1353 ((-3 $ "failed") $)) (-15 -4147 ((-3 $ "failed") $)) (-15 -3987 ((-652 (-1279 |t#1|)))) (-15 -2267 ((-1184 |t#1|) $)) (-15 -3120 ((-1184 |t#1|) $)) (-15 -3249 ((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed"))) (-15 -2892 ((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed"))) (-15 -2950 ((-3 $ "failed"))) (-15 -3760 ((-3 $ "failed"))) (-15 -3161 ((-3 $ "failed"))) (-6 -4451)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-728) . T) ((-752 |#1|) . T) ((-769) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 7)) (-1486 (((-779)) 17)) (-2815 (($) 14)) (-3715 (((-930) $) 15)) (-4347 (((-1170) $) 10)) (-2571 (($ (-930)) 16)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-375) (-141)) (T -375))
-((-1486 (*1 *2) (-12 (-4 *1 (-375)) (-5 *2 (-779)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-375)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-375)) (-5 *2 (-930)))) (-2815 (*1 *1) (-4 *1 (-375))))
-(-13 (-1111) (-10 -8 (-15 -1486 ((-779))) (-15 -2571 ($ (-930))) (-15 -3715 ((-930) $)) (-15 -2815 ($))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-3736 (((-697 |#2|) (-1279 $)) 45)) (-1913 (($ (-1279 |#2|) (-1279 $)) 39)) (-3485 (((-697 |#2|) $ (-1279 $)) 47)) (-3537 ((|#2| (-1279 $)) 13)) (-4329 (((-1279 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) 27)))
-(((-376 |#1| |#2| |#3|) (-10 -8 (-15 -3736 ((-697 |#2|) (-1279 |#1|))) (-15 -3537 (|#2| (-1279 |#1|))) (-15 -1913 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -3485 ((-697 |#2|) |#1| (-1279 |#1|)))) (-377 |#2| |#3|) (-174) (-1255 |#2|)) (T -376))
-NIL
-(-10 -8 (-15 -3736 ((-697 |#2|) (-1279 |#1|))) (-15 -3537 (|#2| (-1279 |#1|))) (-15 -1913 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -3485 ((-697 |#2|) |#1| (-1279 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3736 (((-697 |#1|) (-1279 $)) 53)) (-1635 ((|#1| $) 59)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1913 (($ (-1279 |#1|) (-1279 $)) 55)) (-3485 (((-697 |#1|) $ (-1279 $)) 60)) (-2062 (((-3 $ "failed") $) 37)) (-3581 (((-930)) 61)) (-1886 (((-112) $) 35)) (-2028 ((|#1| $) 58)) (-3053 ((|#2| $) 51 (|has| |#1| (-370)))) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3537 ((|#1| (-1279 $)) 54)) (-4329 (((-1279 |#1|) $ (-1279 $)) 57) (((-697 |#1|) (-1279 $) (-1279 $)) 56)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44)) (-3849 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4251 ((|#2| $) 52)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-377 |#1| |#2|) (-141) (-174) (-1255 |t#1|)) (T -377))
-((-3581 (*1 *2) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-930)))) (-3485 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174)))) (-4329 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-1279 *4)))) (-4329 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)))) (-1913 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1279 *1)) (-4 *4 (-174)) (-4 *1 (-377 *4 *5)) (-4 *5 (-1255 *4)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *2 *4)) (-4 *4 (-1255 *2)) (-4 *2 (-174)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3)))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-174)) (-4 *3 (-370)) (-4 *2 (-1255 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3581 ((-930))) (-15 -3485 ((-697 |t#1|) $ (-1279 $))) (-15 -1635 (|t#1| $)) (-15 -2028 (|t#1| $)) (-15 -4329 ((-1279 |t#1|) $ (-1279 $))) (-15 -4329 ((-697 |t#1|) (-1279 $) (-1279 $))) (-15 -1913 ($ (-1279 |t#1|) (-1279 $))) (-15 -3537 (|t#1| (-1279 $))) (-15 -3736 ((-697 |t#1|) (-1279 $))) (-15 -4251 (|t#2| $)) (IF (|has| |t#1| (-370)) (-15 -3053 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2273 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2865 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1776 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-378 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2865 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1229) (-380 |#1|) (-1229) (-380 |#3|)) (T -378))
-((-2273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-4 *2 (-380 *5)) (-5 *1 (-378 *6 *4 *5 *2)) (-4 *4 (-380 *6)))) (-2865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-378 *5 *4 *2 *6)) (-4 *4 (-380 *5)) (-4 *6 (-380 *2)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-4 *2 (-380 *6)) (-5 *1 (-378 *5 *4 *6 *2)) (-4 *4 (-380 *5)))))
-(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2865 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2852 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3314 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2766 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4421 (($ $) 25)) (-1439 (((-572) (-1 (-112) |#2|) $) NIL) (((-572) |#2| $) 11) (((-572) |#2| $ (-572)) NIL)) (-1767 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-379 |#1| |#2|) (-10 -8 (-15 -3314 (|#1| |#1|)) (-15 -3314 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2852 ((-112) |#1|)) (-15 -2766 (|#1| |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -1439 ((-572) |#2| |#1| (-572))) (-15 -1439 ((-572) |#2| |#1|)) (-15 -1439 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -2852 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2766 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4421 (|#1| |#1|)) (-15 -1767 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-380 |#2|) (-1229)) (T -379))
-NIL
-(-10 -8 (-15 -3314 (|#1| |#1|)) (-15 -3314 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2852 ((-112) |#1|)) (-15 -2766 (|#1| |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -1439 ((-572) |#2| |#1| (-572))) (-15 -1439 ((-572) |#2| |#1|)) (-15 -1439 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -2852 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2766 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4421 (|#1| |#1|)) (-15 -1767 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3176 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) 8)) (-3140 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-3133 (($ $) 93 (|has| $ (-6 -4455)))) (-4421 (($ $) 103)) (-2086 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 52)) (-1439 (((-572) (-1 (-112) |#1|) $) 100) (((-572) |#1| $) 99 (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) 98 (|has| |#1| (-1111)))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3787 (($ (-779) |#1|) 70)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 44 (|has| (-572) (-858)))) (-3654 (($ $ $) 90 (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 45 (|has| (-572) (-858)))) (-2427 (($ $ $) 89 (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1986 (((-652 (-572)) $) 47)) (-1370 (((-112) (-572) $) 48)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2912 ((|#1| $) 43 (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2476 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-2835 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4095 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3164 (($ $) 13)) (-1835 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 72)) (-4155 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) 87 (|has| |#1| (-858)))) (-3014 (((-112) $ $) 86 (|has| |#1| (-858)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3026 (((-112) $ $) 88 (|has| |#1| (-858)))) (-3003 (((-112) $ $) 85 (|has| |#1| (-858)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-380 |#1|) (-141) (-1229)) (T -380))
-((-1767 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1229)))) (-4421 (*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)))) (-2766 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1229)))) (-2852 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-380 *4)) (-4 *4 (-1229)) (-5 *2 (-112)))) (-1439 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-380 *4)) (-4 *4 (-1229)) (-5 *2 (-572)))) (-1439 (*1 *2 *3 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-572)))) (-1439 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)))) (-1767 (*1 *1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858)))) (-2766 (*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858)))) (-2852 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-858)) (-5 *2 (-112)))) (-4095 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-572)) (|has| *1 (-6 -4455)) (-4 *1 (-380 *3)) (-4 *3 (-1229)))) (-3133 (*1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-380 *2)) (-4 *2 (-1229)))) (-3314 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4455)) (-4 *1 (-380 *3)) (-4 *3 (-1229)))) (-3314 (*1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858)))))
-(-13 (-659 |t#1|) (-10 -8 (-6 -4454) (-15 -1767 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4421 ($ $)) (-15 -2766 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2852 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1439 ((-572) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -1439 ((-572) |t#1| $)) (-15 -1439 ((-572) |t#1| $ (-572)))) |%noBranch|) (IF (|has| |t#1| (-858)) (PROGN (-6 (-858)) (-15 -1767 ($ $ $)) (-15 -2766 ($ $)) (-15 -2852 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4455)) (PROGN (-15 -4095 ($ $ $ (-572))) (-15 -3133 ($ $)) (-15 -3314 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-858)) (-15 -3314 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1111) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1229) . T))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-1653 (((-652 |#1|) $) 37)) (-2894 (($ $ (-779)) 38)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-3924 (((-1303 |#1| |#2|) (-1303 |#1| |#2|) $) 41)) (-4211 (($ $) 39)) (-3421 (((-1303 |#1| |#2|) (-1303 |#1| |#2|) $) 42)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2641 (($ $ |#1| $) 36) (($ $ (-652 |#1|) (-652 $)) 35)) (-4390 (((-779) $) 43)) (-2953 (($ $ $) 34)) (-2940 (((-870) $) 12) (($ |#1|) 46) (((-1294 |#1| |#2|) $) 45) (((-1303 |#1| |#2|) $) 44)) (-1857 ((|#2| (-1303 |#1| |#2|) $) 47)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-3642 (($ (-680 |#1|)) 40)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#2|) 33 (|has| |#2| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
-(((-381 |#1| |#2|) (-141) (-858) (-174)) (T -381))
-((-1857 (*1 *2 *3 *1) (-12 (-5 *3 (-1303 *4 *2)) (-4 *1 (-381 *4 *2)) (-4 *4 (-858)) (-4 *2 (-174)))) (-2940 (*1 *1 *2) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174)))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *2 (-1294 *3 *4)))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *2 (-1303 *3 *4)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *2 (-779)))) (-3421 (*1 *2 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-3924 (*1 *2 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-3642 (*1 *1 *2) (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-4 *1 (-381 *3 *4)) (-4 *4 (-174)))) (-4211 (*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174)))) (-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *2 (-652 *3)))) (-2641 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-858)) (-4 *5 (-174)))))
-(-13 (-642 |t#2|) (-10 -8 (-15 -1857 (|t#2| (-1303 |t#1| |t#2|) $)) (-15 -2940 ($ |t#1|)) (-15 -2940 ((-1294 |t#1| |t#2|) $)) (-15 -2940 ((-1303 |t#1| |t#2|) $)) (-15 -4390 ((-779) $)) (-15 -3421 ((-1303 |t#1| |t#2|) (-1303 |t#1| |t#2|) $)) (-15 -3924 ((-1303 |t#1| |t#2|) (-1303 |t#1| |t#2|) $)) (-15 -3642 ($ (-680 |t#1|))) (-15 -4211 ($ $)) (-15 -2894 ($ $ (-779))) (-15 -1653 ((-652 |t#1|) $)) (-15 -2641 ($ $ |t#1| $)) (-15 -2641 ($ $ (-652 |t#1|) (-652 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#2|) . T) ((-656 |#2|) . T) ((-642 |#2|) . T) ((-648 |#2|) . T) ((-725 |#2|) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1111) . T))
-((-4038 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3582 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-4162 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33)))
-(((-382 |#1| |#2|) (-10 -7 (-15 -3582 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4162 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4038 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1229) (-13 (-380 |#1|) (-10 -7 (-6 -4455)))) (T -382))
-((-4038 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))) (-4162 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))) (-3582 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))))
-(-10 -7 (-15 -3582 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4162 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4038 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-2993 (((-697 |#2|) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 22) (((-697 (-572)) (-697 $)) 14) (((-697 (-572)) (-1279 $)) NIL)))
-(((-383 |#1| |#2|) (-10 -8 (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 |#2|) (-697 |#1|))) (-15 -2993 ((-697 |#2|) (-1279 |#1|)))) (-384 |#2|) (-1060)) (T -383))
-NIL
-(-10 -8 (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 |#2|) (-697 |#1|))) (-15 -2993 ((-697 |#2|) (-1279 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2993 (((-697 |#1|) (-1279 $)) 31) (((-697 |#1|) (-697 $)) 30) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 29) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 39 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 38 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-1279 $)) 37 (|has| |#1| (-647 (-572))))) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27)))
-(((-384 |#1|) (-141) (-1060)) (T -384))
-NIL
-(-13 (-647 |t#1|) (-10 -7 (IF (|has| |t#1| (-647 (-572))) (-6 (-647 (-572))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 #0=(-572)) |has| |#1| (-647 (-572))) ((-656 |#1|) . T) ((-647 #0#) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-1111) . T))
-((-2097 (((-652 (-300 (-961 (-171 |#1|)))) (-300 (-415 (-961 (-171 (-572))))) |#1|) 51) (((-652 (-300 (-961 (-171 |#1|)))) (-415 (-961 (-171 (-572)))) |#1|) 50) (((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-300 (-415 (-961 (-171 (-572)))))) |#1|) 47) (((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-415 (-961 (-171 (-572))))) |#1|) 41)) (-2130 (((-652 (-652 (-171 |#1|))) (-652 (-415 (-961 (-171 (-572))))) (-652 (-1188)) |#1|) 30) (((-652 (-171 |#1|)) (-415 (-961 (-171 (-572)))) |#1|) 18)))
-(((-385 |#1|) (-10 -7 (-15 -2097 ((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-415 (-961 (-171 (-572))))) |#1|)) (-15 -2097 ((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-300 (-415 (-961 (-171 (-572)))))) |#1|)) (-15 -2097 ((-652 (-300 (-961 (-171 |#1|)))) (-415 (-961 (-171 (-572)))) |#1|)) (-15 -2097 ((-652 (-300 (-961 (-171 |#1|)))) (-300 (-415 (-961 (-171 (-572))))) |#1|)) (-15 -2130 ((-652 (-171 |#1|)) (-415 (-961 (-171 (-572)))) |#1|)) (-15 -2130 ((-652 (-652 (-171 |#1|))) (-652 (-415 (-961 (-171 (-572))))) (-652 (-1188)) |#1|))) (-13 (-370) (-856))) (T -385))
-((-2130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-415 (-961 (-171 (-572)))))) (-5 *4 (-652 (-1188))) (-5 *2 (-652 (-652 (-171 *5)))) (-5 *1 (-385 *5)) (-4 *5 (-13 (-370) (-856))))) (-2130 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-171 (-572))))) (-5 *2 (-652 (-171 *4))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-415 (-961 (-171 (-572)))))) (-5 *2 (-652 (-300 (-961 (-171 *4))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-171 (-572))))) (-5 *2 (-652 (-300 (-961 (-171 *4))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-300 (-415 (-961 (-171 (-572))))))) (-5 *2 (-652 (-652 (-300 (-961 (-171 *4)))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 (-171 (-572)))))) (-5 *2 (-652 (-652 (-300 (-961 (-171 *4)))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))))
-(-10 -7 (-15 -2097 ((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-415 (-961 (-171 (-572))))) |#1|)) (-15 -2097 ((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-300 (-415 (-961 (-171 (-572)))))) |#1|)) (-15 -2097 ((-652 (-300 (-961 (-171 |#1|)))) (-415 (-961 (-171 (-572)))) |#1|)) (-15 -2097 ((-652 (-300 (-961 (-171 |#1|)))) (-300 (-415 (-961 (-171 (-572))))) |#1|)) (-15 -2130 ((-652 (-171 |#1|)) (-415 (-961 (-171 (-572)))) |#1|)) (-15 -2130 ((-652 (-652 (-171 |#1|))) (-652 (-415 (-961 (-171 (-572))))) (-652 (-1188)) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 35)) (-2689 (((-572) $) 62)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3762 (($ $) 136)) (-2358 (($ $) 98)) (-2242 (($ $) 90)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4227 (($ $) 47)) (-4217 (((-112) $ $) NIL)) (-2338 (($ $) 96)) (-2222 (($ $) 85)) (-2840 (((-572) $) 78)) (-3957 (($ $ (-572)) 73)) (-2384 (($ $) NIL)) (-2262 (($ $) NIL)) (-3281 (($) NIL T CONST)) (-1530 (($ $) 138)) (-1695 (((-3 (-572) "failed") $) 231) (((-3 (-415 (-572)) "failed") $) 227)) (-2204 (((-572) $) 229) (((-415 (-572)) $) 225)) (-2780 (($ $ $) NIL)) (-2315 (((-572) $ $) 125)) (-2062 (((-3 $ "failed") $) 141)) (-2884 (((-415 (-572)) $ (-779)) 232) (((-415 (-572)) $ (-779) (-779)) 224)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3782 (((-930)) 121) (((-930) (-930)) 122 (|has| $ (-6 -4445)))) (-3074 (((-112) $) 130)) (-2997 (($) 41)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL)) (-2106 (((-1284) (-779)) 191)) (-3197 (((-1284)) 196) (((-1284) (-779)) 197)) (-3435 (((-1284)) 198) (((-1284) (-779)) 199)) (-4335 (((-1284)) 194) (((-1284) (-779)) 195)) (-2956 (((-572) $) 68)) (-1886 (((-112) $) 40)) (-2932 (($ $ (-572)) NIL)) (-2346 (($ $) 51)) (-2028 (($ $) NIL)) (-1623 (((-112) $) 37)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL) (($) NIL (-12 (-2074 (|has| $ (-6 -4437))) (-2074 (|has| $ (-6 -4445)))))) (-2427 (($ $ $) NIL) (($) NIL (-12 (-2074 (|has| $ (-6 -4437))) (-2074 (|has| $ (-6 -4445)))))) (-4298 (((-572) $) 17)) (-3057 (($) 106) (($ $) 113)) (-1732 (($) 112) (($ $) 114)) (-3116 (($ $) 101)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 143)) (-4170 (((-930) (-572)) 46 (|has| $ (-6 -4445)))) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) 60)) (-3462 (($ $) 135)) (-2379 (($ (-572) (-572)) 131) (($ (-572) (-572) (-930)) 132)) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1679 (((-572) $) 19)) (-2499 (($) 115)) (-1608 (($ $) 95)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2189 (((-930)) 123) (((-930) (-930)) 124 (|has| $ (-6 -4445)))) (-3902 (($ $ (-779)) NIL) (($ $) 142)) (-2691 (((-930) (-572)) 50 (|has| $ (-6 -4445)))) (-2397 (($ $) NIL)) (-2270 (($ $) NIL)) (-2370 (($ $) NIL)) (-2252 (($ $) NIL)) (-2348 (($ $) 97)) (-2231 (($ $) 89)) (-1835 (((-386) $) 216) (((-227) $) 218) (((-901 (-386)) $) NIL) (((-1170) $) 202) (((-544) $) 214) (($ (-227)) 223)) (-2940 (((-870) $) 206) (($ (-572)) 228) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-572)) 228) (($ (-415 (-572))) NIL) (((-227) $) 219)) (-4249 (((-779)) NIL T CONST)) (-3614 (($ $) 137)) (-4221 (((-930)) 61) (((-930) (-930)) 80 (|has| $ (-6 -4445)))) (-4379 (((-112) $ $) NIL)) (-2625 (((-930)) 126)) (-2436 (($ $) 104)) (-2300 (($ $) 49) (($ $ $) 59)) (-2845 (((-112) $ $) NIL)) (-2409 (($ $) 102)) (-2282 (($ $) 39)) (-2460 (($ $) NIL)) (-2320 (($ $) NIL)) (-2516 (($ $) NIL)) (-2329 (($ $) NIL)) (-2448 (($ $) NIL)) (-2310 (($ $) NIL)) (-2423 (($ $) 103)) (-2292 (($ $) 52)) (-2700 (($ $) 58)) (-2131 (($) 36 T CONST)) (-2143 (($) 43 T CONST)) (-3547 (((-1170) $) 27) (((-1170) $ (-112)) 29) (((-1284) (-830) $) 30) (((-1284) (-830) $ (-112)) 31)) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-3039 (((-112) $ $) 203)) (-3014 (((-112) $ $) 45)) (-2978 (((-112) $ $) 56)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 57)) (-3106 (($ $ $) 48) (($ $ (-572)) 42)) (-3089 (($ $) 38) (($ $ $) 53)) (-3075 (($ $ $) 72)) (** (($ $ (-930)) 83) (($ $ (-779)) NIL) (($ $ (-572)) 107) (($ $ (-415 (-572))) 154) (($ $ $) 145)) (* (($ (-930) $) 79) (($ (-779) $) NIL) (($ (-572) $) 84) (($ $ $) 71) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
-(((-386) (-13 (-412) (-237) (-622 (-1170)) (-836) (-621 (-227)) (-1214) (-622 (-544)) (-626 (-227)) (-10 -8 (-15 -3106 ($ $ (-572))) (-15 ** ($ $ $)) (-15 -2346 ($ $)) (-15 -2315 ((-572) $ $)) (-15 -3957 ($ $ (-572))) (-15 -2884 ((-415 (-572)) $ (-779))) (-15 -2884 ((-415 (-572)) $ (-779) (-779))) (-15 -3057 ($)) (-15 -1732 ($)) (-15 -2499 ($)) (-15 -2300 ($ $ $)) (-15 -3057 ($ $)) (-15 -1732 ($ $)) (-15 -3435 ((-1284))) (-15 -3435 ((-1284) (-779))) (-15 -4335 ((-1284))) (-15 -4335 ((-1284) (-779))) (-15 -3197 ((-1284))) (-15 -3197 ((-1284) (-779))) (-15 -2106 ((-1284) (-779))) (-6 -4445) (-6 -4437)))) (T -386))
-((** (*1 *1 *1 *1) (-5 *1 (-386))) (-3106 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-386)))) (-2346 (*1 *1 *1) (-5 *1 (-386))) (-2315 (*1 *2 *1 *1) (-12 (-5 *2 (-572)) (-5 *1 (-386)))) (-3957 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-386)))) (-2884 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-386)))) (-2884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-386)))) (-3057 (*1 *1) (-5 *1 (-386))) (-1732 (*1 *1) (-5 *1 (-386))) (-2499 (*1 *1) (-5 *1 (-386))) (-2300 (*1 *1 *1 *1) (-5 *1 (-386))) (-3057 (*1 *1 *1) (-5 *1 (-386))) (-1732 (*1 *1 *1) (-5 *1 (-386))) (-3435 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))) (-4335 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))) (-4335 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))) (-3197 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))))
-(-13 (-412) (-237) (-622 (-1170)) (-836) (-621 (-227)) (-1214) (-622 (-544)) (-626 (-227)) (-10 -8 (-15 -3106 ($ $ (-572))) (-15 ** ($ $ $)) (-15 -2346 ($ $)) (-15 -2315 ((-572) $ $)) (-15 -3957 ($ $ (-572))) (-15 -2884 ((-415 (-572)) $ (-779))) (-15 -2884 ((-415 (-572)) $ (-779) (-779))) (-15 -3057 ($)) (-15 -1732 ($)) (-15 -2499 ($)) (-15 -2300 ($ $ $)) (-15 -3057 ($ $)) (-15 -1732 ($ $)) (-15 -3435 ((-1284))) (-15 -3435 ((-1284) (-779))) (-15 -4335 ((-1284))) (-15 -4335 ((-1284) (-779))) (-15 -3197 ((-1284))) (-15 -3197 ((-1284) (-779))) (-15 -2106 ((-1284) (-779))) (-6 -4445) (-6 -4437)))
-((-1724 (((-652 (-300 (-961 |#1|))) (-300 (-415 (-961 (-572)))) |#1|) 46) (((-652 (-300 (-961 |#1|))) (-415 (-961 (-572))) |#1|) 45) (((-652 (-652 (-300 (-961 |#1|)))) (-652 (-300 (-415 (-961 (-572))))) |#1|) 42) (((-652 (-652 (-300 (-961 |#1|)))) (-652 (-415 (-961 (-572)))) |#1|) 36)) (-3426 (((-652 |#1|) (-415 (-961 (-572))) |#1|) 20) (((-652 (-652 |#1|)) (-652 (-415 (-961 (-572)))) (-652 (-1188)) |#1|) 30)))
-(((-387 |#1|) (-10 -7 (-15 -1724 ((-652 (-652 (-300 (-961 |#1|)))) (-652 (-415 (-961 (-572)))) |#1|)) (-15 -1724 ((-652 (-652 (-300 (-961 |#1|)))) (-652 (-300 (-415 (-961 (-572))))) |#1|)) (-15 -1724 ((-652 (-300 (-961 |#1|))) (-415 (-961 (-572))) |#1|)) (-15 -1724 ((-652 (-300 (-961 |#1|))) (-300 (-415 (-961 (-572)))) |#1|)) (-15 -3426 ((-652 (-652 |#1|)) (-652 (-415 (-961 (-572)))) (-652 (-1188)) |#1|)) (-15 -3426 ((-652 |#1|) (-415 (-961 (-572))) |#1|))) (-13 (-856) (-370))) (T -387))
-((-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-572)))) (-5 *2 (-652 *4)) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-415 (-961 (-572))))) (-5 *4 (-652 (-1188))) (-5 *2 (-652 (-652 *5))) (-5 *1 (-387 *5)) (-4 *5 (-13 (-856) (-370))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-415 (-961 (-572))))) (-5 *2 (-652 (-300 (-961 *4)))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-572)))) (-5 *2 (-652 (-300 (-961 *4)))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-300 (-415 (-961 (-572)))))) (-5 *2 (-652 (-652 (-300 (-961 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 (-572))))) (-5 *2 (-652 (-652 (-300 (-961 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))))
-(-10 -7 (-15 -1724 ((-652 (-652 (-300 (-961 |#1|)))) (-652 (-415 (-961 (-572)))) |#1|)) (-15 -1724 ((-652 (-652 (-300 (-961 |#1|)))) (-652 (-300 (-415 (-961 (-572))))) |#1|)) (-15 -1724 ((-652 (-300 (-961 |#1|))) (-415 (-961 (-572))) |#1|)) (-15 -1724 ((-652 (-300 (-961 |#1|))) (-300 (-415 (-961 (-572)))) |#1|)) (-15 -3426 ((-652 (-652 |#1|)) (-652 (-415 (-961 (-572)))) (-652 (-1188)) |#1|)) (-15 -3426 ((-652 |#1|) (-415 (-961 (-572))) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 30)) (-2204 ((|#2| $) 32)) (-1390 (($ $) NIL)) (-4368 (((-779) $) 11)) (-1843 (((-652 $) $) 23)) (-2438 (((-112) $) NIL)) (-3829 (($ |#2| |#1|) 21)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3318 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1357 ((|#2| $) 18)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 51) (($ |#2|) 31)) (-4268 (((-652 |#1|) $) 20)) (-3979 ((|#1| $ |#2|) 55)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 33 T CONST)) (-1933 (((-652 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
-(((-388 |#1| |#2|) (-13 (-389 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1060) (-858)) (T -388))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-388 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-858)))))
-(-13 (-389 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#2| "failed") $) 49)) (-2204 ((|#2| $) 50)) (-1390 (($ $) 35)) (-4368 (((-779) $) 39)) (-1843 (((-652 $) $) 40)) (-2438 (((-112) $) 43)) (-3829 (($ |#2| |#1|) 44)) (-1776 (($ (-1 |#1| |#1|) $) 45)) (-3318 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1357 ((|#2| $) 38)) (-1368 ((|#1| $) 37)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ |#2|) 48)) (-4268 (((-652 |#1|) $) 41)) (-3979 ((|#1| $ |#2|) 46)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-1933 (((-652 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
-(((-389 |#1| |#2|) (-141) (-1060) (-1111)) (T -389))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-389 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1111)))) (-3979 (*1 *2 *1 *3) (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1060)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)))) (-3829 (*1 *1 *2 *3) (-12 (-4 *1 (-389 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1111)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-112)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-652 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-652 *3)))) (-1843 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-389 *3 *4)))) (-4368 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-779)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1111)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1060)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1390 (*1 *1 *1) (-12 (-4 *1 (-389 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1111)))))
-(-13 (-111 |t#1| |t#1|) (-1049 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3979 (|t#1| $ |t#2|)) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -3829 ($ |t#2| |t#1|)) (-15 -2438 ((-112) $)) (-15 -1933 ((-652 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4268 ((-652 |t#1|) $)) (-15 -1843 ((-652 $) $)) (-15 -4368 ((-779) $)) (-15 -1357 (|t#2| $)) (-15 -1368 (|t#1| $)) (-15 -3318 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1390 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-725 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 |#2|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-1049 |#2|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
-((-3765 (((-1284) $) 7)) (-2940 (((-870) $) 8) (($ (-697 (-707))) 14) (($ (-652 (-336))) 13) (($ (-336)) 12) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 11)))
-(((-390) (-141)) (T -390))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-697 (-707))) (-4 *1 (-390)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-390)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-390)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) (-4 *1 (-390)))))
-(-13 (-403) (-10 -8 (-15 -2940 ($ (-697 (-707)))) (-15 -2940 ($ (-652 (-336)))) (-15 -2940 ($ (-336))) (-15 -2940 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))))))
-(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
-((-1695 (((-3 $ "failed") (-697 (-322 (-386)))) 21) (((-3 $ "failed") (-697 (-322 (-572)))) 19) (((-3 $ "failed") (-697 (-961 (-386)))) 17) (((-3 $ "failed") (-697 (-961 (-572)))) 15) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 13) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 11)) (-2204 (($ (-697 (-322 (-386)))) 22) (($ (-697 (-322 (-572)))) 20) (($ (-697 (-961 (-386)))) 18) (($ (-697 (-961 (-572)))) 16) (($ (-697 (-415 (-961 (-386))))) 14) (($ (-697 (-415 (-961 (-572))))) 12)) (-3765 (((-1284) $) 7)) (-2940 (((-870) $) 8) (($ (-652 (-336))) 25) (($ (-336)) 24) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 23)))
-(((-391) (-141)) (T -391))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-391)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-391)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) (-4 *1 (-391)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-697 (-322 (-386)))) (-4 *1 (-391)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-322 (-386)))) (-4 *1 (-391)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-697 (-322 (-572)))) (-4 *1 (-391)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-322 (-572)))) (-4 *1 (-391)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-697 (-961 (-386)))) (-4 *1 (-391)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-961 (-386)))) (-4 *1 (-391)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-697 (-961 (-572)))) (-4 *1 (-391)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-961 (-572)))) (-4 *1 (-391)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-697 (-415 (-961 (-386))))) (-4 *1 (-391)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-415 (-961 (-386))))) (-4 *1 (-391)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-697 (-415 (-961 (-572))))) (-4 *1 (-391)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-415 (-961 (-572))))) (-4 *1 (-391)))))
-(-13 (-403) (-10 -8 (-15 -2940 ($ (-652 (-336)))) (-15 -2940 ($ (-336))) (-15 -2940 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))) (-15 -2204 ($ (-697 (-322 (-386))))) (-15 -1695 ((-3 $ "failed") (-697 (-322 (-386))))) (-15 -2204 ($ (-697 (-322 (-572))))) (-15 -1695 ((-3 $ "failed") (-697 (-322 (-572))))) (-15 -2204 ($ (-697 (-961 (-386))))) (-15 -1695 ((-3 $ "failed") (-697 (-961 (-386))))) (-15 -2204 ($ (-697 (-961 (-572))))) (-15 -1695 ((-3 $ "failed") (-697 (-961 (-572))))) (-15 -2204 ($ (-697 (-415 (-961 (-386)))))) (-15 -1695 ((-3 $ "failed") (-697 (-415 (-961 (-386)))))) (-15 -2204 ($ (-697 (-415 (-961 (-572)))))) (-15 -1695 ((-3 $ "failed") (-697 (-415 (-961 (-572))))))))
-(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-4333 (($ |#1| |#2|) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4060 ((|#2| $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 33)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 12 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
-(((-392 |#1| |#2|) (-13 (-111 |#1| |#1|) (-517 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-725 |#1|)) |%noBranch|))) (-1060) (-858)) (T -392))
-NIL
-(-13 (-111 |#1| |#1|) (-517 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-725 |#1|)) |%noBranch|)))
-((-2846 (((-112) $ $) 7)) (-1486 (((-779) $) 34)) (-3281 (($) 19 T CONST)) (-3924 (((-3 $ "failed") $ $) 37)) (-1695 (((-3 |#1| "failed") $) 45)) (-2204 ((|#1| $) 46)) (-2062 (((-3 $ "failed") $) 16)) (-4064 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1886 (((-112) $) 18)) (-2321 ((|#1| $ (-572)) 31)) (-1473 (((-779) $ (-572)) 32)) (-3654 (($ $ $) 28 (|has| |#1| (-858)))) (-2427 (($ $ $) 27 (|has| |#1| (-858)))) (-3984 (($ (-1 |#1| |#1|) $) 29)) (-4081 (($ (-1 (-779) (-779)) $) 30)) (-3421 (((-3 $ "failed") $ $) 38)) (-4347 (((-1170) $) 10)) (-1942 (($ $ $) 39)) (-2362 (($ $ $) 40)) (-3964 (((-1131) $) 11)) (-4225 (((-652 (-2 (|:| |gen| |#1|) (|:| -1608 (-779)))) $) 33)) (-1669 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2940 (((-870) $) 12) (($ |#1|) 44)) (-4379 (((-112) $ $) 9)) (-2143 (($) 20 T CONST)) (-3039 (((-112) $ $) 25 (|has| |#1| (-858)))) (-3014 (((-112) $ $) 24 (|has| |#1| (-858)))) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 26 (|has| |#1| (-858)))) (-3003 (((-112) $ $) 23 (|has| |#1| (-858)))) (** (($ $ (-930)) 14) (($ $ (-779)) 17) (($ |#1| (-779)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
-(((-393 |#1|) (-141) (-1111)) (T -393))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-2362 (*1 *1 *1 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-1942 (*1 *1 *1 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-3421 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-3924 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-1669 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1111)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-393 *3)))) (-4064 (*1 *2 *1 *1) (-12 (-4 *3 (-1111)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-393 *3)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-1111)) (-5 *2 (-779)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-1111)) (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 (-779))))))) (-1473 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-393 *4)) (-4 *4 (-1111)) (-5 *2 (-779)))) (-2321 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-779) (-779))) (-4 *1 (-393 *3)) (-4 *3 (-1111)))) (-3984 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3)) (-4 *3 (-1111)))))
-(-13 (-734) (-1049 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-779))) (-15 -2362 ($ $ $)) (-15 -1942 ($ $ $)) (-15 -3421 ((-3 $ "failed") $ $)) (-15 -3924 ((-3 $ "failed") $ $)) (-15 -1669 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4064 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1486 ((-779) $)) (-15 -4225 ((-652 (-2 (|:| |gen| |t#1|) (|:| -1608 (-779)))) $)) (-15 -1473 ((-779) $ (-572))) (-15 -2321 (|t#1| $ (-572))) (-15 -4081 ($ (-1 (-779) (-779)) $)) (-15 -3984 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|)))
-(((-102) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-734) . T) ((-858) |has| |#1| (-858)) ((-1049 |#1|) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779) $) 74)) (-3281 (($) NIL T CONST)) (-3924 (((-3 $ "failed") $ $) 77)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-4064 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1886 (((-112) $) 17)) (-2321 ((|#1| $ (-572)) NIL)) (-1473 (((-779) $ (-572)) NIL)) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-3984 (($ (-1 |#1| |#1|) $) 40)) (-4081 (($ (-1 (-779) (-779)) $) 37)) (-3421 (((-3 $ "failed") $ $) 60)) (-4347 (((-1170) $) NIL)) (-1942 (($ $ $) 28)) (-2362 (($ $ $) 26)) (-3964 (((-1131) $) NIL)) (-4225 (((-652 (-2 (|:| |gen| |#1|) (|:| -1608 (-779)))) $) 34)) (-1669 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2940 (((-870) $) 24) (($ |#1|) NIL)) (-4379 (((-112) $ $) NIL)) (-2143 (($) 11 T CONST)) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) 84 (|has| |#1| (-858)))) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ |#1| (-779)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
-(((-394 |#1|) (-393 |#1|) (-1111)) (T -394))
-NIL
-(-393 |#1|)
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1695 (((-3 (-572) "failed") $) 53)) (-2204 (((-572) $) 54)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-3654 (($ $ $) 60)) (-2427 (($ $ $) 59)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2834 (((-3 $ "failed") $ $) 48)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-572)) 52)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3039 (((-112) $ $) 57)) (-3014 (((-112) $ $) 56)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 58)) (-3003 (((-112) $ $) 55)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-395) (-141)) (T -395))
-NIL
-(-13 (-564) (-858) (-1049 (-572)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-858) . T) ((-1049 (-572)) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-1628 (((-112) $) 25)) (-4233 (((-112) $) 22)) (-3787 (($ (-1170) (-1170) (-1170)) 26)) (-2030 (((-1170) $) 16)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3710 (($ (-1170) (-1170) (-1170)) 14)) (-1414 (((-1170) $) 17)) (-3601 (((-112) $) 18)) (-2563 (((-1170) $) 15)) (-2940 (((-870) $) 12) (($ (-1170)) 13) (((-1170) $) 9)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 7)))
-(((-396) (-397)) (T -396))
-NIL
-(-397)
-((-2846 (((-112) $ $) 7)) (-1628 (((-112) $) 17)) (-4233 (((-112) $) 18)) (-3787 (($ (-1170) (-1170) (-1170)) 16)) (-2030 (((-1170) $) 21)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3710 (($ (-1170) (-1170) (-1170)) 23)) (-1414 (((-1170) $) 20)) (-3601 (((-112) $) 19)) (-2563 (((-1170) $) 22)) (-2940 (((-870) $) 12) (($ (-1170)) 25) (((-1170) $) 24)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
+((-3119 (($ $) 6)) (-1610 (($ $) 7)) (** (($ $ $) 8)))
+(((-292) (-141)) (T -292))
+((** (*1 *1 *1 *1) (-4 *1 (-292))) (-1610 (*1 *1 *1) (-4 *1 (-292))) (-3119 (*1 *1 *1) (-4 *1 (-292))))
+(-13 (-10 -8 (-15 -3119 ($ $)) (-15 -1610 ($ $)) (-15 ** ($ $ $))))
+((-2229 (((-654 (-1170 |#1|)) (-1170 |#1|) |#1|) 35)) (-2439 ((|#2| |#2| |#1|) 39)) (-1336 ((|#2| |#2| |#1|) 41)) (-3594 ((|#2| |#2| |#1|) 40)))
+(((-293 |#1| |#2|) (-10 -7 (-15 -2439 (|#2| |#2| |#1|)) (-15 -3594 (|#2| |#2| |#1|)) (-15 -1336 (|#2| |#2| |#1|)) (-15 -2229 ((-654 (-1170 |#1|)) (-1170 |#1|) |#1|))) (-372) (-1272 |#1|)) (T -293))
+((-2229 (*1 *2 *3 *4) (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1170 *4))) (-5 *1 (-293 *4 *5)) (-5 *3 (-1170 *4)) (-4 *5 (-1272 *4)))) (-1336 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3)))) (-3594 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3)))) (-2439 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3)))))
+(-10 -7 (-15 -2439 (|#2| |#2| |#1|)) (-15 -3594 (|#2| |#2| |#1|)) (-15 -1336 (|#2| |#2| |#1|)) (-15 -2229 ((-654 (-1170 |#1|)) (-1170 |#1|) |#1|)))
+((-2200 ((|#2| $ |#1|) 6)))
+(((-294 |#1| |#2|) (-141) (-1231) (-1231)) (T -294))
+((-2200 (*1 *2 *1 *3) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1231)) (-4 *2 (-1231)))))
+(-13 (-1231) (-10 -8 (-15 -2200 (|t#2| $ |t#1|))))
+(((-1231) . T))
+((-2462 ((|#3| $ |#2| |#3|) 12)) (-2385 ((|#3| $ |#2|) 10)))
+(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -2462 (|#3| |#1| |#2| |#3|)) (-15 -2385 (|#3| |#1| |#2|))) (-296 |#2| |#3|) (-1113) (-1231)) (T -295))
+NIL
+(-10 -8 (-15 -2462 (|#3| |#1| |#2| |#3|)) (-15 -2385 (|#3| |#1| |#2|)))
+((-3143 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4457)))) (-2462 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) 11)) (-2200 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-296 |#1| |#2|) (-141) (-1113) (-1231)) (T -296))
+((-2200 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) (-2385 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) (-2462 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))))
+(-13 (-294 |t#1| |t#2|) (-10 -8 (-15 -2200 (|t#2| $ |t#1| |t#2|)) (-15 -2385 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4457)) (PROGN (-15 -3143 (|t#2| $ |t#1| |t#2|)) (-15 -2462 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-294 |#1| |#2|) . T) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 37)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 44)) (-2814 (($ $) 41)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-2785 (($ $ $) 35)) (-2868 (($ |#2| |#3|) 18)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3965 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3201 ((|#3| $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 19)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3378 (((-3 $ "failed") $ $) NIL)) (-1347 (((-781) $) 36)) (-2200 ((|#2| $ |#2|) 46)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 23)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2134 (($) 31 T CONST)) (-2146 (($) 39 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40)))
+(((-297 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -3201 (|#3| $)) (-15 -2943 (|#2| $)) (-15 -2868 ($ |#2| |#3|)) (-15 -3378 ((-3 $ "failed") $ $)) (-15 -1950 ((-3 $ "failed") $)) (-15 -1324 ($ $)))) (-174) (-1257 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -297))
+((-1950 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3201 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1257 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2943 (*1 *2 *1) (-12 (-4 *2 (-1257 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2868 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1257 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3378 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1324 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
+(-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -3201 (|#3| $)) (-15 -2943 (|#2| $)) (-15 -2868 ($ |#2| |#3|)) (-15 -3378 ((-3 $ "failed") $ $)) (-15 -1950 ((-3 $ "failed") $)) (-15 -1324 ($ $))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-298) (-141)) (T -298))
+NIL
+(-13 (-1062) (-111 $ $) (-10 -7 (-6 -4449)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-4237 (((-654 (-1098)) $) 10)) (-3113 (($ (-516) (-516) (-1117) $) 19)) (-1968 (($ (-516) (-654 (-976)) $) 23)) (-1916 (($) 25)) (-1822 (((-701 (-1117)) (-516) (-516) $) 18)) (-3547 (((-654 (-976)) (-516) $) 22)) (-3135 (($) 7)) (-1828 (($) 24)) (-2943 (((-872) $) 29)) (-4373 (($) 26)))
+(((-299) (-13 (-623 (-872)) (-10 -8 (-15 -3135 ($)) (-15 -4237 ((-654 (-1098)) $)) (-15 -1822 ((-701 (-1117)) (-516) (-516) $)) (-15 -3113 ($ (-516) (-516) (-1117) $)) (-15 -3547 ((-654 (-976)) (-516) $)) (-15 -1968 ($ (-516) (-654 (-976)) $)) (-15 -1828 ($)) (-15 -1916 ($)) (-15 -4373 ($))))) (T -299))
+((-3135 (*1 *1) (-5 *1 (-299))) (-4237 (*1 *2 *1) (-12 (-5 *2 (-654 (-1098))) (-5 *1 (-299)))) (-1822 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1117))) (-5 *1 (-299)))) (-3113 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-1117)) (-5 *1 (-299)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-654 (-976))) (-5 *1 (-299)))) (-1968 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-976))) (-5 *1 (-299)))) (-1828 (*1 *1) (-5 *1 (-299))) (-1916 (*1 *1) (-5 *1 (-299))) (-4373 (*1 *1) (-5 *1 (-299))))
+(-13 (-623 (-872)) (-10 -8 (-15 -3135 ($)) (-15 -4237 ((-654 (-1098)) $)) (-15 -1822 ((-701 (-1117)) (-516) (-516) $)) (-15 -3113 ($ (-516) (-516) (-1117) $)) (-15 -3547 ((-654 (-976)) (-516) $)) (-15 -1968 ($ (-516) (-654 (-976)) $)) (-15 -1828 ($)) (-15 -1916 ($)) (-15 -4373 ($))))
+((-1576 (((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|)))) 102)) (-3381 (((-654 (-699 (-417 (-963 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|)))))) (-699 (-417 (-963 |#1|)))) 97) (((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))) (-781) (-781)) 41)) (-3130 (((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|)))) 99)) (-1454 (((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|)))) 75)) (-1462 (((-654 (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (-699 (-417 (-963 |#1|)))) 74)) (-4169 (((-963 |#1|) (-699 (-417 (-963 |#1|)))) 55) (((-963 |#1|) (-699 (-417 (-963 |#1|))) (-1190)) 56)))
+(((-300 |#1|) (-10 -7 (-15 -4169 ((-963 |#1|) (-699 (-417 (-963 |#1|))) (-1190))) (-15 -4169 ((-963 |#1|) (-699 (-417 (-963 |#1|))))) (-15 -1462 ((-654 (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (-699 (-417 (-963 |#1|))))) (-15 -1454 ((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))))) (-15 -3381 ((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))) (-781) (-781))) (-15 -3381 ((-654 (-699 (-417 (-963 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|)))))) (-699 (-417 (-963 |#1|))))) (-15 -1576 ((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|))))) (-15 -3130 ((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|)))))) (-462)) (T -300))
+((-3130 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-963 *4)))))) (-1576 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4)))) (|:| |geneigvec| (-654 (-699 (-417 (-963 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-963 *4)))))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-417 (-963 *5)) (-1179 (-1190) (-963 *5)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-963 *5)))))) (-3381 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-417 (-963 *6)) (-1179 (-1190) (-963 *6)))) (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *6))))) (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-963 *6)))))) (-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-417 (-963 *5)) (-1179 (-1190) (-963 *5)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-963 *5)))))) (-1462 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 *4)))) (-4 *4 (-462)) (-5 *2 (-654 (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4))))) (-5 *1 (-300 *4)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 *4)))) (-5 *2 (-963 *4)) (-5 *1 (-300 *4)) (-4 *4 (-462)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-963 *5)))) (-5 *4 (-1190)) (-5 *2 (-963 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462)))))
+(-10 -7 (-15 -4169 ((-963 |#1|) (-699 (-417 (-963 |#1|))) (-1190))) (-15 -4169 ((-963 |#1|) (-699 (-417 (-963 |#1|))))) (-15 -1462 ((-654 (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (-699 (-417 (-963 |#1|))))) (-15 -1454 ((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))))) (-15 -3381 ((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))) (-781) (-781))) (-15 -3381 ((-654 (-699 (-417 (-963 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|)))))) (-699 (-417 (-963 |#1|))))) (-15 -1576 ((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|))))) (-15 -3130 ((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|))))))
+((-1778 (((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)) 14)))
+(((-301 |#1| |#2|) (-10 -7 (-15 -1778 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) (-1231) (-1231)) (T -301))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6)))))
+(-10 -7 (-15 -1778 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2908 (((-112) $) NIL (|has| |#1| (-21)))) (-3399 (($ $) 12)) (-2950 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2545 (($ $ $) 95 (|has| |#1| (-310)))) (-3670 (($) NIL (-2818 (|has| |#1| (-21)) (|has| |#1| (-736))) CONST)) (-2181 (($ $) 51 (|has| |#1| (-21)))) (-1982 (((-3 $ "failed") $) 62 (|has| |#1| (-736)))) (-1809 ((|#1| $) 11)) (-1950 (((-3 $ "failed") $) 60 (|has| |#1| (-736)))) (-3965 (((-112) $) NIL (|has| |#1| (-736)))) (-1778 (($ (-1 |#1| |#1|) $) 14)) (-1796 ((|#1| $) 10)) (-3308 (($ $) 50 (|has| |#1| (-21)))) (-3112 (((-3 $ "failed") $) 61 (|has| |#1| (-736)))) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1324 (($ $) 64 (-2818 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1745 (((-654 $) $) 85 (|has| |#1| (-566)))) (-2646 (($ $ $) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 $)) 28 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-1190) |#1|) 17 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 21 (|has| |#1| (-524 (-1190) |#1|)))) (-2692 (($ |#1| |#1|) 9)) (-3939 (((-135)) 90 (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 87 (|has| |#1| (-911 (-1190))))) (-1514 (($ $ $) NIL (|has| |#1| (-483)))) (-3647 (($ $ $) NIL (|has| |#1| (-483)))) (-2943 (($ (-574)) NIL (|has| |#1| (-1062))) (((-112) $) 37 (|has| |#1| (-1113))) (((-872) $) 36 (|has| |#1| (-1113)))) (-4160 (((-781)) 67 (|has| |#1| (-1062)) CONST)) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2134 (($) 47 (|has| |#1| (-21)) CONST)) (-2146 (($) 57 (|has| |#1| (-736)) CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190))))) (-2982 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1113)))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 92 (-2818 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3094 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3078 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-574)) NIL (|has| |#1| (-483))) (($ $ (-781)) NIL (|has| |#1| (-736))) (($ $ (-932)) NIL (|has| |#1| (-1125)))) (* (($ $ |#1|) 55 (|has| |#1| (-1125))) (($ |#1| $) 54 (|has| |#1| (-1125))) (($ $ $) 53 (|has| |#1| (-1125))) (($ (-574) $) 70 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-932) $) NIL (|has| |#1| (-25)))))
+(((-302 |#1|) (-13 (-1231) (-10 -8 (-15 -2982 ($ |#1| |#1|)) (-15 -2692 ($ |#1| |#1|)) (-15 -3399 ($ $)) (-15 -1796 (|#1| $)) (-15 -1809 (|#1| $)) (-15 -1778 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1190) |#1|)) (-6 (-524 (-1190) |#1|)) |%noBranch|) (IF (|has| |#1| (-1113)) (PROGN (-6 (-1113)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2646 ($ $ $)) (-15 -2646 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3078 ($ |#1| $)) (-15 -3078 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3308 ($ $)) (-15 -2181 ($ $)) (-15 -3094 ($ |#1| $)) (-15 -3094 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1125)) (PROGN (-6 (-1125)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -3112 ((-3 $ "failed") $)) (-15 -1982 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -3112 ((-3 $ "failed") $)) (-15 -1982 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-6 (-1062)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -1745 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-911 (-1190))) (-6 (-911 (-1190))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1288 |#1|)) (-15 -3107 ($ $ $)) (-15 -1324 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2545 ($ $ $)) |%noBranch|))) (-1231)) (T -302))
+((-2982 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-2692 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-3399 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-1796 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-1809 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-302 *3)))) (-2646 (*1 *1 *1 *1) (-12 (-4 *2 (-317 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)) (-5 *1 (-302 *2)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1113)) (-4 *3 (-1231)) (-5 *1 (-302 *3)))) (-3078 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1231)))) (-3078 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1231)))) (-3308 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) (-2181 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) (-3094 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) (-3094 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) (-3112 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1231)))) (-1982 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1231)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) (-4 *3 (-1231)))) (-2545 (*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1231)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1125)) (-4 *2 (-1231)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1125)) (-4 *2 (-1231)))) (-3107 (*1 *1 *1 *1) (-2818 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1231))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1231))))) (-1324 (*1 *1 *1) (-2818 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1231))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1231))))))
+(-13 (-1231) (-10 -8 (-15 -2982 ($ |#1| |#1|)) (-15 -2692 ($ |#1| |#1|)) (-15 -3399 ($ $)) (-15 -1796 (|#1| $)) (-15 -1809 (|#1| $)) (-15 -1778 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1190) |#1|)) (-6 (-524 (-1190) |#1|)) |%noBranch|) (IF (|has| |#1| (-1113)) (PROGN (-6 (-1113)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2646 ($ $ $)) (-15 -2646 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3078 ($ |#1| $)) (-15 -3078 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3308 ($ $)) (-15 -2181 ($ $)) (-15 -3094 ($ |#1| $)) (-15 -3094 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1125)) (PROGN (-6 (-1125)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -3112 ((-3 $ "failed") $)) (-15 -1982 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -3112 ((-3 $ "failed") $)) (-15 -1982 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-6 (-1062)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -1745 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-911 (-1190))) (-6 (-911 (-1190))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1288 |#1|)) (-15 -3107 ($ $ $)) (-15 -1324 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2545 ($ $ $)) |%noBranch|)))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-1860 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) NIL)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) NIL)) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) NIL)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-860)))) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1765 (((-654 |#1|) $) NIL)) (-1726 (((-112) |#1| $) NIL)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-2459 (((-654 |#1|) $) NIL)) (-2607 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-303 |#1| |#2|) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) (-1113) (-1113)) (T -303))
+NIL
+(-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456)))
+((-2678 (((-320) (-1172) (-654 (-1172))) 17) (((-320) (-1172) (-1172)) 16) (((-320) (-654 (-1172))) 15) (((-320) (-1172)) 14)))
+(((-304) (-10 -7 (-15 -2678 ((-320) (-1172))) (-15 -2678 ((-320) (-654 (-1172)))) (-15 -2678 ((-320) (-1172) (-1172))) (-15 -2678 ((-320) (-1172) (-654 (-1172)))))) (T -304))
+((-2678 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1172))) (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2678 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-320)) (-5 *1 (-304)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304)))))
+(-10 -7 (-15 -2678 ((-320) (-1172))) (-15 -2678 ((-320) (-654 (-1172)))) (-15 -2678 ((-320) (-1172) (-1172))) (-15 -2678 ((-320) (-1172) (-654 (-1172)))))
+((-1778 ((|#2| (-1 |#2| |#1|) (-1172) (-622 |#1|)) 18)))
+(((-305 |#1| |#2|) (-10 -7 (-15 -1778 (|#2| (-1 |#2| |#1|) (-1172) (-622 |#1|)))) (-310) (-1231)) (T -305))
+((-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1172)) (-5 *5 (-622 *6)) (-4 *6 (-310)) (-4 *2 (-1231)) (-5 *1 (-305 *6 *2)))))
+(-10 -7 (-15 -1778 (|#2| (-1 |#2| |#1|) (-1172) (-622 |#1|))))
+((-1778 ((|#2| (-1 |#2| |#1|) (-622 |#1|)) 17)))
+(((-306 |#1| |#2|) (-10 -7 (-15 -1778 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) (-310) (-310)) (T -306))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-306 *5 *2)))))
+(-10 -7 (-15 -1778 (|#2| (-1 |#2| |#1|) (-622 |#1|))))
+((-3065 (((-112) (-227)) 12)))
+(((-307 |#1| |#2|) (-10 -7 (-15 -3065 ((-112) (-227)))) (-227) (-227)) (T -307))
+((-3065 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -3065 ((-112) (-227))))
+((-2656 (((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227)))) 118)) (-3170 (((-1170 (-227)) (-1281 (-324 (-227))) (-654 (-1190)) (-1107 (-853 (-227)))) 135) (((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227)))) 72)) (-3782 (((-654 (-1172)) (-1170 (-227))) NIL)) (-4340 (((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227)))) 69)) (-1623 (((-654 (-227)) (-963 (-417 (-574))) (-1190) (-1107 (-853 (-227)))) 59)) (-2324 (((-654 (-1172)) (-654 (-227))) NIL)) (-3752 (((-227) (-1107 (-853 (-227)))) 29)) (-1647 (((-227) (-1107 (-853 (-227)))) 30)) (-3539 (((-112) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3632 (((-1172) (-227)) NIL)))
+(((-308) (-10 -7 (-15 -3752 ((-227) (-1107 (-853 (-227))))) (-15 -1647 ((-227) (-1107 (-853 (-227))))) (-15 -3539 ((-112) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4340 ((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227))))) (-15 -2656 ((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -3170 ((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -3170 ((-1170 (-227)) (-1281 (-324 (-227))) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -1623 ((-654 (-227)) (-963 (-417 (-574))) (-1190) (-1107 (-853 (-227))))) (-15 -3632 ((-1172) (-227))) (-15 -2324 ((-654 (-1172)) (-654 (-227)))) (-15 -3782 ((-654 (-1172)) (-1170 (-227)))))) (T -308))
+((-3782 (*1 *2 *3) (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-308)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-308)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-308)))) (-1623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *4 (-1190)) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *4 (-654 (-1190))) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308)))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1190))) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308)))) (-2656 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1190))) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308)))) (-4340 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1190)) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-308)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))))
+(-10 -7 (-15 -3752 ((-227) (-1107 (-853 (-227))))) (-15 -1647 ((-227) (-1107 (-853 (-227))))) (-15 -3539 ((-112) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4340 ((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227))))) (-15 -2656 ((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -3170 ((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -3170 ((-1170 (-227)) (-1281 (-324 (-227))) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -1623 ((-654 (-227)) (-963 (-417 (-574))) (-1190) (-1107 (-853 (-227))))) (-15 -3632 ((-1172) (-227))) (-15 -2324 ((-654 (-1172)) (-654 (-227)))) (-15 -3782 ((-654 (-1172)) (-1170 (-227)))))
+((-4091 (((-654 (-622 $)) $) 27)) (-2545 (($ $ (-302 $)) 78) (($ $ (-654 (-302 $))) 139) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-1697 (((-3 (-622 $) "failed") $) 127)) (-2209 (((-622 $) $) 126)) (-2955 (($ $) 17) (($ (-654 $)) 54)) (-1879 (((-654 (-115)) $) 35)) (-4173 (((-115) (-115)) 88)) (-3239 (((-112) $) 150)) (-1778 (($ (-1 $ $) (-622 $)) 86)) (-3376 (((-3 (-622 $) "failed") $) 94)) (-1775 (($ (-115) $) 59) (($ (-115) (-654 $)) 110)) (-2884 (((-112) $ (-115)) 132) (((-112) $ (-1190)) 131)) (-1840 (((-781) $) 44)) (-3923 (((-112) $ $) 57) (((-112) $ (-1190)) 49)) (-2625 (((-112) $) 148)) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) 137) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) 81) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) 67) (($ $ (-1190) (-1 $ $)) 72) (($ $ (-654 (-115)) (-654 (-1 $ $))) 80) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 82) (($ $ (-115) (-1 $ (-654 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2200 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-654 $)) 123)) (-3115 (($ $) 51) (($ $ $) 135)) (-2031 (($ $) 15) (($ (-654 $)) 53)) (-1932 (((-112) (-115)) 21)))
+(((-309 |#1|) (-10 -8 (-15 -3239 ((-112) |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| |#1|)))) (-15 -3923 ((-112) |#1| (-1190))) (-15 -3923 ((-112) |#1| |#1|)) (-15 -1778 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1775 (|#1| (-115) (-654 |#1|))) (-15 -1775 (|#1| (-115) |#1|)) (-15 -2884 ((-112) |#1| (-1190))) (-15 -2884 ((-112) |#1| (-115))) (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -1879 ((-654 (-115)) |#1|)) (-15 -4091 ((-654 (-622 |#1|)) |#1|)) (-15 -3376 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1840 ((-781) |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -2955 (|#1| (-654 |#1|))) (-15 -2955 (|#1| |#1|)) (-15 -2031 (|#1| (-654 |#1|))) (-15 -2031 (|#1| |#1|)) (-15 -2545 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2545 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2545 (|#1| |#1| (-302 |#1|))) (-15 -2200 (|#1| (-115) (-654 |#1|))) (-15 -2200 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1697 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2209 ((-622 |#1|) |#1|))) (-310)) (T -309))
+((-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310)))))
+(-10 -8 (-15 -3239 ((-112) |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| |#1|)))) (-15 -3923 ((-112) |#1| (-1190))) (-15 -3923 ((-112) |#1| |#1|)) (-15 -1778 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1775 (|#1| (-115) (-654 |#1|))) (-15 -1775 (|#1| (-115) |#1|)) (-15 -2884 ((-112) |#1| (-1190))) (-15 -2884 ((-112) |#1| (-115))) (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -1879 ((-654 (-115)) |#1|)) (-15 -4091 ((-654 (-622 |#1|)) |#1|)) (-15 -3376 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1840 ((-781) |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -2955 (|#1| (-654 |#1|))) (-15 -2955 (|#1| |#1|)) (-15 -2031 (|#1| (-654 |#1|))) (-15 -2031 (|#1| |#1|)) (-15 -2545 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2545 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2545 (|#1| |#1| (-302 |#1|))) (-15 -2200 (|#1| (-115) (-654 |#1|))) (-15 -2200 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1697 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2209 ((-622 |#1|) |#1|)))
+((-2849 (((-112) $ $) 7)) (-4091 (((-654 (-622 $)) $) 39)) (-2545 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-1697 (((-3 (-622 $) "failed") $) 64)) (-2209 (((-622 $) $) 65)) (-2955 (($ $) 46) (($ (-654 $)) 45)) (-1879 (((-654 (-115)) $) 38)) (-4173 (((-115) (-115)) 37)) (-3239 (((-112) $) 17 (|has| $ (-1051 (-574))))) (-2405 (((-1186 $) (-622 $)) 20 (|has| $ (-1062)))) (-1778 (($ (-1 $ $) (-622 $)) 31)) (-3376 (((-3 (-622 $) "failed") $) 41)) (-2568 (((-1172) $) 10)) (-4164 (((-654 (-622 $)) $) 40)) (-1775 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-2884 (((-112) $ (-115)) 35) (((-112) $ (-1190)) 34)) (-1840 (((-781) $) 42)) (-3966 (((-1133) $) 11)) (-3923 (((-112) $ $) 30) (((-112) $ (-1190)) 29)) (-2625 (((-112) $) 18 (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1190)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1190) (-1 $ (-654 $))) 26) (($ $ (-1190) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2200 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-3115 (($ $) 44) (($ $ $) 43)) (-1782 (($ $) 19 (|has| $ (-1062)))) (-2943 (((-872) $) 12) (($ (-622 $)) 63)) (-2031 (($ $) 48) (($ (-654 $)) 47)) (-1932 (((-112) (-115)) 36)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-310) (-141)) (T -310))
+((-2200 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2200 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2200 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2200 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2200 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310)))) (-2545 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2031 (*1 *1 *1) (-4 *1 (-310))) (-2031 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-2955 (*1 *1 *1) (-4 *1 (-310))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-3115 (*1 *1 *1) (-4 *1 (-310))) (-3115 (*1 *1 *1 *1) (-4 *1 (-310))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781)))) (-3376 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-1879 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115))))) (-4173 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1932 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2884 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2884 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1190)) (-5 *2 (-112)))) (-1775 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310)))) (-3923 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-3923 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1190)) (-5 *2 (-112)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1062)) (-4 *1 (-310)) (-5 *2 (-1186 *1)))) (-1782 (*1 *1 *1) (-12 (-4 *1 (-1062)) (-4 *1 (-310)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-1051 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-1051 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))))
+(-13 (-1113) (-1051 (-622 $)) (-524 (-622 $) $) (-317 $) (-10 -8 (-15 -2200 ($ (-115) $)) (-15 -2200 ($ (-115) $ $)) (-15 -2200 ($ (-115) $ $ $)) (-15 -2200 ($ (-115) $ $ $ $)) (-15 -2200 ($ (-115) (-654 $))) (-15 -2545 ($ $ (-302 $))) (-15 -2545 ($ $ (-654 (-302 $)))) (-15 -2545 ($ $ (-654 (-622 $)) (-654 $))) (-15 -2031 ($ $)) (-15 -2031 ($ (-654 $))) (-15 -2955 ($ $)) (-15 -2955 ($ (-654 $))) (-15 -3115 ($ $)) (-15 -3115 ($ $ $)) (-15 -1840 ((-781) $)) (-15 -3376 ((-3 (-622 $) "failed") $)) (-15 -4164 ((-654 (-622 $)) $)) (-15 -4091 ((-654 (-622 $)) $)) (-15 -1879 ((-654 (-115)) $)) (-15 -4173 ((-115) (-115))) (-15 -1932 ((-112) (-115))) (-15 -2884 ((-112) $ (-115))) (-15 -2884 ((-112) $ (-1190))) (-15 -1775 ($ (-115) $)) (-15 -1775 ($ (-115) (-654 $))) (-15 -1778 ($ (-1 $ $) (-622 $))) (-15 -3923 ((-112) $ $)) (-15 -3923 ((-112) $ (-1190))) (-15 -2646 ($ $ (-654 (-1190)) (-654 (-1 $ $)))) (-15 -2646 ($ $ (-654 (-1190)) (-654 (-1 $ (-654 $))))) (-15 -2646 ($ $ (-1190) (-1 $ (-654 $)))) (-15 -2646 ($ $ (-1190) (-1 $ $))) (-15 -2646 ($ $ (-654 (-115)) (-654 (-1 $ $)))) (-15 -2646 ($ $ (-654 (-115)) (-654 (-1 $ (-654 $))))) (-15 -2646 ($ $ (-115) (-1 $ (-654 $)))) (-15 -2646 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1062)) (PROGN (-15 -2405 ((-1186 $) (-622 $))) (-15 -1782 ($ $))) |%noBranch|) (IF (|has| $ (-1051 (-574))) (PROGN (-15 -2625 ((-112) $)) (-15 -3239 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-626 #0=(-622 $)) . T) ((-623 (-872)) . T) ((-317 $) . T) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-1051 #0#) . T) ((-1113) . T))
+((-1337 (((-654 |#1|) (-654 |#1|)) 10)))
+(((-311 |#1|) (-10 -7 (-15 -1337 ((-654 |#1|) (-654 |#1|)))) (-858)) (T -311))
+((-1337 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3)))))
+(-10 -7 (-15 -1337 ((-654 |#1|) (-654 |#1|))))
+((-1778 (((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)) 17)))
+(((-312 |#1| |#2|) (-10 -7 (-15 -1778 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) (-1062) (-1062)) (T -312))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6)))))
+(-10 -7 (-15 -1778 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|))))
+((-3372 (((-1281 (-324 (-388))) (-1281 (-324 (-227)))) 110)) (-2979 (((-1107 (-853 (-227))) (-1107 (-853 (-388)))) 43)) (-3782 (((-654 (-1172)) (-1170 (-227))) 92)) (-2139 (((-324 (-388)) (-963 (-227))) 53)) (-3505 (((-227) (-963 (-227))) 49)) (-4183 (((-1172) (-388)) 195)) (-4042 (((-853 (-227)) (-853 (-388))) 37)) (-3945 (((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1281 (-324 (-227)))) 165)) (-3306 (((-1048) (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) 207) (((-1048) (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) 205)) (-1485 (((-699 (-227)) (-654 (-227)) (-781)) 19)) (-3839 (((-1281 (-709)) (-654 (-227))) 99)) (-2324 (((-654 (-1172)) (-654 (-227))) 79)) (-1781 (((-3 (-324 (-227)) "failed") (-324 (-227))) 128)) (-3065 (((-112) (-227) (-1107 (-853 (-227)))) 117)) (-3279 (((-1048) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) 224)) (-3752 (((-227) (-1107 (-853 (-227)))) 112)) (-1647 (((-227) (-1107 (-853 (-227)))) 113)) (-2254 (((-227) (-417 (-574))) 31)) (-1890 (((-1172) (-388)) 77)) (-2540 (((-227) (-388)) 22)) (-3674 (((-388) (-1281 (-324 (-227)))) 177)) (-3386 (((-324 (-227)) (-324 (-388))) 28)) (-2529 (((-417 (-574)) (-324 (-227))) 56)) (-1736 (((-324 (-417 (-574))) (-324 (-227))) 73)) (-2030 (((-324 (-388)) (-324 (-227))) 103)) (-2990 (((-227) (-324 (-227))) 57)) (-4248 (((-654 (-227)) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) 68)) (-3469 (((-1107 (-853 (-227))) (-1107 (-853 (-227)))) 65)) (-3632 (((-1172) (-227)) 76)) (-2582 (((-709) (-227)) 95)) (-1404 (((-417 (-574)) (-227)) 58)) (-2380 (((-324 (-388)) (-227)) 52)) (-1837 (((-654 (-1107 (-853 (-227)))) (-654 (-1107 (-853 (-388))))) 46)) (-4157 (((-1048) (-654 (-1048))) 191) (((-1048) (-1048) (-1048)) 185)) (-1698 (((-1048) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221)))
+(((-313) (-10 -7 (-15 -2540 ((-227) (-388))) (-15 -3386 ((-324 (-227)) (-324 (-388)))) (-15 -4042 ((-853 (-227)) (-853 (-388)))) (-15 -2979 ((-1107 (-853 (-227))) (-1107 (-853 (-388))))) (-15 -1837 ((-654 (-1107 (-853 (-227)))) (-654 (-1107 (-853 (-388)))))) (-15 -1404 ((-417 (-574)) (-227))) (-15 -2529 ((-417 (-574)) (-324 (-227)))) (-15 -2990 ((-227) (-324 (-227)))) (-15 -1781 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3674 ((-388) (-1281 (-324 (-227))))) (-15 -3945 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1281 (-324 (-227))))) (-15 -1736 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -3469 ((-1107 (-853 (-227))) (-1107 (-853 (-227))))) (-15 -4248 ((-654 (-227)) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-15 -2582 ((-709) (-227))) (-15 -3839 ((-1281 (-709)) (-654 (-227)))) (-15 -2030 ((-324 (-388)) (-324 (-227)))) (-15 -3372 ((-1281 (-324 (-388))) (-1281 (-324 (-227))))) (-15 -3065 ((-112) (-227) (-1107 (-853 (-227))))) (-15 -3632 ((-1172) (-227))) (-15 -1890 ((-1172) (-388))) (-15 -2324 ((-654 (-1172)) (-654 (-227)))) (-15 -3782 ((-654 (-1172)) (-1170 (-227)))) (-15 -3752 ((-227) (-1107 (-853 (-227))))) (-15 -1647 ((-227) (-1107 (-853 (-227))))) (-15 -4157 ((-1048) (-1048) (-1048))) (-15 -4157 ((-1048) (-654 (-1048)))) (-15 -4183 ((-1172) (-388))) (-15 -3306 ((-1048) (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))))) (-15 -3306 ((-1048) (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))))) (-15 -1698 ((-1048) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3279 ((-1048) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -2139 ((-324 (-388)) (-963 (-227)))) (-15 -3505 ((-227) (-963 (-227)))) (-15 -2380 ((-324 (-388)) (-227))) (-15 -2254 ((-227) (-417 (-574)))) (-15 -1485 ((-699 (-227)) (-654 (-227)) (-781))))) (T -313))
+((-1485 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-313)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-3505 (*1 *2 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1172)) (-5 *1 (-313)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-654 (-1048))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-4157 (*1 *2 *2 *2) (-12 (-5 *2 (-1048)) (-5 *1 (-313)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-313)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-313)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1172)) (-5 *1 (-313)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-313)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-313)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-1281 (-324 (-388)))) (-5 *1 (-313)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1281 (-709))) (-5 *1 (-313)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *2 (-654 (-227))) (-5 *1 (-313)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1107 (-853 (-227)))) (-5 *1 (-313)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) (-5 *1 (-313)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) (-5 *1 (-313)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313)))) (-1781 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-654 (-1107 (-853 (-388))))) (-5 *2 (-654 (-1107 (-853 (-227))))) (-5 *1 (-313)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-388)))) (-5 *2 (-1107 (-853 (-227)))) (-5 *1 (-313)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-2540 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313)))))
+(-10 -7 (-15 -2540 ((-227) (-388))) (-15 -3386 ((-324 (-227)) (-324 (-388)))) (-15 -4042 ((-853 (-227)) (-853 (-388)))) (-15 -2979 ((-1107 (-853 (-227))) (-1107 (-853 (-388))))) (-15 -1837 ((-654 (-1107 (-853 (-227)))) (-654 (-1107 (-853 (-388)))))) (-15 -1404 ((-417 (-574)) (-227))) (-15 -2529 ((-417 (-574)) (-324 (-227)))) (-15 -2990 ((-227) (-324 (-227)))) (-15 -1781 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3674 ((-388) (-1281 (-324 (-227))))) (-15 -3945 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1281 (-324 (-227))))) (-15 -1736 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -3469 ((-1107 (-853 (-227))) (-1107 (-853 (-227))))) (-15 -4248 ((-654 (-227)) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-15 -2582 ((-709) (-227))) (-15 -3839 ((-1281 (-709)) (-654 (-227)))) (-15 -2030 ((-324 (-388)) (-324 (-227)))) (-15 -3372 ((-1281 (-324 (-388))) (-1281 (-324 (-227))))) (-15 -3065 ((-112) (-227) (-1107 (-853 (-227))))) (-15 -3632 ((-1172) (-227))) (-15 -1890 ((-1172) (-388))) (-15 -2324 ((-654 (-1172)) (-654 (-227)))) (-15 -3782 ((-654 (-1172)) (-1170 (-227)))) (-15 -3752 ((-227) (-1107 (-853 (-227))))) (-15 -1647 ((-227) (-1107 (-853 (-227))))) (-15 -4157 ((-1048) (-1048) (-1048))) (-15 -4157 ((-1048) (-654 (-1048)))) (-15 -4183 ((-1172) (-388))) (-15 -3306 ((-1048) (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))))) (-15 -3306 ((-1048) (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))))) (-15 -1698 ((-1048) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3279 ((-1048) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -2139 ((-324 (-388)) (-963 (-227)))) (-15 -3505 ((-227) (-963 (-227)))) (-15 -2380 ((-324 (-388)) (-227))) (-15 -2254 ((-227) (-417 (-574)))) (-15 -1485 ((-699 (-227)) (-654 (-227)) (-781))))
+((-3875 (((-112) $ $) 14)) (-2785 (($ $ $) 18)) (-2798 (($ $ $) 17)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 50)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 65)) (-2874 (($ $ $) 25) (($ (-654 $)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2838 (((-3 $ "failed") $ $) 21)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 53)))
+(((-314 |#1|) (-10 -8 (-15 -3527 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -3545 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3545 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2798 (|#1| |#1| |#1|)) (-15 -3875 ((-112) |#1| |#1|)) (-15 -2945 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1719 ((-2 (|:| -1859 (-654 |#1|)) (|:| -2970 |#1|)) (-654 |#1|))) (-15 -2874 (|#1| (-654 |#1|))) (-15 -2874 (|#1| |#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|))) (-315)) (T -314))
+NIL
+(-10 -8 (-15 -3527 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -3545 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3545 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2798 (|#1| |#1| |#1|)) (-15 -3875 ((-112) |#1| |#1|)) (-15 -2945 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1719 ((-2 (|:| -1859 (-654 |#1|)) (|:| -2970 |#1|)) (-654 |#1|))) (-15 -2874 (|#1| (-654 |#1|))) (-15 -2874 (|#1| |#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-3875 (((-112) $ $) 65)) (-3670 (($) 18 T CONST)) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3965 (((-112) $) 35)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-315) (-141)) (T -315))
+((-3875 (*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781)))) (-2413 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-315)))) (-2798 (*1 *1 *1 *1) (-4 *1 (-315))) (-2785 (*1 *1 *1 *1) (-4 *1 (-315))) (-3545 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1))) (-4 *1 (-315)))) (-3545 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-315)))) (-3527 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315)))))
+(-13 (-931) (-10 -8 (-15 -3875 ((-112) $ $)) (-15 -1347 ((-781) $)) (-15 -2413 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -2798 ($ $ $)) (-15 -2785 ($ $ $)) (-15 -3545 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $)) (-15 -3545 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3527 ((-3 (-654 $) "failed") (-654 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2646 (($ $ (-654 |#2|) (-654 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-302 |#2|)) 11) (($ $ (-654 (-302 |#2|))) NIL)))
+(((-316 |#1| |#2|) (-10 -8 (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) (-317 |#2|) (-1113)) (T -316))
+NIL
+(-10 -8 (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|))))
+((-2646 (($ $ (-654 |#1|) (-654 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-302 |#1|)) 11) (($ $ (-654 (-302 |#1|))) 10)))
+(((-317 |#1|) (-141) (-1113)) (T -317))
+((-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1113)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1113)))))
+(-13 (-524 |t#1| |t#1|) (-10 -8 (-15 -2646 ($ $ (-302 |t#1|))) (-15 -2646 ($ $ (-654 (-302 |t#1|))))))
+(((-524 |#1| |#1|) . T))
+((-2646 ((|#1| (-1 |#1| (-574)) (-1192 (-417 (-574)))) 26)))
+(((-318 |#1|) (-10 -7 (-15 -2646 (|#1| (-1 |#1| (-574)) (-1192 (-417 (-574)))))) (-38 (-417 (-574)))) (T -318))
+((-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1192 (-417 (-574)))) (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574)))))))
+(-10 -7 (-15 -2646 (|#1| (-1 |#1| (-574)) (-1192 (-417 (-574))))))
+((-2849 (((-112) $ $) NIL)) (-4320 (((-574) $) 12)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 9)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-319) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -4320 ((-574) $))))) (T -319))
+((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-319)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319)))))
+(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -4320 ((-574) $))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 7)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 9)))
+(((-320) (-1113)) (T -320))
+NIL
+(-1113)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 60)) (-2809 (((-1267 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-920)))) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-920)))) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-830)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-1267 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-574)))) (((-3 (-1266 |#2| |#3| |#4|) "failed") $) 26)) (-2209 (((-1267 |#1| |#2| |#3| |#4|) $) NIL) (((-1190) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-574)))) (((-574) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-574)))) (((-1266 |#2| |#3| |#4|) $) NIL)) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-1267 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1281 (-1267 |#1| |#2| |#3| |#4|)))) (-699 $) (-1281 $)) NIL) (((-699 (-1267 |#1| |#2| |#3| |#4|)) (-699 $)) NIL) (((-699 (-1267 |#1| |#2| |#3| |#4|)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-555)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3434 (((-112) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-897 (-388))))) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL)) (-2965 (((-1267 |#1| |#2| |#3| |#4|) $) 22)) (-4048 (((-3 $ "failed") $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1165)))) (-3244 (((-112) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-2106 (($ $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-1778 (($ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) $) NIL)) (-2705 (((-3 (-853 |#2|) "failed") $) 80)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-315)))) (-1846 (((-1267 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-920)))) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-1267 |#1| |#2| |#3| |#4|)) (-654 (-1267 |#1| |#2| |#3| |#4|))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-317 (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-317 (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-302 (-1267 |#1| |#2| |#3| |#4|))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-317 (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-302 (-1267 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-317 (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-1190)) (-654 (-1267 |#1| |#2| |#3| |#4|))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-524 (-1190) (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-1190) (-1267 |#1| |#2| |#3| |#4|)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-524 (-1190) (-1267 |#1| |#2| |#3| |#4|))))) (-1347 (((-781) $) NIL)) (-2200 (($ $ (-1267 |#1| |#2| |#3| |#4|)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-294 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-781)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-1190)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|))) NIL)) (-3520 (($ $) NIL)) (-2977 (((-1267 |#1| |#2| |#3| |#4|) $) 19)) (-1837 (((-903 (-574)) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-624 (-546)))) (((-388) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1035))) (((-227) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1035)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1267 |#1| |#2| |#3| |#4|) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-1267 |#1| |#2| |#3| |#4|)) 30) (($ (-1190)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-1190)))) (($ (-1266 |#2| |#3| |#4|)) 37)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-1267 |#1| |#2| |#3| |#4|) (-920))) (|has| (-1267 |#1| |#2| |#3| |#4|) (-146))))) (-4160 (((-781)) NIL T CONST)) (-4078 (((-1267 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-555)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2946 (($ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-830)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-781)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-1190)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-3005 (((-112) $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-3107 (($ $ $) 35) (($ (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) 32)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-1267 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1267 |#1| |#2| |#3| |#4|)) NIL)))
+(((-321 |#1| |#2| |#3| |#4|) (-13 (-1005 (-1267 |#1| |#2| |#3| |#4|)) (-1051 (-1266 |#2| |#3| |#4|)) (-10 -8 (-15 -2705 ((-3 (-853 |#2|) "failed") $)) (-15 -2943 ($ (-1266 |#2| |#3| |#4|))))) (-13 (-1051 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1216) (-440 |#1|)) (-1190) |#2|) (T -321))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1266 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) (-14 *6 *4) (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) (-5 *1 (-321 *3 *4 *5 *6)))) (-2705 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) (-14 *6 *4))))
+(-13 (-1005 (-1267 |#1| |#2| |#3| |#4|)) (-1051 (-1266 |#2| |#3| |#4|)) (-10 -8 (-15 -2705 ((-3 (-853 |#2|) "failed") $)) (-15 -2943 ($ (-1266 |#2| |#3| |#4|)))))
+((-1778 (((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)) 13)))
+(((-322 |#1| |#2|) (-10 -7 (-15 -1778 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) (-1113) (-1113)) (T -322))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6)))))
+(-10 -7 (-15 -1778 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|))))
+((-4402 (((-52) |#2| (-302 |#2|) (-781)) 40) (((-52) |#2| (-302 |#2|)) 32) (((-52) |#2| (-781)) 35) (((-52) |#2|) 33) (((-52) (-1190)) 26)) (-3623 (((-52) |#2| (-302 |#2|) (-417 (-574))) 59) (((-52) |#2| (-302 |#2|)) 56) (((-52) |#2| (-417 (-574))) 58) (((-52) |#2|) 57) (((-52) (-1190)) 55)) (-4424 (((-52) |#2| (-302 |#2|) (-417 (-574))) 54) (((-52) |#2| (-302 |#2|)) 51) (((-52) |#2| (-417 (-574))) 53) (((-52) |#2|) 52) (((-52) (-1190)) 50)) (-4413 (((-52) |#2| (-302 |#2|) (-574)) 47) (((-52) |#2| (-302 |#2|)) 44) (((-52) |#2| (-574)) 46) (((-52) |#2|) 45) (((-52) (-1190)) 43)))
+(((-323 |#1| |#2|) (-10 -7 (-15 -4402 ((-52) (-1190))) (-15 -4402 ((-52) |#2|)) (-15 -4402 ((-52) |#2| (-781))) (-15 -4402 ((-52) |#2| (-302 |#2|))) (-15 -4402 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4413 ((-52) (-1190))) (-15 -4413 ((-52) |#2|)) (-15 -4413 ((-52) |#2| (-574))) (-15 -4413 ((-52) |#2| (-302 |#2|))) (-15 -4413 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4424 ((-52) (-1190))) (-15 -4424 ((-52) |#2|)) (-15 -4424 ((-52) |#2| (-417 (-574)))) (-15 -4424 ((-52) |#2| (-302 |#2|))) (-15 -4424 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3623 ((-52) (-1190))) (-15 -3623 ((-52) |#2|)) (-15 -3623 ((-52) |#2| (-417 (-574)))) (-15 -3623 ((-52) |#2| (-302 |#2|))) (-15 -3623 ((-52) |#2| (-302 |#2|) (-417 (-574))))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -323))
+((-3623 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-4424 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-4424 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 *5) (-649 *5))) (-5 *5 (-574)) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1051 *4) (-649 *4))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-4413 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-781)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-4402 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))))
+(-10 -7 (-15 -4402 ((-52) (-1190))) (-15 -4402 ((-52) |#2|)) (-15 -4402 ((-52) |#2| (-781))) (-15 -4402 ((-52) |#2| (-302 |#2|))) (-15 -4402 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4413 ((-52) (-1190))) (-15 -4413 ((-52) |#2|)) (-15 -4413 ((-52) |#2| (-574))) (-15 -4413 ((-52) |#2| (-302 |#2|))) (-15 -4413 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4424 ((-52) (-1190))) (-15 -4424 ((-52) |#2|)) (-15 -4424 ((-52) |#2| (-417 (-574)))) (-15 -4424 ((-52) |#2| (-302 |#2|))) (-15 -4424 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3623 ((-52) (-1190))) (-15 -3623 ((-52) |#2|)) (-15 -3623 ((-52) |#2| (-417 (-574)))) (-15 -3623 ((-52) |#2| (-302 |#2|))) (-15 -3623 ((-52) |#2| (-302 |#2|) (-417 (-574)))))
+((-2849 (((-112) $ $) NIL)) (-2656 (((-654 $) $ (-1190)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1186 $) (-1190)) NIL (|has| |#1| (-566))) (((-654 $) (-1186 $)) NIL (|has| |#1| (-566))) (((-654 $) (-963 $)) NIL (|has| |#1| (-566)))) (-1397 (($ $ (-1190)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1186 $) (-1190)) NIL (|has| |#1| (-566))) (($ (-1186 $)) NIL (|has| |#1| (-566))) (($ (-963 $)) NIL (|has| |#1| (-566)))) (-2908 (((-112) $) 27 (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (-4355 (((-654 (-1190)) $) 368)) (-4194 (((-417 (-1186 $)) $ (-622 $)) NIL (|has| |#1| (-566)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-4091 (((-654 (-622 $)) $) NIL)) (-2364 (($ $) 171 (|has| |#1| (-566)))) (-2246 (($ $) 147 (|has| |#1| (-566)))) (-4396 (($ $ (-1105 $)) 232 (|has| |#1| (-566))) (($ $ (-1190)) 228 (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) NIL (-2818 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) 386) (($ $ (-654 (-622 $)) (-654 $)) 430)) (-3312 (((-428 (-1186 $)) (-1186 $)) 308 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-4348 (($ $) NIL (|has| |#1| (-566)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-566)))) (-4229 (($ $) NIL (|has| |#1| (-566)))) (-3875 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2343 (($ $) 167 (|has| |#1| (-566)))) (-2227 (($ $) 143 (|has| |#1| (-566)))) (-2370 (($ $ (-574)) 73 (|has| |#1| (-566)))) (-2388 (($ $) 175 (|has| |#1| (-566)))) (-2267 (($ $) 151 (|has| |#1| (-566)))) (-3670 (($) NIL (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) (|has| |#1| (-1125))) CONST)) (-3072 (((-654 $) $ (-1190)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1186 $) (-1190)) NIL (|has| |#1| (-566))) (((-654 $) (-1186 $)) NIL (|has| |#1| (-566))) (((-654 $) (-963 $)) NIL (|has| |#1| (-566)))) (-1413 (($ $ (-1190)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1186 $) (-1190)) 134 (|has| |#1| (-566))) (($ (-1186 $)) NIL (|has| |#1| (-566))) (($ (-963 $)) NIL (|has| |#1| (-566)))) (-1697 (((-3 (-622 $) "failed") $) 18) (((-3 (-1190) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-963 |#1|)) "failed") $) NIL (|has| |#1| (-566))) (((-3 (-963 |#1|) "failed") $) NIL (|has| |#1| (-1062))) (((-3 (-417 (-574)) "failed") $) 46 (-2818 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-2209 (((-622 $) $) 12) (((-1190) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-963 |#1|)) $) NIL (|has| |#1| (-566))) (((-963 |#1|) $) NIL (|has| |#1| (-1062))) (((-417 (-574)) $) 319 (-2818 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-2785 (($ $ $) NIL (|has| |#1| (-566)))) (-2668 (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 125 (|has| |#1| (-1062))) (((-699 |#1|) (-699 $)) 115 (|has| |#1| (-1062))) (((-699 |#1|) (-1281 $)) NIL (|has| |#1| (-1062))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (-2868 (($ $) 96 (|has| |#1| (-566)))) (-1950 (((-3 $ "failed") $) NIL (|has| |#1| (-1125)))) (-2798 (($ $ $) NIL (|has| |#1| (-566)))) (-3059 (($ $ (-1105 $)) 236 (|has| |#1| (-566))) (($ $ (-1190)) 234 (|has| |#1| (-566)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-566)))) (-1654 (((-112) $) NIL (|has| |#1| (-566)))) (-4109 (($ $ $) 202 (|has| |#1| (-566)))) (-3001 (($) 137 (|has| |#1| (-566)))) (-2531 (($ $ $) 222 (|has| |#1| (-566)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 392 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 399 (|has| |#1| (-897 (-388))))) (-2955 (($ $) NIL) (($ (-654 $)) NIL)) (-1879 (((-654 (-115)) $) NIL)) (-4173 (((-115) (-115)) 276)) (-3965 (((-112) $) 25 (|has| |#1| (-1125)))) (-3239 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-1769 (($ $) 72 (|has| |#1| (-1062)))) (-2965 (((-1138 |#1| (-622 $)) $) 91 (|has| |#1| (-1062)))) (-3997 (((-112) $) 62 (|has| |#1| (-566)))) (-3379 (($ $ (-574)) NIL (|has| |#1| (-566)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-2405 (((-1186 $) (-622 $)) 277 (|has| $ (-1062)))) (-1778 (($ (-1 $ $) (-622 $)) 426)) (-3376 (((-3 (-622 $) "failed") $) NIL)) (-3119 (($ $) 141 (|has| |#1| (-566)))) (-4079 (($ $) 247 (|has| |#1| (-566)))) (-2834 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2568 (((-1172) $) NIL)) (-4164 (((-654 (-622 $)) $) 49)) (-1775 (($ (-115) $) NIL) (($ (-115) (-654 $)) 431)) (-2357 (((-3 (-654 $) "failed") $) NIL (|has| |#1| (-1125)))) (-4428 (((-3 (-2 (|:| |val| $) (|:| -2524 (-574))) "failed") $) NIL (|has| |#1| (-1062)))) (-3405 (((-3 (-654 $) "failed") $) 436 (|has| |#1| (-25)))) (-4040 (((-3 (-2 (|:| -1859 (-574)) (|:| |var| (-622 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3092 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $) NIL (|has| |#1| (-1125))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-115)) NIL (|has| |#1| (-1062))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-1190)) NIL (|has| |#1| (-1062)))) (-2884 (((-112) $ (-115)) NIL) (((-112) $ (-1190)) 51)) (-1324 (($ $) NIL (-2818 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-4267 (($ $ (-1190)) 251 (|has| |#1| (-566))) (($ $ (-1105 $)) 253 (|has| |#1| (-566)))) (-1840 (((-781) $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 43)) (-1349 ((|#1| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 301 (|has| |#1| (-566)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-3923 (((-112) $ $) NIL) (((-112) $ (-1190)) NIL)) (-1992 (($ $ (-1190)) 226 (|has| |#1| (-566))) (($ $) 224 (|has| |#1| (-566)))) (-4430 (($ $) 218 (|has| |#1| (-566)))) (-4418 (((-428 (-1186 $)) (-1186 $)) 306 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-4220 (((-428 $) $) NIL (|has| |#1| (-566)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-566)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-1610 (($ $) 139 (|has| |#1| (-566)))) (-2625 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 425) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) 379) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1190)) NIL (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-624 (-546)))) (($ $) NIL (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1190)) 366 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1190)) 365 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $))) NIL (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $)))) NIL (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ (-654 $))) NIL (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ $)) NIL (|has| |#1| (-1062)))) (-1347 (((-781) $) NIL (|has| |#1| (-566)))) (-4070 (($ $) 239 (|has| |#1| (-566)))) (-2200 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-566)))) (-3115 (($ $) NIL) (($ $ $) NIL)) (-2216 (($ $) 249 (|has| |#1| (-566)))) (-2330 (($ $) 200 (|has| |#1| (-566)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-1062))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-1062))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-1062))) (($ $ (-1190)) NIL (|has| |#1| (-1062)))) (-3520 (($ $) 74 (|has| |#1| (-566)))) (-2977 (((-1138 |#1| (-622 $)) $) 93 (|has| |#1| (-566)))) (-1782 (($ $) 317 (|has| $ (-1062)))) (-2402 (($ $) 177 (|has| |#1| (-566)))) (-2275 (($ $) 153 (|has| |#1| (-566)))) (-2375 (($ $) 173 (|has| |#1| (-566)))) (-2257 (($ $) 149 (|has| |#1| (-566)))) (-2353 (($ $) 169 (|has| |#1| (-566)))) (-2237 (($ $) 145 (|has| |#1| (-566)))) (-1837 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) NIL (|has| |#1| (-566))) (((-546) $) 363 (|has| |#1| (-624 (-546))))) (-1514 (($ $ $) NIL (|has| |#1| (-483)))) (-3647 (($ $ $) NIL (|has| |#1| (-483)))) (-2943 (((-872) $) 424) (($ (-622 $)) 415) (($ (-1190)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-566))) (($ (-48)) 312 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) (($ (-1138 |#1| (-622 $))) 95 (|has| |#1| (-1062))) (($ (-417 |#1|)) NIL (|has| |#1| (-566))) (($ (-963 (-417 |#1|))) NIL (|has| |#1| (-566))) (($ (-417 (-963 (-417 |#1|)))) NIL (|has| |#1| (-566))) (($ (-417 (-963 |#1|))) NIL (|has| |#1| (-566))) (($ (-963 |#1|)) NIL (|has| |#1| (-1062))) (($ (-574)) 34 (-2818 (|has| |#1| (-1051 (-574))) (|has| |#1| (-1062)))) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-566)) (|has| |#1| (-1051 (-417 (-574))))))) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL (|has| |#1| (-1062)) CONST)) (-2031 (($ $) NIL) (($ (-654 $)) NIL)) (-2819 (($ $ $) 220 (|has| |#1| (-566)))) (-2833 (($ $ $) 206 (|has| |#1| (-566)))) (-3687 (($ $ $) 210 (|has| |#1| (-566)))) (-3006 (($ $ $) 204 (|has| |#1| (-566)))) (-1962 (($ $ $) 208 (|has| |#1| (-566)))) (-1932 (((-112) (-115)) 10)) (-2923 (((-112) $ $) 86)) (-2441 (($ $) 183 (|has| |#1| (-566)))) (-2305 (($ $) 159 (|has| |#1| (-566)))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 179 (|has| |#1| (-566)))) (-2287 (($ $) 155 (|has| |#1| (-566)))) (-2465 (($ $) 187 (|has| |#1| (-566)))) (-2325 (($ $) 163 (|has| |#1| (-566)))) (-2498 (($ (-1190) $) NIL) (($ (-1190) $ $) NIL) (($ (-1190) $ $ $) NIL) (($ (-1190) $ $ $ $) NIL) (($ (-1190) (-654 $)) NIL)) (-3458 (($ $) 214 (|has| |#1| (-566)))) (-3497 (($ $) 212 (|has| |#1| (-566)))) (-2521 (($ $) 189 (|has| |#1| (-566)))) (-2334 (($ $) 165 (|has| |#1| (-566)))) (-2453 (($ $) 185 (|has| |#1| (-566)))) (-2315 (($ $) 161 (|has| |#1| (-566)))) (-2428 (($ $) 181 (|has| |#1| (-566)))) (-2297 (($ $) 157 (|has| |#1| (-566)))) (-2946 (($ $) 192 (|has| |#1| (-566)))) (-2134 (($) 21 (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) CONST)) (-2510 (($ $) 243 (|has| |#1| (-566)))) (-2146 (($) 23 (|has| |#1| (-1125)) CONST)) (-3205 (($ $) 194 (|has| |#1| (-566))) (($ $ $) 196 (|has| |#1| (-566)))) (-3608 (($ $) 241 (|has| |#1| (-566)))) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-1062))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-1062))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-1062))) (($ $ (-1190)) NIL (|has| |#1| (-1062)))) (-1447 (($ $) 245 (|has| |#1| (-566)))) (-3952 (($ $ $) 198 (|has| |#1| (-566)))) (-2982 (((-112) $ $) 88)) (-3107 (($ (-1138 |#1| (-622 $)) (-1138 |#1| (-622 $))) 106 (|has| |#1| (-566))) (($ $ $) 42 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3094 (($ $ $) 40 (-2818 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (($ $) 29 (-2818 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (-3078 (($ $ $) 38 (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (** (($ $ $) 64 (|has| |#1| (-566))) (($ $ (-417 (-574))) 314 (|has| |#1| (-566))) (($ $ (-574)) 80 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 75 (|has| |#1| (-1125))) (($ $ (-932)) 84 (|has| |#1| (-1125)))) (* (($ (-417 (-574)) $) NIL (|has| |#1| (-566))) (($ $ (-417 (-574))) NIL (|has| |#1| (-566))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1062))) (($ $ $) 36 (|has| |#1| (-1125))) (($ (-574) $) 32 (-2818 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (($ (-781) $) NIL (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (($ (-932) $) NIL (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))))
+(((-324 |#1|) (-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1216)) (-6 (-161)) (-6 (-639)) (-6 (-1152)) (-15 -2868 ($ $)) (-15 -3997 ((-112) $)) (-15 -2370 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -4418 ((-428 (-1186 $)) (-1186 $))) (-15 -3312 ((-428 (-1186 $)) (-1186 $)))) |%noBranch|) (IF (|has| |#1| (-1051 (-574))) (-6 (-1051 (-48))) |%noBranch|)) |%noBranch|))) (-1113)) (T -324))
+((-2868 (*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1113)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1113)))) (-2370 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1113)))) (-4418 (*1 *2 *3) (-12 (-5 *2 (-428 (-1186 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1186 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1113)))) (-3312 (*1 *2 *3) (-12 (-5 *2 (-428 (-1186 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1186 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1113)))))
+(-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1216)) (-6 (-161)) (-6 (-639)) (-6 (-1152)) (-15 -2868 ($ $)) (-15 -3997 ((-112) $)) (-15 -2370 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -4418 ((-428 (-1186 $)) (-1186 $))) (-15 -3312 ((-428 (-1186 $)) (-1186 $)))) |%noBranch|) (IF (|has| |#1| (-1051 (-574))) (-6 (-1051 (-48))) |%noBranch|)) |%noBranch|)))
+((-4074 (((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)) 89) (((-52) |#2| (-115) (-302 |#2|) (-302 |#2|)) 85) (((-52) |#2| (-115) (-302 |#2|) |#2|) 87) (((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|) 88) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 81) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 83) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 84) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 82) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 90) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|)) 86)))
+(((-325 |#1| |#2|) (-10 -7 (-15 -4074 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -4074 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -4074 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4074 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4074 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4074 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4074 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -4074 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -4074 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -4074 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-566) (-624 (-546))) (-440 |#1|)) (T -325))
+((-4074 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *3)))) (-4074 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4074 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4074 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *5)))) (-4074 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-4074 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-4074 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-4074 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-4074 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-4074 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *6)))))
+(-10 -7 (-15 -4074 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -4074 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -4074 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4074 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4074 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4074 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4074 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -4074 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -4074 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -4074 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|))))
+((-4288 (((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574) (-1172)) 67) (((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574)) 68) (((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574) (-1172)) 64) (((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574)) 65)) (-1362 (((-1 (-227) (-227)) (-227)) 66)))
+(((-326) (-10 -7 (-15 -1362 ((-1 (-227) (-227)) (-227))) (-15 -4288 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574))) (-15 -4288 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574) (-1172))) (-15 -4288 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574))) (-15 -4288 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574) (-1172))))) (T -326))
+((-4288 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1172)) (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) (-4288 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) (-4288 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-574)) (-5 *7 (-1172)) (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) (-4288 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-574)) (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) (-1362 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227)))))
+(-10 -7 (-15 -1362 ((-1 (-227) (-227)) (-227))) (-15 -4288 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574))) (-15 -4288 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574) (-1172))) (-15 -4288 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574))) (-15 -4288 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574) (-1172))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 26)) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-1760 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-4086 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 20)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) 36)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1654 (((-112) $) NIL (|has| |#1| (-372)))) (-3030 (((-112) $) NIL)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) 16)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) NIL) (($ $ (-417 (-574))) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) NIL) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2968 (($ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216)))))) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-4344 (($ $ (-417 (-574))) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1930 (((-417 (-574)) $) 17)) (-2058 (($ (-1266 |#1| |#2| |#3|)) 11)) (-2524 (((-1266 |#1| |#2| |#3|) $) 12)) (-1610 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1125)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-1784 (((-417 (-574)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) 10)) (-2943 (((-872) $) 42) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3344 ((|#1| $ (-417 (-574))) 34)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-3359 ((|#1| $) NIL)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 28)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 37)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-327 |#1| |#2| |#3|) (-13 (-1262 |#1|) (-802) (-10 -8 (-15 -2058 ($ (-1266 |#1| |#2| |#3|))) (-15 -2524 ((-1266 |#1| |#2| |#3|) $)) (-15 -1930 ((-417 (-574)) $)))) (-372) (-1190) |#1|) (T -327))
+((-2058 (*1 *1 *2) (-12 (-5 *2 (-1266 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1190)) (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1266 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1190)) (-14 *5 *3))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1190)) (-14 *5 *3))))
+(-13 (-1262 |#1|) (-802) (-10 -8 (-15 -2058 ($ (-1266 |#1| |#2| |#3|))) (-15 -2524 ((-1266 |#1| |#2| |#3|) $)) (-15 -1930 ((-417 (-574)) $))))
+((-3379 (((-2 (|:| -2524 (-781)) (|:| -1859 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781)) 35)) (-3119 (((-654 (-2 (|:| -1859 (-781)) (|:| |logand| |#1|))) (-428 |#1|)) 40)))
+(((-328 |#1|) (-10 -7 (-15 -3379 ((-2 (|:| -2524 (-781)) (|:| -1859 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3119 ((-654 (-2 (|:| -1859 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) (-566)) (T -328))
+((-3119 (*1 *2 *3) (-12 (-5 *3 (-428 *4)) (-4 *4 (-566)) (-5 *2 (-654 (-2 (|:| -1859 (-781)) (|:| |logand| *4)))) (-5 *1 (-328 *4)))) (-3379 (*1 *2 *3 *4) (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *5) (|:| |radicand| (-654 *5)))) (-5 *1 (-328 *5)) (-5 *4 (-781)))))
+(-10 -7 (-15 -3379 ((-2 (|:| -2524 (-781)) (|:| -1859 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3119 ((-654 (-2 (|:| -1859 (-781)) (|:| |logand| |#1|))) (-428 |#1|))))
+((-4355 (((-654 |#2|) (-1186 |#4|)) 44)) (-2547 ((|#3| (-574)) 47)) (-3441 (((-1186 |#4|) (-1186 |#3|)) 30)) (-3168 (((-1186 |#4|) (-1186 |#4|) (-574)) 66)) (-1844 (((-1186 |#3|) (-1186 |#4|)) 21)) (-1784 (((-654 (-781)) (-1186 |#4|) (-654 |#2|)) 41)) (-1829 (((-1186 |#3|) (-1186 |#4|) (-654 |#2|) (-654 |#3|)) 35)))
+(((-329 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1829 ((-1186 |#3|) (-1186 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -1784 ((-654 (-781)) (-1186 |#4|) (-654 |#2|))) (-15 -4355 ((-654 |#2|) (-1186 |#4|))) (-15 -1844 ((-1186 |#3|) (-1186 |#4|))) (-15 -3441 ((-1186 |#4|) (-1186 |#3|))) (-15 -3168 ((-1186 |#4|) (-1186 |#4|) (-574))) (-15 -2547 (|#3| (-574)))) (-803) (-860) (-1062) (-960 |#3| |#1| |#2|)) (T -329))
+((-2547 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1062)) (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-960 *2 *4 *5)))) (-3168 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 *7)) (-5 *3 (-574)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *1 (-329 *4 *5 *6 *7)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-1186 *6)) (-4 *6 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1186 *7)) (-5 *1 (-329 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-1186 *7)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *2 (-1186 *6)) (-5 *1 (-329 *4 *5 *6 *7)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-1186 *7)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *2 (-654 *5)) (-5 *1 (-329 *4 *5 *6 *7)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) (-4 *8 (-960 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1062)) (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8)))) (-1829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) (-4 *7 (-860)) (-4 *8 (-1062)) (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-1186 *8)) (-5 *1 (-329 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1829 ((-1186 |#3|) (-1186 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -1784 ((-654 (-781)) (-1186 |#4|) (-654 |#2|))) (-15 -4355 ((-654 |#2|) (-1186 |#4|))) (-15 -1844 ((-1186 |#3|) (-1186 |#4|))) (-15 -3441 ((-1186 |#4|) (-1186 |#3|))) (-15 -3168 ((-1186 |#4|) (-1186 |#4|) (-574))) (-15 -2547 (|#3| (-574))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 19)) (-4086 (((-654 (-2 (|:| |gen| |#1|) (|:| -1610 (-574)))) $) 21)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781) $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-2404 ((|#1| $ (-574)) NIL)) (-3198 (((-574) $ (-574)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-3400 (($ (-1 |#1| |#1|) $) NIL)) (-3918 (($ (-1 (-574) (-574)) $) 11)) (-2568 (((-1172) $) NIL)) (-3164 (($ $ $) NIL (|has| (-574) (-802)))) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-3344 (((-574) |#1| $) NIL)) (-2923 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) 29 (|has| |#1| (-860)))) (-3094 (($ $) 12) (($ $ $) 28)) (-3078 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL) (($ (-574) |#1|) 27)))
+(((-330 |#1|) (-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) (-1113)) (T -330))
+NIL
+(-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4086 (((-654 (-2 (|:| |gen| |#1|) (|:| -1610 |#2|))) $) 28)) (-2950 (((-3 $ "failed") $ $) 20)) (-1487 (((-781) $) 29)) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#1| "failed") $) 33)) (-2209 ((|#1| $) 34)) (-2404 ((|#1| $ (-574)) 26)) (-3198 ((|#2| $ (-574)) 27)) (-3400 (($ (-1 |#1| |#1|) $) 23)) (-3918 (($ (-1 |#2| |#2|) $) 24)) (-2568 (((-1172) $) 10)) (-3164 (($ $ $) 22 (|has| |#2| (-802)))) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ |#1|) 32)) (-3344 ((|#2| |#1| $) 25)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3078 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ |#2| |#1|) 30)))
+(((-331 |#1| |#2|) (-141) (-1113) (-132)) (T -331))
+((-3078 (*1 *1 *2 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-132)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)) (-5 *2 (-781)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 *4)))))) (-3198 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1113)) (-4 *2 (-132)))) (-2404 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1113)))) (-3344 (*1 *2 *3 *1) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-132)))) (-3918 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)))) (-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-132)) (-4 *3 (-802)))))
+(-13 (-132) (-1051 |t#1|) (-10 -8 (-15 -3078 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1487 ((-781) $)) (-15 -4086 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1610 |t#2|))) $)) (-15 -3198 (|t#2| $ (-574))) (-15 -2404 (|t#1| $ (-574))) (-15 -3344 (|t#2| |t#1| $)) (-15 -3918 ($ (-1 |t#2| |t#2|) $)) (-15 -3400 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-802)) (-15 -3164 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-1051 |#1|) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4086 (((-654 (-2 (|:| |gen| |#1|) (|:| -1610 (-781)))) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781) $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-2404 ((|#1| $ (-574)) NIL)) (-3198 (((-781) $ (-574)) NIL)) (-3400 (($ (-1 |#1| |#1|) $) NIL)) (-3918 (($ (-1 (-781) (-781)) $) NIL)) (-2568 (((-1172) $) NIL)) (-3164 (($ $ $) NIL (|has| (-781) (-802)))) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-3344 (((-781) |#1| $) NIL)) (-2923 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3078 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-781) |#1|) NIL)))
+(((-332 |#1|) (-331 |#1| (-781)) (-1113)) (T -332))
+NIL
+(-331 |#1| (-781))
+((-3872 (($ $) 72)) (-3157 (($ $ |#2| |#3| $) 14)) (-1541 (($ (-1 |#3| |#3|) $) 51)) (-1338 (((-112) $) 42)) (-1349 ((|#2| $) 44)) (-2838 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1607 ((|#2| $) 68)) (-3123 (((-654 |#2|) $) 56)) (-4207 (($ $ $ (-781)) 37)) (-3107 (($ $ |#2|) 60)))
+(((-333 |#1| |#2| |#3|) (-10 -8 (-15 -3872 (|#1| |#1|)) (-15 -1607 (|#2| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4207 (|#1| |#1| |#1| (-781))) (-15 -3157 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1541 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3123 ((-654 |#2|) |#1|)) (-15 -1349 (|#2| |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3107 (|#1| |#1| |#2|))) (-334 |#2| |#3|) (-1062) (-802)) (T -333))
+NIL
+(-10 -8 (-15 -3872 (|#1| |#1|)) (-15 -1607 (|#2| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4207 (|#1| |#1| |#1| (-781))) (-15 -3157 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1541 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3123 ((-654 |#2|) |#1|)) (-15 -1349 (|#2| |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3107 (|#1| |#1| |#2|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2814 (($ $) 64 (|has| |#1| (-566)))) (-2425 (((-112) $) 66 (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1697 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 98 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 95)) (-2209 (((-574) $) 99 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 97 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 96)) (-1392 (($ $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-3872 (($ $) 84 (|has| |#1| (-462)))) (-3157 (($ $ |#1| |#2| $) 88)) (-3965 (((-112) $) 35)) (-2784 (((-781) $) 91)) (-2197 (((-112) $) 74)) (-4335 (($ |#1| |#2|) 73)) (-2382 ((|#2| $) 90)) (-1541 (($ (-1 |#2| |#2|) $) 89)) (-1778 (($ (-1 |#1| |#1|) $) 75)) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 94)) (-1349 ((|#1| $) 93)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-566)))) (-1784 ((|#2| $) 76)) (-1607 ((|#1| $) 85 (|has| |#1| (-462)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59) (($ (-417 (-574))) 69 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-3123 (((-654 |#1|) $) 92)) (-3344 ((|#1| $ |#2|) 71)) (-1369 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-4207 (($ $ $ (-781)) 87 (|has| |#1| (-174)))) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
+(((-334 |#1| |#2|) (-141) (-1062) (-802)) (T -334))
+((-1338 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-112)))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-654 *3)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-781)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-1541 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)))) (-3157 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) (-4207 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-4 *3 (-174)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *2 (-566)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)) (-4 *2 (-462)))) (-3872 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *2 (-462)))))
+(-13 (-47 |t#1| |t#2|) (-421 |t#1|) (-10 -8 (-15 -1338 ((-112) $)) (-15 -1349 (|t#1| $)) (-15 -3123 ((-654 |t#1|) $)) (-15 -2784 ((-781) $)) (-15 -2382 (|t#2| $)) (-15 -1541 ($ (-1 |t#2| |t#2|) $)) (-15 -3157 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -4207 ($ $ $ (-781))) |%noBranch|) (IF (|has| |t#1| (-566)) (-15 -2838 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -1607 (|t#1| $)) (-15 -3872 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-421 |#1|) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-2081 (((-112) (-112)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-3391 (($ (-1 (-112) |#1|) $) NIL)) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1730 (($ $) NIL (|has| |#1| (-1113)))) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1586 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) NIL)) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-3541 (($ $ (-574)) NIL)) (-1614 (((-781) $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-3722 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1709 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1595 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-4094 (($ (-654 |#1|)) NIL)) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2701 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-2734 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-335 |#1|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -4094 ($ (-654 |#1|))) (-15 -1614 ((-781) $)) (-15 -3541 ($ $ (-574))) (-15 -2081 ((-112) (-112))))) (-1231)) (T -335))
+((-4094 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-335 *3)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1231)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1231)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1231)))))
+(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -4094 ($ (-654 |#1|))) (-15 -1614 ((-781) $)) (-15 -3541 ($ $ (-574))) (-15 -2081 ((-112) (-112)))))
+((-3514 (((-112) $) 47)) (-3416 (((-781)) 23)) (-1637 ((|#2| $) 51) (($ $ (-932)) 121)) (-1487 (((-781)) 122)) (-3003 (($ (-1281 |#2|)) 20)) (-2079 (((-112) $) 134)) (-1652 ((|#2| $) 53) (($ $ (-932)) 118)) (-3190 (((-1186 |#2|) $) NIL) (((-1186 $) $ (-932)) 109)) (-2810 (((-1186 |#2|) $) 95)) (-3795 (((-1186 |#2|) $) 91) (((-3 (-1186 |#2|) "failed") $ $) 88)) (-2338 (($ $ (-1186 |#2|)) 58)) (-3027 (((-843 (-932))) 30) (((-932)) 48)) (-3939 (((-135)) 27)) (-1784 (((-843 (-932)) $) 32) (((-932) $) 137)) (-2358 (($) 128)) (-3676 (((-1281 |#2|) $) NIL) (((-699 |#2|) (-1281 $)) 42)) (-1369 (($ $) NIL) (((-3 $ "failed") $) 98)) (-4321 (((-112) $) 45)))
+(((-336 |#1| |#2|) (-10 -8 (-15 -1369 ((-3 |#1| "failed") |#1|)) (-15 -1487 ((-781))) (-15 -1369 (|#1| |#1|)) (-15 -3795 ((-3 (-1186 |#2|) "failed") |#1| |#1|)) (-15 -3795 ((-1186 |#2|) |#1|)) (-15 -2810 ((-1186 |#2|) |#1|)) (-15 -2338 (|#1| |#1| (-1186 |#2|))) (-15 -2079 ((-112) |#1|)) (-15 -2358 (|#1|)) (-15 -1637 (|#1| |#1| (-932))) (-15 -1652 (|#1| |#1| (-932))) (-15 -3190 ((-1186 |#1|) |#1| (-932))) (-15 -1637 (|#2| |#1|)) (-15 -1652 (|#2| |#1|)) (-15 -1784 ((-932) |#1|)) (-15 -3027 ((-932))) (-15 -3190 ((-1186 |#2|) |#1|)) (-15 -3003 (|#1| (-1281 |#2|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1|)) (-15 -3416 ((-781))) (-15 -3027 ((-843 (-932)))) (-15 -1784 ((-843 (-932)) |#1|)) (-15 -3514 ((-112) |#1|)) (-15 -4321 ((-112) |#1|)) (-15 -3939 ((-135)))) (-337 |#2|) (-372)) (T -336))
+((-3939 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3027 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-843 (-932))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3416 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3027 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-932)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1487 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))))
+(-10 -8 (-15 -1369 ((-3 |#1| "failed") |#1|)) (-15 -1487 ((-781))) (-15 -1369 (|#1| |#1|)) (-15 -3795 ((-3 (-1186 |#2|) "failed") |#1| |#1|)) (-15 -3795 ((-1186 |#2|) |#1|)) (-15 -2810 ((-1186 |#2|) |#1|)) (-15 -2338 (|#1| |#1| (-1186 |#2|))) (-15 -2079 ((-112) |#1|)) (-15 -2358 (|#1|)) (-15 -1637 (|#1| |#1| (-932))) (-15 -1652 (|#1| |#1| (-932))) (-15 -3190 ((-1186 |#1|) |#1| (-932))) (-15 -1637 (|#2| |#1|)) (-15 -1652 (|#2| |#1|)) (-15 -1784 ((-932) |#1|)) (-15 -3027 ((-932))) (-15 -3190 ((-1186 |#2|) |#1|)) (-15 -3003 (|#1| (-1281 |#2|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1|)) (-15 -3416 ((-781))) (-15 -3027 ((-843 (-932)))) (-15 -1784 ((-843 (-932)) |#1|)) (-15 -3514 ((-112) |#1|)) (-15 -4321 ((-112) |#1|)) (-15 -3939 ((-135))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-3514 (((-112) $) 104)) (-3416 (((-781)) 100)) (-1637 ((|#1| $) 151) (($ $ (-932)) 148 (|has| |#1| (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) 133 (|has| |#1| (-377)))) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-3875 (((-112) $ $) 65)) (-1487 (((-781)) 123 (|has| |#1| (-377)))) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#1| "failed") $) 111)) (-2209 ((|#1| $) 112)) (-3003 (($ (-1281 |#1|)) 157)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-377)))) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-2820 (($) 120 (|has| |#1| (-377)))) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3906 (($) 135 (|has| |#1| (-377)))) (-2878 (((-112) $) 136 (|has| |#1| (-377)))) (-3564 (($ $ (-781)) 97 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1654 (((-112) $) 79)) (-3593 (((-932) $) 138 (|has| |#1| (-377))) (((-843 (-932)) $) 94 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3965 (((-112) $) 35)) (-2342 (($) 146 (|has| |#1| (-377)))) (-2079 (((-112) $) 145 (|has| |#1| (-377)))) (-1652 ((|#1| $) 152) (($ $ (-932)) 149 (|has| |#1| (-377)))) (-4048 (((-3 $ "failed") $) 124 (|has| |#1| (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3190 (((-1186 |#1|) $) 156) (((-1186 $) $ (-932)) 150 (|has| |#1| (-377)))) (-2565 (((-932) $) 121 (|has| |#1| (-377)))) (-2810 (((-1186 |#1|) $) 142 (|has| |#1| (-377)))) (-3795 (((-1186 |#1|) $) 141 (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) 140 (|has| |#1| (-377)))) (-2338 (($ $ (-1186 |#1|)) 143 (|has| |#1| (-377)))) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3818 (($) 125 (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) 122 (|has| |#1| (-377)))) (-3504 (((-112) $) 103)) (-3966 (((-1133) $) 11)) (-2970 (($) 144 (|has| |#1| (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) 132 (|has| |#1| (-377)))) (-4220 (((-428 $) $) 82)) (-3027 (((-843 (-932))) 101) (((-932)) 154)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-3232 (((-781) $) 137 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 95 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3939 (((-135)) 109)) (-3905 (($ $) 128 (|has| |#1| (-377))) (($ $ (-781)) 127 (|has| |#1| (-377)))) (-1784 (((-843 (-932)) $) 102) (((-932) $) 153)) (-1782 (((-1186 |#1|)) 155)) (-2585 (($) 134 (|has| |#1| (-377)))) (-2358 (($) 147 (|has| |#1| (-377)))) (-3676 (((-1281 |#1|) $) 159) (((-699 |#1|) (-1281 $)) 158)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 131 (|has| |#1| (-377)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-1369 (($ $) 130 (|has| |#1| (-377))) (((-3 $ "failed") $) 93 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2722 (((-1281 $)) 161) (((-1281 $) (-932)) 160)) (-3798 (((-112) $ $) 45)) (-4321 (((-112) $) 105)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2007 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-3611 (($ $) 129 (|has| |#1| (-377))) (($ $ (-781)) 126 (|has| |#1| (-377)))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 73) (($ $ |#1|) 108)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-337 |#1|) (-141) (-372)) (T -337))
+((-2722 (*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1281 *1)) (-4 *1 (-337 *3)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-932)) (-4 *4 (-372)) (-5 *2 (-1281 *1)) (-4 *1 (-337 *4)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1281 *3)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1186 *3)))) (-1782 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1186 *3)))) (-3027 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-932)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-932)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-3190 (*1 *2 *1 *3) (-12 (-5 *3 (-932)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1186 *1)) (-4 *1 (-337 *4)))) (-1652 (*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-2358 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-2342 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) (-2970 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-2338 (*1 *1 *1 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) (-4 *3 (-372)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1186 *3)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1186 *3)))) (-3795 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1186 *3)))))
+(-13 (-1300 |t#1|) (-1051 |t#1|) (-10 -8 (-15 -2722 ((-1281 $))) (-15 -2722 ((-1281 $) (-932))) (-15 -3676 ((-1281 |t#1|) $)) (-15 -3676 ((-699 |t#1|) (-1281 $))) (-15 -3003 ($ (-1281 |t#1|))) (-15 -3190 ((-1186 |t#1|) $)) (-15 -1782 ((-1186 |t#1|))) (-15 -3027 ((-932))) (-15 -1784 ((-932) $)) (-15 -1652 (|t#1| $)) (-15 -1637 (|t#1| $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-358)) (-15 -3190 ((-1186 $) $ (-932))) (-15 -1652 ($ $ (-932))) (-15 -1637 ($ $ (-932))) (-15 -2358 ($)) (-15 -2342 ($)) (-15 -2079 ((-112) $)) (-15 -2970 ($)) (-15 -2338 ($ $ (-1186 |t#1|))) (-15 -2810 ((-1186 |t#1|) $)) (-15 -3795 ((-1186 |t#1|) $)) (-15 -3795 ((-3 (-1186 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) |has| |#1| (-377)) ((-239) |has| |#1| (-377)) ((-249) . T) ((-298) . T) ((-315) . T) ((-1300 |#1|) . T) ((-372) . T) ((-412) -2818 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-377) |has| |#1| (-377)) ((-358) |has| |#1| (-377)) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1051 |#1|) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-377)) ((-1231) |has| |#1| (-377)) ((-1235) . T) ((-1288 |#1|) . T))
+((-2849 (((-112) $ $) NIL)) (-3610 (($ (-1189) $) 100)) (-4254 (($) 89)) (-4356 (((-1133) (-1133)) 9)) (-1613 (($) 90)) (-4082 (($) 104) (($ (-324 (-709))) 112) (($ (-324 (-711))) 108) (($ (-324 (-704))) 116) (($ (-324 (-388))) 123) (($ (-324 (-574))) 119) (($ (-324 (-171 (-388)))) 127)) (-4426 (($ (-1189) $) 101)) (-1910 (($ (-654 (-872))) 91)) (-2991 (((-1286) $) 87)) (-1459 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1357 (($ (-1133)) 58)) (-2083 (((-1117) $) 30)) (-2592 (($ (-1105 (-963 (-574))) $) 97) (($ (-1105 (-963 (-574))) (-963 (-574)) $) 98)) (-2014 (($ (-1133)) 99)) (-3281 (($ (-1189) $) 129) (($ (-1189) $ $) 130)) (-3856 (($ (-1190) (-654 (-1190))) 88)) (-2041 (($ (-1172)) 94) (($ (-654 (-1172))) 92)) (-2943 (((-872) $) 132)) (-2051 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1190)) (|:| |arrayIndex| (-654 (-963 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1190)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1189)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3556 (-112)) (|:| -3083 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172)) (|:| |forBranch| (-2 (|:| -2967 (-1105 (-963 (-574)))) (|:| |span| (-963 (-574))) (|:| -2045 $))) (|:| |labelBranch| (-1133)) (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2045 $))) (|:| |commonBranch| (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190))))) (|:| |printBranch| (-654 (-872)))) $) 50)) (-2403 (($ (-1172)) 202)) (-4110 (($ (-654 $)) 128)) (-2923 (((-112) $ $) NIL)) (-1722 (($ (-1190) (-1172)) 135) (($ (-1190) (-324 (-711))) 175) (($ (-1190) (-324 (-709))) 176) (($ (-1190) (-324 (-704))) 177) (($ (-1190) (-699 (-711))) 138) (($ (-1190) (-699 (-709))) 141) (($ (-1190) (-699 (-704))) 144) (($ (-1190) (-1281 (-711))) 147) (($ (-1190) (-1281 (-709))) 150) (($ (-1190) (-1281 (-704))) 153) (($ (-1190) (-699 (-324 (-711)))) 156) (($ (-1190) (-699 (-324 (-709)))) 159) (($ (-1190) (-699 (-324 (-704)))) 162) (($ (-1190) (-1281 (-324 (-711)))) 165) (($ (-1190) (-1281 (-324 (-709)))) 168) (($ (-1190) (-1281 (-324 (-704)))) 171) (($ (-1190) (-654 (-963 (-574))) (-324 (-711))) 172) (($ (-1190) (-654 (-963 (-574))) (-324 (-709))) 173) (($ (-1190) (-654 (-963 (-574))) (-324 (-704))) 174) (($ (-1190) (-324 (-574))) 199) (($ (-1190) (-324 (-388))) 200) (($ (-1190) (-324 (-171 (-388)))) 201) (($ (-1190) (-699 (-324 (-574)))) 180) (($ (-1190) (-699 (-324 (-388)))) 183) (($ (-1190) (-699 (-324 (-171 (-388))))) 186) (($ (-1190) (-1281 (-324 (-574)))) 189) (($ (-1190) (-1281 (-324 (-388)))) 192) (($ (-1190) (-1281 (-324 (-171 (-388))))) 195) (($ (-1190) (-654 (-963 (-574))) (-324 (-574))) 196) (($ (-1190) (-654 (-963 (-574))) (-324 (-388))) 197) (($ (-1190) (-654 (-963 (-574))) (-324 (-171 (-388)))) 198)) (-2982 (((-112) $ $) NIL)))
+(((-338) (-13 (-1113) (-10 -8 (-15 -2592 ($ (-1105 (-963 (-574))) $)) (-15 -2592 ($ (-1105 (-963 (-574))) (-963 (-574)) $)) (-15 -3610 ($ (-1189) $)) (-15 -4426 ($ (-1189) $)) (-15 -1357 ($ (-1133))) (-15 -2014 ($ (-1133))) (-15 -2041 ($ (-1172))) (-15 -2041 ($ (-654 (-1172)))) (-15 -2403 ($ (-1172))) (-15 -4082 ($)) (-15 -4082 ($ (-324 (-709)))) (-15 -4082 ($ (-324 (-711)))) (-15 -4082 ($ (-324 (-704)))) (-15 -4082 ($ (-324 (-388)))) (-15 -4082 ($ (-324 (-574)))) (-15 -4082 ($ (-324 (-171 (-388))))) (-15 -3281 ($ (-1189) $)) (-15 -3281 ($ (-1189) $ $)) (-15 -1722 ($ (-1190) (-1172))) (-15 -1722 ($ (-1190) (-324 (-711)))) (-15 -1722 ($ (-1190) (-324 (-709)))) (-15 -1722 ($ (-1190) (-324 (-704)))) (-15 -1722 ($ (-1190) (-699 (-711)))) (-15 -1722 ($ (-1190) (-699 (-709)))) (-15 -1722 ($ (-1190) (-699 (-704)))) (-15 -1722 ($ (-1190) (-1281 (-711)))) (-15 -1722 ($ (-1190) (-1281 (-709)))) (-15 -1722 ($ (-1190) (-1281 (-704)))) (-15 -1722 ($ (-1190) (-699 (-324 (-711))))) (-15 -1722 ($ (-1190) (-699 (-324 (-709))))) (-15 -1722 ($ (-1190) (-699 (-324 (-704))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-711))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-709))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-704))))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-711)))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-709)))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-704)))) (-15 -1722 ($ (-1190) (-324 (-574)))) (-15 -1722 ($ (-1190) (-324 (-388)))) (-15 -1722 ($ (-1190) (-324 (-171 (-388))))) (-15 -1722 ($ (-1190) (-699 (-324 (-574))))) (-15 -1722 ($ (-1190) (-699 (-324 (-388))))) (-15 -1722 ($ (-1190) (-699 (-324 (-171 (-388)))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-574))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-388))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-171 (-388)))))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-574)))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-388)))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-171 (-388))))) (-15 -4110 ($ (-654 $))) (-15 -4254 ($)) (-15 -1613 ($)) (-15 -1910 ($ (-654 (-872)))) (-15 -3856 ($ (-1190) (-654 (-1190)))) (-15 -1459 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2051 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1190)) (|:| |arrayIndex| (-654 (-963 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1190)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1189)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3556 (-112)) (|:| -3083 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172)) (|:| |forBranch| (-2 (|:| -2967 (-1105 (-963 (-574)))) (|:| |span| (-963 (-574))) (|:| -2045 $))) (|:| |labelBranch| (-1133)) (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2045 $))) (|:| |commonBranch| (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -2991 ((-1286) $)) (-15 -2083 ((-1117) $)) (-15 -4356 ((-1133) (-1133)))))) (T -338))
+((-2592 (*1 *1 *2 *1) (-12 (-5 *2 (-1105 (-963 (-574)))) (-5 *1 (-338)))) (-2592 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1105 (-963 (-574)))) (-5 *3 (-963 (-574))) (-5 *1 (-338)))) (-3610 (*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))) (-4426 (*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338)))) (-2014 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338)))) (-2041 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-338)))) (-2041 (*1 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-338)))) (-2403 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-338)))) (-4082 (*1 *1) (-5 *1 (-338))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-3281 (*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))) (-3281 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1172)) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-711))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-709))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-704))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-711)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-709)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-704)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-711))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-709))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-704))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-574)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-388)))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-574))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-388))) (-5 *1 (-338)))) (-1722 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338)))) (-4254 (*1 *1) (-5 *1 (-338))) (-1613 (*1 *1) (-5 *1 (-338))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1190)) (-5 *1 (-338)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-338)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1190)) (|:| |arrayIndex| (-654 (-963 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1190)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1189)) (|:| |thenClause| (-338)) (|:| |elseClause| (-338)))) (|:| |returnBranch| (-2 (|:| -3556 (-112)) (|:| -3083 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |blockBranch| (-654 (-338))) (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172)) (|:| |forBranch| (-2 (|:| -2967 (-1105 (-963 (-574)))) (|:| |span| (-963 (-574))) (|:| -2045 (-338)))) (|:| |labelBranch| (-1133)) (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2045 (-338)))) (|:| |commonBranch| (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190))))) (|:| |printBranch| (-654 (-872))))) (-5 *1 (-338)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-338)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-338)))) (-4356 (*1 *2 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338)))))
+(-13 (-1113) (-10 -8 (-15 -2592 ($ (-1105 (-963 (-574))) $)) (-15 -2592 ($ (-1105 (-963 (-574))) (-963 (-574)) $)) (-15 -3610 ($ (-1189) $)) (-15 -4426 ($ (-1189) $)) (-15 -1357 ($ (-1133))) (-15 -2014 ($ (-1133))) (-15 -2041 ($ (-1172))) (-15 -2041 ($ (-654 (-1172)))) (-15 -2403 ($ (-1172))) (-15 -4082 ($)) (-15 -4082 ($ (-324 (-709)))) (-15 -4082 ($ (-324 (-711)))) (-15 -4082 ($ (-324 (-704)))) (-15 -4082 ($ (-324 (-388)))) (-15 -4082 ($ (-324 (-574)))) (-15 -4082 ($ (-324 (-171 (-388))))) (-15 -3281 ($ (-1189) $)) (-15 -3281 ($ (-1189) $ $)) (-15 -1722 ($ (-1190) (-1172))) (-15 -1722 ($ (-1190) (-324 (-711)))) (-15 -1722 ($ (-1190) (-324 (-709)))) (-15 -1722 ($ (-1190) (-324 (-704)))) (-15 -1722 ($ (-1190) (-699 (-711)))) (-15 -1722 ($ (-1190) (-699 (-709)))) (-15 -1722 ($ (-1190) (-699 (-704)))) (-15 -1722 ($ (-1190) (-1281 (-711)))) (-15 -1722 ($ (-1190) (-1281 (-709)))) (-15 -1722 ($ (-1190) (-1281 (-704)))) (-15 -1722 ($ (-1190) (-699 (-324 (-711))))) (-15 -1722 ($ (-1190) (-699 (-324 (-709))))) (-15 -1722 ($ (-1190) (-699 (-324 (-704))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-711))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-709))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-704))))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-711)))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-709)))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-704)))) (-15 -1722 ($ (-1190) (-324 (-574)))) (-15 -1722 ($ (-1190) (-324 (-388)))) (-15 -1722 ($ (-1190) (-324 (-171 (-388))))) (-15 -1722 ($ (-1190) (-699 (-324 (-574))))) (-15 -1722 ($ (-1190) (-699 (-324 (-388))))) (-15 -1722 ($ (-1190) (-699 (-324 (-171 (-388)))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-574))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-388))))) (-15 -1722 ($ (-1190) (-1281 (-324 (-171 (-388)))))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-574)))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-388)))) (-15 -1722 ($ (-1190) (-654 (-963 (-574))) (-324 (-171 (-388))))) (-15 -4110 ($ (-654 $))) (-15 -4254 ($)) (-15 -1613 ($)) (-15 -1910 ($ (-654 (-872)))) (-15 -3856 ($ (-1190) (-654 (-1190)))) (-15 -1459 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2051 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1190)) (|:| |arrayIndex| (-654 (-963 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1190)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1189)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3556 (-112)) (|:| -3083 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172)) (|:| |forBranch| (-2 (|:| -2967 (-1105 (-963 (-574)))) (|:| |span| (-963 (-574))) (|:| -2045 $))) (|:| |labelBranch| (-1133)) (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2045 $))) (|:| |commonBranch| (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -2991 ((-1286) $)) (-15 -2083 ((-1117) $)) (-15 -4356 ((-1133) (-1133)))))
+((-2849 (((-112) $ $) NIL)) (-3328 (((-112) $) 13)) (-2227 (($ |#1|) 10)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2237 (($ |#1|) 12)) (-2943 (((-872) $) 19)) (-2923 (((-112) $ $) NIL)) (-1861 ((|#1| $) 14)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 21)))
+(((-339 |#1|) (-13 (-860) (-10 -8 (-15 -2227 ($ |#1|)) (-15 -2237 ($ |#1|)) (-15 -3328 ((-112) $)) (-15 -1861 (|#1| $)))) (-860)) (T -339))
+((-2227 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-2237 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860)))) (-1861 (*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))))
+(-13 (-860) (-10 -8 (-15 -2227 ($ |#1|)) (-15 -2237 ($ |#1|)) (-15 -3328 ((-112) $)) (-15 -1861 (|#1| $))))
+((-2538 (((-338) (-1190) (-963 (-574))) 23)) (-1405 (((-338) (-1190) (-963 (-574))) 27)) (-1964 (((-338) (-1190) (-1105 (-963 (-574))) (-1105 (-963 (-574)))) 26) (((-338) (-1190) (-963 (-574)) (-963 (-574))) 24)) (-4203 (((-338) (-1190) (-963 (-574))) 31)))
+(((-340) (-10 -7 (-15 -2538 ((-338) (-1190) (-963 (-574)))) (-15 -1964 ((-338) (-1190) (-963 (-574)) (-963 (-574)))) (-15 -1964 ((-338) (-1190) (-1105 (-963 (-574))) (-1105 (-963 (-574))))) (-15 -1405 ((-338) (-1190) (-963 (-574)))) (-15 -4203 ((-338) (-1190) (-963 (-574)))))) (T -340))
+((-4203 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-1964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-1105 (-963 (-574)))) (-5 *2 (-338)) (-5 *1 (-340)))) (-1964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))))
+(-10 -7 (-15 -2538 ((-338) (-1190) (-963 (-574)))) (-15 -1964 ((-338) (-1190) (-963 (-574)) (-963 (-574)))) (-15 -1964 ((-338) (-1190) (-1105 (-963 (-574))) (-1105 (-963 (-574))))) (-15 -1405 ((-338) (-1190) (-963 (-574)))) (-15 -4203 ((-338) (-1190) (-963 (-574)))))
+((-2849 (((-112) $ $) NIL)) (-1315 (((-516) $) 20)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1600 (((-969 (-781)) $) 18)) (-2126 (((-256) $) 7)) (-2943 (((-872) $) 26)) (-4291 (((-969 (-185 (-140))) $) 16)) (-2923 (((-112) $ $) NIL)) (-2792 (((-654 (-883 (-1195) (-781))) $) 12)) (-2982 (((-112) $ $) 22)))
+(((-341) (-13 (-1113) (-10 -8 (-15 -2126 ((-256) $)) (-15 -2792 ((-654 (-883 (-1195) (-781))) $)) (-15 -1600 ((-969 (-781)) $)) (-15 -4291 ((-969 (-185 (-140))) $)) (-15 -1315 ((-516) $))))) (T -341))
+((-2126 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1195) (-781)))) (-5 *1 (-341)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-969 (-781))) (-5 *1 (-341)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-969 (-185 (-140)))) (-5 *1 (-341)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341)))))
+(-13 (-1113) (-10 -8 (-15 -2126 ((-256) $)) (-15 -2792 ((-654 (-883 (-1195) (-781))) $)) (-15 -1600 ((-969 (-781)) $)) (-15 -4291 ((-969 (-185 (-140))) $)) (-15 -1315 ((-516) $))))
+((-1778 (((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)) 33)))
+(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1778 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-372) (-1257 |#5|) (-1257 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -342))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *9 (-372)) (-4 *10 (-1257 *9)) (-4 *11 (-1257 (-417 *10))) (-5 *2 (-345 *9 *10 *11 *12)) (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-351 *9 *10 *11)))))
+(-10 -7 (-15 -1778 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|))))
+((-2102 (((-112) $) 14)))
+(((-343 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2102 ((-112) |#1|))) (-344 |#2| |#3| |#4| |#5|) (-372) (-1257 |#2|) (-1257 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -343))
+NIL
+(-10 -8 (-15 -2102 ((-112) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2868 (($ $) 29)) (-2102 (((-112) $) 28)) (-2568 (((-1172) $) 10)) (-2260 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 35)) (-3966 (((-1133) $) 11)) (-2970 (((-3 |#4| "failed") $) 27)) (-4339 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-574)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-1650 (((-2 (|:| -2803 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24)))
+(((-344 |#1| |#2| |#3| |#4|) (-141) (-372) (-1257 |t#1|) (-1257 (-417 |t#2|)) (-351 |t#1| |t#2| |t#3|)) (T -344))
+((-2260 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-423 *4 (-417 *4) *5 *6)))) (-4339 (*1 *1 *2) (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) (-4 *1 (-344 *3 *4 *5 *6)))) (-4339 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) (-4339 (*1 *1 *2 *2) (-12 (-4 *2 (-372)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3))) (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) (-4339 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1257 *2)) (-4 *5 (-1257 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) (-4 *6 (-351 *2 *4 *5)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-2 (|:| -2803 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) (-2868 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112)))) (-2970 (*1 *2 *1) (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *2 (-351 *3 *4 *5)))) (-4339 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-372)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -2260 ((-423 |t#2| (-417 |t#2|) |t#3| |t#4|) $)) (-15 -4339 ($ (-423 |t#2| (-417 |t#2|) |t#3| |t#4|))) (-15 -4339 ($ |t#4|)) (-15 -4339 ($ |t#1| |t#1|)) (-15 -4339 ($ |t#1| |t#1| (-574))) (-15 -1650 ((-2 (|:| -2803 (-423 |t#2| (-417 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2868 ($ $)) (-15 -2102 ((-112) $)) (-15 -2970 ((-3 |t#4| "failed") $)) (-15 -4339 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-2868 (($ $) 33)) (-2102 (((-112) $) NIL)) (-2568 (((-1172) $) NIL)) (-4334 (((-1281 |#4|) $) 134)) (-2260 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 31)) (-3966 (((-1133) $) NIL)) (-2970 (((-3 |#4| "failed") $) 36)) (-3296 (((-1281 |#4|) $) 126)) (-4339 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-574)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1650 (((-2 (|:| -2803 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2943 (((-872) $) 17)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 14 T CONST)) (-2982 (((-112) $ $) 20)) (-3094 (($ $) 27) (($ $ $) NIL)) (-3078 (($ $ $) 25)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 23)))
+(((-345 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3296 ((-1281 |#4|) $)) (-15 -4334 ((-1281 |#4|) $)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -345))
+((-3296 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-1281 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5)))) (-4334 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-1281 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5)))))
+(-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3296 ((-1281 |#4|) $)) (-15 -4334 ((-1281 |#4|) $))))
+((-2646 (($ $ (-1190) |#2|) NIL) (($ $ (-654 (-1190)) (-654 |#2|)) 20) (($ $ (-654 (-302 |#2|))) 15) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-2200 (($ $ |#2|) 11)))
+(((-346 |#1| |#2|) (-10 -8 (-15 -2200 (|#1| |#1| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 |#2|))) (-15 -2646 (|#1| |#1| (-1190) |#2|))) (-347 |#2|) (-1113)) (T -346))
+NIL
+(-10 -8 (-15 -2200 (|#1| |#1| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 |#2|))) (-15 -2646 (|#1| |#1| (-1190) |#2|)))
+((-1778 (($ (-1 |#1| |#1|) $) 6)) (-2646 (($ $ (-1190) |#1|) 17 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 16 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-654 (-302 |#1|))) 15 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 14 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-317 |#1|))) (($ $ (-654 |#1|) (-654 |#1|)) 12 (|has| |#1| (-317 |#1|)))) (-2200 (($ $ |#1|) 11 (|has| |#1| (-294 |#1| |#1|)))))
+(((-347 |#1|) (-141) (-1113)) (T -347))
+((-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1113)))))
+(-13 (-10 -8 (-15 -1778 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-294 |t#1| |t#1|)) (-6 (-294 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-524 (-1190) |t#1|)) (-6 (-524 (-1190) |t#1|)) |%noBranch|)))
+(((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-1231) |has| |#1| (-294 |#1| |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-1190)) $) NIL)) (-2821 (((-112)) 96) (((-112) (-112)) 97)) (-4091 (((-654 (-622 $)) $) NIL)) (-2364 (($ $) NIL)) (-2246 (($ $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-4229 (($ $) NIL)) (-2343 (($ $) NIL)) (-2227 (($ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-622 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-324 |#3|)) 76) (((-3 $ "failed") (-1190)) 103) (((-3 $ "failed") (-324 (-574))) 64 (|has| |#3| (-1051 (-574)))) (((-3 $ "failed") (-417 (-963 (-574)))) 70 (|has| |#3| (-1051 (-574)))) (((-3 $ "failed") (-963 (-574))) 65 (|has| |#3| (-1051 (-574)))) (((-3 $ "failed") (-324 (-388))) 94 (|has| |#3| (-1051 (-388)))) (((-3 $ "failed") (-417 (-963 (-388)))) 88 (|has| |#3| (-1051 (-388)))) (((-3 $ "failed") (-963 (-388))) 83 (|has| |#3| (-1051 (-388))))) (-2209 (((-622 $) $) NIL) ((|#3| $) NIL) (($ (-324 |#3|)) 77) (($ (-1190)) 104) (($ (-324 (-574))) 66 (|has| |#3| (-1051 (-574)))) (($ (-417 (-963 (-574)))) 71 (|has| |#3| (-1051 (-574)))) (($ (-963 (-574))) 67 (|has| |#3| (-1051 (-574)))) (($ (-324 (-388))) 95 (|has| |#3| (-1051 (-388)))) (($ (-417 (-963 (-388)))) 89 (|has| |#3| (-1051 (-388)))) (($ (-963 (-388))) 85 (|has| |#3| (-1051 (-388))))) (-1950 (((-3 $ "failed") $) NIL)) (-3001 (($) 101)) (-2955 (($ $) NIL) (($ (-654 $)) NIL)) (-1879 (((-654 (-115)) $) NIL)) (-4173 (((-115) (-115)) NIL)) (-3965 (((-112) $) NIL)) (-3239 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2405 (((-1186 $) (-622 $)) NIL (|has| $ (-1062)))) (-1778 (($ (-1 $ $) (-622 $)) NIL)) (-3376 (((-3 (-622 $) "failed") $) NIL)) (-1733 (($ $) 99)) (-3119 (($ $) NIL)) (-2568 (((-1172) $) NIL)) (-4164 (((-654 (-622 $)) $) NIL)) (-1775 (($ (-115) $) 98) (($ (-115) (-654 $)) NIL)) (-2884 (((-112) $ (-115)) NIL) (((-112) $ (-1190)) NIL)) (-1840 (((-781) $) NIL)) (-3966 (((-1133) $) NIL)) (-3923 (((-112) $ $) NIL) (((-112) $ (-1190)) NIL)) (-1610 (($ $) NIL)) (-2625 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2200 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-3115 (($ $) NIL) (($ $ $) NIL)) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL)) (-1782 (($ $) NIL (|has| $ (-1062)))) (-2353 (($ $) NIL)) (-2237 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-622 $)) NIL) (($ |#3|) NIL) (($ (-574)) NIL) (((-324 |#3|) $) 102)) (-4160 (((-781)) NIL T CONST)) (-2031 (($ $) NIL) (($ (-654 $)) NIL)) (-1932 (((-112) (-115)) NIL)) (-2923 (((-112) $ $) NIL)) (-2305 (($ $) NIL)) (-2287 (($ $) NIL)) (-2297 (($ $) NIL)) (-2946 (($ $) NIL)) (-2134 (($) 100 T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL)))
+(((-348 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1051 |#3|) (-911 (-1190)) (-10 -8 (-15 -2209 ($ (-324 |#3|))) (-15 -1697 ((-3 $ "failed") (-324 |#3|))) (-15 -2209 ($ (-1190))) (-15 -1697 ((-3 $ "failed") (-1190))) (-15 -2943 ((-324 |#3|) $)) (IF (|has| |#3| (-1051 (-574))) (PROGN (-15 -2209 ($ (-324 (-574)))) (-15 -1697 ((-3 $ "failed") (-324 (-574)))) (-15 -2209 ($ (-417 (-963 (-574))))) (-15 -1697 ((-3 $ "failed") (-417 (-963 (-574))))) (-15 -2209 ($ (-963 (-574)))) (-15 -1697 ((-3 $ "failed") (-963 (-574))))) |%noBranch|) (IF (|has| |#3| (-1051 (-388))) (PROGN (-15 -2209 ($ (-324 (-388)))) (-15 -1697 ((-3 $ "failed") (-324 (-388)))) (-15 -2209 ($ (-417 (-963 (-388))))) (-15 -1697 ((-3 $ "failed") (-417 (-963 (-388))))) (-15 -2209 ($ (-963 (-388)))) (-15 -1697 ((-3 $ "failed") (-963 (-388))))) |%noBranch|) (-15 -2946 ($ $)) (-15 -4229 ($ $)) (-15 -1610 ($ $)) (-15 -3119 ($ $)) (-15 -1733 ($ $)) (-15 -2227 ($ $)) (-15 -2237 ($ $)) (-15 -2246 ($ $)) (-15 -2287 ($ $)) (-15 -2297 ($ $)) (-15 -2305 ($ $)) (-15 -2343 ($ $)) (-15 -2353 ($ $)) (-15 -2364 ($ $)) (-15 -3001 ($)) (-15 -4355 ((-654 (-1190)) $)) (-15 -2821 ((-112))) (-15 -2821 ((-112) (-112))))) (-654 (-1190)) (-654 (-1190)) (-397)) (T -348))
+((-2209 (*1 *1 *2) (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-963 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-963 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-963 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-963 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2946 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-4229 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-1610 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-3119 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-1733 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2227 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2237 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2246 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2287 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-3001 (*1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-397)))) (-2821 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2821 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))))
+(-13 (-310) (-38 |#3|) (-1051 |#3|) (-911 (-1190)) (-10 -8 (-15 -2209 ($ (-324 |#3|))) (-15 -1697 ((-3 $ "failed") (-324 |#3|))) (-15 -2209 ($ (-1190))) (-15 -1697 ((-3 $ "failed") (-1190))) (-15 -2943 ((-324 |#3|) $)) (IF (|has| |#3| (-1051 (-574))) (PROGN (-15 -2209 ($ (-324 (-574)))) (-15 -1697 ((-3 $ "failed") (-324 (-574)))) (-15 -2209 ($ (-417 (-963 (-574))))) (-15 -1697 ((-3 $ "failed") (-417 (-963 (-574))))) (-15 -2209 ($ (-963 (-574)))) (-15 -1697 ((-3 $ "failed") (-963 (-574))))) |%noBranch|) (IF (|has| |#3| (-1051 (-388))) (PROGN (-15 -2209 ($ (-324 (-388)))) (-15 -1697 ((-3 $ "failed") (-324 (-388)))) (-15 -2209 ($ (-417 (-963 (-388))))) (-15 -1697 ((-3 $ "failed") (-417 (-963 (-388))))) (-15 -2209 ($ (-963 (-388)))) (-15 -1697 ((-3 $ "failed") (-963 (-388))))) |%noBranch|) (-15 -2946 ($ $)) (-15 -4229 ($ $)) (-15 -1610 ($ $)) (-15 -3119 ($ $)) (-15 -1733 ($ $)) (-15 -2227 ($ $)) (-15 -2237 ($ $)) (-15 -2246 ($ $)) (-15 -2287 ($ $)) (-15 -2297 ($ $)) (-15 -2305 ($ $)) (-15 -2343 ($ $)) (-15 -2353 ($ $)) (-15 -2364 ($ $)) (-15 -3001 ($)) (-15 -4355 ((-654 (-1190)) $)) (-15 -2821 ((-112))) (-15 -2821 ((-112) (-112)))))
+((-1778 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-349 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1778 (|#8| (-1 |#5| |#1|) |#4|))) (-1235) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-1235) (-1257 |#5|) (-1257 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -349))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1235)) (-4 *8 (-1235)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *9 (-1257 *8)) (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1257 (-417 *9))))))
+(-10 -7 (-15 -1778 (|#8| (-1 |#5| |#1|) |#4|)))
+((-1432 (((-2 (|:| |num| (-1281 |#3|)) (|:| |den| |#3|)) $) 39)) (-3003 (($ (-1281 (-417 |#3|)) (-1281 $)) NIL) (($ (-1281 (-417 |#3|))) NIL) (($ (-1281 |#3|) |#3|) 173)) (-2514 (((-1281 $) (-1281 $)) 156)) (-4092 (((-654 (-654 |#2|))) 126)) (-2150 (((-112) |#2| |#2|) 76)) (-3872 (($ $) 148)) (-1884 (((-781)) 172)) (-1648 (((-1281 $) (-1281 $)) 218)) (-1804 (((-654 (-963 |#2|)) (-1190)) 115)) (-3141 (((-112) $) 169)) (-1577 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-3844 (((-3 |#3| "failed")) 52)) (-1762 (((-781)) 184)) (-2200 ((|#2| $ |#2| |#2|) 140)) (-2464 (((-3 |#3| "failed")) 71)) (-3905 (($ $ (-1 (-417 |#3|) (-417 |#3|)) (-781)) NIL) (($ $ (-1 (-417 |#3|) (-417 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-3573 (((-1281 $) (-1281 $)) 162)) (-1783 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3858 (((-112)) 34)))
+(((-350 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -4092 ((-654 (-654 |#2|)))) (-15 -1804 ((-654 (-963 |#2|)) (-1190))) (-15 -1783 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3844 ((-3 |#3| "failed"))) (-15 -2464 ((-3 |#3| "failed"))) (-15 -2200 (|#2| |#1| |#2| |#2|)) (-15 -3872 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1577 ((-112) |#1| |#3|)) (-15 -1577 ((-112) |#1| |#2|)) (-15 -3003 (|#1| (-1281 |#3|) |#3|)) (-15 -1432 ((-2 (|:| |num| (-1281 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2514 ((-1281 |#1|) (-1281 |#1|))) (-15 -1648 ((-1281 |#1|) (-1281 |#1|))) (-15 -3573 ((-1281 |#1|) (-1281 |#1|))) (-15 -1577 ((-112) |#1|)) (-15 -3141 ((-112) |#1|)) (-15 -2150 ((-112) |#2| |#2|)) (-15 -3858 ((-112))) (-15 -1762 ((-781))) (-15 -1884 ((-781))) (-15 -3905 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3905 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -3003 (|#1| (-1281 (-417 |#3|)))) (-15 -3003 (|#1| (-1281 (-417 |#3|)) (-1281 |#1|)))) (-351 |#2| |#3| |#4|) (-1235) (-1257 |#2|) (-1257 (-417 |#3|))) (T -350))
+((-1884 (*1 *2) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-1762 (*1 *2) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-3858 (*1 *2) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-2150 (*1 *2 *3 *3) (-12 (-4 *3 (-1235)) (-4 *5 (-1257 *3)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) (-2464 (*1 *2) (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-3844 (*1 *2) (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *5 (-1235)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-5 *2 (-654 (-963 *5))) (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) (-4092 (*1 *2) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))))
+(-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -4092 ((-654 (-654 |#2|)))) (-15 -1804 ((-654 (-963 |#2|)) (-1190))) (-15 -1783 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3844 ((-3 |#3| "failed"))) (-15 -2464 ((-3 |#3| "failed"))) (-15 -2200 (|#2| |#1| |#2| |#2|)) (-15 -3872 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1577 ((-112) |#1| |#3|)) (-15 -1577 ((-112) |#1| |#2|)) (-15 -3003 (|#1| (-1281 |#3|) |#3|)) (-15 -1432 ((-2 (|:| |num| (-1281 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2514 ((-1281 |#1|) (-1281 |#1|))) (-15 -1648 ((-1281 |#1|) (-1281 |#1|))) (-15 -3573 ((-1281 |#1|) (-1281 |#1|))) (-15 -1577 ((-112) |#1|)) (-15 -3141 ((-112) |#1|)) (-15 -2150 ((-112) |#2| |#2|)) (-15 -3858 ((-112))) (-15 -1762 ((-781))) (-15 -1884 ((-781))) (-15 -3905 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3905 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -3003 (|#1| (-1281 (-417 |#3|)))) (-15 -3003 (|#1| (-1281 (-417 |#3|)) (-1281 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1432 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) 207)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 103 (|has| (-417 |#2|) (-372)))) (-2814 (($ $) 104 (|has| (-417 |#2|) (-372)))) (-2425 (((-112) $) 106 (|has| (-417 |#2|) (-372)))) (-2762 (((-699 (-417 |#2|)) (-1281 $)) 53) (((-699 (-417 |#2|))) 68)) (-1637 (((-417 |#2|) $) 59)) (-1340 (((-1203 (-932) (-781)) (-574)) 156 (|has| (-417 |#2|) (-358)))) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 123 (|has| (-417 |#2|) (-372)))) (-3440 (((-428 $) $) 124 (|has| (-417 |#2|) (-372)))) (-3875 (((-112) $ $) 114 (|has| (-417 |#2|) (-372)))) (-1487 (((-781)) 97 (|has| (-417 |#2|) (-377)))) (-1785 (((-112)) 224)) (-3465 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3670 (($) 18 T CONST)) (-1697 (((-3 (-574) "failed") $) 181 (|has| (-417 |#2|) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) 176)) (-2209 (((-574) $) 180 (|has| (-417 |#2|) (-1051 (-574)))) (((-417 (-574)) $) 178 (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-417 |#2|) $) 177)) (-3003 (($ (-1281 (-417 |#2|)) (-1281 $)) 55) (($ (-1281 (-417 |#2|))) 71) (($ (-1281 |#2|) |#2|) 206)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| (-417 |#2|) (-358)))) (-2785 (($ $ $) 118 (|has| (-417 |#2|) (-372)))) (-2085 (((-699 (-417 |#2|)) $ (-1281 $)) 60) (((-699 (-417 |#2|)) $) 66)) (-2668 (((-699 (-574)) (-1281 $)) 175 (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 173 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-417 |#2|))) (|:| |vec| (-1281 (-417 |#2|)))) (-699 $) (-1281 $)) 172) (((-699 (-417 |#2|)) (-699 $)) 171) (((-699 (-417 |#2|)) (-1281 $)) 170)) (-2514 (((-1281 $) (-1281 $)) 212)) (-2868 (($ |#3|) 167) (((-3 $ "failed") (-417 |#3|)) 164 (|has| (-417 |#2|) (-372)))) (-1950 (((-3 $ "failed") $) 37)) (-4092 (((-654 (-654 |#1|))) 193 (|has| |#1| (-377)))) (-2150 (((-112) |#1| |#1|) 228)) (-3584 (((-932)) 61)) (-2820 (($) 100 (|has| (-417 |#2|) (-377)))) (-2920 (((-112)) 221)) (-1759 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2798 (($ $ $) 117 (|has| (-417 |#2|) (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 112 (|has| (-417 |#2|) (-372)))) (-3872 (($ $) 199)) (-3906 (($) 158 (|has| (-417 |#2|) (-358)))) (-2878 (((-112) $) 159 (|has| (-417 |#2|) (-358)))) (-3564 (($ $ (-781)) 150 (|has| (-417 |#2|) (-358))) (($ $) 149 (|has| (-417 |#2|) (-358)))) (-1654 (((-112) $) 125 (|has| (-417 |#2|) (-372)))) (-3593 (((-932) $) 161 (|has| (-417 |#2|) (-358))) (((-843 (-932)) $) 147 (|has| (-417 |#2|) (-358)))) (-3965 (((-112) $) 35)) (-1884 (((-781)) 231)) (-1648 (((-1281 $) (-1281 $)) 213)) (-1652 (((-417 |#2|) $) 58)) (-1804 (((-654 (-963 |#1|)) (-1190)) 194 (|has| |#1| (-372)))) (-4048 (((-3 $ "failed") $) 151 (|has| (-417 |#2|) (-358)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| (-417 |#2|) (-372)))) (-3190 ((|#3| $) 51 (|has| (-417 |#2|) (-372)))) (-2565 (((-932) $) 99 (|has| (-417 |#2|) (-377)))) (-2854 ((|#3| $) 165)) (-2834 (($ (-654 $)) 110 (|has| (-417 |#2|) (-372))) (($ $ $) 109 (|has| (-417 |#2|) (-372)))) (-2568 (((-1172) $) 10)) (-2992 (((-699 (-417 |#2|))) 208)) (-1732 (((-699 (-417 |#2|))) 210)) (-1324 (($ $) 126 (|has| (-417 |#2|) (-372)))) (-3928 (($ (-1281 |#2|) |#2|) 204)) (-1741 (((-699 (-417 |#2|))) 209)) (-1678 (((-699 (-417 |#2|))) 211)) (-3882 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 203)) (-4119 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) 205)) (-3742 (((-1281 $)) 217)) (-3885 (((-1281 $)) 218)) (-3141 (((-112) $) 216)) (-1577 (((-112) $) 215) (((-112) $ |#1|) 202) (((-112) $ |#2|) 201)) (-3818 (($) 152 (|has| (-417 |#2|) (-358)) CONST)) (-2576 (($ (-932)) 98 (|has| (-417 |#2|) (-377)))) (-3844 (((-3 |#2| "failed")) 196)) (-3966 (((-1133) $) 11)) (-1762 (((-781)) 230)) (-2970 (($) 169)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 111 (|has| (-417 |#2|) (-372)))) (-2874 (($ (-654 $)) 108 (|has| (-417 |#2|) (-372))) (($ $ $) 107 (|has| (-417 |#2|) (-372)))) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) 155 (|has| (-417 |#2|) (-358)))) (-4220 (((-428 $) $) 122 (|has| (-417 |#2|) (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 119 (|has| (-417 |#2|) (-372)))) (-2838 (((-3 $ "failed") $ $) 102 (|has| (-417 |#2|) (-372)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| (-417 |#2|) (-372)))) (-1347 (((-781) $) 115 (|has| (-417 |#2|) (-372)))) (-2200 ((|#1| $ |#1| |#1|) 198)) (-2464 (((-3 |#2| "failed")) 197)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 116 (|has| (-417 |#2|) (-372)))) (-1415 (((-417 |#2|) (-1281 $)) 54) (((-417 |#2|)) 67)) (-3232 (((-781) $) 160 (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) 148 (|has| (-417 |#2|) (-358)))) (-3905 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 132 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 131 (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 200) (($ $ (-654 (-1190)) (-654 (-781))) 139 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2088 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-1190) (-781)) 140 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2088 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1190))) 141 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2088 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-1190)) 142 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2088 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-781)) 144 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2088 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) 145 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2088 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-1437 (((-699 (-417 |#2|)) (-1281 $) (-1 (-417 |#2|) (-417 |#2|))) 163 (|has| (-417 |#2|) (-372)))) (-1782 ((|#3|) 168)) (-2585 (($) 157 (|has| (-417 |#2|) (-358)))) (-3676 (((-1281 (-417 |#2|)) $ (-1281 $)) 57) (((-699 (-417 |#2|)) (-1281 $) (-1281 $)) 56) (((-1281 (-417 |#2|)) $) 73) (((-699 (-417 |#2|)) (-1281 $)) 72)) (-1837 (((-1281 (-417 |#2|)) $) 70) (($ (-1281 (-417 |#2|))) 69) ((|#3| $) 182) (($ |#3|) 166)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 154 (|has| (-417 |#2|) (-358)))) (-3573 (((-1281 $) (-1281 $)) 214)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 |#2|)) 44) (($ (-417 (-574))) 96 (-2818 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-1051 (-417 (-574)))))) (($ $) 101 (|has| (-417 |#2|) (-372)))) (-1369 (($ $) 153 (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) 50 (|has| (-417 |#2|) (-146)))) (-4169 ((|#3| $) 52)) (-4160 (((-781)) 32 T CONST)) (-1773 (((-112)) 227)) (-3517 (((-112) |#1|) 226) (((-112) |#2|) 225)) (-2923 (((-112) $ $) 9)) (-2722 (((-1281 $)) 74)) (-3798 (((-112) $ $) 105 (|has| (-417 |#2|) (-372)))) (-1783 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 195)) (-3858 (((-112)) 229)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 134 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 133 (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1190)) (-654 (-781))) 135 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2088 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-1190) (-781)) 136 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2088 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1190))) 137 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2088 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-1190)) 138 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2088 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-781)) 143 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2088 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) 146 (-2818 (-2088 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2088 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 130 (|has| (-417 |#2|) (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 127 (|has| (-417 |#2|) (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 |#2|)) 46) (($ (-417 |#2|) $) 45) (($ (-417 (-574)) $) 129 (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) 128 (|has| (-417 |#2|) (-372)))))
+(((-351 |#1| |#2| |#3|) (-141) (-1235) (-1257 |t#1|) (-1257 (-417 |t#2|))) (T -351))
+((-1884 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-781)))) (-1762 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-781)))) (-3858 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-2150 (*1 *2 *3 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-1773 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-3517 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-3517 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) (-1785 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-3465 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-3465 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) (-2920 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-1759 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-1759 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) (-3885 (*1 *2) (-12 (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)))) (-3742 (*1 *2) (-12 (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))) (-1678 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1732 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1741 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-2992 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1432 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1281 *4)) (|:| |den| *4))))) (-3003 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1257 *4)) (-4 *4 (-1235)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1257 (-417 *3))))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1281 *4)) (|:| |den| *4))))) (-3928 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1257 *4)) (-4 *4 (-1235)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1257 (-417 *3))))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5))))) (-1577 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-1577 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))) (-3872 (*1 *1 *1) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3))))) (-2200 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3))))) (-2464 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1235)) (-4 *4 (-1257 (-417 *2))) (-4 *2 (-1257 *3)))) (-3844 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1235)) (-4 *4 (-1257 (-417 *2))) (-4 *2 (-1257 *3)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-1235)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-351 *4 *5 *6)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-4 *4 (-372)) (-5 *2 (-654 (-963 *4))))) (-4092 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3))))))
+(-13 (-734 (-417 |t#2|) |t#3|) (-10 -8 (-15 -1884 ((-781))) (-15 -1762 ((-781))) (-15 -3858 ((-112))) (-15 -2150 ((-112) |t#1| |t#1|)) (-15 -1773 ((-112))) (-15 -3517 ((-112) |t#1|)) (-15 -3517 ((-112) |t#2|)) (-15 -1785 ((-112))) (-15 -3465 ((-112) |t#1|)) (-15 -3465 ((-112) |t#2|)) (-15 -2920 ((-112))) (-15 -1759 ((-112) |t#1|)) (-15 -1759 ((-112) |t#2|)) (-15 -3885 ((-1281 $))) (-15 -3742 ((-1281 $))) (-15 -3141 ((-112) $)) (-15 -1577 ((-112) $)) (-15 -3573 ((-1281 $) (-1281 $))) (-15 -1648 ((-1281 $) (-1281 $))) (-15 -2514 ((-1281 $) (-1281 $))) (-15 -1678 ((-699 (-417 |t#2|)))) (-15 -1732 ((-699 (-417 |t#2|)))) (-15 -1741 ((-699 (-417 |t#2|)))) (-15 -2992 ((-699 (-417 |t#2|)))) (-15 -1432 ((-2 (|:| |num| (-1281 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3003 ($ (-1281 |t#2|) |t#2|)) (-15 -4119 ((-2 (|:| |num| (-1281 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3928 ($ (-1281 |t#2|) |t#2|)) (-15 -3882 ((-2 (|:| |num| (-699 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1577 ((-112) $ |t#1|)) (-15 -1577 ((-112) $ |t#2|)) (-15 -3905 ($ $ (-1 |t#2| |t#2|))) (-15 -3872 ($ $)) (-15 -2200 (|t#1| $ |t#1| |t#1|)) (-15 -2464 ((-3 |t#2| "failed"))) (-15 -3844 ((-3 |t#2| "failed"))) (-15 -1783 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-372)) (-15 -1804 ((-654 (-963 |t#1|)) (-1190))) |%noBranch|) (IF (|has| |t#1| (-377)) (-15 -4092 ((-654 (-654 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-38 #1=(-417 |#2|)) . T) ((-38 $) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-102) . T) ((-111 #0# #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-146))) ((-148) |has| (-417 |#2|) (-148)) ((-626 #0#) -2818 (|has| (-417 |#2|) (-1051 (-417 (-574)))) (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-626 #1#) . T) ((-626 (-574)) . T) ((-626 $) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#3|) . T) ((-235 $) -2818 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-233 #1#) |has| (-417 |#2|) (-372)) ((-239) -2818 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-249) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-298) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-315) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-372) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-412) |has| (-417 |#2|) (-358)) ((-377) -2818 (|has| (-417 |#2|) (-377)) (|has| (-417 |#2|) (-358))) ((-358) |has| (-417 |#2|) (-358)) ((-379 #1# |#3|) . T) ((-419 #1# |#3|) . T) ((-386 #1#) . T) ((-421 #1#) . T) ((-462) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-566) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #1#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-658 #1#) . T) ((-658 #2=(-574)) |has| (-417 |#2|) (-649 (-574))) ((-658 $) . T) ((-650 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-650 #1#) . T) ((-650 $) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-649 #1#) . T) ((-649 #2#) |has| (-417 |#2|) (-649 (-574))) ((-727 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-727 #1#) . T) ((-727 $) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-734 #1# |#3|) . T) ((-736) . T) ((-911 (-1190)) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) ((-931) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1051 (-417 (-574))) |has| (-417 |#2|) (-1051 (-417 (-574)))) ((-1051 #1#) . T) ((-1051 (-574)) |has| (-417 |#2|) (-1051 (-574))) ((-1064 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1064 #1#) . T) ((-1064 $) . T) ((-1069 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1069 #1#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| (-417 |#2|) (-358)) ((-1231) -2818 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-1235) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-921 |#1|) (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| (-921 |#1|) (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-921 |#1|) "failed") $) NIL)) (-2209 (((-921 |#1|) $) NIL)) (-3003 (($ (-1281 (-921 |#1|))) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-921 |#1|) (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-921 |#1|) (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) NIL (|has| (-921 |#1|) (-377)))) (-2878 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377)))) (($ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) NIL (|has| (-921 |#1|) (-377))) (((-843 (-932)) $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-3965 (((-112) $) NIL)) (-2342 (($) NIL (|has| (-921 |#1|) (-377)))) (-2079 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-1652 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| (-921 |#1|) (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 (-921 |#1|)) $) NIL) (((-1186 $) $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-2565 (((-932) $) NIL (|has| (-921 |#1|) (-377)))) (-2810 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377)))) (-3795 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-1186 (-921 |#1|)) "failed") $ $) NIL (|has| (-921 |#1|) (-377)))) (-2338 (($ $ (-1186 (-921 |#1|))) NIL (|has| (-921 |#1|) (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-921 |#1|) (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-3504 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-3363 (((-969 (-1133))) NIL)) (-2970 (($) NIL (|has| (-921 |#1|) (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| (-921 |#1|) (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) NIL) (((-932)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-1782 (((-1186 (-921 |#1|))) NIL)) (-2585 (($) NIL (|has| (-921 |#1|) (-377)))) (-2358 (($) NIL (|has| (-921 |#1|) (-377)))) (-3676 (((-1281 (-921 |#1|)) $) NIL) (((-699 (-921 |#1|)) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-921 |#1|) (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-921 |#1|)) NIL)) (-1369 (($ $) NIL (|has| (-921 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2007 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-3611 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ (-921 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-921 |#1|)) NIL) (($ (-921 |#1|) $) NIL)))
+(((-352 |#1| |#2|) (-13 (-337 (-921 |#1|)) (-10 -7 (-15 -3363 ((-969 (-1133)))))) (-932) (-932)) (T -352))
+((-3363 (*1 *2) (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-352 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))))
+(-13 (-337 (-921 |#1|)) (-10 -7 (-15 -3363 ((-969 (-1133))))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 58)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) 56 (|has| |#1| (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) 142)) (-2209 ((|#1| $) 113)) (-3003 (($ (-1281 |#1|)) 130)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) 124 (|has| |#1| (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) 160 (|has| |#1| (-377)))) (-2878 (((-112) $) 66 (|has| |#1| (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) 60 (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3965 (((-112) $) 62)) (-2342 (($) 162 (|has| |#1| (-377)))) (-2079 (((-112) $) NIL (|has| |#1| (-377)))) (-1652 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 |#1|) $) 117) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-2565 (((-932) $) 171 (|has| |#1| (-377)))) (-2810 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-3795 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2338 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 178)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) 96 (|has| |#1| (-377)))) (-3504 (((-112) $) 147)) (-3966 (((-1133) $) NIL)) (-3363 (((-969 (-1133))) 57)) (-2970 (($) 158 (|has| |#1| (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) 119 (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) 90) (((-932)) 91)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) 161 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 154 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-1782 (((-1186 |#1|)) 122)) (-2585 (($) 159 (|has| |#1| (-377)))) (-2358 (($) 167 (|has| |#1| (-377)))) (-3676 (((-1281 |#1|) $) 77) (((-699 |#1|) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) 174) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 100)) (-1369 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4160 (((-781)) 155 T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) 144) (((-1281 $) (-932)) 98)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) 67 T CONST)) (-2146 (($) 103 T CONST)) (-2007 (($ $) 107 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3611 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2982 (((-112) $ $) 65)) (-3107 (($ $ $) 176) (($ $ |#1|) 177)) (-3094 (($ $) 157) (($ $ $) NIL)) (-3078 (($ $ $) 86)) (** (($ $ (-932)) 180) (($ $ (-781)) 181) (($ $ (-574)) 179)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 102) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
+(((-353 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3363 ((-969 (-1133)))))) (-358) (-1186 |#1|)) (T -353))
+((-3363 (*1 *2) (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) (-14 *4 (-1186 *3)))))
+(-13 (-337 |#1|) (-10 -7 (-15 -3363 ((-969 (-1133))))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-3003 (($ (-1281 |#1|)) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| |#1| (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) NIL (|has| |#1| (-377)))) (-2878 (((-112) $) NIL (|has| |#1| (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3965 (((-112) $) NIL)) (-2342 (($) NIL (|has| |#1| (-377)))) (-2079 (((-112) $) NIL (|has| |#1| (-377)))) (-1652 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 |#1|) $) NIL) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-2565 (((-932) $) NIL (|has| |#1| (-377)))) (-2810 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-3795 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2338 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-3504 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-3363 (((-969 (-1133))) NIL)) (-2970 (($) NIL (|has| |#1| (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) NIL) (((-932)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-1782 (((-1186 |#1|)) NIL)) (-2585 (($) NIL (|has| |#1| (-377)))) (-2358 (($) NIL (|has| |#1| (-377)))) (-3676 (((-1281 |#1|) $) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-1369 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2007 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3611 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-354 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3363 ((-969 (-1133)))))) (-358) (-932)) (T -354))
+((-3363 (*1 *2) (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932)))))
+(-13 (-337 |#1|) (-10 -7 (-15 -3363 ((-969 (-1133))))))
+((-3486 (((-781) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) 61)) (-1660 (((-969 (-1133)) (-1186 |#1|)) 112)) (-3075 (((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) (-1186 |#1|)) 103)) (-2957 (((-699 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) 113)) (-3533 (((-3 (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) "failed") (-932)) 13)) (-2894 (((-3 (-1186 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) (-932)) 18)))
+(((-355 |#1|) (-10 -7 (-15 -1660 ((-969 (-1133)) (-1186 |#1|))) (-15 -3075 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) (-1186 |#1|))) (-15 -2957 ((-699 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -3486 ((-781) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -3533 ((-3 (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) "failed") (-932))) (-15 -2894 ((-3 (-1186 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) (-932)))) (-358)) (T -355))
+((-2894 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-3 (-1186 *4) (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133))))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-3533 (*1 *2 *3) (|partial| -12 (-5 *3 (-932)) (-5 *2 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-5 *1 (-355 *4)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-969 (-1133))) (-5 *1 (-355 *4)))))
+(-10 -7 (-15 -1660 ((-969 (-1133)) (-1186 |#1|))) (-15 -3075 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) (-1186 |#1|))) (-15 -2957 ((-699 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -3486 ((-781) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -3533 ((-3 (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) "failed") (-932))) (-15 -2894 ((-3 (-1186 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) (-932))))
+((-2943 ((|#1| |#3|) 104) ((|#3| |#1|) 87)))
+(((-356 |#1| |#2| |#3|) (-10 -7 (-15 -2943 (|#3| |#1|)) (-15 -2943 (|#1| |#3|))) (-337 |#2|) (-358) (-337 |#2|)) (T -356))
+((-2943 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3)) (-4 *3 (-337 *4)))) (-2943 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2)) (-4 *3 (-337 *4)))))
+(-10 -7 (-15 -2943 (|#3| |#1|)) (-15 -2943 (|#1| |#3|)))
+((-2878 (((-112) $) 60)) (-3593 (((-843 (-932)) $) 23) (((-932) $) 64)) (-4048 (((-3 $ "failed") $) 18)) (-3818 (($) 9)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 114)) (-3232 (((-3 (-781) "failed") $ $) 92) (((-781) $) 79)) (-3905 (($ $ (-781)) NIL) (($ $) 8)) (-2585 (($) 53)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 38)) (-1369 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-357 |#1|) (-10 -8 (-15 -3593 ((-932) |#1|)) (-15 -3232 ((-781) |#1|)) (-15 -2878 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 -1518 ((-3 (-1281 |#1|) "failed") (-699 |#1|))) (-15 -1369 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3818 (|#1|)) (-15 -4048 ((-3 |#1| "failed") |#1|)) (-15 -3232 ((-3 (-781) "failed") |#1| |#1|)) (-15 -3593 ((-843 (-932)) |#1|)) (-15 -1369 ((-3 |#1| "failed") |#1|)) (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|)))) (-358)) (T -357))
+NIL
+(-10 -8 (-15 -3593 ((-932) |#1|)) (-15 -3232 ((-781) |#1|)) (-15 -2878 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 -1518 ((-3 (-1281 |#1|) "failed") (-699 |#1|))) (-15 -1369 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3818 (|#1|)) (-15 -4048 ((-3 |#1| "failed") |#1|)) (-15 -3232 ((-3 (-781) "failed") |#1| |#1|)) (-15 -3593 ((-843 (-932)) |#1|)) (-15 -1369 ((-3 |#1| "failed") |#1|)) (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-1340 (((-1203 (-932) (-781)) (-574)) 102)) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-3875 (((-112) $ $) 65)) (-1487 (((-781)) 112)) (-3670 (($) 18 T CONST)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-2820 (($) 115)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3906 (($) 100)) (-2878 (((-112) $) 99)) (-3564 (($ $) 87) (($ $ (-781)) 86)) (-1654 (((-112) $) 79)) (-3593 (((-843 (-932)) $) 89) (((-932) $) 97)) (-3965 (((-112) $) 35)) (-4048 (((-3 $ "failed") $) 111)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2565 (((-932) $) 114)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3818 (($) 110 T CONST)) (-2576 (($ (-932)) 113)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) 103)) (-4220 (((-428 $) $) 82)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-3232 (((-3 (-781) "failed") $ $) 88) (((-781) $) 98)) (-3905 (($ $ (-781)) 108) (($ $) 107)) (-2585 (($) 101)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 104)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-1369 (((-3 $ "failed") $) 90) (($ $) 105)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-781)) 109) (($ $) 106)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
+(((-358) (-141)) (T -358))
+((-1369 (*1 *1 *1) (-4 *1 (-358))) (-1518 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1281 *1)))) (-1507 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))))) (-1340 (*1 *2 *3) (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1203 (-932) (-781))))) (-2585 (*1 *1) (-4 *1 (-358))) (-3906 (*1 *1) (-4 *1 (-358))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-932)))) (-4075 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-412) (-377) (-1165) (-239) (-10 -8 (-15 -1369 ($ $)) (-15 -1518 ((-3 (-1281 $) "failed") (-699 $))) (-15 -1507 ((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574)))))) (-15 -1340 ((-1203 (-932) (-781)) (-574))) (-15 -2585 ($)) (-15 -3906 ($)) (-15 -2878 ((-112) $)) (-15 -3232 ((-781) $)) (-15 -3593 ((-932) $)) (-15 -4075 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) . T) ((-377) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) . T) ((-1231) . T) ((-1235) . T))
+((-2754 (((-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|) 55)) (-3885 (((-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 53)))
+(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -3885 ((-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -2754 ((-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))) (-1257 |#1|) (-419 |#1| |#2|)) (T -359))
+((-2754 (*1 *2 *3) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *2 (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3885 (*1 *2) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *2 (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
+(-10 -7 (-15 -3885 ((-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -2754 ((-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-921 |#1|) (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3486 (((-781)) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| (-921 |#1|) (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-921 |#1|) "failed") $) NIL)) (-2209 (((-921 |#1|) $) NIL)) (-3003 (($ (-1281 (-921 |#1|))) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-921 |#1|) (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-921 |#1|) (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) NIL (|has| (-921 |#1|) (-377)))) (-2878 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377)))) (($ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) NIL (|has| (-921 |#1|) (-377))) (((-843 (-932)) $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-3965 (((-112) $) NIL)) (-2342 (($) NIL (|has| (-921 |#1|) (-377)))) (-2079 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-1652 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| (-921 |#1|) (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 (-921 |#1|)) $) NIL) (((-1186 $) $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-2565 (((-932) $) NIL (|has| (-921 |#1|) (-377)))) (-2810 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377)))) (-3795 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-1186 (-921 |#1|)) "failed") $ $) NIL (|has| (-921 |#1|) (-377)))) (-2338 (($ $ (-1186 (-921 |#1|))) NIL (|has| (-921 |#1|) (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-921 |#1|) (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-3504 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2718 (((-1281 (-654 (-2 (|:| -3083 (-921 |#1|)) (|:| -2576 (-1133)))))) NIL)) (-3449 (((-699 (-921 |#1|))) NIL)) (-2970 (($) NIL (|has| (-921 |#1|) (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| (-921 |#1|) (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) NIL) (((-932)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-1782 (((-1186 (-921 |#1|))) NIL)) (-2585 (($) NIL (|has| (-921 |#1|) (-377)))) (-2358 (($) NIL (|has| (-921 |#1|) (-377)))) (-3676 (((-1281 (-921 |#1|)) $) NIL) (((-699 (-921 |#1|)) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-921 |#1|) (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-921 |#1|)) NIL)) (-1369 (($ $) NIL (|has| (-921 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2007 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-3611 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ (-921 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-921 |#1|)) NIL) (($ (-921 |#1|) $) NIL)))
+(((-360 |#1| |#2|) (-13 (-337 (-921 |#1|)) (-10 -7 (-15 -2718 ((-1281 (-654 (-2 (|:| -3083 (-921 |#1|)) (|:| -2576 (-1133))))))) (-15 -3449 ((-699 (-921 |#1|)))) (-15 -3486 ((-781))))) (-932) (-932)) (T -360))
+((-2718 (*1 *2) (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 (-921 *3)) (|:| -2576 (-1133)))))) (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-3449 (*1 *2) (-12 (-5 *2 (-699 (-921 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-3486 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))))
+(-13 (-337 (-921 |#1|)) (-10 -7 (-15 -2718 ((-1281 (-654 (-2 (|:| -3083 (-921 |#1|)) (|:| -2576 (-1133))))))) (-15 -3449 ((-699 (-921 |#1|)))) (-15 -3486 ((-781)))))
+((-2849 (((-112) $ $) 73)) (-2908 (((-112) $) 88)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 ((|#1| $) 106) (($ $ (-932)) 104 (|has| |#1| (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) 170 (|has| |#1| (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3486 (((-781)) 103)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) 187 (|has| |#1| (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) 127)) (-2209 ((|#1| $) 105)) (-3003 (($ (-1281 |#1|)) 71)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) 182 (|has| |#1| (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) 171 (|has| |#1| (-377)))) (-2878 (((-112) $) NIL (|has| |#1| (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3965 (((-112) $) NIL)) (-2342 (($) 113 (|has| |#1| (-377)))) (-2079 (((-112) $) 200 (|has| |#1| (-377)))) (-1652 ((|#1| $) 108) (($ $ (-932)) 107 (|has| |#1| (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 |#1|) $) 214) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-2565 (((-932) $) 148 (|has| |#1| (-377)))) (-2810 (((-1186 |#1|) $) 87 (|has| |#1| (-377)))) (-3795 (((-1186 |#1|) $) 84 (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) 96 (|has| |#1| (-377)))) (-2338 (($ $ (-1186 |#1|)) 83 (|has| |#1| (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 218)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) 150 (|has| |#1| (-377)))) (-3504 (((-112) $) 123)) (-3966 (((-1133) $) NIL)) (-2718 (((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) 97)) (-3449 (((-699 |#1|)) 101)) (-2970 (($) 110 (|has| |#1| (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) 173 (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) NIL) (((-932)) 174)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) 75)) (-1782 (((-1186 |#1|)) 175)) (-2585 (($) 147 (|has| |#1| (-377)))) (-2358 (($) NIL (|has| |#1| (-377)))) (-3676 (((-1281 |#1|) $) 121) (((-699 |#1|) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) 140) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 70)) (-1369 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4160 (((-781)) 180 T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) 197) (((-1281 $) (-932)) 116)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) 186 T CONST)) (-2146 (($) 161 T CONST)) (-2007 (($ $) 122 (|has| |#1| (-377))) (($ $ (-781)) 114 (|has| |#1| (-377)))) (-3611 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2982 (((-112) $ $) 208)) (-3107 (($ $ $) 119) (($ $ |#1|) 120)) (-3094 (($ $) 202) (($ $ $) 206)) (-3078 (($ $ $) 204)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 153)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 211) (($ $ $) 164) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118)))
+(((-361 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -2718 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -3449 ((-699 |#1|))) (-15 -3486 ((-781))))) (-358) (-3 (-1186 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (T -361))
+((-2718 (*1 *2) (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133)))))) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1186 *3) *2)))) (-3449 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1186 *3) (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133))))))))) (-3486 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1186 *3) (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133))))))))))
+(-13 (-337 |#1|) (-10 -7 (-15 -2718 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -3449 ((-699 |#1|))) (-15 -3486 ((-781)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3486 (((-781)) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-3003 (($ (-1281 |#1|)) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| |#1| (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) NIL (|has| |#1| (-377)))) (-2878 (((-112) $) NIL (|has| |#1| (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3965 (((-112) $) NIL)) (-2342 (($) NIL (|has| |#1| (-377)))) (-2079 (((-112) $) NIL (|has| |#1| (-377)))) (-1652 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 |#1|) $) NIL) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-2565 (((-932) $) NIL (|has| |#1| (-377)))) (-2810 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-3795 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2338 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-3504 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2718 (((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) NIL)) (-3449 (((-699 |#1|)) NIL)) (-2970 (($) NIL (|has| |#1| (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) NIL) (((-932)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-1782 (((-1186 |#1|)) NIL)) (-2585 (($) NIL (|has| |#1| (-377)))) (-2358 (($) NIL (|has| |#1| (-377)))) (-3676 (((-1281 |#1|) $) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-1369 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2007 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3611 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-362 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -2718 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -3449 ((-699 |#1|))) (-15 -3486 ((-781))))) (-358) (-932)) (T -362))
+((-2718 (*1 *2) (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133)))))) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932)))) (-3449 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932)))) (-3486 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932)))))
+(-13 (-337 |#1|) (-10 -7 (-15 -2718 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -3449 ((-699 |#1|))) (-15 -3486 ((-781)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-921 |#1|) (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| (-921 |#1|) (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-921 |#1|) "failed") $) NIL)) (-2209 (((-921 |#1|) $) NIL)) (-3003 (($ (-1281 (-921 |#1|))) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-921 |#1|) (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-921 |#1|) (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) NIL (|has| (-921 |#1|) (-377)))) (-2878 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377)))) (($ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) NIL (|has| (-921 |#1|) (-377))) (((-843 (-932)) $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-3965 (((-112) $) NIL)) (-2342 (($) NIL (|has| (-921 |#1|) (-377)))) (-2079 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-1652 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| (-921 |#1|) (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 (-921 |#1|)) $) NIL) (((-1186 $) $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-2565 (((-932) $) NIL (|has| (-921 |#1|) (-377)))) (-2810 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377)))) (-3795 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-1186 (-921 |#1|)) "failed") $ $) NIL (|has| (-921 |#1|) (-377)))) (-2338 (($ $ (-1186 (-921 |#1|))) NIL (|has| (-921 |#1|) (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-921 |#1|) (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-3504 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL (|has| (-921 |#1|) (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| (-921 |#1|) (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) NIL) (((-932)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-1782 (((-1186 (-921 |#1|))) NIL)) (-2585 (($) NIL (|has| (-921 |#1|) (-377)))) (-2358 (($) NIL (|has| (-921 |#1|) (-377)))) (-3676 (((-1281 (-921 |#1|)) $) NIL) (((-699 (-921 |#1|)) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-921 |#1|) (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-921 |#1|)) NIL)) (-1369 (($ $) NIL (|has| (-921 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2007 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-3611 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ (-921 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-921 |#1|)) NIL) (($ (-921 |#1|) $) NIL)))
+(((-363 |#1| |#2|) (-337 (-921 |#1|)) (-932) (-932)) (T -363))
+NIL
+(-337 (-921 |#1|))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) 129 (|has| |#1| (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) 155 (|has| |#1| (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) 103)) (-2209 ((|#1| $) 100)) (-3003 (($ (-1281 |#1|)) 95)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) 92 (|has| |#1| (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) 51 (|has| |#1| (-377)))) (-2878 (((-112) $) NIL (|has| |#1| (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3965 (((-112) $) NIL)) (-2342 (($) 130 (|has| |#1| (-377)))) (-2079 (((-112) $) 84 (|has| |#1| (-377)))) (-1652 ((|#1| $) 47) (($ $ (-932)) 52 (|has| |#1| (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 |#1|) $) 75) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-2565 (((-932) $) 107 (|has| |#1| (-377)))) (-2810 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-3795 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2338 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) 105 (|has| |#1| (-377)))) (-3504 (((-112) $) 157)) (-3966 (((-1133) $) NIL)) (-2970 (($) 44 (|has| |#1| (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) 124 (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) NIL) (((-932)) 154)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) 67)) (-1782 (((-1186 |#1|)) 98)) (-2585 (($) 135 (|has| |#1| (-377)))) (-2358 (($) NIL (|has| |#1| (-377)))) (-3676 (((-1281 |#1|) $) 63) (((-699 |#1|) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) 153) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 97)) (-1369 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4160 (((-781)) 159 T CONST)) (-2923 (((-112) $ $) 161)) (-2722 (((-1281 $)) 119) (((-1281 $) (-932)) 58)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) 121 T CONST)) (-2146 (($) 40 T CONST)) (-2007 (($ $) 78 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3611 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2982 (((-112) $ $) 117)) (-3107 (($ $ $) 109) (($ $ |#1|) 110)) (-3094 (($ $) 90) (($ $ $) 115)) (-3078 (($ $ $) 113)) (** (($ $ (-932)) NIL) (($ $ (-781)) 53) (($ $ (-574)) 138)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 88) (($ $ $) 65) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86)))
+(((-364 |#1| |#2|) (-337 |#1|) (-358) (-1186 |#1|)) (T -364))
+NIL
+(-337 |#1|)
+((-4407 ((|#1| (-1186 |#2|)) 59)))
+(((-365 |#1| |#2|) (-10 -7 (-15 -4407 (|#1| (-1186 |#2|)))) (-13 (-412) (-10 -7 (-15 -2943 (|#1| |#2|)) (-15 -2565 ((-932) |#1|)) (-15 -2722 ((-1281 |#1|) (-932))) (-15 -2007 (|#1| |#1|)))) (-358)) (T -365))
+((-4407 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-4 *2 (-13 (-412) (-10 -7 (-15 -2943 (*2 *4)) (-15 -2565 ((-932) *2)) (-15 -2722 ((-1281 *2) (-932))) (-15 -2007 (*2 *2))))) (-5 *1 (-365 *2 *4)))))
+(-10 -7 (-15 -4407 (|#1| (-1186 |#2|))))
+((-2726 (((-969 (-1186 |#1|)) (-1186 |#1|)) 49)) (-2820 (((-1186 |#1|) (-932) (-932)) 154) (((-1186 |#1|) (-932)) 150)) (-2878 (((-112) (-1186 |#1|)) 107)) (-3629 (((-932) (-932)) 85)) (-3607 (((-932) (-932)) 92)) (-3442 (((-932) (-932)) 83)) (-2079 (((-112) (-1186 |#1|)) 111)) (-1949 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 135)) (-4087 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 140)) (-2103 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 139)) (-3664 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 138)) (-3636 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 131)) (-4185 (((-1186 |#1|) (-1186 |#1|)) 71)) (-3931 (((-1186 |#1|) (-932)) 145)) (-3265 (((-1186 |#1|) (-932)) 148)) (-3207 (((-1186 |#1|) (-932)) 147)) (-3181 (((-1186 |#1|) (-932)) 146)) (-2505 (((-1186 |#1|) (-932)) 143)))
+(((-366 |#1|) (-10 -7 (-15 -2878 ((-112) (-1186 |#1|))) (-15 -2079 ((-112) (-1186 |#1|))) (-15 -3442 ((-932) (-932))) (-15 -3629 ((-932) (-932))) (-15 -3607 ((-932) (-932))) (-15 -2505 ((-1186 |#1|) (-932))) (-15 -3931 ((-1186 |#1|) (-932))) (-15 -3181 ((-1186 |#1|) (-932))) (-15 -3207 ((-1186 |#1|) (-932))) (-15 -3265 ((-1186 |#1|) (-932))) (-15 -3636 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -1949 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -3664 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -2103 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -4087 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -2820 ((-1186 |#1|) (-932))) (-15 -2820 ((-1186 |#1|) (-932) (-932))) (-15 -4185 ((-1186 |#1|) (-1186 |#1|))) (-15 -2726 ((-969 (-1186 |#1|)) (-1186 |#1|)))) (-358)) (T -366))
+((-2726 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-969 (-1186 *4))) (-5 *1 (-366 *4)) (-5 *3 (-1186 *4)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2820 (*1 *2 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-4087 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2103 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3664 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-1949 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3636 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3607 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-3442 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4)))))
+(-10 -7 (-15 -2878 ((-112) (-1186 |#1|))) (-15 -2079 ((-112) (-1186 |#1|))) (-15 -3442 ((-932) (-932))) (-15 -3629 ((-932) (-932))) (-15 -3607 ((-932) (-932))) (-15 -2505 ((-1186 |#1|) (-932))) (-15 -3931 ((-1186 |#1|) (-932))) (-15 -3181 ((-1186 |#1|) (-932))) (-15 -3207 ((-1186 |#1|) (-932))) (-15 -3265 ((-1186 |#1|) (-932))) (-15 -3636 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -1949 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -3664 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -2103 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -4087 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -2820 ((-1186 |#1|) (-932))) (-15 -2820 ((-1186 |#1|) (-932) (-932))) (-15 -4185 ((-1186 |#1|) (-1186 |#1|))) (-15 -2726 ((-969 (-1186 |#1|)) (-1186 |#1|))))
+((-3180 (((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|) 38)))
+(((-367 |#1| |#2| |#3|) (-10 -7 (-15 -3180 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) (-358) (-1257 |#1|) (-1257 |#2|)) (T -367))
+((-3180 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3)))))
+(-10 -7 (-15 -3180 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-3003 (($ (-1281 |#1|)) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| |#1| (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) NIL (|has| |#1| (-377)))) (-2878 (((-112) $) NIL (|has| |#1| (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3965 (((-112) $) NIL)) (-2342 (($) NIL (|has| |#1| (-377)))) (-2079 (((-112) $) NIL (|has| |#1| (-377)))) (-1652 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 |#1|) $) NIL) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-2565 (((-932) $) NIL (|has| |#1| (-377)))) (-2810 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-3795 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2338 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-3504 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL (|has| |#1| (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) NIL) (((-932)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-1782 (((-1186 |#1|)) NIL)) (-2585 (($) NIL (|has| |#1| (-377)))) (-2358 (($) NIL (|has| |#1| (-377)))) (-3676 (((-1281 |#1|) $) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-1369 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2007 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3611 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-368 |#1| |#2|) (-337 |#1|) (-358) (-932)) (T -368))
+NIL
+(-337 |#1|)
+((-1905 (((-112) (-654 (-963 |#1|))) 41)) (-2850 (((-654 (-963 |#1|)) (-654 (-963 |#1|))) 53)) (-1344 (((-3 (-654 (-963 |#1|)) "failed") (-654 (-963 |#1|))) 48)))
+(((-369 |#1| |#2|) (-10 -7 (-15 -1905 ((-112) (-654 (-963 |#1|)))) (-15 -1344 ((-3 (-654 (-963 |#1|)) "failed") (-654 (-963 |#1|)))) (-15 -2850 ((-654 (-963 |#1|)) (-654 (-963 |#1|))))) (-462) (-654 (-1190))) (T -369))
+((-2850 (*1 *2 *2) (-12 (-5 *2 (-654 (-963 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1190))))) (-1344 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-963 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1190))))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-462)) (-5 *2 (-112)) (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1190))))))
+(-10 -7 (-15 -1905 ((-112) (-654 (-963 |#1|)))) (-15 -1344 ((-3 (-654 (-963 |#1|)) "failed") (-654 (-963 |#1|)))) (-15 -2850 ((-654 (-963 |#1|)) (-654 (-963 |#1|)))))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781) $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) 17)) (-2404 ((|#1| $ (-574)) NIL)) (-4226 (((-574) $ (-574)) NIL)) (-3400 (($ (-1 |#1| |#1|) $) 34)) (-1835 (($ (-1 (-574) (-574)) $) 26)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 28)) (-3966 (((-1133) $) NIL)) (-3948 (((-654 (-2 (|:| |gen| |#1|) (|:| -1610 (-574)))) $) 30)) (-1514 (($ $ $) NIL)) (-3647 (($ $ $) NIL)) (-2943 (((-872) $) 40) (($ |#1|) NIL)) (-2923 (((-112) $ $) NIL)) (-2146 (($) 11 T CONST)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ |#1| (-574)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-370 |#1|) (-13 (-483) (-1051 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1487 ((-781) $)) (-15 -4226 ((-574) $ (-574))) (-15 -2404 (|#1| $ (-574))) (-15 -1835 ($ (-1 (-574) (-574)) $)) (-15 -3400 ($ (-1 |#1| |#1|) $)) (-15 -3948 ((-654 (-2 (|:| |gen| |#1|) (|:| -1610 (-574)))) $)))) (-1113)) (T -370))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1113)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1113)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1113)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1113)))) (-4226 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1113)))) (-2404 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1113)))) (-1835 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1113)))) (-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-370 *3)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 (-574))))) (-5 *1 (-370 *3)) (-4 *3 (-1113)))))
+(-13 (-483) (-1051 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1487 ((-781) $)) (-15 -4226 ((-574) $ (-574))) (-15 -2404 (|#1| $ (-574))) (-15 -1835 ($ (-1 (-574) (-574)) $)) (-15 -3400 ($ (-1 |#1| |#1|) $)) (-15 -3948 ((-654 (-2 (|:| |gen| |#1|) (|:| -1610 (-574)))) $))))
+((-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 13)) (-2814 (($ $) 14)) (-3440 (((-428 $) $) 34)) (-1654 (((-112) $) 30)) (-1324 (($ $) 19)) (-2874 (($ $ $) 25) (($ (-654 $)) NIL)) (-4220 (((-428 $) $) 35)) (-2838 (((-3 $ "failed") $ $) 24)) (-1347 (((-781) $) 28)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 39)) (-3798 (((-112) $ $) 16)) (-3107 (($ $ $) 37)))
+(((-371 |#1|) (-10 -8 (-15 -3107 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1|)) (-15 -1654 ((-112) |#1|)) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -2413 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -1347 ((-781) |#1|)) (-15 -2874 (|#1| (-654 |#1|))) (-15 -2874 (|#1| |#1| |#1|)) (-15 -3798 ((-112) |#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -2047 ((-2 (|:| -1708 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|))) (-372)) (T -371))
+NIL
+(-10 -8 (-15 -3107 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1|)) (-15 -1654 ((-112) |#1|)) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -2413 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -1347 ((-781) |#1|)) (-15 -2874 (|#1| (-654 |#1|))) (-15 -2874 (|#1| |#1| |#1|)) (-15 -3798 ((-112) |#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -2047 ((-2 (|:| -1708 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-3875 (((-112) $ $) 65)) (-3670 (($) 18 T CONST)) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-1654 (((-112) $) 79)) (-3965 (((-112) $) 35)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 82)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
+(((-372) (-141)) (T -372))
+((-3107 (*1 *1 *1 *1) (-4 *1 (-372))))
+(-13 (-315) (-1235) (-249) (-10 -8 (-15 -3107 ($ $ $)) (-6 -4454) (-6 -4448)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T))
+((-2849 (((-112) $ $) 7)) (-2596 ((|#2| $ |#2|) 14)) (-2759 (($ $ (-1172)) 19)) (-3971 ((|#2| $) 15)) (-1676 (($ |#1|) 21) (($ |#1| (-1172)) 20)) (-2032 ((|#1| $) 17)) (-2568 (((-1172) $) 10)) (-3900 (((-1172) $) 16)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3568 (($ $) 18)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-373 |#1| |#2|) (-141) (-1113) (-1113)) (T -373))
+((-1676 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-1676 (*1 *1 *2 *3) (-12 (-5 *3 (-1172)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1113)) (-4 *4 (-1113)))) (-2759 (*1 *1 *1 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-3568 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-5 *2 (-1172)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-2596 (*1 *2 *1 *2) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))))
+(-13 (-1113) (-10 -8 (-15 -1676 ($ |t#1|)) (-15 -1676 ($ |t#1| (-1172))) (-15 -2759 ($ $ (-1172))) (-15 -3568 ($ $)) (-15 -2032 (|t#1| $)) (-15 -3900 ((-1172) $)) (-15 -3971 (|t#2| $)) (-15 -2596 (|t#2| $ |t#2|))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2596 ((|#1| $ |#1|) 31)) (-2759 (($ $ (-1172)) 23)) (-1472 (((-3 |#1| "failed") $) 30)) (-3971 ((|#1| $) 28)) (-1676 (($ (-398)) 22) (($ (-398) (-1172)) 21)) (-2032 (((-398) $) 25)) (-2568 (((-1172) $) NIL)) (-3900 (((-1172) $) 26)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20)) (-3568 (($ $) 24)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 19)))
+(((-374 |#1|) (-13 (-373 (-398) |#1|) (-10 -8 (-15 -1472 ((-3 |#1| "failed") $)))) (-1113)) (T -374))
+((-1472 (*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1113)))))
+(-13 (-373 (-398) |#1|) (-10 -8 (-15 -1472 ((-3 |#1| "failed") $))))
+((-2750 (((-1281 (-699 |#2|)) (-1281 $)) 67)) (-3099 (((-699 |#2|) (-1281 $)) 139)) (-4029 ((|#2| $) 36)) (-2263 (((-699 |#2|) $ (-1281 $)) 142)) (-4369 (((-3 $ "failed") $) 89)) (-2856 ((|#2| $) 39)) (-2517 (((-1186 |#2|) $) 98)) (-1328 ((|#2| (-1281 $)) 122)) (-1510 (((-1186 |#2|) $) 32)) (-3063 (((-112)) 116)) (-3003 (($ (-1281 |#2|) (-1281 $)) 132)) (-1950 (((-3 $ "failed") $) 93)) (-2154 (((-112)) 111)) (-3644 (((-112)) 106)) (-4314 (((-112)) 58)) (-1658 (((-699 |#2|) (-1281 $)) 137)) (-2799 ((|#2| $) 35)) (-2360 (((-699 |#2|) $ (-1281 $)) 141)) (-1792 (((-3 $ "failed") $) 87)) (-3125 ((|#2| $) 38)) (-3258 (((-1186 |#2|) $) 97)) (-1734 ((|#2| (-1281 $)) 120)) (-1749 (((-1186 |#2|) $) 30)) (-1894 (((-112)) 115)) (-3532 (((-112)) 108)) (-3649 (((-112)) 56)) (-1593 (((-112)) 103)) (-1383 (((-112)) 117)) (-3676 (((-1281 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) 128)) (-2910 (((-112)) 113)) (-3432 (((-654 (-1281 |#2|))) 102)) (-2333 (((-112)) 114)) (-2210 (((-112)) 112)) (-3999 (((-112)) 51)) (-3784 (((-112)) 118)))
+(((-375 |#1| |#2|) (-10 -8 (-15 -2517 ((-1186 |#2|) |#1|)) (-15 -3258 ((-1186 |#2|) |#1|)) (-15 -3432 ((-654 (-1281 |#2|)))) (-15 -4369 ((-3 |#1| "failed") |#1|)) (-15 -1792 ((-3 |#1| "failed") |#1|)) (-15 -1950 ((-3 |#1| "failed") |#1|)) (-15 -3644 ((-112))) (-15 -3532 ((-112))) (-15 -2154 ((-112))) (-15 -3649 ((-112))) (-15 -4314 ((-112))) (-15 -1593 ((-112))) (-15 -3784 ((-112))) (-15 -1383 ((-112))) (-15 -3063 ((-112))) (-15 -1894 ((-112))) (-15 -3999 ((-112))) (-15 -2333 ((-112))) (-15 -2210 ((-112))) (-15 -2910 ((-112))) (-15 -1510 ((-1186 |#2|) |#1|)) (-15 -1749 ((-1186 |#2|) |#1|)) (-15 -3099 ((-699 |#2|) (-1281 |#1|))) (-15 -1658 ((-699 |#2|) (-1281 |#1|))) (-15 -1328 (|#2| (-1281 |#1|))) (-15 -1734 (|#2| (-1281 |#1|))) (-15 -3003 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2856 (|#2| |#1|)) (-15 -3125 (|#2| |#1|)) (-15 -4029 (|#2| |#1|)) (-15 -2799 (|#2| |#1|)) (-15 -2263 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2360 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2750 ((-1281 (-699 |#2|)) (-1281 |#1|)))) (-376 |#2|) (-174)) (T -375))
+((-2910 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2210 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2333 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3999 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1894 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3063 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1383 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3784 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1593 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4314 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3649 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2154 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3532 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3644 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3432 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1281 *4))) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))))
+(-10 -8 (-15 -2517 ((-1186 |#2|) |#1|)) (-15 -3258 ((-1186 |#2|) |#1|)) (-15 -3432 ((-654 (-1281 |#2|)))) (-15 -4369 ((-3 |#1| "failed") |#1|)) (-15 -1792 ((-3 |#1| "failed") |#1|)) (-15 -1950 ((-3 |#1| "failed") |#1|)) (-15 -3644 ((-112))) (-15 -3532 ((-112))) (-15 -2154 ((-112))) (-15 -3649 ((-112))) (-15 -4314 ((-112))) (-15 -1593 ((-112))) (-15 -3784 ((-112))) (-15 -1383 ((-112))) (-15 -3063 ((-112))) (-15 -1894 ((-112))) (-15 -3999 ((-112))) (-15 -2333 ((-112))) (-15 -2210 ((-112))) (-15 -2910 ((-112))) (-15 -1510 ((-1186 |#2|) |#1|)) (-15 -1749 ((-1186 |#2|) |#1|)) (-15 -3099 ((-699 |#2|) (-1281 |#1|))) (-15 -1658 ((-699 |#2|) (-1281 |#1|))) (-15 -1328 (|#2| (-1281 |#1|))) (-15 -1734 (|#2| (-1281 |#1|))) (-15 -3003 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2856 (|#2| |#1|)) (-15 -3125 (|#2| |#1|)) (-15 -4029 (|#2| |#1|)) (-15 -2799 (|#2| |#1|)) (-15 -2263 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2360 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2750 ((-1281 (-699 |#2|)) (-1281 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1708 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) 20)) (-2750 (((-1281 (-699 |#1|)) (-1281 $)) 83)) (-4136 (((-1281 $)) 86)) (-3670 (($) 18 T CONST)) (-4192 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-1738 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-3099 (((-699 |#1|) (-1281 $)) 70)) (-4029 ((|#1| $) 79)) (-2263 (((-699 |#1|) $ (-1281 $)) 81)) (-4369 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-2652 (($ $ (-932)) 31)) (-2856 ((|#1| $) 77)) (-2517 (((-1186 |#1|) $) 47 (|has| |#1| (-566)))) (-1328 ((|#1| (-1281 $)) 72)) (-1510 (((-1186 |#1|) $) 68)) (-3063 (((-112)) 62)) (-3003 (($ (-1281 |#1|) (-1281 $)) 74)) (-1950 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3584 (((-932)) 85)) (-3715 (((-112)) 59)) (-2023 (($ $ (-932)) 38)) (-2154 (((-112)) 55)) (-3644 (((-112)) 53)) (-4314 (((-112)) 57)) (-1388 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3546 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-1658 (((-699 |#1|) (-1281 $)) 71)) (-2799 ((|#1| $) 80)) (-2360 (((-699 |#1|) $ (-1281 $)) 82)) (-1792 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-3702 (($ $ (-932)) 32)) (-3125 ((|#1| $) 78)) (-3258 (((-1186 |#1|) $) 48 (|has| |#1| (-566)))) (-1734 ((|#1| (-1281 $)) 73)) (-1749 (((-1186 |#1|) $) 69)) (-1894 (((-112)) 63)) (-2568 (((-1172) $) 10)) (-3532 (((-112)) 54)) (-3649 (((-112)) 56)) (-1593 (((-112)) 58)) (-3966 (((-1133) $) 11)) (-1383 (((-112)) 61)) (-3676 (((-1281 |#1|) $ (-1281 $)) 76) (((-699 |#1|) (-1281 $) (-1281 $)) 75)) (-2528 (((-654 (-963 |#1|)) (-1281 $)) 84)) (-3647 (($ $ $) 28)) (-2910 (((-112)) 67)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3432 (((-654 (-1281 |#1|))) 49 (|has| |#1| (-566)))) (-3243 (($ $ $ $) 29)) (-2333 (((-112)) 65)) (-2309 (($ $ $) 27)) (-2210 (((-112)) 66)) (-3999 (((-112)) 64)) (-3784 (((-112)) 60)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 33)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-376 |#1|) (-141) (-174)) (T -376))
+((-4136 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1281 *1)) (-4 *1 (-376 *3)))) (-3584 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-932)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-654 (-963 *4))))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1281 (-699 *4))))) (-2360 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2263 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1281 *4)))) (-3676 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-3003 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1281 *1)) (-4 *4 (-174)) (-4 *1 (-376 *4)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-1328 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1186 *3)))) (-1510 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1186 *3)))) (-2910 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2210 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2333 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3999 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1894 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3063 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1383 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3784 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3715 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1593 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4314 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3649 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2154 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3532 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3644 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1950 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-1792 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-4369 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-3432 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-654 (-1281 *3))))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1186 *3)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1186 *3)))) (-1388 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2722 (-654 *1)))) (-4 *1 (-376 *3)))) (-4192 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2722 (-654 *1)))) (-4 *1 (-376 *3)))) (-3546 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-1738 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-1708 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))))
+(-13 (-754 |t#1|) (-10 -8 (-15 -4136 ((-1281 $))) (-15 -3584 ((-932))) (-15 -2528 ((-654 (-963 |t#1|)) (-1281 $))) (-15 -2750 ((-1281 (-699 |t#1|)) (-1281 $))) (-15 -2360 ((-699 |t#1|) $ (-1281 $))) (-15 -2263 ((-699 |t#1|) $ (-1281 $))) (-15 -2799 (|t#1| $)) (-15 -4029 (|t#1| $)) (-15 -3125 (|t#1| $)) (-15 -2856 (|t#1| $)) (-15 -3676 ((-1281 |t#1|) $ (-1281 $))) (-15 -3676 ((-699 |t#1|) (-1281 $) (-1281 $))) (-15 -3003 ($ (-1281 |t#1|) (-1281 $))) (-15 -1734 (|t#1| (-1281 $))) (-15 -1328 (|t#1| (-1281 $))) (-15 -1658 ((-699 |t#1|) (-1281 $))) (-15 -3099 ((-699 |t#1|) (-1281 $))) (-15 -1749 ((-1186 |t#1|) $)) (-15 -1510 ((-1186 |t#1|) $)) (-15 -2910 ((-112))) (-15 -2210 ((-112))) (-15 -2333 ((-112))) (-15 -3999 ((-112))) (-15 -1894 ((-112))) (-15 -3063 ((-112))) (-15 -1383 ((-112))) (-15 -3784 ((-112))) (-15 -3715 ((-112))) (-15 -1593 ((-112))) (-15 -4314 ((-112))) (-15 -3649 ((-112))) (-15 -2154 ((-112))) (-15 -3532 ((-112))) (-15 -3644 ((-112))) (IF (|has| |t#1| (-566)) (PROGN (-15 -1950 ((-3 $ "failed") $)) (-15 -1792 ((-3 $ "failed") $)) (-15 -4369 ((-3 $ "failed") $)) (-15 -3432 ((-654 (-1281 |t#1|)))) (-15 -3258 ((-1186 |t#1|) $)) (-15 -2517 ((-1186 |t#1|) $)) (-15 -1388 ((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed"))) (-15 -4192 ((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed"))) (-15 -3546 ((-3 $ "failed"))) (-15 -1738 ((-3 $ "failed"))) (-15 -1708 ((-3 $ "failed"))) (-6 -4453)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 7)) (-1487 (((-781)) 17)) (-2820 (($) 14)) (-2565 (((-932) $) 15)) (-2568 (((-1172) $) 10)) (-2576 (($ (-932)) 16)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-377) (-141)) (T -377))
+((-1487 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781)))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-377)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-932)))) (-2820 (*1 *1) (-4 *1 (-377))))
+(-13 (-1113) (-10 -8 (-15 -1487 ((-781))) (-15 -2576 ($ (-932))) (-15 -2565 ((-932) $)) (-15 -2820 ($))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2762 (((-699 |#2|) (-1281 $)) 45)) (-3003 (($ (-1281 |#2|) (-1281 $)) 39)) (-2085 (((-699 |#2|) $ (-1281 $)) 47)) (-1415 ((|#2| (-1281 $)) 13)) (-3676 (((-1281 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) 27)))
+(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -2762 ((-699 |#2|) (-1281 |#1|))) (-15 -1415 (|#2| (-1281 |#1|))) (-15 -3003 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2085 ((-699 |#2|) |#1| (-1281 |#1|)))) (-379 |#2| |#3|) (-174) (-1257 |#2|)) (T -378))
+NIL
+(-10 -8 (-15 -2762 ((-699 |#2|) (-1281 |#1|))) (-15 -1415 (|#2| (-1281 |#1|))) (-15 -3003 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2085 ((-699 |#2|) |#1| (-1281 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2762 (((-699 |#1|) (-1281 $)) 53)) (-1637 ((|#1| $) 59)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-3003 (($ (-1281 |#1|) (-1281 $)) 55)) (-2085 (((-699 |#1|) $ (-1281 $)) 60)) (-1950 (((-3 $ "failed") $) 37)) (-3584 (((-932)) 61)) (-3965 (((-112) $) 35)) (-1652 ((|#1| $) 58)) (-3190 ((|#2| $) 51 (|has| |#1| (-372)))) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1415 ((|#1| (-1281 $)) 54)) (-3676 (((-1281 |#1|) $ (-1281 $)) 57) (((-699 |#1|) (-1281 $) (-1281 $)) 56)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-1369 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4169 ((|#2| $) 52)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-379 |#1| |#2|) (-141) (-174) (-1257 |t#1|)) (T -379))
+((-3584 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-932)))) (-2085 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-1281 *4)))) (-3676 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) (-3003 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1281 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4 *5)) (-4 *5 (-1257 *4)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1257 *2)) (-4 *2 (-174)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3)))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) (-4 *2 (-1257 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3584 ((-932))) (-15 -2085 ((-699 |t#1|) $ (-1281 $))) (-15 -1637 (|t#1| $)) (-15 -1652 (|t#1| $)) (-15 -3676 ((-1281 |t#1|) $ (-1281 $))) (-15 -3676 ((-699 |t#1|) (-1281 $) (-1281 $))) (-15 -3003 ($ (-1281 |t#1|) (-1281 $))) (-15 -1415 (|t#1| (-1281 $))) (-15 -2762 ((-699 |t#1|) (-1281 $))) (-15 -4169 (|t#2| $)) (IF (|has| |t#1| (-372)) (-15 -3190 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-3318 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2868 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1778 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-380 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2868 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3318 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1231) (-382 |#1|) (-1231) (-382 |#3|)) (T -380))
+((-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5)))))
+(-10 -7 (-15 -1778 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2868 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3318 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3850 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-4010 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2771 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4423 (($ $) 25)) (-1441 (((-574) (-1 (-112) |#2|) $) NIL) (((-574) |#2| $) 11) (((-574) |#2| $ (-574)) NIL)) (-2130 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-381 |#1| |#2|) (-10 -8 (-15 -4010 (|#1| |#1|)) (-15 -4010 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3850 ((-112) |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -3850 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2771 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4423 (|#1| |#1|)) (-15 -2130 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-382 |#2|) (-1231)) (T -381))
+NIL
+(-10 -8 (-15 -4010 (|#1| |#1|)) (-15 -4010 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3850 ((-112) |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -3850 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2771 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4423 (|#1| |#1|)) (-15 -2130 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-1860 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2672 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-2158 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1441 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 70)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 44 (|has| (-574) (-860)))) (-3658 (($ $ $) 90 (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 45 (|has| (-574) (-860)))) (-2106 (($ $ $) 89 (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2459 (((-654 (-574)) $) 47)) (-2607 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1363 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-2837 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1958 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1837 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3016 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3028 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-382 |#1|) (-141) (-1231)) (T -382))
+((-2130 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) (-4423 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)))) (-2771 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) (-3850 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1231)) (-5 *2 (-112)))) (-1441 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1231)) (-5 *2 (-574)))) (-1441 (*1 *2 *3 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-574)))) (-1441 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)))) (-2130 (*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860)))) (-2771 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-860)) (-5 *2 (-112)))) (-1958 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4457)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) (-2672 (*1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-382 *2)) (-4 *2 (-1231)))) (-4010 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4457)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) (-4010 (*1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860)))))
+(-13 (-661 |t#1|) (-10 -8 (-6 -4456) (-15 -2130 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4423 ($ $)) (-15 -2771 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3850 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1441 ((-574) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -1441 ((-574) |t#1| $)) (-15 -1441 ((-574) |t#1| $ (-574)))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-6 (-860)) (-15 -2130 ($ $ $)) (-15 -2771 ($ $)) (-15 -3850 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4457)) (PROGN (-15 -1958 ($ $ $ (-574))) (-15 -2672 ($ $)) (-15 -4010 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-15 -4010 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1231) . T))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1655 (((-654 |#1|) $) 37)) (-4210 (($ $ (-781)) 38)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-4004 (((-1305 |#1| |#2|) (-1305 |#1| |#2|) $) 41)) (-3826 (($ $) 39)) (-2634 (((-1305 |#1| |#2|) (-1305 |#1| |#2|) $) 42)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2646 (($ $ |#1| $) 36) (($ $ (-654 |#1|) (-654 $)) 35)) (-1784 (((-781) $) 43)) (-2956 (($ $ $) 34)) (-2943 (((-872) $) 12) (($ |#1|) 46) (((-1296 |#1| |#2|) $) 45) (((-1305 |#1| |#2|) $) 44)) (-1859 ((|#2| (-1305 |#1| |#2|) $) 47)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-3169 (($ (-682 |#1|)) 40)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#2|) 33 (|has| |#2| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
+(((-383 |#1| |#2|) (-141) (-860) (-174)) (T -383))
+((-1859 (*1 *2 *3 *1) (-12 (-5 *3 (-1305 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) (-4 *2 (-174)))) (-2943 (*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1296 *3 *4)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1305 *3 *4)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-781)))) (-2634 (*1 *2 *2 *1) (-12 (-5 *2 (-1305 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-4004 (*1 *2 *2 *1) (-12 (-5 *2 (-1305 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) (-4 *4 (-174)))) (-3826 (*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-4210 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-654 *3)))) (-2646 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-860)) (-4 *5 (-174)))))
+(-13 (-644 |t#2|) (-10 -8 (-15 -1859 (|t#2| (-1305 |t#1| |t#2|) $)) (-15 -2943 ($ |t#1|)) (-15 -2943 ((-1296 |t#1| |t#2|) $)) (-15 -2943 ((-1305 |t#1| |t#2|) $)) (-15 -1784 ((-781) $)) (-15 -2634 ((-1305 |t#1| |t#2|) (-1305 |t#1| |t#2|) $)) (-15 -4004 ((-1305 |t#1| |t#2|) (-1305 |t#1| |t#2|) $)) (-15 -3169 ($ (-682 |t#1|))) (-15 -3826 ($ $)) (-15 -4210 ($ $ (-781))) (-15 -1655 ((-654 |t#1|) $)) (-15 -2646 ($ $ |t#1| $)) (-15 -2646 ($ $ (-654 |t#1|) (-654 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-658 |#2|) . T) ((-644 |#2|) . T) ((-650 |#2|) . T) ((-727 |#2|) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1113) . T))
+((-2647 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3803 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1374 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33)))
+(((-384 |#1| |#2|) (-10 -7 (-15 -3803 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1374 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2647 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1231) (-13 (-382 |#1|) (-10 -7 (-6 -4457)))) (T -384))
+((-2647 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))))) (-1374 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))))) (-3803 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))))))
+(-10 -7 (-15 -3803 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1374 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2647 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-2668 (((-699 |#2|) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 22) (((-699 (-574)) (-699 $)) 14) (((-699 (-574)) (-1281 $)) NIL)))
+(((-385 |#1| |#2|) (-10 -8 (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 |#2|) (-699 |#1|))) (-15 -2668 ((-699 |#2|) (-1281 |#1|)))) (-386 |#2|) (-1062)) (T -385))
+NIL
+(-10 -8 (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 |#2|) (-699 |#1|))) (-15 -2668 ((-699 |#2|) (-1281 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2668 (((-699 |#1|) (-1281 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 29) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 39 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 38 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-1281 $)) 37 (|has| |#1| (-649 (-574))))) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27)))
+(((-386 |#1|) (-141) (-1062)) (T -386))
+NIL
+(-13 (-649 |t#1|) (-10 -7 (IF (|has| |t#1| (-649 (-574))) (-6 (-649 (-574))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 #0=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-649 #0#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-1113) . T))
+((-4190 (((-654 (-302 (-963 (-171 |#1|)))) (-302 (-417 (-963 (-171 (-574))))) |#1|) 51) (((-654 (-302 (-963 (-171 |#1|)))) (-417 (-963 (-171 (-574)))) |#1|) 50) (((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-302 (-417 (-963 (-171 (-574)))))) |#1|) 47) (((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-417 (-963 (-171 (-574))))) |#1|) 41)) (-1334 (((-654 (-654 (-171 |#1|))) (-654 (-417 (-963 (-171 (-574))))) (-654 (-1190)) |#1|) 30) (((-654 (-171 |#1|)) (-417 (-963 (-171 (-574)))) |#1|) 18)))
+(((-387 |#1|) (-10 -7 (-15 -4190 ((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-417 (-963 (-171 (-574))))) |#1|)) (-15 -4190 ((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-302 (-417 (-963 (-171 (-574)))))) |#1|)) (-15 -4190 ((-654 (-302 (-963 (-171 |#1|)))) (-417 (-963 (-171 (-574)))) |#1|)) (-15 -4190 ((-654 (-302 (-963 (-171 |#1|)))) (-302 (-417 (-963 (-171 (-574))))) |#1|)) (-15 -1334 ((-654 (-171 |#1|)) (-417 (-963 (-171 (-574)))) |#1|)) (-15 -1334 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-963 (-171 (-574))))) (-654 (-1190)) |#1|))) (-13 (-372) (-858))) (T -387))
+((-1334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-963 (-171 (-574)))))) (-5 *4 (-654 (-1190))) (-5 *2 (-654 (-654 (-171 *5)))) (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858))))) (-1334 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-963 (-171 (-574)))))) (-5 *2 (-654 (-302 (-963 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-171 (-574))))) (-5 *2 (-654 (-302 (-963 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-963 (-171 (-574))))))) (-5 *2 (-654 (-654 (-302 (-963 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 (-171 (-574)))))) (-5 *2 (-654 (-654 (-302 (-963 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))))
+(-10 -7 (-15 -4190 ((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-417 (-963 (-171 (-574))))) |#1|)) (-15 -4190 ((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-302 (-417 (-963 (-171 (-574)))))) |#1|)) (-15 -4190 ((-654 (-302 (-963 (-171 |#1|)))) (-417 (-963 (-171 (-574)))) |#1|)) (-15 -4190 ((-654 (-302 (-963 (-171 |#1|)))) (-302 (-417 (-963 (-171 (-574))))) |#1|)) (-15 -1334 ((-654 (-171 |#1|)) (-417 (-963 (-171 (-574)))) |#1|)) (-15 -1334 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-963 (-171 (-574))))) (-654 (-1190)) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 35)) (-2809 (((-574) $) 62)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-1760 (($ $) 136)) (-2364 (($ $) 98)) (-2246 (($ $) 90)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-4229 (($ $) 47)) (-3875 (((-112) $ $) NIL)) (-2343 (($ $) 96)) (-2227 (($ $) 85)) (-3747 (((-574) $) 78)) (-3958 (($ $ (-574)) 73)) (-2388 (($ $) NIL)) (-2267 (($ $) NIL)) (-3670 (($) NIL T CONST)) (-3612 (($ $) 138)) (-1697 (((-3 (-574) "failed") $) 231) (((-3 (-417 (-574)) "failed") $) 227)) (-2209 (((-574) $) 229) (((-417 (-574)) $) 225)) (-2785 (($ $ $) NIL)) (-2344 (((-574) $ $) 125)) (-1950 (((-3 $ "failed") $) 141)) (-4112 (((-417 (-574)) $ (-781)) 232) (((-417 (-574)) $ (-781) (-781)) 224)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3785 (((-932)) 121) (((-932) (-932)) 122 (|has| $ (-6 -4447)))) (-3434 (((-112) $) 130)) (-3001 (($) 41)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-4277 (((-1286) (-781)) 191)) (-2067 (((-1286)) 196) (((-1286) (-781)) 197)) (-2787 (((-1286)) 198) (((-1286) (-781)) 199)) (-2438 (((-1286)) 194) (((-1286) (-781)) 195)) (-3593 (((-574) $) 68)) (-3965 (((-112) $) 40)) (-3379 (($ $ (-574)) NIL)) (-2667 (($ $) 51)) (-1652 (($ $) NIL)) (-3244 (((-112) $) 37)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL) (($) NIL (-12 (-2077 (|has| $ (-6 -4439))) (-2077 (|has| $ (-6 -4447)))))) (-2106 (($ $ $) NIL) (($) NIL (-12 (-2077 (|has| $ (-6 -4439))) (-2077 (|has| $ (-6 -4447)))))) (-4301 (((-574) $) 17)) (-3236 (($) 106) (($ $) 113)) (-1733 (($) 112) (($ $) 114)) (-3119 (($ $) 101)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 143)) (-1457 (((-932) (-574)) 46 (|has| $ (-6 -4447)))) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) 60)) (-1846 (($ $) 135)) (-2384 (($ (-574) (-574)) 131) (($ (-574) (-574) (-932)) 132)) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2524 (((-574) $) 19)) (-1560 (($) 115)) (-1610 (($ $) 95)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3810 (((-932)) 123) (((-932) (-932)) 124 (|has| $ (-6 -4447)))) (-3905 (($ $ (-781)) NIL) (($ $) 142)) (-2830 (((-932) (-574)) 50 (|has| $ (-6 -4447)))) (-2402 (($ $) NIL)) (-2275 (($ $) NIL)) (-2375 (($ $) NIL)) (-2257 (($ $) NIL)) (-2353 (($ $) 97)) (-2237 (($ $) 89)) (-1837 (((-388) $) 216) (((-227) $) 218) (((-903 (-388)) $) NIL) (((-1172) $) 202) (((-546) $) 214) (($ (-227)) 223)) (-2943 (((-872) $) 206) (($ (-574)) 228) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 228) (($ (-417 (-574))) NIL) (((-227) $) 219)) (-4160 (((-781)) NIL T CONST)) (-4078 (($ $) 137)) (-3909 (((-932)) 61) (((-932) (-932)) 80 (|has| $ (-6 -4447)))) (-2923 (((-112) $ $) NIL)) (-2629 (((-932)) 126)) (-2441 (($ $) 104)) (-2305 (($ $) 49) (($ $ $) 59)) (-3798 (((-112) $ $) NIL)) (-2414 (($ $) 102)) (-2287 (($ $) 39)) (-2465 (($ $) NIL)) (-2325 (($ $) NIL)) (-2521 (($ $) NIL)) (-2334 (($ $) NIL)) (-2453 (($ $) NIL)) (-2315 (($ $) NIL)) (-2428 (($ $) 103)) (-2297 (($ $) 52)) (-2946 (($ $) 58)) (-2134 (($) 36 T CONST)) (-2146 (($) 43 T CONST)) (-1520 (((-1172) $) 27) (((-1172) $ (-112)) 29) (((-1286) (-832) $) 30) (((-1286) (-832) $ (-112)) 31)) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-3041 (((-112) $ $) 203)) (-3016 (((-112) $ $) 45)) (-2982 (((-112) $ $) 56)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 57)) (-3107 (($ $ $) 48) (($ $ (-574)) 42)) (-3094 (($ $) 38) (($ $ $) 53)) (-3078 (($ $ $) 72)) (** (($ $ (-932)) 83) (($ $ (-781)) NIL) (($ $ (-574)) 107) (($ $ (-417 (-574))) 154) (($ $ $) 145)) (* (($ (-932) $) 79) (($ (-781) $) NIL) (($ (-574) $) 84) (($ $ $) 71) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
+(((-388) (-13 (-414) (-239) (-624 (-1172)) (-838) (-623 (-227)) (-1216) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3107 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -2667 ($ $)) (-15 -2344 ((-574) $ $)) (-15 -3958 ($ $ (-574))) (-15 -4112 ((-417 (-574)) $ (-781))) (-15 -4112 ((-417 (-574)) $ (-781) (-781))) (-15 -3236 ($)) (-15 -1733 ($)) (-15 -1560 ($)) (-15 -2305 ($ $ $)) (-15 -3236 ($ $)) (-15 -1733 ($ $)) (-15 -2787 ((-1286))) (-15 -2787 ((-1286) (-781))) (-15 -2438 ((-1286))) (-15 -2438 ((-1286) (-781))) (-15 -2067 ((-1286))) (-15 -2067 ((-1286) (-781))) (-15 -4277 ((-1286) (-781))) (-6 -4447) (-6 -4439)))) (T -388))
+((** (*1 *1 *1 *1) (-5 *1 (-388))) (-3107 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-2667 (*1 *1 *1) (-5 *1 (-388))) (-2344 (*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-4112 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-4112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-3236 (*1 *1) (-5 *1 (-388))) (-1733 (*1 *1) (-5 *1 (-388))) (-1560 (*1 *1) (-5 *1 (-388))) (-2305 (*1 *1 *1 *1) (-5 *1 (-388))) (-3236 (*1 *1 *1) (-5 *1 (-388))) (-1733 (*1 *1 *1) (-5 *1 (-388))) (-2787 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))) (-2438 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388)))) (-2438 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))) (-2067 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))) (-4277 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))))
+(-13 (-414) (-239) (-624 (-1172)) (-838) (-623 (-227)) (-1216) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3107 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -2667 ($ $)) (-15 -2344 ((-574) $ $)) (-15 -3958 ($ $ (-574))) (-15 -4112 ((-417 (-574)) $ (-781))) (-15 -4112 ((-417 (-574)) $ (-781) (-781))) (-15 -3236 ($)) (-15 -1733 ($)) (-15 -1560 ($)) (-15 -2305 ($ $ $)) (-15 -3236 ($ $)) (-15 -1733 ($ $)) (-15 -2787 ((-1286))) (-15 -2787 ((-1286) (-781))) (-15 -2438 ((-1286))) (-15 -2438 ((-1286) (-781))) (-15 -2067 ((-1286))) (-15 -2067 ((-1286) (-781))) (-15 -4277 ((-1286) (-781))) (-6 -4447) (-6 -4439)))
+((-1723 (((-654 (-302 (-963 |#1|))) (-302 (-417 (-963 (-574)))) |#1|) 46) (((-654 (-302 (-963 |#1|))) (-417 (-963 (-574))) |#1|) 45) (((-654 (-654 (-302 (-963 |#1|)))) (-654 (-302 (-417 (-963 (-574))))) |#1|) 42) (((-654 (-654 (-302 (-963 |#1|)))) (-654 (-417 (-963 (-574)))) |#1|) 36)) (-2689 (((-654 |#1|) (-417 (-963 (-574))) |#1|) 20) (((-654 (-654 |#1|)) (-654 (-417 (-963 (-574)))) (-654 (-1190)) |#1|) 30)))
+(((-389 |#1|) (-10 -7 (-15 -1723 ((-654 (-654 (-302 (-963 |#1|)))) (-654 (-417 (-963 (-574)))) |#1|)) (-15 -1723 ((-654 (-654 (-302 (-963 |#1|)))) (-654 (-302 (-417 (-963 (-574))))) |#1|)) (-15 -1723 ((-654 (-302 (-963 |#1|))) (-417 (-963 (-574))) |#1|)) (-15 -1723 ((-654 (-302 (-963 |#1|))) (-302 (-417 (-963 (-574)))) |#1|)) (-15 -2689 ((-654 (-654 |#1|)) (-654 (-417 (-963 (-574)))) (-654 (-1190)) |#1|)) (-15 -2689 ((-654 |#1|) (-417 (-963 (-574))) |#1|))) (-13 (-858) (-372))) (T -389))
+((-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-2689 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-963 (-574))))) (-5 *4 (-654 (-1190))) (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-858) (-372))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-963 (-574))))) (-5 *2 (-654 (-302 (-963 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-574)))) (-5 *2 (-654 (-302 (-963 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-963 (-574)))))) (-5 *2 (-654 (-654 (-302 (-963 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 (-574))))) (-5 *2 (-654 (-654 (-302 (-963 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))))
+(-10 -7 (-15 -1723 ((-654 (-654 (-302 (-963 |#1|)))) (-654 (-417 (-963 (-574)))) |#1|)) (-15 -1723 ((-654 (-654 (-302 (-963 |#1|)))) (-654 (-302 (-417 (-963 (-574))))) |#1|)) (-15 -1723 ((-654 (-302 (-963 |#1|))) (-417 (-963 (-574))) |#1|)) (-15 -1723 ((-654 (-302 (-963 |#1|))) (-302 (-417 (-963 (-574)))) |#1|)) (-15 -2689 ((-654 (-654 |#1|)) (-654 (-417 (-963 (-574)))) (-654 (-1190)) |#1|)) (-15 -2689 ((-654 |#1|) (-417 (-963 (-574))) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) 30)) (-2209 ((|#2| $) 32)) (-1392 (($ $) NIL)) (-2784 (((-781) $) 11)) (-3576 (((-654 $) $) 23)) (-2197 (((-112) $) NIL)) (-3832 (($ |#2| |#1|) 21)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-4050 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1359 ((|#2| $) 18)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 51) (($ |#2|) 31)) (-3123 (((-654 |#1|) $) 20)) (-3344 ((|#1| $ |#2|) 55)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 33 T CONST)) (-3251 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
+(((-390 |#1| |#2|) (-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1062) (-860)) (T -390))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-860)))))
+(-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#2| "failed") $) 49)) (-2209 ((|#2| $) 50)) (-1392 (($ $) 35)) (-2784 (((-781) $) 39)) (-3576 (((-654 $) $) 40)) (-2197 (((-112) $) 43)) (-3832 (($ |#2| |#1|) 44)) (-1778 (($ (-1 |#1| |#1|) $) 45)) (-4050 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1359 ((|#2| $) 38)) (-1370 ((|#1| $) 37)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ |#2|) 48)) (-3123 (((-654 |#1|) $) 41)) (-3344 ((|#1| $ |#2|) 46)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-3251 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
+(((-391 |#1| |#2|) (-141) (-1062) (-1113)) (T -391))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1113)))) (-3344 (*1 *2 *1 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1062)))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)))) (-3832 (*1 *1 *2 *3) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1113)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-112)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-654 *3)))) (-3576 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-391 *3 *4)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-781)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1113)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1062)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1113)))))
+(-13 (-111 |t#1| |t#1|) (-1051 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3344 (|t#1| $ |t#2|)) (-15 -1778 ($ (-1 |t#1| |t#1|) $)) (-15 -3832 ($ |t#2| |t#1|)) (-15 -2197 ((-112) $)) (-15 -3251 ((-654 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3123 ((-654 |t#1|) $)) (-15 -3576 ((-654 $) $)) (-15 -2784 ((-781) $)) (-15 -1359 (|t#2| $)) (-15 -1370 (|t#1| $)) (-15 -4050 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1392 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-727 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-1051 |#2|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T))
+((-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-699 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 11)))
+(((-392) (-141)) (T -392))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) (-4 *1 (-392)))))
+(-13 (-405) (-10 -8 (-15 -2943 ($ (-699 (-709)))) (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))))))
+(((-623 (-872)) . T) ((-405) . T) ((-1231) . T))
+((-1697 (((-3 $ "failed") (-699 (-324 (-388)))) 21) (((-3 $ "failed") (-699 (-324 (-574)))) 19) (((-3 $ "failed") (-699 (-963 (-388)))) 17) (((-3 $ "failed") (-699 (-963 (-574)))) 15) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 13) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 11)) (-2209 (($ (-699 (-324 (-388)))) 22) (($ (-699 (-324 (-574)))) 20) (($ (-699 (-963 (-388)))) 18) (($ (-699 (-963 (-574)))) 16) (($ (-699 (-417 (-963 (-388))))) 14) (($ (-699 (-417 (-963 (-574))))) 12)) (-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 23)))
+(((-393) (-141)) (T -393))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) (-4 *1 (-393)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-699 (-963 (-388)))) (-4 *1 (-393)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-963 (-388)))) (-4 *1 (-393)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-699 (-963 (-574)))) (-4 *1 (-393)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-963 (-574)))) (-4 *1 (-393)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-963 (-388))))) (-4 *1 (-393)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-963 (-388))))) (-4 *1 (-393)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-963 (-574))))) (-4 *1 (-393)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-963 (-574))))) (-4 *1 (-393)))))
+(-13 (-405) (-10 -8 (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))) (-15 -2209 ($ (-699 (-324 (-388))))) (-15 -1697 ((-3 $ "failed") (-699 (-324 (-388))))) (-15 -2209 ($ (-699 (-324 (-574))))) (-15 -1697 ((-3 $ "failed") (-699 (-324 (-574))))) (-15 -2209 ($ (-699 (-963 (-388))))) (-15 -1697 ((-3 $ "failed") (-699 (-963 (-388))))) (-15 -2209 ($ (-699 (-963 (-574))))) (-15 -1697 ((-3 $ "failed") (-699 (-963 (-574))))) (-15 -2209 ($ (-699 (-417 (-963 (-388)))))) (-15 -1697 ((-3 $ "failed") (-699 (-417 (-963 (-388)))))) (-15 -2209 ($ (-699 (-417 (-963 (-574)))))) (-15 -1697 ((-3 $ "failed") (-699 (-417 (-963 (-574))))))))
+(((-623 (-872)) . T) ((-405) . T) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2890 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 33)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 12 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|))) (-1062) (-860)) (T -394))
+NIL
+(-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|)))
+((-2849 (((-112) $ $) 7)) (-1487 (((-781) $) 34)) (-3670 (($) 19 T CONST)) (-4004 (((-3 $ "failed") $ $) 37)) (-1697 (((-3 |#1| "failed") $) 45)) (-2209 ((|#1| $) 46)) (-1950 (((-3 $ "failed") $) 16)) (-2940 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-3965 (((-112) $) 18)) (-2404 ((|#1| $ (-574)) 31)) (-4226 (((-781) $ (-574)) 32)) (-3658 (($ $ $) 28 (|has| |#1| (-860)))) (-2106 (($ $ $) 27 (|has| |#1| (-860)))) (-3400 (($ (-1 |#1| |#1|) $) 29)) (-1835 (($ (-1 (-781) (-781)) $) 30)) (-2634 (((-3 $ "failed") $ $) 38)) (-2568 (((-1172) $) 10)) (-3358 (($ $ $) 39)) (-2812 (($ $ $) 40)) (-3966 (((-1133) $) 11)) (-3948 (((-654 (-2 (|:| |gen| |#1|) (|:| -1610 (-781)))) $) 33)) (-2413 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2943 (((-872) $) 12) (($ |#1|) 44)) (-2923 (((-112) $ $) 9)) (-2146 (($) 20 T CONST)) (-3041 (((-112) $ $) 25 (|has| |#1| (-860)))) (-3016 (((-112) $ $) 24 (|has| |#1| (-860)))) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 26 (|has| |#1| (-860)))) (-3005 (((-112) $ $) 23 (|has| |#1| (-860)))) (** (($ $ (-932)) 14) (($ $ (-781)) 17) (($ |#1| (-781)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
+(((-395 |#1|) (-141) (-1113)) (T -395))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-2812 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-3358 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-2634 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-4004 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-2413 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1113)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-2940 (*1 *2 *1 *1) (-12 (-4 *3 (-1113)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1113)) (-5 *2 (-781)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1113)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 (-781))))))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1113)) (-5 *2 (-781)))) (-2404 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-1835 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1113)))) (-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1113)))))
+(-13 (-736) (-1051 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-781))) (-15 -2812 ($ $ $)) (-15 -3358 ($ $ $)) (-15 -2634 ((-3 $ "failed") $ $)) (-15 -4004 ((-3 $ "failed") $ $)) (-15 -2413 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2940 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1487 ((-781) $)) (-15 -3948 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1610 (-781)))) $)) (-15 -4226 ((-781) $ (-574))) (-15 -2404 (|t#1| $ (-574))) (-15 -1835 ($ (-1 (-781) (-781)) $)) (-15 -3400 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|)))
+(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1051 |#1|) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781) $) 74)) (-3670 (($) NIL T CONST)) (-4004 (((-3 $ "failed") $ $) 77)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2940 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3965 (((-112) $) 17)) (-2404 ((|#1| $ (-574)) NIL)) (-4226 (((-781) $ (-574)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-3400 (($ (-1 |#1| |#1|) $) 40)) (-1835 (($ (-1 (-781) (-781)) $) 37)) (-2634 (((-3 $ "failed") $ $) 60)) (-2568 (((-1172) $) NIL)) (-3358 (($ $ $) 28)) (-2812 (($ $ $) 26)) (-3966 (((-1133) $) NIL)) (-3948 (((-654 (-2 (|:| |gen| |#1|) (|:| -1610 (-781)))) $) 34)) (-2413 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2943 (((-872) $) 24) (($ |#1|) NIL)) (-2923 (((-112) $ $) NIL)) (-2146 (($) 11 T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) 84 (|has| |#1| (-860)))) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+(((-396 |#1|) (-395 |#1|) (-1113)) (T -396))
+NIL
+(-395 |#1|)
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1697 (((-3 (-574) "failed") $) 53)) (-2209 (((-574) $) 54)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-3658 (($ $ $) 60)) (-2106 (($ $ $) 59)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 52)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3041 (((-112) $ $) 57)) (-3016 (((-112) $ $) 56)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 58)) (-3005 (((-112) $ $) 55)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
(((-397) (-141)) (T -397))
-((-3710 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-397)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))) (-2030 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))) (-3787 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-397)))))
-(-13 (-1111) (-498 (-1170)) (-10 -8 (-15 -3710 ($ (-1170) (-1170) (-1170))) (-15 -2563 ((-1170) $)) (-15 -2030 ((-1170) $)) (-15 -1414 ((-1170) $)) (-15 -3601 ((-112) $)) (-15 -4233 ((-112) $)) (-15 -1628 ((-112) $)) (-15 -3787 ($ (-1170) (-1170) (-1170)))))
-(((-102) . T) ((-624 #0=(-1170)) . T) ((-621 (-870)) . T) ((-621 #0#) . T) ((-498 #0#) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2504 (((-870) $) 63)) (-3281 (($) NIL T CONST)) (-2673 (($ $ (-930)) NIL)) (-4101 (($ $ (-930)) NIL)) (-1858 (($ $ (-930)) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2967 (($ (-779)) 38)) (-4224 (((-779)) 18)) (-1852 (((-870) $) 65)) (-4326 (($ $ $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2266 (($ $ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2131 (($) 24 T CONST)) (-2978 (((-112) $ $) 41)) (-3089 (($ $) 48) (($ $ $) 50)) (-3075 (($ $ $) 51)) (** (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
-(((-398 |#1| |#2| |#3|) (-13 (-752 |#3|) (-10 -8 (-15 -4224 ((-779))) (-15 -1852 ((-870) $)) (-15 -2504 ((-870) $)) (-15 -2967 ($ (-779))))) (-779) (-779) (-174)) (T -398))
-((-4224 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 (-779)) (-14 *4 (-779)) (-4 *5 (-174)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 (-779)) (-14 *4 (-779)) (-4 *5 (-174)))) (-2967 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))))
-(-13 (-752 |#3|) (-10 -8 (-15 -4224 ((-779))) (-15 -1852 ((-870) $)) (-15 -2504 ((-870) $)) (-15 -2967 ($ (-779)))))
-((-1738 (((-1170)) 12)) (-3320 (((-1158 (-1170))) 30)) (-3745 (((-1284) (-1170)) 27) (((-1284) (-396)) 26)) (-3755 (((-1284)) 28)) (-3867 (((-1158 (-1170))) 29)))
-(((-399) (-10 -7 (-15 -3867 ((-1158 (-1170)))) (-15 -3320 ((-1158 (-1170)))) (-15 -3755 ((-1284))) (-15 -3745 ((-1284) (-396))) (-15 -3745 ((-1284) (-1170))) (-15 -1738 ((-1170))))) (T -399))
-((-1738 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-399)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-399)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-396)) (-5 *2 (-1284)) (-5 *1 (-399)))) (-3755 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-399)))) (-3320 (*1 *2) (-12 (-5 *2 (-1158 (-1170))) (-5 *1 (-399)))) (-3867 (*1 *2) (-12 (-5 *2 (-1158 (-1170))) (-5 *1 (-399)))))
-(-10 -7 (-15 -3867 ((-1158 (-1170)))) (-15 -3320 ((-1158 (-1170)))) (-15 -3755 ((-1284))) (-15 -3745 ((-1284) (-396))) (-15 -3745 ((-1284) (-1170))) (-15 -1738 ((-1170))))
-((-2956 (((-779) (-343 |#1| |#2| |#3| |#4|)) 16)))
-(((-400 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2956 ((-779) (-343 |#1| |#2| |#3| |#4|)))) (-13 (-375) (-370)) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -400))
-((-2956 (*1 *2 *3) (-12 (-5 *3 (-343 *4 *5 *6 *7)) (-4 *4 (-13 (-375) (-370))) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-4 *7 (-349 *4 *5 *6)) (-5 *2 (-779)) (-5 *1 (-400 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2956 ((-779) (-343 |#1| |#2| |#3| |#4|))))
-((-2940 (((-402) |#1|) 11)))
-(((-401 |#1|) (-10 -7 (-15 -2940 ((-402) |#1|))) (-1111)) (T -401))
-((-2940 (*1 *2 *3) (-12 (-5 *2 (-402)) (-5 *1 (-401 *3)) (-4 *3 (-1111)))))
-(-10 -7 (-15 -2940 ((-402) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2916 (((-652 (-1170)) $ (-652 (-1170))) 42)) (-3046 (((-652 (-1170)) $ (-652 (-1170))) 43)) (-4365 (((-652 (-1170)) $ (-652 (-1170))) 44)) (-4062 (((-652 (-1170)) $) 39)) (-3787 (($) 30)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3377 (((-652 (-1170)) $) 40)) (-1975 (((-652 (-1170)) $) 41)) (-1401 (((-1284) $ (-572)) 37) (((-1284) $) 38)) (-1835 (($ (-870) (-572)) 35)) (-2940 (((-870) $) 49) (($ (-870)) 32)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-402) (-13 (-1111) (-624 (-870)) (-10 -8 (-15 -1835 ($ (-870) (-572))) (-15 -1401 ((-1284) $ (-572))) (-15 -1401 ((-1284) $)) (-15 -1975 ((-652 (-1170)) $)) (-15 -3377 ((-652 (-1170)) $)) (-15 -3787 ($)) (-15 -4062 ((-652 (-1170)) $)) (-15 -4365 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -3046 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -2916 ((-652 (-1170)) $ (-652 (-1170))))))) (T -402))
-((-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-402)))) (-1401 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-402)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-402)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-3787 (*1 *1) (-5 *1 (-402))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-4365 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-3046 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-2916 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))))
-(-13 (-1111) (-624 (-870)) (-10 -8 (-15 -1835 ($ (-870) (-572))) (-15 -1401 ((-1284) $ (-572))) (-15 -1401 ((-1284) $)) (-15 -1975 ((-652 (-1170)) $)) (-15 -3377 ((-652 (-1170)) $)) (-15 -3787 ($)) (-15 -4062 ((-652 (-1170)) $)) (-15 -4365 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -3046 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -2916 ((-652 (-1170)) $ (-652 (-1170))))))
-((-3765 (((-1284) $) 7)) (-2940 (((-870) $) 8)))
-(((-403) (-141)) (T -403))
-((-3765 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1284)))))
-(-13 (-1229) (-621 (-870)) (-10 -8 (-15 -3765 ((-1284) $))))
-(((-621 (-870)) . T) ((-1229) . T))
-((-1695 (((-3 $ "failed") (-322 (-386))) 21) (((-3 $ "failed") (-322 (-572))) 19) (((-3 $ "failed") (-961 (-386))) 17) (((-3 $ "failed") (-961 (-572))) 15) (((-3 $ "failed") (-415 (-961 (-386)))) 13) (((-3 $ "failed") (-415 (-961 (-572)))) 11)) (-2204 (($ (-322 (-386))) 22) (($ (-322 (-572))) 20) (($ (-961 (-386))) 18) (($ (-961 (-572))) 16) (($ (-415 (-961 (-386)))) 14) (($ (-415 (-961 (-572)))) 12)) (-3765 (((-1284) $) 7)) (-2940 (((-870) $) 8) (($ (-652 (-336))) 25) (($ (-336)) 24) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 23)))
-(((-404) (-141)) (T -404))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-404)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-404)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) (-4 *1 (-404)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-4 *1 (-404)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-386))) (-4 *1 (-404)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-4 *1 (-404)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-572))) (-4 *1 (-404)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-961 (-386))) (-4 *1 (-404)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-386))) (-4 *1 (-404)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-404)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-572))) (-4 *1 (-404)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-386)))) (-4 *1 (-404)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 (-961 (-386)))) (-4 *1 (-404)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-572)))) (-4 *1 (-404)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 (-961 (-572)))) (-4 *1 (-404)))))
-(-13 (-403) (-10 -8 (-15 -2940 ($ (-652 (-336)))) (-15 -2940 ($ (-336))) (-15 -2940 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))) (-15 -2204 ($ (-322 (-386)))) (-15 -1695 ((-3 $ "failed") (-322 (-386)))) (-15 -2204 ($ (-322 (-572)))) (-15 -1695 ((-3 $ "failed") (-322 (-572)))) (-15 -2204 ($ (-961 (-386)))) (-15 -1695 ((-3 $ "failed") (-961 (-386)))) (-15 -2204 ($ (-961 (-572)))) (-15 -1695 ((-3 $ "failed") (-961 (-572)))) (-15 -2204 ($ (-415 (-961 (-386))))) (-15 -1695 ((-3 $ "failed") (-415 (-961 (-386))))) (-15 -2204 ($ (-415 (-961 (-572))))) (-15 -1695 ((-3 $ "failed") (-415 (-961 (-572)))))))
-(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
-((-1956 (((-652 (-1170)) (-652 (-1170))) 9)) (-3765 (((-1284) (-396)) 26)) (-2184 (((-1115) (-1188) (-652 (-1188)) (-1191) (-652 (-1188))) 59) (((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)) (-1188)) 34) (((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188))) 33)))
-(((-405) (-10 -7 (-15 -2184 ((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)))) (-15 -2184 ((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)) (-1188))) (-15 -2184 ((-1115) (-1188) (-652 (-1188)) (-1191) (-652 (-1188)))) (-15 -3765 ((-1284) (-396))) (-15 -1956 ((-652 (-1170)) (-652 (-1170)))))) (T -405))
-((-1956 (*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-405)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-396)) (-5 *2 (-1284)) (-5 *1 (-405)))) (-2184 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-652 (-1188))) (-5 *5 (-1191)) (-5 *3 (-1188)) (-5 *2 (-1115)) (-5 *1 (-405)))) (-2184 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-652 (-652 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-652 (-3 (|:| |array| (-652 *3)) (|:| |scalar| (-1188))))) (-5 *6 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1115)) (-5 *1 (-405)))) (-2184 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-652 (-652 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-652 (-3 (|:| |array| (-652 *3)) (|:| |scalar| (-1188))))) (-5 *6 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1115)) (-5 *1 (-405)))))
-(-10 -7 (-15 -2184 ((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)))) (-15 -2184 ((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)) (-1188))) (-15 -2184 ((-1115) (-1188) (-652 (-1188)) (-1191) (-652 (-1188)))) (-15 -3765 ((-1284) (-396))) (-15 -1956 ((-652 (-1170)) (-652 (-1170)))))
-((-3765 (((-1284) $) 35)) (-2940 (((-870) $) 97) (($ (-336)) 99) (($ (-652 (-336))) 98) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 96) (($ (-322 (-709))) 52) (($ (-322 (-707))) 72) (($ (-322 (-702))) 85) (($ (-300 (-322 (-709)))) 67) (($ (-300 (-322 (-707)))) 80) (($ (-300 (-322 (-702)))) 93) (($ (-322 (-572))) 104) (($ (-322 (-386))) 117) (($ (-322 (-171 (-386)))) 130) (($ (-300 (-322 (-572)))) 112) (($ (-300 (-322 (-386)))) 125) (($ (-300 (-322 (-171 (-386))))) 138)))
-(((-406 |#1| |#2| |#3| |#4|) (-13 (-403) (-10 -8 (-15 -2940 ($ (-336))) (-15 -2940 ($ (-652 (-336)))) (-15 -2940 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))) (-15 -2940 ($ (-322 (-709)))) (-15 -2940 ($ (-322 (-707)))) (-15 -2940 ($ (-322 (-702)))) (-15 -2940 ($ (-300 (-322 (-709))))) (-15 -2940 ($ (-300 (-322 (-707))))) (-15 -2940 ($ (-300 (-322 (-702))))) (-15 -2940 ($ (-322 (-572)))) (-15 -2940 ($ (-322 (-386)))) (-15 -2940 ($ (-322 (-171 (-386))))) (-15 -2940 ($ (-300 (-322 (-572))))) (-15 -2940 ($ (-300 (-322 (-386))))) (-15 -2940 ($ (-300 (-322 (-171 (-386)))))))) (-1188) (-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-652 (-1188)) (-1192)) (T -406))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-322 (-709))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-322 (-707))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-322 (-702))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-709)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-707)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-702)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-322 (-171 (-386)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-572)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-386)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-171 (-386))))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))))
-(-13 (-403) (-10 -8 (-15 -2940 ($ (-336))) (-15 -2940 ($ (-652 (-336)))) (-15 -2940 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))) (-15 -2940 ($ (-322 (-709)))) (-15 -2940 ($ (-322 (-707)))) (-15 -2940 ($ (-322 (-702)))) (-15 -2940 ($ (-300 (-322 (-709))))) (-15 -2940 ($ (-300 (-322 (-707))))) (-15 -2940 ($ (-300 (-322 (-702))))) (-15 -2940 ($ (-322 (-572)))) (-15 -2940 ($ (-322 (-386)))) (-15 -2940 ($ (-322 (-171 (-386))))) (-15 -2940 ($ (-300 (-322 (-572))))) (-15 -2940 ($ (-300 (-322 (-386))))) (-15 -2940 ($ (-300 (-322 (-171 (-386))))))))
-((-2846 (((-112) $ $) NIL)) (-2004 ((|#2| $) 38)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2592 (($ (-415 |#2|)) 93)) (-4350 (((-652 (-2 (|:| -1679 (-779)) (|:| -3356 |#2|) (|:| |num| |#2|))) $) 39)) (-3902 (($ $) 34) (($ $ (-779)) 36)) (-1835 (((-415 |#2|) $) 49)) (-2953 (($ (-652 (-2 (|:| -1679 (-779)) (|:| -3356 |#2|) (|:| |num| |#2|)))) 33)) (-2940 (((-870) $) 131)) (-4379 (((-112) $ $) NIL)) (-3608 (($ $) 35) (($ $ (-779)) 37)) (-2978 (((-112) $ $) NIL)) (-3075 (($ |#2| $) 41)))
-(((-407 |#1| |#2|) (-13 (-1111) (-622 (-415 |#2|)) (-10 -8 (-15 -3075 ($ |#2| $)) (-15 -2592 ($ (-415 |#2|))) (-15 -2004 (|#2| $)) (-15 -4350 ((-652 (-2 (|:| -1679 (-779)) (|:| -3356 |#2|) (|:| |num| |#2|))) $)) (-15 -2953 ($ (-652 (-2 (|:| -1679 (-779)) (|:| -3356 |#2|) (|:| |num| |#2|))))) (-15 -3902 ($ $)) (-15 -3608 ($ $)) (-15 -3902 ($ $ (-779))) (-15 -3608 ($ $ (-779))))) (-13 (-370) (-148)) (-1255 |#1|)) (T -407))
-((-3075 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *2)) (-4 *2 (-1255 *3)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4)))) (-2004 (*1 *2 *1) (-12 (-4 *2 (-1255 *3)) (-5 *1 (-407 *3 *2)) (-4 *3 (-13 (-370) (-148))))) (-4350 (*1 *2 *1) (-12 (-4 *3 (-13 (-370) (-148))) (-5 *2 (-652 (-2 (|:| -1679 (-779)) (|:| -3356 *4) (|:| |num| *4)))) (-5 *1 (-407 *3 *4)) (-4 *4 (-1255 *3)))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -1679 (-779)) (|:| -3356 *4) (|:| |num| *4)))) (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4)))) (-3902 (*1 *1 *1) (-12 (-4 *2 (-13 (-370) (-148))) (-5 *1 (-407 *2 *3)) (-4 *3 (-1255 *2)))) (-3608 (*1 *1 *1) (-12 (-4 *2 (-13 (-370) (-148))) (-5 *1 (-407 *2 *3)) (-4 *3 (-1255 *2)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4)) (-4 *4 (-1255 *3)))) (-3608 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4)) (-4 *4 (-1255 *3)))))
-(-13 (-1111) (-622 (-415 |#2|)) (-10 -8 (-15 -3075 ($ |#2| $)) (-15 -2592 ($ (-415 |#2|))) (-15 -2004 (|#2| $)) (-15 -4350 ((-652 (-2 (|:| -1679 (-779)) (|:| -3356 |#2|) (|:| |num| |#2|))) $)) (-15 -2953 ($ (-652 (-2 (|:| -1679 (-779)) (|:| -3356 |#2|) (|:| |num| |#2|))))) (-15 -3902 ($ $)) (-15 -3608 ($ $)) (-15 -3902 ($ $ (-779))) (-15 -3608 ($ $ (-779)))))
-((-2846 (((-112) $ $) 9 (-2813 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 16 (|has| |#1| (-895 (-386)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 15 (|has| |#1| (-895 (-572))))) (-4347 (((-1170) $) 13 (-2813 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-3964 (((-1131) $) 12 (-2813 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-2940 (((-870) $) 11 (-2813 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-4379 (((-112) $ $) 14 (-2813 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-2978 (((-112) $ $) 10 (-2813 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))))
-(((-408 |#1|) (-141) (-1229)) (T -408))
-NIL
-(-13 (-1229) (-10 -7 (IF (|has| |t#1| (-895 (-572))) (-6 (-895 (-572))) |%noBranch|) (IF (|has| |t#1| (-895 (-386))) (-6 (-895 (-386))) |%noBranch|)))
-(((-102) -2813 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))) ((-621 (-870)) -2813 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-1111) -2813 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))) ((-1229) . T))
-((-2303 (($ $) 10) (($ $ (-779)) 12)))
-(((-409 |#1|) (-10 -8 (-15 -2303 (|#1| |#1| (-779))) (-15 -2303 (|#1| |#1|))) (-410)) (T -409))
-NIL
-(-10 -8 (-15 -2303 (|#1| |#1| (-779))) (-15 -2303 (|#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-4217 (((-112) $ $) 65)) (-3281 (($) 18 T CONST)) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-2303 (($ $) 87) (($ $ (-779)) 86)) (-3879 (((-112) $) 79)) (-2956 (((-841 (-930)) $) 89)) (-1886 (((-112) $) 35)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 78)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-4218 (((-426 $) $) 82)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-3354 (((-3 (-779) "failed") $ $) 88)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74)) (-3849 (((-3 $ "failed") $) 90)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
-(((-410) (-141)) (T -410))
-((-2956 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-841 (-930))))) (-3354 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-410)) (-5 *2 (-779)))) (-2303 (*1 *1 *1) (-4 *1 (-410))) (-2303 (*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-779)))))
-(-13 (-370) (-146) (-10 -8 (-15 -2956 ((-841 (-930)) $)) (-15 -3354 ((-3 (-779) "failed") $ $)) (-15 -2303 ($ $)) (-15 -2303 ($ $ (-779)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
-((-2379 (($ (-572) (-572)) 11) (($ (-572) (-572) (-930)) NIL)) (-2189 (((-930)) 19) (((-930) (-930)) NIL)))
-(((-411 |#1|) (-10 -8 (-15 -2189 ((-930) (-930))) (-15 -2189 ((-930))) (-15 -2379 (|#1| (-572) (-572) (-930))) (-15 -2379 (|#1| (-572) (-572)))) (-412)) (T -411))
-((-2189 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-411 *3)) (-4 *3 (-412)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-411 *3)) (-4 *3 (-412)))))
-(-10 -8 (-15 -2189 ((-930) (-930))) (-15 -2189 ((-930))) (-15 -2379 (|#1| (-572) (-572) (-930))) (-15 -2379 (|#1| (-572) (-572))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2689 (((-572) $) 97)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3762 (($ $) 95)) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-4227 (($ $) 105)) (-4217 (((-112) $ $) 65)) (-2840 (((-572) $) 122)) (-3281 (($) 18 T CONST)) (-1530 (($ $) 94)) (-1695 (((-3 (-572) "failed") $) 110) (((-3 (-415 (-572)) "failed") $) 107)) (-2204 (((-572) $) 111) (((-415 (-572)) $) 108)) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-3879 (((-112) $) 79)) (-3782 (((-930)) 138) (((-930) (-930)) 135 (|has| $ (-6 -4445)))) (-3074 (((-112) $) 120)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 101)) (-2956 (((-572) $) 144)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 104)) (-2028 (($ $) 100)) (-1623 (((-112) $) 121)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-3654 (($ $ $) 119) (($) 132 (-12 (-2074 (|has| $ (-6 -4445))) (-2074 (|has| $ (-6 -4437)))))) (-2427 (($ $ $) 118) (($) 131 (-12 (-2074 (|has| $ (-6 -4445))) (-2074 (|has| $ (-6 -4437)))))) (-4298 (((-572) $) 141)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 78)) (-4170 (((-930) (-572)) 134 (|has| $ (-6 -4445)))) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-2340 (($ $) 96)) (-3462 (($ $) 98)) (-2379 (($ (-572) (-572)) 146) (($ (-572) (-572) (-930)) 145)) (-4218 (((-426 $) $) 82)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-1679 (((-572) $) 142)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-2189 (((-930)) 139) (((-930) (-930)) 136 (|has| $ (-6 -4445)))) (-2691 (((-930) (-572)) 133 (|has| $ (-6 -4445)))) (-1835 (((-386) $) 113) (((-227) $) 112) (((-901 (-386)) $) 102)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ (-572)) 109) (($ (-415 (-572))) 106)) (-4249 (((-779)) 32 T CONST)) (-3614 (($ $) 99)) (-4221 (((-930)) 140) (((-930) (-930)) 137 (|has| $ (-6 -4445)))) (-4379 (((-112) $ $) 9)) (-2625 (((-930)) 143)) (-2845 (((-112) $ $) 45)) (-2700 (($ $) 123)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3039 (((-112) $ $) 116)) (-3014 (((-112) $ $) 115)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 117)) (-3003 (((-112) $ $) 114)) (-3106 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77) (($ $ (-415 (-572))) 103)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
+NIL
+(-13 (-566) (-860) (-1051 (-574)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1051 (-574)) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-3305 (((-112) $) 25)) (-4020 (((-112) $) 22)) (-3790 (($ (-1172) (-1172) (-1172)) 26)) (-2032 (((-1172) $) 16)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3713 (($ (-1172) (-1172) (-1172)) 14)) (-2870 (((-1172) $) 17)) (-3955 (((-112) $) 18)) (-2567 (((-1172) $) 15)) (-2943 (((-872) $) 12) (($ (-1172)) 13) (((-1172) $) 9)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 7)))
+(((-398) (-399)) (T -398))
+NIL
+(-399)
+((-2849 (((-112) $ $) 7)) (-3305 (((-112) $) 17)) (-4020 (((-112) $) 18)) (-3790 (($ (-1172) (-1172) (-1172)) 16)) (-2032 (((-1172) $) 21)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3713 (($ (-1172) (-1172) (-1172)) 23)) (-2870 (((-1172) $) 20)) (-3955 (((-112) $) 19)) (-2567 (((-1172) $) 22)) (-2943 (((-872) $) 12) (($ (-1172)) 25) (((-1172) $) 24)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-399) (-141)) (T -399))
+((-3713 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-399)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3790 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-399)))))
+(-13 (-1113) (-500 (-1172)) (-10 -8 (-15 -3713 ($ (-1172) (-1172) (-1172))) (-15 -2567 ((-1172) $)) (-15 -2032 ((-1172) $)) (-15 -2870 ((-1172) $)) (-15 -3955 ((-112) $)) (-15 -4020 ((-112) $)) (-15 -3305 ((-112) $)) (-15 -3790 ($ (-1172) (-1172) (-1172)))))
+(((-102) . T) ((-626 #0=(-1172)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1608 (((-872) $) 63)) (-3670 (($) NIL T CONST)) (-2652 (($ $ (-932)) NIL)) (-2023 (($ $ (-932)) NIL)) (-3702 (($ $ (-932)) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($ (-781)) 38)) (-3939 (((-781)) 18)) (-3652 (((-872) $) 65)) (-3647 (($ $ $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3243 (($ $ $ $) NIL)) (-2309 (($ $ $) NIL)) (-2134 (($) 24 T CONST)) (-2982 (((-112) $ $) 41)) (-3094 (($ $) 48) (($ $ $) 50)) (-3078 (($ $ $) 51)) (** (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
+(((-400 |#1| |#2| |#3|) (-13 (-754 |#3|) (-10 -8 (-15 -3939 ((-781))) (-15 -3652 ((-872) $)) (-15 -1608 ((-872) $)) (-15 -2970 ($ (-781))))) (-781) (-781) (-174)) (T -400))
+((-3939 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))))
+(-13 (-754 |#3|) (-10 -8 (-15 -3939 ((-781))) (-15 -3652 ((-872) $)) (-15 -1608 ((-872) $)) (-15 -2970 ($ (-781)))))
+((-1866 (((-1172)) 12)) (-4069 (((-1160 (-1172))) 30)) (-3748 (((-1286) (-1172)) 27) (((-1286) (-398)) 26)) (-3758 (((-1286)) 28)) (-1534 (((-1160 (-1172))) 29)))
+(((-401) (-10 -7 (-15 -1534 ((-1160 (-1172)))) (-15 -4069 ((-1160 (-1172)))) (-15 -3758 ((-1286))) (-15 -3748 ((-1286) (-398))) (-15 -3748 ((-1286) (-1172))) (-15 -1866 ((-1172))))) (T -401))
+((-1866 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-401)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-401)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1286)) (-5 *1 (-401)))) (-3758 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-401)))) (-4069 (*1 *2) (-12 (-5 *2 (-1160 (-1172))) (-5 *1 (-401)))) (-1534 (*1 *2) (-12 (-5 *2 (-1160 (-1172))) (-5 *1 (-401)))))
+(-10 -7 (-15 -1534 ((-1160 (-1172)))) (-15 -4069 ((-1160 (-1172)))) (-15 -3758 ((-1286))) (-15 -3748 ((-1286) (-398))) (-15 -3748 ((-1286) (-1172))) (-15 -1866 ((-1172))))
+((-3593 (((-781) (-345 |#1| |#2| |#3| |#4|)) 16)))
+(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3593 ((-781) (-345 |#1| |#2| |#3| |#4|)))) (-13 (-377) (-372)) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -402))
+((-3593 (*1 *2 *3) (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3593 ((-781) (-345 |#1| |#2| |#3| |#4|))))
+((-2943 (((-404) |#1|) 11)))
+(((-403 |#1|) (-10 -7 (-15 -2943 ((-404) |#1|))) (-1113)) (T -403))
+((-2943 (*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1113)))))
+(-10 -7 (-15 -2943 ((-404) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-3224 (((-654 (-1172)) $ (-654 (-1172))) 42)) (-3106 (((-654 (-1172)) $ (-654 (-1172))) 43)) (-2753 (((-654 (-1172)) $ (-654 (-1172))) 44)) (-2917 (((-654 (-1172)) $) 39)) (-3790 (($) 30)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3380 (((-654 (-1172)) $) 40)) (-2349 (((-654 (-1172)) $) 41)) (-1403 (((-1286) $ (-574)) 37) (((-1286) $) 38)) (-1837 (($ (-872) (-574)) 35)) (-2943 (((-872) $) 49) (($ (-872)) 32)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-404) (-13 (-1113) (-626 (-872)) (-10 -8 (-15 -1837 ($ (-872) (-574))) (-15 -1403 ((-1286) $ (-574))) (-15 -1403 ((-1286) $)) (-15 -2349 ((-654 (-1172)) $)) (-15 -3380 ((-654 (-1172)) $)) (-15 -3790 ($)) (-15 -2917 ((-654 (-1172)) $)) (-15 -2753 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -3106 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -3224 ((-654 (-1172)) $ (-654 (-1172))))))) (T -404))
+((-1837 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404)))) (-1403 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-404)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-404)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-3790 (*1 *1) (-5 *1 (-404))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-2753 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-3106 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-3224 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))))
+(-13 (-1113) (-626 (-872)) (-10 -8 (-15 -1837 ($ (-872) (-574))) (-15 -1403 ((-1286) $ (-574))) (-15 -1403 ((-1286) $)) (-15 -2349 ((-654 (-1172)) $)) (-15 -3380 ((-654 (-1172)) $)) (-15 -3790 ($)) (-15 -2917 ((-654 (-1172)) $)) (-15 -2753 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -3106 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -3224 ((-654 (-1172)) $ (-654 (-1172))))))
+((-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8)))
+(((-405) (-141)) (T -405))
+((-3768 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1286)))))
+(-13 (-1231) (-623 (-872)) (-10 -8 (-15 -3768 ((-1286) $))))
+(((-623 (-872)) . T) ((-1231) . T))
+((-1697 (((-3 $ "failed") (-324 (-388))) 21) (((-3 $ "failed") (-324 (-574))) 19) (((-3 $ "failed") (-963 (-388))) 17) (((-3 $ "failed") (-963 (-574))) 15) (((-3 $ "failed") (-417 (-963 (-388)))) 13) (((-3 $ "failed") (-417 (-963 (-574)))) 11)) (-2209 (($ (-324 (-388))) 22) (($ (-324 (-574))) 20) (($ (-963 (-388))) 18) (($ (-963 (-574))) 16) (($ (-417 (-963 (-388)))) 14) (($ (-417 (-963 (-574)))) 12)) (-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 23)))
+(((-406) (-141)) (T -406))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) (-4 *1 (-406)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-963 (-388))) (-4 *1 (-406)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-388))) (-4 *1 (-406)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-406)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-574))) (-4 *1 (-406)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-388)))) (-4 *1 (-406)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-963 (-388)))) (-4 *1 (-406)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-574)))) (-4 *1 (-406)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-963 (-574)))) (-4 *1 (-406)))))
+(-13 (-405) (-10 -8 (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))) (-15 -2209 ($ (-324 (-388)))) (-15 -1697 ((-3 $ "failed") (-324 (-388)))) (-15 -2209 ($ (-324 (-574)))) (-15 -1697 ((-3 $ "failed") (-324 (-574)))) (-15 -2209 ($ (-963 (-388)))) (-15 -1697 ((-3 $ "failed") (-963 (-388)))) (-15 -2209 ($ (-963 (-574)))) (-15 -1697 ((-3 $ "failed") (-963 (-574)))) (-15 -2209 ($ (-417 (-963 (-388))))) (-15 -1697 ((-3 $ "failed") (-417 (-963 (-388))))) (-15 -2209 ($ (-417 (-963 (-574))))) (-15 -1697 ((-3 $ "failed") (-417 (-963 (-574)))))))
+(((-623 (-872)) . T) ((-405) . T) ((-1231) . T))
+((-3495 (((-654 (-1172)) (-654 (-1172))) 9)) (-3768 (((-1286) (-398)) 26)) (-3764 (((-1117) (-1190) (-654 (-1190)) (-1193) (-654 (-1190))) 59) (((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)) (-1190)) 34) (((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190))) 33)))
+(((-407) (-10 -7 (-15 -3764 ((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)))) (-15 -3764 ((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)) (-1190))) (-15 -3764 ((-1117) (-1190) (-654 (-1190)) (-1193) (-654 (-1190)))) (-15 -3768 ((-1286) (-398))) (-15 -3495 ((-654 (-1172)) (-654 (-1172)))))) (T -407))
+((-3495 (*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-407)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1286)) (-5 *1 (-407)))) (-3764 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-654 (-1190))) (-5 *5 (-1193)) (-5 *3 (-1190)) (-5 *2 (-1117)) (-5 *1 (-407)))) (-3764 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1190))))) (-5 *6 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1117)) (-5 *1 (-407)))) (-3764 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1190))))) (-5 *6 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1117)) (-5 *1 (-407)))))
+(-10 -7 (-15 -3764 ((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)))) (-15 -3764 ((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)) (-1190))) (-15 -3764 ((-1117) (-1190) (-654 (-1190)) (-1193) (-654 (-1190)))) (-15 -3768 ((-1286) (-398))) (-15 -3495 ((-654 (-1172)) (-654 (-1172)))))
+((-3768 (((-1286) $) 35)) (-2943 (((-872) $) 97) (($ (-338)) 99) (($ (-654 (-338))) 98) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 96) (($ (-324 (-711))) 52) (($ (-324 (-709))) 72) (($ (-324 (-704))) 85) (($ (-302 (-324 (-711)))) 67) (($ (-302 (-324 (-709)))) 80) (($ (-302 (-324 (-704)))) 93) (($ (-324 (-574))) 104) (($ (-324 (-388))) 117) (($ (-324 (-171 (-388)))) 130) (($ (-302 (-324 (-574)))) 112) (($ (-302 (-324 (-388)))) 125) (($ (-302 (-324 (-171 (-388))))) 138)))
+(((-408 |#1| |#2| |#3| |#4|) (-13 (-405) (-10 -8 (-15 -2943 ($ (-338))) (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))) (-15 -2943 ($ (-324 (-711)))) (-15 -2943 ($ (-324 (-709)))) (-15 -2943 ($ (-324 (-704)))) (-15 -2943 ($ (-302 (-324 (-711))))) (-15 -2943 ($ (-302 (-324 (-709))))) (-15 -2943 ($ (-302 (-324 (-704))))) (-15 -2943 ($ (-324 (-574)))) (-15 -2943 ($ (-324 (-388)))) (-15 -2943 ($ (-324 (-171 (-388))))) (-15 -2943 ($ (-302 (-324 (-574))))) (-15 -2943 ($ (-302 (-324 (-388))))) (-15 -2943 ($ (-302 (-324 (-171 (-388)))))))) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-1190)) (-1194)) (T -408))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))))
+(-13 (-405) (-10 -8 (-15 -2943 ($ (-338))) (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))) (-15 -2943 ($ (-324 (-711)))) (-15 -2943 ($ (-324 (-709)))) (-15 -2943 ($ (-324 (-704)))) (-15 -2943 ($ (-302 (-324 (-711))))) (-15 -2943 ($ (-302 (-324 (-709))))) (-15 -2943 ($ (-302 (-324 (-704))))) (-15 -2943 ($ (-324 (-574)))) (-15 -2943 ($ (-324 (-388)))) (-15 -2943 ($ (-324 (-171 (-388))))) (-15 -2943 ($ (-302 (-324 (-574))))) (-15 -2943 ($ (-302 (-324 (-388))))) (-15 -2943 ($ (-302 (-324 (-171 (-388))))))))
+((-2849 (((-112) $ $) NIL)) (-2638 ((|#2| $) 38)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3179 (($ (-417 |#2|)) 93)) (-2602 (((-654 (-2 (|:| -2524 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))) $) 39)) (-3905 (($ $) 34) (($ $ (-781)) 36)) (-1837 (((-417 |#2|) $) 49)) (-2956 (($ (-654 (-2 (|:| -2524 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|)))) 33)) (-2943 (((-872) $) 131)) (-2923 (((-112) $ $) NIL)) (-3611 (($ $) 35) (($ $ (-781)) 37)) (-2982 (((-112) $ $) NIL)) (-3078 (($ |#2| $) 41)))
+(((-409 |#1| |#2|) (-13 (-1113) (-624 (-417 |#2|)) (-10 -8 (-15 -3078 ($ |#2| $)) (-15 -3179 ($ (-417 |#2|))) (-15 -2638 (|#2| $)) (-15 -2602 ((-654 (-2 (|:| -2524 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))) $)) (-15 -2956 ($ (-654 (-2 (|:| -2524 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))))) (-15 -3905 ($ $)) (-15 -3611 ($ $)) (-15 -3905 ($ $ (-781))) (-15 -3611 ($ $ (-781))))) (-13 (-372) (-148)) (-1257 |#1|)) (T -409))
+((-3078 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2)) (-4 *2 (-1257 *3)))) (-3179 (*1 *1 *2) (-12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-2638 (*1 *2 *1) (-12 (-4 *2 (-1257 *3)) (-5 *1 (-409 *3 *2)) (-4 *3 (-13 (-372) (-148))))) (-2602 (*1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *2 (-654 (-2 (|:| -2524 (-781)) (|:| -3359 *4) (|:| |num| *4)))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1257 *3)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -2524 (-781)) (|:| -3359 *4) (|:| |num| *4)))) (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3905 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1257 *2)))) (-3611 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1257 *2)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1257 *3)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1257 *3)))))
+(-13 (-1113) (-624 (-417 |#2|)) (-10 -8 (-15 -3078 ($ |#2| $)) (-15 -3179 ($ (-417 |#2|))) (-15 -2638 (|#2| $)) (-15 -2602 ((-654 (-2 (|:| -2524 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))) $)) (-15 -2956 ($ (-654 (-2 (|:| -2524 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))))) (-15 -3905 ($ $)) (-15 -3611 ($ $)) (-15 -3905 ($ $ (-781))) (-15 -3611 ($ $ (-781)))))
+((-2849 (((-112) $ $) 9 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 16 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 15 (|has| |#1| (-897 (-574))))) (-2568 (((-1172) $) 13 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3966 (((-1133) $) 12 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2943 (((-872) $) 11 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2923 (((-112) $ $) 14 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2982 (((-112) $ $) 10 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))))
+(((-410 |#1|) (-141) (-1231)) (T -410))
+NIL
+(-13 (-1231) (-10 -7 (IF (|has| |t#1| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|)))
+(((-102) -2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-623 (-872)) -2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-1113) -2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-1231) . T))
+((-3564 (($ $) 10) (($ $ (-781)) 12)))
+(((-411 |#1|) (-10 -8 (-15 -3564 (|#1| |#1| (-781))) (-15 -3564 (|#1| |#1|))) (-412)) (T -411))
+NIL
+(-10 -8 (-15 -3564 (|#1| |#1| (-781))) (-15 -3564 (|#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-3875 (((-112) $ $) 65)) (-3670 (($) 18 T CONST)) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3564 (($ $) 87) (($ $ (-781)) 86)) (-1654 (((-112) $) 79)) (-3593 (((-843 (-932)) $) 89)) (-3965 (((-112) $) 35)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 82)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-3232 (((-3 (-781) "failed") $ $) 88)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-1369 (((-3 $ "failed") $) 90)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
(((-412) (-141)) (T -412))
-((-2379 (*1 *1 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-412)))) (-2379 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-930)) (-4 *1 (-412)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572)))) (-2625 (*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572)))) (-4221 (*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) (-2189 (*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) (-3782 (*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) (-4221 (*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412)))) (-3782 (*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-572)) (|has| *1 (-6 -4445)) (-4 *1 (-412)) (-5 *2 (-930)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-572)) (|has| *1 (-6 -4445)) (-4 *1 (-412)) (-5 *2 (-930)))) (-3654 (*1 *1) (-12 (-4 *1 (-412)) (-2074 (|has| *1 (-6 -4445))) (-2074 (|has| *1 (-6 -4437))))) (-2427 (*1 *1) (-12 (-4 *1 (-412)) (-2074 (|has| *1 (-6 -4445))) (-2074 (|has| *1 (-6 -4437))))))
-(-13 (-1071) (-10 -8 (-6 -3548) (-15 -2379 ($ (-572) (-572))) (-15 -2379 ($ (-572) (-572) (-930))) (-15 -2956 ((-572) $)) (-15 -2625 ((-930))) (-15 -1679 ((-572) $)) (-15 -4298 ((-572) $)) (-15 -4221 ((-930))) (-15 -2189 ((-930))) (-15 -3782 ((-930))) (IF (|has| $ (-6 -4445)) (PROGN (-15 -4221 ((-930) (-930))) (-15 -2189 ((-930) (-930))) (-15 -3782 ((-930) (-930))) (-15 -4170 ((-930) (-572))) (-15 -2691 ((-930) (-572)))) |%noBranch|) (IF (|has| $ (-6 -4437)) |%noBranch| (IF (|has| $ (-6 -4445)) |%noBranch| (PROGN (-15 -3654 ($)) (-15 -2427 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-622 (-227)) . T) ((-622 (-386)) . T) ((-622 (-901 (-386))) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-856) . T) ((-858) . T) ((-895 (-386)) . T) ((-929) . T) ((-1013) . T) ((-1033) . T) ((-1071) . T) ((-1049 (-415 (-572))) . T) ((-1049 (-572)) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
-((-1776 (((-426 |#2|) (-1 |#2| |#1|) (-426 |#1|)) 20)))
-(((-413 |#1| |#2|) (-10 -7 (-15 -1776 ((-426 |#2|) (-1 |#2| |#1|) (-426 |#1|)))) (-564) (-564)) (T -413))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-426 *5)) (-4 *5 (-564)) (-4 *6 (-564)) (-5 *2 (-426 *6)) (-5 *1 (-413 *5 *6)))))
-(-10 -7 (-15 -1776 ((-426 |#2|) (-1 |#2| |#1|) (-426 |#1|))))
-((-1776 (((-415 |#2|) (-1 |#2| |#1|) (-415 |#1|)) 13)))
-(((-414 |#1| |#2|) (-10 -7 (-15 -1776 ((-415 |#2|) (-1 |#2| |#1|) (-415 |#1|)))) (-564) (-564)) (T -414))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-415 *5)) (-4 *5 (-564)) (-4 *6 (-564)) (-5 *2 (-415 *6)) (-5 *1 (-414 *5 *6)))))
-(-10 -7 (-15 -1776 ((-415 |#2|) (-1 |#2| |#1|) (-415 |#1|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 13)) (-2689 ((|#1| $) 21 (|has| |#1| (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL (|has| |#1| (-828)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 17) (((-3 (-1188) "failed") $) NIL (|has| |#1| (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) 72 (|has| |#1| (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572))))) (-2204 ((|#1| $) 15) (((-1188) $) NIL (|has| |#1| (-1049 (-1188)))) (((-415 (-572)) $) 69 (|has| |#1| (-1049 (-572)))) (((-572) $) NIL (|has| |#1| (-1049 (-572))))) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) 51)) (-2815 (($) NIL (|has| |#1| (-553)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3074 (((-112) $) NIL (|has| |#1| (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| |#1| (-895 (-386))))) (-1886 (((-112) $) 57)) (-2710 (($ $) NIL)) (-2963 ((|#1| $) 73)) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-1163)))) (-1623 (((-112) $) NIL (|has| |#1| (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| |#1| (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 100)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL (|has| |#1| (-313)))) (-3462 ((|#1| $) 28 (|has| |#1| (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) 145 (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) 138 (|has| |#1| (-918)))) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|)))) (-3847 (((-779) $) NIL)) (-2196 (($ $ |#1|) NIL (|has| |#1| (-292 |#1| |#1|)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1520 (($ $) NIL)) (-2974 ((|#1| $) 75)) (-1835 (((-901 (-572)) $) NIL (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| |#1| (-622 (-901 (-386))))) (((-544) $) NIL (|has| |#1| (-622 (-544)))) (((-386) $) NIL (|has| |#1| (-1033))) (((-227) $) NIL (|has| |#1| (-1033)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 10) (($ (-1188)) NIL (|has| |#1| (-1049 (-1188))))) (-3849 (((-3 $ "failed") $) 102 (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) 103 T CONST)) (-3614 ((|#1| $) 26 (|has| |#1| (-553)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2700 (($ $) NIL (|has| |#1| (-828)))) (-2131 (($) 22 T CONST)) (-2143 (($) 8 T CONST)) (-3547 (((-1170) $) 44 (-12 (|has| |#1| (-553)) (|has| |#1| (-836)))) (((-1170) $ (-112)) 45 (-12 (|has| |#1| (-553)) (|has| |#1| (-836)))) (((-1284) (-830) $) 46 (-12 (|has| |#1| (-553)) (|has| |#1| (-836)))) (((-1284) (-830) $ (-112)) 47 (-12 (|has| |#1| (-553)) (|has| |#1| (-836))))) (-3608 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) 66)) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) 24 (|has| |#1| (-858)))) (-3106 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3089 (($ $) 25) (($ $ $) 56)) (-3075 (($ $ $) 54)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 132)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 61) (($ $ $) 58) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-415 |#1|) (-13 (-1003 |#1|) (-10 -7 (IF (|has| |#1| (-553)) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (IF (|has| |#1| (-460)) (IF (|has| |#1| (-6 -4452)) (-6 -4441) |%noBranch|) |%noBranch|) |%noBranch|))) (-564)) (T -415))
-NIL
-(-13 (-1003 |#1|) (-10 -7 (IF (|has| |#1| (-553)) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (IF (|has| |#1| (-460)) (IF (|has| |#1| (-6 -4452)) (-6 -4441) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3736 (((-697 |#2|) (-1279 $)) NIL) (((-697 |#2|)) 18)) (-1913 (($ (-1279 |#2|) (-1279 $)) NIL) (($ (-1279 |#2|)) 24)) (-3485 (((-697 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) $) 40)) (-3053 ((|#3| $) 69)) (-3537 ((|#2| (-1279 $)) NIL) ((|#2|) 20)) (-4329 (((-1279 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) NIL) (((-1279 |#2|) $) 22) (((-697 |#2|) (-1279 $)) 38)) (-1835 (((-1279 |#2|) $) 11) (($ (-1279 |#2|)) 13)) (-4251 ((|#3| $) 55)))
-(((-416 |#1| |#2| |#3|) (-10 -8 (-15 -3485 ((-697 |#2|) |#1|)) (-15 -3537 (|#2|)) (-15 -3736 ((-697 |#2|))) (-15 -1835 (|#1| (-1279 |#2|))) (-15 -1835 ((-1279 |#2|) |#1|)) (-15 -1913 (|#1| (-1279 |#2|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1|)) (-15 -3053 (|#3| |#1|)) (-15 -4251 (|#3| |#1|)) (-15 -3736 ((-697 |#2|) (-1279 |#1|))) (-15 -3537 (|#2| (-1279 |#1|))) (-15 -1913 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -3485 ((-697 |#2|) |#1| (-1279 |#1|)))) (-417 |#2| |#3|) (-174) (-1255 |#2|)) (T -416))
-((-3736 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)) (-5 *1 (-416 *3 *4 *5)) (-4 *3 (-417 *4 *5)))) (-3537 (*1 *2) (-12 (-4 *4 (-1255 *2)) (-4 *2 (-174)) (-5 *1 (-416 *3 *2 *4)) (-4 *3 (-417 *2 *4)))))
-(-10 -8 (-15 -3485 ((-697 |#2|) |#1|)) (-15 -3537 (|#2|)) (-15 -3736 ((-697 |#2|))) (-15 -1835 (|#1| (-1279 |#2|))) (-15 -1835 ((-1279 |#2|) |#1|)) (-15 -1913 (|#1| (-1279 |#2|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1|)) (-15 -3053 (|#3| |#1|)) (-15 -4251 (|#3| |#1|)) (-15 -3736 ((-697 |#2|) (-1279 |#1|))) (-15 -3537 (|#2| (-1279 |#1|))) (-15 -1913 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -3485 ((-697 |#2|) |#1| (-1279 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3736 (((-697 |#1|) (-1279 $)) 53) (((-697 |#1|)) 68)) (-1635 ((|#1| $) 59)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1913 (($ (-1279 |#1|) (-1279 $)) 55) (($ (-1279 |#1|)) 71)) (-3485 (((-697 |#1|) $ (-1279 $)) 60) (((-697 |#1|) $) 66)) (-2062 (((-3 $ "failed") $) 37)) (-3581 (((-930)) 61)) (-1886 (((-112) $) 35)) (-2028 ((|#1| $) 58)) (-3053 ((|#2| $) 51 (|has| |#1| (-370)))) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3537 ((|#1| (-1279 $)) 54) ((|#1|) 67)) (-4329 (((-1279 |#1|) $ (-1279 $)) 57) (((-697 |#1|) (-1279 $) (-1279 $)) 56) (((-1279 |#1|) $) 73) (((-697 |#1|) (-1279 $)) 72)) (-1835 (((-1279 |#1|) $) 70) (($ (-1279 |#1|)) 69)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44)) (-3849 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4251 ((|#2| $) 52)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-4362 (((-1279 $)) 74)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-417 |#1| |#2|) (-141) (-174) (-1255 |t#1|)) (T -417))
-((-4362 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-1279 *1)) (-4 *1 (-417 *3 *4)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-1279 *3)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-417 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-417 *3 *4)) (-4 *4 (-1255 *3)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-1279 *3)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-417 *3 *4)) (-4 *4 (-1255 *3)))) (-3736 (*1 *2) (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-697 *3)))) (-3537 (*1 *2) (-12 (-4 *1 (-417 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-697 *3)))))
-(-13 (-377 |t#1| |t#2|) (-10 -8 (-15 -4362 ((-1279 $))) (-15 -4329 ((-1279 |t#1|) $)) (-15 -4329 ((-697 |t#1|) (-1279 $))) (-15 -1913 ($ (-1279 |t#1|))) (-15 -1835 ((-1279 |t#1|) $)) (-15 -1835 ($ (-1279 |t#1|))) (-15 -3736 ((-697 |t#1|))) (-15 -3537 (|t#1|)) (-15 -3485 ((-697 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-377 |#1| |#2|) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) 27) (((-3 (-572) "failed") $) 19)) (-2204 ((|#2| $) NIL) (((-415 (-572)) $) 24) (((-572) $) 14)) (-2940 (($ |#2|) NIL) (($ (-415 (-572))) 22) (($ (-572)) 11)))
-(((-418 |#1| |#2|) (-10 -8 (-15 -2940 (|#1| (-572))) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2940 (|#1| |#2|))) (-419 |#2|) (-1229)) (T -418))
-NIL
-(-10 -8 (-15 -2940 (|#1| (-572))) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2940 (|#1| |#2|)))
-((-1695 (((-3 |#1| "failed") $) 9) (((-3 (-415 (-572)) "failed") $) 16 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 13 (|has| |#1| (-1049 (-572))))) (-2204 ((|#1| $) 8) (((-415 (-572)) $) 17 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 14 (|has| |#1| (-1049 (-572))))) (-2940 (($ |#1|) 6) (($ (-415 (-572))) 15 (|has| |#1| (-1049 (-415 (-572))))) (($ (-572)) 12 (|has| |#1| (-1049 (-572))))))
-(((-419 |#1|) (-141) (-1229)) (T -419))
-NIL
-(-13 (-1049 |t#1|) (-10 -7 (IF (|has| |t#1| (-1049 (-572))) (-6 (-1049 (-572))) |%noBranch|) (IF (|has| |t#1| (-1049 (-415 (-572)))) (-6 (-1049 (-415 (-572)))) |%noBranch|)))
-(((-624 #0=(-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-624 #1=(-572)) |has| |#1| (-1049 (-572))) ((-624 |#1|) . T) ((-1049 #0#) |has| |#1| (-1049 (-415 (-572)))) ((-1049 #1#) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T))
-((-1776 (((-421 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-421 |#1| |#2| |#3| |#4|)) 35)))
-(((-420 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 ((-421 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-421 |#1| |#2| |#3| |#4|)))) (-313) (-1003 |#1|) (-1255 |#2|) (-13 (-417 |#2| |#3|) (-1049 |#2|)) (-313) (-1003 |#5|) (-1255 |#6|) (-13 (-417 |#6| |#7|) (-1049 |#6|))) (T -420))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-421 *5 *6 *7 *8)) (-4 *5 (-313)) (-4 *6 (-1003 *5)) (-4 *7 (-1255 *6)) (-4 *8 (-13 (-417 *6 *7) (-1049 *6))) (-4 *9 (-313)) (-4 *10 (-1003 *9)) (-4 *11 (-1255 *10)) (-5 *2 (-421 *9 *10 *11 *12)) (-5 *1 (-420 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-417 *10 *11) (-1049 *10))))))
-(-10 -7 (-15 -1776 ((-421 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-421 |#1| |#2| |#3| |#4|))))
-((-2846 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-2921 ((|#4| (-779) (-1279 |#4|)) 55)) (-1886 (((-112) $) NIL)) (-2963 (((-1279 |#4|) $) 15)) (-2028 ((|#2| $) 53)) (-4022 (($ $) 157)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 103)) (-4124 (($ (-1279 |#4|)) 102)) (-3964 (((-1131) $) NIL)) (-2974 ((|#1| $) 16)) (-1516 (($ $ $) NIL)) (-4326 (($ $ $) NIL)) (-2940 (((-870) $) 148)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 |#4|) $) 141)) (-2143 (($) 11 T CONST)) (-2978 (((-112) $ $) 39)) (-3106 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 134)) (* (($ $ $) 130)))
-(((-421 |#1| |#2| |#3| |#4|) (-13 (-481) (-10 -8 (-15 -4124 ($ (-1279 |#4|))) (-15 -4362 ((-1279 |#4|) $)) (-15 -2028 (|#2| $)) (-15 -2963 ((-1279 |#4|) $)) (-15 -2974 (|#1| $)) (-15 -4022 ($ $)) (-15 -2921 (|#4| (-779) (-1279 |#4|))))) (-313) (-1003 |#1|) (-1255 |#2|) (-13 (-417 |#2| |#3|) (-1049 |#2|))) (T -421))
-((-4124 (*1 *1 *2) (-12 (-5 *2 (-1279 *6)) (-4 *6 (-13 (-417 *4 *5) (-1049 *4))) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *3 (-313)) (-5 *1 (-421 *3 *4 *5 *6)))) (-4362 (*1 *2 *1) (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-1279 *6)) (-5 *1 (-421 *3 *4 *5 *6)) (-4 *6 (-13 (-417 *4 *5) (-1049 *4))))) (-2028 (*1 *2 *1) (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1003 *3)) (-5 *1 (-421 *3 *2 *4 *5)) (-4 *3 (-313)) (-4 *5 (-13 (-417 *2 *4) (-1049 *2))))) (-2963 (*1 *2 *1) (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-1279 *6)) (-5 *1 (-421 *3 *4 *5 *6)) (-4 *6 (-13 (-417 *4 *5) (-1049 *4))))) (-2974 (*1 *2 *1) (-12 (-4 *3 (-1003 *2)) (-4 *4 (-1255 *3)) (-4 *2 (-313)) (-5 *1 (-421 *2 *3 *4 *5)) (-4 *5 (-13 (-417 *3 *4) (-1049 *3))))) (-4022 (*1 *1 *1) (-12 (-4 *2 (-313)) (-4 *3 (-1003 *2)) (-4 *4 (-1255 *3)) (-5 *1 (-421 *2 *3 *4 *5)) (-4 *5 (-13 (-417 *3 *4) (-1049 *3))))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1279 *2)) (-4 *5 (-313)) (-4 *6 (-1003 *5)) (-4 *2 (-13 (-417 *6 *7) (-1049 *6))) (-5 *1 (-421 *5 *6 *7 *2)) (-4 *7 (-1255 *6)))))
-(-13 (-481) (-10 -8 (-15 -4124 ($ (-1279 |#4|))) (-15 -4362 ((-1279 |#4|) $)) (-15 -2028 (|#2| $)) (-15 -2963 ((-1279 |#4|) $)) (-15 -2974 (|#1| $)) (-15 -4022 ($ $)) (-15 -2921 (|#4| (-779) (-1279 |#4|)))))
-((-2846 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-2028 ((|#2| $) 71)) (-2188 (($ (-1279 |#4|)) 27) (($ (-421 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1049 |#2|)))) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 37)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 |#4|) $) 28)) (-2143 (($) 25 T CONST)) (-2978 (((-112) $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ $ $) 82)))
-(((-422 |#1| |#2| |#3| |#4| |#5|) (-13 (-734) (-10 -8 (-15 -4362 ((-1279 |#4|) $)) (-15 -2028 (|#2| $)) (-15 -2188 ($ (-1279 |#4|))) (IF (|has| |#4| (-1049 |#2|)) (-15 -2188 ($ (-421 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-313) (-1003 |#1|) (-1255 |#2|) (-417 |#2| |#3|) (-1279 |#4|)) (T -422))
-((-4362 (*1 *2 *1) (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-1279 *6)) (-5 *1 (-422 *3 *4 *5 *6 *7)) (-4 *6 (-417 *4 *5)) (-14 *7 *2))) (-2028 (*1 *2 *1) (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1003 *3)) (-5 *1 (-422 *3 *2 *4 *5 *6)) (-4 *3 (-313)) (-4 *5 (-417 *2 *4)) (-14 *6 (-1279 *5)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1279 *6)) (-4 *6 (-417 *4 *5)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *3 (-313)) (-5 *1 (-422 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-421 *3 *4 *5 *6)) (-4 *6 (-1049 *4)) (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *6 (-417 *4 *5)) (-14 *7 (-1279 *6)) (-5 *1 (-422 *3 *4 *5 *6 *7)))))
-(-13 (-734) (-10 -8 (-15 -4362 ((-1279 |#4|) $)) (-15 -2028 (|#2| $)) (-15 -2188 ($ (-1279 |#4|))) (IF (|has| |#4| (-1049 |#2|)) (-15 -2188 ($ (-421 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-1776 ((|#3| (-1 |#4| |#2|) |#1|) 29)))
-(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) (-425 |#2|) (-174) (-425 |#4|) (-174)) (T -423))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-425 *6)) (-5 *1 (-423 *4 *5 *2 *6)) (-4 *4 (-425 *5)))))
-(-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3161 (((-3 $ "failed")) 98)) (-2016 (((-1279 (-697 |#2|)) (-1279 $)) NIL) (((-1279 (-697 |#2|))) 103)) (-2892 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) 96)) (-3760 (((-3 $ "failed")) 95)) (-1609 (((-697 |#2|) (-1279 $)) NIL) (((-697 |#2|)) 114)) (-3819 (((-697 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) $) 122)) (-2872 (((-1184 (-961 |#2|))) 63)) (-3529 ((|#2| (-1279 $)) NIL) ((|#2|) 118)) (-1913 (($ (-1279 |#2|) (-1279 $)) NIL) (($ (-1279 |#2|)) 124)) (-3249 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) 94)) (-2950 (((-3 $ "failed")) 86)) (-2509 (((-697 |#2|) (-1279 $)) NIL) (((-697 |#2|)) 112)) (-2647 (((-697 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) $) 120)) (-2853 (((-1184 (-961 |#2|))) 62)) (-3452 ((|#2| (-1279 $)) NIL) ((|#2|) 116)) (-4329 (((-1279 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) NIL) (((-1279 |#2|) $) 123) (((-697 |#2|) (-1279 $)) 132)) (-1835 (((-1279 |#2|) $) 108) (($ (-1279 |#2|)) 110)) (-1402 (((-652 (-961 |#2|)) (-1279 $)) NIL) (((-652 (-961 |#2|))) 106)) (-2898 (($ (-697 |#2|) $) 102)))
-(((-424 |#1| |#2|) (-10 -8 (-15 -2898 (|#1| (-697 |#2|) |#1|)) (-15 -2872 ((-1184 (-961 |#2|)))) (-15 -2853 ((-1184 (-961 |#2|)))) (-15 -3819 ((-697 |#2|) |#1|)) (-15 -2647 ((-697 |#2|) |#1|)) (-15 -1609 ((-697 |#2|))) (-15 -2509 ((-697 |#2|))) (-15 -3529 (|#2|)) (-15 -3452 (|#2|)) (-15 -1835 (|#1| (-1279 |#2|))) (-15 -1835 ((-1279 |#2|) |#1|)) (-15 -1913 (|#1| (-1279 |#2|))) (-15 -1402 ((-652 (-961 |#2|)))) (-15 -2016 ((-1279 (-697 |#2|)))) (-15 -4329 ((-697 |#2|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1|)) (-15 -3161 ((-3 |#1| "failed"))) (-15 -3760 ((-3 |#1| "failed"))) (-15 -2950 ((-3 |#1| "failed"))) (-15 -2892 ((-3 (-2 (|:| |particular| |#1|) (|:| -4362 (-652 |#1|))) "failed"))) (-15 -3249 ((-3 (-2 (|:| |particular| |#1|) (|:| -4362 (-652 |#1|))) "failed"))) (-15 -1609 ((-697 |#2|) (-1279 |#1|))) (-15 -2509 ((-697 |#2|) (-1279 |#1|))) (-15 -3529 (|#2| (-1279 |#1|))) (-15 -3452 (|#2| (-1279 |#1|))) (-15 -1913 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -3819 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2647 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2016 ((-1279 (-697 |#2|)) (-1279 |#1|))) (-15 -1402 ((-652 (-961 |#2|)) (-1279 |#1|)))) (-425 |#2|) (-174)) (T -424))
-((-2016 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-1402 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-652 (-961 *4))) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-3452 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-424 *3 *2)) (-4 *3 (-425 *2)))) (-3529 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-424 *3 *2)) (-4 *3 (-425 *2)))) (-2509 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-697 *4)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-1609 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-697 *4)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-2853 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1184 (-961 *4))) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-2872 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1184 (-961 *4))) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
-(-10 -8 (-15 -2898 (|#1| (-697 |#2|) |#1|)) (-15 -2872 ((-1184 (-961 |#2|)))) (-15 -2853 ((-1184 (-961 |#2|)))) (-15 -3819 ((-697 |#2|) |#1|)) (-15 -2647 ((-697 |#2|) |#1|)) (-15 -1609 ((-697 |#2|))) (-15 -2509 ((-697 |#2|))) (-15 -3529 (|#2|)) (-15 -3452 (|#2|)) (-15 -1835 (|#1| (-1279 |#2|))) (-15 -1835 ((-1279 |#2|) |#1|)) (-15 -1913 (|#1| (-1279 |#2|))) (-15 -1402 ((-652 (-961 |#2|)))) (-15 -2016 ((-1279 (-697 |#2|)))) (-15 -4329 ((-697 |#2|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1|)) (-15 -3161 ((-3 |#1| "failed"))) (-15 -3760 ((-3 |#1| "failed"))) (-15 -2950 ((-3 |#1| "failed"))) (-15 -2892 ((-3 (-2 (|:| |particular| |#1|) (|:| -4362 (-652 |#1|))) "failed"))) (-15 -3249 ((-3 (-2 (|:| |particular| |#1|) (|:| -4362 (-652 |#1|))) "failed"))) (-15 -1609 ((-697 |#2|) (-1279 |#1|))) (-15 -2509 ((-697 |#2|) (-1279 |#1|))) (-15 -3529 (|#2| (-1279 |#1|))) (-15 -3452 (|#2| (-1279 |#1|))) (-15 -1913 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -4329 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -4329 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -3819 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2647 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2016 ((-1279 (-697 |#2|)) (-1279 |#1|))) (-15 -1402 ((-652 (-961 |#2|)) (-1279 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3161 (((-3 $ "failed")) 42 (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) 20)) (-2016 (((-1279 (-697 |#1|)) (-1279 $)) 83) (((-1279 (-697 |#1|))) 106)) (-3621 (((-1279 $)) 86)) (-3281 (($) 18 T CONST)) (-2892 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) 45 (|has| |#1| (-564)))) (-3760 (((-3 $ "failed")) 43 (|has| |#1| (-564)))) (-1609 (((-697 |#1|) (-1279 $)) 70) (((-697 |#1|)) 98)) (-2554 ((|#1| $) 79)) (-3819 (((-697 |#1|) $ (-1279 $)) 81) (((-697 |#1|) $) 96)) (-4147 (((-3 $ "failed") $) 50 (|has| |#1| (-564)))) (-2872 (((-1184 (-961 |#1|))) 94 (|has| |#1| (-370)))) (-2673 (($ $ (-930)) 31)) (-3747 ((|#1| $) 77)) (-3120 (((-1184 |#1|) $) 47 (|has| |#1| (-564)))) (-3529 ((|#1| (-1279 $)) 72) ((|#1|) 100)) (-2493 (((-1184 |#1|) $) 68)) (-3043 (((-112)) 62)) (-1913 (($ (-1279 |#1|) (-1279 $)) 74) (($ (-1279 |#1|)) 104)) (-2062 (((-3 $ "failed") $) 52 (|has| |#1| (-564)))) (-3581 (((-930)) 85)) (-2522 (((-112)) 59)) (-4101 (($ $ (-930)) 38)) (-3491 (((-112)) 55)) (-1851 (((-112)) 53)) (-2769 (((-112)) 57)) (-3249 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) 46 (|has| |#1| (-564)))) (-2950 (((-3 $ "failed")) 44 (|has| |#1| (-564)))) (-2509 (((-697 |#1|) (-1279 $)) 71) (((-697 |#1|)) 99)) (-3436 ((|#1| $) 80)) (-2647 (((-697 |#1|) $ (-1279 $)) 82) (((-697 |#1|) $) 97)) (-1353 (((-3 $ "failed") $) 51 (|has| |#1| (-564)))) (-2853 (((-1184 (-961 |#1|))) 95 (|has| |#1| (-370)))) (-1858 (($ $ (-930)) 32)) (-3345 ((|#1| $) 78)) (-2267 (((-1184 |#1|) $) 48 (|has| |#1| (-564)))) (-3452 ((|#1| (-1279 $)) 73) ((|#1|) 101)) (-2708 (((-1184 |#1|) $) 69)) (-4401 (((-112)) 63)) (-4347 (((-1170) $) 10)) (-1522 (((-112)) 54)) (-3278 (((-112)) 56)) (-2816 (((-112)) 58)) (-3964 (((-1131) $) 11)) (-3534 (((-112)) 61)) (-2196 ((|#1| $ (-572)) 110)) (-4329 (((-1279 |#1|) $ (-1279 $)) 76) (((-697 |#1|) (-1279 $) (-1279 $)) 75) (((-1279 |#1|) $) 108) (((-697 |#1|) (-1279 $)) 107)) (-1835 (((-1279 |#1|) $) 103) (($ (-1279 |#1|)) 102)) (-1402 (((-652 (-961 |#1|)) (-1279 $)) 84) (((-652 (-961 |#1|))) 105)) (-4326 (($ $ $) 28)) (-1589 (((-112)) 67)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-4362 (((-1279 $)) 109)) (-3987 (((-652 (-1279 |#1|))) 49 (|has| |#1| (-564)))) (-2266 (($ $ $ $) 29)) (-1662 (((-112)) 65)) (-2898 (($ (-697 |#1|) $) 93)) (-3099 (($ $ $) 27)) (-4118 (((-112)) 66)) (-3313 (((-112)) 64)) (-1547 (((-112)) 60)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 33)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-425 |#1|) (-141) (-174)) (T -425))
-((-4362 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1279 *1)) (-4 *1 (-425 *3)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 *3)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-425 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-2016 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 (-697 *3))))) (-1402 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-652 (-961 *3))))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-425 *3)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 *3)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-425 *3)))) (-3452 (*1 *2) (-12 (-4 *1 (-425 *2)) (-4 *2 (-174)))) (-3529 (*1 *2) (-12 (-4 *1 (-425 *2)) (-4 *2 (-174)))) (-2509 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))) (-1609 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))) (-2853 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-4 *3 (-370)) (-5 *2 (-1184 (-961 *3))))) (-2872 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-4 *3 (-370)) (-5 *2 (-1184 (-961 *3))))) (-2898 (*1 *1 *2 *1) (-12 (-5 *2 (-697 *3)) (-4 *1 (-425 *3)) (-4 *3 (-174)))))
-(-13 (-374 |t#1|) (-292 (-572) |t#1|) (-10 -8 (-15 -4362 ((-1279 $))) (-15 -4329 ((-1279 |t#1|) $)) (-15 -4329 ((-697 |t#1|) (-1279 $))) (-15 -2016 ((-1279 (-697 |t#1|)))) (-15 -1402 ((-652 (-961 |t#1|)))) (-15 -1913 ($ (-1279 |t#1|))) (-15 -1835 ((-1279 |t#1|) $)) (-15 -1835 ($ (-1279 |t#1|))) (-15 -3452 (|t#1|)) (-15 -3529 (|t#1|)) (-15 -2509 ((-697 |t#1|))) (-15 -1609 ((-697 |t#1|))) (-15 -2647 ((-697 |t#1|) $)) (-15 -3819 ((-697 |t#1|) $)) (IF (|has| |t#1| (-370)) (PROGN (-15 -2853 ((-1184 (-961 |t#1|)))) (-15 -2872 ((-1184 (-961 |t#1|))))) |%noBranch|) (-15 -2898 ($ (-697 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-292 (-572) |#1|) . T) ((-374 |#1|) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-728) . T) ((-752 |#1|) . T) ((-769) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 60)) (-2337 (($ $) 78)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 192)) (-3009 (($ $) NIL)) (-4334 (((-112) $) 48)) (-3161 ((|#1| $) 16)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-1233)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-1233)))) (-1480 (($ |#1| (-572)) 42)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 149)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 74)) (-2062 (((-3 $ "failed") $) 165)) (-3196 (((-3 (-415 (-572)) "failed") $) 85 (|has| |#1| (-553)))) (-1733 (((-112) $) 81 (|has| |#1| (-553)))) (-2233 (((-415 (-572)) $) 92 (|has| |#1| (-553)))) (-3481 (($ |#1| (-572)) 44)) (-3879 (((-112) $) 212 (|has| |#1| (-1233)))) (-1886 (((-112) $) 62)) (-3400 (((-779) $) 51)) (-1782 (((-3 "nil" "sqfr" "irred" "prime") $ (-572)) 176)) (-2321 ((|#1| $ (-572)) 175)) (-1541 (((-572) $ (-572)) 174)) (-1698 (($ |#1| (-572)) 41)) (-1776 (($ (-1 |#1| |#1|) $) 184)) (-2672 (($ |#1| (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572))))) 79)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4347 (((-1170) $) NIL)) (-3551 (($ |#1| (-572)) 43)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) 193 (|has| |#1| (-460)))) (-3240 (($ |#1| (-572) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-4225 (((-652 (-2 (|:| -4218 |#1|) (|:| -1679 (-572)))) $) 73)) (-2250 (((-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))) $) 12)) (-4218 (((-426 $) $) NIL (|has| |#1| (-1233)))) (-2834 (((-3 $ "failed") $ $) 177)) (-1679 (((-572) $) 168)) (-2127 ((|#1| $) 75)) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 101 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 107 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) $) NIL (|has| |#1| (-522 (-1188) $))) (($ $ (-652 (-1188)) (-652 $)) 108 (|has| |#1| (-522 (-1188) $))) (($ $ (-652 (-300 $))) 104 (|has| |#1| (-315 $))) (($ $ (-300 $)) NIL (|has| |#1| (-315 $))) (($ $ $ $) NIL (|has| |#1| (-315 $))) (($ $ (-652 $) (-652 $)) NIL (|has| |#1| (-315 $)))) (-2196 (($ $ |#1|) 93 (|has| |#1| (-292 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-292 $ $)))) (-3902 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1835 (((-544) $) 39 (|has| |#1| (-622 (-544)))) (((-386) $) 114 (|has| |#1| (-1033))) (((-227) $) 120 (|has| |#1| (-1033)))) (-2940 (((-870) $) 147) (($ (-572)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572)))))) (-4249 (((-779)) 67 T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2131 (($) 53 T CONST)) (-2143 (($) 52 T CONST)) (-3608 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) 160)) (-3089 (($ $) 162) (($ $ $) NIL)) (-3075 (($ $ $) 181)) (** (($ $ (-930)) NIL) (($ $ (-779)) 126)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-426 |#1|) (-13 (-564) (-233 |#1|) (-38 |#1|) (-345 |#1|) (-419 |#1|) (-10 -8 (-15 -2127 (|#1| $)) (-15 -1679 ((-572) $)) (-15 -2672 ($ |#1| (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))))) (-15 -2250 ((-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))) $)) (-15 -1698 ($ |#1| (-572))) (-15 -4225 ((-652 (-2 (|:| -4218 |#1|) (|:| -1679 (-572)))) $)) (-15 -3551 ($ |#1| (-572))) (-15 -1541 ((-572) $ (-572))) (-15 -2321 (|#1| $ (-572))) (-15 -1782 ((-3 "nil" "sqfr" "irred" "prime") $ (-572))) (-15 -3400 ((-779) $)) (-15 -3481 ($ |#1| (-572))) (-15 -1480 ($ |#1| (-572))) (-15 -3240 ($ |#1| (-572) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3161 (|#1| $)) (-15 -2337 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-460)) (-6 (-460)) |%noBranch|) (IF (|has| |#1| (-1033)) (-6 (-1033)) |%noBranch|) (IF (|has| |#1| (-1233)) (-6 (-1233)) |%noBranch|) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-292 $ $)) (-6 (-292 $ $)) |%noBranch|) (IF (|has| |#1| (-315 $)) (-6 (-315 $)) |%noBranch|) (IF (|has| |#1| (-522 (-1188) $)) (-6 (-522 (-1188) $)) |%noBranch|))) (-564)) (T -426))
-((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-564)) (-5 *1 (-426 *3)))) (-2127 (*1 *2 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-2672 (*1 *1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-572))))) (-4 *2 (-564)) (-5 *1 (-426 *2)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-572))))) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-1698 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| -4218 *3) (|:| -1679 (-572))))) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-3551 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-1541 (*1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-2321 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-1782 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-426 *4)) (-4 *4 (-564)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-3481 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-1480 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-3240 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-572)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-3161 (*1 *2 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-2337 (*1 *1 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426 *3)) (-4 *3 (-553)) (-4 *3 (-564)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-426 *3)) (-4 *3 (-553)) (-4 *3 (-564)))) (-3196 (*1 *2 *1) (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-426 *3)) (-4 *3 (-553)) (-4 *3 (-564)))))
-(-13 (-564) (-233 |#1|) (-38 |#1|) (-345 |#1|) (-419 |#1|) (-10 -8 (-15 -2127 (|#1| $)) (-15 -1679 ((-572) $)) (-15 -2672 ($ |#1| (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))))) (-15 -2250 ((-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))) $)) (-15 -1698 ($ |#1| (-572))) (-15 -4225 ((-652 (-2 (|:| -4218 |#1|) (|:| -1679 (-572)))) $)) (-15 -3551 ($ |#1| (-572))) (-15 -1541 ((-572) $ (-572))) (-15 -2321 (|#1| $ (-572))) (-15 -1782 ((-3 "nil" "sqfr" "irred" "prime") $ (-572))) (-15 -3400 ((-779) $)) (-15 -3481 ($ |#1| (-572))) (-15 -1480 ($ |#1| (-572))) (-15 -3240 ($ |#1| (-572) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3161 (|#1| $)) (-15 -2337 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-460)) (-6 (-460)) |%noBranch|) (IF (|has| |#1| (-1033)) (-6 (-1033)) |%noBranch|) (IF (|has| |#1| (-1233)) (-6 (-1233)) |%noBranch|) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-292 $ $)) (-6 (-292 $ $)) |%noBranch|) (IF (|has| |#1| (-315 $)) (-6 (-315 $)) |%noBranch|) (IF (|has| |#1| (-522 (-1188) $)) (-6 (-522 (-1188) $)) |%noBranch|)))
-((-3420 (((-426 |#1|) (-426 |#1|) (-1 (-426 |#1|) |#1|)) 28)) (-2638 (((-426 |#1|) (-426 |#1|) (-426 |#1|)) 17)))
-(((-427 |#1|) (-10 -7 (-15 -3420 ((-426 |#1|) (-426 |#1|) (-1 (-426 |#1|) |#1|))) (-15 -2638 ((-426 |#1|) (-426 |#1|) (-426 |#1|)))) (-564)) (T -427))
-((-2638 (*1 *2 *2 *2) (-12 (-5 *2 (-426 *3)) (-4 *3 (-564)) (-5 *1 (-427 *3)))) (-3420 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-426 *4) *4)) (-4 *4 (-564)) (-5 *2 (-426 *4)) (-5 *1 (-427 *4)))))
-(-10 -7 (-15 -3420 ((-426 |#1|) (-426 |#1|) (-1 (-426 |#1|) |#1|))) (-15 -2638 ((-426 |#1|) (-426 |#1|) (-426 |#1|))))
-((-3718 ((|#2| |#2|) 183)) (-1412 (((-3 (|:| |%expansion| (-319 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112)) 60)))
-(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1412 ((-3 (|:| |%expansion| (-319 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112))) (-15 -3718 (|#2| |#2|))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|)) (-1188) |#2|) (T -428))
-((-3718 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-428 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1214) (-438 *3))) (-14 *4 (-1188)) (-14 *5 *2))) (-1412 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |%expansion| (-319 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170)))))) (-5 *1 (-428 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-14 *6 (-1188)) (-14 *7 *3))))
-(-10 -7 (-15 -1412 ((-3 (|:| |%expansion| (-319 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112))) (-15 -3718 (|#2| |#2|)))
-((-1776 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) (-1060) (-438 |#1|) (-1060) (-438 |#3|)) (T -429))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-4 *2 (-438 *6)) (-5 *1 (-429 *5 *4 *6 *2)) (-4 *4 (-438 *5)))))
-(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3718 ((|#2| |#2|) 106)) (-3882 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170)) 52)) (-4305 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170)) 170)))
-(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3882 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170))) (-15 -4305 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170))) (-15 -3718 (|#2| |#2|))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|) (-10 -8 (-15 -2940 ($ |#3|)))) (-856) (-13 (-1257 |#2| |#3|) (-370) (-1214) (-10 -8 (-15 -3902 ($ $)) (-15 -3034 ($ $)))) (-994 |#4|) (-1188)) (T -430))
-((-3718 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-4 *2 (-13 (-27) (-1214) (-438 *3) (-10 -8 (-15 -2940 ($ *4))))) (-4 *4 (-856)) (-4 *5 (-13 (-1257 *2 *4) (-370) (-1214) (-10 -8 (-15 -3902 ($ $)) (-15 -3034 ($ $))))) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *6 (-994 *5)) (-14 *7 (-1188)))) (-4305 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-4 *3 (-13 (-27) (-1214) (-438 *6) (-10 -8 (-15 -2940 ($ *7))))) (-4 *7 (-856)) (-4 *8 (-13 (-1257 *3 *7) (-370) (-1214) (-10 -8 (-15 -3902 ($ $)) (-15 -3034 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170)))))) (-5 *1 (-430 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1170)) (-4 *9 (-994 *8)) (-14 *10 (-1188)))) (-3882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-4 *3 (-13 (-27) (-1214) (-438 *6) (-10 -8 (-15 -2940 ($ *7))))) (-4 *7 (-856)) (-4 *8 (-13 (-1257 *3 *7) (-370) (-1214) (-10 -8 (-15 -3902 ($ $)) (-15 -3034 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170)))))) (-5 *1 (-430 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1170)) (-4 *9 (-994 *8)) (-14 *10 (-1188)))))
-(-10 -7 (-15 -3882 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170))) (-15 -4305 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170))) (-15 -3718 (|#2| |#2|)))
-((-2273 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2865 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1776 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2865 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1111) (-433 |#1|) (-1111) (-433 |#3|)) (T -431))
-((-2273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1111)) (-4 *5 (-1111)) (-4 *2 (-433 *5)) (-5 *1 (-431 *6 *4 *5 *2)) (-4 *4 (-433 *6)))) (-2865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1111)) (-4 *2 (-1111)) (-5 *1 (-431 *5 *4 *2 *6)) (-4 *4 (-433 *5)) (-4 *6 (-433 *2)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-433 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-433 *5)))))
-(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2865 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-1645 (($) 51)) (-4357 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-2774 (($ $ $) 46)) (-1890 (((-112) $ $) 35)) (-1486 (((-779)) 55)) (-1506 (($ (-652 |#2|)) 23) (($) NIL)) (-2815 (($) 66)) (-3310 (((-112) $ $) 15)) (-3654 ((|#2| $) 77)) (-2427 ((|#2| $) 75)) (-3715 (((-930) $) 70)) (-1346 (($ $ $) 42)) (-2571 (($ (-930)) 60)) (-4020 (($ $ |#2|) NIL) (($ $ $) 45)) (-3973 (((-779) (-1 (-112) |#2|) $) NIL) (((-779) |#2| $) 31)) (-2953 (($ (-652 |#2|)) 27)) (-2429 (($ $) 53)) (-2940 (((-870) $) 40)) (-4006 (((-779) $) 24)) (-4279 (($ (-652 |#2|)) 22) (($) NIL)) (-2978 (((-112) $ $) 19)))
-(((-432 |#1| |#2|) (-10 -8 (-15 -1486 ((-779))) (-15 -2571 (|#1| (-930))) (-15 -3715 ((-930) |#1|)) (-15 -2815 (|#1|)) (-15 -3654 (|#2| |#1|)) (-15 -2427 (|#2| |#1|)) (-15 -1645 (|#1|)) (-15 -2429 (|#1| |#1|)) (-15 -4006 ((-779) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -3310 ((-112) |#1| |#1|)) (-15 -4279 (|#1|)) (-15 -4279 (|#1| (-652 |#2|))) (-15 -1506 (|#1|)) (-15 -1506 (|#1| (-652 |#2|))) (-15 -1346 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#2|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -1890 ((-112) |#1| |#1|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#2| |#1|)) (-15 -2953 (|#1| (-652 |#2|))) (-15 -3973 ((-779) |#2| |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|))) (-433 |#2|) (-1111)) (T -432))
-((-1486 (*1 *2) (-12 (-4 *4 (-1111)) (-5 *2 (-779)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))))
-(-10 -8 (-15 -1486 ((-779))) (-15 -2571 (|#1| (-930))) (-15 -3715 ((-930) |#1|)) (-15 -2815 (|#1|)) (-15 -3654 (|#2| |#1|)) (-15 -2427 (|#2| |#1|)) (-15 -1645 (|#1|)) (-15 -2429 (|#1| |#1|)) (-15 -4006 ((-779) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -3310 ((-112) |#1| |#1|)) (-15 -4279 (|#1|)) (-15 -4279 (|#1| (-652 |#2|))) (-15 -1506 (|#1|)) (-15 -1506 (|#1| (-652 |#2|))) (-15 -1346 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#2|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -1890 ((-112) |#1| |#1|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#2| |#1|)) (-15 -2953 (|#1| (-652 |#2|))) (-15 -3973 ((-779) |#2| |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|)))
-((-2846 (((-112) $ $) 19)) (-1645 (($) 68 (|has| |#1| (-375)))) (-4357 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2774 (($ $ $) 79)) (-1890 (((-112) $ $) 80)) (-1631 (((-112) $ (-779)) 8)) (-1486 (((-779)) 62 (|has| |#1| (-375)))) (-1506 (($ (-652 |#1|)) 75) (($) 74)) (-2613 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2086 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-3332 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-2815 (($) 65 (|has| |#1| (-375)))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3310 (((-112) $ $) 71)) (-1861 (((-112) $ (-779)) 9)) (-3654 ((|#1| $) 66 (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2427 ((|#1| $) 67 (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-3715 (((-930) $) 64 (|has| |#1| (-375)))) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22)) (-1346 (($ $ $) 76)) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41)) (-2571 (($ (-930)) 63 (|has| |#1| (-375)))) (-3964 (((-1131) $) 21)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-4020 (($ $ |#1|) 78) (($ $ $) 77)) (-3438 (($) 50) (($ (-652 |#1|)) 49)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 51)) (-2429 (($ $) 69 (|has| |#1| (-375)))) (-2940 (((-870) $) 18)) (-4006 (((-779) $) 70)) (-4279 (($ (-652 |#1|)) 73) (($) 72)) (-4379 (((-112) $ $) 23)) (-2022 (($ (-652 |#1|)) 43)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20)) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-433 |#1|) (-141) (-1111)) (T -433))
-((-4006 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1111)) (-5 *2 (-779)))) (-2429 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-375)))) (-1645 (*1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-375)) (-4 *2 (-1111)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-858)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-858)))))
-(-13 (-231 |t#1|) (-1109 |t#1|) (-10 -8 (-6 -4454) (-15 -4006 ((-779) $)) (IF (|has| |t#1| (-375)) (PROGN (-6 (-375)) (-15 -2429 ($ $)) (-15 -1645 ($))) |%noBranch|) (IF (|has| |t#1| (-858)) (PROGN (-15 -2427 (|t#1| $)) (-15 -3654 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-231 |#1|) . T) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-375) |has| |#1| (-375)) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1109 |#1|) . T) ((-1111) . T) ((-1229) . T))
-((-2044 (((-594 |#2|) |#2| (-1188)) 36)) (-4414 (((-594 |#2|) |#2| (-1188)) 21)) (-1718 ((|#2| |#2| (-1188)) 26)))
-(((-434 |#1| |#2|) (-10 -7 (-15 -4414 ((-594 |#2|) |#2| (-1188))) (-15 -2044 ((-594 |#2|) |#2| (-1188))) (-15 -1718 (|#2| |#2| (-1188)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-29 |#1|))) (T -434))
-((-1718 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-434 *4 *2)) (-4 *2 (-13 (-1214) (-29 *4))))) (-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-434 *5 *3)) (-4 *3 (-13 (-1214) (-29 *5))))) (-4414 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-434 *5 *3)) (-4 *3 (-13 (-1214) (-29 *5))))))
-(-10 -7 (-15 -4414 ((-594 |#2|) |#2| (-1188))) (-15 -2044 ((-594 |#2|) |#2| (-1188))) (-15 -1718 (|#2| |#2| (-1188))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-1383 (($ |#2| |#1|) 37)) (-3980 (($ |#2| |#1|) 35)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-337 |#2|)) 25)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 10 T CONST)) (-2143 (($) 16 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 36)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-435 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4441)) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|) |%noBranch|) (-15 -2940 ($ |#1|)) (-15 -2940 ($ (-337 |#2|))) (-15 -1383 ($ |#2| |#1|)) (-15 -3980 ($ |#2| |#1|)))) (-13 (-174) (-38 (-415 (-572)))) (-13 (-858) (-21))) (T -435))
-((-2940 (*1 *1 *2) (-12 (-5 *1 (-435 *2 *3)) (-4 *2 (-13 (-174) (-38 (-415 (-572))))) (-4 *3 (-13 (-858) (-21))))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-337 *4)) (-4 *4 (-13 (-858) (-21))) (-5 *1 (-435 *3 *4)) (-4 *3 (-13 (-174) (-38 (-415 (-572))))))) (-1383 (*1 *1 *2 *3) (-12 (-5 *1 (-435 *3 *2)) (-4 *3 (-13 (-174) (-38 (-415 (-572))))) (-4 *2 (-13 (-858) (-21))))) (-3980 (*1 *1 *2 *3) (-12 (-5 *1 (-435 *3 *2)) (-4 *3 (-13 (-174) (-38 (-415 (-572))))) (-4 *2 (-13 (-858) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4441)) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|) |%noBranch|) (-15 -2940 ($ |#1|)) (-15 -2940 ($ (-337 |#2|))) (-15 -1383 ($ |#2| |#1|)) (-15 -3980 ($ |#2| |#1|))))
-((-3034 (((-3 |#2| (-652 |#2|)) |#2| (-1188)) 115)))
-(((-436 |#1| |#2|) (-10 -7 (-15 -3034 ((-3 |#2| (-652 |#2|)) |#2| (-1188)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-968) (-29 |#1|))) (T -436))
-((-3034 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 *3 (-652 *3))) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1214) (-968) (-29 *5))))))
-(-10 -7 (-15 -3034 ((-3 |#2| (-652 |#2|)) |#2| (-1188))))
-((-4353 (((-652 (-1188)) $) 81)) (-4191 (((-415 (-1184 $)) $ (-620 $)) 313)) (-2539 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-652 (-620 $)) (-652 $)) 277)) (-1695 (((-3 (-620 $) "failed") $) NIL) (((-3 (-1188) "failed") $) 84) (((-3 (-572) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-415 (-961 |#2|)) "failed") $) 363) (((-3 (-961 |#2|) "failed") $) 275) (((-3 (-415 (-572)) "failed") $) NIL)) (-2204 (((-620 $) $) NIL) (((-1188) $) 28) (((-572) $) NIL) ((|#2| $) 271) (((-415 (-961 |#2|)) $) 345) (((-961 |#2|) $) 272) (((-415 (-572)) $) NIL)) (-4171 (((-115) (-115)) 47)) (-2710 (($ $) 99)) (-3369 (((-3 (-620 $) "failed") $) 268)) (-4161 (((-652 (-620 $)) $) 269)) (-4011 (((-3 (-652 $) "failed") $) 287)) (-4153 (((-3 (-2 (|:| |val| $) (|:| -1679 (-572))) "failed") $) 294)) (-3665 (((-3 (-652 $) "failed") $) 285)) (-4235 (((-3 (-2 (|:| -1857 (-572)) (|:| |var| (-620 $))) "failed") $) 304)) (-1920 (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $) 291) (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-1188)) 257)) (-1336 (((-112) $) 17)) (-1347 ((|#2| $) 19)) (-2641 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) 276) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) 109) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1188)) 62) (($ $ (-652 (-1188))) 280) (($ $) 281) (($ $ (-115) $ (-1188)) 65) (($ $ (-652 (-115)) (-652 $) (-1188)) 72) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $))) 120) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $)))) 282) (($ $ (-1188) (-779) (-1 $ (-652 $))) 105) (($ $ (-1188) (-779) (-1 $ $)) 104)) (-2196 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) 119)) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) 278)) (-1520 (($ $) 324)) (-1835 (((-901 (-572)) $) 297) (((-901 (-386)) $) 301) (($ (-426 $)) 359) (((-544) $) NIL)) (-2940 (((-870) $) 279) (($ (-620 $)) 93) (($ (-1188)) 24) (($ |#2|) NIL) (($ (-1136 |#2| (-620 $))) NIL) (($ (-415 |#2|)) 329) (($ (-961 (-415 |#2|))) 368) (($ (-415 (-961 (-415 |#2|)))) 341) (($ (-415 (-961 |#2|))) 335) (($ $) NIL) (($ (-961 |#2|)) 216) (($ (-572)) NIL) (($ (-415 (-572))) 373)) (-4249 (((-779)) 88)) (-4406 (((-112) (-115)) 42)) (-2494 (($ (-1188) $) 31) (($ (-1188) $ $) 32) (($ (-1188) $ $ $) 33) (($ (-1188) $ $ $ $) 34) (($ (-1188) (-652 $)) 39)) (* (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL)))
-(((-437 |#1| |#2|) (-10 -8 (-15 * (|#1| (-930) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2940 (|#1| (-572))) (-15 -4249 ((-779))) (-15 * (|#1| |#2| |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -2940 (|#1| (-961 |#2|))) (-15 -1695 ((-3 (-961 |#2|) "failed") |#1|)) (-15 -2204 ((-961 |#2|) |#1|)) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 * (|#1| |#1| |#2|)) (-15 -2940 (|#1| |#1|)) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -2940 (|#1| (-415 (-961 |#2|)))) (-15 -1695 ((-3 (-415 (-961 |#2|)) "failed") |#1|)) (-15 -2204 ((-415 (-961 |#2|)) |#1|)) (-15 -4191 ((-415 (-1184 |#1|)) |#1| (-620 |#1|))) (-15 -2940 (|#1| (-415 (-961 (-415 |#2|))))) (-15 -2940 (|#1| (-961 (-415 |#2|)))) (-15 -2940 (|#1| (-415 |#2|))) (-15 -1520 (|#1| |#1|)) (-15 -1835 (|#1| (-426 |#1|))) (-15 -2641 (|#1| |#1| (-1188) (-779) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-1188) (-779) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-779)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-779)) (-652 (-1 |#1| |#1|)))) (-15 -4153 ((-3 (-2 (|:| |val| |#1|) (|:| -1679 (-572))) "failed") |#1|)) (-15 -1920 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -1679 (-572))) "failed") |#1| (-1188))) (-15 -1920 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -1679 (-572))) "failed") |#1| (-115))) (-15 -2710 (|#1| |#1|)) (-15 -2940 (|#1| (-1136 |#2| (-620 |#1|)))) (-15 -4235 ((-3 (-2 (|:| -1857 (-572)) (|:| |var| (-620 |#1|))) "failed") |#1|)) (-15 -3665 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -1920 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -1679 (-572))) "failed") |#1|)) (-15 -4011 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 |#1|) (-1188))) (-15 -2641 (|#1| |#1| (-115) |#1| (-1188))) (-15 -2641 (|#1| |#1|)) (-15 -2641 (|#1| |#1| (-652 (-1188)))) (-15 -2641 (|#1| |#1| (-1188))) (-15 -2494 (|#1| (-1188) (-652 |#1|))) (-15 -2494 (|#1| (-1188) |#1| |#1| |#1| |#1|)) (-15 -2494 (|#1| (-1188) |#1| |#1| |#1|)) (-15 -2494 (|#1| (-1188) |#1| |#1|)) (-15 -2494 (|#1| (-1188) |#1|)) (-15 -4353 ((-652 (-1188)) |#1|)) (-15 -1347 (|#2| |#1|)) (-15 -1336 ((-112) |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -2940 (|#1| (-1188))) (-15 -1695 ((-3 (-1188) "failed") |#1|)) (-15 -2204 ((-1188) |#1|)) (-15 -2641 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-115) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| |#1|)))) (-15 -2641 (|#1| |#1| (-1188) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-1188) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| |#1|)))) (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -4161 ((-652 (-620 |#1|)) |#1|)) (-15 -3369 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -2539 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -2539 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -2539 (|#1| |#1| (-300 |#1|))) (-15 -2196 (|#1| (-115) (-652 |#1|))) (-15 -2196 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -2641 (|#1| |#1| (-620 |#1|) |#1|)) (-15 -2940 (|#1| (-620 |#1|))) (-15 -1695 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -2204 ((-620 |#1|) |#1|)) (-15 -2940 ((-870) |#1|))) (-438 |#2|) (-1111)) (T -437))
-((-4171 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1111)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4)))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-437 *4 *5)) (-4 *4 (-438 *5)))) (-4249 (*1 *2) (-12 (-4 *4 (-1111)) (-5 *2 (-779)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4)))))
-(-10 -8 (-15 * (|#1| (-930) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2940 (|#1| (-572))) (-15 -4249 ((-779))) (-15 * (|#1| |#2| |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -2940 (|#1| (-961 |#2|))) (-15 -1695 ((-3 (-961 |#2|) "failed") |#1|)) (-15 -2204 ((-961 |#2|) |#1|)) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 * (|#1| |#1| |#2|)) (-15 -2940 (|#1| |#1|)) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -2940 (|#1| (-415 (-961 |#2|)))) (-15 -1695 ((-3 (-415 (-961 |#2|)) "failed") |#1|)) (-15 -2204 ((-415 (-961 |#2|)) |#1|)) (-15 -4191 ((-415 (-1184 |#1|)) |#1| (-620 |#1|))) (-15 -2940 (|#1| (-415 (-961 (-415 |#2|))))) (-15 -2940 (|#1| (-961 (-415 |#2|)))) (-15 -2940 (|#1| (-415 |#2|))) (-15 -1520 (|#1| |#1|)) (-15 -1835 (|#1| (-426 |#1|))) (-15 -2641 (|#1| |#1| (-1188) (-779) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-1188) (-779) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-779)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-779)) (-652 (-1 |#1| |#1|)))) (-15 -4153 ((-3 (-2 (|:| |val| |#1|) (|:| -1679 (-572))) "failed") |#1|)) (-15 -1920 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -1679 (-572))) "failed") |#1| (-1188))) (-15 -1920 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -1679 (-572))) "failed") |#1| (-115))) (-15 -2710 (|#1| |#1|)) (-15 -2940 (|#1| (-1136 |#2| (-620 |#1|)))) (-15 -4235 ((-3 (-2 (|:| -1857 (-572)) (|:| |var| (-620 |#1|))) "failed") |#1|)) (-15 -3665 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -1920 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -1679 (-572))) "failed") |#1|)) (-15 -4011 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 |#1|) (-1188))) (-15 -2641 (|#1| |#1| (-115) |#1| (-1188))) (-15 -2641 (|#1| |#1|)) (-15 -2641 (|#1| |#1| (-652 (-1188)))) (-15 -2641 (|#1| |#1| (-1188))) (-15 -2494 (|#1| (-1188) (-652 |#1|))) (-15 -2494 (|#1| (-1188) |#1| |#1| |#1| |#1|)) (-15 -2494 (|#1| (-1188) |#1| |#1| |#1|)) (-15 -2494 (|#1| (-1188) |#1| |#1|)) (-15 -2494 (|#1| (-1188) |#1|)) (-15 -4353 ((-652 (-1188)) |#1|)) (-15 -1347 (|#2| |#1|)) (-15 -1336 ((-112) |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -2940 (|#1| (-1188))) (-15 -1695 ((-3 (-1188) "failed") |#1|)) (-15 -2204 ((-1188) |#1|)) (-15 -2641 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-115) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| |#1|)))) (-15 -2641 (|#1| |#1| (-1188) (-1 |#1| |#1|))) (-15 -2641 (|#1| |#1| (-1188) (-1 |#1| (-652 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2641 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| |#1|)))) (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -4161 ((-652 (-620 |#1|)) |#1|)) (-15 -3369 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -2539 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -2539 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -2539 (|#1| |#1| (-300 |#1|))) (-15 -2196 (|#1| (-115) (-652 |#1|))) (-15 -2196 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1| |#1|)) (-15 -2196 (|#1| (-115) |#1|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -2641 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -2641 (|#1| |#1| (-620 |#1|) |#1|)) (-15 -2940 (|#1| (-620 |#1|))) (-15 -1695 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -2204 ((-620 |#1|) |#1|)) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 116 (|has| |#1| (-25)))) (-4353 (((-652 (-1188)) $) 205)) (-4191 (((-415 (-1184 $)) $ (-620 $)) 173 (|has| |#1| (-564)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 145 (|has| |#1| (-564)))) (-3009 (($ $) 146 (|has| |#1| (-564)))) (-4334 (((-112) $) 148 (|has| |#1| (-564)))) (-4090 (((-652 (-620 $)) $) 39)) (-3330 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2539 (($ $ (-300 $)) 51) (($ $ (-652 (-300 $))) 50) (($ $ (-652 (-620 $)) (-652 $)) 49)) (-3517 (($ $) 165 (|has| |#1| (-564)))) (-2287 (((-426 $) $) 166 (|has| |#1| (-564)))) (-4217 (((-112) $ $) 156 (|has| |#1| (-564)))) (-3281 (($) 104 (-2813 (|has| |#1| (-1123)) (|has| |#1| (-25))) CONST)) (-1695 (((-3 (-620 $) "failed") $) 64) (((-3 (-1188) "failed") $) 218) (((-3 (-572) "failed") $) 212 (|has| |#1| (-1049 (-572)))) (((-3 |#1| "failed") $) 209) (((-3 (-415 (-961 |#1|)) "failed") $) 171 (|has| |#1| (-564))) (((-3 (-961 |#1|) "failed") $) 123 (|has| |#1| (-1060))) (((-3 (-415 (-572)) "failed") $) 98 (-2813 (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572))))))) (-2204 (((-620 $) $) 65) (((-1188) $) 219) (((-572) $) 211 (|has| |#1| (-1049 (-572)))) ((|#1| $) 210) (((-415 (-961 |#1|)) $) 172 (|has| |#1| (-564))) (((-961 |#1|) $) 124 (|has| |#1| (-1060))) (((-415 (-572)) $) 99 (-2813 (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572))))))) (-2780 (($ $ $) 160 (|has| |#1| (-564)))) (-2993 (((-697 (-572)) (-1279 $)) 140 (-2085 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) (((-697 (-572)) (-697 $)) 139 (-2085 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 138 (-2085 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 137 (|has| |#1| (-1060))) (((-697 |#1|) (-697 $)) 136 (|has| |#1| (-1060))) (((-697 |#1|) (-1279 $)) 135 (|has| |#1| (-1060)))) (-2062 (((-3 $ "failed") $) 106 (|has| |#1| (-1123)))) (-2792 (($ $ $) 159 (|has| |#1| (-564)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 154 (|has| |#1| (-564)))) (-3879 (((-112) $) 167 (|has| |#1| (-564)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 214 (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 213 (|has| |#1| (-895 (-386))))) (-3033 (($ $) 46) (($ (-652 $)) 45)) (-4085 (((-652 (-115)) $) 38)) (-4171 (((-115) (-115)) 37)) (-1886 (((-112) $) 105 (|has| |#1| (-1123)))) (-2597 (((-112) $) 17 (|has| $ (-1049 (-572))))) (-2710 (($ $) 188 (|has| |#1| (-1060)))) (-2963 (((-1136 |#1| (-620 $)) $) 189 (|has| |#1| (-1060)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 163 (|has| |#1| (-564)))) (-2969 (((-1184 $) (-620 $)) 20 (|has| $ (-1060)))) (-1776 (($ (-1 $ $) (-620 $)) 31)) (-3369 (((-3 (-620 $) "failed") $) 41)) (-2825 (($ (-652 $)) 152 (|has| |#1| (-564))) (($ $ $) 151 (|has| |#1| (-564)))) (-4347 (((-1170) $) 10)) (-4161 (((-652 (-620 $)) $) 40)) (-1774 (($ (-115) $) 33) (($ (-115) (-652 $)) 32)) (-4011 (((-3 (-652 $) "failed") $) 194 (|has| |#1| (-1123)))) (-4153 (((-3 (-2 (|:| |val| $) (|:| -1679 (-572))) "failed") $) 185 (|has| |#1| (-1060)))) (-3665 (((-3 (-652 $) "failed") $) 192 (|has| |#1| (-25)))) (-4235 (((-3 (-2 (|:| -1857 (-572)) (|:| |var| (-620 $))) "failed") $) 191 (|has| |#1| (-25)))) (-1920 (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $) 193 (|has| |#1| (-1123))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-115)) 187 (|has| |#1| (-1060))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-1188)) 186 (|has| |#1| (-1060)))) (-2695 (((-112) $ (-115)) 35) (((-112) $ (-1188)) 34)) (-1322 (($ $) 108 (-2813 (|has| |#1| (-481)) (|has| |#1| (-564))))) (-1839 (((-779) $) 42)) (-3964 (((-1131) $) 11)) (-1336 (((-112) $) 207)) (-1347 ((|#1| $) 206)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 153 (|has| |#1| (-564)))) (-2870 (($ (-652 $)) 150 (|has| |#1| (-564))) (($ $ $) 149 (|has| |#1| (-564)))) (-2202 (((-112) $ $) 30) (((-112) $ (-1188)) 29)) (-4218 (((-426 $) $) 164 (|has| |#1| (-564)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-564))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 161 (|has| |#1| (-564)))) (-2834 (((-3 $ "failed") $ $) 144 (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 155 (|has| |#1| (-564)))) (-2003 (((-112) $) 18 (|has| $ (-1049 (-572))))) (-2641 (($ $ (-620 $) $) 62) (($ $ (-652 (-620 $)) (-652 $)) 61) (($ $ (-652 (-300 $))) 60) (($ $ (-300 $)) 59) (($ $ $ $) 58) (($ $ (-652 $) (-652 $)) 57) (($ $ (-652 (-1188)) (-652 (-1 $ $))) 28) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) 27) (($ $ (-1188) (-1 $ (-652 $))) 26) (($ $ (-1188) (-1 $ $)) 25) (($ $ (-652 (-115)) (-652 (-1 $ $))) 24) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) 23) (($ $ (-115) (-1 $ (-652 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1188)) 199 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188))) 198 (|has| |#1| (-622 (-544)))) (($ $) 197 (|has| |#1| (-622 (-544)))) (($ $ (-115) $ (-1188)) 196 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-115)) (-652 $) (-1188)) 195 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $))) 184 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $)))) 183 (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ (-652 $))) 182 (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ $)) 181 (|has| |#1| (-1060)))) (-3847 (((-779) $) 157 (|has| |#1| (-564)))) (-2196 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-652 $)) 52)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 158 (|has| |#1| (-564)))) (-2904 (($ $) 44) (($ $ $) 43)) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) 129 (|has| |#1| (-1060))) (($ $ (-1188) (-779)) 128 (|has| |#1| (-1060))) (($ $ (-652 (-1188))) 127 (|has| |#1| (-1060))) (($ $ (-1188)) 126 (|has| |#1| (-1060)))) (-1520 (($ $) 178 (|has| |#1| (-564)))) (-2974 (((-1136 |#1| (-620 $)) $) 179 (|has| |#1| (-564)))) (-3764 (($ $) 19 (|has| $ (-1060)))) (-1835 (((-901 (-572)) $) 216 (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) 215 (|has| |#1| (-622 (-901 (-386))))) (($ (-426 $)) 180 (|has| |#1| (-564))) (((-544) $) 100 (|has| |#1| (-622 (-544))))) (-1516 (($ $ $) 111 (|has| |#1| (-481)))) (-4326 (($ $ $) 112 (|has| |#1| (-481)))) (-2940 (((-870) $) 12) (($ (-620 $)) 63) (($ (-1188)) 217) (($ |#1|) 208) (($ (-1136 |#1| (-620 $))) 190 (|has| |#1| (-1060))) (($ (-415 |#1|)) 176 (|has| |#1| (-564))) (($ (-961 (-415 |#1|))) 175 (|has| |#1| (-564))) (($ (-415 (-961 (-415 |#1|)))) 174 (|has| |#1| (-564))) (($ (-415 (-961 |#1|))) 170 (|has| |#1| (-564))) (($ $) 143 (|has| |#1| (-564))) (($ (-961 |#1|)) 122 (|has| |#1| (-1060))) (($ (-415 (-572))) 97 (-2813 (|has| |#1| (-564)) (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572)))))) (($ (-572)) 96 (-2813 (|has| |#1| (-1060)) (|has| |#1| (-1049 (-572)))))) (-3849 (((-3 $ "failed") $) 141 (|has| |#1| (-146)))) (-4249 (((-779)) 125 (|has| |#1| (-1060)) CONST)) (-3952 (($ $) 48) (($ (-652 $)) 47)) (-4406 (((-112) (-115)) 36)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 147 (|has| |#1| (-564)))) (-2494 (($ (-1188) $) 204) (($ (-1188) $ $) 203) (($ (-1188) $ $ $) 202) (($ (-1188) $ $ $ $) 201) (($ (-1188) (-652 $)) 200)) (-2131 (($) 115 (|has| |#1| (-25)) CONST)) (-2143 (($) 103 (|has| |#1| (-1123)) CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) 133 (|has| |#1| (-1060))) (($ $ (-1188) (-779)) 132 (|has| |#1| (-1060))) (($ $ (-652 (-1188))) 131 (|has| |#1| (-1060))) (($ $ (-1188)) 130 (|has| |#1| (-1060)))) (-2978 (((-112) $ $) 6)) (-3106 (($ (-1136 |#1| (-620 $)) (-1136 |#1| (-620 $))) 177 (|has| |#1| (-564))) (($ $ $) 109 (-2813 (|has| |#1| (-481)) (|has| |#1| (-564))))) (-3089 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3075 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-572)) 110 (-2813 (|has| |#1| (-481)) (|has| |#1| (-564)))) (($ $ (-779)) 107 (|has| |#1| (-1123))) (($ $ (-930)) 102 (|has| |#1| (-1123)))) (* (($ (-415 (-572)) $) 169 (|has| |#1| (-564))) (($ $ (-415 (-572))) 168 (|has| |#1| (-564))) (($ $ |#1|) 142 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1060))) (($ (-572) $) 119 (|has| |#1| (-21))) (($ (-779) $) 117 (|has| |#1| (-25))) (($ (-930) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1123)))))
-(((-438 |#1|) (-141) (-1111)) (T -438))
-((-1336 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-5 *2 (-652 (-1188))))) (-2494 (*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))) (-2494 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))) (-2494 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))) (-2494 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-652 *1)) (-4 *1 (-438 *4)) (-4 *4 (-1111)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-4 *3 (-622 (-544))))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1188))) (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-4 *3 (-622 (-544))))) (-2641 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-622 (-544))))) (-2641 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1188)) (-4 *1 (-438 *4)) (-4 *4 (-1111)) (-4 *4 (-622 (-544))))) (-2641 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 *1)) (-5 *4 (-1188)) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-622 (-544))))) (-4011 (*1 *2 *1) (|partial| -12 (-4 *3 (-1123)) (-4 *3 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-438 *3)))) (-1920 (*1 *2 *1) (|partial| -12 (-4 *3 (-1123)) (-4 *3 (-1111)) (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -1679 (-572)))) (-4 *1 (-438 *3)))) (-3665 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-438 *3)))) (-4235 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1111)) (-5 *2 (-2 (|:| -1857 (-572)) (|:| |var| (-620 *1)))) (-4 *1 (-438 *3)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-1136 *3 (-620 *1))) (-4 *3 (-1060)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-2963 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *3 (-1111)) (-5 *2 (-1136 *3 (-620 *1))) (-4 *1 (-438 *3)))) (-2710 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-1060)))) (-1920 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1060)) (-4 *4 (-1111)) (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -1679 (-572)))) (-4 *1 (-438 *4)))) (-1920 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1188)) (-4 *4 (-1060)) (-4 *4 (-1111)) (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -1679 (-572)))) (-4 *1 (-438 *4)))) (-4153 (*1 *2 *1) (|partial| -12 (-4 *3 (-1060)) (-4 *3 (-1111)) (-5 *2 (-2 (|:| |val| *1) (|:| -1679 (-572)))) (-4 *1 (-438 *3)))) (-2641 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-779))) (-5 *4 (-652 (-1 *1 *1))) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060)))) (-2641 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-779))) (-5 *4 (-652 (-1 *1 (-652 *1)))) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060)))) (-2641 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *4 (-1 *1 (-652 *1))) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060)))) (-2641 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *4 (-1 *1 *1)) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-426 *1)) (-4 *1 (-438 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))) (-2974 (*1 *2 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1111)) (-5 *2 (-1136 *3 (-620 *1))) (-4 *1 (-438 *3)))) (-1520 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-564)))) (-3106 (*1 *1 *2 *2) (-12 (-5 *2 (-1136 *3 (-620 *1))) (-4 *3 (-564)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-415 *3)) (-4 *3 (-564)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-961 (-415 *3))) (-4 *3 (-564)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-415 *3)))) (-4 *3 (-564)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-4191 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-438 *4)) (-4 *4 (-1111)) (-4 *4 (-564)) (-5 *2 (-415 (-1184 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-4 *3 (-1123)))))
-(-13 (-308) (-1049 (-1188)) (-893 |t#1|) (-408 |t#1|) (-419 |t#1|) (-10 -8 (-15 -1336 ((-112) $)) (-15 -1347 (|t#1| $)) (-15 -4353 ((-652 (-1188)) $)) (-15 -2494 ($ (-1188) $)) (-15 -2494 ($ (-1188) $ $)) (-15 -2494 ($ (-1188) $ $ $)) (-15 -2494 ($ (-1188) $ $ $ $)) (-15 -2494 ($ (-1188) (-652 $))) (IF (|has| |t#1| (-622 (-544))) (PROGN (-6 (-622 (-544))) (-15 -2641 ($ $ (-1188))) (-15 -2641 ($ $ (-652 (-1188)))) (-15 -2641 ($ $)) (-15 -2641 ($ $ (-115) $ (-1188))) (-15 -2641 ($ $ (-652 (-115)) (-652 $) (-1188)))) |%noBranch|) (IF (|has| |t#1| (-1123)) (PROGN (-6 (-734)) (-15 ** ($ $ (-779))) (-15 -4011 ((-3 (-652 $) "failed") $)) (-15 -1920 ((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-481)) (-6 (-481)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3665 ((-3 (-652 $) "failed") $)) (-15 -4235 ((-3 (-2 (|:| -1857 (-572)) (|:| |var| (-620 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1060)) (PROGN (-6 (-1060)) (-6 (-1049 (-961 |t#1|))) (-6 (-909 (-1188))) (-6 (-384 |t#1|)) (-15 -2940 ($ (-1136 |t#1| (-620 $)))) (-15 -2963 ((-1136 |t#1| (-620 $)) $)) (-15 -2710 ($ $)) (-15 -1920 ((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-115))) (-15 -1920 ((-3 (-2 (|:| |var| (-620 $)) (|:| -1679 (-572))) "failed") $ (-1188))) (-15 -4153 ((-3 (-2 (|:| |val| $) (|:| -1679 (-572))) "failed") $)) (-15 -2641 ($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $)))) (-15 -2641 ($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $))))) (-15 -2641 ($ $ (-1188) (-779) (-1 $ (-652 $)))) (-15 -2641 ($ $ (-1188) (-779) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-6 (-370)) (-6 (-1049 (-415 (-961 |t#1|)))) (-15 -1835 ($ (-426 $))) (-15 -2974 ((-1136 |t#1| (-620 $)) $)) (-15 -1520 ($ $)) (-15 -3106 ($ (-1136 |t#1| (-620 $)) (-1136 |t#1| (-620 $)))) (-15 -2940 ($ (-415 |t#1|))) (-15 -2940 ($ (-961 (-415 |t#1|)))) (-15 -2940 ($ (-415 (-961 (-415 |t#1|))))) (-15 -4191 ((-415 (-1184 $)) $ (-620 $))) (IF (|has| |t#1| (-1049 (-572))) (-6 (-1049 (-415 (-572)))) |%noBranch|)) |%noBranch|)))
-(((-21) -2813 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2813 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2813 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-415 (-572))) |has| |#1| (-564)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-564)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-564)) ((-132) -2813 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-564))) ((-624 #1=(-415 (-961 |#1|))) |has| |#1| (-564)) ((-624 (-572)) -2813 (|has| |#1| (-1060)) (|has| |#1| (-1049 (-572))) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-624 #2=(-620 $)) . T) ((-624 #3=(-961 |#1|)) |has| |#1| (-1060)) ((-624 #4=(-1188)) . T) ((-624 |#1|) . T) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) |has| |#1| (-564)) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))) ((-247) |has| |#1| (-564)) ((-296) |has| |#1| (-564)) ((-313) |has| |#1| (-564)) ((-315 $) . T) ((-308) . T) ((-370) |has| |#1| (-564)) ((-384 |#1|) |has| |#1| (-1060)) ((-408 |#1|) . T) ((-419 |#1|) . T) ((-460) |has| |#1| (-564)) ((-481) |has| |#1| (-481)) ((-522 (-620 $) $) . T) ((-522 $ $) . T) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-564)) ((-654 (-572)) -2813 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-654 |#1|) -2813 (|has| |#1| (-1060)) (|has| |#1| (-174))) ((-654 $) -2813 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-656 #0#) |has| |#1| (-564)) ((-656 #5=(-572)) -12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) ((-656 |#1|) -2813 (|has| |#1| (-1060)) (|has| |#1| (-174))) ((-656 $) -2813 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-648 #0#) |has| |#1| (-564)) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-647 #5#) -12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) ((-647 |#1|) |has| |#1| (-1060)) ((-725 #0#) |has| |#1| (-564)) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) -2813 (|has| |#1| (-1123)) (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-481)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-909 (-1188)) |has| |#1| (-1060)) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-893 |#1|) . T) ((-929) |has| |#1| (-564)) ((-1049 (-415 (-572))) -2813 (|has| |#1| (-1049 (-415 (-572)))) (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) ((-1049 #1#) |has| |#1| (-564)) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 #2#) . T) ((-1049 #3#) |has| |#1| (-1060)) ((-1049 #4#) . T) ((-1049 |#1|) . T) ((-1062 #0#) |has| |#1| (-564)) ((-1062 |#1|) |has| |#1| (-174)) ((-1062 $) |has| |#1| (-564)) ((-1067 #0#) |has| |#1| (-564)) ((-1067 |#1|) |has| |#1| (-174)) ((-1067 $) |has| |#1| (-564)) ((-1060) -2813 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1069) -2813 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1123) -2813 (|has| |#1| (-1123)) (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-481)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1111) . T) ((-1229) . T) ((-1233) |has| |#1| (-564)))
-((-1460 ((|#2| |#2| |#2|) 31)) (-4171 (((-115) (-115)) 43)) (-3208 ((|#2| |#2|) 63)) (-3503 ((|#2| |#2|) 66)) (-1973 ((|#2| |#2|) 30)) (-3149 ((|#2| |#2| |#2|) 33)) (-1538 ((|#2| |#2| |#2|) 35)) (-2577 ((|#2| |#2| |#2|) 32)) (-2729 ((|#2| |#2| |#2|) 34)) (-4406 (((-112) (-115)) 41)) (-1643 ((|#2| |#2|) 37)) (-2627 ((|#2| |#2|) 36)) (-2700 ((|#2| |#2|) 25)) (-4276 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3919 ((|#2| |#2| |#2|) 29)))
-(((-439 |#1| |#2|) (-10 -7 (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -2700 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -4276 (|#2| |#2| |#2|)) (-15 -3919 (|#2| |#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1460 (|#2| |#2| |#2|)) (-15 -2577 (|#2| |#2| |#2|)) (-15 -3149 (|#2| |#2| |#2|)) (-15 -2729 (|#2| |#2| |#2|)) (-15 -1538 (|#2| |#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3208 (|#2| |#2|))) (-564) (-438 |#1|)) (T -439))
-((-3208 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-2627 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-1538 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-2729 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3149 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-2577 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-1460 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3919 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-4276 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-4276 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-2700 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-439 *3 *4)) (-4 *4 (-438 *3)))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5)) (-4 *5 (-438 *4)))))
-(-10 -7 (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -2700 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -4276 (|#2| |#2| |#2|)) (-15 -3919 (|#2| |#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1460 (|#2| |#2| |#2|)) (-15 -2577 (|#2| |#2| |#2|)) (-15 -3149 (|#2| |#2| |#2|)) (-15 -2729 (|#2| |#2| |#2|)) (-15 -1538 (|#2| |#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3208 (|#2| |#2|)))
-((-1879 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1184 |#2|)) (|:| |pol2| (-1184 |#2|)) (|:| |prim| (-1184 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-652 (-1184 |#2|))) (|:| |prim| (-1184 |#2|))) (-652 |#2|)) 65)))
-(((-440 |#1| |#2|) (-10 -7 (-15 -1879 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-652 (-1184 |#2|))) (|:| |prim| (-1184 |#2|))) (-652 |#2|))) (IF (|has| |#2| (-27)) (-15 -1879 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1184 |#2|)) (|:| |pol2| (-1184 |#2|)) (|:| |prim| (-1184 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-564) (-148)) (-438 |#1|)) (T -440))
-((-1879 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-564) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1184 *3)) (|:| |pol2| (-1184 *3)) (|:| |prim| (-1184 *3)))) (-5 *1 (-440 *4 *3)) (-4 *3 (-27)) (-4 *3 (-438 *4)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-652 *5)) (-4 *5 (-438 *4)) (-4 *4 (-13 (-564) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-652 (-1184 *5))) (|:| |prim| (-1184 *5)))) (-5 *1 (-440 *4 *5)))))
-(-10 -7 (-15 -1879 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-652 (-1184 |#2|))) (|:| |prim| (-1184 |#2|))) (-652 |#2|))) (IF (|has| |#2| (-27)) (-15 -1879 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1184 |#2|)) (|:| |pol2| (-1184 |#2|)) (|:| |prim| (-1184 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3658 (((-1284)) 18)) (-3264 (((-1184 (-415 (-572))) |#2| (-620 |#2|)) 40) (((-415 (-572)) |#2|) 24)))
-(((-441 |#1| |#2|) (-10 -7 (-15 -3264 ((-415 (-572)) |#2|)) (-15 -3264 ((-1184 (-415 (-572))) |#2| (-620 |#2|))) (-15 -3658 ((-1284)))) (-13 (-564) (-1049 (-572))) (-438 |#1|)) (T -441))
-((-3658 (*1 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *2 (-1284)) (-5 *1 (-441 *3 *4)) (-4 *4 (-438 *3)))) (-3264 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-438 *5)) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-441 *5 *3)))) (-3264 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 (-572))) (-5 *1 (-441 *4 *3)) (-4 *3 (-438 *4)))))
-(-10 -7 (-15 -3264 ((-415 (-572)) |#2|)) (-15 -3264 ((-1184 (-415 (-572))) |#2| (-620 |#2|))) (-15 -3658 ((-1284))))
-((-4181 (((-112) $) 32)) (-2964 (((-112) $) 34)) (-3347 (((-112) $) 35)) (-4341 (((-112) $) 38)) (-1770 (((-112) $) 33)) (-3623 (((-112) $) 37)) (-2940 (((-870) $) 20) (($ (-1170)) 31) (($ (-1188)) 26) (((-1188) $) 24) (((-1115) $) 23)) (-4253 (((-112) $) 36)) (-2978 (((-112) $ $) 17)))
-(((-442) (-13 (-621 (-870)) (-10 -8 (-15 -2940 ($ (-1170))) (-15 -2940 ($ (-1188))) (-15 -2940 ((-1188) $)) (-15 -2940 ((-1115) $)) (-15 -4181 ((-112) $)) (-15 -1770 ((-112) $)) (-15 -3347 ((-112) $)) (-15 -3623 ((-112) $)) (-15 -4341 ((-112) $)) (-15 -4253 ((-112) $)) (-15 -2964 ((-112) $)) (-15 -2978 ((-112) $ $))))) (T -442))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-442)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-442)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-442)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-442)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-4253 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-2978 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2940 ($ (-1170))) (-15 -2940 ($ (-1188))) (-15 -2940 ((-1188) $)) (-15 -2940 ((-1115) $)) (-15 -4181 ((-112) $)) (-15 -1770 ((-112) $)) (-15 -3347 ((-112) $)) (-15 -3623 ((-112) $)) (-15 -4341 ((-112) $)) (-15 -4253 ((-112) $)) (-15 -2964 ((-112) $)) (-15 -2978 ((-112) $ $))))
-((-3891 (((-3 (-426 (-1184 (-415 (-572)))) "failed") |#3|) 72)) (-3947 (((-426 |#3|) |#3|) 34)) (-3465 (((-3 (-426 (-1184 (-48))) "failed") |#3|) 46 (|has| |#2| (-1049 (-48))))) (-1343 (((-3 (|:| |overq| (-1184 (-415 (-572)))) (|:| |overan| (-1184 (-48))) (|:| -3597 (-112))) |#3|) 37)))
-(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -3947 ((-426 |#3|) |#3|)) (-15 -3891 ((-3 (-426 (-1184 (-415 (-572)))) "failed") |#3|)) (-15 -1343 ((-3 (|:| |overq| (-1184 (-415 (-572)))) (|:| |overan| (-1184 (-48))) (|:| -3597 (-112))) |#3|)) (IF (|has| |#2| (-1049 (-48))) (-15 -3465 ((-3 (-426 (-1184 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-564) (-1049 (-572))) (-438 |#1|) (-1255 |#2|)) (T -443))
-((-3465 (*1 *2 *3) (|partial| -12 (-4 *5 (-1049 (-48))) (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4)) (-5 *2 (-426 (-1184 (-48)))) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))) (-1343 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4)) (-5 *2 (-3 (|:| |overq| (-1184 (-415 (-572)))) (|:| |overan| (-1184 (-48))) (|:| -3597 (-112)))) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))) (-3891 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4)) (-5 *2 (-426 (-1184 (-415 (-572))))) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4)) (-5 *2 (-426 *3)) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))))
-(-10 -7 (-15 -3947 ((-426 |#3|) |#3|)) (-15 -3891 ((-3 (-426 (-1184 (-415 (-572)))) "failed") |#3|)) (-15 -1343 ((-3 (|:| |overq| (-1184 (-415 (-572)))) (|:| |overan| (-1184 (-48))) (|:| -3597 (-112))) |#3|)) (IF (|has| |#2| (-1049 (-48))) (-15 -3465 ((-3 (-426 (-1184 (-48))) "failed") |#3|)) |%noBranch|))
-((-2846 (((-112) $ $) NIL)) (-4034 (((-1170) $ (-1170)) NIL)) (-2017 (($ $ (-1170)) NIL)) (-2208 (((-1170) $) NIL)) (-2197 (((-396) (-396) (-396)) 17) (((-396) (-396)) 15)) (-1674 (($ (-396)) NIL) (($ (-396) (-1170)) NIL)) (-2030 (((-396) $) NIL)) (-4347 (((-1170) $) NIL)) (-3303 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3470 (((-1284) (-1170)) 9)) (-4246 (((-1284) (-1170)) 10)) (-2289 (((-1284)) 11)) (-2940 (((-870) $) NIL)) (-3682 (($ $) 39)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-444) (-13 (-371 (-396) (-1170)) (-10 -7 (-15 -2197 ((-396) (-396) (-396))) (-15 -2197 ((-396) (-396))) (-15 -3470 ((-1284) (-1170))) (-15 -4246 ((-1284) (-1170))) (-15 -2289 ((-1284)))))) (T -444))
-((-2197 (*1 *2 *2 *2) (-12 (-5 *2 (-396)) (-5 *1 (-444)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-396)) (-5 *1 (-444)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-444)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-444)))) (-2289 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-444)))))
-(-13 (-371 (-396) (-1170)) (-10 -7 (-15 -2197 ((-396) (-396) (-396))) (-15 -2197 ((-396) (-396))) (-15 -3470 ((-1284) (-1170))) (-15 -4246 ((-1284) (-1170))) (-15 -2289 ((-1284)))))
-((-2846 (((-112) $ $) NIL)) (-1393 (((-3 (|:| |fst| (-442)) (|:| -2420 "void")) $) 11)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2807 (($) 35)) (-1869 (($) 41)) (-1750 (($) 37)) (-3929 (($) 39)) (-2236 (($) 36)) (-4266 (($) 38)) (-3022 (($) 40)) (-3081 (((-112) $) 8)) (-3296 (((-652 (-961 (-572))) $) 19)) (-2953 (($ (-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-652 (-1188)) (-112)) 29) (($ (-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-652 (-961 (-572))) (-112)) 30)) (-2940 (((-870) $) 24) (($ (-442)) 32)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-445) (-13 (-1111) (-10 -8 (-15 -2940 ($ (-442))) (-15 -1393 ((-3 (|:| |fst| (-442)) (|:| -2420 "void")) $)) (-15 -3296 ((-652 (-961 (-572))) $)) (-15 -3081 ((-112) $)) (-15 -2953 ($ (-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-652 (-1188)) (-112))) (-15 -2953 ($ (-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-652 (-961 (-572))) (-112))) (-15 -2807 ($)) (-15 -2236 ($)) (-15 -1750 ($)) (-15 -1869 ($)) (-15 -4266 ($)) (-15 -3929 ($)) (-15 -3022 ($))))) (T -445))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-442)) (-5 *1 (-445)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *1 (-445)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-652 (-961 (-572)))) (-5 *1 (-445)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-2953 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *3 (-652 (-1188))) (-5 *4 (-112)) (-5 *1 (-445)))) (-2953 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-112)) (-5 *1 (-445)))) (-2807 (*1 *1) (-5 *1 (-445))) (-2236 (*1 *1) (-5 *1 (-445))) (-1750 (*1 *1) (-5 *1 (-445))) (-1869 (*1 *1) (-5 *1 (-445))) (-4266 (*1 *1) (-5 *1 (-445))) (-3929 (*1 *1) (-5 *1 (-445))) (-3022 (*1 *1) (-5 *1 (-445))))
-(-13 (-1111) (-10 -8 (-15 -2940 ($ (-442))) (-15 -1393 ((-3 (|:| |fst| (-442)) (|:| -2420 "void")) $)) (-15 -3296 ((-652 (-961 (-572))) $)) (-15 -3081 ((-112) $)) (-15 -2953 ($ (-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-652 (-1188)) (-112))) (-15 -2953 ($ (-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-652 (-961 (-572))) (-112))) (-15 -2807 ($)) (-15 -2236 ($)) (-15 -1750 ($)) (-15 -1869 ($)) (-15 -4266 ($)) (-15 -3929 ($)) (-15 -3022 ($))))
-((-2846 (((-112) $ $) NIL)) (-2030 (((-1188) $) 8)) (-4347 (((-1170) $) 17)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 11)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 14)))
-(((-446 |#1|) (-13 (-1111) (-10 -8 (-15 -2030 ((-1188) $)))) (-1188)) (T -446))
-((-2030 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-446 *3)) (-14 *3 *2))))
-(-13 (-1111) (-10 -8 (-15 -2030 ((-1188) $))))
-((-2846 (((-112) $ $) NIL)) (-3137 (((-1129) $) 7)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 13)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 9)))
-(((-447) (-13 (-1111) (-10 -8 (-15 -3137 ((-1129) $))))) (T -447))
-((-3137 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-447)))))
-(-13 (-1111) (-10 -8 (-15 -3137 ((-1129) $))))
-((-3765 (((-1284) $) 7)) (-2940 (((-870) $) 8) (($ (-1279 (-707))) 14) (($ (-652 (-336))) 13) (($ (-336)) 12) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 11)))
-(((-448) (-141)) (T -448))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-707))) (-4 *1 (-448)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-448)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-448)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) (-4 *1 (-448)))))
-(-13 (-403) (-10 -8 (-15 -2940 ($ (-1279 (-707)))) (-15 -2940 ($ (-652 (-336)))) (-15 -2940 ($ (-336))) (-15 -2940 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))))))
-(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
-((-1695 (((-3 $ "failed") (-1279 (-322 (-386)))) 21) (((-3 $ "failed") (-1279 (-322 (-572)))) 19) (((-3 $ "failed") (-1279 (-961 (-386)))) 17) (((-3 $ "failed") (-1279 (-961 (-572)))) 15) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 13) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 11)) (-2204 (($ (-1279 (-322 (-386)))) 22) (($ (-1279 (-322 (-572)))) 20) (($ (-1279 (-961 (-386)))) 18) (($ (-1279 (-961 (-572)))) 16) (($ (-1279 (-415 (-961 (-386))))) 14) (($ (-1279 (-415 (-961 (-572))))) 12)) (-3765 (((-1284) $) 7)) (-2940 (((-870) $) 8) (($ (-652 (-336))) 25) (($ (-336)) 24) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) 23)))
-(((-449) (-141)) (T -449))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-449)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-449)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336))))) (-4 *1 (-449)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1279 (-322 (-386)))) (-4 *1 (-449)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-322 (-386)))) (-4 *1 (-449)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1279 (-322 (-572)))) (-4 *1 (-449)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-322 (-572)))) (-4 *1 (-449)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1279 (-961 (-386)))) (-4 *1 (-449)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-961 (-386)))) (-4 *1 (-449)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1279 (-961 (-572)))) (-4 *1 (-449)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-961 (-572)))) (-4 *1 (-449)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 (-386))))) (-4 *1 (-449)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-415 (-961 (-386))))) (-4 *1 (-449)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 (-572))))) (-4 *1 (-449)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-415 (-961 (-572))))) (-4 *1 (-449)))))
-(-13 (-403) (-10 -8 (-15 -2940 ($ (-652 (-336)))) (-15 -2940 ($ (-336))) (-15 -2940 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))) (-15 -2204 ($ (-1279 (-322 (-386))))) (-15 -1695 ((-3 $ "failed") (-1279 (-322 (-386))))) (-15 -2204 ($ (-1279 (-322 (-572))))) (-15 -1695 ((-3 $ "failed") (-1279 (-322 (-572))))) (-15 -2204 ($ (-1279 (-961 (-386))))) (-15 -1695 ((-3 $ "failed") (-1279 (-961 (-386))))) (-15 -2204 ($ (-1279 (-961 (-572))))) (-15 -1695 ((-3 $ "failed") (-1279 (-961 (-572))))) (-15 -2204 ($ (-1279 (-415 (-961 (-386)))))) (-15 -1695 ((-3 $ "failed") (-1279 (-415 (-961 (-386)))))) (-15 -2204 ($ (-1279 (-415 (-961 (-572)))))) (-15 -1695 ((-3 $ "failed") (-1279 (-415 (-961 (-572))))))))
-(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
-((-3949 (((-112)) 18)) (-4112 (((-112) (-112)) 19)) (-2917 (((-112)) 14)) (-3938 (((-112) (-112)) 15)) (-2369 (((-112)) 16)) (-3205 (((-112) (-112)) 17)) (-3553 (((-930) (-930)) 22) (((-930)) 21)) (-3400 (((-779) (-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572))))) 52)) (-4012 (((-930) (-930)) 24) (((-930)) 23)) (-1924 (((-2 (|:| -2286 (-572)) (|:| -4225 (-652 |#1|))) |#1|) 94)) (-2672 (((-426 |#1|) (-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572))))))) 174)) (-3204 (((-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))) |#1| (-112)) 207)) (-3832 (((-426 |#1|) |#1| (-779) (-779)) 222) (((-426 |#1|) |#1| (-652 (-779)) (-779)) 219) (((-426 |#1|) |#1| (-652 (-779))) 221) (((-426 |#1|) |#1| (-779)) 220) (((-426 |#1|) |#1|) 218)) (-4094 (((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779) (-112)) 224) (((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779)) 225) (((-3 |#1| "failed") (-930) |#1| (-652 (-779))) 227) (((-3 |#1| "failed") (-930) |#1| (-779)) 226) (((-3 |#1| "failed") (-930) |#1|) 228)) (-4218 (((-426 |#1|) |#1| (-779) (-779)) 217) (((-426 |#1|) |#1| (-652 (-779)) (-779)) 213) (((-426 |#1|) |#1| (-652 (-779))) 215) (((-426 |#1|) |#1| (-779)) 214) (((-426 |#1|) |#1|) 212)) (-4331 (((-112) |#1|) 44)) (-1431 (((-745 (-779)) (-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572))))) 99)) (-1629 (((-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))) |#1| (-112) (-1113 (-779)) (-779)) 211)))
-(((-450 |#1|) (-10 -7 (-15 -2672 ((-426 |#1|) (-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))))) (-15 -1431 ((-745 (-779)) (-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))))) (-15 -4012 ((-930))) (-15 -4012 ((-930) (-930))) (-15 -3553 ((-930))) (-15 -3553 ((-930) (-930))) (-15 -3400 ((-779) (-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))))) (-15 -1924 ((-2 (|:| -2286 (-572)) (|:| -4225 (-652 |#1|))) |#1|)) (-15 -3949 ((-112))) (-15 -4112 ((-112) (-112))) (-15 -2917 ((-112))) (-15 -3938 ((-112) (-112))) (-15 -4331 ((-112) |#1|)) (-15 -2369 ((-112))) (-15 -3205 ((-112) (-112))) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -4218 ((-426 |#1|) |#1| (-779))) (-15 -4218 ((-426 |#1|) |#1| (-652 (-779)))) (-15 -4218 ((-426 |#1|) |#1| (-652 (-779)) (-779))) (-15 -4218 ((-426 |#1|) |#1| (-779) (-779))) (-15 -3832 ((-426 |#1|) |#1|)) (-15 -3832 ((-426 |#1|) |#1| (-779))) (-15 -3832 ((-426 |#1|) |#1| (-652 (-779)))) (-15 -3832 ((-426 |#1|) |#1| (-652 (-779)) (-779))) (-15 -3832 ((-426 |#1|) |#1| (-779) (-779))) (-15 -4094 ((-3 |#1| "failed") (-930) |#1|)) (-15 -4094 ((-3 |#1| "failed") (-930) |#1| (-779))) (-15 -4094 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)))) (-15 -4094 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779))) (-15 -4094 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779) (-112))) (-15 -3204 ((-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))) |#1| (-112))) (-15 -1629 ((-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))) |#1| (-112) (-1113 (-779)) (-779)))) (-1255 (-572))) (T -450))
-((-1629 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1113 (-779))) (-5 *6 (-779)) (-5 *2 (-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| *3) (|:| -2866 (-572))))))) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3204 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| *3) (|:| -2866 (-572))))))) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4094 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *6 (-112)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-4094 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-4094 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-4094 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-930)) (-5 *4 (-779)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-4094 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-930)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-3832 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3832 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3832 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-779))) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3832 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3832 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4218 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4218 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-779))) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2369 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4331 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2917 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4112 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3949 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-1924 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2286 (-572)) (|:| -4225 (-652 *3)))) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -4218 *4) (|:| -4390 (-572))))) (-4 *4 (-1255 (-572))) (-5 *2 (-779)) (-5 *1 (-450 *4)))) (-3553 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3553 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4012 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4012 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -4218 *4) (|:| -4390 (-572))))) (-4 *4 (-1255 (-572))) (-5 *2 (-745 (-779))) (-5 *1 (-450 *4)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| *4) (|:| -2866 (-572))))))) (-4 *4 (-1255 (-572))) (-5 *2 (-426 *4)) (-5 *1 (-450 *4)))))
-(-10 -7 (-15 -2672 ((-426 |#1|) (-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))))) (-15 -1431 ((-745 (-779)) (-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))))) (-15 -4012 ((-930))) (-15 -4012 ((-930) (-930))) (-15 -3553 ((-930))) (-15 -3553 ((-930) (-930))) (-15 -3400 ((-779) (-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))))) (-15 -1924 ((-2 (|:| -2286 (-572)) (|:| -4225 (-652 |#1|))) |#1|)) (-15 -3949 ((-112))) (-15 -4112 ((-112) (-112))) (-15 -2917 ((-112))) (-15 -3938 ((-112) (-112))) (-15 -4331 ((-112) |#1|)) (-15 -2369 ((-112))) (-15 -3205 ((-112) (-112))) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -4218 ((-426 |#1|) |#1| (-779))) (-15 -4218 ((-426 |#1|) |#1| (-652 (-779)))) (-15 -4218 ((-426 |#1|) |#1| (-652 (-779)) (-779))) (-15 -4218 ((-426 |#1|) |#1| (-779) (-779))) (-15 -3832 ((-426 |#1|) |#1|)) (-15 -3832 ((-426 |#1|) |#1| (-779))) (-15 -3832 ((-426 |#1|) |#1| (-652 (-779)))) (-15 -3832 ((-426 |#1|) |#1| (-652 (-779)) (-779))) (-15 -3832 ((-426 |#1|) |#1| (-779) (-779))) (-15 -4094 ((-3 |#1| "failed") (-930) |#1|)) (-15 -4094 ((-3 |#1| "failed") (-930) |#1| (-779))) (-15 -4094 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)))) (-15 -4094 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779))) (-15 -4094 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779) (-112))) (-15 -3204 ((-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))) |#1| (-112))) (-15 -1629 ((-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))) |#1| (-112) (-1113 (-779)) (-779))))
-((-3085 (((-572) |#2|) 52) (((-572) |#2| (-779)) 51)) (-2238 (((-572) |#2|) 64)) (-2142 ((|#3| |#2|) 26)) (-2028 ((|#3| |#2| (-930)) 15)) (-4133 ((|#3| |#2|) 16)) (-2126 ((|#3| |#2|) 9)) (-1839 ((|#3| |#2|) 10)) (-3135 ((|#3| |#2| (-930)) 71) ((|#3| |#2|) 34)) (-3284 (((-572) |#2|) 66)))
-(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -3284 ((-572) |#2|)) (-15 -3135 (|#3| |#2|)) (-15 -3135 (|#3| |#2| (-930))) (-15 -2238 ((-572) |#2|)) (-15 -3085 ((-572) |#2| (-779))) (-15 -3085 ((-572) |#2|)) (-15 -2028 (|#3| |#2| (-930))) (-15 -2142 (|#3| |#2|)) (-15 -2126 (|#3| |#2|)) (-15 -1839 (|#3| |#2|)) (-15 -4133 (|#3| |#2|))) (-1060) (-1255 |#1|) (-13 (-412) (-1049 |#1|) (-370) (-1214) (-290))) (T -451))
-((-4133 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-2126 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-2142 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *2 (-13 (-412) (-1049 *5) (-370) (-1214) (-290))) (-5 *1 (-451 *5 *3 *2)) (-4 *3 (-1255 *5)))) (-3085 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5)) (-4 *3 (-1255 *4)) (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))) (-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *5 *3 *6)) (-4 *3 (-1255 *5)) (-4 *6 (-13 (-412) (-1049 *5) (-370) (-1214) (-290))))) (-2238 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5)) (-4 *3 (-1255 *4)) (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))) (-3135 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *2 (-13 (-412) (-1049 *5) (-370) (-1214) (-290))) (-5 *1 (-451 *5 *3 *2)) (-4 *3 (-1255 *5)))) (-3135 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-3284 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5)) (-4 *3 (-1255 *4)) (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))))
-(-10 -7 (-15 -3284 ((-572) |#2|)) (-15 -3135 (|#3| |#2|)) (-15 -3135 (|#3| |#2| (-930))) (-15 -2238 ((-572) |#2|)) (-15 -3085 ((-572) |#2| (-779))) (-15 -3085 ((-572) |#2|)) (-15 -2028 (|#3| |#2| (-930))) (-15 -2142 (|#3| |#2|)) (-15 -2126 (|#3| |#2|)) (-15 -1839 (|#3| |#2|)) (-15 -4133 (|#3| |#2|)))
-((-3507 ((|#2| (-1279 |#1|)) 42)) (-1440 ((|#2| |#2| |#1|) 58)) (-2333 ((|#2| |#2| |#1|) 49)) (-4421 ((|#2| |#2|) 44)) (-3306 (((-112) |#2|) 32)) (-3779 (((-652 |#2|) (-930) (-426 |#2|)) 21)) (-4094 ((|#2| (-930) (-426 |#2|)) 25)) (-1431 (((-745 (-779)) (-426 |#2|)) 29)))
-(((-452 |#1| |#2|) (-10 -7 (-15 -3306 ((-112) |#2|)) (-15 -3507 (|#2| (-1279 |#1|))) (-15 -4421 (|#2| |#2|)) (-15 -2333 (|#2| |#2| |#1|)) (-15 -1440 (|#2| |#2| |#1|)) (-15 -1431 ((-745 (-779)) (-426 |#2|))) (-15 -4094 (|#2| (-930) (-426 |#2|))) (-15 -3779 ((-652 |#2|) (-930) (-426 |#2|)))) (-1060) (-1255 |#1|)) (T -452))
-((-3779 (*1 *2 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-426 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-1060)) (-5 *2 (-652 *6)) (-5 *1 (-452 *5 *6)))) (-4094 (*1 *2 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-426 *2)) (-4 *2 (-1255 *5)) (-5 *1 (-452 *5 *2)) (-4 *5 (-1060)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-426 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-1060)) (-5 *2 (-745 (-779))) (-5 *1 (-452 *4 *5)))) (-1440 (*1 *2 *2 *3) (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))) (-2333 (*1 *2 *2 *3) (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))) (-4421 (*1 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-1060)) (-4 *2 (-1255 *4)) (-5 *1 (-452 *4 *2)))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -3306 ((-112) |#2|)) (-15 -3507 (|#2| (-1279 |#1|))) (-15 -4421 (|#2| |#2|)) (-15 -2333 (|#2| |#2| |#1|)) (-15 -1440 (|#2| |#2| |#1|)) (-15 -1431 ((-745 (-779)) (-426 |#2|))) (-15 -4094 (|#2| (-930) (-426 |#2|))) (-15 -3779 ((-652 |#2|) (-930) (-426 |#2|))))
-((-4270 (((-779)) 59)) (-3670 (((-779)) 29 (|has| |#1| (-412))) (((-779) (-779)) 28 (|has| |#1| (-412)))) (-3155 (((-572) |#1|) 25 (|has| |#1| (-412)))) (-2459 (((-572) |#1|) 27 (|has| |#1| (-412)))) (-3397 (((-779)) 58) (((-779) (-779)) 57)) (-1798 ((|#1| (-779) (-572)) 37)) (-3971 (((-1284)) 61)))
-(((-453 |#1|) (-10 -7 (-15 -1798 (|#1| (-779) (-572))) (-15 -3397 ((-779) (-779))) (-15 -3397 ((-779))) (-15 -4270 ((-779))) (-15 -3971 ((-1284))) (IF (|has| |#1| (-412)) (PROGN (-15 -2459 ((-572) |#1|)) (-15 -3155 ((-572) |#1|)) (-15 -3670 ((-779) (-779))) (-15 -3670 ((-779)))) |%noBranch|)) (-1060)) (T -453))
-((-3670 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))) (-3155 (*1 *2 *3) (-12 (-5 *2 (-572)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))) (-2459 (*1 *2 *3) (-12 (-5 *2 (-572)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))) (-3971 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))) (-4270 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))) (-3397 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))) (-3397 (*1 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-572)) (-5 *1 (-453 *2)) (-4 *2 (-1060)))))
-(-10 -7 (-15 -1798 (|#1| (-779) (-572))) (-15 -3397 ((-779) (-779))) (-15 -3397 ((-779))) (-15 -4270 ((-779))) (-15 -3971 ((-1284))) (IF (|has| |#1| (-412)) (PROGN (-15 -2459 ((-572) |#1|)) (-15 -3155 ((-572) |#1|)) (-15 -3670 ((-779) (-779))) (-15 -3670 ((-779)))) |%noBranch|))
-((-4080 (((-652 (-572)) (-572)) 76)) (-3879 (((-112) (-171 (-572))) 82)) (-4218 (((-426 (-171 (-572))) (-171 (-572))) 75)))
-(((-454) (-10 -7 (-15 -4218 ((-426 (-171 (-572))) (-171 (-572)))) (-15 -4080 ((-652 (-572)) (-572))) (-15 -3879 ((-112) (-171 (-572)))))) (T -454))
-((-3879 (*1 *2 *3) (-12 (-5 *3 (-171 (-572))) (-5 *2 (-112)) (-5 *1 (-454)))) (-4080 (*1 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-454)) (-5 *3 (-572)))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-426 (-171 (-572)))) (-5 *1 (-454)) (-5 *3 (-171 (-572))))))
-(-10 -7 (-15 -4218 ((-426 (-171 (-572))) (-171 (-572)))) (-15 -4080 ((-652 (-572)) (-572))) (-15 -3879 ((-112) (-171 (-572)))))
-((-1800 ((|#4| |#4| (-652 |#4|)) 82)) (-3904 (((-652 |#4|) (-652 |#4|) (-1170) (-1170)) 22) (((-652 |#4|) (-652 |#4|) (-1170)) 21) (((-652 |#4|) (-652 |#4|)) 13)))
-(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1800 (|#4| |#4| (-652 |#4|))) (-15 -3904 ((-652 |#4|) (-652 |#4|))) (-15 -3904 ((-652 |#4|) (-652 |#4|) (-1170))) (-15 -3904 ((-652 |#4|) (-652 |#4|) (-1170) (-1170)))) (-313) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -455))
-((-3904 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-455 *4 *5 *6 *7)))) (-3904 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-455 *4 *5 *6 *7)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-455 *3 *4 *5 *6)))) (-1800 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-455 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1800 (|#4| |#4| (-652 |#4|))) (-15 -3904 ((-652 |#4|) (-652 |#4|))) (-15 -3904 ((-652 |#4|) (-652 |#4|) (-1170))) (-15 -3904 ((-652 |#4|) (-652 |#4|) (-1170) (-1170))))
-((-2520 (((-652 (-652 |#4|)) (-652 |#4|) (-112)) 89) (((-652 (-652 |#4|)) (-652 |#4|)) 88) (((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|) (-112)) 82) (((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|)) 83)) (-3725 (((-652 (-652 |#4|)) (-652 |#4|) (-112)) 55) (((-652 (-652 |#4|)) (-652 |#4|)) 77)))
-(((-456 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3725 ((-652 (-652 |#4|)) (-652 |#4|))) (-15 -3725 ((-652 (-652 |#4|)) (-652 |#4|) (-112))) (-15 -2520 ((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|))) (-15 -2520 ((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|) (-112))) (-15 -2520 ((-652 (-652 |#4|)) (-652 |#4|))) (-15 -2520 ((-652 (-652 |#4|)) (-652 |#4|) (-112)))) (-13 (-313) (-148)) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -456))
-((-2520 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8))) (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))) (-2520 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-2520 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8))) (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))) (-2520 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8))) (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))) (-3725 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
-(-10 -7 (-15 -3725 ((-652 (-652 |#4|)) (-652 |#4|))) (-15 -3725 ((-652 (-652 |#4|)) (-652 |#4|) (-112))) (-15 -2520 ((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|))) (-15 -2520 ((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|) (-112))) (-15 -2520 ((-652 (-652 |#4|)) (-652 |#4|))) (-15 -2520 ((-652 (-652 |#4|)) (-652 |#4|) (-112))))
-((-2648 (((-779) |#4|) 12)) (-1524 (((-652 (-2 (|:| |totdeg| (-779)) (|:| -2057 |#4|))) |#4| (-779) (-652 (-2 (|:| |totdeg| (-779)) (|:| -2057 |#4|)))) 39)) (-1319 (((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2531 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3225 ((|#4| |#4| (-652 |#4|)) 54)) (-4222 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-652 |#4|)) 96)) (-2318 (((-1284) |#4|) 59)) (-2553 (((-1284) (-652 |#4|)) 69)) (-1502 (((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572)) 66)) (-2523 (((-1284) (-572)) 110)) (-2308 (((-652 |#4|) (-652 |#4|)) 104)) (-4027 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-779)) (|:| -2057 |#4|)) |#4| (-779)) 31)) (-1731 (((-572) |#4|) 109)) (-1467 ((|#4| |#4|) 37)) (-1836 (((-652 |#4|) (-652 |#4|) (-572) (-572)) 74)) (-3178 (((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572) (-572)) 123)) (-2975 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2794 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-3726 (((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-1458 (((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1745 (((-112) |#2| |#2|) 75)) (-2529 (((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3130 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3331 ((|#4| |#4| (-652 |#4|)) 97)))
-(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3331 (|#4| |#4| (-652 |#4|))) (-15 -3225 (|#4| |#4| (-652 |#4|))) (-15 -1836 ((-652 |#4|) (-652 |#4|) (-572) (-572))) (-15 -2794 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1745 ((-112) |#2| |#2|)) (-15 -3130 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2529 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1458 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3726 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4222 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-652 |#4|))) (-15 -1467 (|#4| |#4|)) (-15 -1524 ((-652 (-2 (|:| |totdeg| (-779)) (|:| -2057 |#4|))) |#4| (-779) (-652 (-2 (|:| |totdeg| (-779)) (|:| -2057 |#4|))))) (-15 -2531 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1319 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2308 ((-652 |#4|) (-652 |#4|))) (-15 -1731 ((-572) |#4|)) (-15 -2318 ((-1284) |#4|)) (-15 -1502 ((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572))) (-15 -3178 ((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572) (-572))) (-15 -2553 ((-1284) (-652 |#4|))) (-15 -2523 ((-1284) (-572))) (-15 -2975 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4027 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-779)) (|:| -2057 |#4|)) |#4| (-779))) (-15 -2648 ((-779) |#4|))) (-460) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -457))
-((-2648 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-779)) (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-4027 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-779)) (|:| -2057 *4))) (-5 *5 (-779)) (-4 *4 (-958 *6 *7 *8)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-457 *6 *7 *8 *4)))) (-2975 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-801)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-457 *4 *5 *6 *7)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-572)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284)) (-5 *1 (-457 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284)) (-5 *1 (-457 *4 *5 *6 *7)))) (-3178 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-779)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-801)) (-4 *4 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-858)) (-5 *1 (-457 *5 *6 *7 *4)))) (-1502 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-779)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-801)) (-4 *4 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-858)) (-5 *1 (-457 *5 *6 *7 *4)))) (-2318 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284)) (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-1731 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-572)) (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-2308 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *6)))) (-1319 (*1 *2 *2 *2) (-12 (-5 *2 (-652 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-779)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-801)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *6)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-801)) (-4 *2 (-958 *4 *5 *6)) (-5 *1 (-457 *4 *5 *6 *2)) (-4 *4 (-460)) (-4 *6 (-858)))) (-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-652 (-2 (|:| |totdeg| (-779)) (|:| -2057 *3)))) (-5 *4 (-779)) (-4 *3 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-457 *5 *6 *7 *3)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))) (-4222 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-457 *5 *6 *7 *3)))) (-3726 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-779)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-801)) (-4 *6 (-958 *4 *3 *5)) (-4 *4 (-460)) (-4 *5 (-858)) (-5 *1 (-457 *4 *3 *5 *6)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-652 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-779)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-801)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *6)))) (-2529 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-801)) (-4 *3 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *3)))) (-3130 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-460)) (-4 *3 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3 *5 *6)) (-4 *6 (-958 *4 *3 *5)))) (-1745 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *3 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3 *5 *6)) (-4 *6 (-958 *4 *3 *5)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-801)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-457 *4 *5 *6 *7)))) (-1836 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-572)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *7)))) (-3225 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *2)))) (-3331 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3331 (|#4| |#4| (-652 |#4|))) (-15 -3225 (|#4| |#4| (-652 |#4|))) (-15 -1836 ((-652 |#4|) (-652 |#4|) (-572) (-572))) (-15 -2794 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1745 ((-112) |#2| |#2|)) (-15 -3130 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2529 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1458 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3726 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4222 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-652 |#4|))) (-15 -1467 (|#4| |#4|)) (-15 -1524 ((-652 (-2 (|:| |totdeg| (-779)) (|:| -2057 |#4|))) |#4| (-779) (-652 (-2 (|:| |totdeg| (-779)) (|:| -2057 |#4|))))) (-15 -2531 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1319 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2308 ((-652 |#4|) (-652 |#4|))) (-15 -1731 ((-572) |#4|)) (-15 -2318 ((-1284) |#4|)) (-15 -1502 ((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572))) (-15 -3178 ((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572) (-572))) (-15 -2553 ((-1284) (-652 |#4|))) (-15 -2523 ((-1284) (-572))) (-15 -2975 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4027 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-779)) (|:| -2057 |#4|)) |#4| (-779))) (-15 -2648 ((-779) |#4|)))
-((-2040 ((|#4| |#4| (-652 |#4|)) 20 (|has| |#1| (-370)))) (-3440 (((-652 |#4|) (-652 |#4|) (-1170) (-1170)) 46) (((-652 |#4|) (-652 |#4|) (-1170)) 45) (((-652 |#4|) (-652 |#4|)) 34)))
-(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3440 ((-652 |#4|) (-652 |#4|))) (-15 -3440 ((-652 |#4|) (-652 |#4|) (-1170))) (-15 -3440 ((-652 |#4|) (-652 |#4|) (-1170) (-1170))) (IF (|has| |#1| (-370)) (-15 -2040 (|#4| |#4| (-652 |#4|))) |%noBranch|)) (-460) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -458))
-((-2040 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-458 *4 *5 *6 *2)))) (-3440 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-458 *4 *5 *6 *7)))) (-3440 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-458 *4 *5 *6 *7)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-458 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3440 ((-652 |#4|) (-652 |#4|))) (-15 -3440 ((-652 |#4|) (-652 |#4|) (-1170))) (-15 -3440 ((-652 |#4|) (-652 |#4|) (-1170) (-1170))) (IF (|has| |#1| (-370)) (-15 -2040 (|#4| |#4| (-652 |#4|))) |%noBranch|))
-((-2825 (($ $ $) 14) (($ (-652 $)) 21)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 46)) (-2870 (($ $ $) NIL) (($ (-652 $)) 22)))
-(((-459 |#1|) (-10 -8 (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2825 (|#1| (-652 |#1|))) (-15 -2825 (|#1| |#1| |#1|)) (-15 -2870 (|#1| (-652 |#1|))) (-15 -2870 (|#1| |#1| |#1|))) (-460)) (T -459))
-NIL
-(-10 -8 (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2825 (|#1| (-652 |#1|))) (-15 -2825 (|#1| |#1| |#1|)) (-15 -2870 (|#1| (-652 |#1|))) (-15 -2870 (|#1| |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-2834 (((-3 $ "failed") $ $) 48)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-460) (-141)) (T -460))
-((-2870 (*1 *1 *1 *1) (-4 *1 (-460))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-460)))) (-2825 (*1 *1 *1 *1) (-4 *1 (-460))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-460)))) (-3126 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-460)))))
-(-13 (-564) (-10 -8 (-15 -2870 ($ $ $)) (-15 -2870 ($ (-652 $))) (-15 -2825 ($ $ $)) (-15 -2825 ($ (-652 $))) (-15 -3126 ((-1184 $) (-1184 $) (-1184 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3161 (((-3 $ "failed")) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1279 (-697 (-415 (-961 |#1|)))) (-1279 $)) NIL) (((-1279 (-697 (-415 (-961 |#1|))))) NIL)) (-3621 (((-1279 $)) NIL)) (-3281 (($) NIL T CONST)) (-2892 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL)) (-3760 (((-3 $ "failed")) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-1609 (((-697 (-415 (-961 |#1|))) (-1279 $)) NIL) (((-697 (-415 (-961 |#1|)))) NIL)) (-2554 (((-415 (-961 |#1|)) $) NIL)) (-3819 (((-697 (-415 (-961 |#1|))) $ (-1279 $)) NIL) (((-697 (-415 (-961 |#1|))) $) NIL)) (-4147 (((-3 $ "failed") $) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-2872 (((-1184 (-961 (-415 (-961 |#1|))))) NIL (|has| (-415 (-961 |#1|)) (-370))) (((-1184 (-415 (-961 |#1|)))) 90 (|has| |#1| (-564)))) (-2673 (($ $ (-930)) NIL)) (-3747 (((-415 (-961 |#1|)) $) NIL)) (-3120 (((-1184 (-415 (-961 |#1|))) $) 88 (|has| (-415 (-961 |#1|)) (-564)))) (-3529 (((-415 (-961 |#1|)) (-1279 $)) NIL) (((-415 (-961 |#1|))) NIL)) (-2493 (((-1184 (-415 (-961 |#1|))) $) NIL)) (-3043 (((-112)) NIL)) (-1913 (($ (-1279 (-415 (-961 |#1|))) (-1279 $)) 114) (($ (-1279 (-415 (-961 |#1|)))) NIL)) (-2062 (((-3 $ "failed") $) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-3581 (((-930)) NIL)) (-2522 (((-112)) NIL)) (-4101 (($ $ (-930)) NIL)) (-3491 (((-112)) NIL)) (-1851 (((-112)) NIL)) (-2769 (((-112)) NIL)) (-3249 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL)) (-2950 (((-3 $ "failed")) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-2509 (((-697 (-415 (-961 |#1|))) (-1279 $)) NIL) (((-697 (-415 (-961 |#1|)))) NIL)) (-3436 (((-415 (-961 |#1|)) $) NIL)) (-2647 (((-697 (-415 (-961 |#1|))) $ (-1279 $)) NIL) (((-697 (-415 (-961 |#1|))) $) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-2853 (((-1184 (-961 (-415 (-961 |#1|))))) NIL (|has| (-415 (-961 |#1|)) (-370))) (((-1184 (-415 (-961 |#1|)))) 89 (|has| |#1| (-564)))) (-1858 (($ $ (-930)) NIL)) (-3345 (((-415 (-961 |#1|)) $) NIL)) (-2267 (((-1184 (-415 (-961 |#1|))) $) 85 (|has| (-415 (-961 |#1|)) (-564)))) (-3452 (((-415 (-961 |#1|)) (-1279 $)) NIL) (((-415 (-961 |#1|))) NIL)) (-2708 (((-1184 (-415 (-961 |#1|))) $) NIL)) (-4401 (((-112)) NIL)) (-4347 (((-1170) $) NIL)) (-1522 (((-112)) NIL)) (-3278 (((-112)) NIL)) (-2816 (((-112)) NIL)) (-3964 (((-1131) $) NIL)) (-3333 (((-415 (-961 |#1|)) $ $) 76 (|has| |#1| (-564)))) (-1906 (((-415 (-961 |#1|)) $) 100 (|has| |#1| (-564)))) (-2721 (((-415 (-961 |#1|)) $) 104 (|has| |#1| (-564)))) (-2819 (((-1184 (-415 (-961 |#1|))) $) 94 (|has| |#1| (-564)))) (-1873 (((-415 (-961 |#1|))) 77 (|has| |#1| (-564)))) (-2713 (((-415 (-961 |#1|)) $ $) 69 (|has| |#1| (-564)))) (-1509 (((-415 (-961 |#1|)) $) 99 (|has| |#1| (-564)))) (-3370 (((-415 (-961 |#1|)) $) 103 (|has| |#1| (-564)))) (-3923 (((-1184 (-415 (-961 |#1|))) $) 93 (|has| |#1| (-564)))) (-3269 (((-415 (-961 |#1|))) 73 (|has| |#1| (-564)))) (-3540 (($) 110) (($ (-1188)) 118) (($ (-1279 (-1188))) 117) (($ (-1279 $)) 105) (($ (-1188) (-1279 $)) 116) (($ (-1279 (-1188)) (-1279 $)) 115)) (-3534 (((-112)) NIL)) (-2196 (((-415 (-961 |#1|)) $ (-572)) NIL)) (-4329 (((-1279 (-415 (-961 |#1|))) $ (-1279 $)) 107) (((-697 (-415 (-961 |#1|))) (-1279 $) (-1279 $)) NIL) (((-1279 (-415 (-961 |#1|))) $) 43) (((-697 (-415 (-961 |#1|))) (-1279 $)) NIL)) (-1835 (((-1279 (-415 (-961 |#1|))) $) NIL) (($ (-1279 (-415 (-961 |#1|)))) 40)) (-1402 (((-652 (-961 (-415 (-961 |#1|)))) (-1279 $)) NIL) (((-652 (-961 (-415 (-961 |#1|))))) NIL) (((-652 (-961 |#1|)) (-1279 $)) 108 (|has| |#1| (-564))) (((-652 (-961 |#1|))) 109 (|has| |#1| (-564)))) (-4326 (($ $ $) NIL)) (-1589 (((-112)) NIL)) (-2940 (((-870) $) NIL) (($ (-1279 (-415 (-961 |#1|)))) NIL)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) 65)) (-3987 (((-652 (-1279 (-415 (-961 |#1|))))) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-2266 (($ $ $ $) NIL)) (-1662 (((-112)) NIL)) (-2898 (($ (-697 (-415 (-961 |#1|))) $) NIL)) (-3099 (($ $ $) NIL)) (-4118 (((-112)) NIL)) (-3313 (((-112)) NIL)) (-1547 (((-112)) NIL)) (-2131 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) 106)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 61) (($ $ (-415 (-961 |#1|))) NIL) (($ (-415 (-961 |#1|)) $) NIL) (($ (-1153 |#2| (-415 (-961 |#1|))) $) NIL)))
-(((-461 |#1| |#2| |#3| |#4|) (-13 (-425 (-415 (-961 |#1|))) (-656 (-1153 |#2| (-415 (-961 |#1|)))) (-10 -8 (-15 -2940 ($ (-1279 (-415 (-961 |#1|))))) (-15 -3249 ((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed"))) (-15 -2892 ((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed"))) (-15 -3540 ($)) (-15 -3540 ($ (-1188))) (-15 -3540 ($ (-1279 (-1188)))) (-15 -3540 ($ (-1279 $))) (-15 -3540 ($ (-1188) (-1279 $))) (-15 -3540 ($ (-1279 (-1188)) (-1279 $))) (IF (|has| |#1| (-564)) (PROGN (-15 -2853 ((-1184 (-415 (-961 |#1|))))) (-15 -3923 ((-1184 (-415 (-961 |#1|))) $)) (-15 -1509 ((-415 (-961 |#1|)) $)) (-15 -3370 ((-415 (-961 |#1|)) $)) (-15 -2872 ((-1184 (-415 (-961 |#1|))))) (-15 -2819 ((-1184 (-415 (-961 |#1|))) $)) (-15 -1906 ((-415 (-961 |#1|)) $)) (-15 -2721 ((-415 (-961 |#1|)) $)) (-15 -2713 ((-415 (-961 |#1|)) $ $)) (-15 -3269 ((-415 (-961 |#1|)))) (-15 -3333 ((-415 (-961 |#1|)) $ $)) (-15 -1873 ((-415 (-961 |#1|)))) (-15 -1402 ((-652 (-961 |#1|)) (-1279 $))) (-15 -1402 ((-652 (-961 |#1|))))) |%noBranch|))) (-174) (-930) (-652 (-1188)) (-1279 (-697 |#1|))) (T -461))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 *3)))) (-4 *3 (-174)) (-14 *6 (-1279 (-697 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))))) (-3249 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-461 *3 *4 *5 *6)) (|:| -4362 (-652 (-461 *3 *4 *5 *6))))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2892 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-461 *3 *4 *5 *6)) (|:| -4362 (-652 (-461 *3 *4 *5 *6))))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-3540 (*1 *1) (-12 (-5 *1 (-461 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-930)) (-14 *4 (-652 (-1188))) (-14 *5 (-1279 (-697 *2))))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 *2)) (-14 *6 (-1279 (-697 *3))))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-1279 (-1188))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-1279 (-461 *3 *4 *5 *6))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-3540 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-461 *4 *5 *6 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-930)) (-14 *6 (-652 *2)) (-14 *7 (-1279 (-697 *4))))) (-3540 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 (-1188))) (-5 *3 (-1279 (-461 *4 *5 *6 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-930)) (-14 *6 (-652 (-1188))) (-14 *7 (-1279 (-697 *4))))) (-2853 (*1 *2) (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2872 (*1 *2) (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2713 (*1 *2 *1 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-3269 (*1 *2) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-3333 (*1 *2 *1 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1873 (*1 *2) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-1279 (-461 *4 *5 *6 *7))) (-5 *2 (-652 (-961 *4))) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-564)) (-4 *4 (-174)) (-14 *5 (-930)) (-14 *6 (-652 (-1188))) (-14 *7 (-1279 (-697 *4))))) (-1402 (*1 *2) (-12 (-5 *2 (-652 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(-13 (-425 (-415 (-961 |#1|))) (-656 (-1153 |#2| (-415 (-961 |#1|)))) (-10 -8 (-15 -2940 ($ (-1279 (-415 (-961 |#1|))))) (-15 -3249 ((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed"))) (-15 -2892 ((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed"))) (-15 -3540 ($)) (-15 -3540 ($ (-1188))) (-15 -3540 ($ (-1279 (-1188)))) (-15 -3540 ($ (-1279 $))) (-15 -3540 ($ (-1188) (-1279 $))) (-15 -3540 ($ (-1279 (-1188)) (-1279 $))) (IF (|has| |#1| (-564)) (PROGN (-15 -2853 ((-1184 (-415 (-961 |#1|))))) (-15 -3923 ((-1184 (-415 (-961 |#1|))) $)) (-15 -1509 ((-415 (-961 |#1|)) $)) (-15 -3370 ((-415 (-961 |#1|)) $)) (-15 -2872 ((-1184 (-415 (-961 |#1|))))) (-15 -2819 ((-1184 (-415 (-961 |#1|))) $)) (-15 -1906 ((-415 (-961 |#1|)) $)) (-15 -2721 ((-415 (-961 |#1|)) $)) (-15 -2713 ((-415 (-961 |#1|)) $ $)) (-15 -3269 ((-415 (-961 |#1|)))) (-15 -3333 ((-415 (-961 |#1|)) $ $)) (-15 -1873 ((-415 (-961 |#1|)))) (-15 -1402 ((-652 (-961 |#1|)) (-1279 $))) (-15 -1402 ((-652 (-961 |#1|))))) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 18)) (-4353 (((-652 (-872 |#1|)) $) 87)) (-4191 (((-1184 $) $ (-872 |#1|)) 52) (((-1184 |#2|) $) 138)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-3009 (($ $) NIL (|has| |#2| (-564)))) (-4334 (((-112) $) NIL (|has| |#2| (-564)))) (-2418 (((-779) $) 27) (((-779) $ (-652 (-872 |#1|))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3517 (($ $) NIL (|has| |#2| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 50) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-872 |#1|) "failed") $) NIL)) (-2204 ((|#2| $) 48) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-872 |#1|) $) NIL)) (-2361 (($ $ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-1504 (($ $ (-652 (-572))) 93)) (-1390 (($ $) 80)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#2| (-918)))) (-1437 (($ $ |#2| |#3| $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) 65)) (-4343 (($ (-1184 |#2|) (-872 |#1|)) 143) (($ (-1184 $) (-872 |#1|)) 58)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) 68)) (-4333 (($ |#2| |#3|) 35) (($ $ (-872 |#1|) (-779)) 37) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-872 |#1|)) NIL)) (-2649 ((|#3| $) NIL) (((-779) $ (-872 |#1|)) 56) (((-652 (-779)) $ (-652 (-872 |#1|))) 63)) (-2497 (($ (-1 |#3| |#3|) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3928 (((-3 (-872 |#1|) "failed") $) 45)) (-1357 (($ $) NIL)) (-1368 ((|#2| $) 47)) (-2825 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-4347 (((-1170) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-872 |#1|)) (|:| -1679 (-779))) "failed") $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) 46)) (-1347 ((|#2| $) 136)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) 149 (|has| |#2| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#2| (-918)))) (-2834 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-872 |#1|) |#2|) 100) (($ $ (-652 (-872 |#1|)) (-652 |#2|)) 106) (($ $ (-872 |#1|) $) 98) (($ $ (-652 (-872 |#1|)) (-652 $)) 124)) (-3537 (($ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-3902 (($ $ (-872 |#1|)) 59) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-4390 ((|#3| $) 79) (((-779) $ (-872 |#1|)) 42) (((-652 (-779)) $ (-652 (-872 |#1|))) 62)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-872 |#1|) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-1711 ((|#2| $) 145 (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-2940 (((-870) $) 174) (($ (-572)) NIL) (($ |#2|) 99) (($ (-872 |#1|)) 39) (($ (-415 (-572))) NIL (-2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#2| (-564)))) (-4268 (((-652 |#2|) $) NIL)) (-3979 ((|#2| $ |#3|) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2131 (($) 22 T CONST)) (-2143 (($) 31 T CONST)) (-3608 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#2|) 76 (|has| |#2| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 131)) (** (($ $ (-930)) NIL) (($ $ (-779)) 129)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 36) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) 75) (($ $ |#2|) NIL)))
-(((-462 |#1| |#2| |#3|) (-13 (-958 |#2| |#3| (-872 |#1|)) (-10 -8 (-15 -1504 ($ $ (-652 (-572)))))) (-652 (-1188)) (-1060) (-242 (-2860 |#1|) (-779))) (T -462))
-((-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-14 *3 (-652 (-1188))) (-5 *1 (-462 *3 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-242 (-2860 *3) (-779))))))
-(-13 (-958 |#2| |#3| (-872 |#1|)) (-10 -8 (-15 -1504 ($ $ (-652 (-572))))))
-((-1474 (((-112) |#1| (-652 |#2|)) 91)) (-2376 (((-3 (-1279 (-652 |#2|)) "failed") (-779) |#1| (-652 |#2|)) 100)) (-2880 (((-3 (-652 |#2|) "failed") |#2| |#1| (-1279 (-652 |#2|))) 102)) (-3104 ((|#2| |#2| |#1|) 35)) (-1796 (((-779) |#2| (-652 |#2|)) 26)))
-(((-463 |#1| |#2|) (-10 -7 (-15 -3104 (|#2| |#2| |#1|)) (-15 -1796 ((-779) |#2| (-652 |#2|))) (-15 -2376 ((-3 (-1279 (-652 |#2|)) "failed") (-779) |#1| (-652 |#2|))) (-15 -2880 ((-3 (-652 |#2|) "failed") |#2| |#1| (-1279 (-652 |#2|)))) (-15 -1474 ((-112) |#1| (-652 |#2|)))) (-313) (-1255 |#1|)) (T -463))
-((-1474 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *5)) (-4 *5 (-1255 *3)) (-4 *3 (-313)) (-5 *2 (-112)) (-5 *1 (-463 *3 *5)))) (-2880 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1279 (-652 *3))) (-4 *4 (-313)) (-5 *2 (-652 *3)) (-5 *1 (-463 *4 *3)) (-4 *3 (-1255 *4)))) (-2376 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-779)) (-4 *4 (-313)) (-4 *6 (-1255 *4)) (-5 *2 (-1279 (-652 *6))) (-5 *1 (-463 *4 *6)) (-5 *5 (-652 *6)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-313)) (-5 *2 (-779)) (-5 *1 (-463 *5 *3)))) (-3104 (*1 *2 *2 *3) (-12 (-4 *3 (-313)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1255 *3)))))
-(-10 -7 (-15 -3104 (|#2| |#2| |#1|)) (-15 -1796 ((-779) |#2| (-652 |#2|))) (-15 -2376 ((-3 (-1279 (-652 |#2|)) "failed") (-779) |#1| (-652 |#2|))) (-15 -2880 ((-3 (-652 |#2|) "failed") |#2| |#1| (-1279 (-652 |#2|)))) (-15 -1474 ((-112) |#1| (-652 |#2|))))
-((-4218 (((-426 |#5|) |#5|) 24)))
-(((-464 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4218 ((-426 |#5|) |#5|))) (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188))))) (-801) (-564) (-564) (-958 |#4| |#2| |#1|)) (T -464))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188)))))) (-4 *5 (-801)) (-4 *7 (-564)) (-5 *2 (-426 *3)) (-5 *1 (-464 *4 *5 *6 *7 *3)) (-4 *6 (-564)) (-4 *3 (-958 *7 *5 *4)))))
-(-10 -7 (-15 -4218 ((-426 |#5|) |#5|)))
-((-4271 ((|#3|) 38)) (-3126 (((-1184 |#4|) (-1184 |#4|) (-1184 |#4|)) 34)))
-(((-465 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3126 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -4271 (|#3|))) (-801) (-858) (-918) (-958 |#3| |#1| |#2|)) (T -465))
-((-4271 (*1 *2) (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-918)) (-5 *1 (-465 *3 *4 *2 *5)) (-4 *5 (-958 *2 *3 *4)))) (-3126 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-918)) (-5 *1 (-465 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3126 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -4271 (|#3|)))
-((-4218 (((-426 (-1184 |#1|)) (-1184 |#1|)) 43)))
-(((-466 |#1|) (-10 -7 (-15 -4218 ((-426 (-1184 |#1|)) (-1184 |#1|)))) (-313)) (T -466))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-313)) (-5 *2 (-426 (-1184 *4))) (-5 *1 (-466 *4)) (-5 *3 (-1184 *4)))))
-(-10 -7 (-15 -4218 ((-426 (-1184 |#1|)) (-1184 |#1|))))
-((-4400 (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-779))) 44) (((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-779))) 43) (((-52) |#2| (-1188) (-300 |#2|)) 36) (((-52) (-1 |#2| (-572)) (-300 |#2|)) 29)) (-3620 (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))) 88) (((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))) 87) (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572))) 86) (((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572))) 85) (((-52) |#2| (-1188) (-300 |#2|)) 80) (((-52) (-1 |#2| (-572)) (-300 |#2|)) 79)) (-4422 (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))) 74) (((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))) 72)) (-4411 (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572))) 51) (((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572))) 50)))
-(((-467 |#1| |#2|) (-10 -7 (-15 -4400 ((-52) (-1 |#2| (-572)) (-300 |#2|))) (-15 -4400 ((-52) |#2| (-1188) (-300 |#2|))) (-15 -4400 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-779)))) (-15 -4400 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-779)))) (-15 -4411 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572)))) (-15 -4411 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572)))) (-15 -4422 ((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -4422 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -3620 ((-52) (-1 |#2| (-572)) (-300 |#2|))) (-15 -3620 ((-52) |#2| (-1188) (-300 |#2|))) (-15 -3620 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572)))) (-15 -3620 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572)))) (-15 -3620 ((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -3620 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))))) (-13 (-564) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -467))
-((-3620 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-415 (-572)))) (-5 *7 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *8))) (-4 *8 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *8 *3)))) (-3620 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-415 (-572)))) (-5 *4 (-300 *8)) (-5 *5 (-1246 (-415 (-572)))) (-5 *6 (-415 (-572))) (-4 *8 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *8)))) (-3620 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *3)))) (-3620 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-572))) (-4 *7 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *7)))) (-3620 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *3)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-572))) (-5 *4 (-300 *6)) (-4 *6 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *5 *6)))) (-4422 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-415 (-572)))) (-5 *7 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *8))) (-4 *8 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *8 *3)))) (-4422 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-415 (-572)))) (-5 *4 (-300 *8)) (-5 *5 (-1246 (-415 (-572)))) (-5 *6 (-415 (-572))) (-4 *8 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *8)))) (-4411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *3)))) (-4411 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-572))) (-4 *7 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *7)))) (-4400 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-779))) (-4 *3 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *3)))) (-4400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-779))) (-4 *7 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *7)))) (-4400 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *3)))) (-4400 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-572))) (-5 *4 (-300 *6)) (-4 *6 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *5 *6)))))
-(-10 -7 (-15 -4400 ((-52) (-1 |#2| (-572)) (-300 |#2|))) (-15 -4400 ((-52) |#2| (-1188) (-300 |#2|))) (-15 -4400 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-779)))) (-15 -4400 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-779)))) (-15 -4411 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572)))) (-15 -4411 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572)))) (-15 -4422 ((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -4422 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -3620 ((-52) (-1 |#2| (-572)) (-300 |#2|))) (-15 -3620 ((-52) |#2| (-1188) (-300 |#2|))) (-15 -3620 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572)))) (-15 -3620 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572)))) (-15 -3620 ((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -3620 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))))
-((-3104 ((|#2| |#2| |#1|) 15)) (-2576 (((-652 |#2|) |#2| (-652 |#2|) |#1| (-930)) 82)) (-4100 (((-2 (|:| |plist| (-652 |#2|)) (|:| |modulo| |#1|)) |#2| (-652 |#2|) |#1| (-930)) 72)))
-(((-468 |#1| |#2|) (-10 -7 (-15 -4100 ((-2 (|:| |plist| (-652 |#2|)) (|:| |modulo| |#1|)) |#2| (-652 |#2|) |#1| (-930))) (-15 -2576 ((-652 |#2|) |#2| (-652 |#2|) |#1| (-930))) (-15 -3104 (|#2| |#2| |#1|))) (-313) (-1255 |#1|)) (T -468))
-((-3104 (*1 *2 *2 *3) (-12 (-4 *3 (-313)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1255 *3)))) (-2576 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-652 *3)) (-5 *5 (-930)) (-4 *3 (-1255 *4)) (-4 *4 (-313)) (-5 *1 (-468 *4 *3)))) (-4100 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-930)) (-4 *5 (-313)) (-4 *3 (-1255 *5)) (-5 *2 (-2 (|:| |plist| (-652 *3)) (|:| |modulo| *5))) (-5 *1 (-468 *5 *3)) (-5 *4 (-652 *3)))))
-(-10 -7 (-15 -4100 ((-2 (|:| |plist| (-652 |#2|)) (|:| |modulo| |#1|)) |#2| (-652 |#2|) |#1| (-930))) (-15 -2576 ((-652 |#2|) |#2| (-652 |#2|) |#1| (-930))) (-15 -3104 (|#2| |#2| |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 28)) (-2601 (($ |#3|) 25)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1390 (($ $) 32)) (-3055 (($ |#2| |#4| $) 33)) (-4333 (($ |#2| (-721 |#3| |#4| |#5|)) 24)) (-1357 (((-721 |#3| |#4| |#5|) $) 15)) (-2437 ((|#3| $) 19)) (-1416 ((|#4| $) 17)) (-1368 ((|#2| $) 29)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-2971 (($ |#2| |#3| |#4|) 26)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 36 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 34)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-469 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-725 |#6|) (-725 |#2|) (-10 -8 (-15 -1368 (|#2| $)) (-15 -1357 ((-721 |#3| |#4| |#5|) $)) (-15 -1416 (|#4| $)) (-15 -2437 (|#3| $)) (-15 -1390 ($ $)) (-15 -4333 ($ |#2| (-721 |#3| |#4| |#5|))) (-15 -2601 ($ |#3|)) (-15 -2971 ($ |#2| |#3| |#4|)) (-15 -3055 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-652 (-1188)) (-174) (-858) (-242 (-2860 |#1|) (-779)) (-1 (-112) (-2 (|:| -2571 |#3|) (|:| -1679 |#4|)) (-2 (|:| -2571 |#3|) (|:| -1679 |#4|))) (-958 |#2| |#4| (-872 |#1|))) (T -469))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-4 *6 (-242 (-2860 *3) (-779))) (-14 *7 (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *6)) (-2 (|:| -2571 *5) (|:| -1679 *6)))) (-5 *1 (-469 *3 *4 *5 *6 *7 *2)) (-4 *5 (-858)) (-4 *2 (-958 *4 *6 (-872 *3))))) (-1368 (*1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *5 (-242 (-2860 *3) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -2571 *4) (|:| -1679 *5)) (-2 (|:| -2571 *4) (|:| -1679 *5)))) (-4 *2 (-174)) (-5 *1 (-469 *3 *2 *4 *5 *6 *7)) (-4 *4 (-858)) (-4 *7 (-958 *2 *5 (-872 *3))))) (-1357 (*1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-4 *6 (-242 (-2860 *3) (-779))) (-14 *7 (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *6)) (-2 (|:| -2571 *5) (|:| -1679 *6)))) (-5 *2 (-721 *5 *6 *7)) (-5 *1 (-469 *3 *4 *5 *6 *7 *8)) (-4 *5 (-858)) (-4 *8 (-958 *4 *6 (-872 *3))))) (-1416 (*1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *2)) (-2 (|:| -2571 *5) (|:| -1679 *2)))) (-4 *2 (-242 (-2860 *3) (-779))) (-5 *1 (-469 *3 *4 *5 *2 *6 *7)) (-4 *5 (-858)) (-4 *7 (-958 *4 *2 (-872 *3))))) (-2437 (*1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-4 *5 (-242 (-2860 *3) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -2571 *2) (|:| -1679 *5)) (-2 (|:| -2571 *2) (|:| -1679 *5)))) (-4 *2 (-858)) (-5 *1 (-469 *3 *4 *2 *5 *6 *7)) (-4 *7 (-958 *4 *5 (-872 *3))))) (-1390 (*1 *1 *1) (-12 (-14 *2 (-652 (-1188))) (-4 *3 (-174)) (-4 *5 (-242 (-2860 *2) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -2571 *4) (|:| -1679 *5)) (-2 (|:| -2571 *4) (|:| -1679 *5)))) (-5 *1 (-469 *2 *3 *4 *5 *6 *7)) (-4 *4 (-858)) (-4 *7 (-958 *3 *5 (-872 *2))))) (-4333 (*1 *1 *2 *3) (-12 (-5 *3 (-721 *5 *6 *7)) (-4 *5 (-858)) (-4 *6 (-242 (-2860 *4) (-779))) (-14 *7 (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *6)) (-2 (|:| -2571 *5) (|:| -1679 *6)))) (-14 *4 (-652 (-1188))) (-4 *2 (-174)) (-5 *1 (-469 *4 *2 *5 *6 *7 *8)) (-4 *8 (-958 *2 *6 (-872 *4))))) (-2601 (*1 *1 *2) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-4 *5 (-242 (-2860 *3) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -2571 *2) (|:| -1679 *5)) (-2 (|:| -2571 *2) (|:| -1679 *5)))) (-5 *1 (-469 *3 *4 *2 *5 *6 *7)) (-4 *2 (-858)) (-4 *7 (-958 *4 *5 (-872 *3))))) (-2971 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-652 (-1188))) (-4 *2 (-174)) (-4 *4 (-242 (-2860 *5) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -2571 *3) (|:| -1679 *4)) (-2 (|:| -2571 *3) (|:| -1679 *4)))) (-5 *1 (-469 *5 *2 *3 *4 *6 *7)) (-4 *3 (-858)) (-4 *7 (-958 *2 *4 (-872 *5))))) (-3055 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-652 (-1188))) (-4 *2 (-174)) (-4 *3 (-242 (-2860 *4) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *3)) (-2 (|:| -2571 *5) (|:| -1679 *3)))) (-5 *1 (-469 *4 *2 *5 *3 *6 *7)) (-4 *5 (-858)) (-4 *7 (-958 *2 *3 (-872 *4))))))
-(-13 (-725 |#6|) (-725 |#2|) (-10 -8 (-15 -1368 (|#2| $)) (-15 -1357 ((-721 |#3| |#4| |#5|) $)) (-15 -1416 (|#4| $)) (-15 -2437 (|#3| $)) (-15 -1390 ($ $)) (-15 -4333 ($ |#2| (-721 |#3| |#4| |#5|))) (-15 -2601 ($ |#3|)) (-15 -2971 ($ |#2| |#3| |#4|)) (-15 -3055 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-3215 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-470 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3215 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-801) (-858) (-564) (-958 |#3| |#1| |#2|) (-13 (-1049 (-415 (-572))) (-370) (-10 -8 (-15 -2940 ($ |#4|)) (-15 -2963 (|#4| $)) (-15 -2974 (|#4| $))))) (T -470))
-((-3215 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-858)) (-4 *5 (-801)) (-4 *6 (-564)) (-4 *7 (-958 *6 *5 *3)) (-5 *1 (-470 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1049 (-415 (-572))) (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))))))
-(-10 -7 (-15 -3215 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2846 (((-112) $ $) NIL)) (-4353 (((-652 |#3|) $) 41)) (-1544 (((-112) $) NIL)) (-2639 (((-112) $) NIL (|has| |#1| (-564)))) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2162 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-2390 (((-112) $) NIL (|has| |#1| (-564)))) (-2783 (((-112) $ $) NIL (|has| |#1| (-564)))) (-3937 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1616 (((-112) $) NIL (|has| |#1| (-564)))) (-1566 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) 49)) (-2204 (($ (-652 |#4|)) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3332 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454)))) (-1863 (((-652 |#4|) $) 18 (|has| $ (-6 -4454)))) (-2366 ((|#3| $) 47)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#4|) $) 14 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-2442 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 21)) (-3015 (((-652 |#3|) $) NIL)) (-1683 (((-112) |#3| $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-3964 (((-1131) $) NIL)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1612 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 39)) (-1613 (($) 17)) (-3973 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) 16)) (-1835 (((-544) $) NIL (|has| |#4| (-622 (-544)))) (($ (-652 |#4|)) 51)) (-2953 (($ (-652 |#4|)) 13)) (-2748 (($ $ |#3|) NIL)) (-2365 (($ $ |#3|) NIL)) (-1670 (($ $ |#3|) NIL)) (-2940 (((-870) $) 38) (((-652 |#4|) $) 50)) (-4379 (((-112) $ $) NIL)) (-4380 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 30)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-471 |#1| |#2| |#3| |#4|) (-13 (-987 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1835 ($ (-652 |#4|))) (-6 -4454) (-6 -4455))) (-1060) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -471))
-((-1835 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-471 *3 *4 *5 *6)))))
-(-13 (-987 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1835 ($ (-652 |#4|))) (-6 -4454) (-6 -4455)))
-((-2131 (($) 11)) (-2143 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -2143 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2131 (|#1|))) (-473 |#2| |#3|) (-174) (-23)) (T -472))
-NIL
-(-10 -8 (-15 -2143 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2131 (|#1|)))
-((-2846 (((-112) $ $) 7)) (-1695 (((-3 |#1| "failed") $) 27)) (-2204 ((|#1| $) 28)) (-2247 (($ $ $) 24)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-4390 ((|#2| $) 20)) (-2940 (((-870) $) 12) (($ |#1|) 26)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 25 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 16) (($ $ $) 14)) (-3075 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-473 |#1| |#2|) (-141) (-174) (-23)) (T -473))
-((-2143 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2247 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
-(-13 (-478 |t#1| |t#2|) (-1049 |t#1|) (-10 -8 (-15 (-2143) ($) -1705) (-15 -2247 ($ $ $))))
-(((-102) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-478 |#1| |#2|) . T) ((-1049 |#1|) . T) ((-1111) . T))
-((-3516 (((-1279 (-1279 (-572))) (-1279 (-1279 (-572))) (-930)) 26)) (-3627 (((-1279 (-1279 (-572))) (-930)) 21)))
-(((-474) (-10 -7 (-15 -3516 ((-1279 (-1279 (-572))) (-1279 (-1279 (-572))) (-930))) (-15 -3627 ((-1279 (-1279 (-572))) (-930))))) (T -474))
-((-3627 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 (-1279 (-572)))) (-5 *1 (-474)))) (-3516 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 (-1279 (-572)))) (-5 *3 (-930)) (-5 *1 (-474)))))
-(-10 -7 (-15 -3516 ((-1279 (-1279 (-572))) (-1279 (-1279 (-572))) (-930))) (-15 -3627 ((-1279 (-1279 (-572))) (-930))))
-((-2431 (((-572) (-572)) 32) (((-572)) 24)) (-3577 (((-572) (-572)) 28) (((-572)) 20)) (-3978 (((-572) (-572)) 30) (((-572)) 22)) (-3260 (((-112) (-112)) 14) (((-112)) 12)) (-1769 (((-112) (-112)) 13) (((-112)) 11)) (-1677 (((-112) (-112)) 26) (((-112)) 17)))
-(((-475) (-10 -7 (-15 -1769 ((-112))) (-15 -3260 ((-112))) (-15 -1769 ((-112) (-112))) (-15 -3260 ((-112) (-112))) (-15 -1677 ((-112))) (-15 -3978 ((-572))) (-15 -3577 ((-572))) (-15 -2431 ((-572))) (-15 -1677 ((-112) (-112))) (-15 -3978 ((-572) (-572))) (-15 -3577 ((-572) (-572))) (-15 -2431 ((-572) (-572))))) (T -475))
-((-2431 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-2431 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-3577 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-3978 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-1677 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-3260 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-1769 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))))
-(-10 -7 (-15 -1769 ((-112))) (-15 -3260 ((-112))) (-15 -1769 ((-112) (-112))) (-15 -3260 ((-112) (-112))) (-15 -1677 ((-112))) (-15 -3978 ((-572))) (-15 -3577 ((-572))) (-15 -2431 ((-572))) (-15 -1677 ((-112) (-112))) (-15 -3978 ((-572) (-572))) (-15 -3577 ((-572) (-572))) (-15 -2431 ((-572) (-572))))
-((-2846 (((-112) $ $) NIL)) (-1996 (((-652 (-386)) $) 34) (((-652 (-386)) $ (-652 (-386))) 146)) (-4254 (((-652 (-1105 (-386))) $) 16) (((-652 (-1105 (-386))) $ (-652 (-1105 (-386)))) 142)) (-1747 (((-652 (-652 (-952 (-227)))) (-652 (-652 (-952 (-227)))) (-652 (-882))) 58)) (-2104 (((-652 (-652 (-952 (-227)))) $) 137)) (-3588 (((-1284) $ (-952 (-227)) (-882)) 163)) (-3639 (($ $) 136) (($ (-652 (-652 (-952 (-227))))) 149) (($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930))) 148) (($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)) (-652 (-268))) 150)) (-4347 (((-1170) $) NIL)) (-3690 (((-572) $) 110)) (-3964 (((-1131) $) NIL)) (-3915 (($) 147)) (-1533 (((-652 (-227)) (-652 (-652 (-952 (-227))))) 89)) (-2668 (((-1284) $ (-652 (-952 (-227))) (-882) (-882) (-930)) 155) (((-1284) $ (-952 (-227))) 157) (((-1284) $ (-952 (-227)) (-882) (-882) (-930)) 156)) (-2940 (((-870) $) 169) (($ (-652 (-652 (-952 (-227))))) 164)) (-4379 (((-112) $ $) NIL)) (-3602 (((-1284) $ (-952 (-227))) 162)) (-2978 (((-112) $ $) NIL)))
-(((-476) (-13 (-1111) (-10 -8 (-15 -3915 ($)) (-15 -3639 ($ $)) (-15 -3639 ($ (-652 (-652 (-952 (-227)))))) (-15 -3639 ($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)))) (-15 -3639 ($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)) (-652 (-268)))) (-15 -2104 ((-652 (-652 (-952 (-227)))) $)) (-15 -3690 ((-572) $)) (-15 -4254 ((-652 (-1105 (-386))) $)) (-15 -4254 ((-652 (-1105 (-386))) $ (-652 (-1105 (-386))))) (-15 -1996 ((-652 (-386)) $)) (-15 -1996 ((-652 (-386)) $ (-652 (-386)))) (-15 -2668 ((-1284) $ (-652 (-952 (-227))) (-882) (-882) (-930))) (-15 -2668 ((-1284) $ (-952 (-227)))) (-15 -2668 ((-1284) $ (-952 (-227)) (-882) (-882) (-930))) (-15 -3602 ((-1284) $ (-952 (-227)))) (-15 -3588 ((-1284) $ (-952 (-227)) (-882))) (-15 -2940 ($ (-652 (-652 (-952 (-227)))))) (-15 -2940 ((-870) $)) (-15 -1747 ((-652 (-652 (-952 (-227)))) (-652 (-652 (-952 (-227)))) (-652 (-882)))) (-15 -1533 ((-652 (-227)) (-652 (-652 (-952 (-227))))))))) (T -476))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-476)))) (-3915 (*1 *1) (-5 *1 (-476))) (-3639 (*1 *1 *1) (-5 *1 (-476))) (-3639 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476)))) (-3639 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882))) (-5 *4 (-652 (-930))) (-5 *1 (-476)))) (-3639 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882))) (-5 *4 (-652 (-930))) (-5 *5 (-652 (-268))) (-5 *1 (-476)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-476)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-476)))) (-4254 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-476)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-476)))) (-1996 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-476)))) (-2668 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *4 (-882)) (-5 *5 (-930)) (-5 *2 (-1284)) (-5 *1 (-476)))) (-2668 (*1 *2 *1 *3) (-12 (-5 *3 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-476)))) (-2668 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-952 (-227))) (-5 *4 (-882)) (-5 *5 (-930)) (-5 *2 (-1284)) (-5 *1 (-476)))) (-3602 (*1 *2 *1 *3) (-12 (-5 *3 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-476)))) (-3588 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-952 (-227))) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-476)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476)))) (-1747 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882))) (-5 *1 (-476)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-652 (-227))) (-5 *1 (-476)))))
-(-13 (-1111) (-10 -8 (-15 -3915 ($)) (-15 -3639 ($ $)) (-15 -3639 ($ (-652 (-652 (-952 (-227)))))) (-15 -3639 ($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)))) (-15 -3639 ($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)) (-652 (-268)))) (-15 -2104 ((-652 (-652 (-952 (-227)))) $)) (-15 -3690 ((-572) $)) (-15 -4254 ((-652 (-1105 (-386))) $)) (-15 -4254 ((-652 (-1105 (-386))) $ (-652 (-1105 (-386))))) (-15 -1996 ((-652 (-386)) $)) (-15 -1996 ((-652 (-386)) $ (-652 (-386)))) (-15 -2668 ((-1284) $ (-652 (-952 (-227))) (-882) (-882) (-930))) (-15 -2668 ((-1284) $ (-952 (-227)))) (-15 -2668 ((-1284) $ (-952 (-227)) (-882) (-882) (-930))) (-15 -3602 ((-1284) $ (-952 (-227)))) (-15 -3588 ((-1284) $ (-952 (-227)) (-882))) (-15 -2940 ($ (-652 (-652 (-952 (-227)))))) (-15 -2940 ((-870) $)) (-15 -1747 ((-652 (-652 (-952 (-227)))) (-652 (-652 (-952 (-227)))) (-652 (-882)))) (-15 -1533 ((-652 (-227)) (-652 (-652 (-952 (-227))))))))
-((-3089 (($ $) NIL) (($ $ $) 11)))
-(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|))) (-478 |#2| |#3|) (-174) (-23)) (T -477))
-NIL
-(-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-4390 ((|#2| $) 20)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 16) (($ $ $) 14)) (-3075 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-478 |#1| |#2|) (-141) (-174) (-23)) (T -478))
-((-4390 (*1 *2 *1) (-12 (-4 *1 (-478 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2131 (*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3089 (*1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3075 (*1 *1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
-(-13 (-1111) (-10 -8 (-15 -4390 (|t#2| $)) (-15 (-2131) ($) -1705) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3089 ($ $)) (-15 -3075 ($ $ $)) (-15 -3089 ($ $ $))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2000 (((-3 (-652 (-489 |#1| |#2|)) "failed") (-652 (-489 |#1| |#2|)) (-652 (-872 |#1|))) 134)) (-2155 (((-652 (-652 (-251 |#1| |#2|))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|))) 131)) (-3182 (((-2 (|:| |dpolys| (-652 (-251 |#1| |#2|))) (|:| |coords| (-652 (-572)))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|))) 86)))
-(((-479 |#1| |#2| |#3|) (-10 -7 (-15 -2155 ((-652 (-652 (-251 |#1| |#2|))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|)))) (-15 -2000 ((-3 (-652 (-489 |#1| |#2|)) "failed") (-652 (-489 |#1| |#2|)) (-652 (-872 |#1|)))) (-15 -3182 ((-2 (|:| |dpolys| (-652 (-251 |#1| |#2|))) (|:| |coords| (-652 (-572)))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|))))) (-652 (-1188)) (-460) (-460)) (T -479))
-((-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-872 *5))) (-14 *5 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-2 (|:| |dpolys| (-652 (-251 *5 *6))) (|:| |coords| (-652 (-572))))) (-5 *1 (-479 *5 *6 *7)) (-5 *3 (-652 (-251 *5 *6))) (-4 *7 (-460)))) (-2000 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-489 *4 *5))) (-5 *3 (-652 (-872 *4))) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-479 *4 *5 *6)) (-4 *6 (-460)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-872 *5))) (-14 *5 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-652 (-652 (-251 *5 *6)))) (-5 *1 (-479 *5 *6 *7)) (-5 *3 (-652 (-251 *5 *6))) (-4 *7 (-460)))))
-(-10 -7 (-15 -2155 ((-652 (-652 (-251 |#1| |#2|))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|)))) (-15 -2000 ((-3 (-652 (-489 |#1| |#2|)) "failed") (-652 (-489 |#1| |#2|)) (-652 (-872 |#1|)))) (-15 -3182 ((-2 (|:| |dpolys| (-652 (-251 |#1| |#2|))) (|:| |coords| (-652 (-572)))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|)))))
-((-2062 (((-3 $ "failed") $) 11)) (-1516 (($ $ $) 23)) (-4326 (($ $ $) 24)) (-3106 (($ $ $) 9)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 22)))
-(((-480 |#1|) (-10 -8 (-15 -4326 (|#1| |#1| |#1|)) (-15 -1516 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -3106 (|#1| |#1| |#1|)) (-15 -2062 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930)))) (-481)) (T -480))
-NIL
-(-10 -8 (-15 -4326 (|#1| |#1| |#1|)) (-15 -1516 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -3106 (|#1| |#1| |#1|)) (-15 -2062 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))))
-((-2846 (((-112) $ $) 7)) (-3281 (($) 19 T CONST)) (-2062 (((-3 $ "failed") $) 16)) (-1886 (((-112) $) 18)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 25)) (-3964 (((-1131) $) 11)) (-1516 (($ $ $) 22)) (-4326 (($ $ $) 21)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2143 (($) 20 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 24)) (** (($ $ (-930)) 14) (($ $ (-779)) 17) (($ $ (-572)) 23)) (* (($ $ $) 15)))
-(((-481) (-141)) (T -481))
-((-1322 (*1 *1 *1) (-4 *1 (-481))) (-3106 (*1 *1 *1 *1) (-4 *1 (-481))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-481)) (-5 *2 (-572)))) (-1516 (*1 *1 *1 *1) (-4 *1 (-481))) (-4326 (*1 *1 *1 *1) (-4 *1 (-481))))
-(-13 (-734) (-10 -8 (-15 -1322 ($ $)) (-15 -3106 ($ $ $)) (-15 ** ($ $ (-572))) (-6 -4451) (-15 -1516 ($ $ $)) (-15 -4326 ($ $ $))))
-(((-102) . T) ((-621 (-870)) . T) ((-734) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) 18)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3762 (($ $ (-415 (-572))) NIL) (($ $ (-415 (-572)) (-415 (-572))) NIL)) (-1899 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) NIL)) (-2358 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3879 (((-112) $) NIL (|has| |#1| (-370)))) (-2579 (((-112) $) NIL)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-415 (-572)) $) NIL) (((-415 (-572)) $ (-415 (-572))) NIL)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) NIL) (($ $ (-415 (-572))) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-415 (-572))) NIL) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 25)) (-3116 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-3034 (($ $) 29 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 35 (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 30 (|has| |#1| (-38 (-415 (-572)))))) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2772 (($ $ (-415 (-572))) NIL)) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ (-415 (-572))) NIL) (($ $ $) NIL (|has| (-415 (-572)) (-1123)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) 28 (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $ (-1275 |#2|)) 16)) (-4390 (((-415 (-572)) $) NIL)) (-2397 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1275 |#2|)) NIL) (($ (-1264 |#1| |#2| |#3|)) 9) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-3979 ((|#1| $ (-415 (-572))) NIL)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-3356 ((|#1| $) 21)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-415 (-572))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) 27)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-482 |#1| |#2| |#3|) (-13 (-1260 |#1|) (-10 -8 (-15 -2940 ($ (-1275 |#2|))) (-15 -2940 ($ (-1264 |#1| |#2| |#3|))) (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -482))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-1264 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3) (-5 *1 (-482 *3 *4 *5)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
-(-13 (-1260 |#1|) (-10 -8 (-15 -2940 ($ (-1275 |#2|))) (-15 -2940 ($ (-1264 |#1| |#2| |#3|))) (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|)))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3176 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#2| $ |#1| |#2|) 18)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 |#2| "failed") |#1| $) 19)) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 16)) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) NIL)) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 ((|#1| $) NIL (|has| |#1| (-858)))) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3374 ((|#1| $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-1761 (((-652 |#1|) $) NIL)) (-4198 (((-112) |#1| $) NIL)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1986 (((-652 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 ((|#2| $) NIL (|has| |#1| (-858)))) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-2940 (((-870) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-483 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2|) (-1111) (-1111) (-1205 |#1| |#2|) |#2|) (T -483))
-NIL
-(-1205 |#1| |#2|)
-((-2846 (((-112) $ $) NIL)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |#4|)))) (-652 |#4|)) NIL)) (-1740 (((-652 $) (-652 |#4|)) NIL)) (-4353 (((-652 |#3|) $) NIL)) (-1544 (((-112) $) NIL)) (-2639 (((-112) $) NIL (|has| |#1| (-564)))) (-2621 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3558 ((|#4| |#4| $) NIL)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2162 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3281 (($) NIL T CONST)) (-2390 (((-112) $) 29 (|has| |#1| (-564)))) (-2783 (((-112) $ $) NIL (|has| |#1| (-564)))) (-3937 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1616 (((-112) $) NIL (|has| |#1| (-564)))) (-3713 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1566 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) NIL)) (-2204 (($ (-652 |#4|)) NIL)) (-2923 (((-3 $ "failed") $) 45)) (-2020 ((|#4| |#4| $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3332 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-2888 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1758 ((|#4| |#4| $) NIL)) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3433 (((-2 (|:| -1379 (-652 |#4|)) (|:| -1674 (-652 |#4|))) $) NIL)) (-1863 (((-652 |#4|) $) 18 (|has| $ (-6 -4454)))) (-4338 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2366 ((|#3| $) 38)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#4|) $) 19 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-2442 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 23)) (-3015 (((-652 |#3|) $) NIL)) (-1683 (((-112) |#3| $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-3357 (((-3 |#4| "failed") $) 42)) (-2234 (((-652 |#4|) $) NIL)) (-3005 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2755 ((|#4| |#4| $) NIL)) (-2323 (((-112) $ $) NIL)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-3536 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1825 ((|#4| |#4| $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 (((-3 |#4| "failed") $) 40)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3632 (((-3 $ "failed") $ |#4|) 58)) (-2772 (($ $ |#4|) NIL)) (-1612 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 17)) (-1613 (($) 14)) (-4390 (((-779) $) NIL)) (-3973 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) 13)) (-1835 (((-544) $) NIL (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) 22)) (-2748 (($ $ |#3|) 52)) (-2365 (($ $ |#3|) 54)) (-3862 (($ $) NIL)) (-1670 (($ $ |#3|) NIL)) (-2940 (((-870) $) 35) (((-652 |#4|) $) 46)) (-3678 (((-779) $) NIL (|has| |#3| (-375)))) (-4379 (((-112) $ $) NIL)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3447 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) NIL)) (-4380 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-4041 (((-652 |#3|) $) NIL)) (-1482 (((-112) |#3| $) NIL)) (-2978 (((-112) $ $) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-484 |#1| |#2| |#3| |#4|) (-1222 |#1| |#2| |#3| |#4|) (-564) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -484))
-NIL
-(-1222 |#1| |#2| |#3| |#4|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL)) (-2204 (((-572) $) NIL) (((-415 (-572)) $) NIL)) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-2997 (($) 17)) (-1886 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-1835 (((-386) $) 21) (((-227) $) 24) (((-415 (-1184 (-572))) $) 18) (((-544) $) 53)) (-2940 (((-870) $) 51) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (((-227) $) 23) (((-386) $) 20)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2131 (($) 37 T CONST)) (-2143 (($) 8 T CONST)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
-(((-485) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))) (-1033) (-621 (-227)) (-621 (-386)) (-622 (-415 (-1184 (-572)))) (-622 (-544)) (-10 -8 (-15 -2997 ($))))) (T -485))
-((-2997 (*1 *1) (-5 *1 (-485))))
-(-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))) (-1033) (-621 (-227)) (-621 (-386)) (-622 (-415 (-1184 (-572)))) (-622 (-544)) (-10 -8 (-15 -2997 ($))))
-((-2846 (((-112) $ $) NIL)) (-1807 (((-1146) $) 11)) (-1794 (((-1146) $) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-486) (-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1146) $))))) (T -486))
-((-1794 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-486)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-486)))))
-(-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1146) $))))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3176 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#2| $ |#1| |#2|) 16)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 |#2| "failed") |#1| $) 20)) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 18)) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) NIL)) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 ((|#1| $) NIL (|has| |#1| (-858)))) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3374 ((|#1| $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-1761 (((-652 |#1|) $) 13)) (-4198 (((-112) |#1| $) NIL)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1986 (((-652 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 ((|#2| $) NIL (|has| |#1| (-858)))) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) 19)) (-2196 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-2940 (((-870) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 11 (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2860 (((-779) $) 15 (|has| $ (-6 -4454)))))
-(((-487 |#1| |#2| |#3|) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454))) (-1111) (-1111) (-1170)) (T -487))
-NIL
-(-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))
-((-2066 (((-572) (-572) (-572)) 19)) (-1717 (((-112) (-572) (-572) (-572) (-572)) 28)) (-2092 (((-1279 (-652 (-572))) (-779) (-779)) 41)))
-(((-488) (-10 -7 (-15 -2066 ((-572) (-572) (-572))) (-15 -1717 ((-112) (-572) (-572) (-572) (-572))) (-15 -2092 ((-1279 (-652 (-572))) (-779) (-779))))) (T -488))
-((-2092 (*1 *2 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1279 (-652 (-572)))) (-5 *1 (-488)))) (-1717 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-112)) (-5 *1 (-488)))) (-2066 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-488)))))
-(-10 -7 (-15 -2066 ((-572) (-572) (-572))) (-15 -1717 ((-112) (-572) (-572) (-572) (-572))) (-15 -2092 ((-1279 (-652 (-572))) (-779) (-779))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-872 |#1|)) $) NIL)) (-4191 (((-1184 $) $ (-872 |#1|)) NIL) (((-1184 |#2|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-3009 (($ $) NIL (|has| |#2| (-564)))) (-4334 (((-112) $) NIL (|has| |#2| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-872 |#1|))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3517 (($ $) NIL (|has| |#2| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-872 |#1|) "failed") $) NIL)) (-2204 ((|#2| $) NIL) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-872 |#1|) $) NIL)) (-2361 (($ $ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-1504 (($ $ (-652 (-572))) NIL)) (-1390 (($ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#2| (-918)))) (-1437 (($ $ |#2| (-490 (-2860 |#1|) (-779)) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-4343 (($ (-1184 |#2|) (-872 |#1|)) NIL) (($ (-1184 $) (-872 |#1|)) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#2| (-490 (-2860 |#1|) (-779))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-872 |#1|)) NIL)) (-2649 (((-490 (-2860 |#1|) (-779)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-2497 (($ (-1 (-490 (-2860 |#1|) (-779)) (-490 (-2860 |#1|) (-779))) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3928 (((-3 (-872 |#1|) "failed") $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#2| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-4347 (((-1170) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-872 |#1|)) (|:| -1679 (-779))) "failed") $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#2| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#2| (-918)))) (-2834 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-872 |#1|) |#2|) NIL) (($ $ (-652 (-872 |#1|)) (-652 |#2|)) NIL) (($ $ (-872 |#1|) $) NIL) (($ $ (-652 (-872 |#1|)) (-652 $)) NIL)) (-3537 (($ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-3902 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-4390 (((-490 (-2860 |#1|) (-779)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-872 |#1|) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-1711 ((|#2| $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-872 |#1|)) NIL) (($ (-415 (-572))) NIL (-2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#2| (-564)))) (-4268 (((-652 |#2|) $) NIL)) (-3979 ((|#2| $ (-490 (-2860 |#1|) (-779))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-489 |#1| |#2|) (-13 (-958 |#2| (-490 (-2860 |#1|) (-779)) (-872 |#1|)) (-10 -8 (-15 -1504 ($ $ (-652 (-572)))))) (-652 (-1188)) (-1060)) (T -489))
-((-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-489 *3 *4)) (-14 *3 (-652 (-1188))) (-4 *4 (-1060)))))
-(-13 (-958 |#2| (-490 (-2860 |#1|) (-779)) (-872 |#1|)) (-10 -8 (-15 -1504 ($ $ (-652 (-572))))))
-((-2846 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-2697 (((-112) $) NIL (|has| |#2| (-132)))) (-2601 (($ (-930)) NIL (|has| |#2| (-1060)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-1360 (($ $ $) NIL (|has| |#2| (-801)))) (-3330 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-1631 (((-112) $ (-779)) NIL)) (-1486 (((-779)) NIL (|has| |#2| (-375)))) (-2840 (((-572) $) NIL (|has| |#2| (-856)))) (-3140 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1111)))) (-2204 (((-572) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) ((|#2| $) NIL (|has| |#2| (-1111)))) (-2993 (((-697 (-572)) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL (|has| |#2| (-1060))) (((-697 |#2|) (-697 $)) NIL (|has| |#2| (-1060))) (((-697 |#2|) (-1279 $)) NIL (|has| |#2| (-1060)))) (-2062 (((-3 $ "failed") $) NIL (|has| |#2| (-734)))) (-2815 (($) NIL (|has| |#2| (-375)))) (-2453 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ (-572)) 11)) (-3074 (((-112) $) NIL (|has| |#2| (-856)))) (-1863 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1886 (((-112) $) NIL (|has| |#2| (-734)))) (-1623 (((-112) $) NIL (|has| |#2| (-856)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-1344 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-2442 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3715 (((-930) $) NIL (|has| |#2| (-375)))) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#2| (-1111)))) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-2571 (($ (-930)) NIL (|has| |#2| (-375)))) (-3964 (((-1131) $) NIL (|has| |#2| (-1111)))) (-2912 ((|#2| $) NIL (|has| (-572) (-858)))) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-572)) NIL)) (-2264 ((|#2| $ $) NIL (|has| |#2| (-1060)))) (-4259 (($ (-1279 |#2|)) NIL)) (-4224 (((-135)) NIL (|has| |#2| (-370)))) (-3902 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-3973 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-1279 |#2|) $) NIL) (($ (-572)) NIL (-2813 (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (($ |#2|) NIL (|has| |#2| (-1111))) (((-870) $) NIL (|has| |#2| (-621 (-870))))) (-4249 (((-779)) NIL (|has| |#2| (-1060)) CONST)) (-4379 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-4380 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2700 (($ $) NIL (|has| |#2| (-856)))) (-2131 (($) NIL (|has| |#2| (-132)) CONST)) (-2143 (($) NIL (|has| |#2| (-734)) CONST)) (-3608 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-3039 (((-112) $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3014 (((-112) $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-2978 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3026 (((-112) $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3003 (((-112) $ $) 17 (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $ $) NIL (|has| |#2| (-1060))) (($ $) NIL (|has| |#2| (-1060)))) (-3075 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-779)) NIL (|has| |#2| (-734))) (($ $ (-930)) NIL (|has| |#2| (-734)))) (* (($ (-572) $) NIL (|has| |#2| (-1060))) (($ $ $) NIL (|has| |#2| (-734))) (($ $ |#2|) NIL (|has| |#2| (-734))) (($ |#2| $) NIL (|has| |#2| (-734))) (($ (-779) $) NIL (|has| |#2| (-132))) (($ (-930) $) NIL (|has| |#2| (-25)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-490 |#1| |#2|) (-242 |#1| |#2|) (-779) (-801)) (T -490))
-NIL
-(-242 |#1| |#2|)
-((-2846 (((-112) $ $) NIL)) (-2619 (((-652 (-884)) $) 15)) (-2030 (((-514) $) 13)) (-4347 (((-1170) $) NIL)) (-1760 (($ (-514) (-652 (-884))) 11)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 22) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-491) (-13 (-1094) (-10 -8 (-15 -1760 ($ (-514) (-652 (-884)))) (-15 -2030 ((-514) $)) (-15 -2619 ((-652 (-884)) $))))) (T -491))
-((-1760 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-652 (-884))) (-5 *1 (-491)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-491)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-652 (-884))) (-5 *1 (-491)))))
-(-13 (-1094) (-10 -8 (-15 -1760 ($ (-514) (-652 (-884)))) (-15 -2030 ((-514) $)) (-15 -2619 ((-652 (-884)) $))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) NIL)) (-3281 (($) NIL T CONST)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3892 (($ $ $) 48)) (-1767 (($ $ $) 47)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2427 ((|#1| $) 40)) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1651 ((|#1| $) 41)) (-2036 (($ |#1| $) 18)) (-2545 (($ (-652 |#1|)) 19)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3378 ((|#1| $) 34)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) 11)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 45)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) 29 (|has| $ (-6 -4454)))))
-(((-492 |#1|) (-13 (-979 |#1|) (-10 -8 (-15 -2545 ($ (-652 |#1|))))) (-858)) (T -492))
-((-2545 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-492 *3)))))
-(-13 (-979 |#1|) (-10 -8 (-15 -2545 ($ (-652 |#1|)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2865 (($ $) 71)) (-3801 (((-112) $) NIL)) (-4347 (((-1170) $) NIL)) (-4124 (((-421 |#2| (-415 |#2|) |#3| |#4|) $) 45)) (-3964 (((-1131) $) NIL)) (-2967 (((-3 |#4| "failed") $) 117)) (-4141 (($ (-421 |#2| (-415 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-572)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-4189 (((-2 (|:| -2798 (-421 |#2| (-415 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2940 (((-870) $) 110)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 32 T CONST)) (-2978 (((-112) $ $) 121)) (-3089 (($ $) 77) (($ $ $) NIL)) (-3075 (($ $ $) 72)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 78)))
-(((-493 |#1| |#2| |#3| |#4|) (-342 |#1| |#2| |#3| |#4|) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -493))
-NIL
-(-342 |#1| |#2| |#3| |#4|)
-((-2547 (((-572) (-652 (-572))) 53)) (-1944 ((|#1| (-652 |#1|)) 94)) (-1493 (((-652 |#1|) (-652 |#1|)) 95)) (-3641 (((-652 |#1|) (-652 |#1|)) 97)) (-2870 ((|#1| (-652 |#1|)) 96)) (-1711 (((-652 (-572)) (-652 |#1|)) 56)))
-(((-494 |#1|) (-10 -7 (-15 -2870 (|#1| (-652 |#1|))) (-15 -1944 (|#1| (-652 |#1|))) (-15 -3641 ((-652 |#1|) (-652 |#1|))) (-15 -1493 ((-652 |#1|) (-652 |#1|))) (-15 -1711 ((-652 (-572)) (-652 |#1|))) (-15 -2547 ((-572) (-652 (-572))))) (-1255 (-572))) (T -494))
-((-2547 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-572)) (-5 *1 (-494 *4)) (-4 *4 (-1255 *2)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1255 (-572))) (-5 *2 (-652 (-572))) (-5 *1 (-494 *4)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1255 (-572))) (-5 *1 (-494 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1255 (-572))) (-5 *1 (-494 *3)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-494 *2)) (-4 *2 (-1255 (-572))))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-494 *2)) (-4 *2 (-1255 (-572))))))
-(-10 -7 (-15 -2870 (|#1| (-652 |#1|))) (-15 -1944 (|#1| (-652 |#1|))) (-15 -3641 ((-652 |#1|) (-652 |#1|))) (-15 -1493 ((-652 |#1|) (-652 |#1|))) (-15 -1711 ((-652 (-572)) (-652 |#1|))) (-15 -2547 ((-572) (-652 (-572)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 (((-572) $) NIL (|has| (-572) (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL (|has| (-572) (-828)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-572) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-572) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-572) (-1049 (-572))))) (-2204 (((-572) $) NIL) (((-1188) $) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-572) (-1049 (-572)))) (((-572) $) NIL (|has| (-572) (-1049 (-572))))) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-697 (-572)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-572) (-553)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3074 (((-112) $) NIL (|has| (-572) (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-572) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-572) (-895 (-386))))) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL)) (-2963 (((-572) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| (-572) (-1163)))) (-1623 (((-112) $) NIL (|has| (-572) (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| (-572) (-858)))) (-1776 (($ (-1 (-572) (-572)) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-572) (-1163)) CONST)) (-2237 (($ (-415 (-572))) 9)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL (|has| (-572) (-313))) (((-415 (-572)) $) NIL)) (-3462 (((-572) $) NIL (|has| (-572) (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2641 (($ $ (-652 (-572)) (-652 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-572) (-572)) NIL (|has| (-572) (-315 (-572)))) (($ $ (-300 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-300 (-572)))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-1188)) (-652 (-572))) NIL (|has| (-572) (-522 (-1188) (-572)))) (($ $ (-1188) (-572)) NIL (|has| (-572) (-522 (-1188) (-572))))) (-3847 (((-779) $) NIL)) (-2196 (($ $ (-572)) NIL (|has| (-572) (-292 (-572) (-572))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-1520 (($ $) NIL)) (-2974 (((-572) $) NIL)) (-1835 (((-901 (-572)) $) NIL (|has| (-572) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-572) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-572) (-622 (-544)))) (((-386) $) NIL (|has| (-572) (-1033))) (((-227) $) NIL (|has| (-572) (-1033)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-572) (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 8) (($ (-572)) NIL) (($ (-1188)) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL) (((-1015 16) $) 10)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| (-572) (-918))) (|has| (-572) (-146))))) (-4249 (((-779)) NIL T CONST)) (-3614 (((-572) $) NIL (|has| (-572) (-553)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2700 (($ $) NIL (|has| (-572) (-828)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3039 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-572) (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3003 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3106 (($ $ $) NIL) (($ (-572) (-572)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-572) $) NIL) (($ $ (-572)) NIL)))
-(((-495) (-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 16)) (-10 -8 (-15 -2340 ((-415 (-572)) $)) (-15 -2237 ($ (-415 (-572))))))) (T -495))
-((-2340 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-495)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-495)))))
-(-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 16)) (-10 -8 (-15 -2340 ((-415 (-572)) $)) (-15 -2237 ($ (-415 (-572))))))
-((-1344 (((-652 |#2|) $) 31)) (-1864 (((-112) |#2| $) 36)) (-1612 (((-112) (-1 (-112) |#2|) $) 26)) (-2641 (($ $ (-652 (-300 |#2|))) 13) (($ $ (-300 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-652 |#2|) (-652 |#2|)) NIL)) (-3973 (((-779) (-1 (-112) |#2|) $) 30) (((-779) |#2| $) 34)) (-2940 (((-870) $) 45)) (-4380 (((-112) (-1 (-112) |#2|) $) 23)) (-2978 (((-112) $ $) 39)) (-2860 (((-779) $) 18)))
-(((-496 |#1| |#2|) (-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2641 (|#1| |#1| (-652 |#2|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#2| |#2|)) (-15 -2641 (|#1| |#1| (-300 |#2|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -1864 ((-112) |#2| |#1|)) (-15 -3973 ((-779) |#2| |#1|)) (-15 -1344 ((-652 |#2|) |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2860 ((-779) |#1|))) (-497 |#2|) (-1229)) (T -496))
-NIL
-(-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2641 (|#1| |#1| (-652 |#2|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#2| |#2|)) (-15 -2641 (|#1| |#1| (-300 |#2|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -1864 ((-112) |#2| |#1|)) (-15 -3973 ((-779) |#2| |#1|)) (-15 -1344 ((-652 |#2|) |#1|)) (-15 -3973 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2860 ((-779) |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-3281 (($) 7 T CONST)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-497 |#1|) (-141) (-1229)) (T -497))
-((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-497 *3)) (-4 *3 (-1229)))) (-2442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4455)) (-4 *1 (-497 *3)) (-4 *3 (-1229)))) (-4380 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4)) (-4 *4 (-1229)) (-5 *2 (-112)))) (-1612 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4)) (-4 *4 (-1229)) (-5 *2 (-112)))) (-3973 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4)) (-4 *4 (-1229)) (-5 *2 (-779)))) (-1863 (*1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229)) (-5 *2 (-652 *3)))) (-1344 (*1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229)) (-5 *2 (-652 *3)))) (-3973 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-779)))) (-1864 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) (IF (|has| |t#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |t#1| (-1111)) (IF (|has| |t#1| (-315 |t#1|)) (-6 (-315 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4455)) (-15 -2442 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4454)) (PROGN (-15 -4380 ((-112) (-1 (-112) |t#1|) $)) (-15 -1612 ((-112) (-1 (-112) |t#1|) $)) (-15 -3973 ((-779) (-1 (-112) |t#1|) $)) (-15 -1863 ((-652 |t#1|) $)) (-15 -1344 ((-652 |t#1|) $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -3973 ((-779) |t#1| $)) (-15 -1864 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-2940 ((|#1| $) 6) (($ |#1|) 9)))
-(((-498 |#1|) (-141) (-1229)) (T -498))
-NIL
-(-13 (-621 |t#1|) (-624 |t#1|))
-(((-624 |#1|) . T) ((-621 |#1|) . T))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-4187 (($ (-1170)) 8)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 15) (((-1170) $) 12)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 11)))
-(((-499) (-13 (-1111) (-621 (-1170)) (-10 -8 (-15 -4187 ($ (-1170)))))) (T -499))
-((-4187 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-499)))))
-(-13 (-1111) (-621 (-1170)) (-10 -8 (-15 -4187 ($ (-1170)))))
-((-2358 (($ $) 15)) (-2338 (($ $) 24)) (-2384 (($ $) 12)) (-2397 (($ $) 10)) (-2370 (($ $) 17)) (-2348 (($ $) 22)))
-(((-500 |#1|) (-10 -8 (-15 -2348 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -2358 (|#1| |#1|))) (-501)) (T -500))
-NIL
-(-10 -8 (-15 -2348 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)))
-((-2358 (($ $) 11)) (-2338 (($ $) 10)) (-2384 (($ $) 9)) (-2397 (($ $) 8)) (-2370 (($ $) 7)) (-2348 (($ $) 6)))
-(((-501) (-141)) (T -501))
-((-2358 (*1 *1 *1) (-4 *1 (-501))) (-2338 (*1 *1 *1) (-4 *1 (-501))) (-2384 (*1 *1 *1) (-4 *1 (-501))) (-2397 (*1 *1 *1) (-4 *1 (-501))) (-2370 (*1 *1 *1) (-4 *1 (-501))) (-2348 (*1 *1 *1) (-4 *1 (-501))))
-(-13 (-10 -8 (-15 -2348 ($ $)) (-15 -2370 ($ $)) (-15 -2397 ($ $)) (-15 -2384 ($ $)) (-15 -2338 ($ $)) (-15 -2358 ($ $))))
-((-4218 (((-426 |#4|) |#4| (-1 (-426 |#2|) |#2|)) 54)))
-(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-426 |#4|) |#4| (-1 (-426 |#2|) |#2|)))) (-370) (-1255 |#1|) (-13 (-370) (-148) (-732 |#1| |#2|)) (-1255 |#3|)) (T -502))
-((-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-4 *7 (-13 (-370) (-148) (-732 *5 *6))) (-5 *2 (-426 *3)) (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-1255 *7)))))
-(-10 -7 (-15 -4218 ((-426 |#4|) |#4| (-1 (-426 |#2|) |#2|))))
-((-2846 (((-112) $ $) NIL)) (-2345 (((-652 $) (-1184 $) (-1188)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-961 $)) NIL)) (-4164 (($ (-1184 $) (-1188)) NIL) (($ (-1184 $)) NIL) (($ (-961 $)) NIL)) (-2697 (((-112) $) 39)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-1720 (((-112) $ $) 73)) (-4090 (((-652 (-620 $)) $) 50)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2539 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4227 (($ $) NIL)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2901 (((-652 $) (-1184 $) (-1188)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-961 $)) NIL)) (-1821 (($ (-1184 $) (-1188)) NIL) (($ (-1184 $)) NIL) (($ (-961 $)) NIL)) (-1695 (((-3 (-620 $) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL)) (-2204 (((-620 $) $) NIL) (((-572) $) NIL) (((-415 (-572)) $) 55)) (-2780 (($ $ $) NIL)) (-2993 (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-697 (-572)) (-1279 $)) NIL) (((-2 (|:| -3544 (-697 (-415 (-572)))) (|:| |vec| (-1279 (-415 (-572))))) (-697 $) (-1279 $)) NIL) (((-697 (-415 (-572))) (-697 $)) NIL) (((-697 (-415 (-572))) (-1279 $)) NIL)) (-2865 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3033 (($ $) NIL) (($ (-652 $)) NIL)) (-4085 (((-652 (-115)) $) NIL)) (-4171 (((-115) (-115)) NIL)) (-1886 (((-112) $) 42)) (-2597 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2963 (((-1136 (-572) (-620 $)) $) 37)) (-2932 (($ $ (-572)) NIL)) (-2028 (((-1184 $) (-1184 $) (-620 $)) 87) (((-1184 $) (-1184 $) (-652 (-620 $))) 62) (($ $ (-620 $)) 76) (($ $ (-652 (-620 $))) 77)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2969 (((-1184 $) (-620 $)) 74 (|has| $ (-1060)))) (-1776 (($ (-1 $ $) (-620 $)) NIL)) (-3369 (((-3 (-620 $) "failed") $) NIL)) (-2825 (($ (-652 $)) NIL) (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-4161 (((-652 (-620 $)) $) NIL)) (-1774 (($ (-115) $) NIL) (($ (-115) (-652 $)) NIL)) (-2695 (((-112) $ (-115)) NIL) (((-112) $ (-1188)) NIL)) (-1322 (($ $) NIL)) (-1839 (((-779) $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ (-652 $)) NIL) (($ $ $) NIL)) (-2202 (((-112) $ $) NIL) (((-112) $ (-1188)) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2003 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2641 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3847 (((-779) $) NIL)) (-2196 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2904 (($ $) NIL) (($ $ $) NIL)) (-3902 (($ $ (-779)) NIL) (($ $) 36)) (-2974 (((-1136 (-572) (-620 $)) $) 20)) (-3764 (($ $) NIL (|has| $ (-1060)))) (-1835 (((-386) $) 101) (((-227) $) 109) (((-171 (-386)) $) 117)) (-2940 (((-870) $) NIL) (($ (-620 $)) NIL) (($ (-415 (-572))) NIL) (($ $) NIL) (($ (-572)) NIL) (($ (-1136 (-572) (-620 $))) 21)) (-4249 (((-779)) NIL T CONST)) (-3952 (($ $) NIL) (($ (-652 $)) NIL)) (-4406 (((-112) (-115)) 93)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2131 (($) 10 T CONST)) (-2143 (($) 22 T CONST)) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) 24)) (-3106 (($ $ $) 44)) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-415 (-572))) NIL) (($ $ (-572)) 48) (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ $ $) 27) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL)))
-(((-503) (-13 (-308) (-27) (-1049 (-572)) (-1049 (-415 (-572))) (-647 (-572)) (-1033) (-647 (-415 (-572))) (-148) (-622 (-171 (-386))) (-237) (-10 -8 (-15 -2940 ($ (-1136 (-572) (-620 $)))) (-15 -2963 ((-1136 (-572) (-620 $)) $)) (-15 -2974 ((-1136 (-572) (-620 $)) $)) (-15 -2865 ($ $)) (-15 -1720 ((-112) $ $)) (-15 -2028 ((-1184 $) (-1184 $) (-620 $))) (-15 -2028 ((-1184 $) (-1184 $) (-652 (-620 $)))) (-15 -2028 ($ $ (-620 $))) (-15 -2028 ($ $ (-652 (-620 $))))))) (T -503))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503)))) (-2865 (*1 *1 *1) (-5 *1 (-503))) (-1720 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-503)))) (-2028 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-503))) (-5 *3 (-620 (-503))) (-5 *1 (-503)))) (-2028 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-503))) (-5 *3 (-652 (-620 (-503)))) (-5 *1 (-503)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-503))) (-5 *1 (-503)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-620 (-503)))) (-5 *1 (-503)))))
-(-13 (-308) (-27) (-1049 (-572)) (-1049 (-415 (-572))) (-647 (-572)) (-1033) (-647 (-415 (-572))) (-148) (-622 (-171 (-386))) (-237) (-10 -8 (-15 -2940 ($ (-1136 (-572) (-620 $)))) (-15 -2963 ((-1136 (-572) (-620 $)) $)) (-15 -2974 ((-1136 (-572) (-620 $)) $)) (-15 -2865 ($ $)) (-15 -1720 ((-112) $ $)) (-15 -2028 ((-1184 $) (-1184 $) (-620 $))) (-15 -2028 ((-1184 $) (-1184 $) (-652 (-620 $)))) (-15 -2028 ($ $ (-620 $))) (-15 -2028 ($ $ (-652 (-620 $))))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-572) |#1|) 44 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) 39 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 38)) (-1439 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-3787 (($ (-779) |#1|) 21)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) 17 (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) 41 (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2912 ((|#1| $) NIL (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) 15 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) 19)) (-2196 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) 43) (($ $ (-1246 (-572))) NIL)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) 13)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 24)) (-4155 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2860 (((-779) $) 11 (|has| $ (-6 -4454)))))
-(((-504 |#1| |#2|) (-19 |#1|) (-1229) (-572)) (T -504))
+((-3593 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-932))))) (-3232 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781)))) (-3564 (*1 *1 *1) (-4 *1 (-412))) (-3564 (*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781)))))
+(-13 (-372) (-146) (-10 -8 (-15 -3593 ((-843 (-932)) $)) (-15 -3232 ((-3 (-781) "failed") $ $)) (-15 -3564 ($ $)) (-15 -3564 ($ $ (-781)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T))
+((-2384 (($ (-574) (-574)) 11) (($ (-574) (-574) (-932)) NIL)) (-3810 (((-932)) 19) (((-932) (-932)) NIL)))
+(((-413 |#1|) (-10 -8 (-15 -3810 ((-932) (-932))) (-15 -3810 ((-932))) (-15 -2384 (|#1| (-574) (-574) (-932))) (-15 -2384 (|#1| (-574) (-574)))) (-414)) (T -413))
+((-3810 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-413 *3)) (-4 *3 (-414)))))
+(-10 -8 (-15 -3810 ((-932) (-932))) (-15 -3810 ((-932))) (-15 -2384 (|#1| (-574) (-574) (-932))) (-15 -2384 (|#1| (-574) (-574))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2809 (((-574) $) 97)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-1760 (($ $) 95)) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-4229 (($ $) 105)) (-3875 (((-112) $ $) 65)) (-3747 (((-574) $) 122)) (-3670 (($) 18 T CONST)) (-3612 (($ $) 94)) (-1697 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2209 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-1654 (((-112) $) 79)) (-3785 (((-932)) 138) (((-932) (-932)) 135 (|has| $ (-6 -4447)))) (-3434 (((-112) $) 120)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-3593 (((-574) $) 144)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 104)) (-1652 (($ $) 100)) (-3244 (((-112) $) 121)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3658 (($ $ $) 119) (($) 132 (-12 (-2077 (|has| $ (-6 -4447))) (-2077 (|has| $ (-6 -4439)))))) (-2106 (($ $ $) 118) (($) 131 (-12 (-2077 (|has| $ (-6 -4447))) (-2077 (|has| $ (-6 -4439)))))) (-4301 (((-574) $) 141)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 78)) (-1457 (((-932) (-574)) 134 (|has| $ (-6 -4447)))) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-2595 (($ $) 96)) (-1846 (($ $) 98)) (-2384 (($ (-574) (-574)) 146) (($ (-574) (-574) (-932)) 145)) (-4220 (((-428 $) $) 82)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2524 (((-574) $) 142)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-3810 (((-932)) 139) (((-932) (-932)) 136 (|has| $ (-6 -4447)))) (-2830 (((-932) (-574)) 133 (|has| $ (-6 -4447)))) (-1837 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-4160 (((-781)) 32 T CONST)) (-4078 (($ $) 99)) (-3909 (((-932)) 140) (((-932) (-932)) 137 (|has| $ (-6 -4447)))) (-2923 (((-112) $ $) 9)) (-2629 (((-932)) 143)) (-3798 (((-112) $ $) 45)) (-2946 (($ $) 123)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3041 (((-112) $ $) 116)) (-3016 (((-112) $ $) 115)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 117)) (-3005 (((-112) $ $) 114)) (-3107 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
+(((-414) (-141)) (T -414))
+((-2384 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414)))) (-2384 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-932)) (-4 *1 (-414)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-2629 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-3909 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) (-3810 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) (-3785 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4447)) (-4 *1 (-414)) (-5 *2 (-932)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4447)) (-4 *1 (-414)) (-5 *2 (-932)))) (-3658 (*1 *1) (-12 (-4 *1 (-414)) (-2077 (|has| *1 (-6 -4447))) (-2077 (|has| *1 (-6 -4439))))) (-2106 (*1 *1) (-12 (-4 *1 (-414)) (-2077 (|has| *1 (-6 -4447))) (-2077 (|has| *1 (-6 -4439))))))
+(-13 (-1073) (-10 -8 (-6 -3551) (-15 -2384 ($ (-574) (-574))) (-15 -2384 ($ (-574) (-574) (-932))) (-15 -3593 ((-574) $)) (-15 -2629 ((-932))) (-15 -2524 ((-574) $)) (-15 -4301 ((-574) $)) (-15 -3909 ((-932))) (-15 -3810 ((-932))) (-15 -3785 ((-932))) (IF (|has| $ (-6 -4447)) (PROGN (-15 -3909 ((-932) (-932))) (-15 -3810 ((-932) (-932))) (-15 -3785 ((-932) (-932))) (-15 -1457 ((-932) (-574))) (-15 -2830 ((-932) (-574)))) |%noBranch|) (IF (|has| $ (-6 -4439)) |%noBranch| (IF (|has| $ (-6 -4447)) |%noBranch| (PROGN (-15 -3658 ($)) (-15 -2106 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-931) . T) ((-1015) . T) ((-1035) . T) ((-1073) . T) ((-1051 (-417 (-574))) . T) ((-1051 (-574)) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T))
+((-1778 (((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)) 20)))
+(((-415 |#1| |#2|) (-10 -7 (-15 -1778 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) (-566) (-566)) (T -415))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6)))))
+(-10 -7 (-15 -1778 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|))))
+((-1778 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 13)))
+(((-416 |#1| |#2|) (-10 -7 (-15 -1778 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-566) (-566)) (T -416))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6)))))
+(-10 -7 (-15 -1778 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 13)) (-2809 ((|#1| $) 21 (|has| |#1| (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL (|has| |#1| (-830)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) 17) (((-3 (-1190) "failed") $) NIL (|has| |#1| (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) 72 (|has| |#1| (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574))))) (-2209 ((|#1| $) 15) (((-1190) $) NIL (|has| |#1| (-1051 (-1190)))) (((-417 (-574)) $) 69 (|has| |#1| (-1051 (-574)))) (((-574) $) NIL (|has| |#1| (-1051 (-574))))) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) 51)) (-2820 (($) NIL (|has| |#1| (-555)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3434 (((-112) $) NIL (|has| |#1| (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-3965 (((-112) $) 57)) (-1769 (($ $) NIL)) (-2965 ((|#1| $) 73)) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-1165)))) (-3244 (((-112) $) NIL (|has| |#1| (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 100)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL (|has| |#1| (-315)))) (-1846 ((|#1| $) 28 (|has| |#1| (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) 145 (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) 138 (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|)))) (-1347 (((-781) $) NIL)) (-2200 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3520 (($ $) NIL)) (-2977 ((|#1| $) 75)) (-1837 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#1| (-624 (-546)))) (((-388) $) NIL (|has| |#1| (-1035))) (((-227) $) NIL (|has| |#1| (-1035)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 10) (($ (-1190)) NIL (|has| |#1| (-1051 (-1190))))) (-1369 (((-3 $ "failed") $) 102 (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) 103 T CONST)) (-4078 ((|#1| $) 26 (|has| |#1| (-555)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2946 (($ $) NIL (|has| |#1| (-830)))) (-2134 (($) 22 T CONST)) (-2146 (($) 8 T CONST)) (-1520 (((-1172) $) 44 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1172) $ (-112)) 45 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1286) (-832) $) 46 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1286) (-832) $ (-112)) 47 (-12 (|has| |#1| (-555)) (|has| |#1| (-838))))) (-3611 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) 66)) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) 24 (|has| |#1| (-860)))) (-3107 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3094 (($ $) 25) (($ $ $) 56)) (-3078 (($ $ $) 54)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 132)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 58) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-417 |#1|) (-13 (-1005 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4443)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4454)) (-6 -4443) |%noBranch|) |%noBranch|) |%noBranch|))) (-566)) (T -417))
+NIL
+(-13 (-1005 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4443)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4454)) (-6 -4443) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-2762 (((-699 |#2|) (-1281 $)) NIL) (((-699 |#2|)) 18)) (-3003 (($ (-1281 |#2|) (-1281 $)) NIL) (($ (-1281 |#2|)) 24)) (-2085 (((-699 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) $) 40)) (-3190 ((|#3| $) 69)) (-1415 ((|#2| (-1281 $)) NIL) ((|#2|) 20)) (-3676 (((-1281 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) NIL) (((-1281 |#2|) $) 22) (((-699 |#2|) (-1281 $)) 38)) (-1837 (((-1281 |#2|) $) 11) (($ (-1281 |#2|)) 13)) (-4169 ((|#3| $) 55)))
+(((-418 |#1| |#2| |#3|) (-10 -8 (-15 -2085 ((-699 |#2|) |#1|)) (-15 -1415 (|#2|)) (-15 -2762 ((-699 |#2|))) (-15 -1837 (|#1| (-1281 |#2|))) (-15 -1837 ((-1281 |#2|) |#1|)) (-15 -3003 (|#1| (-1281 |#2|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1|)) (-15 -3190 (|#3| |#1|)) (-15 -4169 (|#3| |#1|)) (-15 -2762 ((-699 |#2|) (-1281 |#1|))) (-15 -1415 (|#2| (-1281 |#1|))) (-15 -3003 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2085 ((-699 |#2|) |#1| (-1281 |#1|)))) (-419 |#2| |#3|) (-174) (-1257 |#2|)) (T -418))
+((-2762 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)) (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) (-1415 (*1 *2) (-12 (-4 *4 (-1257 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) (-4 *3 (-419 *2 *4)))))
+(-10 -8 (-15 -2085 ((-699 |#2|) |#1|)) (-15 -1415 (|#2|)) (-15 -2762 ((-699 |#2|))) (-15 -1837 (|#1| (-1281 |#2|))) (-15 -1837 ((-1281 |#2|) |#1|)) (-15 -3003 (|#1| (-1281 |#2|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1|)) (-15 -3190 (|#3| |#1|)) (-15 -4169 (|#3| |#1|)) (-15 -2762 ((-699 |#2|) (-1281 |#1|))) (-15 -1415 (|#2| (-1281 |#1|))) (-15 -3003 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2085 ((-699 |#2|) |#1| (-1281 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2762 (((-699 |#1|) (-1281 $)) 53) (((-699 |#1|)) 68)) (-1637 ((|#1| $) 59)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-3003 (($ (-1281 |#1|) (-1281 $)) 55) (($ (-1281 |#1|)) 71)) (-2085 (((-699 |#1|) $ (-1281 $)) 60) (((-699 |#1|) $) 66)) (-1950 (((-3 $ "failed") $) 37)) (-3584 (((-932)) 61)) (-3965 (((-112) $) 35)) (-1652 ((|#1| $) 58)) (-3190 ((|#2| $) 51 (|has| |#1| (-372)))) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1415 ((|#1| (-1281 $)) 54) ((|#1|) 67)) (-3676 (((-1281 |#1|) $ (-1281 $)) 57) (((-699 |#1|) (-1281 $) (-1281 $)) 56) (((-1281 |#1|) $) 73) (((-699 |#1|) (-1281 $)) 72)) (-1837 (((-1281 |#1|) $) 70) (($ (-1281 |#1|)) 69)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-1369 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4169 ((|#2| $) 52)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2722 (((-1281 $)) 74)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-419 |#1| |#2|) (-141) (-174) (-1257 |t#1|)) (T -419))
+((-2722 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-1281 *1)) (-4 *1 (-419 *3 *4)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-1281 *3)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1257 *3)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-1281 *3)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1257 *3)))) (-2762 (*1 *2) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-699 *3)))) (-1415 (*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-699 *3)))))
+(-13 (-379 |t#1| |t#2|) (-10 -8 (-15 -2722 ((-1281 $))) (-15 -3676 ((-1281 |t#1|) $)) (-15 -3676 ((-699 |t#1|) (-1281 $))) (-15 -3003 ($ (-1281 |t#1|))) (-15 -1837 ((-1281 |t#1|) $)) (-15 -1837 ($ (-1281 |t#1|))) (-15 -2762 ((-699 |t#1|))) (-15 -1415 (|t#1|)) (-15 -2085 ((-699 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-379 |#1| |#2|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) 27) (((-3 (-574) "failed") $) 19)) (-2209 ((|#2| $) NIL) (((-417 (-574)) $) 24) (((-574) $) 14)) (-2943 (($ |#2|) NIL) (($ (-417 (-574))) 22) (($ (-574)) 11)))
+(((-420 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| (-574))) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|))) (-421 |#2|) (-1231)) (T -420))
+NIL
+(-10 -8 (-15 -2943 (|#1| (-574))) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)))
+((-1697 (((-3 |#1| "failed") $) 9) (((-3 (-417 (-574)) "failed") $) 16 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 13 (|has| |#1| (-1051 (-574))))) (-2209 ((|#1| $) 8) (((-417 (-574)) $) 17 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 14 (|has| |#1| (-1051 (-574))))) (-2943 (($ |#1|) 6) (($ (-417 (-574))) 15 (|has| |#1| (-1051 (-417 (-574))))) (($ (-574)) 12 (|has| |#1| (-1051 (-574))))))
+(((-421 |#1|) (-141) (-1231)) (T -421))
+NIL
+(-13 (-1051 |t#1|) (-10 -7 (IF (|has| |t#1| (-1051 (-574))) (-6 (-1051 (-574))) |%noBranch|) (IF (|has| |t#1| (-1051 (-417 (-574)))) (-6 (-1051 (-417 (-574)))) |%noBranch|)))
+(((-626 #0=(-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-626 #1=(-574)) |has| |#1| (-1051 (-574))) ((-626 |#1|) . T) ((-1051 #0#) |has| |#1| (-1051 (-417 (-574)))) ((-1051 #1#) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T))
+((-1778 (((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)) 35)))
+(((-422 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1778 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) (-315) (-1005 |#1|) (-1257 |#2|) (-13 (-419 |#2| |#3|) (-1051 |#2|)) (-315) (-1005 |#5|) (-1257 |#6|) (-13 (-419 |#6| |#7|) (-1051 |#6|))) (T -422))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315)) (-4 *6 (-1005 *5)) (-4 *7 (-1257 *6)) (-4 *8 (-13 (-419 *6 *7) (-1051 *6))) (-4 *9 (-315)) (-4 *10 (-1005 *9)) (-4 *11 (-1257 *10)) (-5 *2 (-423 *9 *10 *11 *12)) (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-419 *10 *11) (-1051 *10))))))
+(-10 -7 (-15 -1778 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|))))
+((-2849 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3283 ((|#4| (-781) (-1281 |#4|)) 55)) (-3965 (((-112) $) NIL)) (-2965 (((-1281 |#4|) $) 15)) (-1652 ((|#2| $) 53)) (-2478 (($ $) 157)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 103)) (-2260 (($ (-1281 |#4|)) 102)) (-3966 (((-1133) $) NIL)) (-2977 ((|#1| $) 16)) (-1514 (($ $ $) NIL)) (-3647 (($ $ $) NIL)) (-2943 (((-872) $) 148)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 |#4|) $) 141)) (-2146 (($) 11 T CONST)) (-2982 (((-112) $ $) 39)) (-3107 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 134)) (* (($ $ $) 130)))
+(((-423 |#1| |#2| |#3| |#4|) (-13 (-483) (-10 -8 (-15 -2260 ($ (-1281 |#4|))) (-15 -2722 ((-1281 |#4|) $)) (-15 -1652 (|#2| $)) (-15 -2965 ((-1281 |#4|) $)) (-15 -2977 (|#1| $)) (-15 -2478 ($ $)) (-15 -3283 (|#4| (-781) (-1281 |#4|))))) (-315) (-1005 |#1|) (-1257 |#2|) (-13 (-419 |#2| |#3|) (-1051 |#2|))) (T -423))
+((-2260 (*1 *1 *2) (-12 (-5 *2 (-1281 *6)) (-4 *6 (-13 (-419 *4 *5) (-1051 *4))) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *3 (-315)) (-5 *1 (-423 *3 *4 *5 *6)))) (-2722 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-1281 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1051 *4))))) (-1652 (*1 *2 *1) (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1005 *3)) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1051 *2))))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-1281 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1051 *4))))) (-2977 (*1 *2 *1) (-12 (-4 *3 (-1005 *2)) (-4 *4 (-1257 *3)) (-4 *2 (-315)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1051 *3))))) (-2478 (*1 *1 *1) (-12 (-4 *2 (-315)) (-4 *3 (-1005 *2)) (-4 *4 (-1257 *3)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1051 *3))))) (-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1281 *2)) (-4 *5 (-315)) (-4 *6 (-1005 *5)) (-4 *2 (-13 (-419 *6 *7) (-1051 *6))) (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1257 *6)))))
+(-13 (-483) (-10 -8 (-15 -2260 ($ (-1281 |#4|))) (-15 -2722 ((-1281 |#4|) $)) (-15 -1652 (|#2| $)) (-15 -2965 ((-1281 |#4|) $)) (-15 -2977 (|#1| $)) (-15 -2478 ($ $)) (-15 -3283 (|#4| (-781) (-1281 |#4|)))))
+((-2849 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-1652 ((|#2| $) 71)) (-3797 (($ (-1281 |#4|)) 27) (($ (-423 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1051 |#2|)))) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 37)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 |#4|) $) 28)) (-2146 (($) 25 T CONST)) (-2982 (((-112) $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ $ $) 82)))
+(((-424 |#1| |#2| |#3| |#4| |#5|) (-13 (-736) (-10 -8 (-15 -2722 ((-1281 |#4|) $)) (-15 -1652 (|#2| $)) (-15 -3797 ($ (-1281 |#4|))) (IF (|has| |#4| (-1051 |#2|)) (-15 -3797 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-315) (-1005 |#1|) (-1257 |#2|) (-419 |#2| |#3|) (-1281 |#4|)) (T -424))
+((-2722 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-1281 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-4 *6 (-419 *4 *5)) (-14 *7 *2))) (-1652 (*1 *2 *1) (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1005 *3)) (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) (-14 *6 (-1281 *5)))) (-3797 (*1 *1 *2) (-12 (-5 *2 (-1281 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3797 (*1 *1 *2) (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1051 *4)) (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *6 (-419 *4 *5)) (-14 *7 (-1281 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)))))
+(-13 (-736) (-10 -8 (-15 -2722 ((-1281 |#4|) $)) (-15 -1652 (|#2| $)) (-15 -3797 ($ (-1281 |#4|))) (IF (|has| |#4| (-1051 |#2|)) (-15 -3797 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-1778 ((|#3| (-1 |#4| |#2|) |#1|) 29)))
+(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 (|#3| (-1 |#4| |#2|) |#1|))) (-427 |#2|) (-174) (-427 |#4|) (-174)) (T -425))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5)))))
+(-10 -7 (-15 -1778 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1708 (((-3 $ "failed")) 98)) (-2750 (((-1281 (-699 |#2|)) (-1281 $)) NIL) (((-1281 (-699 |#2|))) 103)) (-4192 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) 96)) (-1738 (((-3 $ "failed")) 95)) (-3099 (((-699 |#2|) (-1281 $)) NIL) (((-699 |#2|)) 114)) (-2263 (((-699 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) $) 122)) (-4014 (((-1186 (-963 |#2|))) 63)) (-1328 ((|#2| (-1281 $)) NIL) ((|#2|) 118)) (-3003 (($ (-1281 |#2|) (-1281 $)) NIL) (($ (-1281 |#2|)) 124)) (-1388 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) 94)) (-3546 (((-3 $ "failed")) 86)) (-1658 (((-699 |#2|) (-1281 $)) NIL) (((-699 |#2|)) 112)) (-2360 (((-699 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) $) 120)) (-3860 (((-1186 (-963 |#2|))) 62)) (-1734 ((|#2| (-1281 $)) NIL) ((|#2|) 116)) (-3676 (((-1281 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) NIL) (((-1281 |#2|) $) 123) (((-699 |#2|) (-1281 $)) 132)) (-1837 (((-1281 |#2|) $) 108) (($ (-1281 |#2|)) 110)) (-2528 (((-654 (-963 |#2|)) (-1281 $)) NIL) (((-654 (-963 |#2|))) 106)) (-2901 (($ (-699 |#2|) $) 102)))
+(((-426 |#1| |#2|) (-10 -8 (-15 -2901 (|#1| (-699 |#2|) |#1|)) (-15 -4014 ((-1186 (-963 |#2|)))) (-15 -3860 ((-1186 (-963 |#2|)))) (-15 -2263 ((-699 |#2|) |#1|)) (-15 -2360 ((-699 |#2|) |#1|)) (-15 -3099 ((-699 |#2|))) (-15 -1658 ((-699 |#2|))) (-15 -1328 (|#2|)) (-15 -1734 (|#2|)) (-15 -1837 (|#1| (-1281 |#2|))) (-15 -1837 ((-1281 |#2|) |#1|)) (-15 -3003 (|#1| (-1281 |#2|))) (-15 -2528 ((-654 (-963 |#2|)))) (-15 -2750 ((-1281 (-699 |#2|)))) (-15 -3676 ((-699 |#2|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1|)) (-15 -1708 ((-3 |#1| "failed"))) (-15 -1738 ((-3 |#1| "failed"))) (-15 -3546 ((-3 |#1| "failed"))) (-15 -4192 ((-3 (-2 (|:| |particular| |#1|) (|:| -2722 (-654 |#1|))) "failed"))) (-15 -1388 ((-3 (-2 (|:| |particular| |#1|) (|:| -2722 (-654 |#1|))) "failed"))) (-15 -3099 ((-699 |#2|) (-1281 |#1|))) (-15 -1658 ((-699 |#2|) (-1281 |#1|))) (-15 -1328 (|#2| (-1281 |#1|))) (-15 -1734 (|#2| (-1281 |#1|))) (-15 -3003 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2263 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2360 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2750 ((-1281 (-699 |#2|)) (-1281 |#1|))) (-15 -2528 ((-654 (-963 |#2|)) (-1281 |#1|)))) (-427 |#2|) (-174)) (T -426))
+((-2750 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2528 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-963 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-1734 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-1328 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-1658 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-3099 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-3860 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1186 (-963 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-4014 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1186 (-963 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))))
+(-10 -8 (-15 -2901 (|#1| (-699 |#2|) |#1|)) (-15 -4014 ((-1186 (-963 |#2|)))) (-15 -3860 ((-1186 (-963 |#2|)))) (-15 -2263 ((-699 |#2|) |#1|)) (-15 -2360 ((-699 |#2|) |#1|)) (-15 -3099 ((-699 |#2|))) (-15 -1658 ((-699 |#2|))) (-15 -1328 (|#2|)) (-15 -1734 (|#2|)) (-15 -1837 (|#1| (-1281 |#2|))) (-15 -1837 ((-1281 |#2|) |#1|)) (-15 -3003 (|#1| (-1281 |#2|))) (-15 -2528 ((-654 (-963 |#2|)))) (-15 -2750 ((-1281 (-699 |#2|)))) (-15 -3676 ((-699 |#2|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1|)) (-15 -1708 ((-3 |#1| "failed"))) (-15 -1738 ((-3 |#1| "failed"))) (-15 -3546 ((-3 |#1| "failed"))) (-15 -4192 ((-3 (-2 (|:| |particular| |#1|) (|:| -2722 (-654 |#1|))) "failed"))) (-15 -1388 ((-3 (-2 (|:| |particular| |#1|) (|:| -2722 (-654 |#1|))) "failed"))) (-15 -3099 ((-699 |#2|) (-1281 |#1|))) (-15 -1658 ((-699 |#2|) (-1281 |#1|))) (-15 -1328 (|#2| (-1281 |#1|))) (-15 -1734 (|#2| (-1281 |#1|))) (-15 -3003 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3676 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3676 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2263 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2360 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2750 ((-1281 (-699 |#2|)) (-1281 |#1|))) (-15 -2528 ((-654 (-963 |#2|)) (-1281 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1708 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) 20)) (-2750 (((-1281 (-699 |#1|)) (-1281 $)) 83) (((-1281 (-699 |#1|))) 106)) (-4136 (((-1281 $)) 86)) (-3670 (($) 18 T CONST)) (-4192 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-1738 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-3099 (((-699 |#1|) (-1281 $)) 70) (((-699 |#1|)) 98)) (-4029 ((|#1| $) 79)) (-2263 (((-699 |#1|) $ (-1281 $)) 81) (((-699 |#1|) $) 96)) (-4369 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-4014 (((-1186 (-963 |#1|))) 94 (|has| |#1| (-372)))) (-2652 (($ $ (-932)) 31)) (-2856 ((|#1| $) 77)) (-2517 (((-1186 |#1|) $) 47 (|has| |#1| (-566)))) (-1328 ((|#1| (-1281 $)) 72) ((|#1|) 100)) (-1510 (((-1186 |#1|) $) 68)) (-3063 (((-112)) 62)) (-3003 (($ (-1281 |#1|) (-1281 $)) 74) (($ (-1281 |#1|)) 104)) (-1950 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3584 (((-932)) 85)) (-3715 (((-112)) 59)) (-2023 (($ $ (-932)) 38)) (-2154 (((-112)) 55)) (-3644 (((-112)) 53)) (-4314 (((-112)) 57)) (-1388 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3546 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-1658 (((-699 |#1|) (-1281 $)) 71) (((-699 |#1|)) 99)) (-2799 ((|#1| $) 80)) (-2360 (((-699 |#1|) $ (-1281 $)) 82) (((-699 |#1|) $) 97)) (-1792 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-3860 (((-1186 (-963 |#1|))) 95 (|has| |#1| (-372)))) (-3702 (($ $ (-932)) 32)) (-3125 ((|#1| $) 78)) (-3258 (((-1186 |#1|) $) 48 (|has| |#1| (-566)))) (-1734 ((|#1| (-1281 $)) 73) ((|#1|) 101)) (-1749 (((-1186 |#1|) $) 69)) (-1894 (((-112)) 63)) (-2568 (((-1172) $) 10)) (-3532 (((-112)) 54)) (-3649 (((-112)) 56)) (-1593 (((-112)) 58)) (-3966 (((-1133) $) 11)) (-1383 (((-112)) 61)) (-2200 ((|#1| $ (-574)) 110)) (-3676 (((-1281 |#1|) $ (-1281 $)) 76) (((-699 |#1|) (-1281 $) (-1281 $)) 75) (((-1281 |#1|) $) 108) (((-699 |#1|) (-1281 $)) 107)) (-1837 (((-1281 |#1|) $) 103) (($ (-1281 |#1|)) 102)) (-2528 (((-654 (-963 |#1|)) (-1281 $)) 84) (((-654 (-963 |#1|))) 105)) (-3647 (($ $ $) 28)) (-2910 (((-112)) 67)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2722 (((-1281 $)) 109)) (-3432 (((-654 (-1281 |#1|))) 49 (|has| |#1| (-566)))) (-3243 (($ $ $ $) 29)) (-2333 (((-112)) 65)) (-2901 (($ (-699 |#1|) $) 93)) (-2309 (($ $ $) 27)) (-2210 (((-112)) 66)) (-3999 (((-112)) 64)) (-3784 (((-112)) 60)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 33)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-427 |#1|) (-141) (-174)) (T -427))
+((-2722 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1281 *1)) (-4 *1 (-427 *3)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 *3)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2750 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 (-699 *3))))) (-2528 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-963 *3))))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 *3)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-1734 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-1328 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-1658 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-3099 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-2360 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-3860 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1186 (-963 *3))))) (-4014 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1186 (-963 *3))))) (-2901 (*1 *1 *2 *1) (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174)))))
+(-13 (-376 |t#1|) (-294 (-574) |t#1|) (-10 -8 (-15 -2722 ((-1281 $))) (-15 -3676 ((-1281 |t#1|) $)) (-15 -3676 ((-699 |t#1|) (-1281 $))) (-15 -2750 ((-1281 (-699 |t#1|)))) (-15 -2528 ((-654 (-963 |t#1|)))) (-15 -3003 ($ (-1281 |t#1|))) (-15 -1837 ((-1281 |t#1|) $)) (-15 -1837 ($ (-1281 |t#1|))) (-15 -1734 (|t#1|)) (-15 -1328 (|t#1|)) (-15 -1658 ((-699 |t#1|))) (-15 -3099 ((-699 |t#1|))) (-15 -2360 ((-699 |t#1|) $)) (-15 -2263 ((-699 |t#1|) $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -3860 ((-1186 (-963 |t#1|)))) (-15 -4014 ((-1186 (-963 |t#1|))))) |%noBranch|) (-15 -2901 ($ (-699 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-294 (-574) |#1|) . T) ((-376 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 60)) (-2572 (($ $) 78)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 192)) (-2814 (($ $) NIL)) (-2425 (((-112) $) 48)) (-1708 ((|#1| $) 16)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-1235)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-1235)))) (-4299 (($ |#1| (-574)) 42)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 149)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 74)) (-1950 (((-3 $ "failed") $) 165)) (-2057 (((-3 (-417 (-574)) "failed") $) 85 (|has| |#1| (-555)))) (-1811 (((-112) $) 81 (|has| |#1| (-555)))) (-4142 (((-417 (-574)) $) 92 (|has| |#1| (-555)))) (-2042 (($ |#1| (-574)) 44)) (-1654 (((-112) $) 212 (|has| |#1| (-1235)))) (-3965 (((-112) $) 62)) (-2376 (((-781) $) 51)) (-4195 (((-3 "nil" "sqfr" "irred" "prime") $ (-574)) 176)) (-2404 ((|#1| $ (-574)) 175)) (-3718 (((-574) $ (-574)) 174)) (-2723 (($ |#1| (-574)) 41)) (-1778 (($ (-1 |#1| |#1|) $) 184)) (-2640 (($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574))))) 79)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2568 (((-1172) $) NIL)) (-1551 (($ |#1| (-574)) 43)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 193 (|has| |#1| (-462)))) (-4431 (($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3948 (((-654 (-2 (|:| -4220 |#1|) (|:| -2524 (-574)))) $) 73)) (-3100 (((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $) 12)) (-4220 (((-428 $) $) NIL (|has| |#1| (-1235)))) (-2838 (((-3 $ "failed") $ $) 177)) (-2524 (((-574) $) 168)) (-2129 ((|#1| $) 75)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 101 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 107 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) $) NIL (|has| |#1| (-524 (-1190) $))) (($ $ (-654 (-1190)) (-654 $)) 108 (|has| |#1| (-524 (-1190) $))) (($ $ (-654 (-302 $))) 104 (|has| |#1| (-317 $))) (($ $ (-302 $)) NIL (|has| |#1| (-317 $))) (($ $ $ $) NIL (|has| |#1| (-317 $))) (($ $ (-654 $) (-654 $)) NIL (|has| |#1| (-317 $)))) (-2200 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-294 $ $)))) (-3905 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1837 (((-546) $) 39 (|has| |#1| (-624 (-546)))) (((-388) $) 114 (|has| |#1| (-1035))) (((-227) $) 120 (|has| |#1| (-1035)))) (-2943 (((-872) $) 147) (($ (-574)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574)))))) (-4160 (((-781)) 67 T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2134 (($) 53 T CONST)) (-2146 (($) 52 T CONST)) (-3611 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2982 (((-112) $ $) 160)) (-3094 (($ $) 162) (($ $ $) NIL)) (-3078 (($ $ $) 181)) (** (($ $ (-932)) NIL) (($ $ (-781)) 126)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-428 |#1|) (-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2129 (|#1| $)) (-15 -2524 ((-574) $)) (-15 -2640 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -3100 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -2723 ($ |#1| (-574))) (-15 -3948 ((-654 (-2 (|:| -4220 |#1|) (|:| -2524 (-574)))) $)) (-15 -1551 ($ |#1| (-574))) (-15 -3718 ((-574) $ (-574))) (-15 -2404 (|#1| $ (-574))) (-15 -4195 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -2376 ((-781) $)) (-15 -2042 ($ |#1| (-574))) (-15 -4299 ($ |#1| (-574))) (-15 -4431 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1708 (|#1| $)) (-15 -2572 ($ $)) (-15 -1778 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1035)) (-6 (-1035)) |%noBranch|) (IF (|has| |#1| (-1235)) (-6 (-1235)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1190) $)) (-6 (-524 (-1190) $)) |%noBranch|))) (-566)) (T -428))
+((-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3)))) (-2129 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-2640 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-574))))) (-4 *2 (-566)) (-5 *1 (-428 *2)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-2723 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -4220 *3) (|:| -2524 (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-1551 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3718 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-2404 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4195 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *4)) (-4 *4 (-566)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-2042 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4299 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4431 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-1708 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2572 (*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-2057 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))))
+(-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2129 (|#1| $)) (-15 -2524 ((-574) $)) (-15 -2640 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -3100 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -2723 ($ |#1| (-574))) (-15 -3948 ((-654 (-2 (|:| -4220 |#1|) (|:| -2524 (-574)))) $)) (-15 -1551 ($ |#1| (-574))) (-15 -3718 ((-574) $ (-574))) (-15 -2404 (|#1| $ (-574))) (-15 -4195 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -2376 ((-781) $)) (-15 -2042 ($ |#1| (-574))) (-15 -4299 ($ |#1| (-574))) (-15 -4431 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1708 (|#1| $)) (-15 -2572 ($ $)) (-15 -1778 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1035)) (-6 (-1035)) |%noBranch|) (IF (|has| |#1| (-1235)) (-6 (-1235)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1190) $)) (-6 (-524 (-1190) $)) |%noBranch|)))
+((-2621 (((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|)) 28)) (-3596 (((-428 |#1|) (-428 |#1|) (-428 |#1|)) 17)))
+(((-429 |#1|) (-10 -7 (-15 -2621 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3596 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) (-566)) (T -429))
+((-3596 (*1 *2 *2 *2) (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3)))) (-2621 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) (-5 *1 (-429 *4)))))
+(-10 -7 (-15 -2621 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3596 ((-428 |#1|) (-428 |#1|) (-428 |#1|))))
+((-2600 ((|#2| |#2|) 183)) (-3076 (((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112)) 60)))
+(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3076 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112))) (-15 -2600 (|#2| |#2|))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|)) (-1190) |#2|) (T -430))
+((-2600 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1216) (-440 *3))) (-14 *4 (-1190)) (-14 *5 *2))) (-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172)))))) (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-14 *6 (-1190)) (-14 *7 *3))))
+(-10 -7 (-15 -3076 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112))) (-15 -2600 (|#2| |#2|)))
+((-1778 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 (|#4| (-1 |#3| |#1|) |#2|))) (-1062) (-440 |#1|) (-1062) (-440 |#3|)) (T -431))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5)))))
+(-10 -7 (-15 -1778 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2600 ((|#2| |#2|) 106)) (-1680 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172)) 52)) (-3457 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172)) 170)))
+(((-432 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1680 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172))) (-15 -3457 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172))) (-15 -2600 (|#2| |#2|))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|) (-10 -8 (-15 -2943 ($ |#3|)))) (-858) (-13 (-1259 |#2| |#3|) (-372) (-1216) (-10 -8 (-15 -3905 ($ $)) (-15 -2968 ($ $)))) (-996 |#4|) (-1190)) (T -432))
+((-2600 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-4 *2 (-13 (-27) (-1216) (-440 *3) (-10 -8 (-15 -2943 ($ *4))))) (-4 *4 (-858)) (-4 *5 (-13 (-1259 *2 *4) (-372) (-1216) (-10 -8 (-15 -3905 ($ $)) (-15 -2968 ($ $))))) (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-996 *5)) (-14 *7 (-1190)))) (-3457 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1216) (-440 *6) (-10 -8 (-15 -2943 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1259 *3 *7) (-372) (-1216) (-10 -8 (-15 -3905 ($ $)) (-15 -2968 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1172)) (-4 *9 (-996 *8)) (-14 *10 (-1190)))) (-1680 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1216) (-440 *6) (-10 -8 (-15 -2943 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1259 *3 *7) (-372) (-1216) (-10 -8 (-15 -3905 ($ $)) (-15 -2968 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1172)) (-4 *9 (-996 *8)) (-14 *10 (-1190)))))
+(-10 -7 (-15 -1680 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172))) (-15 -3457 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172))) (-15 -2600 (|#2| |#2|)))
+((-3318 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2868 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1778 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2868 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3318 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1113) (-435 |#1|) (-1113) (-435 |#3|)) (T -433))
+((-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1113)) (-4 *5 (-1113)) (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1113)) (-4 *2 (-1113)) (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5)))))
+(-10 -7 (-15 -1778 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2868 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3318 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3478 (($) 51)) (-4359 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-4365 (($ $ $) 46)) (-4006 (((-112) $ $) 35)) (-1487 (((-781)) 55)) (-1508 (($ (-654 |#2|)) 23) (($) NIL)) (-2820 (($) 66)) (-3972 (((-112) $ $) 15)) (-3658 ((|#2| $) 77)) (-2106 ((|#2| $) 75)) (-2565 (((-932) $) 70)) (-1731 (($ $ $) 42)) (-2576 (($ (-932)) 60)) (-2457 (($ $ |#2|) NIL) (($ $ $) 45)) (-3975 (((-781) (-1 (-112) |#2|) $) NIL) (((-781) |#2| $) 31)) (-2956 (($ (-654 |#2|)) 27)) (-2132 (($ $) 53)) (-2943 (((-872) $) 40)) (-3615 (((-781) $) 24)) (-4281 (($ (-654 |#2|)) 22) (($) NIL)) (-2982 (((-112) $ $) 19)))
+(((-434 |#1| |#2|) (-10 -8 (-15 -1487 ((-781))) (-15 -2576 (|#1| (-932))) (-15 -2565 ((-932) |#1|)) (-15 -2820 (|#1|)) (-15 -3658 (|#2| |#1|)) (-15 -2106 (|#2| |#1|)) (-15 -3478 (|#1|)) (-15 -2132 (|#1| |#1|)) (-15 -3615 ((-781) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -3972 ((-112) |#1| |#1|)) (-15 -4281 (|#1|)) (-15 -4281 (|#1| (-654 |#2|))) (-15 -1508 (|#1|)) (-15 -1508 (|#1| (-654 |#2|))) (-15 -1731 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| |#2|)) (-15 -4365 (|#1| |#1| |#1|)) (-15 -4006 ((-112) |#1| |#1|)) (-15 -4359 (|#1| |#1| |#1|)) (-15 -4359 (|#1| |#1| |#2|)) (-15 -4359 (|#1| |#2| |#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|))) (-435 |#2|) (-1113)) (T -434))
+((-1487 (*1 *2) (-12 (-4 *4 (-1113)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))))
+(-10 -8 (-15 -1487 ((-781))) (-15 -2576 (|#1| (-932))) (-15 -2565 ((-932) |#1|)) (-15 -2820 (|#1|)) (-15 -3658 (|#2| |#1|)) (-15 -2106 (|#2| |#1|)) (-15 -3478 (|#1|)) (-15 -2132 (|#1| |#1|)) (-15 -3615 ((-781) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -3972 ((-112) |#1| |#1|)) (-15 -4281 (|#1|)) (-15 -4281 (|#1| (-654 |#2|))) (-15 -1508 (|#1|)) (-15 -1508 (|#1| (-654 |#2|))) (-15 -1731 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| |#2|)) (-15 -4365 (|#1| |#1| |#1|)) (-15 -4006 ((-112) |#1| |#1|)) (-15 -4359 (|#1| |#1| |#1|)) (-15 -4359 (|#1| |#1| |#2|)) (-15 -4359 (|#1| |#2| |#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)))
+((-2849 (((-112) $ $) 19)) (-3478 (($) 68 (|has| |#1| (-377)))) (-4359 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-4365 (($ $ $) 79)) (-4006 (((-112) $ $) 80)) (-3340 (((-112) $ (-781)) 8)) (-1487 (((-781)) 62 (|has| |#1| (-377)))) (-1508 (($ (-654 |#1|)) 75) (($) 74)) (-3391 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2158 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-2820 (($) 65 (|has| |#1| (-377)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3972 (((-112) $ $) 71)) (-3735 (((-112) $ (-781)) 9)) (-3658 ((|#1| $) 66 (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2106 ((|#1| $) 67 (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2565 (((-932) $) 64 (|has| |#1| (-377)))) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22)) (-1731 (($ $ $) 76)) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41)) (-2576 (($ (-932)) 63 (|has| |#1| (-377)))) (-3966 (((-1133) $) 21)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2457 (($ $ |#1|) 78) (($ $ $) 77)) (-2826 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2132 (($ $) 69 (|has| |#1| (-377)))) (-2943 (((-872) $) 18)) (-3615 (((-781) $) 70)) (-4281 (($ (-654 |#1|)) 73) (($) 72)) (-2923 (((-112) $ $) 23)) (-2817 (($ (-654 |#1|)) 43)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-435 |#1|) (-141) (-1113)) (T -435))
+((-3615 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1113)) (-5 *2 (-781)))) (-2132 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-377)))) (-3478 (*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1113)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-860)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-860)))))
+(-13 (-231 |t#1|) (-1111 |t#1|) (-10 -8 (-6 -4456) (-15 -3615 ((-781) $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-377)) (-15 -2132 ($ $)) (-15 -3478 ($))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -2106 (|t#1| $)) (-15 -3658 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-231 |#1|) . T) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-377) |has| |#1| (-377)) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1111 |#1|) . T) ((-1113) . T) ((-1231) . T))
+((-1767 (((-596 |#2|) |#2| (-1190)) 36)) (-2009 (((-596 |#2|) |#2| (-1190)) 21)) (-1666 ((|#2| |#2| (-1190)) 26)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -2009 ((-596 |#2|) |#2| (-1190))) (-15 -1767 ((-596 |#2|) |#2| (-1190))) (-15 -1666 (|#2| |#2| (-1190)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-29 |#1|))) (T -436))
+((-1666 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1216) (-29 *4))))) (-1767 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1216) (-29 *5))))) (-2009 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1216) (-29 *5))))))
+(-10 -7 (-15 -2009 ((-596 |#2|) |#2| (-1190))) (-15 -1767 ((-596 |#2|) |#2| (-1190))) (-15 -1666 (|#2| |#2| (-1190))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-3616 (($ |#2| |#1|) 37)) (-3355 (($ |#2| |#1|) 35)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-339 |#2|)) 25)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 10 T CONST)) (-2146 (($) 16 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 36)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-437 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4443)) (IF (|has| |#1| (-6 -4443)) (-6 -4443) |%noBranch|) |%noBranch|) (-15 -2943 ($ |#1|)) (-15 -2943 ($ (-339 |#2|))) (-15 -3616 ($ |#2| |#1|)) (-15 -3355 ($ |#2| |#1|)))) (-13 (-174) (-38 (-417 (-574)))) (-13 (-860) (-21))) (T -437))
+((-2943 (*1 *1 *2) (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574))))) (-4 *3 (-13 (-860) (-21))))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21))) (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))))) (-3616 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21))))) (-3355 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4443)) (IF (|has| |#1| (-6 -4443)) (-6 -4443) |%noBranch|) |%noBranch|) (-15 -2943 ($ |#1|)) (-15 -2943 ($ (-339 |#2|))) (-15 -3616 ($ |#2| |#1|)) (-15 -3355 ($ |#2| |#1|))))
+((-2968 (((-3 |#2| (-654 |#2|)) |#2| (-1190)) 115)))
+(((-438 |#1| |#2|) (-10 -7 (-15 -2968 ((-3 |#2| (-654 |#2|)) |#2| (-1190)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-970) (-29 |#1|))) (T -438))
+((-2968 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1216) (-970) (-29 *5))))))
+(-10 -7 (-15 -2968 ((-3 |#2| (-654 |#2|)) |#2| (-1190))))
+((-4355 (((-654 (-1190)) $) 81)) (-4194 (((-417 (-1186 $)) $ (-622 $)) 313)) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) 277)) (-1697 (((-3 (-622 $) "failed") $) NIL) (((-3 (-1190) "failed") $) 84) (((-3 (-574) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-417 (-963 |#2|)) "failed") $) 363) (((-3 (-963 |#2|) "failed") $) 275) (((-3 (-417 (-574)) "failed") $) NIL)) (-2209 (((-622 $) $) NIL) (((-1190) $) 28) (((-574) $) NIL) ((|#2| $) 271) (((-417 (-963 |#2|)) $) 345) (((-963 |#2|) $) 272) (((-417 (-574)) $) NIL)) (-4173 (((-115) (-115)) 47)) (-1769 (($ $) 99)) (-3376 (((-3 (-622 $) "failed") $) 268)) (-4164 (((-654 (-622 $)) $) 269)) (-2357 (((-3 (-654 $) "failed") $) 287)) (-4428 (((-3 (-2 (|:| |val| $) (|:| -2524 (-574))) "failed") $) 294)) (-3405 (((-3 (-654 $) "failed") $) 285)) (-4040 (((-3 (-2 (|:| -1859 (-574)) (|:| |var| (-622 $))) "failed") $) 304)) (-3092 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $) 291) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-1190)) 257)) (-1338 (((-112) $) 17)) (-1349 ((|#2| $) 19)) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 276) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) 109) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1190)) 62) (($ $ (-654 (-1190))) 280) (($ $) 281) (($ $ (-115) $ (-1190)) 65) (($ $ (-654 (-115)) (-654 $) (-1190)) 72) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $))) 120) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 282) (($ $ (-1190) (-781) (-1 $ (-654 $))) 105) (($ $ (-1190) (-781) (-1 $ $)) 104)) (-2200 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) 119)) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) 278)) (-3520 (($ $) 324)) (-1837 (((-903 (-574)) $) 297) (((-903 (-388)) $) 301) (($ (-428 $)) 359) (((-546) $) NIL)) (-2943 (((-872) $) 279) (($ (-622 $)) 93) (($ (-1190)) 24) (($ |#2|) NIL) (($ (-1138 |#2| (-622 $))) NIL) (($ (-417 |#2|)) 329) (($ (-963 (-417 |#2|))) 368) (($ (-417 (-963 (-417 |#2|)))) 341) (($ (-417 (-963 |#2|))) 335) (($ $) NIL) (($ (-963 |#2|)) 216) (($ (-574)) NIL) (($ (-417 (-574))) 373)) (-4160 (((-781)) 88)) (-1932 (((-112) (-115)) 42)) (-2498 (($ (-1190) $) 31) (($ (-1190) $ $) 32) (($ (-1190) $ $ $) 33) (($ (-1190) $ $ $ $) 34) (($ (-1190) (-654 $)) 39)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL)))
+(((-439 |#1| |#2|) (-10 -8 (-15 * (|#1| (-932) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2943 (|#1| (-574))) (-15 -4160 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -2943 (|#1| (-963 |#2|))) (-15 -1697 ((-3 (-963 |#2|) "failed") |#1|)) (-15 -2209 ((-963 |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 * (|#1| |#1| |#2|)) (-15 -2943 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2943 (|#1| (-417 (-963 |#2|)))) (-15 -1697 ((-3 (-417 (-963 |#2|)) "failed") |#1|)) (-15 -2209 ((-417 (-963 |#2|)) |#1|)) (-15 -4194 ((-417 (-1186 |#1|)) |#1| (-622 |#1|))) (-15 -2943 (|#1| (-417 (-963 (-417 |#2|))))) (-15 -2943 (|#1| (-963 (-417 |#2|)))) (-15 -2943 (|#1| (-417 |#2|))) (-15 -3520 (|#1| |#1|)) (-15 -1837 (|#1| (-428 |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-781) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -4428 ((-3 (-2 (|:| |val| |#1|) (|:| -2524 (-574))) "failed") |#1|)) (-15 -3092 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2524 (-574))) "failed") |#1| (-1190))) (-15 -3092 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2524 (-574))) "failed") |#1| (-115))) (-15 -1769 (|#1| |#1|)) (-15 -2943 (|#1| (-1138 |#2| (-622 |#1|)))) (-15 -4040 ((-3 (-2 (|:| -1859 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -3405 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3092 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2524 (-574))) "failed") |#1|)) (-15 -2357 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1190))) (-15 -2646 (|#1| |#1| (-115) |#1| (-1190))) (-15 -2646 (|#1| |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1190)))) (-15 -2646 (|#1| |#1| (-1190))) (-15 -2498 (|#1| (-1190) (-654 |#1|))) (-15 -2498 (|#1| (-1190) |#1| |#1| |#1| |#1|)) (-15 -2498 (|#1| (-1190) |#1| |#1| |#1|)) (-15 -2498 (|#1| (-1190) |#1| |#1|)) (-15 -2498 (|#1| (-1190) |#1|)) (-15 -4355 ((-654 (-1190)) |#1|)) (-15 -1349 (|#2| |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -2943 (|#1| (-1190))) (-15 -1697 ((-3 (-1190) "failed") |#1|)) (-15 -2209 ((-1190) |#1|)) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| |#1|)))) (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4164 ((-654 (-622 |#1|)) |#1|)) (-15 -3376 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2545 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2545 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2545 (|#1| |#1| (-302 |#1|))) (-15 -2200 (|#1| (-115) (-654 |#1|))) (-15 -2200 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2943 (|#1| (-622 |#1|))) (-15 -1697 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2209 ((-622 |#1|) |#1|)) (-15 -2943 ((-872) |#1|))) (-440 |#2|) (-1113)) (T -439))
+((-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1113)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) (-4160 (*1 *2) (-12 (-4 *4 (-1113)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))))
+(-10 -8 (-15 * (|#1| (-932) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2943 (|#1| (-574))) (-15 -4160 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -2943 (|#1| (-963 |#2|))) (-15 -1697 ((-3 (-963 |#2|) "failed") |#1|)) (-15 -2209 ((-963 |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 * (|#1| |#1| |#2|)) (-15 -2943 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2943 (|#1| (-417 (-963 |#2|)))) (-15 -1697 ((-3 (-417 (-963 |#2|)) "failed") |#1|)) (-15 -2209 ((-417 (-963 |#2|)) |#1|)) (-15 -4194 ((-417 (-1186 |#1|)) |#1| (-622 |#1|))) (-15 -2943 (|#1| (-417 (-963 (-417 |#2|))))) (-15 -2943 (|#1| (-963 (-417 |#2|)))) (-15 -2943 (|#1| (-417 |#2|))) (-15 -3520 (|#1| |#1|)) (-15 -1837 (|#1| (-428 |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-781) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -4428 ((-3 (-2 (|:| |val| |#1|) (|:| -2524 (-574))) "failed") |#1|)) (-15 -3092 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2524 (-574))) "failed") |#1| (-1190))) (-15 -3092 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2524 (-574))) "failed") |#1| (-115))) (-15 -1769 (|#1| |#1|)) (-15 -2943 (|#1| (-1138 |#2| (-622 |#1|)))) (-15 -4040 ((-3 (-2 (|:| -1859 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -3405 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3092 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2524 (-574))) "failed") |#1|)) (-15 -2357 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1190))) (-15 -2646 (|#1| |#1| (-115) |#1| (-1190))) (-15 -2646 (|#1| |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1190)))) (-15 -2646 (|#1| |#1| (-1190))) (-15 -2498 (|#1| (-1190) (-654 |#1|))) (-15 -2498 (|#1| (-1190) |#1| |#1| |#1| |#1|)) (-15 -2498 (|#1| (-1190) |#1| |#1| |#1|)) (-15 -2498 (|#1| (-1190) |#1| |#1|)) (-15 -2498 (|#1| (-1190) |#1|)) (-15 -4355 ((-654 (-1190)) |#1|)) (-15 -1349 (|#2| |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -2943 (|#1| (-1190))) (-15 -1697 ((-3 (-1190) "failed") |#1|)) (-15 -2209 ((-1190) |#1|)) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| |#1|)))) (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4164 ((-654 (-622 |#1|)) |#1|)) (-15 -3376 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2545 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2545 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2545 (|#1| |#1| (-302 |#1|))) (-15 -2200 (|#1| (-115) (-654 |#1|))) (-15 -2200 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1| |#1|)) (-15 -2200 (|#1| (-115) |#1|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2943 (|#1| (-622 |#1|))) (-15 -1697 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2209 ((-622 |#1|) |#1|)) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 116 (|has| |#1| (-25)))) (-4355 (((-654 (-1190)) $) 205)) (-4194 (((-417 (-1186 $)) $ (-622 $)) 173 (|has| |#1| (-566)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 145 (|has| |#1| (-566)))) (-2814 (($ $) 146 (|has| |#1| (-566)))) (-2425 (((-112) $) 148 (|has| |#1| (-566)))) (-4091 (((-654 (-622 $)) $) 39)) (-2950 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2545 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-4348 (($ $) 165 (|has| |#1| (-566)))) (-3440 (((-428 $) $) 166 (|has| |#1| (-566)))) (-3875 (((-112) $ $) 156 (|has| |#1| (-566)))) (-3670 (($) 104 (-2818 (|has| |#1| (-1125)) (|has| |#1| (-25))) CONST)) (-1697 (((-3 (-622 $) "failed") $) 64) (((-3 (-1190) "failed") $) 218) (((-3 (-574) "failed") $) 212 (|has| |#1| (-1051 (-574)))) (((-3 |#1| "failed") $) 209) (((-3 (-417 (-963 |#1|)) "failed") $) 171 (|has| |#1| (-566))) (((-3 (-963 |#1|) "failed") $) 123 (|has| |#1| (-1062))) (((-3 (-417 (-574)) "failed") $) 98 (-2818 (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574))))))) (-2209 (((-622 $) $) 65) (((-1190) $) 219) (((-574) $) 211 (|has| |#1| (-1051 (-574)))) ((|#1| $) 210) (((-417 (-963 |#1|)) $) 172 (|has| |#1| (-566))) (((-963 |#1|) $) 124 (|has| |#1| (-1062))) (((-417 (-574)) $) 99 (-2818 (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574))))))) (-2785 (($ $ $) 160 (|has| |#1| (-566)))) (-2668 (((-699 (-574)) (-1281 $)) 140 (-2088 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-699 (-574)) (-699 $)) 139 (-2088 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 138 (-2088 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 137 (|has| |#1| (-1062))) (((-699 |#1|) (-699 $)) 136 (|has| |#1| (-1062))) (((-699 |#1|) (-1281 $)) 135 (|has| |#1| (-1062)))) (-1950 (((-3 $ "failed") $) 106 (|has| |#1| (-1125)))) (-2798 (($ $ $) 159 (|has| |#1| (-566)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 154 (|has| |#1| (-566)))) (-1654 (((-112) $) 167 (|has| |#1| (-566)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 214 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 213 (|has| |#1| (-897 (-388))))) (-2955 (($ $) 46) (($ (-654 $)) 45)) (-1879 (((-654 (-115)) $) 38)) (-4173 (((-115) (-115)) 37)) (-3965 (((-112) $) 105 (|has| |#1| (-1125)))) (-3239 (((-112) $) 17 (|has| $ (-1051 (-574))))) (-1769 (($ $) 188 (|has| |#1| (-1062)))) (-2965 (((-1138 |#1| (-622 $)) $) 189 (|has| |#1| (-1062)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 163 (|has| |#1| (-566)))) (-2405 (((-1186 $) (-622 $)) 20 (|has| $ (-1062)))) (-1778 (($ (-1 $ $) (-622 $)) 31)) (-3376 (((-3 (-622 $) "failed") $) 41)) (-2834 (($ (-654 $)) 152 (|has| |#1| (-566))) (($ $ $) 151 (|has| |#1| (-566)))) (-2568 (((-1172) $) 10)) (-4164 (((-654 (-622 $)) $) 40)) (-1775 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-2357 (((-3 (-654 $) "failed") $) 194 (|has| |#1| (-1125)))) (-4428 (((-3 (-2 (|:| |val| $) (|:| -2524 (-574))) "failed") $) 185 (|has| |#1| (-1062)))) (-3405 (((-3 (-654 $) "failed") $) 192 (|has| |#1| (-25)))) (-4040 (((-3 (-2 (|:| -1859 (-574)) (|:| |var| (-622 $))) "failed") $) 191 (|has| |#1| (-25)))) (-3092 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $) 193 (|has| |#1| (-1125))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-115)) 187 (|has| |#1| (-1062))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-1190)) 186 (|has| |#1| (-1062)))) (-2884 (((-112) $ (-115)) 35) (((-112) $ (-1190)) 34)) (-1324 (($ $) 108 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-1840 (((-781) $) 42)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 207)) (-1349 ((|#1| $) 206)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 153 (|has| |#1| (-566)))) (-2874 (($ (-654 $)) 150 (|has| |#1| (-566))) (($ $ $) 149 (|has| |#1| (-566)))) (-3923 (((-112) $ $) 30) (((-112) $ (-1190)) 29)) (-4220 (((-428 $) $) 164 (|has| |#1| (-566)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 161 (|has| |#1| (-566)))) (-2838 (((-3 $ "failed") $ $) 144 (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 155 (|has| |#1| (-566)))) (-2625 (((-112) $) 18 (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1190)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1190) (-1 $ (-654 $))) 26) (($ $ (-1190) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1190)) 199 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190))) 198 (|has| |#1| (-624 (-546)))) (($ $) 197 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1190)) 196 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1190)) 195 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $))) 184 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 183 (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ (-654 $))) 182 (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ $)) 181 (|has| |#1| (-1062)))) (-1347 (((-781) $) 157 (|has| |#1| (-566)))) (-2200 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 158 (|has| |#1| (-566)))) (-3115 (($ $) 44) (($ $ $) 43)) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 129 (|has| |#1| (-1062))) (($ $ (-1190) (-781)) 128 (|has| |#1| (-1062))) (($ $ (-654 (-1190))) 127 (|has| |#1| (-1062))) (($ $ (-1190)) 126 (|has| |#1| (-1062)))) (-3520 (($ $) 178 (|has| |#1| (-566)))) (-2977 (((-1138 |#1| (-622 $)) $) 179 (|has| |#1| (-566)))) (-1782 (($ $) 19 (|has| $ (-1062)))) (-1837 (((-903 (-574)) $) 216 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 215 (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) 180 (|has| |#1| (-566))) (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-1514 (($ $ $) 111 (|has| |#1| (-483)))) (-3647 (($ $ $) 112 (|has| |#1| (-483)))) (-2943 (((-872) $) 12) (($ (-622 $)) 63) (($ (-1190)) 217) (($ |#1|) 208) (($ (-1138 |#1| (-622 $))) 190 (|has| |#1| (-1062))) (($ (-417 |#1|)) 176 (|has| |#1| (-566))) (($ (-963 (-417 |#1|))) 175 (|has| |#1| (-566))) (($ (-417 (-963 (-417 |#1|)))) 174 (|has| |#1| (-566))) (($ (-417 (-963 |#1|))) 170 (|has| |#1| (-566))) (($ $) 143 (|has| |#1| (-566))) (($ (-963 |#1|)) 122 (|has| |#1| (-1062))) (($ (-417 (-574))) 97 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574)))))) (($ (-574)) 96 (-2818 (|has| |#1| (-1062)) (|has| |#1| (-1051 (-574)))))) (-1369 (((-3 $ "failed") $) 141 (|has| |#1| (-146)))) (-4160 (((-781)) 125 (|has| |#1| (-1062)) CONST)) (-2031 (($ $) 48) (($ (-654 $)) 47)) (-1932 (((-112) (-115)) 36)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 147 (|has| |#1| (-566)))) (-2498 (($ (-1190) $) 204) (($ (-1190) $ $) 203) (($ (-1190) $ $ $) 202) (($ (-1190) $ $ $ $) 201) (($ (-1190) (-654 $)) 200)) (-2134 (($) 115 (|has| |#1| (-25)) CONST)) (-2146 (($) 103 (|has| |#1| (-1125)) CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) 133 (|has| |#1| (-1062))) (($ $ (-1190) (-781)) 132 (|has| |#1| (-1062))) (($ $ (-654 (-1190))) 131 (|has| |#1| (-1062))) (($ $ (-1190)) 130 (|has| |#1| (-1062)))) (-2982 (((-112) $ $) 6)) (-3107 (($ (-1138 |#1| (-622 $)) (-1138 |#1| (-622 $))) 177 (|has| |#1| (-566))) (($ $ $) 109 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3094 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3078 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-574)) 110 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 107 (|has| |#1| (-1125))) (($ $ (-932)) 102 (|has| |#1| (-1125)))) (* (($ (-417 (-574)) $) 169 (|has| |#1| (-566))) (($ $ (-417 (-574))) 168 (|has| |#1| (-566))) (($ $ |#1|) 142 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1062))) (($ (-574) $) 119 (|has| |#1| (-21))) (($ (-781) $) 117 (|has| |#1| (-25))) (($ (-932) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1125)))))
+(((-440 |#1|) (-141) (-1113)) (T -440))
+((-1338 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-5 *2 (-654 (-1190))))) (-2498 (*1 *1 *2 *1) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) (-2498 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) (-2498 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) (-2498 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) (-2498 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1113)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-4 *3 (-624 (-546))))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1190))) (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-4 *3 (-624 (-546))))) (-2646 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-624 (-546))))) (-2646 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1190)) (-4 *1 (-440 *4)) (-4 *4 (-1113)) (-4 *4 (-624 (-546))))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1190)) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-624 (-546))))) (-2357 (*1 *2 *1) (|partial| -12 (-4 *3 (-1125)) (-4 *3 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-3092 (*1 *2 *1) (|partial| -12 (-4 *3 (-1125)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2524 (-574)))) (-4 *1 (-440 *3)))) (-3405 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-4040 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| -1859 (-574)) (|:| |var| (-622 *1)))) (-4 *1 (-440 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1138 *3 (-622 *1))) (-4 *3 (-1062)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *3 (-1113)) (-5 *2 (-1138 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-1769 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-1062)))) (-3092 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1062)) (-4 *4 (-1113)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2524 (-574)))) (-4 *1 (-440 *4)))) (-3092 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1190)) (-4 *4 (-1062)) (-4 *4 (-1113)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2524 (-574)))) (-4 *1 (-440 *4)))) (-4428 (*1 *2 *1) (|partial| -12 (-4 *3 (-1062)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| |val| *1) (|:| -2524 (-574)))) (-4 *1 (-440 *3)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566)) (-4 *3 (-1113)))) (-2977 (*1 *2 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1113)) (-5 *2 (-1138 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-3520 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-566)))) (-3107 (*1 *1 *2 *2) (-12 (-5 *2 (-1138 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-963 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-4194 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1113)) (-4 *4 (-566)) (-5 *2 (-417 (-1186 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-4 *3 (-1125)))))
+(-13 (-310) (-1051 (-1190)) (-895 |t#1|) (-410 |t#1|) (-421 |t#1|) (-10 -8 (-15 -1338 ((-112) $)) (-15 -1349 (|t#1| $)) (-15 -4355 ((-654 (-1190)) $)) (-15 -2498 ($ (-1190) $)) (-15 -2498 ($ (-1190) $ $)) (-15 -2498 ($ (-1190) $ $ $)) (-15 -2498 ($ (-1190) $ $ $ $)) (-15 -2498 ($ (-1190) (-654 $))) (IF (|has| |t#1| (-624 (-546))) (PROGN (-6 (-624 (-546))) (-15 -2646 ($ $ (-1190))) (-15 -2646 ($ $ (-654 (-1190)))) (-15 -2646 ($ $)) (-15 -2646 ($ $ (-115) $ (-1190))) (-15 -2646 ($ $ (-654 (-115)) (-654 $) (-1190)))) |%noBranch|) (IF (|has| |t#1| (-1125)) (PROGN (-6 (-736)) (-15 ** ($ $ (-781))) (-15 -2357 ((-3 (-654 $) "failed") $)) (-15 -3092 ((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-483)) (-6 (-483)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3405 ((-3 (-654 $) "failed") $)) (-15 -4040 ((-3 (-2 (|:| -1859 (-574)) (|:| |var| (-622 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1062)) (PROGN (-6 (-1062)) (-6 (-1051 (-963 |t#1|))) (-6 (-911 (-1190))) (-6 (-386 |t#1|)) (-15 -2943 ($ (-1138 |t#1| (-622 $)))) (-15 -2965 ((-1138 |t#1| (-622 $)) $)) (-15 -1769 ($ $)) (-15 -3092 ((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-115))) (-15 -3092 ((-3 (-2 (|:| |var| (-622 $)) (|:| -2524 (-574))) "failed") $ (-1190))) (-15 -4428 ((-3 (-2 (|:| |val| $) (|:| -2524 (-574))) "failed") $)) (-15 -2646 ($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $)))) (-15 -2646 ($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $))))) (-15 -2646 ($ $ (-1190) (-781) (-1 $ (-654 $)))) (-15 -2646 ($ $ (-1190) (-781) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-372)) (-6 (-1051 (-417 (-963 |t#1|)))) (-15 -1837 ($ (-428 $))) (-15 -2977 ((-1138 |t#1| (-622 $)) $)) (-15 -3520 ($ $)) (-15 -3107 ($ (-1138 |t#1| (-622 $)) (-1138 |t#1| (-622 $)))) (-15 -2943 ($ (-417 |t#1|))) (-15 -2943 ($ (-963 (-417 |t#1|)))) (-15 -2943 ($ (-417 (-963 (-417 |t#1|))))) (-15 -4194 ((-417 (-1186 $)) $ (-622 $))) (IF (|has| |t#1| (-1051 (-574))) (-6 (-1051 (-417 (-574)))) |%noBranch|)) |%noBranch|)))
+(((-21) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-417 (-574))) |has| |#1| (-566)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-566)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-566)) ((-132) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-566))) ((-626 #1=(-417 (-963 |#1|))) |has| |#1| (-566)) ((-626 (-574)) -2818 (|has| |#1| (-1062)) (|has| |#1| (-1051 (-574))) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-626 #2=(-622 $)) . T) ((-626 #3=(-963 |#1|)) |has| |#1| (-1062)) ((-626 #4=(-1190)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) |has| |#1| (-566)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) |has| |#1| (-566)) ((-298) |has| |#1| (-566)) ((-315) |has| |#1| (-566)) ((-317 $) . T) ((-310) . T) ((-372) |has| |#1| (-566)) ((-386 |#1|) |has| |#1| (-1062)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) |has| |#1| (-566)) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-566)) ((-656 (-574)) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-656 |#1|) -2818 (|has| |#1| (-1062)) (|has| |#1| (-174))) ((-656 $) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-658 #0#) |has| |#1| (-566)) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) ((-658 |#1|) -2818 (|has| |#1| (-1062)) (|has| |#1| (-174))) ((-658 $) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-650 #0#) |has| |#1| (-566)) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) ((-649 |#1|) |has| |#1| (-1062)) ((-727 #0#) |has| |#1| (-566)) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) -2818 (|has| |#1| (-1125)) (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-911 (-1190)) |has| |#1| (-1062)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-931) |has| |#1| (-566)) ((-1051 (-417 (-574))) -2818 (|has| |#1| (-1051 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) ((-1051 #1#) |has| |#1| (-566)) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 #2#) . T) ((-1051 #3#) |has| |#1| (-1062)) ((-1051 #4#) . T) ((-1051 |#1|) . T) ((-1064 #0#) |has| |#1| (-566)) ((-1064 |#1|) |has| |#1| (-174)) ((-1064 $) |has| |#1| (-566)) ((-1069 #0#) |has| |#1| (-566)) ((-1069 |#1|) |has| |#1| (-174)) ((-1069 $) |has| |#1| (-566)) ((-1062) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1071) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1125) -2818 (|has| |#1| (-1125)) (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1113) . T) ((-1231) . T) ((-1235) |has| |#1| (-566)))
+((-4109 ((|#2| |#2| |#2|) 31)) (-4173 (((-115) (-115)) 43)) (-2191 ((|#2| |#2|) 63)) (-4212 ((|#2| |#2|) 66)) (-2330 ((|#2| |#2|) 30)) (-2833 ((|#2| |#2| |#2|) 33)) (-3687 ((|#2| |#2| |#2|) 35)) (-3006 ((|#2| |#2| |#2|) 32)) (-1962 ((|#2| |#2| |#2|) 34)) (-1932 (((-112) (-115)) 41)) (-3458 ((|#2| |#2|) 37)) (-3497 ((|#2| |#2|) 36)) (-2946 ((|#2| |#2|) 25)) (-3205 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3952 ((|#2| |#2| |#2|) 29)))
+(((-441 |#1| |#2|) (-10 -7 (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -2946 (|#2| |#2|)) (-15 -3205 (|#2| |#2|)) (-15 -3205 (|#2| |#2| |#2|)) (-15 -3952 (|#2| |#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -4109 (|#2| |#2| |#2|)) (-15 -3006 (|#2| |#2| |#2|)) (-15 -2833 (|#2| |#2| |#2|)) (-15 -1962 (|#2| |#2| |#2|)) (-15 -3687 (|#2| |#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3458 (|#2| |#2|)) (-15 -4212 (|#2| |#2|)) (-15 -2191 (|#2| |#2|))) (-566) (-440 |#1|)) (T -441))
+((-2191 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4212 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3458 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3687 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1962 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2833 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3006 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4109 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3952 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3205 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3205 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4)) (-4 *4 (-440 *3)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4)))))
+(-10 -7 (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -2946 (|#2| |#2|)) (-15 -3205 (|#2| |#2|)) (-15 -3205 (|#2| |#2| |#2|)) (-15 -3952 (|#2| |#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -4109 (|#2| |#2| |#2|)) (-15 -3006 (|#2| |#2| |#2|)) (-15 -2833 (|#2| |#2| |#2|)) (-15 -1962 (|#2| |#2| |#2|)) (-15 -3687 (|#2| |#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3458 (|#2| |#2|)) (-15 -4212 (|#2| |#2|)) (-15 -2191 (|#2| |#2|)))
+((-3906 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1186 |#2|)) (|:| |pol2| (-1186 |#2|)) (|:| |prim| (-1186 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1186 |#2|))) (|:| |prim| (-1186 |#2|))) (-654 |#2|)) 65)))
+(((-442 |#1| |#2|) (-10 -7 (-15 -3906 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1186 |#2|))) (|:| |prim| (-1186 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -3906 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1186 |#2|)) (|:| |pol2| (-1186 |#2|)) (|:| |prim| (-1186 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-566) (-148)) (-440 |#1|)) (T -442))
+((-3906 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1186 *3)) (|:| |pol2| (-1186 *3)) (|:| |prim| (-1186 *3)))) (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1186 *5))) (|:| |prim| (-1186 *5)))) (-5 *1 (-442 *4 *5)))))
+(-10 -7 (-15 -3906 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1186 |#2|))) (|:| |prim| (-1186 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -3906 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1186 |#2|)) (|:| |pol2| (-1186 |#2|)) (|:| |prim| (-1186 |#2|))) |#2| |#2|)) |%noBranch|))
+((-3323 (((-1286)) 18)) (-1546 (((-1186 (-417 (-574))) |#2| (-622 |#2|)) 40) (((-417 (-574)) |#2|) 24)))
+(((-443 |#1| |#2|) (-10 -7 (-15 -1546 ((-417 (-574)) |#2|)) (-15 -1546 ((-1186 (-417 (-574))) |#2| (-622 |#2|))) (-15 -3323 ((-1286)))) (-13 (-566) (-1051 (-574))) (-440 |#1|)) (T -443))
+((-3323 (*1 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *2 (-1286)) (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-443 *5 *3)))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4)))))
+(-10 -7 (-15 -1546 ((-417 (-574)) |#2|)) (-15 -1546 ((-1186 (-417 (-574))) |#2| (-622 |#2|))) (-15 -3323 ((-1286))))
+((-1564 (((-112) $) 32)) (-2356 (((-112) $) 34)) (-3150 (((-112) $) 35)) (-2509 (((-112) $) 38)) (-2165 (((-112) $) 33)) (-4158 (((-112) $) 37)) (-2943 (((-872) $) 20) (($ (-1172)) 31) (($ (-1190)) 26) (((-1190) $) 24) (((-1117) $) 23)) (-4179 (((-112) $) 36)) (-2982 (((-112) $ $) 17)))
+(((-444) (-13 (-623 (-872)) (-10 -8 (-15 -2943 ($ (-1172))) (-15 -2943 ($ (-1190))) (-15 -2943 ((-1190) $)) (-15 -2943 ((-1117) $)) (-15 -1564 ((-112) $)) (-15 -2165 ((-112) $)) (-15 -3150 ((-112) $)) (-15 -4158 ((-112) $)) (-15 -2509 ((-112) $)) (-15 -4179 ((-112) $)) (-15 -2356 ((-112) $)) (-15 -2982 ((-112) $ $))))) (T -444))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-444)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-444)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-444)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-444)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2982 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2943 ($ (-1172))) (-15 -2943 ($ (-1190))) (-15 -2943 ((-1190) $)) (-15 -2943 ((-1117) $)) (-15 -1564 ((-112) $)) (-15 -2165 ((-112) $)) (-15 -3150 ((-112) $)) (-15 -4158 ((-112) $)) (-15 -2509 ((-112) $)) (-15 -4179 ((-112) $)) (-15 -2356 ((-112) $)) (-15 -2982 ((-112) $ $))))
+((-3708 (((-3 (-428 (-1186 (-417 (-574)))) "failed") |#3|) 72)) (-3025 (((-428 |#3|) |#3|) 34)) (-1877 (((-3 (-428 (-1186 (-48))) "failed") |#3|) 46 (|has| |#2| (-1051 (-48))))) (-1700 (((-3 (|:| |overq| (-1186 (-417 (-574)))) (|:| |overan| (-1186 (-48))) (|:| -3601 (-112))) |#3|) 37)))
+(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -3025 ((-428 |#3|) |#3|)) (-15 -3708 ((-3 (-428 (-1186 (-417 (-574)))) "failed") |#3|)) (-15 -1700 ((-3 (|:| |overq| (-1186 (-417 (-574)))) (|:| |overan| (-1186 (-48))) (|:| -3601 (-112))) |#3|)) (IF (|has| |#2| (-1051 (-48))) (-15 -1877 ((-3 (-428 (-1186 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-566) (-1051 (-574))) (-440 |#1|) (-1257 |#2|)) (T -445))
+((-1877 (*1 *2 *3) (|partial| -12 (-4 *5 (-1051 (-48))) (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1186 (-48)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5)))) (-1700 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-3 (|:| |overq| (-1186 (-417 (-574)))) (|:| |overan| (-1186 (-48))) (|:| -3601 (-112)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5)))) (-3708 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1186 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5)))) (-3025 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5)))))
+(-10 -7 (-15 -3025 ((-428 |#3|) |#3|)) (-15 -3708 ((-3 (-428 (-1186 (-417 (-574)))) "failed") |#3|)) (-15 -1700 ((-3 (|:| |overq| (-1186 (-417 (-574)))) (|:| |overan| (-1186 (-48))) (|:| -3601 (-112))) |#3|)) (IF (|has| |#2| (-1051 (-48))) (-15 -1877 ((-3 (-428 (-1186 (-48))) "failed") |#3|)) |%noBranch|))
+((-2849 (((-112) $ $) NIL)) (-2596 (((-1172) $ (-1172)) NIL)) (-2759 (($ $ (-1172)) NIL)) (-3971 (((-1172) $) NIL)) (-3868 (((-398) (-398) (-398)) 17) (((-398) (-398)) 15)) (-1676 (($ (-398)) NIL) (($ (-398) (-1172)) NIL)) (-2032 (((-398) $) NIL)) (-2568 (((-1172) $) NIL)) (-3900 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1925 (((-1286) (-1172)) 9)) (-4138 (((-1286) (-1172)) 10)) (-3460 (((-1286)) 11)) (-2943 (((-872) $) NIL)) (-3568 (($ $) 39)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-446) (-13 (-373 (-398) (-1172)) (-10 -7 (-15 -3868 ((-398) (-398) (-398))) (-15 -3868 ((-398) (-398))) (-15 -1925 ((-1286) (-1172))) (-15 -4138 ((-1286) (-1172))) (-15 -3460 ((-1286)))))) (T -446))
+((-3868 (*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-3868 (*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-446)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-446)))) (-3460 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-446)))))
+(-13 (-373 (-398) (-1172)) (-10 -7 (-15 -3868 ((-398) (-398) (-398))) (-15 -3868 ((-398) (-398))) (-15 -1925 ((-1286) (-1172))) (-15 -4138 ((-1286) (-1172))) (-15 -3460 ((-1286)))))
+((-2849 (((-112) $ $) NIL)) (-3272 (((-3 (|:| |fst| (-444)) (|:| -2426 "void")) $) 11)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1525 (($) 35)) (-3802 (($) 41)) (-1966 (($) 37)) (-4054 (($) 39)) (-2951 (($) 36)) (-3096 (($) 38)) (-2952 (($) 40)) (-3484 (((-112) $) 8)) (-3829 (((-654 (-963 (-574))) $) 19)) (-2956 (($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-1190)) (-112)) 29) (($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-963 (-574))) (-112)) 30)) (-2943 (((-872) $) 24) (($ (-444)) 32)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-447) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-444))) (-15 -3272 ((-3 (|:| |fst| (-444)) (|:| -2426 "void")) $)) (-15 -3829 ((-654 (-963 (-574))) $)) (-15 -3484 ((-112) $)) (-15 -2956 ($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-1190)) (-112))) (-15 -2956 ($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-963 (-574))) (-112))) (-15 -1525 ($)) (-15 -2951 ($)) (-15 -1966 ($)) (-15 -3802 ($)) (-15 -3096 ($)) (-15 -4054 ($)) (-15 -2952 ($))))) (T -447))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *1 (-447)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-654 (-963 (-574)))) (-5 *1 (-447)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *3 (-654 (-1190))) (-5 *4 (-112)) (-5 *1 (-447)))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) (-1525 (*1 *1) (-5 *1 (-447))) (-2951 (*1 *1) (-5 *1 (-447))) (-1966 (*1 *1) (-5 *1 (-447))) (-3802 (*1 *1) (-5 *1 (-447))) (-3096 (*1 *1) (-5 *1 (-447))) (-4054 (*1 *1) (-5 *1 (-447))) (-2952 (*1 *1) (-5 *1 (-447))))
+(-13 (-1113) (-10 -8 (-15 -2943 ($ (-444))) (-15 -3272 ((-3 (|:| |fst| (-444)) (|:| -2426 "void")) $)) (-15 -3829 ((-654 (-963 (-574))) $)) (-15 -3484 ((-112) $)) (-15 -2956 ($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-1190)) (-112))) (-15 -2956 ($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-963 (-574))) (-112))) (-15 -1525 ($)) (-15 -2951 ($)) (-15 -1966 ($)) (-15 -3802 ($)) (-15 -3096 ($)) (-15 -4054 ($)) (-15 -2952 ($))))
+((-2849 (((-112) $ $) NIL)) (-2032 (((-1190) $) 8)) (-2568 (((-1172) $) 17)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 11)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 14)))
+(((-448 |#1|) (-13 (-1113) (-10 -8 (-15 -2032 ((-1190) $)))) (-1190)) (T -448))
+((-2032 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-448 *3)) (-14 *3 *2))))
+(-13 (-1113) (-10 -8 (-15 -2032 ((-1190) $))))
+((-2849 (((-112) $ $) NIL)) (-3140 (((-1131) $) 7)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 13)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 9)))
+(((-449) (-13 (-1113) (-10 -8 (-15 -3140 ((-1131) $))))) (T -449))
+((-3140 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-449)))))
+(-13 (-1113) (-10 -8 (-15 -3140 ((-1131) $))))
+((-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-1281 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 11)))
+(((-450) (-141)) (T -450))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-709))) (-4 *1 (-450)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) (-4 *1 (-450)))))
+(-13 (-405) (-10 -8 (-15 -2943 ($ (-1281 (-709)))) (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))))))
+(((-623 (-872)) . T) ((-405) . T) ((-1231) . T))
+((-1697 (((-3 $ "failed") (-1281 (-324 (-388)))) 21) (((-3 $ "failed") (-1281 (-324 (-574)))) 19) (((-3 $ "failed") (-1281 (-963 (-388)))) 17) (((-3 $ "failed") (-1281 (-963 (-574)))) 15) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 13) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 11)) (-2209 (($ (-1281 (-324 (-388)))) 22) (($ (-1281 (-324 (-574)))) 20) (($ (-1281 (-963 (-388)))) 18) (($ (-1281 (-963 (-574)))) 16) (($ (-1281 (-417 (-963 (-388))))) 14) (($ (-1281 (-417 (-963 (-574))))) 12)) (-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) 23)))
+(((-451) (-141)) (T -451))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338))))) (-4 *1 (-451)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-1281 (-324 (-388)))) (-4 *1 (-451)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-324 (-388)))) (-4 *1 (-451)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-1281 (-324 (-574)))) (-4 *1 (-451)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-324 (-574)))) (-4 *1 (-451)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-1281 (-963 (-388)))) (-4 *1 (-451)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-963 (-388)))) (-4 *1 (-451)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-1281 (-963 (-574)))) (-4 *1 (-451)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-963 (-574)))) (-4 *1 (-451)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 (-388))))) (-4 *1 (-451)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-417 (-963 (-388))))) (-4 *1 (-451)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 (-574))))) (-4 *1 (-451)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-417 (-963 (-574))))) (-4 *1 (-451)))))
+(-13 (-405) (-10 -8 (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))) (-15 -2209 ($ (-1281 (-324 (-388))))) (-15 -1697 ((-3 $ "failed") (-1281 (-324 (-388))))) (-15 -2209 ($ (-1281 (-324 (-574))))) (-15 -1697 ((-3 $ "failed") (-1281 (-324 (-574))))) (-15 -2209 ($ (-1281 (-963 (-388))))) (-15 -1697 ((-3 $ "failed") (-1281 (-963 (-388))))) (-15 -2209 ($ (-1281 (-963 (-574))))) (-15 -1697 ((-3 $ "failed") (-1281 (-963 (-574))))) (-15 -2209 ($ (-1281 (-417 (-963 (-388)))))) (-15 -1697 ((-3 $ "failed") (-1281 (-417 (-963 (-388)))))) (-15 -2209 ($ (-1281 (-417 (-963 (-574)))))) (-15 -1697 ((-3 $ "failed") (-1281 (-417 (-963 (-574))))))))
+(((-623 (-872)) . T) ((-405) . T) ((-1231) . T))
+((-3049 (((-112)) 18)) (-2145 (((-112) (-112)) 19)) (-3234 (((-112)) 14)) (-4140 (((-112) (-112)) 15)) (-2888 (((-112)) 16)) (-2159 (((-112) (-112)) 17)) (-1572 (((-932) (-932)) 22) (((-932)) 21)) (-2376 (((-781) (-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574))))) 52)) (-2367 (((-932) (-932)) 24) (((-932)) 23)) (-3142 (((-2 (|:| -3430 (-574)) (|:| -3948 (-654 |#1|))) |#1|) 94)) (-2640 (((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574))))))) 174)) (-2148 (((-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))) |#1| (-112)) 207)) (-4325 (((-428 |#1|) |#1| (-781) (-781)) 222) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 219) (((-428 |#1|) |#1| (-654 (-781))) 221) (((-428 |#1|) |#1| (-781)) 220) (((-428 |#1|) |#1|) 218)) (-1947 (((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781) (-112)) 224) (((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781)) 225) (((-3 |#1| "failed") (-932) |#1| (-654 (-781))) 227) (((-3 |#1| "failed") (-932) |#1| (-781)) 226) (((-3 |#1| "failed") (-932) |#1|) 228)) (-4220 (((-428 |#1|) |#1| (-781) (-781)) 217) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 213) (((-428 |#1|) |#1| (-654 (-781))) 215) (((-428 |#1|) |#1| (-781)) 214) (((-428 |#1|) |#1|) 212)) (-2399 (((-112) |#1|) 44)) (-3081 (((-747 (-781)) (-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574))))) 99)) (-3316 (((-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))) |#1| (-112) (-1115 (-781)) (-781)) 211)))
+(((-452 |#1|) (-10 -7 (-15 -2640 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))))) (-15 -3081 ((-747 (-781)) (-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))))) (-15 -2367 ((-932))) (-15 -2367 ((-932) (-932))) (-15 -1572 ((-932))) (-15 -1572 ((-932) (-932))) (-15 -2376 ((-781) (-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))))) (-15 -3142 ((-2 (|:| -3430 (-574)) (|:| -3948 (-654 |#1|))) |#1|)) (-15 -3049 ((-112))) (-15 -2145 ((-112) (-112))) (-15 -3234 ((-112))) (-15 -4140 ((-112) (-112))) (-15 -2399 ((-112) |#1|)) (-15 -2888 ((-112))) (-15 -2159 ((-112) (-112))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4220 ((-428 |#1|) |#1| (-781))) (-15 -4220 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4220 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4220 ((-428 |#1|) |#1| (-781) (-781))) (-15 -4325 ((-428 |#1|) |#1|)) (-15 -4325 ((-428 |#1|) |#1| (-781))) (-15 -4325 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4325 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4325 ((-428 |#1|) |#1| (-781) (-781))) (-15 -1947 ((-3 |#1| "failed") (-932) |#1|)) (-15 -1947 ((-3 |#1| "failed") (-932) |#1| (-781))) (-15 -1947 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)))) (-15 -1947 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781))) (-15 -1947 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781) (-112))) (-15 -2148 ((-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))) |#1| (-112))) (-15 -3316 ((-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))) |#1| (-112) (-1115 (-781)) (-781)))) (-1257 (-574))) (T -452))
+((-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1115 (-781))) (-5 *6 (-781)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| *3) (|:| -3963 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| *3) (|:| -3963 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-1947 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-1947 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-1947 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-1947 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-932)) (-5 *4 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-1947 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-932)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-4325 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4325 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2888 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2399 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3234 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3049 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3142 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3430 (-574)) (|:| -3948 (-654 *3)))) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4220 *4) (|:| -1784 (-574))))) (-4 *4 (-1257 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4)))) (-1572 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-1572 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2367 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4220 *4) (|:| -1784 (-574))))) (-4 *4 (-1257 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| *4) (|:| -3963 (-574))))))) (-4 *4 (-1257 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4)))))
+(-10 -7 (-15 -2640 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))))) (-15 -3081 ((-747 (-781)) (-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))))) (-15 -2367 ((-932))) (-15 -2367 ((-932) (-932))) (-15 -1572 ((-932))) (-15 -1572 ((-932) (-932))) (-15 -2376 ((-781) (-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))))) (-15 -3142 ((-2 (|:| -3430 (-574)) (|:| -3948 (-654 |#1|))) |#1|)) (-15 -3049 ((-112))) (-15 -2145 ((-112) (-112))) (-15 -3234 ((-112))) (-15 -4140 ((-112) (-112))) (-15 -2399 ((-112) |#1|)) (-15 -2888 ((-112))) (-15 -2159 ((-112) (-112))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4220 ((-428 |#1|) |#1| (-781))) (-15 -4220 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4220 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4220 ((-428 |#1|) |#1| (-781) (-781))) (-15 -4325 ((-428 |#1|) |#1|)) (-15 -4325 ((-428 |#1|) |#1| (-781))) (-15 -4325 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4325 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4325 ((-428 |#1|) |#1| (-781) (-781))) (-15 -1947 ((-3 |#1| "failed") (-932) |#1|)) (-15 -1947 ((-3 |#1| "failed") (-932) |#1| (-781))) (-15 -1947 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)))) (-15 -1947 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781))) (-15 -1947 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781) (-112))) (-15 -2148 ((-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))) |#1| (-112))) (-15 -3316 ((-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))) |#1| (-112) (-1115 (-781)) (-781))))
+((-3516 (((-574) |#2|) 52) (((-574) |#2| (-781)) 51)) (-2973 (((-574) |#2|) 64)) (-1428 ((|#3| |#2|) 26)) (-1652 ((|#3| |#2| (-932)) 15)) (-4135 ((|#3| |#2|) 16)) (-4419 ((|#3| |#2|) 9)) (-1840 ((|#3| |#2|) 10)) (-2696 ((|#3| |#2| (-932)) 71) ((|#3| |#2|) 34)) (-3698 (((-574) |#2|) 66)))
+(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -3698 ((-574) |#2|)) (-15 -2696 (|#3| |#2|)) (-15 -2696 (|#3| |#2| (-932))) (-15 -2973 ((-574) |#2|)) (-15 -3516 ((-574) |#2| (-781))) (-15 -3516 ((-574) |#2|)) (-15 -1652 (|#3| |#2| (-932))) (-15 -1428 (|#3| |#2|)) (-15 -4419 (|#3| |#2|)) (-15 -1840 (|#3| |#2|)) (-15 -4135 (|#3| |#2|))) (-1062) (-1257 |#1|) (-13 (-414) (-1051 |#1|) (-372) (-1216) (-292))) (T -453))
+((-4135 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-1840 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-4419 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-1428 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *2 (-13 (-414) (-1051 *5) (-372) (-1216) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1257 *5)))) (-3516 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1257 *4)) (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1257 *5)) (-4 *6 (-13 (-414) (-1051 *5) (-372) (-1216) (-292))))) (-2973 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1257 *4)) (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))))) (-2696 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *2 (-13 (-414) (-1051 *5) (-372) (-1216) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1257 *5)))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1257 *4)) (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))))))
+(-10 -7 (-15 -3698 ((-574) |#2|)) (-15 -2696 (|#3| |#2|)) (-15 -2696 (|#3| |#2| (-932))) (-15 -2973 ((-574) |#2|)) (-15 -3516 ((-574) |#2| (-781))) (-15 -3516 ((-574) |#2|)) (-15 -1652 (|#3| |#2| (-932))) (-15 -1428 (|#3| |#2|)) (-15 -4419 (|#3| |#2|)) (-15 -1840 (|#3| |#2|)) (-15 -4135 (|#3| |#2|)))
+((-4242 ((|#2| (-1281 |#1|)) 42)) (-3182 ((|#2| |#2| |#1|) 58)) (-2525 ((|#2| |#2| |#1|) 49)) (-4423 ((|#2| |#2|) 44)) (-3933 (((-112) |#2|) 32)) (-1921 (((-654 |#2|) (-932) (-428 |#2|)) 21)) (-1947 ((|#2| (-932) (-428 |#2|)) 25)) (-3081 (((-747 (-781)) (-428 |#2|)) 29)))
+(((-454 |#1| |#2|) (-10 -7 (-15 -3933 ((-112) |#2|)) (-15 -4242 (|#2| (-1281 |#1|))) (-15 -4423 (|#2| |#2|)) (-15 -2525 (|#2| |#2| |#1|)) (-15 -3182 (|#2| |#2| |#1|)) (-15 -3081 ((-747 (-781)) (-428 |#2|))) (-15 -1947 (|#2| (-932) (-428 |#2|))) (-15 -1921 ((-654 |#2|) (-932) (-428 |#2|)))) (-1062) (-1257 |#1|)) (T -454))
+((-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-428 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-1062)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6)))) (-1947 (*1 *2 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-428 *2)) (-4 *2 (-1257 *5)) (-5 *1 (-454 *5 *2)) (-4 *5 (-1062)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-428 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-1062)) (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5)))) (-3182 (*1 *2 *2 *3) (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3)))) (-2525 (*1 *2 *2 *3) (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3)))) (-4423 (*1 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-1062)) (-4 *2 (-1257 *4)) (-5 *1 (-454 *4 *2)))) (-3933 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -3933 ((-112) |#2|)) (-15 -4242 (|#2| (-1281 |#1|))) (-15 -4423 (|#2| |#2|)) (-15 -2525 (|#2| |#2| |#1|)) (-15 -3182 (|#2| |#2| |#1|)) (-15 -3081 ((-747 (-781)) (-428 |#2|))) (-15 -1947 (|#2| (-932) (-428 |#2|))) (-15 -1921 ((-654 |#2|) (-932) (-428 |#2|))))
+((-3146 (((-781)) 59)) (-3445 (((-781)) 29 (|has| |#1| (-414))) (((-781) (-781)) 28 (|has| |#1| (-414)))) (-1661 (((-574) |#1|) 25 (|has| |#1| (-414)))) (-4318 (((-574) |#1|) 27 (|has| |#1| (-414)))) (-2345 (((-781)) 58) (((-781) (-781)) 57)) (-4326 ((|#1| (-781) (-574)) 37)) (-3270 (((-1286)) 61)))
+(((-455 |#1|) (-10 -7 (-15 -4326 (|#1| (-781) (-574))) (-15 -2345 ((-781) (-781))) (-15 -2345 ((-781))) (-15 -3146 ((-781))) (-15 -3270 ((-1286))) (IF (|has| |#1| (-414)) (PROGN (-15 -4318 ((-574) |#1|)) (-15 -1661 ((-574) |#1|)) (-15 -3445 ((-781) (-781))) (-15 -3445 ((-781)))) |%noBranch|)) (-1062)) (T -455))
+((-3445 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))) (-3445 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))) (-1661 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))) (-4318 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))) (-3270 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))) (-3146 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))) (-2345 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))) (-2345 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))) (-4326 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1062)))))
+(-10 -7 (-15 -4326 (|#1| (-781) (-574))) (-15 -2345 ((-781) (-781))) (-15 -2345 ((-781))) (-15 -3146 ((-781))) (-15 -3270 ((-1286))) (IF (|has| |#1| (-414)) (PROGN (-15 -4318 ((-574) |#1|)) (-15 -1661 ((-574) |#1|)) (-15 -3445 ((-781) (-781))) (-15 -3445 ((-781)))) |%noBranch|))
+((-1824 (((-654 (-574)) (-574)) 76)) (-1654 (((-112) (-171 (-574))) 82)) (-4220 (((-428 (-171 (-574))) (-171 (-574))) 75)))
+(((-456) (-10 -7 (-15 -4220 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -1824 ((-654 (-574)) (-574))) (-15 -1654 ((-112) (-171 (-574)))))) (T -456))
+((-1654 (*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) (-1824 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574)))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456)) (-5 *3 (-171 (-574))))))
+(-10 -7 (-15 -4220 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -1824 ((-654 (-574)) (-574))) (-15 -1654 ((-112) (-171 (-574)))))
+((-4336 ((|#4| |#4| (-654 |#4|)) 82)) (-3807 (((-654 |#4|) (-654 |#4|) (-1172) (-1172)) 22) (((-654 |#4|) (-654 |#4|) (-1172)) 21) (((-654 |#4|) (-654 |#4|)) 13)))
+(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4336 (|#4| |#4| (-654 |#4|))) (-15 -3807 ((-654 |#4|) (-654 |#4|))) (-15 -3807 ((-654 |#4|) (-654 |#4|) (-1172))) (-15 -3807 ((-654 |#4|) (-654 |#4|) (-1172) (-1172)))) (-315) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -457))
+((-3807 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-3807 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) (-4336 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2)))))
+(-10 -7 (-15 -4336 (|#4| |#4| (-654 |#4|))) (-15 -3807 ((-654 |#4|) (-654 |#4|))) (-15 -3807 ((-654 |#4|) (-654 |#4|) (-1172))) (-15 -3807 ((-654 |#4|) (-654 |#4|) (-1172) (-1172))))
+((-3694 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 89) (((-654 (-654 |#4|)) (-654 |#4|)) 88) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112)) 82) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|)) 83)) (-2662 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 55) (((-654 (-654 |#4|)) (-654 |#4|)) 77)))
+(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2662 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2662 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -3694 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -3694 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -3694 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3694 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) (-13 (-315) (-148)) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -458))
+((-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3694 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-3694 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-2662 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
+(-10 -7 (-15 -2662 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2662 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -3694 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -3694 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -3694 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3694 ((-654 (-654 |#4|)) (-654 |#4|) (-112))))
+((-2372 (((-781) |#4|) 12)) (-3550 (((-654 (-2 (|:| |totdeg| (-781)) (|:| -1900 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -1900 |#4|)))) 39)) (-1528 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3804 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-4289 ((|#4| |#4| (-654 |#4|)) 54)) (-3920 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|)) 96)) (-2377 (((-1286) |#4|) 59)) (-4019 (((-1286) (-654 |#4|)) 69)) (-1375 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574)) 66)) (-3727 (((-1286) (-574)) 110)) (-2303 (((-654 |#4|) (-654 |#4|)) 104)) (-2527 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -1900 |#4|)) |#4| (-781)) 31)) (-1798 (((-574) |#4|) 109)) (-4170 ((|#4| |#4|) 37)) (-1550 (((-654 |#4|) (-654 |#4|) (-574) (-574)) 74)) (-1880 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574)) 123)) (-2468 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1420 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2674 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3351 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1915 (((-112) |#2| |#2|) 75)) (-3792 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2639 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2962 ((|#4| |#4| (-654 |#4|)) 97)))
+(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2962 (|#4| |#4| (-654 |#4|))) (-15 -4289 (|#4| |#4| (-654 |#4|))) (-15 -1550 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -1420 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1915 ((-112) |#2| |#2|)) (-15 -2639 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3792 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3351 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2674 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3920 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -4170 (|#4| |#4|)) (-15 -3550 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -1900 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -1900 |#4|))))) (-15 -3804 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1528 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2303 ((-654 |#4|) (-654 |#4|))) (-15 -1798 ((-574) |#4|)) (-15 -2377 ((-1286) |#4|)) (-15 -1375 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -1880 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -4019 ((-1286) (-654 |#4|))) (-15 -3727 ((-1286) (-574))) (-15 -2468 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2527 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -1900 |#4|)) |#4| (-781))) (-15 -2372 ((-781) |#4|))) (-462) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -459))
+((-2372 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-2527 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -1900 *4))) (-5 *5 (-781)) (-4 *4 (-960 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-459 *6 *7 *8 *4)))) (-2468 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1880 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-1375 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-2377 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-1798 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-1528 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-803)) (-4 *2 (-960 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) (-4 *4 (-462)) (-4 *6 (-860)))) (-3550 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -1900 *3)))) (-5 *4 (-781)) (-4 *3 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3)))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5)))) (-3920 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-459 *5 *6 *7 *3)))) (-2674 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-803)) (-4 *6 (-960 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *4 *3 *5 *6)))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3792 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-803)) (-4 *3 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *3)))) (-2639 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-960 *4 *3 *5)))) (-1915 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-960 *4 *3 *5)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1550 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) (-4289 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))) (-2962 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2962 (|#4| |#4| (-654 |#4|))) (-15 -4289 (|#4| |#4| (-654 |#4|))) (-15 -1550 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -1420 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1915 ((-112) |#2| |#2|)) (-15 -2639 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3792 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3351 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2674 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3920 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -4170 (|#4| |#4|)) (-15 -3550 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -1900 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -1900 |#4|))))) (-15 -3804 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1528 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2303 ((-654 |#4|) (-654 |#4|))) (-15 -1798 ((-574) |#4|)) (-15 -2377 ((-1286) |#4|)) (-15 -1375 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -1880 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -4019 ((-1286) (-654 |#4|))) (-15 -3727 ((-1286) (-574))) (-15 -2468 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2527 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -1900 |#4|)) |#4| (-781))) (-15 -2372 ((-781) |#4|)))
+((-1737 ((|#4| |#4| (-654 |#4|)) 20 (|has| |#1| (-372)))) (-2850 (((-654 |#4|) (-654 |#4|) (-1172) (-1172)) 46) (((-654 |#4|) (-654 |#4|) (-1172)) 45) (((-654 |#4|) (-654 |#4|)) 34)))
+(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2850 ((-654 |#4|) (-654 |#4|))) (-15 -2850 ((-654 |#4|) (-654 |#4|) (-1172))) (-15 -2850 ((-654 |#4|) (-654 |#4|) (-1172) (-1172))) (IF (|has| |#1| (-372)) (-15 -1737 (|#4| |#4| (-654 |#4|))) |%noBranch|)) (-462) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -460))
+((-1737 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-372)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *2)))) (-2850 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2850 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2850 ((-654 |#4|) (-654 |#4|))) (-15 -2850 ((-654 |#4|) (-654 |#4|) (-1172))) (-15 -2850 ((-654 |#4|) (-654 |#4|) (-1172) (-1172))) (IF (|has| |#1| (-372)) (-15 -1737 (|#4| |#4| (-654 |#4|))) |%noBranch|))
+((-2834 (($ $ $) 14) (($ (-654 $)) 21)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 46)) (-2874 (($ $ $) NIL) (($ (-654 $)) 22)))
+(((-461 |#1|) (-10 -8 (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -2834 (|#1| (-654 |#1|))) (-15 -2834 (|#1| |#1| |#1|)) (-15 -2874 (|#1| (-654 |#1|))) (-15 -2874 (|#1| |#1| |#1|))) (-462)) (T -461))
+NIL
+(-10 -8 (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -2834 (|#1| (-654 |#1|))) (-15 -2834 (|#1| |#1| |#1|)) (-15 -2874 (|#1| (-654 |#1|))) (-15 -2874 (|#1| |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-462) (-141)) (T -462))
+((-2874 (*1 *1 *1 *1) (-4 *1 (-462))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-2834 (*1 *1 *1 *1) (-4 *1 (-462))) (-2834 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-2587 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-462)))))
+(-13 (-566) (-10 -8 (-15 -2874 ($ $ $)) (-15 -2874 ($ (-654 $))) (-15 -2834 ($ $ $)) (-15 -2834 ($ (-654 $))) (-15 -2587 ((-1186 $) (-1186 $) (-1186 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1708 (((-3 $ "failed")) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-2750 (((-1281 (-699 (-417 (-963 |#1|)))) (-1281 $)) NIL) (((-1281 (-699 (-417 (-963 |#1|))))) NIL)) (-4136 (((-1281 $)) NIL)) (-3670 (($) NIL T CONST)) (-4192 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-3099 (((-699 (-417 (-963 |#1|))) (-1281 $)) NIL) (((-699 (-417 (-963 |#1|)))) NIL)) (-4029 (((-417 (-963 |#1|)) $) NIL)) (-2263 (((-699 (-417 (-963 |#1|))) $ (-1281 $)) NIL) (((-699 (-417 (-963 |#1|))) $) NIL)) (-4369 (((-3 $ "failed") $) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-4014 (((-1186 (-963 (-417 (-963 |#1|))))) NIL (|has| (-417 (-963 |#1|)) (-372))) (((-1186 (-417 (-963 |#1|)))) 90 (|has| |#1| (-566)))) (-2652 (($ $ (-932)) NIL)) (-2856 (((-417 (-963 |#1|)) $) NIL)) (-2517 (((-1186 (-417 (-963 |#1|))) $) 88 (|has| (-417 (-963 |#1|)) (-566)))) (-1328 (((-417 (-963 |#1|)) (-1281 $)) NIL) (((-417 (-963 |#1|))) NIL)) (-1510 (((-1186 (-417 (-963 |#1|))) $) NIL)) (-3063 (((-112)) NIL)) (-3003 (($ (-1281 (-417 (-963 |#1|))) (-1281 $)) 114) (($ (-1281 (-417 (-963 |#1|)))) NIL)) (-1950 (((-3 $ "failed") $) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-3584 (((-932)) NIL)) (-3715 (((-112)) NIL)) (-2023 (($ $ (-932)) NIL)) (-2154 (((-112)) NIL)) (-3644 (((-112)) NIL)) (-4314 (((-112)) NIL)) (-1388 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL)) (-3546 (((-3 $ "failed")) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-1658 (((-699 (-417 (-963 |#1|))) (-1281 $)) NIL) (((-699 (-417 (-963 |#1|)))) NIL)) (-2799 (((-417 (-963 |#1|)) $) NIL)) (-2360 (((-699 (-417 (-963 |#1|))) $ (-1281 $)) NIL) (((-699 (-417 (-963 |#1|))) $) NIL)) (-1792 (((-3 $ "failed") $) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-3860 (((-1186 (-963 (-417 (-963 |#1|))))) NIL (|has| (-417 (-963 |#1|)) (-372))) (((-1186 (-417 (-963 |#1|)))) 89 (|has| |#1| (-566)))) (-3702 (($ $ (-932)) NIL)) (-3125 (((-417 (-963 |#1|)) $) NIL)) (-3258 (((-1186 (-417 (-963 |#1|))) $) 85 (|has| (-417 (-963 |#1|)) (-566)))) (-1734 (((-417 (-963 |#1|)) (-1281 $)) NIL) (((-417 (-963 |#1|))) NIL)) (-1749 (((-1186 (-417 (-963 |#1|))) $) NIL)) (-1894 (((-112)) NIL)) (-2568 (((-1172) $) NIL)) (-3532 (((-112)) NIL)) (-3649 (((-112)) NIL)) (-1593 (((-112)) NIL)) (-3966 (((-1133) $) NIL)) (-2974 (((-417 (-963 |#1|)) $ $) 76 (|has| |#1| (-566)))) (-2929 (((-417 (-963 |#1|)) $) 100 (|has| |#1| (-566)))) (-1893 (((-417 (-963 |#1|)) $) 104 (|has| |#1| (-566)))) (-1626 (((-1186 (-417 (-963 |#1|))) $) 94 (|has| |#1| (-566)))) (-3843 (((-417 (-963 |#1|))) 77 (|has| |#1| (-566)))) (-1807 (((-417 (-963 |#1|)) $ $) 69 (|has| |#1| (-566)))) (-1436 (((-417 (-963 |#1|)) $) 99 (|has| |#1| (-566)))) (-3387 (((-417 (-963 |#1|)) $) 103 (|has| |#1| (-566)))) (-3993 (((-1186 (-417 (-963 |#1|))) $) 93 (|has| |#1| (-566)))) (-1601 (((-417 (-963 |#1|))) 73 (|has| |#1| (-566)))) (-1442 (($) 110) (($ (-1190)) 118) (($ (-1281 (-1190))) 117) (($ (-1281 $)) 105) (($ (-1190) (-1281 $)) 116) (($ (-1281 (-1190)) (-1281 $)) 115)) (-1383 (((-112)) NIL)) (-2200 (((-417 (-963 |#1|)) $ (-574)) NIL)) (-3676 (((-1281 (-417 (-963 |#1|))) $ (-1281 $)) 107) (((-699 (-417 (-963 |#1|))) (-1281 $) (-1281 $)) NIL) (((-1281 (-417 (-963 |#1|))) $) 43) (((-699 (-417 (-963 |#1|))) (-1281 $)) NIL)) (-1837 (((-1281 (-417 (-963 |#1|))) $) NIL) (($ (-1281 (-417 (-963 |#1|)))) 40)) (-2528 (((-654 (-963 (-417 (-963 |#1|)))) (-1281 $)) NIL) (((-654 (-963 (-417 (-963 |#1|))))) NIL) (((-654 (-963 |#1|)) (-1281 $)) 108 (|has| |#1| (-566))) (((-654 (-963 |#1|))) 109 (|has| |#1| (-566)))) (-3647 (($ $ $) NIL)) (-2910 (((-112)) NIL)) (-2943 (((-872) $) NIL) (($ (-1281 (-417 (-963 |#1|)))) NIL)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) 65)) (-3432 (((-654 (-1281 (-417 (-963 |#1|))))) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-3243 (($ $ $ $) NIL)) (-2333 (((-112)) NIL)) (-2901 (($ (-699 (-417 (-963 |#1|))) $) NIL)) (-2309 (($ $ $) NIL)) (-2210 (((-112)) NIL)) (-3999 (((-112)) NIL)) (-3784 (((-112)) NIL)) (-2134 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) 106)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 61) (($ $ (-417 (-963 |#1|))) NIL) (($ (-417 (-963 |#1|)) $) NIL) (($ (-1155 |#2| (-417 (-963 |#1|))) $) NIL)))
+(((-463 |#1| |#2| |#3| |#4|) (-13 (-427 (-417 (-963 |#1|))) (-658 (-1155 |#2| (-417 (-963 |#1|)))) (-10 -8 (-15 -2943 ($ (-1281 (-417 (-963 |#1|))))) (-15 -1388 ((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed"))) (-15 -4192 ((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed"))) (-15 -1442 ($)) (-15 -1442 ($ (-1190))) (-15 -1442 ($ (-1281 (-1190)))) (-15 -1442 ($ (-1281 $))) (-15 -1442 ($ (-1190) (-1281 $))) (-15 -1442 ($ (-1281 (-1190)) (-1281 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -3860 ((-1186 (-417 (-963 |#1|))))) (-15 -3993 ((-1186 (-417 (-963 |#1|))) $)) (-15 -1436 ((-417 (-963 |#1|)) $)) (-15 -3387 ((-417 (-963 |#1|)) $)) (-15 -4014 ((-1186 (-417 (-963 |#1|))))) (-15 -1626 ((-1186 (-417 (-963 |#1|))) $)) (-15 -2929 ((-417 (-963 |#1|)) $)) (-15 -1893 ((-417 (-963 |#1|)) $)) (-15 -1807 ((-417 (-963 |#1|)) $ $)) (-15 -1601 ((-417 (-963 |#1|)))) (-15 -2974 ((-417 (-963 |#1|)) $ $)) (-15 -3843 ((-417 (-963 |#1|)))) (-15 -2528 ((-654 (-963 |#1|)) (-1281 $))) (-15 -2528 ((-654 (-963 |#1|))))) |%noBranch|))) (-174) (-932) (-654 (-1190)) (-1281 (-699 |#1|))) (T -463))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 *3)))) (-4 *3 (-174)) (-14 *6 (-1281 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))))) (-1388 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -2722 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-4192 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -2722 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-1442 (*1 *1) (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-932)) (-14 *4 (-654 (-1190))) (-14 *5 (-1281 (-699 *2))))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 *2)) (-14 *6 (-1281 (-699 *3))))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-1281 (-1190))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-1281 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-1442 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-932)) (-14 *6 (-654 *2)) (-14 *7 (-1281 (-699 *4))))) (-1442 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 (-1190))) (-5 *3 (-1281 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-932)) (-14 *6 (-654 (-1190))) (-14 *7 (-1281 (-699 *4))))) (-3860 (*1 *2) (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-4014 (*1 *2) (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-1807 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-1601 (*1 *2) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-2974 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3843 (*1 *2) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-1281 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-963 *4))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) (-14 *5 (-932)) (-14 *6 (-654 (-1190))) (-14 *7 (-1281 (-699 *4))))) (-2528 (*1 *2) (-12 (-5 *2 (-654 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(-13 (-427 (-417 (-963 |#1|))) (-658 (-1155 |#2| (-417 (-963 |#1|)))) (-10 -8 (-15 -2943 ($ (-1281 (-417 (-963 |#1|))))) (-15 -1388 ((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed"))) (-15 -4192 ((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed"))) (-15 -1442 ($)) (-15 -1442 ($ (-1190))) (-15 -1442 ($ (-1281 (-1190)))) (-15 -1442 ($ (-1281 $))) (-15 -1442 ($ (-1190) (-1281 $))) (-15 -1442 ($ (-1281 (-1190)) (-1281 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -3860 ((-1186 (-417 (-963 |#1|))))) (-15 -3993 ((-1186 (-417 (-963 |#1|))) $)) (-15 -1436 ((-417 (-963 |#1|)) $)) (-15 -3387 ((-417 (-963 |#1|)) $)) (-15 -4014 ((-1186 (-417 (-963 |#1|))))) (-15 -1626 ((-1186 (-417 (-963 |#1|))) $)) (-15 -2929 ((-417 (-963 |#1|)) $)) (-15 -1893 ((-417 (-963 |#1|)) $)) (-15 -1807 ((-417 (-963 |#1|)) $ $)) (-15 -1601 ((-417 (-963 |#1|)))) (-15 -2974 ((-417 (-963 |#1|)) $ $)) (-15 -3843 ((-417 (-963 |#1|)))) (-15 -2528 ((-654 (-963 |#1|)) (-1281 $))) (-15 -2528 ((-654 (-963 |#1|))))) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 18)) (-4355 (((-654 (-874 |#1|)) $) 87)) (-4194 (((-1186 $) $ (-874 |#1|)) 52) (((-1186 |#2|) $) 138)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2814 (($ $) NIL (|has| |#2| (-566)))) (-2425 (((-112) $) NIL (|has| |#2| (-566)))) (-2044 (((-781) $) 27) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4348 (($ $) NIL (|has| |#2| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) 50) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2209 ((|#2| $) 48) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-874 |#1|) $) NIL)) (-2800 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-1398 (($ $ (-654 (-574))) 93)) (-1392 (($ $) 80)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#2| (-920)))) (-3157 (($ $ |#2| |#3| $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) 65)) (-4345 (($ (-1186 |#2|) (-874 |#1|)) 143) (($ (-1186 $) (-874 |#1|)) 58)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) 68)) (-4335 (($ |#2| |#3|) 35) (($ $ (-874 |#1|) (-781)) 37) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-874 |#1|)) NIL)) (-2382 ((|#3| $) NIL) (((-781) $ (-874 |#1|)) 56) (((-654 (-781)) $ (-654 (-874 |#1|))) 63)) (-1541 (($ (-1 |#3| |#3|) $) NIL)) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-4045 (((-3 (-874 |#1|) "failed") $) 45)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) 47)) (-2834 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2568 (((-1172) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2524 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 46)) (-1349 ((|#2| $) 136)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) 149 (|has| |#2| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) 100) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) 106) (($ $ (-874 |#1|) $) 98) (($ $ (-654 (-874 |#1|)) (-654 $)) 124)) (-1415 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-874 |#1|)) 59) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-1784 ((|#3| $) 79) (((-781) $ (-874 |#1|)) 42) (((-654 (-781)) $ (-654 (-874 |#1|))) 62)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1607 ((|#2| $) 145 (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) 174) (($ (-574)) NIL) (($ |#2|) 99) (($ (-874 |#1|)) 39) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3123 (((-654 |#2|) $) NIL)) (-3344 ((|#2| $ |#3|) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2134 (($) 22 T CONST)) (-2146 (($) 31 T CONST)) (-3611 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) 76 (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 131)) (** (($ $ (-932)) NIL) (($ $ (-781)) 129)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 36) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) 75) (($ $ |#2|) NIL)))
+(((-464 |#1| |#2| |#3|) (-13 (-960 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -1398 ($ $ (-654 (-574)))))) (-654 (-1190)) (-1062) (-244 (-2863 |#1|) (-781))) (T -464))
+((-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1190))) (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-244 (-2863 *3) (-781))))))
+(-13 (-960 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -1398 ($ $ (-654 (-574))))))
+((-4234 (((-112) |#1| (-654 |#2|)) 91)) (-1704 (((-3 (-1281 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|)) 100)) (-4084 (((-3 (-654 |#2|) "failed") |#2| |#1| (-1281 (-654 |#2|))) 102)) (-2348 ((|#2| |#2| |#1|) 35)) (-4306 (((-781) |#2| (-654 |#2|)) 26)))
+(((-465 |#1| |#2|) (-10 -7 (-15 -2348 (|#2| |#2| |#1|)) (-15 -4306 ((-781) |#2| (-654 |#2|))) (-15 -1704 ((-3 (-1281 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -4084 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1281 (-654 |#2|)))) (-15 -4234 ((-112) |#1| (-654 |#2|)))) (-315) (-1257 |#1|)) (T -465))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-1257 *3)) (-4 *3 (-315)) (-5 *2 (-112)) (-5 *1 (-465 *3 *5)))) (-4084 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1281 (-654 *3))) (-4 *4 (-315)) (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1257 *4)))) (-1704 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1257 *4)) (-5 *2 (-1281 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6)))) (-4306 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-315)) (-5 *2 (-781)) (-5 *1 (-465 *5 *3)))) (-2348 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1257 *3)))))
+(-10 -7 (-15 -2348 (|#2| |#2| |#1|)) (-15 -4306 ((-781) |#2| (-654 |#2|))) (-15 -1704 ((-3 (-1281 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -4084 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1281 (-654 |#2|)))) (-15 -4234 ((-112) |#1| (-654 |#2|))))
+((-4220 (((-428 |#5|) |#5|) 24)))
+(((-466 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4220 ((-428 |#5|) |#5|))) (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190))))) (-803) (-566) (-566) (-960 |#4| |#2| |#1|)) (T -466))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190)))))) (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566)) (-4 *3 (-960 *7 *5 *4)))))
+(-10 -7 (-15 -4220 ((-428 |#5|) |#5|)))
+((-3158 ((|#3|) 38)) (-2587 (((-1186 |#4|) (-1186 |#4|) (-1186 |#4|)) 34)))
+(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2587 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -3158 (|#3|))) (-803) (-860) (-920) (-960 |#3| |#1| |#2|)) (T -467))
+((-3158 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-920)) (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-960 *2 *3 *4)))) (-2587 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-920)) (-5 *1 (-467 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2587 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -3158 (|#3|)))
+((-4220 (((-428 (-1186 |#1|)) (-1186 |#1|)) 43)))
+(((-468 |#1|) (-10 -7 (-15 -4220 ((-428 (-1186 |#1|)) (-1186 |#1|)))) (-315)) (T -468))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1186 *4))) (-5 *1 (-468 *4)) (-5 *3 (-1186 *4)))))
+(-10 -7 (-15 -4220 ((-428 (-1186 |#1|)) (-1186 |#1|))))
+((-4402 (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-781))) 44) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-781))) 43) (((-52) |#2| (-1190) (-302 |#2|)) 36) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 29)) (-3623 (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))) 88) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))) 87) (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574))) 86) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574))) 85) (((-52) |#2| (-1190) (-302 |#2|)) 80) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 79)) (-4424 (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))) 74) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))) 72)) (-4413 (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574))) 51) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574))) 50)))
+(((-469 |#1| |#2|) (-10 -7 (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4402 ((-52) |#2| (-1190) (-302 |#2|))) (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-781)))) (-15 -4402 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-781)))) (-15 -4413 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574)))) (-15 -4413 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574)))) (-15 -4424 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -4424 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -3623 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|))) (-15 -3623 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574)))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574)))) (-15 -3623 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))))) (-13 (-566) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -469))
+((-3623 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *8))) (-4 *8 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-3623 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1248 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-3623 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-3623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-574))) (-4 *7 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-3623 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))) (-4424 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *8))) (-4 *8 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-4424 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1248 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-4413 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-574))) (-4 *7 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4402 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-781))) (-4 *3 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-781))) (-4 *7 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))))
+(-10 -7 (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4402 ((-52) |#2| (-1190) (-302 |#2|))) (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-781)))) (-15 -4402 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-781)))) (-15 -4413 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574)))) (-15 -4413 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574)))) (-15 -4424 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -4424 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -3623 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|))) (-15 -3623 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574)))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574)))) (-15 -3623 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))))
+((-2348 ((|#2| |#2| |#1|) 15)) (-2993 (((-654 |#2|) |#2| (-654 |#2|) |#1| (-932)) 82)) (-2013 (((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-932)) 72)))
+(((-470 |#1| |#2|) (-10 -7 (-15 -2013 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-932))) (-15 -2993 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-932))) (-15 -2348 (|#2| |#2| |#1|))) (-315) (-1257 |#1|)) (T -470))
+((-2348 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1257 *3)))) (-2993 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-654 *3)) (-5 *5 (-932)) (-4 *3 (-1257 *4)) (-4 *4 (-315)) (-5 *1 (-470 *4 *3)))) (-2013 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-932)) (-4 *5 (-315)) (-4 *3 (-1257 *5)) (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3)))))
+(-10 -7 (-15 -2013 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-932))) (-15 -2993 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-932))) (-15 -2348 (|#2| |#2| |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 28)) (-3290 (($ |#3|) 25)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1392 (($ $) 32)) (-3214 (($ |#2| |#4| $) 33)) (-4335 (($ |#2| (-723 |#3| |#4| |#5|)) 24)) (-1359 (((-723 |#3| |#4| |#5|) $) 15)) (-2187 ((|#3| $) 19)) (-2895 ((|#4| $) 17)) (-1370 ((|#2| $) 29)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2431 (($ |#2| |#3| |#4|) 26)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 36 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 34)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-471 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1370 (|#2| $)) (-15 -1359 ((-723 |#3| |#4| |#5|) $)) (-15 -2895 (|#4| $)) (-15 -2187 (|#3| $)) (-15 -1392 ($ $)) (-15 -4335 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -3290 ($ |#3|)) (-15 -2431 ($ |#2| |#3| |#4|)) (-15 -3214 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-654 (-1190)) (-174) (-860) (-244 (-2863 |#1|) (-781)) (-1 (-112) (-2 (|:| -2576 |#3|) (|:| -2524 |#4|)) (-2 (|:| -2576 |#3|) (|:| -2524 |#4|))) (-960 |#2| |#4| (-874 |#1|))) (T -471))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-4 *6 (-244 (-2863 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *6)) (-2 (|:| -2576 *5) (|:| -2524 *6)))) (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) (-4 *2 (-960 *4 *6 (-874 *3))))) (-1370 (*1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *5 (-244 (-2863 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *4) (|:| -2524 *5)) (-2 (|:| -2576 *4) (|:| -2524 *5)))) (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-960 *2 *5 (-874 *3))))) (-1359 (*1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-4 *6 (-244 (-2863 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *6)) (-2 (|:| -2576 *5) (|:| -2524 *6)))) (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8)) (-4 *5 (-860)) (-4 *8 (-960 *4 *6 (-874 *3))))) (-2895 (*1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *2)) (-2 (|:| -2576 *5) (|:| -2524 *2)))) (-4 *2 (-244 (-2863 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) (-4 *5 (-860)) (-4 *7 (-960 *4 *2 (-874 *3))))) (-2187 (*1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-4 *5 (-244 (-2863 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *2) (|:| -2524 *5)) (-2 (|:| -2576 *2) (|:| -2524 *5)))) (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *7 (-960 *4 *5 (-874 *3))))) (-1392 (*1 *1 *1) (-12 (-14 *2 (-654 (-1190))) (-4 *3 (-174)) (-4 *5 (-244 (-2863 *2) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *4) (|:| -2524 *5)) (-2 (|:| -2576 *4) (|:| -2524 *5)))) (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-960 *3 *5 (-874 *2))))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860)) (-4 *6 (-244 (-2863 *4) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *6)) (-2 (|:| -2576 *5) (|:| -2524 *6)))) (-14 *4 (-654 (-1190))) (-4 *2 (-174)) (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-960 *2 *6 (-874 *4))))) (-3290 (*1 *1 *2) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-4 *5 (-244 (-2863 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *2) (|:| -2524 *5)) (-2 (|:| -2576 *2) (|:| -2524 *5)))) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) (-4 *7 (-960 *4 *5 (-874 *3))))) (-2431 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-654 (-1190))) (-4 *2 (-174)) (-4 *4 (-244 (-2863 *5) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *3) (|:| -2524 *4)) (-2 (|:| -2576 *3) (|:| -2524 *4)))) (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) (-4 *7 (-960 *2 *4 (-874 *5))))) (-3214 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-654 (-1190))) (-4 *2 (-174)) (-4 *3 (-244 (-2863 *4) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *3)) (-2 (|:| -2576 *5) (|:| -2524 *3)))) (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) (-4 *7 (-960 *2 *3 (-874 *4))))))
+(-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1370 (|#2| $)) (-15 -1359 ((-723 |#3| |#4| |#5|) $)) (-15 -2895 (|#4| $)) (-15 -2187 (|#3| $)) (-15 -1392 ($ $)) (-15 -4335 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -3290 ($ |#3|)) (-15 -2431 ($ |#2| |#3| |#4|)) (-15 -3214 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-4191 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-472 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4191 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-803) (-860) (-566) (-960 |#3| |#1| |#2|) (-13 (-1051 (-417 (-574))) (-372) (-10 -8 (-15 -2943 ($ |#4|)) (-15 -2965 (|#4| $)) (-15 -2977 (|#4| $))))) (T -472))
+((-4191 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) (-4 *6 (-566)) (-4 *7 (-960 *6 *5 *3)) (-5 *1 (-472 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1051 (-417 (-574))) (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))))))
+(-10 -7 (-15 -4191 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2849 (((-112) $ $) NIL)) (-4355 (((-654 |#3|) $) 41)) (-3753 (((-112) $) NIL)) (-3609 (((-112) $) NIL (|has| |#1| (-566)))) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-2166 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-1800 (((-112) $) NIL (|has| |#1| (-566)))) (-1322 (((-112) $ $) NIL (|has| |#1| (-566)))) (-4133 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3172 (((-112) $) NIL (|has| |#1| (-566)))) (-3949 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) 49)) (-2209 (($ (-654 |#4|)) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456)))) (-1864 (((-654 |#4|) $) 18 (|has| $ (-6 -4456)))) (-2851 ((|#3| $) 47)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#4|) $) 14 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2446 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 21)) (-2867 (((-654 |#3|) $) NIL)) (-2570 (((-112) |#3| $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3966 (((-1133) $) NIL)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3124 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 39)) (-3135 (($) 17)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) 16)) (-1837 (((-546) $) NIL (|has| |#4| (-624 (-546)))) (($ (-654 |#4|)) 51)) (-2956 (($ (-654 |#4|)) 13)) (-2175 (($ $ |#3|) NIL)) (-2840 (($ $ |#3|) NIL)) (-2427 (($ $ |#3|) NIL)) (-2943 (((-872) $) 38) (((-654 |#4|) $) 50)) (-2923 (((-112) $ $) NIL)) (-2935 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 30)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-473 |#1| |#2| |#3| |#4|) (-13 (-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1837 ($ (-654 |#4|))) (-6 -4456) (-6 -4457))) (-1062) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -473))
+((-1837 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6)))))
+(-13 (-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1837 ($ (-654 |#4|))) (-6 -4456) (-6 -4457)))
+((-2134 (($) 11)) (-2146 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -2146 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2134 (|#1|))) (-475 |#2| |#3|) (-174) (-23)) (T -474))
+NIL
+(-10 -8 (-15 -2146 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2134 (|#1|)))
+((-2849 (((-112) $ $) 7)) (-1697 (((-3 |#1| "failed") $) 27)) (-2209 ((|#1| $) 28)) (-3059 (($ $ $) 24)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1784 ((|#2| $) 20)) (-2943 (((-872) $) 12) (($ |#1|) 26)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 25 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 16) (($ $ $) 14)) (-3078 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-475 |#1| |#2|) (-141) (-174) (-23)) (T -475))
+((-2146 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3059 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
+(-13 (-480 |t#1| |t#2|) (-1051 |t#1|) (-10 -8 (-15 (-2146) ($) -1707) (-15 -3059 ($ $ $))))
+(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-480 |#1| |#2|) . T) ((-1051 |#1|) . T) ((-1113) . T))
+((-4337 (((-1281 (-1281 (-574))) (-1281 (-1281 (-574))) (-932)) 26)) (-2981 (((-1281 (-1281 (-574))) (-932)) 21)))
+(((-476) (-10 -7 (-15 -4337 ((-1281 (-1281 (-574))) (-1281 (-1281 (-574))) (-932))) (-15 -2981 ((-1281 (-1281 (-574))) (-932))))) (T -476))
+((-2981 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 (-1281 (-574)))) (-5 *1 (-476)))) (-4337 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 (-1281 (-574)))) (-5 *3 (-932)) (-5 *1 (-476)))))
+(-10 -7 (-15 -4337 ((-1281 (-1281 (-574))) (-1281 (-1281 (-574))) (-932))) (-15 -2981 ((-1281 (-1281 (-574))) (-932))))
+((-2155 (((-574) (-574)) 32) (((-574)) 24)) (-3761 (((-574) (-574)) 28) (((-574)) 20)) (-3330 (((-574) (-574)) 30) (((-574)) 22)) (-1505 (((-112) (-112)) 14) (((-112)) 12)) (-2152 (((-112) (-112)) 13) (((-112)) 11)) (-2499 (((-112) (-112)) 26) (((-112)) 17)))
+(((-477) (-10 -7 (-15 -2152 ((-112))) (-15 -1505 ((-112))) (-15 -2152 ((-112) (-112))) (-15 -1505 ((-112) (-112))) (-15 -2499 ((-112))) (-15 -3330 ((-574))) (-15 -3761 ((-574))) (-15 -2155 ((-574))) (-15 -2499 ((-112) (-112))) (-15 -3330 ((-574) (-574))) (-15 -3761 ((-574) (-574))) (-15 -2155 ((-574) (-574))))) (T -477))
+((-2155 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3761 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3330 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2499 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-2155 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3761 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3330 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2499 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-2152 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1505 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-2152 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))))
+(-10 -7 (-15 -2152 ((-112))) (-15 -1505 ((-112))) (-15 -2152 ((-112) (-112))) (-15 -1505 ((-112) (-112))) (-15 -2499 ((-112))) (-15 -3330 ((-574))) (-15 -3761 ((-574))) (-15 -2155 ((-574))) (-15 -2499 ((-112) (-112))) (-15 -3330 ((-574) (-574))) (-15 -3761 ((-574) (-574))) (-15 -2155 ((-574) (-574))))
+((-2849 (((-112) $ $) NIL)) (-1998 (((-654 (-388)) $) 34) (((-654 (-388)) $ (-654 (-388))) 146)) (-4188 (((-654 (-1107 (-388))) $) 16) (((-654 (-1107 (-388))) $ (-654 (-1107 (-388)))) 142)) (-1934 (((-654 (-654 (-954 (-227)))) (-654 (-654 (-954 (-227)))) (-654 (-884))) 58)) (-4258 (((-654 (-654 (-954 (-227)))) $) 137)) (-3591 (((-1286) $ (-954 (-227)) (-884)) 163)) (-3131 (($ $) 136) (($ (-654 (-654 (-954 (-227))))) 149) (($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932))) 148) (($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)) (-654 (-270))) 150)) (-2568 (((-1172) $) NIL)) (-3693 (((-574) $) 110)) (-3966 (((-1133) $) NIL)) (-3916 (($) 147)) (-3639 (((-654 (-227)) (-654 (-654 (-954 (-227))))) 89)) (-2601 (((-1286) $ (-654 (-954 (-227))) (-884) (-884) (-932)) 155) (((-1286) $ (-954 (-227))) 157) (((-1286) $ (-954 (-227)) (-884) (-884) (-932)) 156)) (-2943 (((-872) $) 169) (($ (-654 (-654 (-954 (-227))))) 164)) (-2923 (((-112) $ $) NIL)) (-3967 (((-1286) $ (-954 (-227))) 162)) (-2982 (((-112) $ $) NIL)))
+(((-478) (-13 (-1113) (-10 -8 (-15 -3916 ($)) (-15 -3131 ($ $)) (-15 -3131 ($ (-654 (-654 (-954 (-227)))))) (-15 -3131 ($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)))) (-15 -3131 ($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)) (-654 (-270)))) (-15 -4258 ((-654 (-654 (-954 (-227)))) $)) (-15 -3693 ((-574) $)) (-15 -4188 ((-654 (-1107 (-388))) $)) (-15 -4188 ((-654 (-1107 (-388))) $ (-654 (-1107 (-388))))) (-15 -1998 ((-654 (-388)) $)) (-15 -1998 ((-654 (-388)) $ (-654 (-388)))) (-15 -2601 ((-1286) $ (-654 (-954 (-227))) (-884) (-884) (-932))) (-15 -2601 ((-1286) $ (-954 (-227)))) (-15 -2601 ((-1286) $ (-954 (-227)) (-884) (-884) (-932))) (-15 -3967 ((-1286) $ (-954 (-227)))) (-15 -3591 ((-1286) $ (-954 (-227)) (-884))) (-15 -2943 ($ (-654 (-654 (-954 (-227)))))) (-15 -2943 ((-872) $)) (-15 -1934 ((-654 (-654 (-954 (-227)))) (-654 (-654 (-954 (-227)))) (-654 (-884)))) (-15 -3639 ((-654 (-227)) (-654 (-654 (-954 (-227))))))))) (T -478))
+((-2943 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478)))) (-3916 (*1 *1) (-5 *1 (-478))) (-3131 (*1 *1 *1) (-5 *1 (-478))) (-3131 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478)))) (-3131 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-932))) (-5 *1 (-478)))) (-3131 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-932))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) (-4258 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-478)))) (-4188 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-478)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-1998 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-2601 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *4 (-884)) (-5 *5 (-932)) (-5 *2 (-1286)) (-5 *1 (-478)))) (-2601 (*1 *2 *1 *3) (-12 (-5 *3 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-478)))) (-2601 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-954 (-227))) (-5 *4 (-884)) (-5 *5 (-932)) (-5 *2 (-1286)) (-5 *1 (-478)))) (-3967 (*1 *2 *1 *3) (-12 (-5 *3 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-478)))) (-3591 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-954 (-227))) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-478)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478)))) (-1934 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884))) (-5 *1 (-478)))) (-3639 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-654 (-227))) (-5 *1 (-478)))))
+(-13 (-1113) (-10 -8 (-15 -3916 ($)) (-15 -3131 ($ $)) (-15 -3131 ($ (-654 (-654 (-954 (-227)))))) (-15 -3131 ($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)))) (-15 -3131 ($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)) (-654 (-270)))) (-15 -4258 ((-654 (-654 (-954 (-227)))) $)) (-15 -3693 ((-574) $)) (-15 -4188 ((-654 (-1107 (-388))) $)) (-15 -4188 ((-654 (-1107 (-388))) $ (-654 (-1107 (-388))))) (-15 -1998 ((-654 (-388)) $)) (-15 -1998 ((-654 (-388)) $ (-654 (-388)))) (-15 -2601 ((-1286) $ (-654 (-954 (-227))) (-884) (-884) (-932))) (-15 -2601 ((-1286) $ (-954 (-227)))) (-15 -2601 ((-1286) $ (-954 (-227)) (-884) (-884) (-932))) (-15 -3967 ((-1286) $ (-954 (-227)))) (-15 -3591 ((-1286) $ (-954 (-227)) (-884))) (-15 -2943 ($ (-654 (-654 (-954 (-227)))))) (-15 -2943 ((-872) $)) (-15 -1934 ((-654 (-654 (-954 (-227)))) (-654 (-654 (-954 (-227)))) (-654 (-884)))) (-15 -3639 ((-654 (-227)) (-654 (-654 (-954 (-227))))))))
+((-3094 (($ $) NIL) (($ $ $) 11)))
+(((-479 |#1| |#2| |#3|) (-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|))) (-480 |#2| |#3|) (-174) (-23)) (T -479))
+NIL
+(-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1784 ((|#2| $) 20)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 16) (($ $ $) 14)) (-3078 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-480 |#1| |#2|) (-141) (-174) (-23)) (T -480))
+((-1784 (*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2134 (*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3078 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3094 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
+(-13 (-1113) (-10 -8 (-15 -1784 (|t#2| $)) (-15 (-2134) ($) -1707) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3094 ($ $)) (-15 -3078 ($ $ $)) (-15 -3094 ($ $ $))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2598 (((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|))) 134)) (-1536 (((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 131)) (-1919 (((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 86)))
+(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -1536 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2598 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -1919 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) (-654 (-1190)) (-462) (-462)) (T -481))
+((-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-2 (|:| |dpolys| (-654 (-253 *5 *6))) (|:| |coords| (-654 (-574))))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))) (-2598 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) (-4 *6 (-462)))) (-1536 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))))
+(-10 -7 (-15 -1536 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2598 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -1919 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))))
+((-1950 (((-3 $ "failed") $) 11)) (-1514 (($ $ $) 23)) (-3647 (($ $ $) 24)) (-3107 (($ $ $) 9)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 22)))
+(((-482 |#1|) (-10 -8 (-15 -3647 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1950 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932)))) (-483)) (T -482))
+NIL
+(-10 -8 (-15 -3647 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1950 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))))
+((-2849 (((-112) $ $) 7)) (-3670 (($) 19 T CONST)) (-1950 (((-3 $ "failed") $) 16)) (-3965 (((-112) $) 18)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 25)) (-3966 (((-1133) $) 11)) (-1514 (($ $ $) 22)) (-3647 (($ $ $) 21)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2146 (($) 20 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 24)) (** (($ $ (-932)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15)))
+(((-483) (-141)) (T -483))
+((-1324 (*1 *1 *1) (-4 *1 (-483))) (-3107 (*1 *1 *1 *1) (-4 *1 (-483))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574)))) (-1514 (*1 *1 *1 *1) (-4 *1 (-483))) (-3647 (*1 *1 *1 *1) (-4 *1 (-483))))
+(-13 (-736) (-10 -8 (-15 -1324 ($ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ (-574))) (-6 -4453) (-15 -1514 ($ $ $)) (-15 -3647 ($ $ $))))
+(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) 18)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-1760 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-4086 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1654 (((-112) $) NIL (|has| |#1| (-372)))) (-3030 (((-112) $) NIL)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) NIL) (($ $ (-417 (-574))) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) NIL) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-1778 (($ (-1 |#1| |#1|) $) 25)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2968 (($ $) 29 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 35 (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 30 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-4344 (($ $ (-417 (-574))) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1610 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1125)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) 28 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1277 |#2|)) 16)) (-1784 (((-417 (-574)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1277 |#2|)) NIL) (($ (-1266 |#1| |#2| |#3|)) 9) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3344 ((|#1| $ (-417 (-574))) NIL)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 21)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) 27)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-484 |#1| |#2| |#3|) (-13 (-1262 |#1|) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -2943 ($ (-1266 |#1| |#2| |#3|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -484))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1266 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3) (-5 *1 (-484 *3 *4 *5)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))))
+(-13 (-1262 |#1|) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -2943 ($ (-1266 |#1| |#2| |#3|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|)))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-1860 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) 18)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) 19)) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 16)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-860)))) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1765 (((-654 |#1|) $) NIL)) (-1726 (((-112) |#1| $) NIL)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-2459 (((-654 |#1|) $) NIL)) (-2607 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-485 |#1| |#2| |#3| |#4|) (-1207 |#1| |#2|) (-1113) (-1113) (-1207 |#1| |#2|) |#2|) (T -485))
+NIL
+(-1207 |#1| |#2|)
+((-2849 (((-112) $ $) NIL)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1886 (((-654 $) (-654 |#4|)) NIL)) (-4355 (((-654 |#3|) $) NIL)) (-3753 (((-112) $) NIL)) (-3609 (((-112) $) NIL (|has| |#1| (-566)))) (-3456 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1621 ((|#4| |#4| $) NIL)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-2166 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3670 (($) NIL T CONST)) (-1800 (((-112) $) 29 (|has| |#1| (-566)))) (-1322 (((-112) $ $) NIL (|has| |#1| (-566)))) (-4133 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3172 (((-112) $) NIL (|has| |#1| (-566)))) (-2543 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3949 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2209 (($ (-654 |#4|)) NIL)) (-2926 (((-3 $ "failed") $) 45)) (-2793 ((|#4| |#4| $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-4155 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2043 ((|#4| |#4| $) NIL)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2766 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1676 (-654 |#4|))) $) NIL)) (-1864 (((-654 |#4|) $) 18 (|has| $ (-6 -4456)))) (-2474 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2851 ((|#3| $) 38)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#4|) $) 19 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2446 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 23)) (-2867 (((-654 |#3|) $) NIL)) (-2570 (((-112) |#3| $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-3360 (((-3 |#4| "failed") $) 42)) (-4153 (((-654 |#4|) $) NIL)) (-2768 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2244 ((|#4| |#4| $) NIL)) (-2430 (((-112) $ $) NIL)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1406 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1443 ((|#4| |#4| $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 |#4| "failed") $) 40)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3043 (((-3 $ "failed") $ |#4|) 58)) (-4344 (($ $ |#4|) NIL)) (-3124 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 17)) (-3135 (($) 14)) (-1784 (((-781) $) NIL)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) 13)) (-1837 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 22)) (-2175 (($ $ |#3|) 52)) (-2840 (($ $ |#3|) 54)) (-1496 (($ $) NIL)) (-2427 (($ $ |#3|) NIL)) (-2943 (((-872) $) 35) (((-654 |#4|) $) 46)) (-3530 (((-781) $) NIL (|has| |#3| (-377)))) (-2923 (((-112) $ $) NIL)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1685 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2935 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2681 (((-654 |#3|) $) NIL)) (-4321 (((-112) |#3| $) NIL)) (-2982 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-486 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|) (-566) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -486))
+NIL
+(-1224 |#1| |#2| |#3| |#4|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2209 (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3001 (($) 17)) (-3965 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-1837 (((-388) $) 21) (((-227) $) 24) (((-417 (-1186 (-574))) $) 18) (((-546) $) 53)) (-2943 (((-872) $) 51) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (((-227) $) 23) (((-388) $) 20)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2134 (($) 37 T CONST)) (-2146 (($) 8 T CONST)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
+(((-487) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))) (-1035) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1186 (-574)))) (-624 (-546)) (-10 -8 (-15 -3001 ($))))) (T -487))
+((-3001 (*1 *1) (-5 *1 (-487))))
+(-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))) (-1035) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1186 (-574)))) (-624 (-546)) (-10 -8 (-15 -3001 ($))))
+((-2849 (((-112) $ $) NIL)) (-1809 (((-1148) $) 11)) (-1796 (((-1148) $) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-488) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))) (T -488))
+((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-488)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-488)))))
+(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-1860 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) 16)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) 20)) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 18)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-860)))) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1765 (((-654 |#1|) $) 13)) (-1726 (((-112) |#1| $) NIL)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-2459 (((-654 |#1|) $) NIL)) (-2607 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) 19)) (-2200 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 11 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) 15 (|has| $ (-6 -4456)))))
+(((-489 |#1| |#2| |#3|) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) (-1113) (-1113) (-1172)) (T -489))
+NIL
+(-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456)))
+((-1983 (((-574) (-574) (-574)) 19)) (-1657 (((-112) (-574) (-574) (-574) (-574)) 28)) (-2095 (((-1281 (-654 (-574))) (-781) (-781)) 41)))
+(((-490) (-10 -7 (-15 -1983 ((-574) (-574) (-574))) (-15 -1657 ((-112) (-574) (-574) (-574) (-574))) (-15 -2095 ((-1281 (-654 (-574))) (-781) (-781))))) (T -490))
+((-2095 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1281 (-654 (-574)))) (-5 *1 (-490)))) (-1657 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490)))) (-1983 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490)))))
+(-10 -7 (-15 -1983 ((-574) (-574) (-574))) (-15 -1657 ((-112) (-574) (-574) (-574) (-574))) (-15 -2095 ((-1281 (-654 (-574))) (-781) (-781))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-874 |#1|)) $) NIL)) (-4194 (((-1186 $) $ (-874 |#1|)) NIL) (((-1186 |#2|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2814 (($ $) NIL (|has| |#2| (-566)))) (-2425 (((-112) $) NIL (|has| |#2| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4348 (($ $) NIL (|has| |#2| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2209 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-874 |#1|) $) NIL)) (-2800 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-1398 (($ $ (-654 (-574))) NIL)) (-1392 (($ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#2| (-920)))) (-3157 (($ $ |#2| (-492 (-2863 |#1|) (-781)) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4345 (($ (-1186 |#2|) (-874 |#1|)) NIL) (($ (-1186 $) (-874 |#1|)) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#2| (-492 (-2863 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-874 |#1|)) NIL)) (-2382 (((-492 (-2863 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1541 (($ (-1 (-492 (-2863 |#1|) (-781)) (-492 (-2863 |#1|) (-781))) $) NIL)) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-4045 (((-3 (-874 |#1|) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2568 (((-1172) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2524 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#2| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-1415 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-1784 (((-492 (-2863 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1607 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3123 (((-654 |#2|) $) NIL)) (-3344 ((|#2| $ (-492 (-2863 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-491 |#1| |#2|) (-13 (-960 |#2| (-492 (-2863 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -1398 ($ $ (-654 (-574)))))) (-654 (-1190)) (-1062)) (T -491))
+((-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4)) (-14 *3 (-654 (-1190))) (-4 *4 (-1062)))))
+(-13 (-960 |#2| (-492 (-2863 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -1398 ($ $ (-654 (-574))))))
+((-2849 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-2908 (((-112) $) NIL (|has| |#2| (-132)))) (-3290 (($ (-932)) NIL (|has| |#2| (-1062)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1854 (($ $ $) NIL (|has| |#2| (-803)))) (-2950 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3340 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#2| (-377)))) (-3747 (((-574) $) NIL (|has| |#2| (-858)))) (-3143 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1113)))) (-2209 (((-574) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) ((|#2| $) NIL (|has| |#2| (-1113)))) (-2668 (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-1281 $)) NIL (|has| |#2| (-1062)))) (-1950 (((-3 $ "failed") $) NIL (|has| |#2| (-736)))) (-2820 (($) NIL (|has| |#2| (-377)))) (-2462 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ (-574)) 11)) (-3434 (((-112) $) NIL (|has| |#2| (-858)))) (-1864 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3965 (((-112) $) NIL (|has| |#2| (-736)))) (-3244 (((-112) $) NIL (|has| |#2| (-858)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-1712 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-2565 (((-932) $) NIL (|has| |#2| (-377)))) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#2| (-1113)))) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#2| (-377)))) (-3966 (((-1133) $) NIL (|has| |#2| (-1113)))) (-2915 ((|#2| $) NIL (|has| (-574) (-860)))) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-3222 ((|#2| $ $) NIL (|has| |#2| (-1062)))) (-4261 (($ (-1281 |#2|)) NIL)) (-3939 (((-135)) NIL (|has| |#2| (-372)))) (-3905 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#2|) $) NIL) (($ (-574)) NIL (-2818 (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (($ |#2|) NIL (|has| |#2| (-1113))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-4160 (((-781)) NIL (|has| |#2| (-1062)) CONST)) (-2923 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-2935 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2946 (($ $) NIL (|has| |#2| (-858)))) (-2134 (($) NIL (|has| |#2| (-132)) CONST)) (-2146 (($) NIL (|has| |#2| (-736)) CONST)) (-3611 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3041 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3016 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2982 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3028 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3005 (((-112) $ $) 17 (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $ $) NIL (|has| |#2| (-1062))) (($ $) NIL (|has| |#2| (-1062)))) (-3078 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-736))) (($ $ (-932)) NIL (|has| |#2| (-736)))) (* (($ (-574) $) NIL (|has| |#2| (-1062))) (($ $ $) NIL (|has| |#2| (-736))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-932) $) NIL (|has| |#2| (-25)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-492 |#1| |#2|) (-244 |#1| |#2|) (-781) (-803)) (T -492))
+NIL
+(-244 |#1| |#2|)
+((-2849 (((-112) $ $) NIL)) (-2624 (((-654 (-886)) $) 15)) (-2032 (((-516) $) 13)) (-2568 (((-1172) $) NIL)) (-2062 (($ (-516) (-654 (-886))) 11)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 22) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-493) (-13 (-1096) (-10 -8 (-15 -2062 ($ (-516) (-654 (-886)))) (-15 -2032 ((-516) $)) (-15 -2624 ((-654 (-886)) $))))) (T -493))
+((-2062 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493)))))
+(-13 (-1096) (-10 -8 (-15 -2062 ($ (-516) (-654 (-886)))) (-15 -2032 ((-516) $)) (-15 -2624 ((-654 (-886)) $))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) NIL)) (-3670 (($) NIL T CONST)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-3722 (($ $ $) 48)) (-2130 (($ $ $) 47)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2106 ((|#1| $) 40)) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2234 ((|#1| $) 41)) (-1709 (($ |#1| $) 18)) (-3937 (($ (-654 |#1|)) 19)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3459 ((|#1| $) 34)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) 11)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 45)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) 29 (|has| $ (-6 -4456)))))
+(((-494 |#1|) (-13 (-981 |#1|) (-10 -8 (-15 -3937 ($ (-654 |#1|))))) (-860)) (T -494))
+((-3937 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3)))))
+(-13 (-981 |#1|) (-10 -8 (-15 -3937 ($ (-654 |#1|)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-2868 (($ $) 71)) (-2102 (((-112) $) NIL)) (-2568 (((-1172) $) NIL)) (-2260 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 45)) (-3966 (((-1133) $) NIL)) (-2970 (((-3 |#4| "failed") $) 117)) (-4339 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-574)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-1650 (((-2 (|:| -2803 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2943 (((-872) $) 110)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 32 T CONST)) (-2982 (((-112) $ $) 121)) (-3094 (($ $) 77) (($ $ $) NIL)) (-3078 (($ $ $) 72)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 78)))
+(((-495 |#1| |#2| |#3| |#4|) (-344 |#1| |#2| |#3| |#4|) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -495))
+NIL
+(-344 |#1| |#2| |#3| |#4|)
+((-3956 (((-574) (-654 (-574))) 53)) (-3382 ((|#1| (-654 |#1|)) 94)) (-4408 (((-654 |#1|) (-654 |#1|)) 95)) (-3155 (((-654 |#1|) (-654 |#1|)) 97)) (-2874 ((|#1| (-654 |#1|)) 96)) (-1607 (((-654 (-574)) (-654 |#1|)) 56)))
+(((-496 |#1|) (-10 -7 (-15 -2874 (|#1| (-654 |#1|))) (-15 -3382 (|#1| (-654 |#1|))) (-15 -3155 ((-654 |#1|) (-654 |#1|))) (-15 -4408 ((-654 |#1|) (-654 |#1|))) (-15 -1607 ((-654 (-574)) (-654 |#1|))) (-15 -3956 ((-574) (-654 (-574))))) (-1257 (-574))) (T -496))
+((-3956 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) (-4 *4 (-1257 *2)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1257 (-574))) (-5 *2 (-654 (-574))) (-5 *1 (-496 *4)))) (-4408 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1257 (-574))) (-5 *1 (-496 *3)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1257 (-574))) (-5 *1 (-496 *3)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1257 (-574))))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1257 (-574))))))
+(-10 -7 (-15 -2874 (|#1| (-654 |#1|))) (-15 -3382 (|#1| (-654 |#1|))) (-15 -3155 ((-654 |#1|) (-654 |#1|))) (-15 -4408 ((-654 |#1|) (-654 |#1|))) (-15 -1607 ((-654 (-574)) (-654 |#1|))) (-15 -3956 ((-574) (-654 (-574)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 (((-574) $) NIL (|has| (-574) (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL (|has| (-574) (-830)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-574) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1051 (-574))))) (-2209 (((-574) $) NIL) (((-1190) $) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-574) (-1051 (-574)))) (((-574) $) NIL (|has| (-574) (-1051 (-574))))) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-574) (-555)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3434 (((-112) $) NIL (|has| (-574) (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL)) (-2965 (((-574) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| (-574) (-1165)))) (-3244 (((-112) $) NIL (|has| (-574) (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| (-574) (-860)))) (-1778 (($ (-1 (-574) (-574)) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-574) (-1165)) CONST)) (-2963 (($ (-417 (-574))) 9)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-1846 (((-574) $) NIL (|has| (-574) (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1190)) (-654 (-574))) NIL (|has| (-574) (-524 (-1190) (-574)))) (($ $ (-1190) (-574)) NIL (|has| (-574) (-524 (-1190) (-574))))) (-1347 (((-781) $) NIL)) (-2200 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3520 (($ $) NIL)) (-2977 (((-574) $) NIL)) (-1837 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1035))) (((-227) $) NIL (|has| (-574) (-1035)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1190)) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL) (((-1017 16) $) 10)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-574) (-920))) (|has| (-574) (-146))))) (-4160 (((-781)) NIL T CONST)) (-4078 (((-574) $) NIL (|has| (-574) (-555)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2946 (($ $) NIL (|has| (-574) (-830)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3005 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3107 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL)))
+(((-497) (-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 16)) (-10 -8 (-15 -2595 ((-417 (-574)) $)) (-15 -2963 ($ (-417 (-574))))))) (T -497))
+((-2595 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))))
+(-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 16)) (-10 -8 (-15 -2595 ((-417 (-574)) $)) (-15 -2963 ($ (-417 (-574))))))
+((-1712 (((-654 |#2|) $) 31)) (-3759 (((-112) |#2| $) 36)) (-3124 (((-112) (-1 (-112) |#2|) $) 26)) (-2646 (($ $ (-654 (-302 |#2|))) 13) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-3975 (((-781) (-1 (-112) |#2|) $) 30) (((-781) |#2| $) 34)) (-2943 (((-872) $) 45)) (-2935 (((-112) (-1 (-112) |#2|) $) 23)) (-2982 (((-112) $ $) 39)) (-2863 (((-781) $) 18)))
+(((-498 |#1| |#2|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -3759 ((-112) |#2| |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -1712 ((-654 |#2|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|))) (-499 |#2|) (-1231)) (T -498))
+NIL
+(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -3759 ((-112) |#2| |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -1712 ((-654 |#2|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-3670 (($) 7 T CONST)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-499 |#1|) (-141) (-1231)) (T -499))
+((-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1231)))) (-2446 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4457)) (-4 *1 (-499 *3)) (-4 *3 (-1231)))) (-2935 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4)) (-4 *4 (-1231)) (-5 *2 (-112)))) (-3124 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4)) (-4 *4 (-1231)) (-5 *2 (-112)))) (-3975 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4)) (-4 *4 (-1231)) (-5 *2 (-781)))) (-1864 (*1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) (-5 *2 (-654 *3)))) (-1712 (*1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) (-5 *2 (-654 *3)))) (-3975 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-781)))) (-3759 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |t#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1778 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4457)) (-15 -2446 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4456)) (PROGN (-15 -2935 ((-112) (-1 (-112) |t#1|) $)) (-15 -3124 ((-112) (-1 (-112) |t#1|) $)) (-15 -3975 ((-781) (-1 (-112) |t#1|) $)) (-15 -1864 ((-654 |t#1|) $)) (-15 -1712 ((-654 |t#1|) $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -3975 ((-781) |t#1| $)) (-15 -3759 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-2943 ((|#1| $) 6) (($ |#1|) 9)))
+(((-500 |#1|) (-141) (-1231)) (T -500))
+NIL
+(-13 (-623 |t#1|) (-626 |t#1|))
+(((-626 |#1|) . T) ((-623 |#1|) . T))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-1632 (($ (-1172)) 8)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (((-1172) $) 12)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 11)))
+(((-501) (-13 (-1113) (-623 (-1172)) (-10 -8 (-15 -1632 ($ (-1172)))))) (T -501))
+((-1632 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-501)))))
+(-13 (-1113) (-623 (-1172)) (-10 -8 (-15 -1632 ($ (-1172)))))
+((-2364 (($ $) 15)) (-2343 (($ $) 24)) (-2388 (($ $) 12)) (-2402 (($ $) 10)) (-2375 (($ $) 17)) (-2353 (($ $) 22)))
+(((-502 |#1|) (-10 -8 (-15 -2353 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|))) (-503)) (T -502))
+NIL
+(-10 -8 (-15 -2353 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|)))
+((-2364 (($ $) 11)) (-2343 (($ $) 10)) (-2388 (($ $) 9)) (-2402 (($ $) 8)) (-2375 (($ $) 7)) (-2353 (($ $) 6)))
+(((-503) (-141)) (T -503))
+((-2364 (*1 *1 *1) (-4 *1 (-503))) (-2343 (*1 *1 *1) (-4 *1 (-503))) (-2388 (*1 *1 *1) (-4 *1 (-503))) (-2402 (*1 *1 *1) (-4 *1 (-503))) (-2375 (*1 *1 *1) (-4 *1 (-503))) (-2353 (*1 *1 *1) (-4 *1 (-503))))
+(-13 (-10 -8 (-15 -2353 ($ $)) (-15 -2375 ($ $)) (-15 -2402 ($ $)) (-15 -2388 ($ $)) (-15 -2343 ($ $)) (-15 -2364 ($ $))))
+((-4220 (((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)) 54)))
+(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) (-372) (-1257 |#1|) (-13 (-372) (-148) (-734 |#1| |#2|)) (-1257 |#3|)) (T -504))
+((-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3)) (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1257 *7)))))
+(-10 -7 (-15 -4220 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|))))
+((-2849 (((-112) $ $) NIL)) (-2656 (((-654 $) (-1186 $) (-1190)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-963 $)) NIL)) (-1397 (($ (-1186 $) (-1190)) NIL) (($ (-1186 $)) NIL) (($ (-963 $)) NIL)) (-2908 (((-112) $) 39)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-1683 (((-112) $ $) 73)) (-4091 (((-654 (-622 $)) $) 50)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-4229 (($ $) NIL)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-3072 (((-654 $) (-1186 $) (-1190)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-963 $)) NIL)) (-1413 (($ (-1186 $) (-1190)) NIL) (($ (-1186 $)) NIL) (($ (-963 $)) NIL)) (-1697 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2209 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) 55)) (-2785 (($ $ $) NIL)) (-2668 (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL) (((-2 (|:| -1485 (-699 (-417 (-574)))) (|:| |vec| (-1281 (-417 (-574))))) (-699 $) (-1281 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1281 $)) NIL)) (-2868 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-2955 (($ $) NIL) (($ (-654 $)) NIL)) (-1879 (((-654 (-115)) $) NIL)) (-4173 (((-115) (-115)) NIL)) (-3965 (((-112) $) 42)) (-3239 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2965 (((-1138 (-574) (-622 $)) $) 37)) (-3379 (($ $ (-574)) NIL)) (-1652 (((-1186 $) (-1186 $) (-622 $)) 87) (((-1186 $) (-1186 $) (-654 (-622 $))) 62) (($ $ (-622 $)) 76) (($ $ (-654 (-622 $))) 77)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2405 (((-1186 $) (-622 $)) 74 (|has| $ (-1062)))) (-1778 (($ (-1 $ $) (-622 $)) NIL)) (-3376 (((-3 (-622 $) "failed") $) NIL)) (-2834 (($ (-654 $)) NIL) (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-4164 (((-654 (-622 $)) $) NIL)) (-1775 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-2884 (((-112) $ (-115)) NIL) (((-112) $ (-1190)) NIL)) (-1324 (($ $) NIL)) (-1840 (((-781) $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3923 (((-112) $ $) NIL) (((-112) $ (-1190)) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2625 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1347 (((-781) $) NIL)) (-2200 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3115 (($ $) NIL) (($ $ $) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) 36)) (-2977 (((-1138 (-574) (-622 $)) $) 20)) (-1782 (($ $) NIL (|has| $ (-1062)))) (-1837 (((-388) $) 101) (((-227) $) 109) (((-171 (-388)) $) 117)) (-2943 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1138 (-574) (-622 $))) 21)) (-4160 (((-781)) NIL T CONST)) (-2031 (($ $) NIL) (($ (-654 $)) NIL)) (-1932 (((-112) (-115)) 93)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2134 (($) 10 T CONST)) (-2146 (($) 22 T CONST)) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-2982 (((-112) $ $) 24)) (-3107 (($ $ $) 44)) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) 48) (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) 27) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL)))
+(((-505) (-13 (-310) (-27) (-1051 (-574)) (-1051 (-417 (-574))) (-649 (-574)) (-1035) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2943 ($ (-1138 (-574) (-622 $)))) (-15 -2965 ((-1138 (-574) (-622 $)) $)) (-15 -2977 ((-1138 (-574) (-622 $)) $)) (-15 -2868 ($ $)) (-15 -1683 ((-112) $ $)) (-15 -1652 ((-1186 $) (-1186 $) (-622 $))) (-15 -1652 ((-1186 $) (-1186 $) (-654 (-622 $)))) (-15 -1652 ($ $ (-622 $))) (-15 -1652 ($ $ (-654 (-622 $))))))) (T -505))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2868 (*1 *1 *1) (-5 *1 (-505))) (-1683 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505)))) (-1652 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) (-1652 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 (-505))) (-5 *3 (-654 (-622 (-505)))) (-5 *1 (-505)))) (-1652 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) (-1652 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505)))))
+(-13 (-310) (-27) (-1051 (-574)) (-1051 (-417 (-574))) (-649 (-574)) (-1035) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2943 ($ (-1138 (-574) (-622 $)))) (-15 -2965 ((-1138 (-574) (-622 $)) $)) (-15 -2977 ((-1138 (-574) (-622 $)) $)) (-15 -2868 ($ $)) (-15 -1683 ((-112) $ $)) (-15 -1652 ((-1186 $) (-1186 $) (-622 $))) (-15 -1652 ((-1186 $) (-1186 $) (-654 (-622 $)))) (-15 -1652 ($ $ (-622 $))) (-15 -1652 ($ $ (-654 (-622 $))))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) 44 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) 39 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 38)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 21)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) 17 (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) 41 (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) 15 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) 19)) (-2200 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 43) (($ $ (-1248 (-574))) NIL)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 24)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 11 (|has| $ (-6 -4456)))))
+(((-506 |#1| |#2|) (-19 |#1|) (-1231) (-574)) (T -506))
NIL
(-19 |#1|)
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-572) (-572) |#1|) NIL)) (-3864 (($ $ (-572) (-504 |#1| |#3|)) NIL)) (-4255 (($ $ (-572) (-504 |#1| |#2|)) NIL)) (-3281 (($) NIL T CONST)) (-4172 (((-504 |#1| |#3|) $ (-572)) NIL)) (-2453 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2380 ((|#1| $ (-572) (-572)) NIL)) (-1863 (((-652 |#1|) $) NIL)) (-2187 (((-779) $) NIL)) (-3787 (($ (-779) (-779) |#1|) NIL)) (-2195 (((-779) $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3822 (((-572) $) NIL)) (-3533 (((-572) $) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2795 (((-572) $) NIL)) (-2857 (((-572) $) NIL)) (-2442 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2476 (($ $ |#1|) NIL)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-1752 (((-504 |#1| |#2|) $ (-572)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-505 |#1| |#2| |#3|) (-57 |#1| (-504 |#1| |#3|) (-504 |#1| |#2|)) (-1229) (-572) (-572)) (T -505))
-NIL
-(-57 |#1| (-504 |#1| |#3|) (-504 |#1| |#2|))
-((-3549 (((-652 (-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-779) (-779)) 32)) (-2250 (((-652 (-1184 |#1|)) |#1| (-779) (-779) (-779)) 43)) (-3695 (((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-652 |#3|) (-652 (-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-779)) 107)))
-(((-506 |#1| |#2| |#3|) (-10 -7 (-15 -2250 ((-652 (-1184 |#1|)) |#1| (-779) (-779) (-779))) (-15 -3549 ((-652 (-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-779) (-779))) (-15 -3695 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-652 |#3|) (-652 (-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-779)))) (-356) (-1255 |#1|) (-1255 |#2|)) (T -506))
-((-3695 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-2 (|:| -4362 (-697 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-697 *7))))) (-5 *5 (-779)) (-4 *8 (-1255 *7)) (-4 *7 (-1255 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -4362 (-697 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-697 *7)))) (-5 *1 (-506 *6 *7 *8)))) (-3549 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-779)) (-4 *5 (-356)) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -4362 (-697 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-697 *6))))) (-5 *1 (-506 *5 *6 *7)) (-5 *3 (-2 (|:| -4362 (-697 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-697 *6)))) (-4 *7 (-1255 *6)))) (-2250 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-779)) (-4 *3 (-356)) (-4 *5 (-1255 *3)) (-5 *2 (-652 (-1184 *3))) (-5 *1 (-506 *3 *5 *6)) (-4 *6 (-1255 *5)))))
-(-10 -7 (-15 -2250 ((-652 (-1184 |#1|)) |#1| (-779) (-779) (-779))) (-15 -3549 ((-652 (-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-779) (-779))) (-15 -3695 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-652 |#3|) (-652 (-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-779))))
-((-1727 (((-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|)))) 70)) (-1946 ((|#1| (-697 |#1|) |#1| (-779)) 24)) (-2051 (((-779) (-779) (-779)) 34)) (-1878 (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 50)) (-3617 (((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|) 58) (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 55)) (-3814 ((|#1| (-697 |#1|) (-697 |#1|) |#1| (-572)) 28)) (-4107 ((|#1| (-697 |#1|)) 18)))
-(((-507 |#1| |#2| |#3|) (-10 -7 (-15 -4107 (|#1| (-697 |#1|))) (-15 -1946 (|#1| (-697 |#1|) |#1| (-779))) (-15 -3814 (|#1| (-697 |#1|) (-697 |#1|) |#1| (-572))) (-15 -2051 ((-779) (-779) (-779))) (-15 -3617 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3617 ((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|)) (-15 -1878 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1727 ((-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|)))))) (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))) (-1255 |#1|) (-417 |#1| |#2|)) (T -507))
-((-1727 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-1878 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-3617 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-3617 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-2051 (*1 *2 *2 *2) (-12 (-5 *2 (-779)) (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-3814 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-697 *2)) (-5 *4 (-572)) (-4 *2 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-4 *5 (-1255 *2)) (-5 *1 (-507 *2 *5 *6)) (-4 *6 (-417 *2 *5)))) (-1946 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-697 *2)) (-5 *4 (-779)) (-4 *2 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-4 *5 (-1255 *2)) (-5 *1 (-507 *2 *5 *6)) (-4 *6 (-417 *2 *5)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-697 *2)) (-4 *4 (-1255 *2)) (-4 *2 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $))))) (-5 *1 (-507 *2 *4 *5)) (-4 *5 (-417 *2 *4)))))
-(-10 -7 (-15 -4107 (|#1| (-697 |#1|))) (-15 -1946 (|#1| (-697 |#1|) |#1| (-779))) (-15 -3814 (|#1| (-697 |#1|) (-697 |#1|) |#1| (-572))) (-15 -2051 ((-779) (-779) (-779))) (-15 -3617 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3617 ((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|)) (-15 -1878 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1727 ((-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -4362 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))))))
-((-2846 (((-112) $ $) NIL)) (-2874 (($ $) NIL)) (-2107 (($ $ $) 40)) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) $) NIL (|has| (-112) (-858))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3314 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-858)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2766 (($ $) NIL (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-3140 (((-112) $ (-1246 (-572)) (-112)) NIL (|has| $ (-6 -4455))) (((-112) $ (-572) (-112)) 42 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-3332 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2865 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2453 (((-112) $ (-572) (-112)) NIL (|has| $ (-6 -4455)))) (-2380 (((-112) $ (-572)) NIL)) (-1439 (((-572) (-112) $ (-572)) NIL (|has| (-112) (-1111))) (((-572) (-112) $) NIL (|has| (-112) (-1111))) (((-572) (-1 (-112) (-112)) $) NIL)) (-1863 (((-652 (-112)) $) NIL (|has| $ (-6 -4454)))) (-2096 (($ $ $) 38)) (-2074 (($ $) NIL)) (-2168 (($ $ $) NIL)) (-3787 (($ (-779) (-112)) 27)) (-3792 (($ $ $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) 8 (|has| (-572) (-858)))) (-3654 (($ $ $) NIL)) (-1767 (($ $ $) NIL (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1344 (((-652 (-112)) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL)) (-2442 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1593 (($ $ $ (-572)) NIL) (($ (-112) $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 (((-112) $) NIL (|has| (-572) (-858)))) (-3770 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2476 (($ $ (-112)) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-112)) (-652 (-112))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-300 (-112))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-652 (-300 (-112)))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-4110 (((-652 (-112)) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) 28)) (-2196 (($ $ (-1246 (-572))) NIL) (((-112) $ (-572)) 22) (((-112) $ (-572) (-112)) NIL)) (-2835 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3973 (((-779) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111)))) (((-779) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) 29)) (-1835 (((-544) $) NIL (|has| (-112) (-622 (-544))))) (-2953 (($ (-652 (-112))) NIL)) (-4155 (($ (-652 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2940 (((-870) $) 26)) (-4379 (((-112) $ $) NIL)) (-4380 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-2085 (($ $ $) 36)) (-2922 (($ $ $) NIL)) (-2240 (($ $ $) 45)) (-2251 (($ $) 43)) (-2230 (($ $ $) 44)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 30)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 31)) (-2909 (($ $ $) NIL)) (-2860 (((-779) $) 13 (|has| $ (-6 -4454)))))
-(((-508 |#1|) (-13 (-124) (-10 -8 (-15 -2251 ($ $)) (-15 -2240 ($ $ $)) (-15 -2230 ($ $ $)))) (-572)) (T -508))
-((-2251 (*1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572)))) (-2240 (*1 *1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572)))) (-2230 (*1 *1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572)))))
-(-13 (-124) (-10 -8 (-15 -2251 ($ $)) (-15 -2240 ($ $ $)) (-15 -2230 ($ $ $))))
-((-4120 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1184 |#4|)) 35)) (-1872 (((-1184 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1184 |#4|)) 22)) (-2605 (((-3 (-697 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-697 (-1184 |#4|))) 46)) (-2588 (((-1184 (-1184 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-509 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1872 (|#2| (-1 |#1| |#4|) (-1184 |#4|))) (-15 -1872 ((-1184 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4120 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1184 |#4|))) (-15 -2605 ((-3 (-697 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-697 (-1184 |#4|)))) (-15 -2588 ((-1184 (-1184 |#4|)) (-1 |#4| |#1|) |#3|))) (-1060) (-1255 |#1|) (-1255 |#2|) (-1060)) (T -509))
-((-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *6 (-1255 *5)) (-5 *2 (-1184 (-1184 *7))) (-5 *1 (-509 *5 *6 *4 *7)) (-4 *4 (-1255 *6)))) (-2605 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-697 (-1184 *8))) (-4 *5 (-1060)) (-4 *8 (-1060)) (-4 *6 (-1255 *5)) (-5 *2 (-697 *6)) (-5 *1 (-509 *5 *6 *7 *8)) (-4 *7 (-1255 *6)))) (-4120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1184 *7)) (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *2 (-1255 *5)) (-5 *1 (-509 *5 *2 *6 *7)) (-4 *6 (-1255 *2)))) (-1872 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *4 (-1255 *5)) (-5 *2 (-1184 *7)) (-5 *1 (-509 *5 *4 *6 *7)) (-4 *6 (-1255 *4)))) (-1872 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1184 *7)) (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *2 (-1255 *5)) (-5 *1 (-509 *5 *2 *6 *7)) (-4 *6 (-1255 *2)))))
-(-10 -7 (-15 -1872 (|#2| (-1 |#1| |#4|) (-1184 |#4|))) (-15 -1872 ((-1184 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4120 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1184 |#4|))) (-15 -2605 ((-3 (-697 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-697 (-1184 |#4|)))) (-15 -2588 ((-1184 (-1184 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2846 (((-112) $ $) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1528 (((-1284) $) 25)) (-2196 (((-1170) $ (-1188)) 30)) (-1401 (((-1284) $) 17)) (-2940 (((-870) $) 27) (($ (-1170)) 26)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 11)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 9)))
-(((-510) (-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 ((-1284) $)) (-15 -1528 ((-1284) $)) (-15 -2940 ($ (-1170)))))) (T -510))
-((-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1170)) (-5 *1 (-510)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-510)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-510)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-510)))))
-(-13 (-858) (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 ((-1284) $)) (-15 -1528 ((-1284) $)) (-15 -2940 ($ (-1170)))))
-((-1848 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4241 ((|#1| |#4|) 10)) (-4386 ((|#3| |#4|) 17)))
-(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4241 (|#1| |#4|)) (-15 -4386 (|#3| |#4|)) (-15 -1848 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-564) (-1003 |#1|) (-380 |#1|) (-380 |#2|)) (T -511))
-((-1848 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *6 (-380 *4)) (-4 *3 (-380 *5)))) (-4386 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-4 *2 (-380 *4)) (-5 *1 (-511 *4 *5 *2 *3)) (-4 *3 (-380 *5)))) (-4241 (*1 *2 *3) (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-511 *2 *4 *5 *3)) (-4 *5 (-380 *2)) (-4 *3 (-380 *4)))))
-(-10 -7 (-15 -4241 (|#1| |#4|)) (-15 -4386 (|#3| |#4|)) (-15 -1848 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2846 (((-112) $ $) NIL)) (-1339 (((-112) $ (-652 |#3|)) 126) (((-112) $) 127)) (-2697 (((-112) $) 178)) (-1974 (($ $ |#4|) 117) (($ $ |#4| (-652 |#3|)) 121)) (-2316 (((-1177 (-652 (-961 |#1|)) (-652 (-300 (-961 |#1|)))) (-652 |#4|)) 171 (|has| |#3| (-622 (-1188))))) (-4215 (($ $ $) 107) (($ $ |#4|) 105)) (-1886 (((-112) $) 177)) (-3375 (($ $) 131)) (-4347 (((-1170) $) NIL)) (-1346 (($ $ $) 99) (($ (-652 $)) 101)) (-4296 (((-112) |#4| $) 129)) (-2582 (((-112) $ $) 82)) (-4124 (($ (-652 |#4|)) 106)) (-3964 (((-1131) $) NIL)) (-4146 (($ (-652 |#4|)) 175)) (-3866 (((-112) $) 176)) (-3440 (($ $) 85)) (-2405 (((-652 |#4|) $) 73)) (-2947 (((-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)) $ (-652 |#3|)) NIL)) (-3732 (((-112) |#4| $) 89)) (-4224 (((-572) $ (-652 |#3|)) 133) (((-572) $) 134)) (-2940 (((-870) $) 174) (($ (-652 |#4|)) 102)) (-4379 (((-112) $ $) NIL)) (-2185 (($ (-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $))) NIL)) (-2978 (((-112) $ $) 84)) (-3075 (($ $ $) 109)) (** (($ $ (-779)) 115)) (* (($ $ $) 113)))
-(((-512 |#1| |#2| |#3| |#4|) (-13 (-1111) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-779))) (-15 -3075 ($ $ $)) (-15 -1886 ((-112) $)) (-15 -2697 ((-112) $)) (-15 -3732 ((-112) |#4| $)) (-15 -2582 ((-112) $ $)) (-15 -4296 ((-112) |#4| $)) (-15 -1339 ((-112) $ (-652 |#3|))) (-15 -1339 ((-112) $)) (-15 -1346 ($ $ $)) (-15 -1346 ($ (-652 $))) (-15 -4215 ($ $ $)) (-15 -4215 ($ $ |#4|)) (-15 -3440 ($ $)) (-15 -2947 ((-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)) $ (-652 |#3|))) (-15 -2185 ($ (-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)))) (-15 -4224 ((-572) $ (-652 |#3|))) (-15 -4224 ((-572) $)) (-15 -3375 ($ $)) (-15 -4124 ($ (-652 |#4|))) (-15 -4146 ($ (-652 |#4|))) (-15 -3866 ((-112) $)) (-15 -2405 ((-652 |#4|) $)) (-15 -2940 ($ (-652 |#4|))) (-15 -1974 ($ $ |#4|)) (-15 -1974 ($ $ |#4| (-652 |#3|))) (IF (|has| |#3| (-622 (-1188))) (-15 -2316 ((-1177 (-652 (-961 |#1|)) (-652 (-300 (-961 |#1|)))) (-652 |#4|))) |%noBranch|))) (-370) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -512))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-3075 (*1 *1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-1886 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-3732 (*1 *2 *3 *1) (-12 (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-2582 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-4296 (*1 *2 *3 *1) (-12 (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-1339 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))) (-1339 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-1346 (*1 *1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-652 (-512 *3 *4 *5 *6))) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-4215 (*1 *1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-4215 (*1 *1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))) (-3440 (*1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-2947 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801)) (-5 *2 (-2 (|:| |mval| (-697 *4)) (|:| |invmval| (-697 *4)) (|:| |genIdeal| (-512 *4 *5 *6 *7)))) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-697 *3)) (|:| |invmval| (-697 *3)) (|:| |genIdeal| (-512 *3 *4 *5 *6)))) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-4224 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801)) (-5 *2 (-572)) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))) (-4224 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-572)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-3375 (*1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))) (-3866 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-2405 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *6)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))) (-1974 (*1 *1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))) (-1974 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801)) (-5 *1 (-512 *4 *5 *6 *2)) (-4 *2 (-958 *4 *5 *6)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *6 (-622 (-1188))) (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1177 (-652 (-961 *4)) (-652 (-300 (-961 *4))))) (-5 *1 (-512 *4 *5 *6 *7)))))
-(-13 (-1111) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-779))) (-15 -3075 ($ $ $)) (-15 -1886 ((-112) $)) (-15 -2697 ((-112) $)) (-15 -3732 ((-112) |#4| $)) (-15 -2582 ((-112) $ $)) (-15 -4296 ((-112) |#4| $)) (-15 -1339 ((-112) $ (-652 |#3|))) (-15 -1339 ((-112) $)) (-15 -1346 ($ $ $)) (-15 -1346 ($ (-652 $))) (-15 -4215 ($ $ $)) (-15 -4215 ($ $ |#4|)) (-15 -3440 ($ $)) (-15 -2947 ((-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)) $ (-652 |#3|))) (-15 -2185 ($ (-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)))) (-15 -4224 ((-572) $ (-652 |#3|))) (-15 -4224 ((-572) $)) (-15 -3375 ($ $)) (-15 -4124 ($ (-652 |#4|))) (-15 -4146 ($ (-652 |#4|))) (-15 -3866 ((-112) $)) (-15 -2405 ((-652 |#4|) $)) (-15 -2940 ($ (-652 |#4|))) (-15 -1974 ($ $ |#4|)) (-15 -1974 ($ $ |#4| (-652 |#3|))) (IF (|has| |#3| (-622 (-1188))) (-15 -2316 ((-1177 (-652 (-961 |#1|)) (-652 (-300 (-961 |#1|)))) (-652 |#4|))) |%noBranch|)))
-((-3956 (((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) 176)) (-2326 (((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) 177)) (-3097 (((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) 129)) (-3879 (((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) NIL)) (-4070 (((-652 (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) 179)) (-2132 (((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-652 (-872 |#1|))) 195)))
-(((-513 |#1| |#2|) (-10 -7 (-15 -3956 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -2326 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3879 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3097 ((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -4070 ((-652 (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -2132 ((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-652 (-872 |#1|))))) (-652 (-1188)) (-779)) (T -513))
-((-2132 (*1 *2 *2 *3) (-12 (-5 *2 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))) (-5 *3 (-652 (-872 *4))) (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *1 (-513 *4 *5)))) (-4070 (*1 *2 *3) (-12 (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-652 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572)))))) (-5 *1 (-513 *4 *5)) (-5 *3 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-512 (-415 (-572)) (-244 *4 (-779)) (-872 *3) (-251 *3 (-415 (-572))))) (-14 *3 (-652 (-1188))) (-14 *4 (-779)) (-5 *1 (-513 *3 *4)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))) (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))) (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))) (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5)))))
-(-10 -7 (-15 -3956 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -2326 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3879 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3097 ((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -4070 ((-652 (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -2132 ((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-652 (-872 |#1|)))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2123 (($) 6)) (-2940 (((-870) $) 12) (((-1188) $) 10)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 8)))
-(((-514) (-13 (-1111) (-621 (-1188)) (-10 -8 (-15 -2123 ($))))) (T -514))
-((-2123 (*1 *1) (-5 *1 (-514))))
-(-13 (-1111) (-621 (-1188)) (-10 -8 (-15 -2123 ($))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-4333 (($ |#1| |#2|) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4060 ((|#2| $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 12 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) 11) (($ $ $) 35)) (-3075 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 21)))
-(((-515 |#1| |#2|) (-13 (-21) (-517 |#1| |#2|)) (-21) (-858)) (T -515))
-NIL
-(-13 (-21) (-517 |#1| |#2|))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 13)) (-3281 (($) NIL T CONST)) (-1390 (($ $) 41)) (-4333 (($ |#1| |#2|) 38)) (-1776 (($ (-1 |#1| |#1|) $) 40)) (-4060 ((|#2| $) NIL)) (-1368 ((|#1| $) 42)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 10 T CONST)) (-2978 (((-112) $ $) NIL)) (-3075 (($ $ $) 26)) (* (($ (-930) $) NIL) (($ (-779) $) 36)))
-(((-516 |#1| |#2|) (-13 (-23) (-517 |#1| |#2|)) (-23) (-858)) (T -516))
-NIL
-(-13 (-23) (-517 |#1| |#2|))
-((-2846 (((-112) $ $) 7)) (-1390 (($ $) 14)) (-4333 (($ |#1| |#2|) 17)) (-1776 (($ (-1 |#1| |#1|) $) 18)) (-4060 ((|#2| $) 15)) (-1368 ((|#1| $) 16)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-517 |#1| |#2|) (-141) (-1111) (-858)) (T -517))
-((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-517 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-858)))) (-4333 (*1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-858)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-517 *2 *3)) (-4 *3 (-858)) (-4 *2 (-1111)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-517 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-858)))) (-1390 (*1 *1 *1) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-858)))))
-(-13 (-1111) (-10 -8 (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -4333 ($ |t#1| |t#2|)) (-15 -1368 (|t#1| $)) (-15 -4060 (|t#2| $)) (-15 -1390 ($ $))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-4333 (($ |#1| |#2|) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4060 ((|#2| $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 22)) (-3075 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL)))
-(((-518 |#1| |#2|) (-13 (-800) (-517 |#1| |#2|)) (-800) (-858)) (T -518))
-NIL
-(-13 (-800) (-517 |#1| |#2|))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1360 (($ $ $) 23)) (-3330 (((-3 $ "failed") $ $) 19)) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-4333 (($ |#1| |#2|) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4060 ((|#2| $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)) (-3075 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL)))
-(((-519 |#1| |#2|) (-13 (-801) (-517 |#1| |#2|)) (-801) (-858)) (T -519))
-NIL
-(-13 (-801) (-517 |#1| |#2|))
-((-2846 (((-112) $ $) NIL)) (-1390 (($ $) 32)) (-4333 (($ |#1| |#2|) 28)) (-1776 (($ (-1 |#1| |#1|) $) 30)) (-4060 ((|#2| $) 34)) (-1368 ((|#1| $) 33)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 27)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 20)))
-(((-520 |#1| |#2|) (-517 |#1| |#2|) (-1111) (-858)) (T -520))
-NIL
-(-517 |#1| |#2|)
-((-2641 (($ $ (-652 |#2|) (-652 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-521 |#1| |#2| |#3|) (-10 -8 (-15 -2641 (|#1| |#1| |#2| |#3|)) (-15 -2641 (|#1| |#1| (-652 |#2|) (-652 |#3|)))) (-522 |#2| |#3|) (-1111) (-1229)) (T -521))
-NIL
-(-10 -8 (-15 -2641 (|#1| |#1| |#2| |#3|)) (-15 -2641 (|#1| |#1| (-652 |#2|) (-652 |#3|))))
-((-2641 (($ $ (-652 |#1|) (-652 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-522 |#1| |#2|) (-141) (-1111) (-1229)) (T -522))
-((-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 *5)) (-4 *1 (-522 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1229)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1229)))))
-(-13 (-10 -8 (-15 -2641 ($ $ |t#1| |t#2|)) (-15 -2641 ($ $ (-652 |t#1|) (-652 |t#2|)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 17)) (-1899 (((-652 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $) 19)) (-3330 (((-3 $ "failed") $ $) NIL)) (-1486 (((-779) $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-2321 ((|#1| $ (-572)) 24)) (-2914 ((|#2| $ (-572)) 22)) (-3984 (($ (-1 |#1| |#1|) $) 48)) (-2543 (($ (-1 |#2| |#2|) $) 45)) (-4347 (((-1170) $) NIL)) (-2908 (($ $ $) 55 (|has| |#2| (-800)))) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 44) (($ |#1|) NIL)) (-3979 ((|#2| |#1| $) 51)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 11 T CONST)) (-2978 (((-112) $ $) 30)) (-3075 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-930) $) NIL) (($ (-779) $) 37) (($ |#2| |#1|) 32)))
-(((-523 |#1| |#2| |#3|) (-329 |#1| |#2|) (-1111) (-132) |#2|) (T -523))
-NIL
-(-329 |#1| |#2|)
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3799 (((-112) (-112)) 32)) (-3140 ((|#1| $ (-572) |#1|) 42 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2613 (($ (-1 (-112) |#1|) $) 77)) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2704 (($ $) 81 (|has| |#1| (-1111)))) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3554 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) 64)) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-1439 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-4314 (($ $ (-572)) 19)) (-2164 (((-779) $) 13)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-3787 (($ (-779) |#1|) 31)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) 29 (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-3892 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) 28 (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2036 (($ $ $ (-572)) 73) (($ |#1| $ (-572)) 57)) (-1593 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3933 (($ (-652 |#1|)) 43)) (-2912 ((|#1| $) NIL (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) 24 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 60)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) 21)) (-2196 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) 53) (($ $ (-1246 (-572))) NIL)) (-1696 (($ $ (-1246 (-572))) 71) (($ $ (-572)) 65)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) 61 (|has| $ (-6 -4455)))) (-3164 (($ $) 51)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) NIL)) (-1700 (($ $ $) 62) (($ $ |#1|) 59)) (-4155 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-652 $)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2860 (((-779) $) 22 (|has| $ (-6 -4454)))))
-(((-524 |#1| |#2|) (-13 (-19 |#1|) (-288 |#1|) (-10 -8 (-15 -3933 ($ (-652 |#1|))) (-15 -2164 ((-779) $)) (-15 -4314 ($ $ (-572))) (-15 -3799 ((-112) (-112))))) (-1229) (-572)) (T -524))
-((-3933 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-524 *3 *4)) (-14 *4 (-572)))) (-2164 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229)) (-14 *4 (-572)))) (-4314 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229)) (-14 *4 *2))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229)) (-14 *4 (-572)))))
-(-13 (-19 |#1|) (-288 |#1|) (-10 -8 (-15 -3933 ($ (-652 |#1|))) (-15 -2164 ((-779) $)) (-15 -4314 ($ $ (-572))) (-15 -3799 ((-112) (-112)))))
-((-2846 (((-112) $ $) NIL)) (-4104 (((-1146) $) 11)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3343 (((-1146) $) 13)) (-2260 (((-1146) $) 9)) (-2940 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-525) (-13 (-1094) (-10 -8 (-15 -2260 ((-1146) $)) (-15 -4104 ((-1146) $)) (-15 -3343 ((-1146) $))))) (T -525))
-((-2260 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))))
-(-13 (-1094) (-10 -8 (-15 -2260 ((-1146) $)) (-15 -4104 ((-1146) $)) (-15 -3343 ((-1146) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 (((-589 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-589 |#1|) (-375)))) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-589 |#1|) (-375)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL (|has| (-589 |#1|) (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-589 |#1|) "failed") $) NIL)) (-2204 (((-589 |#1|) $) NIL)) (-1913 (($ (-1279 (-589 |#1|))) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-589 |#1|) (-375)))) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-589 |#1|) (-375)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) NIL (|has| (-589 |#1|) (-375)))) (-3442 (((-112) $) NIL (|has| (-589 |#1|) (-375)))) (-2303 (($ $ (-779)) NIL (-2813 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375)))) (($ $) NIL (-2813 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375))))) (-3879 (((-112) $) NIL)) (-2956 (((-930) $) NIL (|has| (-589 |#1|) (-375))) (((-841 (-930)) $) NIL (-2813 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375))))) (-1886 (((-112) $) NIL)) (-1663 (($) NIL (|has| (-589 |#1|) (-375)))) (-2078 (((-112) $) NIL (|has| (-589 |#1|) (-375)))) (-2028 (((-589 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-589 |#1|) (-375)))) (-2556 (((-3 $ "failed") $) NIL (|has| (-589 |#1|) (-375)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 (-589 |#1|)) $) NIL) (((-1184 $) $ (-930)) NIL (|has| (-589 |#1|) (-375)))) (-3715 (((-930) $) NIL (|has| (-589 |#1|) (-375)))) (-4370 (((-1184 (-589 |#1|)) $) NIL (|has| (-589 |#1|) (-375)))) (-3293 (((-1184 (-589 |#1|)) $) NIL (|has| (-589 |#1|) (-375))) (((-3 (-1184 (-589 |#1|)) "failed") $ $) NIL (|has| (-589 |#1|) (-375)))) (-3103 (($ $ (-1184 (-589 |#1|))) NIL (|has| (-589 |#1|) (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-589 |#1|) (-375)) CONST)) (-2571 (($ (-930)) NIL (|has| (-589 |#1|) (-375)))) (-2946 (((-112) $) NIL)) (-3964 (((-1131) $) NIL)) (-2967 (($) NIL (|has| (-589 |#1|) (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| (-589 |#1|) (-375)))) (-4218 (((-426 $) $) NIL)) (-3040 (((-841 (-930))) NIL) (((-930)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-779) $) NIL (|has| (-589 |#1|) (-375))) (((-3 (-779) "failed") $ $) NIL (-2813 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375))))) (-4224 (((-135)) NIL)) (-3902 (($ $) NIL (|has| (-589 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-589 |#1|) (-375)))) (-4390 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3764 (((-1184 (-589 |#1|))) NIL)) (-4033 (($) NIL (|has| (-589 |#1|) (-375)))) (-3105 (($) NIL (|has| (-589 |#1|) (-375)))) (-4329 (((-1279 (-589 |#1|)) $) NIL) (((-697 (-589 |#1|)) (-1279 $)) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-589 |#1|) (-375)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-589 |#1|)) NIL)) (-3849 (($ $) NIL (|has| (-589 |#1|) (-375))) (((-3 $ "failed") $) NIL (-2813 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375))))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| (-589 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-589 |#1|) (-375)))) (-3608 (($ $) NIL (|has| (-589 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-589 |#1|) (-375)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL) (($ $ (-589 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-589 |#1|)) NIL) (($ (-589 |#1|) $) NIL)))
-(((-526 |#1| |#2|) (-335 (-589 |#1|)) (-930) (-930)) (T -526))
-NIL
-(-335 (-589 |#1|))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-572) (-572) |#1|) 51)) (-3864 (($ $ (-572) |#4|) NIL)) (-4255 (($ $ (-572) |#5|) NIL)) (-3281 (($) NIL T CONST)) (-4172 ((|#4| $ (-572)) NIL)) (-2453 ((|#1| $ (-572) (-572) |#1|) 50)) (-2380 ((|#1| $ (-572) (-572)) 45)) (-1863 (((-652 |#1|) $) NIL)) (-2187 (((-779) $) 33)) (-3787 (($ (-779) (-779) |#1|) 30)) (-2195 (((-779) $) 38)) (-1861 (((-112) $ (-779)) NIL)) (-3822 (((-572) $) 31)) (-3533 (((-572) $) 32)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2795 (((-572) $) 37)) (-2857 (((-572) $) 39)) (-2442 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) 55 (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2476 (($ $ |#1|) NIL)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 14)) (-1613 (($) 16)) (-2196 ((|#1| $ (-572) (-572)) 48) ((|#1| $ (-572) (-572) |#1|) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-1752 ((|#5| $ (-572)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-527 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1229) (-572) (-572) (-380 |#1|) (-380 |#1|)) (T -527))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL)) (-1502 (($ $ (-574) (-506 |#1| |#3|)) NIL)) (-4196 (($ $ (-574) (-506 |#1| |#2|)) NIL)) (-3670 (($) NIL T CONST)) (-1468 (((-506 |#1| |#3|) $ (-574)) NIL)) (-2462 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-2190 (((-781) $) NIL)) (-3790 (($ (-781) (-781) |#1|) NIL)) (-2199 (((-781) $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-2294 (((-574) $) NIL)) (-1373 (((-574) $) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1431 (((-574) $) NIL)) (-3889 (((-574) $) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1363 (($ $ |#1|) NIL)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-1988 (((-506 |#1| |#2|) $ (-574)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-507 |#1| |#2| |#3|) (-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) (-1231) (-574) (-574)) (T -507))
+NIL
+(-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|))
+((-1531 (((-654 (-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781)) 32)) (-3100 (((-654 (-1186 |#1|)) |#1| (-781) (-781) (-781)) 43)) (-2361 (((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)) 107)))
+(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -3100 ((-654 (-1186 |#1|)) |#1| (-781) (-781) (-781))) (-15 -1531 ((-654 (-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -2361 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) (-358) (-1257 |#1|) (-1257 |#2|)) (T -508))
+((-2361 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-2 (|:| -2722 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7))))) (-5 *5 (-781)) (-4 *8 (-1257 *7)) (-4 *7 (-1257 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -2722 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7)))) (-5 *1 (-508 *6 *7 *8)))) (-1531 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -2722 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6))))) (-5 *1 (-508 *5 *6 *7)) (-5 *3 (-2 (|:| -2722 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6)))) (-4 *7 (-1257 *6)))) (-3100 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1257 *3)) (-5 *2 (-654 (-1186 *3))) (-5 *1 (-508 *3 *5 *6)) (-4 *6 (-1257 *5)))))
+(-10 -7 (-15 -3100 ((-654 (-1186 |#1|)) |#1| (-781) (-781) (-781))) (-15 -1531 ((-654 (-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -2361 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781))))
+((-1752 (((-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 70)) (-3402 ((|#1| (-699 |#1|) |#1| (-781)) 24)) (-1838 (((-781) (-781) (-781)) 34)) (-3893 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 50)) (-4107 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 58) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 55)) (-2223 ((|#1| (-699 |#1|) (-699 |#1|) |#1| (-574)) 28)) (-2087 ((|#1| (-699 |#1|)) 18)))
+(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -2087 (|#1| (-699 |#1|))) (-15 -3402 (|#1| (-699 |#1|) |#1| (-781))) (-15 -2223 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -1838 ((-781) (-781) (-781))) (-15 -4107 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -4107 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3893 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1752 ((-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))) (-1257 |#1|) (-419 |#1| |#2|)) (T -509))
+((-1752 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3893 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-4107 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-4107 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1838 (*1 *2 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-2223 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) (-4 *2 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-4 *5 (-1257 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-3402 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) (-4 *2 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-4 *5 (-1257 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-2087 (*1 *2 *3) (-12 (-5 *3 (-699 *2)) (-4 *4 (-1257 *2)) (-4 *2 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $))))) (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4)))))
+(-10 -7 (-15 -2087 (|#1| (-699 |#1|))) (-15 -3402 (|#1| (-699 |#1|) |#1| (-781))) (-15 -2223 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -1838 ((-781) (-781) (-781))) (-15 -4107 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -4107 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3893 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1752 ((-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -2722 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))))
+((-2849 (((-112) $ $) NIL)) (-2877 (($ $) NIL)) (-2110 (($ $ $) 40)) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4010 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4457)))) (-2771 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-3143 (((-112) $ (-1248 (-574)) (-112)) NIL (|has| $ (-6 -4457))) (((-112) $ (-574) (-112)) 42 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-3335 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2868 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2462 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4457)))) (-2385 (((-112) $ (-574)) NIL)) (-1441 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1113))) (((-574) (-112) $) NIL (|has| (-112) (-1113))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1864 (((-654 (-112)) $) NIL (|has| $ (-6 -4456)))) (-2099 (($ $ $) 38)) (-2077 (($ $) NIL)) (-3602 (($ $ $) NIL)) (-3790 (($ (-781) (-112)) 27)) (-2026 (($ $ $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) 8 (|has| (-574) (-860)))) (-3658 (($ $ $) NIL)) (-2130 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1712 (((-654 (-112)) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL)) (-2446 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-1595 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-112) $) NIL (|has| (-574) (-860)))) (-1836 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1363 (($ $ (-112)) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2121 (((-654 (-112)) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) 28)) (-2200 (($ $ (-1248 (-574))) NIL) (((-112) $ (-574)) 22) (((-112) $ (-574) (-112)) NIL)) (-2837 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-3975 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) 29)) (-1837 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2956 (($ (-654 (-112))) NIL)) (-4157 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2943 (((-872) $) 26)) (-2923 (((-112) $ $) NIL)) (-2935 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2088 (($ $ $) 36)) (-2925 (($ $ $) NIL)) (-2245 (($ $ $) 45)) (-2255 (($ $) 43)) (-2236 (($ $ $) 44)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 30)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 31)) (-2911 (($ $ $) NIL)) (-2863 (((-781) $) 13 (|has| $ (-6 -4456)))))
+(((-510 |#1|) (-13 (-124) (-10 -8 (-15 -2255 ($ $)) (-15 -2245 ($ $ $)) (-15 -2236 ($ $ $)))) (-574)) (T -510))
+((-2255 (*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2245 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2236 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))))
+(-13 (-124) (-10 -8 (-15 -2255 ($ $)) (-15 -2245 ($ $ $)) (-15 -2236 ($ $ $))))
+((-2231 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1186 |#4|)) 35)) (-3833 (((-1186 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1186 |#4|)) 22)) (-3324 (((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1186 |#4|))) 46)) (-3132 (((-1186 (-1186 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3833 (|#2| (-1 |#1| |#4|) (-1186 |#4|))) (-15 -3833 ((-1186 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2231 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1186 |#4|))) (-15 -3324 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1186 |#4|)))) (-15 -3132 ((-1186 (-1186 |#4|)) (-1 |#4| |#1|) |#3|))) (-1062) (-1257 |#1|) (-1257 |#2|) (-1062)) (T -511))
+((-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *6 (-1257 *5)) (-5 *2 (-1186 (-1186 *7))) (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1257 *6)))) (-3324 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-699 (-1186 *8))) (-4 *5 (-1062)) (-4 *8 (-1062)) (-4 *6 (-1257 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) (-4 *7 (-1257 *6)))) (-2231 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1186 *7)) (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *2 (-1257 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1257 *2)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *4 (-1257 *5)) (-5 *2 (-1186 *7)) (-5 *1 (-511 *5 *4 *6 *7)) (-4 *6 (-1257 *4)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1186 *7)) (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *2 (-1257 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1257 *2)))))
+(-10 -7 (-15 -3833 (|#2| (-1 |#1| |#4|) (-1186 |#4|))) (-15 -3833 ((-1186 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2231 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1186 |#4|))) (-15 -3324 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1186 |#4|)))) (-15 -3132 ((-1186 (-1186 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2849 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3588 (((-1286) $) 25)) (-2200 (((-1172) $ (-1190)) 30)) (-1403 (((-1286) $) 17)) (-2943 (((-872) $) 27) (($ (-1172)) 26)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 11)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 9)))
+(((-512) (-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3588 ((-1286) $)) (-15 -2943 ($ (-1172)))))) (T -512))
+((-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1172)) (-5 *1 (-512)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-512)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-512)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-512)))))
+(-13 (-860) (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3588 ((-1286) $)) (-15 -2943 ($ (-1172)))))
+((-3618 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4090 ((|#1| |#4|) 10)) (-3009 ((|#3| |#4|) 17)))
+(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4090 (|#1| |#4|)) (-15 -3009 (|#3| |#4|)) (-15 -3618 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-566) (-1005 |#1|) (-382 |#1|) (-382 |#2|)) (T -513))
+((-3618 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) (-3009 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-4 *2 (-382 *4)) (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-382 *4)))))
+(-10 -7 (-15 -4090 (|#1| |#4|)) (-15 -3009 (|#3| |#4|)) (-15 -3618 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2849 (((-112) $ $) NIL)) (-1663 (((-112) $ (-654 |#3|)) 126) (((-112) $) 127)) (-2908 (((-112) $) 178)) (-2339 (($ $ |#4|) 117) (($ $ |#4| (-654 |#3|)) 121)) (-2354 (((-1179 (-654 (-963 |#1|)) (-654 (-302 (-963 |#1|)))) (-654 |#4|)) 171 (|has| |#3| (-624 (-1190))))) (-3855 (($ $ $) 107) (($ $ |#4|) 105)) (-3965 (((-112) $) 177)) (-3439 (($ $) 131)) (-2568 (((-1172) $) NIL)) (-1731 (($ $ $) 99) (($ (-654 $)) 101)) (-3385 (((-112) |#4| $) 129)) (-3065 (((-112) $ $) 82)) (-2260 (($ (-654 |#4|)) 106)) (-3966 (((-1133) $) NIL)) (-4360 (($ (-654 |#4|)) 175)) (-1529 (((-112) $) 176)) (-2850 (($ $) 85)) (-1935 (((-654 |#4|) $) 73)) (-3513 (((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|)) NIL)) (-2731 (((-112) |#4| $) 89)) (-3939 (((-574) $ (-654 |#3|)) 133) (((-574) $) 134)) (-2943 (((-872) $) 174) (($ (-654 |#4|)) 102)) (-2923 (((-112) $ $) NIL)) (-3774 (($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $))) NIL)) (-2982 (((-112) $ $) 84)) (-3078 (($ $ $) 109)) (** (($ $ (-781)) 115)) (* (($ $ $) 113)))
+(((-514 |#1| |#2| |#3| |#4|) (-13 (-1113) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3078 ($ $ $)) (-15 -3965 ((-112) $)) (-15 -2908 ((-112) $)) (-15 -2731 ((-112) |#4| $)) (-15 -3065 ((-112) $ $)) (-15 -3385 ((-112) |#4| $)) (-15 -1663 ((-112) $ (-654 |#3|))) (-15 -1663 ((-112) $)) (-15 -1731 ($ $ $)) (-15 -1731 ($ (-654 $))) (-15 -3855 ($ $ $)) (-15 -3855 ($ $ |#4|)) (-15 -2850 ($ $)) (-15 -3513 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -3774 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -3939 ((-574) $ (-654 |#3|))) (-15 -3939 ((-574) $)) (-15 -3439 ($ $)) (-15 -2260 ($ (-654 |#4|))) (-15 -4360 ($ (-654 |#4|))) (-15 -1529 ((-112) $)) (-15 -1935 ((-654 |#4|) $)) (-15 -2943 ($ (-654 |#4|))) (-15 -2339 ($ $ |#4|)) (-15 -2339 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1190))) (-15 -2354 ((-1179 (-654 (-963 |#1|)) (-654 (-302 (-963 |#1|)))) (-654 |#4|))) |%noBranch|))) (-372) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -514))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-3078 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-3965 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-2908 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-2731 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-3065 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-3385 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-1663 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))) (-1663 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-1731 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-1731 (*1 *1 *2) (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-3855 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5)))) (-2850 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) (|:| |genIdeal| (-514 *4 *5 *6 *7)))) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) (|:| |genIdeal| (-514 *3 *4 *5 *6)))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-3939 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))) (-3939 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-3439 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-4360 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-1529 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-1935 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2339 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5)))) (-2339 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-960 *4 *5 *6)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *6 (-624 (-1190))) (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1179 (-654 (-963 *4)) (-654 (-302 (-963 *4))))) (-5 *1 (-514 *4 *5 *6 *7)))))
+(-13 (-1113) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3078 ($ $ $)) (-15 -3965 ((-112) $)) (-15 -2908 ((-112) $)) (-15 -2731 ((-112) |#4| $)) (-15 -3065 ((-112) $ $)) (-15 -3385 ((-112) |#4| $)) (-15 -1663 ((-112) $ (-654 |#3|))) (-15 -1663 ((-112) $)) (-15 -1731 ($ $ $)) (-15 -1731 ($ (-654 $))) (-15 -3855 ($ $ $)) (-15 -3855 ($ $ |#4|)) (-15 -2850 ($ $)) (-15 -3513 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -3774 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -3939 ((-574) $ (-654 |#3|))) (-15 -3939 ((-574) $)) (-15 -3439 ($ $)) (-15 -2260 ($ (-654 |#4|))) (-15 -4360 ($ (-654 |#4|))) (-15 -1529 ((-112) $)) (-15 -1935 ((-654 |#4|) $)) (-15 -2943 ($ (-654 |#4|))) (-15 -2339 ($ $ |#4|)) (-15 -2339 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1190))) (-15 -2354 ((-1179 (-654 (-963 |#1|)) (-654 (-302 (-963 |#1|)))) (-654 |#4|))) |%noBranch|)))
+((-3127 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 176)) (-2466 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 177)) (-3102 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 129)) (-1654 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) NIL)) (-2999 (((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 179)) (-1345 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))) 195)))
+(((-515 |#1| |#2|) (-10 -7 (-15 -3127 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2466 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1654 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3102 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2999 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1345 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) (-654 (-1190)) (-781)) (T -515))
+((-1345 (*1 *2 *2 *3) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *1 (-515 *4 *5)))) (-2999 (*1 *2 *3) (-12 (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-654 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574)))))) (-5 *1 (-515 *4 *5)) (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1190))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))))
+(-10 -7 (-15 -3127 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2466 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1654 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3102 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2999 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1345 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|)))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4390 (($) 6)) (-2943 (((-872) $) 12) (((-1190) $) 10)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 8)))
+(((-516) (-13 (-1113) (-623 (-1190)) (-10 -8 (-15 -4390 ($))))) (T -516))
+((-4390 (*1 *1) (-5 *1 (-516))))
+(-13 (-1113) (-623 (-1190)) (-10 -8 (-15 -4390 ($))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2890 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 12 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) 11) (($ $ $) 35)) (-3078 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21)))
+(((-517 |#1| |#2|) (-13 (-21) (-519 |#1| |#2|)) (-21) (-860)) (T -517))
+NIL
+(-13 (-21) (-519 |#1| |#2|))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 13)) (-3670 (($) NIL T CONST)) (-1392 (($ $) 41)) (-4335 (($ |#1| |#2|) 38)) (-1778 (($ (-1 |#1| |#1|) $) 40)) (-2890 ((|#2| $) NIL)) (-1370 ((|#1| $) 42)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 10 T CONST)) (-2982 (((-112) $ $) NIL)) (-3078 (($ $ $) 26)) (* (($ (-932) $) NIL) (($ (-781) $) 36)))
+(((-518 |#1| |#2|) (-13 (-23) (-519 |#1| |#2|)) (-23) (-860)) (T -518))
+NIL
+(-13 (-23) (-519 |#1| |#2|))
+((-2849 (((-112) $ $) 7)) (-1392 (($ $) 14)) (-4335 (($ |#1| |#2|) 17)) (-1778 (($ (-1 |#1| |#1|) $) 18)) (-2890 ((|#2| $) 15)) (-1370 ((|#1| $) 16)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-519 |#1| |#2|) (-141) (-1113) (-860)) (T -519))
+((-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-860)))) (-4335 (*1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-860)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1113)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-860)))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-860)))))
+(-13 (-1113) (-10 -8 (-15 -1778 ($ (-1 |t#1| |t#1|) $)) (-15 -4335 ($ |t#1| |t#2|)) (-15 -1370 (|t#1| $)) (-15 -2890 (|t#2| $)) (-15 -1392 ($ $))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2890 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 22)) (-3078 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL)))
+(((-520 |#1| |#2|) (-13 (-802) (-519 |#1| |#2|)) (-802) (-860)) (T -520))
+NIL
+(-13 (-802) (-519 |#1| |#2|))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1854 (($ $ $) 23)) (-2950 (((-3 $ "failed") $ $) 19)) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2890 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3078 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL)))
+(((-521 |#1| |#2|) (-13 (-803) (-519 |#1| |#2|)) (-803) (-860)) (T -521))
+NIL
+(-13 (-803) (-519 |#1| |#2|))
+((-2849 (((-112) $ $) NIL)) (-1392 (($ $) 32)) (-4335 (($ |#1| |#2|) 28)) (-1778 (($ (-1 |#1| |#1|) $) 30)) (-2890 ((|#2| $) 34)) (-1370 ((|#1| $) 33)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 27)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 20)))
+(((-522 |#1| |#2|) (-519 |#1| |#2|) (-1113) (-860)) (T -522))
+NIL
+(-519 |#1| |#2|)
+((-2646 (($ $ (-654 |#2|) (-654 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-523 |#1| |#2| |#3|) (-10 -8 (-15 -2646 (|#1| |#1| |#2| |#3|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) (-524 |#2| |#3|) (-1113) (-1231)) (T -523))
+NIL
+(-10 -8 (-15 -2646 (|#1| |#1| |#2| |#3|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#3|))))
+((-2646 (($ $ (-654 |#1|) (-654 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-524 |#1| |#2|) (-141) (-1113) (-1231)) (T -524))
+((-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1231)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1231)))))
+(-13 (-10 -8 (-15 -2646 ($ $ |t#1| |t#2|)) (-15 -2646 ($ $ (-654 |t#1|) (-654 |t#2|)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 17)) (-4086 (((-654 (-2 (|:| |gen| |#1|) (|:| -1610 |#2|))) $) 19)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781) $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-2404 ((|#1| $ (-574)) 24)) (-3198 ((|#2| $ (-574)) 22)) (-3400 (($ (-1 |#1| |#1|) $) 48)) (-3918 (($ (-1 |#2| |#2|) $) 45)) (-2568 (((-1172) $) NIL)) (-3164 (($ $ $) 55 (|has| |#2| (-802)))) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 44) (($ |#1|) NIL)) (-3344 ((|#2| |#1| $) 51)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 11 T CONST)) (-2982 (((-112) $ $) 30)) (-3078 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-932) $) NIL) (($ (-781) $) 37) (($ |#2| |#1|) 32)))
+(((-525 |#1| |#2| |#3|) (-331 |#1| |#2|) (-1113) (-132) |#2|) (T -525))
+NIL
+(-331 |#1| |#2|)
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-2081 (((-112) (-112)) 32)) (-3143 ((|#1| $ (-574) |#1|) 42 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-3391 (($ (-1 (-112) |#1|) $) 77)) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1730 (($ $) 81 (|has| |#1| (-1113)))) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1586 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) 64)) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-3541 (($ $ (-574)) 19)) (-1614 (((-781) $) 13)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 31)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) 29 (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-3722 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) 28 (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1709 (($ $ $ (-574)) 73) (($ |#1| $ (-574)) 57)) (-1595 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-4094 (($ (-654 |#1|)) 43)) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) 24 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 60)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) 21)) (-2200 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 53) (($ $ (-1248 (-574))) NIL)) (-2701 (($ $ (-1248 (-574))) 71) (($ $ (-574)) 65)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) 61 (|has| $ (-6 -4457)))) (-3167 (($ $) 51)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-2734 (($ $ $) 62) (($ $ |#1|) 59)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 22 (|has| $ (-6 -4456)))))
+(((-526 |#1| |#2|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -4094 ($ (-654 |#1|))) (-15 -1614 ((-781) $)) (-15 -3541 ($ $ (-574))) (-15 -2081 ((-112) (-112))))) (-1231) (-574)) (T -526))
+((-4094 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-526 *3 *4)) (-14 *4 (-574)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) (-14 *4 (-574)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) (-14 *4 *2))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) (-14 *4 (-574)))))
+(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -4094 ($ (-654 |#1|))) (-15 -1614 ((-781) $)) (-15 -3541 ($ $ (-574))) (-15 -2081 ((-112) (-112)))))
+((-2849 (((-112) $ $) NIL)) (-2056 (((-1148) $) 11)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3101 (((-1148) $) 13)) (-2265 (((-1148) $) 9)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-527) (-13 (-1096) (-10 -8 (-15 -2265 ((-1148) $)) (-15 -2056 ((-1148) $)) (-15 -3101 ((-1148) $))))) (T -527))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))))
+(-13 (-1096) (-10 -8 (-15 -2265 ((-1148) $)) (-15 -2056 ((-1148) $)) (-15 -3101 ((-1148) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 (((-591 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-591 |#1|) (-377)))) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-591 |#1|) (-377)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| (-591 |#1|) (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-591 |#1|) "failed") $) NIL)) (-2209 (((-591 |#1|) $) NIL)) (-3003 (($ (-1281 (-591 |#1|))) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-591 |#1|) (-377)))) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-591 |#1|) (-377)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) NIL (|has| (-591 |#1|) (-377)))) (-2878 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-3564 (($ $ (-781)) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377)))) (($ $) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-1654 (((-112) $) NIL)) (-3593 (((-932) $) NIL (|has| (-591 |#1|) (-377))) (((-843 (-932)) $) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3965 (((-112) $) NIL)) (-2342 (($) NIL (|has| (-591 |#1|) (-377)))) (-2079 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-1652 (((-591 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-591 |#1|) (-377)))) (-4048 (((-3 $ "failed") $) NIL (|has| (-591 |#1|) (-377)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 (-591 |#1|)) $) NIL) (((-1186 $) $ (-932)) NIL (|has| (-591 |#1|) (-377)))) (-2565 (((-932) $) NIL (|has| (-591 |#1|) (-377)))) (-2810 (((-1186 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377)))) (-3795 (((-1186 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-1186 (-591 |#1|)) "failed") $ $) NIL (|has| (-591 |#1|) (-377)))) (-2338 (($ $ (-1186 (-591 |#1|))) NIL (|has| (-591 |#1|) (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-591 |#1|) (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| (-591 |#1|) (-377)))) (-3504 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL (|has| (-591 |#1|) (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| (-591 |#1|) (-377)))) (-4220 (((-428 $) $) NIL)) (-3027 (((-843 (-932))) NIL) (((-932)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-781) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3939 (((-135)) NIL)) (-3905 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-1784 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-1782 (((-1186 (-591 |#1|))) NIL)) (-2585 (($) NIL (|has| (-591 |#1|) (-377)))) (-2358 (($) NIL (|has| (-591 |#1|) (-377)))) (-3676 (((-1281 (-591 |#1|)) $) NIL) (((-699 (-591 |#1|)) (-1281 $)) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-591 |#1|) (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-591 |#1|)) NIL)) (-1369 (($ $) NIL (|has| (-591 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2007 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-3611 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ (-591 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-591 |#1|)) NIL) (($ (-591 |#1|) $) NIL)))
+(((-528 |#1| |#2|) (-337 (-591 |#1|)) (-932) (-932)) (T -528))
+NIL
+(-337 (-591 |#1|))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) 51)) (-1502 (($ $ (-574) |#4|) NIL)) (-4196 (($ $ (-574) |#5|) NIL)) (-3670 (($) NIL T CONST)) (-1468 ((|#4| $ (-574)) NIL)) (-2462 ((|#1| $ (-574) (-574) |#1|) 50)) (-2385 ((|#1| $ (-574) (-574)) 45)) (-1864 (((-654 |#1|) $) NIL)) (-2190 (((-781) $) 33)) (-3790 (($ (-781) (-781) |#1|) 30)) (-2199 (((-781) $) 38)) (-3735 (((-112) $ (-781)) NIL)) (-2294 (((-574) $) 31)) (-1373 (((-574) $) 32)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1431 (((-574) $) 37)) (-3889 (((-574) $) 39)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) 55 (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1363 (($ $ |#1|) NIL)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 14)) (-3135 (($) 16)) (-2200 ((|#1| $ (-574) (-574)) 48) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-1988 ((|#5| $ (-574)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-529 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1231) (-574) (-574) (-382 |#1|) (-382 |#1|)) (T -529))
NIL
(-57 |#1| |#4| |#5|)
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) NIL)) (-2401 ((|#1| $) NIL)) (-1969 (($ $) NIL)) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-4382 (($ $ (-572)) 70 (|has| $ (-6 -4455)))) (-2852 (((-112) $) NIL (|has| |#1| (-858))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3314 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4455)))) (-2766 (($ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2506 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-1385 (($ $ $) 23 (|has| $ (-6 -4455)))) (-2871 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-4178 ((|#1| $ |#1|) 21 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4455))) (($ $ "rest" $) 24 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-2613 (($ (-1 (-112) |#1|) $) NIL)) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2388 ((|#1| $) NIL)) (-3281 (($) NIL T CONST)) (-3133 (($ $) 28 (|has| $ (-6 -4455)))) (-4421 (($ $) 29)) (-2923 (($ $) 18) (($ $ (-779)) 32)) (-2704 (($ $) 62 (|has| |#1| (-1111)))) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3554 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) NIL)) (-3332 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-4055 (((-112) $) NIL)) (-1439 (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111))) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) (-1 (-112) |#1|) $) NIL)) (-1863 (((-652 |#1|) $) 27 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3787 (($ (-779) |#1|) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) 31 (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-3892 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-1767 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1787 (($ |#1|) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3505 (((-652 |#1|) $) NIL)) (-2087 (((-112) $) NIL)) (-4347 (((-1170) $) 58 (|has| |#1| (-1111)))) (-3357 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-2036 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1593 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2912 ((|#1| $) 13) (($ $ (-779)) NIL)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3064 (((-112) $) NIL)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 12)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) 17)) (-1613 (($) 16)) (-2196 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1246 (-572))) NIL) ((|#1| $ (-572)) NIL) ((|#1| $ (-572) |#1|) NIL)) (-2157 (((-572) $ $) NIL)) (-1696 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-2835 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3315 (((-112) $) 35)) (-2285 (($ $) NIL)) (-2391 (($ $) NIL (|has| $ (-6 -4455)))) (-3417 (((-779) $) NIL)) (-3479 (($ $) 40)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) 36)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 26)) (-1700 (($ $ $) 61) (($ $ |#1|) NIL)) (-4155 (($ $ $) NIL) (($ |#1| $) 10) (($ (-652 $)) NIL) (($ $ |#1|) NIL)) (-2940 (((-870) $) 50 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) 54 (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2860 (((-779) $) 9 (|has| $ (-6 -4454)))))
-(((-528 |#1| |#2|) (-674 |#1|) (-1229) (-572)) (T -528))
-NIL
-(-674 |#1|)
-((-3076 ((|#4| |#4|) 38)) (-3581 (((-779) |#4|) 44)) (-4430 (((-779) |#4|) 45)) (-2313 (((-652 |#3|) |#4|) 55 (|has| |#3| (-6 -4455)))) (-1982 (((-3 |#4| "failed") |#4|) 67)) (-3612 ((|#4| |#4|) 59)) (-2513 ((|#1| |#4|) 58)))
-(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3076 (|#4| |#4|)) (-15 -3581 ((-779) |#4|)) (-15 -4430 ((-779) |#4|)) (IF (|has| |#3| (-6 -4455)) (-15 -2313 ((-652 |#3|) |#4|)) |%noBranch|) (-15 -2513 (|#1| |#4|)) (-15 -3612 (|#4| |#4|)) (-15 -1982 ((-3 |#4| "failed") |#4|))) (-370) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|)) (T -529))
-((-1982 (*1 *2 *2) (|partial| -12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-2513 (*1 *2 *3) (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-370)) (-5 *1 (-529 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5)))) (-2313 (*1 *2 *3) (-12 (|has| *6 (-6 -4455)) (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-652 *6)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-4430 (*1 *2 *3) (-12 (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
-(-10 -7 (-15 -3076 (|#4| |#4|)) (-15 -3581 ((-779) |#4|)) (-15 -4430 ((-779) |#4|)) (IF (|has| |#3| (-6 -4455)) (-15 -2313 ((-652 |#3|) |#4|)) |%noBranch|) (-15 -2513 (|#1| |#4|)) (-15 -3612 (|#4| |#4|)) (-15 -1982 ((-3 |#4| "failed") |#4|)))
-((-3076 ((|#8| |#4|) 20)) (-2313 (((-652 |#3|) |#4|) 29 (|has| |#7| (-6 -4455)))) (-1982 (((-3 |#8| "failed") |#4|) 23)))
-(((-530 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3076 (|#8| |#4|)) (-15 -1982 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4455)) (-15 -2313 ((-652 |#3|) |#4|)) |%noBranch|)) (-564) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|) (-1003 |#1|) (-380 |#5|) (-380 |#5|) (-695 |#5| |#6| |#7|)) (T -530))
-((-2313 (*1 *2 *3) (-12 (|has| *9 (-6 -4455)) (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-4 *7 (-1003 *4)) (-4 *8 (-380 *7)) (-4 *9 (-380 *7)) (-5 *2 (-652 *6)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-695 *4 *5 *6)) (-4 *10 (-695 *7 *8 *9)))) (-1982 (*1 *2 *3) (|partial| -12 (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-4 *7 (-1003 *4)) (-4 *2 (-695 *7 *8 *9)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-695 *4 *5 *6)) (-4 *8 (-380 *7)) (-4 *9 (-380 *7)))) (-3076 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-4 *7 (-1003 *4)) (-4 *2 (-695 *7 *8 *9)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-695 *4 *5 *6)) (-4 *8 (-380 *7)) (-4 *9 (-380 *7)))))
-(-10 -7 (-15 -3076 (|#8| |#4|)) (-15 -1982 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4455)) (-15 -2313 ((-652 |#3|) |#4|)) |%noBranch|))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2212 (($ (-779) (-779)) NIL)) (-2788 (($ $ $) NIL)) (-3054 (($ (-610 |#1| |#3|)) NIL) (($ $) NIL)) (-4136 (((-112) $) NIL)) (-1428 (($ $ (-572) (-572)) 21)) (-2977 (($ $ (-572) (-572)) NIL)) (-2958 (($ $ (-572) (-572) (-572) (-572)) NIL)) (-2645 (($ $) NIL)) (-4210 (((-112) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2146 (($ $ (-572) (-572) $) NIL)) (-3140 ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572)) $) NIL)) (-3864 (($ $ (-572) (-610 |#1| |#3|)) NIL)) (-4255 (($ $ (-572) (-610 |#1| |#2|)) NIL)) (-3355 (($ (-779) |#1|) NIL)) (-3281 (($) NIL T CONST)) (-3076 (($ $) 30 (|has| |#1| (-313)))) (-4172 (((-610 |#1| |#3|) $ (-572)) NIL)) (-3581 (((-779) $) 33 (|has| |#1| (-564)))) (-2453 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2380 ((|#1| $ (-572) (-572)) NIL)) (-1863 (((-652 |#1|) $) NIL)) (-4430 (((-779) $) 35 (|has| |#1| (-564)))) (-2313 (((-652 (-610 |#1| |#2|)) $) 38 (|has| |#1| (-564)))) (-2187 (((-779) $) NIL)) (-3787 (($ (-779) (-779) |#1|) NIL)) (-2195 (((-779) $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3283 ((|#1| $) 28 (|has| |#1| (-6 (-4456 "*"))))) (-3822 (((-572) $) 10)) (-3533 (((-572) $) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2795 (((-572) $) 13)) (-2857 (((-572) $) NIL)) (-2911 (($ (-652 (-652 |#1|))) NIL)) (-2442 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4393 (((-652 (-652 |#1|)) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1982 (((-3 $ "failed") $) 42 (|has| |#1| (-370)))) (-2327 (($ $ $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2476 (($ $ |#1|) NIL)) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572))) NIL)) (-1640 (($ (-652 |#1|)) NIL) (($ (-652 $)) NIL)) (-2464 (((-112) $) NIL)) (-2513 ((|#1| $) 26 (|has| |#1| (-6 (-4456 "*"))))) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-1752 (((-610 |#1| |#2|) $ (-572)) NIL)) (-2940 (($ (-610 |#1| |#2|)) NIL) (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-4384 (((-112) $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-572) $) NIL) (((-610 |#1| |#2|) $ (-610 |#1| |#2|)) NIL) (((-610 |#1| |#3|) (-610 |#1| |#3|) $) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-531 |#1| |#2| |#3|) (-695 |#1| (-610 |#1| |#3|) (-610 |#1| |#2|)) (-1060) (-572) (-572)) (T -531))
-NIL
-(-695 |#1| (-610 |#1| |#3|) (-610 |#1| |#2|))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-2487 (((-652 (-1228)) $) 13)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL) (($ (-652 (-1228))) 11)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-532) (-13 (-1094) (-10 -8 (-15 -2940 ($ (-652 (-1228)))) (-15 -2487 ((-652 (-1228)) $))))) (T -532))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-532)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-532)))))
-(-13 (-1094) (-10 -8 (-15 -2940 ($ (-652 (-1228)))) (-15 -2487 ((-652 (-1228)) $))))
-((-2846 (((-112) $ $) NIL)) (-1675 (((-1146) $) 14)) (-4347 (((-1170) $) NIL)) (-1808 (((-514) $) 11)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 21) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-533) (-13 (-1094) (-10 -8 (-15 -1808 ((-514) $)) (-15 -1675 ((-1146) $))))) (T -533))
-((-1808 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-533)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-533)))))
-(-13 (-1094) (-10 -8 (-15 -1808 ((-514) $)) (-15 -1675 ((-1146) $))))
-((-4168 (((-699 (-1237)) $) 15)) (-2624 (((-699 (-1235)) $) 38)) (-1434 (((-699 (-1234)) $) 29)) (-2688 (((-699 (-557)) $) 12)) (-2299 (((-699 (-555)) $) 42)) (-1976 (((-699 (-554)) $) 33)) (-4152 (((-779) $ (-129)) 54)))
-(((-534 |#1|) (-10 -8 (-15 -4152 ((-779) |#1| (-129))) (-15 -2624 ((-699 (-1235)) |#1|)) (-15 -2299 ((-699 (-555)) |#1|)) (-15 -1434 ((-699 (-1234)) |#1|)) (-15 -1976 ((-699 (-554)) |#1|)) (-15 -4168 ((-699 (-1237)) |#1|)) (-15 -2688 ((-699 (-557)) |#1|))) (-535)) (T -534))
-NIL
-(-10 -8 (-15 -4152 ((-779) |#1| (-129))) (-15 -2624 ((-699 (-1235)) |#1|)) (-15 -2299 ((-699 (-555)) |#1|)) (-15 -1434 ((-699 (-1234)) |#1|)) (-15 -1976 ((-699 (-554)) |#1|)) (-15 -4168 ((-699 (-1237)) |#1|)) (-15 -2688 ((-699 (-557)) |#1|)))
-((-4168 (((-699 (-1237)) $) 12)) (-2624 (((-699 (-1235)) $) 8)) (-1434 (((-699 (-1234)) $) 10)) (-2688 (((-699 (-557)) $) 13)) (-2299 (((-699 (-555)) $) 9)) (-1976 (((-699 (-554)) $) 11)) (-4152 (((-779) $ (-129)) 7)) (-3019 (((-699 (-130)) $) 14)) (-3682 (($ $) 6)))
-(((-535) (-141)) (T -535))
-((-3019 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-130))))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-557))))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1237))))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-554))))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1234))))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-555))))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1235))))) (-4152 (*1 *2 *1 *3) (-12 (-4 *1 (-535)) (-5 *3 (-129)) (-5 *2 (-779)))))
-(-13 (-175) (-10 -8 (-15 -3019 ((-699 (-130)) $)) (-15 -2688 ((-699 (-557)) $)) (-15 -4168 ((-699 (-1237)) $)) (-15 -1976 ((-699 (-554)) $)) (-15 -1434 ((-699 (-1234)) $)) (-15 -2299 ((-699 (-555)) $)) (-15 -2624 ((-699 (-1235)) $)) (-15 -4152 ((-779) $ (-129)))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-2406 ((|#1| $) NIL)) (-1971 (($ $) NIL)) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-2960 (($ $ (-574)) 70 (|has| $ (-6 -4457)))) (-3850 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4010 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4457)))) (-2771 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1630 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-4002 (($ $ $) 23 (|has| $ (-6 -4457)))) (-4003 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-1533 ((|#1| $ |#1|) 21 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4457))) (($ $ "rest" $) 24 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3391 (($ (-1 (-112) |#1|) $) NIL)) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2393 ((|#1| $) NIL)) (-3670 (($) NIL T CONST)) (-2672 (($ $) 28 (|has| $ (-6 -4457)))) (-4423 (($ $) 29)) (-2926 (($ $) 18) (($ $ (-781)) 32)) (-1730 (($ $) 62 (|has| |#1| (-1113)))) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1586 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) NIL)) (-3335 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-2829 (((-112) $) NIL)) (-1441 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113))) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1864 (((-654 |#1|) $) 27 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) 31 (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-3722 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-2130 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1788 (($ |#1|) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-3509 (((-654 |#1|) $) NIL)) (-2173 (((-112) $) NIL)) (-2568 (((-1172) $) 58 (|has| |#1| (-1113)))) (-3360 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1709 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1595 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) 13) (($ $ (-781)) NIL)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-3322 (((-112) $) NIL)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 12)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) 17)) (-3135 (($) 16)) (-2200 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1248 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL)) (-1556 (((-574) $ $) NIL)) (-2701 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2837 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-4023 (((-112) $) 35)) (-3420 (($ $) NIL)) (-1813 (($ $) NIL (|has| $ (-6 -4457)))) (-2584 (((-781) $) NIL)) (-2022 (($ $) 40)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) 36)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 26)) (-2734 (($ $ $) 61) (($ $ |#1|) NIL)) (-4157 (($ $ $) NIL) (($ |#1| $) 10) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2943 (((-872) $) 50 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) 54 (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 9 (|has| $ (-6 -4456)))))
+(((-530 |#1| |#2|) (-676 |#1|) (-1231) (-574)) (T -530))
+NIL
+(-676 |#1|)
+((-3444 ((|#4| |#4|) 38)) (-3584 (((-781) |#4|) 44)) (-2164 (((-781) |#4|) 45)) (-2337 (((-654 |#3|) |#4|) 55 (|has| |#3| (-6 -4457)))) (-2422 (((-3 |#4| "failed") |#4|) 67)) (-4057 ((|#4| |#4|) 59)) (-3646 ((|#1| |#4|) 58)))
+(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3444 (|#4| |#4|)) (-15 -3584 ((-781) |#4|)) (-15 -2164 ((-781) |#4|)) (IF (|has| |#3| (-6 -4457)) (-15 -2337 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -3646 (|#1| |#4|)) (-15 -4057 (|#4| |#4|)) (-15 -2422 ((-3 |#4| "failed") |#4|))) (-372) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -531))
+((-2422 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-2337 (*1 *2 *3) (-12 (|has| *6 (-6 -4457)) (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2164 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3584 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3444 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
+(-10 -7 (-15 -3444 (|#4| |#4|)) (-15 -3584 ((-781) |#4|)) (-15 -2164 ((-781) |#4|)) (IF (|has| |#3| (-6 -4457)) (-15 -2337 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -3646 (|#1| |#4|)) (-15 -4057 (|#4| |#4|)) (-15 -2422 ((-3 |#4| "failed") |#4|)))
+((-3444 ((|#8| |#4|) 20)) (-2337 (((-654 |#3|) |#4|) 29 (|has| |#7| (-6 -4457)))) (-2422 (((-3 |#8| "failed") |#4|) 23)))
+(((-532 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3444 (|#8| |#4|)) (-15 -2422 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4457)) (-15 -2337 ((-654 |#3|) |#4|)) |%noBranch|)) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1005 |#1|) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -532))
+((-2337 (*1 *2 *3) (-12 (|has| *9 (-6 -4457)) (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1005 *4)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) (-4 *10 (-697 *7 *8 *9)))) (-2422 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1005 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1005 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))))
+(-10 -7 (-15 -3444 (|#8| |#4|)) (-15 -2422 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4457)) (-15 -2337 ((-654 |#3|) |#4|)) |%noBranch|))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2217 (($ (-781) (-781)) NIL)) (-1368 (($ $ $) NIL)) (-3202 (($ (-612 |#1| |#3|)) NIL) (($ $) NIL)) (-4286 (((-112) $) NIL)) (-3044 (($ $ (-574) (-574)) 21)) (-2491 (($ $ (-574) (-574)) NIL)) (-3617 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-2340 (($ $) NIL)) (-3816 (((-112) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1460 (($ $ (-574) (-574) $) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-1502 (($ $ (-574) (-612 |#1| |#3|)) NIL)) (-4196 (($ $ (-574) (-612 |#1| |#2|)) NIL)) (-3245 (($ (-781) |#1|) NIL)) (-3670 (($) NIL T CONST)) (-3444 (($ $) 30 (|has| |#1| (-315)))) (-1468 (((-612 |#1| |#3|) $ (-574)) NIL)) (-3584 (((-781) $) 33 (|has| |#1| (-566)))) (-2462 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-2164 (((-781) $) 35 (|has| |#1| (-566)))) (-2337 (((-654 (-612 |#1| |#2|)) $) 38 (|has| |#1| (-566)))) (-2190 (((-781) $) NIL)) (-3790 (($ (-781) (-781) |#1|) NIL)) (-2199 (((-781) $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-3689 ((|#1| $) 28 (|has| |#1| (-6 (-4458 "*"))))) (-2294 (((-574) $) 10)) (-1373 (((-574) $) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1431 (((-574) $) 13)) (-3889 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#1|))) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1820 (((-654 (-654 |#1|)) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2422 (((-3 $ "failed") $) 42 (|has| |#1| (-372)))) (-2477 (($ $ $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1363 (($ $ |#1|) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-3428 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-4358 (((-112) $) NIL)) (-3646 ((|#1| $) 26 (|has| |#1| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-1988 (((-612 |#1| |#2|) $ (-574)) NIL)) (-2943 (($ (-612 |#1| |#2|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2984 (((-112) $) NIL)) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-612 |#1| |#2|) $ (-612 |#1| |#2|)) NIL) (((-612 |#1| |#3|) (-612 |#1| |#3|) $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-533 |#1| |#2| |#3|) (-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) (-1062) (-574) (-574)) (T -533))
+NIL
+(-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-1455 (((-654 (-1230)) $) 13)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL) (($ (-654 (-1230))) 11)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-534) (-13 (-1096) (-10 -8 (-15 -2943 ($ (-654 (-1230)))) (-15 -1455 ((-654 (-1230)) $))))) (T -534))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-534)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-534)))))
+(-13 (-1096) (-10 -8 (-15 -2943 ($ (-654 (-1230)))) (-15 -1455 ((-654 (-1230)) $))))
+((-2849 (((-112) $ $) NIL)) (-2475 (((-1148) $) 14)) (-2568 (((-1172) $) NIL)) (-4393 (((-516) $) 11)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 21) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-535) (-13 (-1096) (-10 -8 (-15 -4393 ((-516) $)) (-15 -2475 ((-1148) $))))) (T -535))
+((-4393 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-535)))))
+(-13 (-1096) (-10 -8 (-15 -4393 ((-516) $)) (-15 -2475 ((-1148) $))))
+((-1435 (((-701 (-1239)) $) 15)) (-3487 (((-701 (-1237)) $) 38)) (-3122 (((-701 (-1236)) $) 29)) (-2794 (((-701 (-559)) $) 12)) (-3544 (((-701 (-557)) $) 42)) (-2359 (((-701 (-556)) $) 33)) (-4417 (((-781) $ (-129)) 54)))
+(((-536 |#1|) (-10 -8 (-15 -4417 ((-781) |#1| (-129))) (-15 -3487 ((-701 (-1237)) |#1|)) (-15 -3544 ((-701 (-557)) |#1|)) (-15 -3122 ((-701 (-1236)) |#1|)) (-15 -2359 ((-701 (-556)) |#1|)) (-15 -1435 ((-701 (-1239)) |#1|)) (-15 -2794 ((-701 (-559)) |#1|))) (-537)) (T -536))
+NIL
+(-10 -8 (-15 -4417 ((-781) |#1| (-129))) (-15 -3487 ((-701 (-1237)) |#1|)) (-15 -3544 ((-701 (-557)) |#1|)) (-15 -3122 ((-701 (-1236)) |#1|)) (-15 -2359 ((-701 (-556)) |#1|)) (-15 -1435 ((-701 (-1239)) |#1|)) (-15 -2794 ((-701 (-559)) |#1|)))
+((-1435 (((-701 (-1239)) $) 12)) (-3487 (((-701 (-1237)) $) 8)) (-3122 (((-701 (-1236)) $) 10)) (-2794 (((-701 (-559)) $) 13)) (-3544 (((-701 (-557)) $) 9)) (-2359 (((-701 (-556)) $) 11)) (-4417 (((-781) $ (-129)) 7)) (-2916 (((-701 (-130)) $) 14)) (-3568 (($ $) 6)))
+(((-537) (-141)) (T -537))
+((-2916 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130))))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559))))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239))))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556))))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1236))))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557))))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1237))))) (-4417 (*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781)))))
+(-13 (-175) (-10 -8 (-15 -2916 ((-701 (-130)) $)) (-15 -2794 ((-701 (-559)) $)) (-15 -1435 ((-701 (-1239)) $)) (-15 -2359 ((-701 (-556)) $)) (-15 -3122 ((-701 (-1236)) $)) (-15 -3544 ((-701 (-557)) $)) (-15 -3487 ((-701 (-1237)) $)) (-15 -4417 ((-781) $ (-129)))))
(((-175) . T))
-((-1708 (((-1184 |#1|) (-779)) 115)) (-1635 (((-1279 |#1|) (-1279 |#1|) (-930)) 108)) (-4036 (((-1284) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))) |#1|) 123)) (-1952 (((-1279 |#1|) (-1279 |#1|) (-779)) 53)) (-2815 (((-1279 |#1|) (-930)) 110)) (-2278 (((-1279 |#1|) (-1279 |#1|) (-572)) 30)) (-2057 (((-1184 |#1|) (-1279 |#1|)) 116)) (-1663 (((-1279 |#1|) (-930)) 137)) (-2078 (((-112) (-1279 |#1|)) 120)) (-2028 (((-1279 |#1|) (-1279 |#1|) (-930)) 100)) (-3053 (((-1184 |#1|) (-1279 |#1|)) 131)) (-3715 (((-930) (-1279 |#1|)) 96)) (-1322 (((-1279 |#1|) (-1279 |#1|)) 38)) (-2571 (((-1279 |#1|) (-930) (-930)) 140)) (-2444 (((-1279 |#1|) (-1279 |#1|) (-1131) (-1131)) 29)) (-2279 (((-1279 |#1|) (-1279 |#1|) (-779) (-1131)) 54)) (-4362 (((-1279 (-1279 |#1|)) (-930)) 136)) (-3106 (((-1279 |#1|) (-1279 |#1|) (-1279 |#1|)) 121)) (** (((-1279 |#1|) (-1279 |#1|) (-572)) 67)) (* (((-1279 |#1|) (-1279 |#1|) (-1279 |#1|)) 31)))
-(((-536 |#1|) (-10 -7 (-15 -4036 ((-1284) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))) |#1|)) (-15 -2815 ((-1279 |#1|) (-930))) (-15 -2571 ((-1279 |#1|) (-930) (-930))) (-15 -2057 ((-1184 |#1|) (-1279 |#1|))) (-15 -1708 ((-1184 |#1|) (-779))) (-15 -2279 ((-1279 |#1|) (-1279 |#1|) (-779) (-1131))) (-15 -1952 ((-1279 |#1|) (-1279 |#1|) (-779))) (-15 -2444 ((-1279 |#1|) (-1279 |#1|) (-1131) (-1131))) (-15 -2278 ((-1279 |#1|) (-1279 |#1|) (-572))) (-15 ** ((-1279 |#1|) (-1279 |#1|) (-572))) (-15 * ((-1279 |#1|) (-1279 |#1|) (-1279 |#1|))) (-15 -3106 ((-1279 |#1|) (-1279 |#1|) (-1279 |#1|))) (-15 -2028 ((-1279 |#1|) (-1279 |#1|) (-930))) (-15 -1635 ((-1279 |#1|) (-1279 |#1|) (-930))) (-15 -1322 ((-1279 |#1|) (-1279 |#1|))) (-15 -3715 ((-930) (-1279 |#1|))) (-15 -2078 ((-112) (-1279 |#1|))) (-15 -4362 ((-1279 (-1279 |#1|)) (-930))) (-15 -1663 ((-1279 |#1|) (-930))) (-15 -3053 ((-1184 |#1|) (-1279 |#1|)))) (-356)) (T -536))
-((-3053 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-1184 *4)) (-5 *1 (-536 *4)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 (-1279 *4))) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-536 *4)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-930)) (-5 *1 (-536 *4)))) (-1322 (*1 *2 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3)))) (-1635 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-930)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-2028 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-930)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-3106 (*1 *2 *2 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-572)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-2278 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-572)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-2444 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1131)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-1952 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-2279 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1279 *5)) (-5 *3 (-779)) (-5 *4 (-1131)) (-4 *5 (-356)) (-5 *1 (-536 *5)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1184 *4)) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-1184 *4)) (-5 *1 (-536 *4)))) (-2571 (*1 *2 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-4036 (*1 *2 *3 *4) (-12 (-5 *3 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131)))))) (-4 *4 (-356)) (-5 *2 (-1284)) (-5 *1 (-536 *4)))))
-(-10 -7 (-15 -4036 ((-1284) (-1279 (-652 (-2 (|:| -3080 |#1|) (|:| -2571 (-1131))))) |#1|)) (-15 -2815 ((-1279 |#1|) (-930))) (-15 -2571 ((-1279 |#1|) (-930) (-930))) (-15 -2057 ((-1184 |#1|) (-1279 |#1|))) (-15 -1708 ((-1184 |#1|) (-779))) (-15 -2279 ((-1279 |#1|) (-1279 |#1|) (-779) (-1131))) (-15 -1952 ((-1279 |#1|) (-1279 |#1|) (-779))) (-15 -2444 ((-1279 |#1|) (-1279 |#1|) (-1131) (-1131))) (-15 -2278 ((-1279 |#1|) (-1279 |#1|) (-572))) (-15 ** ((-1279 |#1|) (-1279 |#1|) (-572))) (-15 * ((-1279 |#1|) (-1279 |#1|) (-1279 |#1|))) (-15 -3106 ((-1279 |#1|) (-1279 |#1|) (-1279 |#1|))) (-15 -2028 ((-1279 |#1|) (-1279 |#1|) (-930))) (-15 -1635 ((-1279 |#1|) (-1279 |#1|) (-930))) (-15 -1322 ((-1279 |#1|) (-1279 |#1|))) (-15 -3715 ((-930) (-1279 |#1|))) (-15 -2078 ((-112) (-1279 |#1|))) (-15 -4362 ((-1279 (-1279 |#1|)) (-930))) (-15 -1663 ((-1279 |#1|) (-930))) (-15 -3053 ((-1184 |#1|) (-1279 |#1|))))
-((-4168 (((-699 (-1237)) $) NIL)) (-2624 (((-699 (-1235)) $) NIL)) (-1434 (((-699 (-1234)) $) NIL)) (-2688 (((-699 (-557)) $) NIL)) (-2299 (((-699 (-555)) $) NIL)) (-1976 (((-699 (-554)) $) NIL)) (-4152 (((-779) $ (-129)) NIL)) (-3019 (((-699 (-130)) $) 26)) (-4091 (((-1131) $ (-1131)) 31)) (-1439 (((-1131) $) 30)) (-3567 (((-112) $) 20)) (-3613 (($ (-396)) 14) (($ (-1170)) 16)) (-4018 (((-112) $) 27)) (-2940 (((-870) $) 34)) (-3682 (($ $) 28)))
-(((-537) (-13 (-535) (-621 (-870)) (-10 -8 (-15 -3613 ($ (-396))) (-15 -3613 ($ (-1170))) (-15 -4018 ((-112) $)) (-15 -3567 ((-112) $)) (-15 -1439 ((-1131) $)) (-15 -4091 ((-1131) $ (-1131)))))) (T -537))
-((-3613 (*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-537)))) (-3613 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-537)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-537)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-537)))) (-1439 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-537)))) (-4091 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-537)))))
-(-13 (-535) (-621 (-870)) (-10 -8 (-15 -3613 ($ (-396))) (-15 -3613 ($ (-1170))) (-15 -4018 ((-112) $)) (-15 -3567 ((-112) $)) (-15 -1439 ((-1131) $)) (-15 -4091 ((-1131) $ (-1131)))))
-((-2113 (((-1 |#1| |#1|) |#1|) 11)) (-2068 (((-1 |#1| |#1|)) 10)))
-(((-538 |#1|) (-10 -7 (-15 -2068 ((-1 |#1| |#1|))) (-15 -2113 ((-1 |#1| |#1|) |#1|))) (-13 (-734) (-25))) (T -538))
-((-2113 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-538 *3)) (-4 *3 (-13 (-734) (-25))))) (-2068 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-538 *3)) (-4 *3 (-13 (-734) (-25))))))
-(-10 -7 (-15 -2068 ((-1 |#1| |#1|))) (-15 -2113 ((-1 |#1| |#1|) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1360 (($ $ $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-4333 (($ (-779) |#1|) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-1776 (($ (-1 (-779) (-779)) $) NIL)) (-4060 ((|#1| $) NIL)) (-1368 (((-779) $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 27)) (-4379 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)) (-3075 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL)))
-(((-539 |#1|) (-13 (-801) (-517 (-779) |#1|)) (-858)) (T -539))
-NIL
-(-13 (-801) (-517 (-779) |#1|))
-((-4015 (((-652 |#2|) (-1184 |#1|) |#3|) 98)) (-2324 (((-652 (-2 (|:| |outval| |#2|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#2|))))) (-697 |#1|) |#3| (-1 (-426 (-1184 |#1|)) (-1184 |#1|))) 114)) (-3457 (((-1184 |#1|) (-697 |#1|)) 110)))
-(((-540 |#1| |#2| |#3|) (-10 -7 (-15 -3457 ((-1184 |#1|) (-697 |#1|))) (-15 -4015 ((-652 |#2|) (-1184 |#1|) |#3|)) (-15 -2324 ((-652 (-2 (|:| |outval| |#2|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#2|))))) (-697 |#1|) |#3| (-1 (-426 (-1184 |#1|)) (-1184 |#1|))))) (-370) (-370) (-13 (-370) (-856))) (T -540))
-((-2324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *6)) (-5 *5 (-1 (-426 (-1184 *6)) (-1184 *6))) (-4 *6 (-370)) (-5 *2 (-652 (-2 (|:| |outval| *7) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 *7)))))) (-5 *1 (-540 *6 *7 *4)) (-4 *7 (-370)) (-4 *4 (-13 (-370) (-856))))) (-4015 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-370)) (-5 *2 (-652 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-697 *4)) (-4 *4 (-370)) (-5 *2 (-1184 *4)) (-5 *1 (-540 *4 *5 *6)) (-4 *5 (-370)) (-4 *6 (-13 (-370) (-856))))))
-(-10 -7 (-15 -3457 ((-1184 |#1|) (-697 |#1|))) (-15 -4015 ((-652 |#2|) (-1184 |#1|) |#3|)) (-15 -2324 ((-652 (-2 (|:| |outval| |#2|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#2|))))) (-697 |#1|) |#3| (-1 (-426 (-1184 |#1|)) (-1184 |#1|)))))
-((-2972 (((-699 (-1237)) $ (-1237)) NIL)) (-4103 (((-699 (-557)) $ (-557)) NIL)) (-3012 (((-779) $ (-129)) 39)) (-2931 (((-699 (-130)) $ (-130)) 40)) (-4168 (((-699 (-1237)) $) NIL)) (-2624 (((-699 (-1235)) $) NIL)) (-1434 (((-699 (-1234)) $) NIL)) (-2688 (((-699 (-557)) $) NIL)) (-2299 (((-699 (-555)) $) NIL)) (-1976 (((-699 (-554)) $) NIL)) (-4152 (((-779) $ (-129)) 35)) (-3019 (((-699 (-130)) $) 37)) (-2584 (((-112) $) 27)) (-3659 (((-699 $) (-587) (-963)) 18) (((-699 $) (-499) (-963)) 24)) (-2940 (((-870) $) 48)) (-3682 (($ $) 42)))
-(((-541) (-13 (-775 (-587)) (-621 (-870)) (-10 -8 (-15 -3659 ((-699 $) (-499) (-963)))))) (T -541))
-((-3659 (*1 *2 *3 *4) (-12 (-5 *3 (-499)) (-5 *4 (-963)) (-5 *2 (-699 (-541))) (-5 *1 (-541)))))
-(-13 (-775 (-587)) (-621 (-870)) (-10 -8 (-15 -3659 ((-699 $) (-499) (-963)))))
-((-2301 (((-851 (-572))) 12)) (-2311 (((-851 (-572))) 14)) (-1744 (((-841 (-572))) 9)))
-(((-542) (-10 -7 (-15 -1744 ((-841 (-572)))) (-15 -2301 ((-851 (-572)))) (-15 -2311 ((-851 (-572)))))) (T -542))
-((-2311 (*1 *2) (-12 (-5 *2 (-851 (-572))) (-5 *1 (-542)))) (-2301 (*1 *2) (-12 (-5 *2 (-851 (-572))) (-5 *1 (-542)))) (-1744 (*1 *2) (-12 (-5 *2 (-841 (-572))) (-5 *1 (-542)))))
-(-10 -7 (-15 -1744 ((-841 (-572)))) (-15 -2301 ((-851 (-572)))) (-15 -2311 ((-851 (-572)))))
-((-2472 (((-544) (-1188)) 15)) (-2280 ((|#1| (-544)) 20)))
-(((-543 |#1|) (-10 -7 (-15 -2472 ((-544) (-1188))) (-15 -2280 (|#1| (-544)))) (-1229)) (T -543))
-((-2280 (*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-543 *2)) (-4 *2 (-1229)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-544)) (-5 *1 (-543 *4)) (-4 *4 (-1229)))))
-(-10 -7 (-15 -2472 ((-544) (-1188))) (-15 -2280 (|#1| (-544))))
-((-2846 (((-112) $ $) NIL)) (-4403 (((-1170) $) 55)) (-1475 (((-112) $) 51)) (-4003 (((-1188) $) 52)) (-3842 (((-112) $) 49)) (-3246 (((-1170) $) 50)) (-1853 (($ (-1170)) 56)) (-4412 (((-112) $) NIL)) (-3893 (((-112) $) NIL)) (-2201 (((-112) $) NIL)) (-4347 (((-1170) $) NIL)) (-2154 (($ $ (-652 (-1188))) 21)) (-2280 (((-52) $) 23)) (-3347 (((-112) $) NIL)) (-4024 (((-572) $) NIL)) (-3964 (((-1131) $) NIL)) (-2705 (($ $ (-652 (-1188)) (-1188)) 73)) (-2465 (((-112) $) NIL)) (-2379 (((-227) $) NIL)) (-3804 (($ $) 44)) (-1443 (((-870) $) NIL)) (-4121 (((-112) $ $) NIL)) (-2196 (($ $ (-572)) NIL) (($ $ (-652 (-572))) NIL)) (-4291 (((-652 $) $) 30)) (-4250 (((-1188) (-652 $)) 57)) (-1835 (($ (-1170)) NIL) (($ (-1188)) 19) (($ (-572)) 8) (($ (-227)) 28) (($ (-870)) NIL) (($ (-652 $)) 65) (((-1115) $) 12) (($ (-1115)) 13)) (-2414 (((-1188) (-1188) (-652 $)) 60)) (-2940 (((-870) $) 54)) (-4278 (($ $) 59)) (-2878 (($ $) 58)) (-1854 (($ $ (-652 $)) 66)) (-4379 (((-112) $ $) NIL)) (-3967 (((-112) $) 29)) (-2131 (($) 9 T CONST)) (-2143 (($) 11 T CONST)) (-2978 (((-112) $ $) 74)) (-3106 (($ $ $) 82)) (-3075 (($ $ $) 75)) (** (($ $ (-779)) 81) (($ $ (-572)) 80)) (* (($ $ $) 76)) (-2860 (((-572) $) NIL)))
-(((-544) (-13 (-1114 (-1170) (-1188) (-572) (-227) (-870)) (-622 (-1115)) (-10 -8 (-15 -2280 ((-52) $)) (-15 -1835 ($ (-1115))) (-15 -1854 ($ $ (-652 $))) (-15 -2705 ($ $ (-652 (-1188)) (-1188))) (-15 -2154 ($ $ (-652 (-1188)))) (-15 -3075 ($ $ $)) (-15 * ($ $ $)) (-15 -3106 ($ $ $)) (-15 ** ($ $ (-779))) (-15 ** ($ $ (-572))) (-15 0 ($) -1705) (-15 1 ($) -1705) (-15 -3804 ($ $)) (-15 -4403 ((-1170) $)) (-15 -1853 ($ (-1170))) (-15 -4250 ((-1188) (-652 $))) (-15 -2414 ((-1188) (-1188) (-652 $)))))) (T -544))
-((-2280 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-544)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-544)))) (-1854 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-544))) (-5 *1 (-544)))) (-2705 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-1188)) (-5 *1 (-544)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-544)))) (-3075 (*1 *1 *1 *1) (-5 *1 (-544))) (* (*1 *1 *1 *1) (-5 *1 (-544))) (-3106 (*1 *1 *1 *1) (-5 *1 (-544))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-544)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-544)))) (-2131 (*1 *1) (-5 *1 (-544))) (-2143 (*1 *1) (-5 *1 (-544))) (-3804 (*1 *1 *1) (-5 *1 (-544))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-544)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-544)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-652 (-544))) (-5 *2 (-1188)) (-5 *1 (-544)))) (-2414 (*1 *2 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-544))) (-5 *1 (-544)))))
-(-13 (-1114 (-1170) (-1188) (-572) (-227) (-870)) (-622 (-1115)) (-10 -8 (-15 -2280 ((-52) $)) (-15 -1835 ($ (-1115))) (-15 -1854 ($ $ (-652 $))) (-15 -2705 ($ $ (-652 (-1188)) (-1188))) (-15 -2154 ($ $ (-652 (-1188)))) (-15 -3075 ($ $ $)) (-15 * ($ $ $)) (-15 -3106 ($ $ $)) (-15 ** ($ $ (-779))) (-15 ** ($ $ (-572))) (-15 (-2131) ($) -1705) (-15 (-2143) ($) -1705) (-15 -3804 ($ $)) (-15 -4403 ((-1170) $)) (-15 -1853 ($ (-1170))) (-15 -4250 ((-1188) (-652 $))) (-15 -2414 ((-1188) (-1188) (-652 $)))))
-((-3017 ((|#2| |#2|) 17)) (-1961 ((|#2| |#2|) 13)) (-2351 ((|#2| |#2| (-572) (-572)) 20)) (-3025 ((|#2| |#2|) 15)))
-(((-545 |#1| |#2|) (-10 -7 (-15 -1961 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -2351 (|#2| |#2| (-572) (-572)))) (-13 (-564) (-148)) (-1270 |#1|)) (T -545))
-((-2351 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-572)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1270 *4)))) (-3017 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1270 *3)))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1270 *3)))) (-1961 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1270 *3)))))
-(-10 -7 (-15 -1961 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -2351 (|#2| |#2| (-572) (-572))))
-((-3478 (((-652 (-300 (-961 |#2|))) (-652 |#2|) (-652 (-1188))) 32)) (-1649 (((-652 |#2|) (-961 |#1|) |#3|) 54) (((-652 |#2|) (-1184 |#1|) |#3|) 53)) (-2630 (((-652 (-652 |#2|)) (-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)) |#3|) 106)))
-(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -1649 ((-652 |#2|) (-1184 |#1|) |#3|)) (-15 -1649 ((-652 |#2|) (-961 |#1|) |#3|)) (-15 -2630 ((-652 (-652 |#2|)) (-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)) |#3|)) (-15 -3478 ((-652 (-300 (-961 |#2|))) (-652 |#2|) (-652 (-1188))))) (-460) (-370) (-13 (-370) (-856))) (T -546))
-((-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-1188))) (-4 *6 (-370)) (-5 *2 (-652 (-300 (-961 *6)))) (-5 *1 (-546 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-13 (-370) (-856))))) (-2630 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-652 (-652 *7))) (-5 *1 (-546 *6 *7 *5)) (-4 *7 (-370)) (-4 *5 (-13 (-370) (-856))))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-961 *5)) (-4 *5 (-460)) (-5 *2 (-652 *6)) (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-460)) (-5 *2 (-652 *6)) (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))))
-(-10 -7 (-15 -1649 ((-652 |#2|) (-1184 |#1|) |#3|)) (-15 -1649 ((-652 |#2|) (-961 |#1|) |#3|)) (-15 -2630 ((-652 (-652 |#2|)) (-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)) |#3|)) (-15 -3478 ((-652 (-300 (-961 |#2|))) (-652 |#2|) (-652 (-1188)))))
-((-3104 ((|#2| |#2| |#1|) 17)) (-1403 ((|#2| (-652 |#2|)) 31)) (-3476 ((|#2| (-652 |#2|)) 52)))
-(((-547 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1403 (|#2| (-652 |#2|))) (-15 -3476 (|#2| (-652 |#2|))) (-15 -3104 (|#2| |#2| |#1|))) (-313) (-1255 |#1|) |#1| (-1 |#1| |#1| (-779))) (T -547))
-((-3104 (*1 *2 *2 *3) (-12 (-4 *3 (-313)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-779))) (-5 *1 (-547 *3 *2 *4 *5)) (-4 *2 (-1255 *3)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-547 *4 *2 *5 *6)) (-4 *4 (-313)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-779))))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-547 *4 *2 *5 *6)) (-4 *4 (-313)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-779))))))
-(-10 -7 (-15 -1403 (|#2| (-652 |#2|))) (-15 -3476 (|#2| (-652 |#2|))) (-15 -3104 (|#2| |#2| |#1|)))
-((-4218 (((-426 (-1184 |#4|)) (-1184 |#4|) (-1 (-426 (-1184 |#3|)) (-1184 |#3|))) 89) (((-426 |#4|) |#4| (-1 (-426 (-1184 |#3|)) (-1184 |#3|))) 210)))
-(((-548 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-426 |#4|) |#4| (-1 (-426 (-1184 |#3|)) (-1184 |#3|)))) (-15 -4218 ((-426 (-1184 |#4|)) (-1184 |#4|) (-1 (-426 (-1184 |#3|)) (-1184 |#3|))))) (-858) (-801) (-13 (-313) (-148)) (-958 |#3| |#2| |#1|)) (T -548))
-((-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-426 (-1184 *7)) (-1184 *7))) (-4 *7 (-13 (-313) (-148))) (-4 *5 (-858)) (-4 *6 (-801)) (-4 *8 (-958 *7 *6 *5)) (-5 *2 (-426 (-1184 *8))) (-5 *1 (-548 *5 *6 *7 *8)) (-5 *3 (-1184 *8)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-426 (-1184 *7)) (-1184 *7))) (-4 *7 (-13 (-313) (-148))) (-4 *5 (-858)) (-4 *6 (-801)) (-5 *2 (-426 *3)) (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-958 *7 *6 *5)))))
-(-10 -7 (-15 -4218 ((-426 |#4|) |#4| (-1 (-426 (-1184 |#3|)) (-1184 |#3|)))) (-15 -4218 ((-426 (-1184 |#4|)) (-1184 |#4|) (-1 (-426 (-1184 |#3|)) (-1184 |#3|)))))
-((-3017 ((|#4| |#4|) 74)) (-1961 ((|#4| |#4|) 70)) (-2351 ((|#4| |#4| (-572) (-572)) 76)) (-3025 ((|#4| |#4|) 72)))
-(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1961 (|#4| |#4|)) (-15 -3025 (|#4| |#4|)) (-15 -3017 (|#4| |#4|)) (-15 -2351 (|#4| |#4| (-572) (-572)))) (-13 (-370) (-375) (-622 (-572))) (-1255 |#1|) (-732 |#1| |#2|) (-1270 |#3|)) (T -549))
-((-2351 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-572)) (-4 *4 (-13 (-370) (-375) (-622 *3))) (-4 *5 (-1255 *4)) (-4 *6 (-732 *4 *5)) (-5 *1 (-549 *4 *5 *6 *2)) (-4 *2 (-1270 *6)))) (-3017 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3)) (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5)))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3)) (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5)))) (-1961 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3)) (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5)))))
-(-10 -7 (-15 -1961 (|#4| |#4|)) (-15 -3025 (|#4| |#4|)) (-15 -3017 (|#4| |#4|)) (-15 -2351 (|#4| |#4| (-572) (-572))))
-((-3017 ((|#2| |#2|) 27)) (-1961 ((|#2| |#2|) 23)) (-2351 ((|#2| |#2| (-572) (-572)) 29)) (-3025 ((|#2| |#2|) 25)))
-(((-550 |#1| |#2|) (-10 -7 (-15 -1961 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -2351 (|#2| |#2| (-572) (-572)))) (-13 (-370) (-375) (-622 (-572))) (-1270 |#1|)) (T -550))
-((-2351 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-572)) (-4 *4 (-13 (-370) (-375) (-622 *3))) (-5 *1 (-550 *4 *2)) (-4 *2 (-1270 *4)))) (-3017 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1270 *3)))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1270 *3)))) (-1961 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1270 *3)))))
-(-10 -7 (-15 -1961 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -2351 (|#2| |#2| (-572) (-572))))
-((-1598 (((-3 (-572) "failed") |#2| |#1| (-1 (-3 (-572) "failed") |#1|)) 18) (((-3 (-572) "failed") |#2| |#1| (-572) (-1 (-3 (-572) "failed") |#1|)) 14) (((-3 (-572) "failed") |#2| (-572) (-1 (-3 (-572) "failed") |#1|)) 32)))
-(((-551 |#1| |#2|) (-10 -7 (-15 -1598 ((-3 (-572) "failed") |#2| (-572) (-1 (-3 (-572) "failed") |#1|))) (-15 -1598 ((-3 (-572) "failed") |#2| |#1| (-572) (-1 (-3 (-572) "failed") |#1|))) (-15 -1598 ((-3 (-572) "failed") |#2| |#1| (-1 (-3 (-572) "failed") |#1|)))) (-1060) (-1255 |#1|)) (T -551))
-((-1598 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-572) "failed") *4)) (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-551 *4 *3)) (-4 *3 (-1255 *4)))) (-1598 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-572) "failed") *4)) (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-551 *4 *3)) (-4 *3 (-1255 *4)))) (-1598 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-572) "failed") *5)) (-4 *5 (-1060)) (-5 *2 (-572)) (-5 *1 (-551 *5 *3)) (-4 *3 (-1255 *5)))))
-(-10 -7 (-15 -1598 ((-3 (-572) "failed") |#2| (-572) (-1 (-3 (-572) "failed") |#1|))) (-15 -1598 ((-3 (-572) "failed") |#2| |#1| (-572) (-1 (-3 (-572) "failed") |#1|))) (-15 -1598 ((-3 (-572) "failed") |#2| |#1| (-1 (-3 (-572) "failed") |#1|))))
-((-1926 (($ $ $) 84)) (-2287 (((-426 $) $) 52)) (-1695 (((-3 (-572) "failed") $) 64)) (-2204 (((-572) $) 42)) (-3196 (((-3 (-415 (-572)) "failed") $) 79)) (-1733 (((-112) $) 26)) (-2233 (((-415 (-572)) $) 77)) (-3879 (((-112) $) 55)) (-3768 (($ $ $ $) 92)) (-3074 (((-112) $) 17)) (-2661 (($ $ $) 62)) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 74)) (-2556 (((-3 $ "failed") $) 69)) (-3808 (($ $) 24)) (-1656 (($ $ $) 90)) (-3815 (($) 65)) (-2128 (($ $) 58)) (-4218 (((-426 $) $) 50)) (-2003 (((-112) $) 15)) (-3847 (((-779) $) 32)) (-3902 (($ $ (-779)) NIL) (($ $) 11)) (-3164 (($ $) 18)) (-1835 (((-572) $) NIL) (((-544) $) 41) (((-901 (-572)) $) 45) (((-386) $) 35) (((-227) $) 38)) (-4249 (((-779)) 9)) (-4023 (((-112) $ $) 21)) (-3148 (($ $ $) 60)))
-(((-552 |#1|) (-10 -8 (-15 -1656 (|#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -1926 (|#1| |#1| |#1|)) (-15 -4023 ((-112) |#1| |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -3815 (|#1|)) (-15 -2556 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-386) |#1|)) (-15 -2661 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1835 ((-572) |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3074 ((-112) |#1|)) (-15 -3847 ((-779) |#1|)) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -3879 ((-112) |#1|)) (-15 -4249 ((-779)))) (-553)) (T -552))
-((-4249 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-552 *3)) (-4 *3 (-553)))))
-(-10 -8 (-15 -1656 (|#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -1926 (|#1| |#1| |#1|)) (-15 -4023 ((-112) |#1| |#1|)) (-15 -2003 ((-112) |#1|)) (-15 -3815 (|#1|)) (-15 -2556 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-386) |#1|)) (-15 -2661 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1835 ((-572) |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3074 ((-112) |#1|)) (-15 -3847 ((-779) |#1|)) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -3879 ((-112) |#1|)) (-15 -4249 ((-779))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-1926 (($ $ $) 92)) (-3330 (((-3 $ "failed") $ $) 20)) (-2985 (($ $ $ $) 81)) (-3517 (($ $) 57)) (-2287 (((-426 $) $) 58)) (-4217 (((-112) $ $) 134)) (-2840 (((-572) $) 123)) (-3957 (($ $ $) 95)) (-3281 (($) 18 T CONST)) (-1695 (((-3 (-572) "failed") $) 115)) (-2204 (((-572) $) 116)) (-2780 (($ $ $) 138)) (-2993 (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 113) (((-697 (-572)) (-697 $)) 112) (((-697 (-572)) (-1279 $)) 111)) (-2062 (((-3 $ "failed") $) 37)) (-3196 (((-3 (-415 (-572)) "failed") $) 89)) (-1733 (((-112) $) 91)) (-2233 (((-415 (-572)) $) 90)) (-2815 (($) 88) (($ $) 87)) (-2792 (($ $ $) 137)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 132)) (-3879 (((-112) $) 59)) (-3768 (($ $ $ $) 79)) (-4220 (($ $ $) 93)) (-3074 (((-112) $) 125)) (-2661 (($ $ $) 104)) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 107)) (-1886 (((-112) $) 35)) (-2597 (((-112) $) 99)) (-2556 (((-3 $ "failed") $) 101)) (-1623 (((-112) $) 124)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 141)) (-2546 (($ $ $ $) 80)) (-3654 (($ $ $) 126)) (-2427 (($ $ $) 127)) (-3808 (($ $) 83)) (-4133 (($ $) 96)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1656 (($ $ $) 78)) (-3815 (($) 100 T CONST)) (-1604 (($ $) 85)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-2128 (($ $) 105)) (-4218 (((-426 $) $) 56)) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 139)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 133)) (-2003 (((-112) $) 98)) (-3847 (((-779) $) 135)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 136)) (-3902 (($ $ (-779)) 120) (($ $) 119)) (-2290 (($ $) 84)) (-3164 (($ $) 86)) (-1835 (((-572) $) 117) (((-544) $) 109) (((-901 (-572)) $) 108) (((-386) $) 103) (((-227) $) 102)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-572)) 114)) (-4249 (((-779)) 32 T CONST)) (-4023 (((-112) $ $) 94)) (-3148 (($ $ $) 106)) (-4379 (((-112) $ $) 9)) (-2625 (($) 97)) (-2845 (((-112) $ $) 45)) (-4212 (($ $ $ $) 82)) (-2700 (($ $) 122)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-779)) 121) (($ $) 118)) (-3039 (((-112) $ $) 129)) (-3014 (((-112) $ $) 130)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 128)) (-3003 (((-112) $ $) 131)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ (-572) $) 110)))
-(((-553) (-141)) (T -553))
-((-2597 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-2625 (*1 *1) (-4 *1 (-553))) (-4133 (*1 *1 *1) (-4 *1 (-553))) (-3957 (*1 *1 *1 *1) (-4 *1 (-553))) (-4023 (*1 *2 *1 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-4220 (*1 *1 *1 *1) (-4 *1 (-553))) (-1926 (*1 *1 *1 *1) (-4 *1 (-553))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-415 (-572))))) (-3196 (*1 *2 *1) (|partial| -12 (-4 *1 (-553)) (-5 *2 (-415 (-572))))) (-2815 (*1 *1) (-4 *1 (-553))) (-2815 (*1 *1 *1) (-4 *1 (-553))) (-3164 (*1 *1 *1) (-4 *1 (-553))) (-1604 (*1 *1 *1) (-4 *1 (-553))) (-2290 (*1 *1 *1) (-4 *1 (-553))) (-3808 (*1 *1 *1) (-4 *1 (-553))) (-4212 (*1 *1 *1 *1 *1) (-4 *1 (-553))) (-2985 (*1 *1 *1 *1 *1) (-4 *1 (-553))) (-2546 (*1 *1 *1 *1 *1) (-4 *1 (-553))) (-3768 (*1 *1 *1 *1 *1) (-4 *1 (-553))) (-1656 (*1 *1 *1 *1) (-4 *1 (-553))))
-(-13 (-1233) (-313) (-828) (-237) (-622 (-572)) (-1049 (-572)) (-647 (-572)) (-622 (-544)) (-622 (-901 (-572))) (-895 (-572)) (-144) (-1033) (-148) (-1163) (-10 -8 (-15 -2597 ((-112) $)) (-15 -2003 ((-112) $)) (-6 -4453) (-15 -2625 ($)) (-15 -4133 ($ $)) (-15 -3957 ($ $ $)) (-15 -4023 ((-112) $ $)) (-15 -4220 ($ $ $)) (-15 -1926 ($ $ $)) (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $)) (-15 -2815 ($)) (-15 -2815 ($ $)) (-15 -3164 ($ $)) (-15 -1604 ($ $)) (-15 -2290 ($ $)) (-15 -3808 ($ $)) (-15 -4212 ($ $ $ $)) (-15 -2985 ($ $ $ $)) (-15 -2546 ($ $ $ $)) (-15 -3768 ($ $ $ $)) (-15 -1656 ($ $ $)) (-6 -4452)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-144) . T) ((-174) . T) ((-622 (-227)) . T) ((-622 (-386)) . T) ((-622 (-544)) . T) ((-622 (-572)) . T) ((-622 (-901 (-572))) . T) ((-235 $) . T) ((-237) . T) ((-296) . T) ((-313) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0=(-572)) . T) ((-656 $) . T) ((-648 $) . T) ((-647 #0#) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-828) . T) ((-856) . T) ((-858) . T) ((-895 (-572)) . T) ((-929) . T) ((-1033) . T) ((-1049 (-572)) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) . T) ((-1229) . T) ((-1233) . T))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-554) (-13 (-852) (-10 -8 (-15 -3281 ($) -1705)))) (T -554))
-((-3281 (*1 *1) (-5 *1 (-554))))
-(-13 (-852) (-10 -8 (-15 -3281 ($) -1705)))
+((-2797 (((-1186 |#1|) (-781)) 115)) (-1637 (((-1281 |#1|) (-1281 |#1|) (-932)) 108)) (-2618 (((-1286) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) |#1|) 123)) (-3463 (((-1281 |#1|) (-1281 |#1|) (-781)) 53)) (-2820 (((-1281 |#1|) (-932)) 110)) (-3377 (((-1281 |#1|) (-1281 |#1|) (-574)) 30)) (-1900 (((-1186 |#1|) (-1281 |#1|)) 116)) (-2342 (((-1281 |#1|) (-932)) 137)) (-2079 (((-112) (-1281 |#1|)) 120)) (-1652 (((-1281 |#1|) (-1281 |#1|) (-932)) 100)) (-3190 (((-1186 |#1|) (-1281 |#1|)) 131)) (-2565 (((-932) (-1281 |#1|)) 96)) (-1324 (((-1281 |#1|) (-1281 |#1|)) 38)) (-2576 (((-1281 |#1|) (-932) (-932)) 140)) (-2249 (((-1281 |#1|) (-1281 |#1|) (-1133) (-1133)) 29)) (-3388 (((-1281 |#1|) (-1281 |#1|) (-781) (-1133)) 54)) (-2722 (((-1281 (-1281 |#1|)) (-932)) 136)) (-3107 (((-1281 |#1|) (-1281 |#1|) (-1281 |#1|)) 121)) (** (((-1281 |#1|) (-1281 |#1|) (-574)) 67)) (* (((-1281 |#1|) (-1281 |#1|) (-1281 |#1|)) 31)))
+(((-538 |#1|) (-10 -7 (-15 -2618 ((-1286) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) |#1|)) (-15 -2820 ((-1281 |#1|) (-932))) (-15 -2576 ((-1281 |#1|) (-932) (-932))) (-15 -1900 ((-1186 |#1|) (-1281 |#1|))) (-15 -2797 ((-1186 |#1|) (-781))) (-15 -3388 ((-1281 |#1|) (-1281 |#1|) (-781) (-1133))) (-15 -3463 ((-1281 |#1|) (-1281 |#1|) (-781))) (-15 -2249 ((-1281 |#1|) (-1281 |#1|) (-1133) (-1133))) (-15 -3377 ((-1281 |#1|) (-1281 |#1|) (-574))) (-15 ** ((-1281 |#1|) (-1281 |#1|) (-574))) (-15 * ((-1281 |#1|) (-1281 |#1|) (-1281 |#1|))) (-15 -3107 ((-1281 |#1|) (-1281 |#1|) (-1281 |#1|))) (-15 -1652 ((-1281 |#1|) (-1281 |#1|) (-932))) (-15 -1637 ((-1281 |#1|) (-1281 |#1|) (-932))) (-15 -1324 ((-1281 |#1|) (-1281 |#1|))) (-15 -2565 ((-932) (-1281 |#1|))) (-15 -2079 ((-112) (-1281 |#1|))) (-15 -2722 ((-1281 (-1281 |#1|)) (-932))) (-15 -2342 ((-1281 |#1|) (-932))) (-15 -3190 ((-1186 |#1|) (-1281 |#1|)))) (-358)) (T -538))
+((-3190 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-1186 *4)) (-5 *1 (-538 *4)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 (-1281 *4))) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-538 *4)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-932)) (-5 *1 (-538 *4)))) (-1324 (*1 *2 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (-1637 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-932)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1652 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-932)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3107 (*1 *2 *2 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3377 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-2249 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1133)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3388 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1281 *5)) (-5 *3 (-781)) (-5 *4 (-1133)) (-4 *5 (-358)) (-5 *1 (-538 *5)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1186 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-1186 *4)) (-5 *1 (-538 *4)))) (-2576 (*1 *2 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-4 *4 (-358)) (-5 *2 (-1286)) (-5 *1 (-538 *4)))))
+(-10 -7 (-15 -2618 ((-1286) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) |#1|)) (-15 -2820 ((-1281 |#1|) (-932))) (-15 -2576 ((-1281 |#1|) (-932) (-932))) (-15 -1900 ((-1186 |#1|) (-1281 |#1|))) (-15 -2797 ((-1186 |#1|) (-781))) (-15 -3388 ((-1281 |#1|) (-1281 |#1|) (-781) (-1133))) (-15 -3463 ((-1281 |#1|) (-1281 |#1|) (-781))) (-15 -2249 ((-1281 |#1|) (-1281 |#1|) (-1133) (-1133))) (-15 -3377 ((-1281 |#1|) (-1281 |#1|) (-574))) (-15 ** ((-1281 |#1|) (-1281 |#1|) (-574))) (-15 * ((-1281 |#1|) (-1281 |#1|) (-1281 |#1|))) (-15 -3107 ((-1281 |#1|) (-1281 |#1|) (-1281 |#1|))) (-15 -1652 ((-1281 |#1|) (-1281 |#1|) (-932))) (-15 -1637 ((-1281 |#1|) (-1281 |#1|) (-932))) (-15 -1324 ((-1281 |#1|) (-1281 |#1|))) (-15 -2565 ((-932) (-1281 |#1|))) (-15 -2079 ((-112) (-1281 |#1|))) (-15 -2722 ((-1281 (-1281 |#1|)) (-932))) (-15 -2342 ((-1281 |#1|) (-932))) (-15 -3190 ((-1186 |#1|) (-1281 |#1|))))
+((-1435 (((-701 (-1239)) $) NIL)) (-3487 (((-701 (-1237)) $) NIL)) (-3122 (((-701 (-1236)) $) NIL)) (-2794 (((-701 (-559)) $) NIL)) (-3544 (((-701 (-557)) $) NIL)) (-2359 (((-701 (-556)) $) NIL)) (-4417 (((-781) $ (-129)) NIL)) (-2916 (((-701 (-130)) $) 26)) (-1918 (((-1133) $ (-1133)) 31)) (-1441 (((-1133) $) 30)) (-3654 (((-112) $) 20)) (-4066 (($ (-398)) 14) (($ (-1172)) 16)) (-2432 (((-112) $) 27)) (-2943 (((-872) $) 34)) (-3568 (($ $) 28)))
+(((-539) (-13 (-537) (-623 (-872)) (-10 -8 (-15 -4066 ($ (-398))) (-15 -4066 ($ (-1172))) (-15 -2432 ((-112) $)) (-15 -3654 ((-112) $)) (-15 -1441 ((-1133) $)) (-15 -1918 ((-1133) $ (-1133)))))) (T -539))
+((-4066 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539)))) (-4066 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-539)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-3654 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-539)))) (-1918 (*1 *2 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-539)))))
+(-13 (-537) (-623 (-872)) (-10 -8 (-15 -4066 ($ (-398))) (-15 -4066 ($ (-1172))) (-15 -2432 ((-112) $)) (-15 -3654 ((-112) $)) (-15 -1441 ((-1133) $)) (-15 -1918 ((-1133) $ (-1133)))))
+((-2117 (((-1 |#1| |#1|) |#1|) 11)) (-2004 (((-1 |#1| |#1|)) 10)))
+(((-540 |#1|) (-10 -7 (-15 -2004 ((-1 |#1| |#1|))) (-15 -2117 ((-1 |#1| |#1|) |#1|))) (-13 (-736) (-25))) (T -540))
+((-2117 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))) (-2004 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))))
+(-10 -7 (-15 -2004 ((-1 |#1| |#1|))) (-15 -2117 ((-1 |#1| |#1|) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1854 (($ $ $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ (-781) |#1|) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-1778 (($ (-1 (-781) (-781)) $) NIL)) (-2890 ((|#1| $) NIL)) (-1370 (((-781) $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 27)) (-2923 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3078 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL)))
+(((-541 |#1|) (-13 (-803) (-519 (-781) |#1|)) (-860)) (T -541))
+NIL
+(-13 (-803) (-519 (-781) |#1|))
+((-2387 (((-654 |#2|) (-1186 |#1|) |#3|) 98)) (-2442 (((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1186 |#1|)) (-1186 |#1|))) 114)) (-1786 (((-1186 |#1|) (-699 |#1|)) 110)))
+(((-542 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-1186 |#1|) (-699 |#1|))) (-15 -2387 ((-654 |#2|) (-1186 |#1|) |#3|)) (-15 -2442 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1186 |#1|)) (-1186 |#1|))))) (-372) (-372) (-13 (-372) (-858))) (T -542))
+((-2442 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1186 *6)) (-1186 *6))) (-4 *6 (-372)) (-5 *2 (-654 (-2 (|:| |outval| *7) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *7)))))) (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858))))) (-2387 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1186 *4)) (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858))))))
+(-10 -7 (-15 -1786 ((-1186 |#1|) (-699 |#1|))) (-15 -2387 ((-654 |#2|) (-1186 |#1|) |#3|)) (-15 -2442 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1186 |#1|)) (-1186 |#1|)))))
+((-2444 (((-701 (-1239)) $ (-1239)) NIL)) (-2046 (((-701 (-559)) $ (-559)) NIL)) (-2841 (((-781) $ (-129)) 39)) (-3368 (((-701 (-130)) $ (-130)) 40)) (-1435 (((-701 (-1239)) $) NIL)) (-3487 (((-701 (-1237)) $) NIL)) (-3122 (((-701 (-1236)) $) NIL)) (-2794 (((-701 (-559)) $) NIL)) (-3544 (((-701 (-557)) $) NIL)) (-2359 (((-701 (-556)) $) NIL)) (-4417 (((-781) $ (-129)) 35)) (-2916 (((-701 (-130)) $) 37)) (-3090 (((-112) $) 27)) (-3337 (((-701 $) (-589) (-965)) 18) (((-701 $) (-501) (-965)) 24)) (-2943 (((-872) $) 48)) (-3568 (($ $) 42)))
+(((-543) (-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -3337 ((-701 $) (-501) (-965)))))) (T -543))
+((-3337 (*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-965)) (-5 *2 (-701 (-543))) (-5 *1 (-543)))))
+(-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -3337 ((-701 $) (-501) (-965)))))
+((-2306 (((-853 (-574))) 12)) (-2317 (((-853 (-574))) 14)) (-1746 (((-843 (-574))) 9)))
+(((-544) (-10 -7 (-15 -1746 ((-843 (-574)))) (-15 -2306 ((-853 (-574)))) (-15 -2317 ((-853 (-574)))))) (T -544))
+((-2317 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-2306 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-1746 (*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544)))))
+(-10 -7 (-15 -1746 ((-843 (-574)))) (-15 -2306 ((-853 (-574)))) (-15 -2317 ((-853 (-574)))))
+((-4435 (((-546) (-1190)) 15)) (-2284 ((|#1| (-546)) 20)))
+(((-545 |#1|) (-10 -7 (-15 -4435 ((-546) (-1190))) (-15 -2284 (|#1| (-546)))) (-1231)) (T -545))
+((-2284 (*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1231)))) (-4435 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-546)) (-5 *1 (-545 *4)) (-4 *4 (-1231)))))
+(-10 -7 (-15 -4435 ((-546) (-1190))) (-15 -2284 (|#1| (-546))))
+((-2849 (((-112) $ $) NIL)) (-1914 (((-1172) $) 55)) (-4244 (((-112) $) 51)) (-4005 (((-1190) $) 52)) (-4412 (((-112) $) 49)) (-3249 (((-1172) $) 50)) (-3663 (($ (-1172)) 56)) (-1987 (((-112) $) NIL)) (-3734 (((-112) $) NIL)) (-3914 (((-112) $) NIL)) (-2568 (((-1172) $) NIL)) (-2157 (($ $ (-654 (-1190))) 21)) (-2284 (((-52) $) 23)) (-3150 (((-112) $) NIL)) (-4026 (((-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-2709 (($ $ (-654 (-1190)) (-1190)) 73)) (-4368 (((-112) $) NIL)) (-2384 (((-227) $) NIL)) (-3808 (($ $) 44)) (-1444 (((-872) $) NIL)) (-4122 (((-112) $ $) NIL)) (-2200 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4293 (((-654 $) $) 30)) (-4252 (((-1190) (-654 $)) 57)) (-1837 (($ (-1172)) NIL) (($ (-1190)) 19) (($ (-574)) 8) (($ (-227)) 28) (($ (-872)) NIL) (($ (-654 $)) 65) (((-1117) $) 12) (($ (-1117)) 13)) (-2420 (((-1190) (-1190) (-654 $)) 60)) (-2943 (((-872) $) 54)) (-3229 (($ $) 59)) (-4064 (($ $) 58)) (-3673 (($ $ (-654 $)) 66)) (-2923 (((-112) $ $) NIL)) (-3223 (((-112) $) 29)) (-2134 (($) 9 T CONST)) (-2146 (($) 11 T CONST)) (-2982 (((-112) $ $) 74)) (-3107 (($ $ $) 82)) (-3078 (($ $ $) 75)) (** (($ $ (-781)) 81) (($ $ (-574)) 80)) (* (($ $ $) 76)) (-2863 (((-574) $) NIL)))
+(((-546) (-13 (-1116 (-1172) (-1190) (-574) (-227) (-872)) (-624 (-1117)) (-10 -8 (-15 -2284 ((-52) $)) (-15 -1837 ($ (-1117))) (-15 -3673 ($ $ (-654 $))) (-15 -2709 ($ $ (-654 (-1190)) (-1190))) (-15 -2157 ($ $ (-654 (-1190)))) (-15 -3078 ($ $ $)) (-15 * ($ $ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 0 ($) -1707) (-15 1 ($) -1707) (-15 -3808 ($ $)) (-15 -1914 ((-1172) $)) (-15 -3663 ($ (-1172))) (-15 -4252 ((-1190) (-654 $))) (-15 -2420 ((-1190) (-1190) (-654 $)))))) (T -546))
+((-2284 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-546)))) (-3673 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546)))) (-2709 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-1190)) (-5 *1 (-546)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-546)))) (-3078 (*1 *1 *1 *1) (-5 *1 (-546))) (* (*1 *1 *1 *1) (-5 *1 (-546))) (-3107 (*1 *1 *1 *1) (-5 *1 (-546))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546)))) (-2134 (*1 *1) (-5 *1 (-546))) (-2146 (*1 *1) (-5 *1 (-546))) (-3808 (*1 *1 *1) (-5 *1 (-546))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-546)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-546)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1190)) (-5 *1 (-546)))) (-2420 (*1 *2 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-546))) (-5 *1 (-546)))))
+(-13 (-1116 (-1172) (-1190) (-574) (-227) (-872)) (-624 (-1117)) (-10 -8 (-15 -2284 ((-52) $)) (-15 -1837 ($ (-1117))) (-15 -3673 ($ $ (-654 $))) (-15 -2709 ($ $ (-654 (-1190)) (-1190))) (-15 -2157 ($ $ (-654 (-1190)))) (-15 -3078 ($ $ $)) (-15 * ($ $ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 (-2134) ($) -1707) (-15 (-2146) ($) -1707) (-15 -3808 ($ $)) (-15 -1914 ((-1172) $)) (-15 -3663 ($ (-1172))) (-15 -4252 ((-1190) (-654 $))) (-15 -2420 ((-1190) (-1190) (-654 $)))))
+((-2891 ((|#2| |#2|) 17)) (-2242 ((|#2| |#2|) 13)) (-2715 ((|#2| |#2| (-574) (-574)) 20)) (-2989 ((|#2| |#2|) 15)))
+(((-547 |#1| |#2|) (-10 -7 (-15 -2242 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2715 (|#2| |#2| (-574) (-574)))) (-13 (-566) (-148)) (-1272 |#1|)) (T -547))
+((-2715 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1272 *4)))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1272 *3)))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1272 *3)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1272 *3)))))
+(-10 -7 (-15 -2242 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2715 (|#2| |#2| (-574) (-574))))
+((-2011 (((-654 (-302 (-963 |#2|))) (-654 |#2|) (-654 (-1190))) 32)) (-2215 (((-654 |#2|) (-963 |#1|) |#3|) 54) (((-654 |#2|) (-1186 |#1|) |#3|) 53)) (-3529 (((-654 (-654 |#2|)) (-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)) |#3|) 106)))
+(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -2215 ((-654 |#2|) (-1186 |#1|) |#3|)) (-15 -2215 ((-654 |#2|) (-963 |#1|) |#3|)) (-15 -3529 ((-654 (-654 |#2|)) (-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)) |#3|)) (-15 -2011 ((-654 (-302 (-963 |#2|))) (-654 |#2|) (-654 (-1190))))) (-462) (-372) (-13 (-372) (-858))) (T -548))
+((-2011 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1190))) (-4 *6 (-372)) (-5 *2 (-654 (-302 (-963 *6)))) (-5 *1 (-548 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858))))) (-3529 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) (-4 *5 (-13 (-372) (-858))))) (-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-963 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))))
+(-10 -7 (-15 -2215 ((-654 |#2|) (-1186 |#1|) |#3|)) (-15 -2215 ((-654 |#2|) (-963 |#1|) |#3|)) (-15 -3529 ((-654 (-654 |#2|)) (-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)) |#3|)) (-15 -2011 ((-654 (-302 (-963 |#2|))) (-654 |#2|) (-654 (-1190)))))
+((-2348 ((|#2| |#2| |#1|) 17)) (-2550 ((|#2| (-654 |#2|)) 31)) (-1989 ((|#2| (-654 |#2|)) 52)))
+(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#2| (-654 |#2|))) (-15 -1989 (|#2| (-654 |#2|))) (-15 -2348 (|#2| |#2| |#1|))) (-315) (-1257 |#1|) |#1| (-1 |#1| |#1| (-781))) (T -549))
+((-2348 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1257 *3)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))))
+(-10 -7 (-15 -2550 (|#2| (-654 |#2|))) (-15 -1989 (|#2| (-654 |#2|))) (-15 -2348 (|#2| |#2| |#1|)))
+((-4220 (((-428 (-1186 |#4|)) (-1186 |#4|) (-1 (-428 (-1186 |#3|)) (-1186 |#3|))) 89) (((-428 |#4|) |#4| (-1 (-428 (-1186 |#3|)) (-1186 |#3|))) 210)))
+(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4| (-1 (-428 (-1186 |#3|)) (-1186 |#3|)))) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|) (-1 (-428 (-1186 |#3|)) (-1186 |#3|))))) (-860) (-803) (-13 (-315) (-148)) (-960 |#3| |#2| |#1|)) (T -550))
+((-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1186 *7)) (-1186 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-960 *7 *6 *5)) (-5 *2 (-428 (-1186 *8))) (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1186 *8)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1186 *7)) (-1186 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-960 *7 *6 *5)))))
+(-10 -7 (-15 -4220 ((-428 |#4|) |#4| (-1 (-428 (-1186 |#3|)) (-1186 |#3|)))) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|) (-1 (-428 (-1186 |#3|)) (-1186 |#3|)))))
+((-2891 ((|#4| |#4|) 74)) (-2242 ((|#4| |#4|) 70)) (-2715 ((|#4| |#4| (-574) (-574)) 76)) (-2989 ((|#4| |#4|) 72)))
+(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2242 (|#4| |#4|)) (-15 -2989 (|#4| |#4|)) (-15 -2891 (|#4| |#4|)) (-15 -2715 (|#4| |#4| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1257 |#1|) (-734 |#1| |#2|) (-1272 |#3|)) (T -551))
+((-2715 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-4 *5 (-1257 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) (-4 *2 (-1272 *6)))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5)))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5)))))
+(-10 -7 (-15 -2242 (|#4| |#4|)) (-15 -2989 (|#4| |#4|)) (-15 -2891 (|#4| |#4|)) (-15 -2715 (|#4| |#4| (-574) (-574))))
+((-2891 ((|#2| |#2|) 27)) (-2242 ((|#2| |#2|) 23)) (-2715 ((|#2| |#2| (-574) (-574)) 29)) (-2989 ((|#2| |#2|) 25)))
+(((-552 |#1| |#2|) (-10 -7 (-15 -2242 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2715 (|#2| |#2| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1272 |#1|)) (T -552))
+((-2715 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-5 *1 (-552 *4 *2)) (-4 *2 (-1272 *4)))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1272 *3)))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1272 *3)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1272 *3)))))
+(-10 -7 (-15 -2242 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2715 (|#2| |#2| (-574) (-574))))
+((-2996 (((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)) 18) (((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|)) 14) (((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|)) 32)))
+(((-553 |#1| |#2|) (-10 -7 (-15 -2996 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -2996 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -2996 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) (-1062) (-1257 |#1|)) (T -553))
+((-2996 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1257 *4)))) (-2996 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1257 *4)))) (-2996 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1062)) (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1257 *5)))))
+(-10 -7 (-15 -2996 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -2996 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -2996 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|))))
+((-3165 (($ $ $) 84)) (-3440 (((-428 $) $) 52)) (-1697 (((-3 (-574) "failed") $) 64)) (-2209 (((-574) $) 42)) (-2057 (((-3 (-417 (-574)) "failed") $) 79)) (-1811 (((-112) $) 26)) (-4142 (((-417 (-574)) $) 77)) (-1654 (((-112) $) 55)) (-1817 (($ $ $ $) 92)) (-3434 (((-112) $) 17)) (-2531 (($ $ $) 62)) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 74)) (-4048 (((-3 $ "failed") $) 69)) (-3811 (($ $) 24)) (-2274 (($ $ $) 90)) (-3818 (($) 65)) (-4430 (($ $) 58)) (-4220 (((-428 $) $) 50)) (-2625 (((-112) $) 15)) (-1347 (((-781) $) 32)) (-3905 (($ $ (-781)) NIL) (($ $) 11)) (-3167 (($ $) 18)) (-1837 (((-574) $) NIL) (((-546) $) 41) (((-903 (-574)) $) 45) (((-388) $) 35) (((-227) $) 38)) (-4160 (((-781)) 9)) (-2490 (((-112) $ $) 21)) (-2819 (($ $ $) 60)))
+(((-554 |#1|) (-10 -8 (-15 -2274 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1| |#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -2490 ((-112) |#1| |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -3818 (|#1|)) (-15 -4048 ((-3 |#1| "failed") |#1|)) (-15 -1837 ((-227) |#1|)) (-15 -1837 ((-388) |#1|)) (-15 -2531 (|#1| |#1| |#1|)) (-15 -4430 (|#1| |#1|)) (-15 -2819 (|#1| |#1| |#1|)) (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1837 ((-574) |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3434 ((-112) |#1|)) (-15 -1347 ((-781) |#1|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -1654 ((-112) |#1|)) (-15 -4160 ((-781)))) (-555)) (T -554))
+((-4160 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555)))))
+(-10 -8 (-15 -2274 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1| |#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -2490 ((-112) |#1| |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -3818 (|#1|)) (-15 -4048 ((-3 |#1| "failed") |#1|)) (-15 -1837 ((-227) |#1|)) (-15 -1837 ((-388) |#1|)) (-15 -2531 (|#1| |#1| |#1|)) (-15 -4430 (|#1| |#1|)) (-15 -2819 (|#1| |#1| |#1|)) (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1837 ((-574) |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3434 ((-112) |#1|)) (-15 -1347 ((-781) |#1|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -1654 ((-112) |#1|)) (-15 -4160 ((-781))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-3165 (($ $ $) 92)) (-2950 (((-3 $ "failed") $ $) 20)) (-2573 (($ $ $ $) 81)) (-4348 (($ $) 57)) (-3440 (((-428 $) $) 58)) (-3875 (((-112) $ $) 134)) (-3747 (((-574) $) 123)) (-3958 (($ $ $) 95)) (-3670 (($) 18 T CONST)) (-1697 (((-3 (-574) "failed") $) 115)) (-2209 (((-574) $) 116)) (-2785 (($ $ $) 138)) (-2668 (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 113) (((-699 (-574)) (-699 $)) 112) (((-699 (-574)) (-1281 $)) 111)) (-1950 (((-3 $ "failed") $) 37)) (-2057 (((-3 (-417 (-574)) "failed") $) 89)) (-1811 (((-112) $) 91)) (-4142 (((-417 (-574)) $) 90)) (-2820 (($) 88) (($ $) 87)) (-2798 (($ $ $) 137)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 132)) (-1654 (((-112) $) 59)) (-1817 (($ $ $ $) 79)) (-3896 (($ $ $) 93)) (-3434 (((-112) $) 125)) (-2531 (($ $ $) 104)) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 107)) (-3965 (((-112) $) 35)) (-3239 (((-112) $) 99)) (-4048 (((-3 $ "failed") $) 101)) (-3244 (((-112) $) 124)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 141)) (-3946 (($ $ $ $) 80)) (-3658 (($ $ $) 126)) (-2106 (($ $ $) 127)) (-3811 (($ $) 83)) (-4135 (($ $) 96)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-2274 (($ $ $) 78)) (-3818 (($) 100 T CONST)) (-1606 (($ $) 85)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-4430 (($ $) 105)) (-4220 (((-428 $) $) 56)) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 139)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 133)) (-2625 (((-112) $) 98)) (-1347 (((-781) $) 135)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 136)) (-3905 (($ $ (-781)) 120) (($ $) 119)) (-2295 (($ $) 84)) (-3167 (($ $) 86)) (-1837 (((-574) $) 117) (((-546) $) 109) (((-903 (-574)) $) 108) (((-388) $) 103) (((-227) $) 102)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 114)) (-4160 (((-781)) 32 T CONST)) (-2490 (((-112) $ $) 94)) (-2819 (($ $ $) 106)) (-2923 (((-112) $ $) 9)) (-2629 (($) 97)) (-3798 (((-112) $ $) 45)) (-3836 (($ $ $ $) 82)) (-2946 (($ $) 122)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-781)) 121) (($ $) 118)) (-3041 (((-112) $ $) 129)) (-3016 (((-112) $ $) 130)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 128)) (-3005 (((-112) $ $) 131)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-574) $) 110)))
+(((-555) (-141)) (T -555))
+((-3239 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2629 (*1 *1) (-4 *1 (-555))) (-4135 (*1 *1 *1) (-4 *1 (-555))) (-3958 (*1 *1 *1 *1) (-4 *1 (-555))) (-2490 (*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-3896 (*1 *1 *1 *1) (-4 *1 (-555))) (-3165 (*1 *1 *1 *1) (-4 *1 (-555))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-2057 (*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-2820 (*1 *1) (-4 *1 (-555))) (-2820 (*1 *1 *1) (-4 *1 (-555))) (-3167 (*1 *1 *1) (-4 *1 (-555))) (-1606 (*1 *1 *1) (-4 *1 (-555))) (-2295 (*1 *1 *1) (-4 *1 (-555))) (-3811 (*1 *1 *1) (-4 *1 (-555))) (-3836 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-2573 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-3946 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-1817 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-2274 (*1 *1 *1 *1) (-4 *1 (-555))))
+(-13 (-1235) (-315) (-830) (-239) (-624 (-574)) (-1051 (-574)) (-649 (-574)) (-624 (-546)) (-624 (-903 (-574))) (-897 (-574)) (-144) (-1035) (-148) (-1165) (-10 -8 (-15 -3239 ((-112) $)) (-15 -2625 ((-112) $)) (-6 -4455) (-15 -2629 ($)) (-15 -4135 ($ $)) (-15 -3958 ($ $ $)) (-15 -2490 ((-112) $ $)) (-15 -3896 ($ $ $)) (-15 -3165 ($ $ $)) (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $)) (-15 -2820 ($)) (-15 -2820 ($ $)) (-15 -3167 ($ $)) (-15 -1606 ($ $)) (-15 -2295 ($ $)) (-15 -3811 ($ $)) (-15 -3836 ($ $ $ $)) (-15 -2573 ($ $ $ $)) (-15 -3946 ($ $ $ $)) (-15 -1817 ($ $ $ $)) (-15 -2274 ($ $ $)) (-6 -4454)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-144) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-546)) . T) ((-624 (-574)) . T) ((-624 (-903 (-574))) . T) ((-235 $) . T) ((-239) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0=(-574)) . T) ((-658 $) . T) ((-650 $) . T) ((-649 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-830) . T) ((-858) . T) ((-860) . T) ((-897 (-574)) . T) ((-931) . T) ((-1035) . T) ((-1051 (-574)) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) . T) ((-1231) . T) ((-1235) . T))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-556) (-13 (-854) (-10 -8 (-15 -3670 ($) -1707)))) (T -556))
+((-3670 (*1 *1) (-5 *1 (-556))))
+(-13 (-854) (-10 -8 (-15 -3670 ($) -1707)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16)))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-555) (-13 (-852) (-10 -8 (-15 -3281 ($) -1705)))) (T -555))
-((-3281 (*1 *1) (-5 *1 (-555))))
-(-13 (-852) (-10 -8 (-15 -3281 ($) -1705)))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-557) (-13 (-854) (-10 -8 (-15 -3670 ($) -1707)))) (T -557))
+((-3670 (*1 *1) (-5 *1 (-557))))
+(-13 (-854) (-10 -8 (-15 -3670 ($) -1707)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32)))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-556) (-13 (-852) (-10 -8 (-15 -3281 ($) -1705)))) (T -556))
-((-3281 (*1 *1) (-5 *1 (-556))))
-(-13 (-852) (-10 -8 (-15 -3281 ($) -1705)))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-558) (-13 (-854) (-10 -8 (-15 -3670 ($) -1707)))) (T -558))
+((-3670 (*1 *1) (-5 *1 (-558))))
+(-13 (-854) (-10 -8 (-15 -3670 ($) -1707)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64)))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-557) (-13 (-852) (-10 -8 (-15 -3281 ($) -1705)))) (T -557))
-((-3281 (*1 *1) (-5 *1 (-557))))
-(-13 (-852) (-10 -8 (-15 -3281 ($) -1705)))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-559) (-13 (-854) (-10 -8 (-15 -3670 ($) -1707)))) (T -559))
+((-3670 (*1 *1) (-5 *1 (-559))))
+(-13 (-854) (-10 -8 (-15 -3670 ($) -1707)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8)))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3176 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#2| $ |#1| |#2|) NIL)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 |#2| "failed") |#1| $) NIL)) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) NIL)) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) NIL)) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 ((|#1| $) NIL (|has| |#1| (-858)))) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3374 ((|#1| $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-1761 (((-652 |#1|) $) NIL)) (-4198 (((-112) |#1| $) NIL)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1986 (((-652 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 ((|#2| $) NIL (|has| |#1| (-858)))) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-2940 (((-870) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-558 |#1| |#2| |#3|) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454))) (-1111) (-1111) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))) (T -558))
-NIL
-(-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))
-((-2015 (((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-1 (-1184 |#2|) (-1184 |#2|))) 50)))
-(((-559 |#1| |#2|) (-10 -7 (-15 -2015 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-1 (-1184 |#2|) (-1184 |#2|))))) (-564) (-13 (-27) (-438 |#1|))) (T -559))
-((-2015 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-620 *3)) (-5 *5 (-1 (-1184 *3) (-1184 *3))) (-4 *3 (-13 (-27) (-438 *6))) (-4 *6 (-564)) (-5 *2 (-594 *3)) (-5 *1 (-559 *6 *3)))))
-(-10 -7 (-15 -2015 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-1 (-1184 |#2|) (-1184 |#2|)))))
-((-4317 (((-594 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-2454 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2764 (((-594 |#5|) |#5| (-1 |#3| |#3|)) 220)))
-(((-560 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2764 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4317 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2454 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-564) (-1049 (-572))) (-13 (-27) (-438 |#1|)) (-1255 |#2|) (-1255 (-415 |#3|)) (-349 |#2| |#3| |#4|)) (T -560))
-((-2454 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-27) (-438 *4))) (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *7 (-1255 (-415 *6))) (-5 *1 (-560 *4 *5 *6 *7 *2)) (-4 *2 (-349 *5 *6 *7)))) (-4317 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1255 *6)) (-4 *6 (-13 (-27) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)))) (-4 *8 (-1255 (-415 *7))) (-5 *2 (-594 *3)) (-5 *1 (-560 *5 *6 *7 *8 *3)) (-4 *3 (-349 *6 *7 *8)))) (-2764 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1255 *6)) (-4 *6 (-13 (-27) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)))) (-4 *8 (-1255 (-415 *7))) (-5 *2 (-594 *3)) (-5 *1 (-560 *5 *6 *7 *8 *3)) (-4 *3 (-349 *6 *7 *8)))))
-(-10 -7 (-15 -2764 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4317 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2454 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3251 (((-112) (-572) (-572)) 12)) (-1722 (((-572) (-572)) 7)) (-4195 (((-572) (-572) (-572)) 10)))
-(((-561) (-10 -7 (-15 -1722 ((-572) (-572))) (-15 -4195 ((-572) (-572) (-572))) (-15 -3251 ((-112) (-572) (-572))))) (T -561))
-((-3251 (*1 *2 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-112)) (-5 *1 (-561)))) (-4195 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-561)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-561)))))
-(-10 -7 (-15 -1722 ((-572) (-572))) (-15 -4195 ((-572) (-572) (-572))) (-15 -3251 ((-112) (-572) (-572))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3011 ((|#1| $) 67)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-2358 (($ $) 97)) (-2242 (($ $) 80)) (-1360 ((|#1| $) 68)) (-3330 (((-3 $ "failed") $ $) 20)) (-4227 (($ $) 79)) (-2338 (($ $) 96)) (-2222 (($ $) 81)) (-2384 (($ $) 95)) (-2262 (($ $) 82)) (-3281 (($) 18 T CONST)) (-1695 (((-3 (-572) "failed") $) 75)) (-2204 (((-572) $) 76)) (-2062 (((-3 $ "failed") $) 37)) (-2475 (($ |#1| |#1|) 72)) (-3074 (((-112) $) 66)) (-2997 (($) 107)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 78)) (-1623 (((-112) $) 65)) (-3654 (($ $ $) 113)) (-2427 (($ $ $) 112)) (-3116 (($ $) 104)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1316 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-415 (-572))) 70)) (-3661 ((|#1| $) 69)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-2834 (((-3 $ "failed") $ $) 48)) (-1608 (($ $) 105)) (-2397 (($ $) 94)) (-2270 (($ $) 83)) (-2370 (($ $) 93)) (-2252 (($ $) 84)) (-2348 (($ $) 92)) (-2231 (($ $) 85)) (-3427 (((-112) $ |#1|) 64)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-572)) 74)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2436 (($ $) 103)) (-2300 (($ $) 91)) (-2845 (((-112) $ $) 45)) (-2409 (($ $) 102)) (-2282 (($ $) 90)) (-2460 (($ $) 101)) (-2320 (($ $) 89)) (-2516 (($ $) 100)) (-2329 (($ $) 88)) (-2448 (($ $) 99)) (-2310 (($ $) 87)) (-2423 (($ $) 98)) (-2292 (($ $) 86)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3039 (((-112) $ $) 110)) (-3014 (((-112) $ $) 109)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 111)) (-3003 (((-112) $ $) 108)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ $) 106) (($ $ (-415 (-572))) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-562 |#1|) (-141) (-13 (-412) (-1214))) (T -562))
-((-1316 (*1 *1 *2 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-2475 (*1 *1 *2 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-1316 (*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-1360 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112)))) (-3427 (*1 *2 *1 *3) (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112)))))
-(-13 (-460) (-858) (-1214) (-1013) (-1049 (-572)) (-10 -8 (-6 -3548) (-15 -1316 ($ |t#1| |t#1|)) (-15 -2475 ($ |t#1| |t#1|)) (-15 -1316 ($ |t#1|)) (-15 -1316 ($ (-415 (-572)))) (-15 -3661 (|t#1| $)) (-15 -1360 (|t#1| $)) (-15 -3011 (|t#1| $)) (-15 -3074 ((-112) $)) (-15 -1623 ((-112) $)) (-15 -3427 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-290) . T) ((-296) . T) ((-460) . T) ((-501) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-858) . T) ((-1013) . T) ((-1049 (-572)) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) . T) ((-1217) . T))
-((-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 9)) (-3009 (($ $) 11)) (-4334 (((-112) $) 20)) (-2062 (((-3 $ "failed") $) 16)) (-2845 (((-112) $ $) 22)))
-(((-563 |#1|) (-10 -8 (-15 -4334 ((-112) |#1|)) (-15 -2845 ((-112) |#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -2072 ((-2 (|:| -3161 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2062 ((-3 |#1| "failed") |#1|))) (-564)) (T -563))
-NIL
-(-10 -8 (-15 -4334 ((-112) |#1|)) (-15 -2845 ((-112) |#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -2072 ((-2 (|:| -3161 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2062 ((-3 |#1| "failed") |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2834 (((-3 $ "failed") $ $) 48)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-564) (-141)) (T -564))
-((-2834 (*1 *1 *1 *1) (|partial| -4 *1 (-564))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3161 *1) (|:| -4441 *1) (|:| |associate| *1))) (-4 *1 (-564)))) (-3009 (*1 *1 *1) (-4 *1 (-564))) (-2845 (*1 *2 *1 *1) (-12 (-4 *1 (-564)) (-5 *2 (-112)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-564)) (-5 *2 (-112)))))
-(-13 (-174) (-38 $) (-296) (-10 -8 (-15 -2834 ((-3 $ "failed") $ $)) (-15 -2072 ((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $)) (-15 -3009 ($ $)) (-15 -2845 ((-112) $ $)) (-15 -4334 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2156 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1188) (-652 |#2|)) 38)) (-4398 (((-594 |#2|) |#2| (-1188)) 63)) (-2461 (((-3 |#2| "failed") |#2| (-1188)) 156)) (-3816 (((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) (-620 |#2|) (-652 (-620 |#2|))) 159)) (-3071 (((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) |#2|) 41)))
-(((-565 |#1| |#2|) (-10 -7 (-15 -3071 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) |#2|)) (-15 -2156 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1188) (-652 |#2|))) (-15 -2461 ((-3 |#2| "failed") |#2| (-1188))) (-15 -4398 ((-594 |#2|) |#2| (-1188))) (-15 -3816 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) (-620 |#2|) (-652 (-620 |#2|))))) (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -565))
-((-3816 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1188)) (-5 *6 (-652 (-620 *3))) (-5 *5 (-620 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3))) (-5 *1 (-565 *7 *3)))) (-4398 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-565 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-2461 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-2156 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *6 *3)))) (-3071 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3))) (-5 *1 (-565 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
-(-10 -7 (-15 -3071 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) |#2|)) (-15 -2156 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1188) (-652 |#2|))) (-15 -2461 ((-3 |#2| "failed") |#2| (-1188))) (-15 -4398 ((-594 |#2|) |#2| (-1188))) (-15 -3816 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) (-620 |#2|) (-652 (-620 |#2|)))))
-((-2287 (((-426 |#1|) |#1|) 19)) (-4218 (((-426 |#1|) |#1|) 34)) (-2293 (((-3 |#1| "failed") |#1|) 49)) (-4363 (((-426 |#1|) |#1|) 60)))
-(((-566 |#1|) (-10 -7 (-15 -4218 ((-426 |#1|) |#1|)) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -4363 ((-426 |#1|) |#1|)) (-15 -2293 ((-3 |#1| "failed") |#1|))) (-553)) (T -566))
-((-2293 (*1 *2 *2) (|partial| -12 (-5 *1 (-566 *2)) (-4 *2 (-553)))) (-4363 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553)))) (-2287 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553)))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553)))))
-(-10 -7 (-15 -4218 ((-426 |#1|) |#1|)) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -4363 ((-426 |#1|) |#1|)) (-15 -2293 ((-3 |#1| "failed") |#1|)))
-((-4163 (($) 9)) (-2006 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1761 (((-652 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2036 (($ (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2180 (($ (-652 (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1907 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-4110 (((-652 (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-2537 (((-1284)) 11)))
-(((-567) (-10 -8 (-15 -4163 ($)) (-15 -2537 ((-1284))) (-15 -1761 ((-652 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2180 ($ (-652 (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2036 ($ (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2006 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4110 ((-652 (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1907 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -567))
-((-1907 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-567)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-567)))) (-2006 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-567)))) (-2036 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-567)))) (-2180 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-567)))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-567)))) (-2537 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-567)))) (-4163 (*1 *1) (-5 *1 (-567))))
-(-10 -8 (-15 -4163 ($)) (-15 -2537 ((-1284))) (-15 -1761 ((-652 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2180 ($ (-652 (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2036 ($ (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2006 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4110 ((-652 (-2 (|:| -3690 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1907 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1910 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-4191 (((-1184 (-415 (-1184 |#2|))) |#2| (-620 |#2|) (-620 |#2|) (-1184 |#2|)) 35)) (-1424 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) |#2| (-1184 |#2|)) 115)) (-4209 (((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))) 85) (((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|)) 55)) (-3951 (((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| (-620 |#2|) |#2| (-415 (-1184 |#2|))) 92) (((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| |#2| (-1184 |#2|)) 114)) (-2133 (((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) (-620 |#2|) |#2| (-415 (-1184 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) |#2| (-1184 |#2|)) 116)) (-4360 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4362 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))) 133 (|has| |#3| (-664 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4362 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|)) 132 (|has| |#3| (-664 |#2|)))) (-4343 ((|#2| (-1184 (-415 (-1184 |#2|))) (-620 |#2|) |#2|) 53)) (-2851 (((-1184 (-415 (-1184 |#2|))) (-1184 |#2|) (-620 |#2|)) 34)))
-(((-568 |#1| |#2| |#3|) (-10 -7 (-15 -4209 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|))) (-15 -4209 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -3951 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| |#2| (-1184 |#2|))) (-15 -3951 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -1424 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) |#2| (-1184 |#2|))) (-15 -1424 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -2133 ((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) |#2| (-1184 |#2|))) (-15 -2133 ((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -4191 ((-1184 (-415 (-1184 |#2|))) |#2| (-620 |#2|) (-620 |#2|) (-1184 |#2|))) (-15 -4343 (|#2| (-1184 (-415 (-1184 |#2|))) (-620 |#2|) |#2|)) (-15 -2851 ((-1184 (-415 (-1184 |#2|))) (-1184 |#2|) (-620 |#2|))) (IF (|has| |#3| (-664 |#2|)) (PROGN (-15 -4360 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4362 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|))) (-15 -4360 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4362 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))))) |%noBranch|)) (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))) (-13 (-438 |#1|) (-27) (-1214)) (-1111)) (T -568))
-((-4360 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-620 *4)) (-5 *6 (-415 (-1184 *4))) (-4 *4 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4)))) (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))) (-4360 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-620 *4)) (-5 *6 (-1184 *4)) (-4 *4 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4)))) (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *6)) (-4 *6 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-1184 (-415 (-1184 *6)))) (-5 *1 (-568 *5 *6 *7)) (-5 *3 (-1184 *6)) (-4 *7 (-1111)))) (-4343 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1184 (-415 (-1184 *2)))) (-5 *4 (-620 *2)) (-4 *2 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1111)))) (-4191 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-1184 (-415 (-1184 *3)))) (-5 *1 (-568 *6 *3 *7)) (-5 *5 (-1184 *3)) (-4 *7 (-1111)))) (-2133 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188))) (-5 *5 (-415 (-1184 *2))) (-4 *2 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *1 (-568 *6 *2 *7)) (-4 *7 (-1111)))) (-2133 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188))) (-5 *5 (-1184 *2)) (-4 *2 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *1 (-568 *6 *2 *7)) (-4 *7 (-1111)))) (-1424 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3)) (-5 *6 (-415 (-1184 *3))) (-4 *3 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *7 *3 *8)) (-4 *8 (-1111)))) (-1424 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3)) (-5 *6 (-1184 *3)) (-4 *3 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *7 *3 *8)) (-4 *8 (-1111)))) (-3951 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-415 (-1184 *3))) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3))) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))) (-3951 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-1184 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3))) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))) (-4209 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-620 *3)) (-5 *5 (-415 (-1184 *3))) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))) (-4209 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-620 *3)) (-5 *5 (-1184 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))))
-(-10 -7 (-15 -4209 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|))) (-15 -4209 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -3951 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| |#2| (-1184 |#2|))) (-15 -3951 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -1424 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) |#2| (-1184 |#2|))) (-15 -1424 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -2133 ((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) |#2| (-1184 |#2|))) (-15 -2133 ((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -4191 ((-1184 (-415 (-1184 |#2|))) |#2| (-620 |#2|) (-620 |#2|) (-1184 |#2|))) (-15 -4343 (|#2| (-1184 (-415 (-1184 |#2|))) (-620 |#2|) |#2|)) (-15 -2851 ((-1184 (-415 (-1184 |#2|))) (-1184 |#2|) (-620 |#2|))) (IF (|has| |#3| (-664 |#2|)) (PROGN (-15 -4360 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4362 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|))) (-15 -4360 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4362 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))))) |%noBranch|))
-((-3123 (((-572) (-572) (-779)) 85)) (-2007 (((-572) (-572)) 83)) (-2485 (((-572) (-572)) 81)) (-2685 (((-572) (-572)) 87)) (-1519 (((-572) (-572) (-572)) 65)) (-3212 (((-572) (-572) (-572)) 62)) (-1646 (((-415 (-572)) (-572)) 30)) (-3226 (((-572) (-572)) 34)) (-1904 (((-572) (-572)) 74)) (-4372 (((-572) (-572)) 46)) (-4008 (((-652 (-572)) (-572)) 80)) (-3695 (((-572) (-572) (-572) (-572) (-572)) 58)) (-3391 (((-415 (-572)) (-572)) 55)))
-(((-569) (-10 -7 (-15 -3391 ((-415 (-572)) (-572))) (-15 -3695 ((-572) (-572) (-572) (-572) (-572))) (-15 -4008 ((-652 (-572)) (-572))) (-15 -4372 ((-572) (-572))) (-15 -1904 ((-572) (-572))) (-15 -3226 ((-572) (-572))) (-15 -1646 ((-415 (-572)) (-572))) (-15 -3212 ((-572) (-572) (-572))) (-15 -1519 ((-572) (-572) (-572))) (-15 -2685 ((-572) (-572))) (-15 -2485 ((-572) (-572))) (-15 -2007 ((-572) (-572))) (-15 -3123 ((-572) (-572) (-779))))) (T -569))
-((-3123 (*1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-779)) (-5 *1 (-569)))) (-2007 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-2685 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-1519 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-3212 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-1646 (*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))) (-3226 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-4008 (*1 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))) (-3695 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-3391 (*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))))
-(-10 -7 (-15 -3391 ((-415 (-572)) (-572))) (-15 -3695 ((-572) (-572) (-572) (-572) (-572))) (-15 -4008 ((-652 (-572)) (-572))) (-15 -4372 ((-572) (-572))) (-15 -1904 ((-572) (-572))) (-15 -3226 ((-572) (-572))) (-15 -1646 ((-415 (-572)) (-572))) (-15 -3212 ((-572) (-572) (-572))) (-15 -1519 ((-572) (-572) (-572))) (-15 -2685 ((-572) (-572))) (-15 -2485 ((-572) (-572))) (-15 -2007 ((-572) (-572))) (-15 -3123 ((-572) (-572) (-779))))
-((-3390 (((-2 (|:| |answer| |#4|) (|:| -3112 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
-(((-570 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3390 ((-2 (|:| |answer| |#4|) (|:| -3112 |#4|)) |#4| (-1 |#2| |#2|)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -570))
-((-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-4 *7 (-1255 (-415 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3112 *3))) (-5 *1 (-570 *5 *6 *7 *3)) (-4 *3 (-349 *5 *6 *7)))))
-(-10 -7 (-15 -3390 ((-2 (|:| |answer| |#4|) (|:| -3112 |#4|)) |#4| (-1 |#2| |#2|))))
-((-3390 (((-2 (|:| |answer| (-415 |#2|)) (|:| -3112 (-415 |#2|)) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|)) 18)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -3390 ((-2 (|:| |answer| (-415 |#2|)) (|:| -3112 (-415 |#2|)) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|)))) (-370) (-1255 |#1|)) (T -571))
-((-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |answer| (-415 *6)) (|:| -3112 (-415 *6)) (|:| |specpart| (-415 *6)) (|:| |polypart| *6))) (-5 *1 (-571 *5 *6)) (-5 *3 (-415 *6)))))
-(-10 -7 (-15 -3390 ((-2 (|:| |answer| (-415 |#2|)) (|:| -3112 (-415 |#2|)) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 30)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 96)) (-3009 (($ $) 97)) (-4334 (((-112) $) NIL)) (-1926 (($ $ $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2985 (($ $ $ $) 52)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL)) (-3957 (($ $ $) 91)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL)) (-2204 (((-572) $) NIL)) (-2780 (($ $ $) 54)) (-2993 (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 77) (((-697 (-572)) (-697 $)) 73) (((-697 (-572)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) 93)) (-3196 (((-3 (-415 (-572)) "failed") $) NIL)) (-1733 (((-112) $) NIL)) (-2233 (((-415 (-572)) $) NIL)) (-2815 (($) 79) (($ $) 80)) (-2792 (($ $ $) 90)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3768 (($ $ $ $) NIL)) (-4220 (($ $ $) 70)) (-3074 (((-112) $) NIL)) (-2661 (($ $ $) NIL)) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL)) (-1886 (((-112) $) 34)) (-2597 (((-112) $) 85)) (-2556 (((-3 $ "failed") $) NIL)) (-1623 (((-112) $) 43)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2546 (($ $ $ $) 55)) (-3654 (($ $ $) 87)) (-2427 (($ $ $) 86)) (-3808 (($ $) NIL)) (-4133 (($ $) 49)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) 69)) (-1656 (($ $ $) NIL)) (-3815 (($) NIL T CONST)) (-1604 (($ $) 38)) (-3964 (((-1131) $) 42)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 128)) (-2870 (($ $ $) 94) (($ (-652 $)) NIL)) (-2128 (($ $) NIL)) (-4218 (((-426 $) $) 114)) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL)) (-2834 (((-3 $ "failed") $ $) 112)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 89)) (-3902 (($ $ (-779)) NIL) (($ $) NIL)) (-2290 (($ $) 40)) (-3164 (($ $) 36)) (-1835 (((-572) $) 48) (((-544) $) 64) (((-901 (-572)) $) NIL) (((-386) $) 58) (((-227) $) 61) (((-1170) $) 66)) (-2940 (((-870) $) 46) (($ (-572)) 47) (($ $) NIL) (($ (-572)) 47)) (-4249 (((-779)) NIL T CONST)) (-4023 (((-112) $ $) NIL)) (-3148 (($ $ $) NIL)) (-4379 (((-112) $ $) NIL)) (-2625 (($) 35)) (-2845 (((-112) $ $) NIL)) (-4212 (($ $ $ $) 51)) (-2700 (($ $) 78)) (-2131 (($) 6 T CONST)) (-2143 (($) 31 T CONST)) (-3547 (((-1170) $) 26) (((-1170) $ (-112)) 27) (((-1284) (-830) $) 28) (((-1284) (-830) $ (-112)) 29)) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-3039 (((-112) $ $) 50)) (-3014 (((-112) $ $) 81)) (-2978 (((-112) $ $) 33)) (-3026 (((-112) $ $) 82)) (-3003 (((-112) $ $) 10)) (-3089 (($ $) 16) (($ $ $) 39)) (-3075 (($ $ $) 37)) (** (($ $ (-930)) NIL) (($ $ (-779)) 84)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 83) (($ $ $) 53) (($ (-572) $) 83)))
-(((-572) (-13 (-553) (-622 (-1170)) (-836) (-10 -7 (-6 -4441) (-6 -4446) (-6 -4442) (-6 -4436)))) (T -572))
-NIL
-(-13 (-553) (-622 (-1170)) (-836) (-10 -7 (-6 -4441) (-6 -4446) (-6 -4442) (-6 -4436)))
-((-3972 (((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777) (-1074)) 116) (((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777)) 118)) (-3034 (((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1188)) 195) (((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1170)) 194) (((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386) (-1074)) 199) (((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386)) 200) (((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386)) 201) (((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386))))) 202) (((-1046) (-322 (-386)) (-1105 (-851 (-386)))) 190) (((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386)) 189) (((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386)) 185) (((-1046) (-777)) 177) (((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386) (-1074)) 184)))
-(((-573) (-10 -7 (-15 -3034 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386) (-1074))) (-15 -3034 ((-1046) (-777))) (-15 -3034 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386))) (-15 -3034 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386))) (-15 -3034 ((-1046) (-322 (-386)) (-1105 (-851 (-386))))) (-15 -3034 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))))) (-15 -3034 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386))) (-15 -3034 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386))) (-15 -3034 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386) (-1074))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777) (-1074))) (-15 -3034 ((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1170))) (-15 -3034 ((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1188))))) (T -573))
-((-3034 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-322 (-386))) (-5 *4 (-1103 (-851 (-386)))) (-5 *5 (-1188)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3034 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-322 (-386))) (-5 *4 (-1103 (-851 (-386)))) (-5 *5 (-1170)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-1074)) (-5 *2 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046)))) (-5 *1 (-573)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046)))) (-5 *1 (-573)))) (-3034 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386))))) (-5 *5 (-386)) (-5 *6 (-1074)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3034 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386))))) (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386))))) (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3034 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386))))) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3034 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386)))) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386)))) (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3034 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386)))) (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-3034 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386)))) (-5 *5 (-386)) (-5 *6 (-1074)) (-5 *2 (-1046)) (-5 *1 (-573)))))
-(-10 -7 (-15 -3034 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386) (-1074))) (-15 -3034 ((-1046) (-777))) (-15 -3034 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386))) (-15 -3034 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386))) (-15 -3034 ((-1046) (-322 (-386)) (-1105 (-851 (-386))))) (-15 -3034 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))))) (-15 -3034 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386))) (-15 -3034 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386))) (-15 -3034 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386) (-1074))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777) (-1074))) (-15 -3034 ((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1170))) (-15 -3034 ((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1188))))
-((-3696 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|)) 196)) (-1639 (((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|)) 99)) (-2823 (((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2|) 192)) (-2173 (((-3 |#2| "failed") |#2| |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188))) 201)) (-3908 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4362 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-1188)) 210 (|has| |#3| (-664 |#2|)))))
-(((-574 |#1| |#2| |#3|) (-10 -7 (-15 -1639 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|))) (-15 -2823 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2|)) (-15 -3696 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|))) (-15 -2173 ((-3 |#2| "failed") |#2| |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)))) (IF (|has| |#3| (-664 |#2|)) (-15 -3908 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4362 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-1188))) |%noBranch|)) (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))) (-13 (-438 |#1|) (-27) (-1214)) (-1111)) (T -574))
-((-3908 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-620 *4)) (-5 *6 (-1188)) (-4 *4 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4)))) (-5 *1 (-574 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))) (-2173 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188))) (-4 *2 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *1 (-574 *5 *2 *6)) (-4 *6 (-1111)))) (-3696 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1111)))) (-2823 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3))) (-5 *1 (-574 *5 *3 *6)) (-4 *6 (-1111)))) (-1639 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-574 *5 *3 *6)) (-4 *6 (-1111)))))
-(-10 -7 (-15 -1639 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|))) (-15 -2823 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2|)) (-15 -3696 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|))) (-15 -2173 ((-3 |#2| "failed") |#2| |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)))) (IF (|has| |#3| (-664 |#2|)) (-15 -3908 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4362 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-1188))) |%noBranch|))
-((-3335 (((-2 (|:| -2587 |#2|) (|:| |nconst| |#2|)) |#2| (-1188)) 64)) (-1425 (((-3 |#2| "failed") |#2| (-1188) (-851 |#2|) (-851 |#2|)) 175 (-12 (|has| |#2| (-1150)) (|has| |#1| (-622 (-901 (-572)))) (|has| |#1| (-895 (-572))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)) 154 (-12 (|has| |#2| (-637)) (|has| |#1| (-622 (-901 (-572)))) (|has| |#1| (-895 (-572)))))) (-1710 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)) 156 (-12 (|has| |#2| (-637)) (|has| |#1| (-622 (-901 (-572)))) (|has| |#1| (-895 (-572)))))))
-(((-575 |#1| |#2|) (-10 -7 (-15 -3335 ((-2 (|:| -2587 |#2|) (|:| |nconst| |#2|)) |#2| (-1188))) (IF (|has| |#1| (-622 (-901 (-572)))) (IF (|has| |#1| (-895 (-572))) (PROGN (IF (|has| |#2| (-637)) (PROGN (-15 -1710 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188))) (-15 -1425 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)))) |%noBranch|) (IF (|has| |#2| (-1150)) (-15 -1425 ((-3 |#2| "failed") |#2| (-1188) (-851 |#2|) (-851 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1049 (-572)) (-460) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -575))
-((-1425 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1188)) (-5 *4 (-851 *2)) (-4 *2 (-1150)) (-4 *2 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-622 (-901 (-572)))) (-4 *5 (-895 (-572))) (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572)))) (-5 *1 (-575 *5 *2)))) (-1425 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-622 (-901 (-572)))) (-4 *5 (-895 (-572))) (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-575 *5 *3)) (-4 *3 (-637)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-1710 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-622 (-901 (-572)))) (-4 *5 (-895 (-572))) (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-575 *5 *3)) (-4 *3 (-637)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-3335 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572)))) (-5 *2 (-2 (|:| -2587 *3) (|:| |nconst| *3))) (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
-(-10 -7 (-15 -3335 ((-2 (|:| -2587 |#2|) (|:| |nconst| |#2|)) |#2| (-1188))) (IF (|has| |#1| (-622 (-901 (-572)))) (IF (|has| |#1| (-895 (-572))) (PROGN (IF (|has| |#2| (-637)) (PROGN (-15 -1710 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188))) (-15 -1425 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)))) |%noBranch|) (IF (|has| |#2| (-1150)) (-15 -1425 ((-3 |#2| "failed") |#2| (-1188) (-851 |#2|) (-851 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3174 (((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-652 (-415 |#2|))) 41)) (-3034 (((-594 (-415 |#2|)) (-415 |#2|)) 28)) (-1657 (((-3 (-415 |#2|) "failed") (-415 |#2|)) 17)) (-4086 (((-3 (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-415 |#2|)) 48)))
-(((-576 |#1| |#2|) (-10 -7 (-15 -3034 ((-594 (-415 |#2|)) (-415 |#2|))) (-15 -1657 ((-3 (-415 |#2|) "failed") (-415 |#2|))) (-15 -4086 ((-3 (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-415 |#2|))) (-15 -3174 ((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-652 (-415 |#2|))))) (-13 (-370) (-148) (-1049 (-572))) (-1255 |#1|)) (T -576))
-((-3174 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-652 (-415 *6))) (-5 *3 (-415 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *5 *6)))) (-4086 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -2114 (-415 *5)) (|:| |coeff| (-415 *5)))) (-5 *1 (-576 *4 *5)) (-5 *3 (-415 *5)))) (-1657 (*1 *2 *2) (|partial| -12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148) (-1049 (-572)))) (-5 *1 (-576 *3 *4)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4)) (-5 *2 (-594 (-415 *5))) (-5 *1 (-576 *4 *5)) (-5 *3 (-415 *5)))))
-(-10 -7 (-15 -3034 ((-594 (-415 |#2|)) (-415 |#2|))) (-15 -1657 ((-3 (-415 |#2|) "failed") (-415 |#2|))) (-15 -4086 ((-3 (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-415 |#2|))) (-15 -3174 ((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-652 (-415 |#2|)))))
-((-2215 (((-3 (-572) "failed") |#1|) 14)) (-3347 (((-112) |#1|) 13)) (-4024 (((-572) |#1|) 9)))
-(((-577 |#1|) (-10 -7 (-15 -4024 ((-572) |#1|)) (-15 -3347 ((-112) |#1|)) (-15 -2215 ((-3 (-572) "failed") |#1|))) (-1049 (-572))) (T -577))
-((-2215 (*1 *2 *3) (|partial| -12 (-5 *2 (-572)) (-5 *1 (-577 *3)) (-4 *3 (-1049 *2)))) (-3347 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1049 (-572))))) (-4024 (*1 *2 *3) (-12 (-5 *2 (-572)) (-5 *1 (-577 *3)) (-4 *3 (-1049 *2)))))
-(-10 -7 (-15 -4024 ((-572) |#1|)) (-15 -3347 ((-112) |#1|)) (-15 -2215 ((-3 (-572) "failed") |#1|)))
-((-2296 (((-3 (-2 (|:| |mainpart| (-415 (-961 |#1|))) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 (-961 |#1|))) (|:| |logand| (-415 (-961 |#1|))))))) "failed") (-415 (-961 |#1|)) (-1188) (-652 (-415 (-961 |#1|)))) 48)) (-4414 (((-594 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-1188)) 28)) (-3059 (((-3 (-415 (-961 |#1|)) "failed") (-415 (-961 |#1|)) (-1188)) 23)) (-4239 (((-3 (-2 (|:| -2114 (-415 (-961 |#1|))) (|:| |coeff| (-415 (-961 |#1|)))) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|))) 35)))
-(((-578 |#1|) (-10 -7 (-15 -4414 ((-594 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -3059 ((-3 (-415 (-961 |#1|)) "failed") (-415 (-961 |#1|)) (-1188))) (-15 -2296 ((-3 (-2 (|:| |mainpart| (-415 (-961 |#1|))) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 (-961 |#1|))) (|:| |logand| (-415 (-961 |#1|))))))) "failed") (-415 (-961 |#1|)) (-1188) (-652 (-415 (-961 |#1|))))) (-15 -4239 ((-3 (-2 (|:| -2114 (-415 (-961 |#1|))) (|:| |coeff| (-415 (-961 |#1|)))) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|))))) (-13 (-564) (-1049 (-572)) (-148))) (T -578))
-((-4239 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)) (-148))) (-5 *2 (-2 (|:| -2114 (-415 (-961 *5))) (|:| |coeff| (-415 (-961 *5))))) (-5 *1 (-578 *5)) (-5 *3 (-415 (-961 *5))))) (-2296 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 (-415 (-961 *6)))) (-5 *3 (-415 (-961 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6)))) (-3059 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-415 (-961 *4))) (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)) (-148))) (-5 *1 (-578 *4)))) (-4414 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)) (-148))) (-5 *2 (-594 (-415 (-961 *5)))) (-5 *1 (-578 *5)) (-5 *3 (-415 (-961 *5))))))
-(-10 -7 (-15 -4414 ((-594 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -3059 ((-3 (-415 (-961 |#1|)) "failed") (-415 (-961 |#1|)) (-1188))) (-15 -2296 ((-3 (-2 (|:| |mainpart| (-415 (-961 |#1|))) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 (-961 |#1|))) (|:| |logand| (-415 (-961 |#1|))))))) "failed") (-415 (-961 |#1|)) (-1188) (-652 (-415 (-961 |#1|))))) (-15 -4239 ((-3 (-2 (|:| -2114 (-415 (-961 |#1|))) (|:| |coeff| (-415 (-961 |#1|)))) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)))))
-((-2846 (((-112) $ $) 75)) (-2697 (((-112) $) 48)) (-3011 ((|#1| $) 39)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) 79)) (-2358 (($ $) 139)) (-2242 (($ $) 118)) (-1360 ((|#1| $) 37)) (-3330 (((-3 $ "failed") $ $) NIL)) (-4227 (($ $) NIL)) (-2338 (($ $) 141)) (-2222 (($ $) 114)) (-2384 (($ $) 143)) (-2262 (($ $) 122)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) 93)) (-2204 (((-572) $) 95)) (-2062 (((-3 $ "failed") $) 78)) (-2475 (($ |#1| |#1|) 35)) (-3074 (((-112) $) 44)) (-2997 (($) 104)) (-1886 (((-112) $) 55)) (-2932 (($ $ (-572)) NIL)) (-1623 (((-112) $) 45)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-3116 (($ $) 106)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1316 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-415 (-572))) 92)) (-3661 ((|#1| $) 36)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) 81) (($ (-652 $)) NIL)) (-2834 (((-3 $ "failed") $ $) 80)) (-1608 (($ $) 108)) (-2397 (($ $) 147)) (-2270 (($ $) 120)) (-2370 (($ $) 149)) (-2252 (($ $) 124)) (-2348 (($ $) 145)) (-2231 (($ $) 116)) (-3427 (((-112) $ |#1|) 42)) (-2940 (((-870) $) 100) (($ (-572)) 83) (($ $) NIL) (($ (-572)) 83)) (-4249 (((-779)) 102 T CONST)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) 161)) (-2300 (($ $) 130)) (-2845 (((-112) $ $) NIL)) (-2409 (($ $) 159)) (-2282 (($ $) 126)) (-2460 (($ $) 157)) (-2320 (($ $) 137)) (-2516 (($ $) 155)) (-2329 (($ $) 135)) (-2448 (($ $) 153)) (-2310 (($ $) 132)) (-2423 (($ $) 151)) (-2292 (($ $) 128)) (-2131 (($) 30 T CONST)) (-2143 (($) 10 T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 49)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 47)) (-3089 (($ $) 53) (($ $ $) 54)) (-3075 (($ $ $) 52)) (** (($ $ (-930)) 71) (($ $ (-779)) NIL) (($ $ $) 110) (($ $ (-415 (-572))) 163)) (* (($ (-930) $) 66) (($ (-779) $) NIL) (($ (-572) $) 65) (($ $ $) 61)))
-(((-579 |#1|) (-562 |#1|) (-13 (-412) (-1214))) (T -579))
-NIL
-(-562 |#1|)
-((-3643 (((-3 (-652 (-1184 (-572))) "failed") (-652 (-1184 (-572))) (-1184 (-572))) 27)))
-(((-580) (-10 -7 (-15 -3643 ((-3 (-652 (-1184 (-572))) "failed") (-652 (-1184 (-572))) (-1184 (-572)))))) (T -580))
-((-3643 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 (-572)))) (-5 *3 (-1184 (-572))) (-5 *1 (-580)))))
-(-10 -7 (-15 -3643 ((-3 (-652 (-1184 (-572))) "failed") (-652 (-1184 (-572))) (-1184 (-572)))))
-((-2662 (((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-1188)) 19)) (-3589 (((-652 (-620 |#2|)) (-652 |#2|) (-1188)) 23)) (-4357 (((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-652 (-620 |#2|))) 11)) (-3649 ((|#2| |#2| (-1188)) 59 (|has| |#1| (-564)))) (-2812 ((|#2| |#2| (-1188)) 87 (-12 (|has| |#2| (-290)) (|has| |#1| (-460))))) (-1526 (((-620 |#2|) (-620 |#2|) (-652 (-620 |#2|)) (-1188)) 25)) (-1773 (((-620 |#2|) (-652 (-620 |#2|))) 24)) (-1914 (((-594 |#2|) |#2| (-1188) (-1 (-594 |#2|) |#2| (-1188)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188))) 115 (-12 (|has| |#2| (-290)) (|has| |#2| (-637)) (|has| |#2| (-1049 (-1188))) (|has| |#1| (-622 (-901 (-572)))) (|has| |#1| (-460)) (|has| |#1| (-895 (-572)))))))
-(((-581 |#1| |#2|) (-10 -7 (-15 -2662 ((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-1188))) (-15 -1773 ((-620 |#2|) (-652 (-620 |#2|)))) (-15 -1526 ((-620 |#2|) (-620 |#2|) (-652 (-620 |#2|)) (-1188))) (-15 -4357 ((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-652 (-620 |#2|)))) (-15 -3589 ((-652 (-620 |#2|)) (-652 |#2|) (-1188))) (IF (|has| |#1| (-564)) (-15 -3649 (|#2| |#2| (-1188))) |%noBranch|) (IF (|has| |#1| (-460)) (IF (|has| |#2| (-290)) (PROGN (-15 -2812 (|#2| |#2| (-1188))) (IF (|has| |#1| (-622 (-901 (-572)))) (IF (|has| |#1| (-895 (-572))) (IF (|has| |#2| (-637)) (IF (|has| |#2| (-1049 (-1188))) (-15 -1914 ((-594 |#2|) |#2| (-1188) (-1 (-594 |#2|) |#2| (-1188)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1111) (-438 |#1|)) (T -581))
-((-1914 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-594 *3) *3 (-1188))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1188))) (-4 *3 (-290)) (-4 *3 (-637)) (-4 *3 (-1049 *4)) (-4 *3 (-438 *7)) (-5 *4 (-1188)) (-4 *7 (-622 (-901 (-572)))) (-4 *7 (-460)) (-4 *7 (-895 (-572))) (-4 *7 (-1111)) (-5 *2 (-594 *3)) (-5 *1 (-581 *7 *3)))) (-2812 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-460)) (-4 *4 (-1111)) (-5 *1 (-581 *4 *2)) (-4 *2 (-290)) (-4 *2 (-438 *4)))) (-3649 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-4 *4 (-1111)) (-5 *1 (-581 *4 *2)) (-4 *2 (-438 *4)))) (-3589 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-1188)) (-4 *6 (-438 *5)) (-4 *5 (-1111)) (-5 *2 (-652 (-620 *6))) (-5 *1 (-581 *5 *6)))) (-4357 (*1 *2 *2 *2) (-12 (-5 *2 (-652 (-620 *4))) (-4 *4 (-438 *3)) (-4 *3 (-1111)) (-5 *1 (-581 *3 *4)))) (-1526 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-652 (-620 *6))) (-5 *4 (-1188)) (-5 *2 (-620 *6)) (-4 *6 (-438 *5)) (-4 *5 (-1111)) (-5 *1 (-581 *5 *6)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-652 (-620 *5))) (-4 *4 (-1111)) (-5 *2 (-620 *5)) (-5 *1 (-581 *4 *5)) (-4 *5 (-438 *4)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-620 *5))) (-5 *3 (-1188)) (-4 *5 (-438 *4)) (-4 *4 (-1111)) (-5 *1 (-581 *4 *5)))))
-(-10 -7 (-15 -2662 ((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-1188))) (-15 -1773 ((-620 |#2|) (-652 (-620 |#2|)))) (-15 -1526 ((-620 |#2|) (-620 |#2|) (-652 (-620 |#2|)) (-1188))) (-15 -4357 ((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-652 (-620 |#2|)))) (-15 -3589 ((-652 (-620 |#2|)) (-652 |#2|) (-1188))) (IF (|has| |#1| (-564)) (-15 -3649 (|#2| |#2| (-1188))) |%noBranch|) (IF (|has| |#1| (-460)) (IF (|has| |#2| (-290)) (PROGN (-15 -2812 (|#2| |#2| (-1188))) (IF (|has| |#1| (-622 (-901 (-572)))) (IF (|has| |#1| (-895 (-572))) (IF (|has| |#2| (-637)) (IF (|has| |#2| (-1049 (-1188))) (-15 -1914 ((-594 |#2|) |#2| (-1188) (-1 (-594 |#2|) |#2| (-1188)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1682 (((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-652 |#1|) "failed") (-572) |#1| |#1|)) 199)) (-2343 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-652 (-415 |#2|))) 174)) (-2385 (((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-652 (-415 |#2|))) 171)) (-1381 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-3897 (((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-2598 (((-3 (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-415 |#2|)) 202)) (-4134 (((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-415 |#2|)) 205)) (-3868 (((-2 (|:| |ir| (-594 (-415 |#2|))) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|)) 88)) (-3909 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3087 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-652 (-415 |#2|))) 178)) (-3728 (((-3 (-631 |#1| |#2|) "failed") (-631 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|)) 166)) (-2739 (((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|)) 189)) (-3247 (((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-415 |#2|)) 210)))
-(((-582 |#1| |#2|) (-10 -7 (-15 -3897 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2739 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|))) (-15 -1682 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-652 |#1|) "failed") (-572) |#1| |#1|))) (-15 -4134 ((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-415 |#2|))) (-15 -3247 ((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-415 |#2|))) (-15 -2343 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-652 (-415 |#2|)))) (-15 -3087 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-652 (-415 |#2|)))) (-15 -2598 ((-3 (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-415 |#2|))) (-15 -2385 ((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-652 (-415 |#2|)))) (-15 -1381 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3728 ((-3 (-631 |#1| |#2|) "failed") (-631 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|))) (-15 -3868 ((-2 (|:| |ir| (-594 (-415 |#2|))) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|))) (-15 -3909 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-370) (-1255 |#1|)) (T -582))
-((-3909 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-582 *5 *3)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |ir| (-594 (-415 *6))) (|:| |specpart| (-415 *6)) (|:| |polypart| *6))) (-5 *1 (-582 *5 *6)) (-5 *3 (-415 *6)))) (-3728 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3901 *4) (|:| |sol?| (-112))) (-572) *4)) (-4 *4 (-370)) (-4 *5 (-1255 *4)) (-5 *1 (-582 *4 *5)))) (-1381 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2114 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-370)) (-5 *1 (-582 *4 *2)) (-4 *2 (-1255 *4)))) (-2385 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-652 (-415 *7))) (-4 *7 (-1255 *6)) (-5 *3 (-415 *7)) (-4 *6 (-370)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6 *7)))) (-2598 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| -2114 (-415 *6)) (|:| |coeff| (-415 *6)))) (-5 *1 (-582 *5 *6)) (-5 *3 (-415 *6)))) (-3087 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3901 *7) (|:| |sol?| (-112))) (-572) *7)) (-5 *6 (-652 (-415 *8))) (-4 *7 (-370)) (-4 *8 (-1255 *7)) (-5 *3 (-415 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-582 *7 *8)))) (-2343 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2114 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-652 (-415 *8))) (-4 *7 (-370)) (-4 *8 (-1255 *7)) (-5 *3 (-415 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-582 *7 *8)))) (-3247 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3901 *6) (|:| |sol?| (-112))) (-572) *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-415 *7)) (|:| |a0| *6)) (-2 (|:| -2114 (-415 *7)) (|:| |coeff| (-415 *7))) "failed")) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))) (-4134 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2114 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-415 *7)) (|:| |a0| *6)) (-2 (|:| -2114 (-415 *7)) (|:| |coeff| (-415 *7))) "failed")) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))) (-1682 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-652 *6) "failed") (-572) *6 *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6))) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3901 *6) (|:| |sol?| (-112))) (-572) *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6))) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))) (-3897 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2114 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6))) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
-(-10 -7 (-15 -3897 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2739 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|))) (-15 -1682 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-652 |#1|) "failed") (-572) |#1| |#1|))) (-15 -4134 ((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-415 |#2|))) (-15 -3247 ((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-415 |#2|))) (-15 -2343 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-652 (-415 |#2|)))) (-15 -3087 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-652 (-415 |#2|)))) (-15 -2598 ((-3 (-2 (|:| -2114 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-415 |#2|))) (-15 -2385 ((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-652 (-415 |#2|)))) (-15 -1381 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3728 ((-3 (-631 |#1| |#2|) "failed") (-631 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3901 |#1|) (|:| |sol?| (-112))) (-572) |#1|))) (-15 -3868 ((-2 (|:| |ir| (-594 (-415 |#2|))) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|))) (-15 -3909 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-3117 (((-3 |#2| "failed") |#2| (-1188) (-1188)) 10)))
-(((-583 |#1| |#2|) (-10 -7 (-15 -3117 ((-3 |#2| "failed") |#2| (-1188) (-1188)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-968) (-1150) (-29 |#1|))) (T -583))
-((-3117 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-583 *4 *2)) (-4 *2 (-13 (-1214) (-968) (-1150) (-29 *4))))))
-(-10 -7 (-15 -3117 ((-3 |#2| "failed") |#2| (-1188) (-1188))))
-((-2972 (((-699 (-1237)) $ (-1237)) 26)) (-4103 (((-699 (-557)) $ (-557)) 25)) (-3012 (((-779) $ (-129)) 27)) (-2931 (((-699 (-130)) $ (-130)) 24)) (-4168 (((-699 (-1237)) $) 12)) (-2624 (((-699 (-1235)) $) 8)) (-1434 (((-699 (-1234)) $) 10)) (-2688 (((-699 (-557)) $) 13)) (-2299 (((-699 (-555)) $) 9)) (-1976 (((-699 (-554)) $) 11)) (-4152 (((-779) $ (-129)) 7)) (-3019 (((-699 (-130)) $) 14)) (-3682 (($ $) 6)))
-(((-584) (-141)) (T -584))
-NIL
-(-13 (-535) (-868))
-(((-175) . T) ((-535) . T) ((-868) . T))
-((-2972 (((-699 (-1237)) $ (-1237)) NIL)) (-4103 (((-699 (-557)) $ (-557)) NIL)) (-3012 (((-779) $ (-129)) NIL)) (-2931 (((-699 (-130)) $ (-130)) NIL)) (-4168 (((-699 (-1237)) $) NIL)) (-2624 (((-699 (-1235)) $) NIL)) (-1434 (((-699 (-1234)) $) NIL)) (-2688 (((-699 (-557)) $) NIL)) (-2299 (((-699 (-555)) $) NIL)) (-1976 (((-699 (-554)) $) NIL)) (-4152 (((-779) $ (-129)) NIL)) (-3019 (((-699 (-130)) $) NIL)) (-3567 (((-112) $) NIL)) (-2319 (($ (-396)) 14) (($ (-1170)) 16)) (-2940 (((-870) $) NIL)) (-3682 (($ $) NIL)))
-(((-585) (-13 (-584) (-621 (-870)) (-10 -8 (-15 -2319 ($ (-396))) (-15 -2319 ($ (-1170))) (-15 -3567 ((-112) $))))) (T -585))
-((-2319 (*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-585)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-585)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585)))))
-(-13 (-584) (-621 (-870)) (-10 -8 (-15 -2319 ($ (-396))) (-15 -2319 ($ (-1170))) (-15 -3567 ((-112) $))))
-((-2846 (((-112) $ $) NIL)) (-3245 (($) 7 T CONST)) (-4347 (((-1170) $) NIL)) (-1450 (($) 6 T CONST)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 15)) (-3771 (($) 9 T CONST)) (-1885 (($) 8 T CONST)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 11)))
-(((-586) (-13 (-1111) (-10 -8 (-15 -1450 ($) -1705) (-15 -3245 ($) -1705) (-15 -1885 ($) -1705) (-15 -3771 ($) -1705)))) (T -586))
-((-1450 (*1 *1) (-5 *1 (-586))) (-3245 (*1 *1) (-5 *1 (-586))) (-1885 (*1 *1) (-5 *1 (-586))) (-3771 (*1 *1) (-5 *1 (-586))))
-(-13 (-1111) (-10 -8 (-15 -1450 ($) -1705) (-15 -3245 ($) -1705) (-15 -1885 ($) -1705) (-15 -3771 ($) -1705)))
-((-2846 (((-112) $ $) NIL)) (-1802 (((-699 $) (-499)) 21)) (-4347 (((-1170) $) NIL)) (-1764 (($ (-1170)) 14)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 33)) (-3836 (((-215 4 (-130)) $) 24)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 26)))
-(((-587) (-13 (-1111) (-10 -8 (-15 -1764 ($ (-1170))) (-15 -3836 ((-215 4 (-130)) $)) (-15 -1802 ((-699 $) (-499)))))) (T -587))
-((-1764 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-587)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-587)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-699 (-587))) (-5 *1 (-587)))))
-(-13 (-1111) (-10 -8 (-15 -1764 ($ (-1170))) (-15 -3836 ((-215 4 (-130)) $)) (-15 -1802 ((-699 $) (-499)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-4227 (($ $ (-572)) 75)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-4394 (($ (-1184 (-572)) (-572)) 81)) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) 66)) (-1850 (($ $) 43)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-2956 (((-779) $) 16)) (-1886 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1929 (((-572)) 37)) (-3637 (((-572) $) 41)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2772 (($ $ (-572)) 24)) (-2834 (((-3 $ "failed") $ $) 71)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) 17)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 72)) (-2189 (((-1168 (-572)) $) 19)) (-2590 (($ $) 26)) (-2940 (((-870) $) 102) (($ (-572)) 61) (($ $) NIL)) (-4249 (((-779)) 15 T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-3548 (((-572) $ (-572)) 46)) (-2131 (($) 44 T CONST)) (-2143 (($) 21 T CONST)) (-2978 (((-112) $ $) 52)) (-3089 (($ $) 60) (($ $ $) 48)) (-3075 (($ $ $) 59)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 62) (($ $ $) 63)))
-(((-588 |#1| |#2|) (-877 |#1|) (-572) (-112)) (T -588))
-NIL
-(-877 |#1|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 30)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 (($ $ (-930)) NIL (|has| $ (-375))) (($ $) NIL)) (-1814 (((-1201 (-930) (-779)) (-572)) 59)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 $ "failed") $) 95)) (-2204 (($ $) 94)) (-1913 (($ (-1279 $)) 93)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) 44)) (-2815 (($) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) 61)) (-3442 (((-112) $) NIL)) (-2303 (($ $) NIL) (($ $ (-779)) NIL)) (-3879 (((-112) $) NIL)) (-2956 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-1886 (((-112) $) NIL)) (-1663 (($) 49 (|has| $ (-375)))) (-2078 (((-112) $) NIL (|has| $ (-375)))) (-2028 (($ $ (-930)) NIL (|has| $ (-375))) (($ $) NIL)) (-2556 (((-3 $ "failed") $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 $) $ (-930)) NIL (|has| $ (-375))) (((-1184 $) $) 104)) (-3715 (((-930) $) 67)) (-4370 (((-1184 $) $) NIL (|has| $ (-375)))) (-3293 (((-3 (-1184 $) "failed") $ $) NIL (|has| $ (-375))) (((-1184 $) $) NIL (|has| $ (-375)))) (-3103 (($ $ (-1184 $)) NIL (|has| $ (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL T CONST)) (-2571 (($ (-930)) 60)) (-2946 (((-112) $) 87)) (-3964 (((-1131) $) NIL)) (-2967 (($) 28 (|has| $ (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) 54)) (-4218 (((-426 $) $) NIL)) (-3040 (((-930)) 86) (((-841 (-930))) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-3 (-779) "failed") $ $) NIL) (((-779) $) NIL)) (-4224 (((-135)) NIL)) (-3902 (($ $ (-779)) NIL) (($ $) NIL)) (-4390 (((-930) $) 85) (((-841 (-930)) $) NIL)) (-3764 (((-1184 $)) 102)) (-4033 (($) 66)) (-3105 (($) 50 (|has| $ (-375)))) (-4329 (((-697 $) (-1279 $)) NIL) (((-1279 $) $) 91)) (-1835 (((-572) $) 40)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) 42) (($ $) NIL) (($ (-415 (-572))) NIL)) (-3849 (((-3 $ "failed") $) NIL) (($ $) 105)) (-4249 (((-779)) 51 T CONST)) (-4379 (((-112) $ $) 107)) (-4362 (((-1279 $) (-930)) 97) (((-1279 $)) 96)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) 31 T CONST)) (-2143 (($) 27 T CONST)) (-3790 (($ $ (-779)) NIL (|has| $ (-375))) (($ $) NIL (|has| $ (-375)))) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 34)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 81) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
-(((-589 |#1|) (-13 (-356) (-335 $) (-622 (-572))) (-930)) (T -589))
-NIL
-(-13 (-356) (-335 $) (-622 (-572)))
-((-3230 (((-1284) (-1170)) 10)))
-(((-590) (-10 -7 (-15 -3230 ((-1284) (-1170))))) (T -590))
-((-3230 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-590)))))
-(-10 -7 (-15 -3230 ((-1284) (-1170))))
-((-3861 (((-594 |#2|) (-594 |#2|)) 42)) (-2127 (((-652 |#2|) (-594 |#2|)) 44)) (-4122 ((|#2| (-594 |#2|)) 50)))
-(((-591 |#1| |#2|) (-10 -7 (-15 -3861 ((-594 |#2|) (-594 |#2|))) (-15 -2127 ((-652 |#2|) (-594 |#2|))) (-15 -4122 (|#2| (-594 |#2|)))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-29 |#1|) (-1214))) (T -591))
-((-4122 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-29 *4) (-1214))) (-5 *1 (-591 *4 *2)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-594 *5)) (-4 *5 (-13 (-29 *4) (-1214))) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-652 *5)) (-5 *1 (-591 *4 *5)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-594 *4)) (-4 *4 (-13 (-29 *3) (-1214))) (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-591 *3 *4)))))
-(-10 -7 (-15 -3861 ((-594 |#2|) (-594 |#2|))) (-15 -2127 ((-652 |#2|) (-594 |#2|))) (-15 -4122 (|#2| (-594 |#2|))))
-((-1776 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|)) 30)))
-(((-592 |#1| |#2|) (-10 -7 (-15 -1776 ((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|))) (-15 -1776 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1776 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1776 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-370) (-370)) (T -592))
-((-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-370)) (-4 *6 (-370)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-592 *5 *6)))) (-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-370)) (-4 *2 (-370)) (-5 *1 (-592 *5 *2)))) (-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2114 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-370)) (-4 *6 (-370)) (-5 *2 (-2 (|:| -2114 *6) (|:| |coeff| *6))) (-5 *1 (-592 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-594 *5)) (-4 *5 (-370)) (-4 *6 (-370)) (-5 *2 (-594 *6)) (-5 *1 (-592 *5 *6)))))
-(-10 -7 (-15 -1776 ((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|))) (-15 -1776 ((-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2114 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1776 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1776 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3250 (($ (-514) (-605)) 14)) (-2770 (($ (-514) (-605) $) 16)) (-4113 (($ (-514) (-605)) 15)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL) (($ (-1193)) 7) (((-1193) $) 6)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-593) (-13 (-1111) (-498 (-1193)) (-10 -8 (-15 -3250 ($ (-514) (-605))) (-15 -4113 ($ (-514) (-605))) (-15 -2770 ($ (-514) (-605) $))))) (T -593))
-((-3250 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))) (-4113 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))) (-2770 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))))
-(-13 (-1111) (-498 (-1193)) (-10 -8 (-15 -3250 ($ (-514) (-605))) (-15 -4113 ($ (-514) (-605))) (-15 -2770 ($ (-514) (-605) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 76)) (-2204 ((|#1| $) NIL)) (-2114 ((|#1| $) 30)) (-1701 (((-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1775 (($ |#1| (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) (-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3112 (((-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) $) 31)) (-4347 (((-1170) $) NIL)) (-3223 (($ |#1| |#1|) 38) (($ |#1| (-1188)) 49 (|has| |#1| (-1049 (-1188))))) (-3964 (((-1131) $) NIL)) (-3352 (((-112) $) 35)) (-3902 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1188)) 89 (|has| |#1| (-909 (-1188))))) (-2940 (((-870) $) 110) (($ |#1|) 29)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 18 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) 17) (($ $ $) NIL)) (-3075 (($ $ $) 85)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 16) (($ (-415 (-572)) $) 41) (($ $ (-415 (-572))) NIL)))
-(((-594 |#1|) (-13 (-725 (-415 (-572))) (-1049 |#1|) (-10 -8 (-15 -1775 ($ |#1| (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) (-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2114 (|#1| $)) (-15 -3112 ((-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) $)) (-15 -1701 ((-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3352 ((-112) $)) (-15 -3223 ($ |#1| |#1|)) (-15 -3902 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-909 (-1188))) (-15 -3902 (|#1| $ (-1188))) |%noBranch|) (IF (|has| |#1| (-1049 (-1188))) (-15 -3223 ($ |#1| (-1188))) |%noBranch|))) (-370)) (T -594))
-((-1775 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 *2)) (|:| |logand| (-1184 *2))))) (-5 *4 (-652 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-370)) (-5 *1 (-594 *2)))) (-2114 (*1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-370)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 *3)) (|:| |logand| (-1184 *3))))) (-5 *1 (-594 *3)) (-4 *3 (-370)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-370)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-370)))) (-3223 (*1 *1 *2 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-370)))) (-3902 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-594 *2)) (-4 *2 (-370)))) (-3902 (*1 *2 *1 *3) (-12 (-4 *2 (-370)) (-4 *2 (-909 *3)) (-5 *1 (-594 *2)) (-5 *3 (-1188)))) (-3223 (*1 *1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *1 (-594 *2)) (-4 *2 (-1049 *3)) (-4 *2 (-370)))))
-(-13 (-725 (-415 (-572))) (-1049 |#1|) (-10 -8 (-15 -1775 ($ |#1| (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) (-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2114 (|#1| $)) (-15 -3112 ((-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) $)) (-15 -1701 ((-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3352 ((-112) $)) (-15 -3223 ($ |#1| |#1|)) (-15 -3902 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-909 (-1188))) (-15 -3902 (|#1| $ (-1188))) |%noBranch|) (IF (|has| |#1| (-1049 (-1188))) (-15 -3223 ($ |#1| (-1188))) |%noBranch|)))
-((-3299 (((-112) |#1|) 16)) (-3195 (((-3 |#1| "failed") |#1|) 14)) (-2149 (((-2 (|:| -2625 |#1|) (|:| -1679 (-779))) |#1|) 38) (((-3 |#1| "failed") |#1| (-779)) 18)) (-3635 (((-112) |#1| (-779)) 19)) (-2124 ((|#1| |#1|) 42)) (-4116 ((|#1| |#1| (-779)) 45)))
-(((-595 |#1|) (-10 -7 (-15 -3635 ((-112) |#1| (-779))) (-15 -2149 ((-3 |#1| "failed") |#1| (-779))) (-15 -2149 ((-2 (|:| -2625 |#1|) (|:| -1679 (-779))) |#1|)) (-15 -4116 (|#1| |#1| (-779))) (-15 -3299 ((-112) |#1|)) (-15 -3195 ((-3 |#1| "failed") |#1|)) (-15 -2124 (|#1| |#1|))) (-553)) (T -595))
-((-2124 (*1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-553)))) (-3195 (*1 *2 *2) (|partial| -12 (-5 *1 (-595 *2)) (-4 *2 (-553)))) (-3299 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-553)))) (-4116 (*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-5 *1 (-595 *2)) (-4 *2 (-553)))) (-2149 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2625 *3) (|:| -1679 (-779)))) (-5 *1 (-595 *3)) (-4 *3 (-553)))) (-2149 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-779)) (-5 *1 (-595 *2)) (-4 *2 (-553)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-553)))))
-(-10 -7 (-15 -3635 ((-112) |#1| (-779))) (-15 -2149 ((-3 |#1| "failed") |#1| (-779))) (-15 -2149 ((-2 (|:| -2625 |#1|) (|:| -1679 (-779))) |#1|)) (-15 -4116 (|#1| |#1| (-779))) (-15 -3299 ((-112) |#1|)) (-15 -3195 ((-3 |#1| "failed") |#1|)) (-15 -2124 (|#1| |#1|)))
-((-3838 (((-1184 |#1|) (-930)) 44)))
-(((-596 |#1|) (-10 -7 (-15 -3838 ((-1184 |#1|) (-930)))) (-356)) (T -596))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-596 *4)) (-4 *4 (-356)))))
-(-10 -7 (-15 -3838 ((-1184 |#1|) (-930))))
-((-3861 (((-594 (-415 (-961 |#1|))) (-594 (-415 (-961 |#1|)))) 27)) (-3034 (((-3 (-322 |#1|) (-652 (-322 |#1|))) (-415 (-961 |#1|)) (-1188)) 34 (|has| |#1| (-148)))) (-2127 (((-652 (-322 |#1|)) (-594 (-415 (-961 |#1|)))) 19)) (-1718 (((-322 |#1|) (-415 (-961 |#1|)) (-1188)) 32 (|has| |#1| (-148)))) (-4122 (((-322 |#1|) (-594 (-415 (-961 |#1|)))) 21)))
-(((-597 |#1|) (-10 -7 (-15 -3861 ((-594 (-415 (-961 |#1|))) (-594 (-415 (-961 |#1|))))) (-15 -2127 ((-652 (-322 |#1|)) (-594 (-415 (-961 |#1|))))) (-15 -4122 ((-322 |#1|) (-594 (-415 (-961 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3034 ((-3 (-322 |#1|) (-652 (-322 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -1718 ((-322 |#1|) (-415 (-961 |#1|)) (-1188)))) |%noBranch|)) (-13 (-460) (-1049 (-572)) (-647 (-572)))) (T -597))
-((-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-148)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-322 *5)) (-5 *1 (-597 *5)))) (-3034 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-148)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (-322 *5) (-652 (-322 *5)))) (-5 *1 (-597 *5)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-594 (-415 (-961 *4)))) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-322 *4)) (-5 *1 (-597 *4)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-594 (-415 (-961 *4)))) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-652 (-322 *4))) (-5 *1 (-597 *4)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-594 (-415 (-961 *3)))) (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-597 *3)))))
-(-10 -7 (-15 -3861 ((-594 (-415 (-961 |#1|))) (-594 (-415 (-961 |#1|))))) (-15 -2127 ((-652 (-322 |#1|)) (-594 (-415 (-961 |#1|))))) (-15 -4122 ((-322 |#1|) (-594 (-415 (-961 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3034 ((-3 (-322 |#1|) (-652 (-322 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -1718 ((-322 |#1|) (-415 (-961 |#1|)) (-1188)))) |%noBranch|))
-((-1659 (((-652 (-697 (-572))) (-652 (-930)) (-652 (-914 (-572)))) 78) (((-652 (-697 (-572))) (-652 (-930))) 79) (((-697 (-572)) (-652 (-930)) (-914 (-572))) 72)) (-1810 (((-779) (-652 (-930))) 69)))
-(((-598) (-10 -7 (-15 -1810 ((-779) (-652 (-930)))) (-15 -1659 ((-697 (-572)) (-652 (-930)) (-914 (-572)))) (-15 -1659 ((-652 (-697 (-572))) (-652 (-930)))) (-15 -1659 ((-652 (-697 (-572))) (-652 (-930)) (-652 (-914 (-572))))))) (T -598))
-((-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-930))) (-5 *4 (-652 (-914 (-572)))) (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-598)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-598)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-930))) (-5 *4 (-914 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-598)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-779)) (-5 *1 (-598)))))
-(-10 -7 (-15 -1810 ((-779) (-652 (-930)))) (-15 -1659 ((-697 (-572)) (-652 (-930)) (-914 (-572)))) (-15 -1659 ((-652 (-697 (-572))) (-652 (-930)))) (-15 -1659 ((-652 (-697 (-572))) (-652 (-930)) (-652 (-914 (-572))))))
-((-3459 (((-652 |#5|) |#5| (-112)) 100)) (-2129 (((-112) |#5| (-652 |#5|)) 34)))
-(((-599 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3459 ((-652 |#5|) |#5| (-112))) (-15 -2129 ((-112) |#5| (-652 |#5|)))) (-13 (-313) (-148)) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1120 |#1| |#2| |#3| |#4|)) (T -599))
-((-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1120 *5 *6 *7 *8)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-599 *5 *6 *7 *8 *3)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-652 *3)) (-5 *1 (-599 *5 *6 *7 *8 *3)) (-4 *3 (-1120 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3459 ((-652 |#5|) |#5| (-112))) (-15 -2129 ((-112) |#5| (-652 |#5|))))
-((-2846 (((-112) $ $) NIL)) (-1807 (((-1146) $) 11)) (-1794 (((-1146) $) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-600) (-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1146) $))))) (T -600))
-((-1794 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-600)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-600)))))
-(-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1146) $))))
-((-2846 (((-112) $ $) NIL (|has| (-145) (-1111)))) (-2179 (($ $) 38)) (-2525 (($ $) NIL)) (-3214 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3708 (((-112) $ $) 67)) (-3688 (((-112) $ $ (-572)) 62)) (-3861 (((-652 $) $ (-145)) 75) (((-652 $) $ (-142)) 76)) (-2852 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-858)))) (-3314 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-858))))) (-2766 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 (((-145) $ (-572) (-145)) 59 (|has| $ (-6 -4455))) (((-145) $ (-1246 (-572)) (-145)) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-2612 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2219 (($ $ (-1246 (-572)) $) 57)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-3332 (($ (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2453 (((-145) $ (-572) (-145)) NIL (|has| $ (-6 -4455)))) (-2380 (((-145) $ (-572)) NIL)) (-3730 (((-112) $ $) 88)) (-1439 (((-572) (-1 (-112) (-145)) $) NIL) (((-572) (-145) $) NIL (|has| (-145) (-1111))) (((-572) (-145) $ (-572)) 64 (|has| (-145) (-1111))) (((-572) $ $ (-572)) 63) (((-572) (-142) $ (-572)) 66)) (-1863 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-3787 (($ (-779) (-145)) 9)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) 32 (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| (-145) (-858)))) (-1767 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-858)))) (-1344 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-3374 (((-572) $) 47 (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| (-145) (-858)))) (-1324 (((-112) $ $ (-145)) 89)) (-2678 (((-779) $ $ (-145)) 86)) (-2442 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3052 (($ $) 41)) (-1811 (($ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-2626 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-4347 (((-1170) $) 43 (|has| (-145) (-1111)))) (-1593 (($ (-145) $ (-572)) NIL) (($ $ $ (-572)) 27)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) 85 (|has| (-145) (-1111)))) (-2912 (((-145) $) NIL (|has| (-572) (-858)))) (-3770 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2476 (($ $ (-145)) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-145)))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-145)) (-652 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-4110 (((-652 (-145)) $) NIL)) (-1841 (((-112) $) 15)) (-1613 (($) 10)) (-2196 (((-145) $ (-572) (-145)) NIL) (((-145) $ (-572)) 68) (($ $ (-1246 (-572))) 25) (($ $ $) NIL)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3973 (((-779) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454))) (((-779) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-4095 (($ $ $ (-572)) 81 (|has| $ (-6 -4455)))) (-3164 (($ $) 20)) (-1835 (((-544) $) NIL (|has| (-145) (-622 (-544))))) (-2953 (($ (-652 (-145))) NIL)) (-4155 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-652 $)) 82)) (-2940 (($ (-145)) NIL) (((-870) $) 31 (|has| (-145) (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| (-145) (-1111)))) (-4380 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-145) (-858)))) (-2978 (((-112) $ $) 17 (|has| (-145) (-1111)))) (-3026 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3003 (((-112) $ $) 18 (|has| (-145) (-858)))) (-2860 (((-779) $) 16 (|has| $ (-6 -4454)))))
-(((-601 |#1|) (-1155) (-572)) (T -601))
-NIL
-(-1155)
-((-3557 (((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2| (-1105 |#4|)) 32)))
-(((-602 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3557 ((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2| (-1105 |#4|))) (-15 -3557 ((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2|))) (-801) (-858) (-564) (-958 |#3| |#1| |#2|)) (T -602))
-((-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-564)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-572)))) (-5 *1 (-602 *5 *4 *6 *3)) (-4 *3 (-958 *6 *5 *4)))) (-3557 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1105 *3)) (-4 *3 (-958 *7 *6 *4)) (-4 *6 (-801)) (-4 *4 (-858)) (-4 *7 (-564)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-572)))) (-5 *1 (-602 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3557 ((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2| (-1105 |#4|))) (-15 -3557 ((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 71)) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3762 (($ $ (-572)) 58) (($ $ (-572) (-572)) 59)) (-1899 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 65)) (-2248 (($ $) 109)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3494 (((-870) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) (-1037 (-851 (-572))) (-1188) |#1| (-415 (-572))) 241)) (-3620 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 36)) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2579 (((-112) $) NIL)) (-2956 (((-572) $) 63) (((-572) $ (-572)) 64)) (-1886 (((-112) $) NIL)) (-4076 (($ $ (-930)) 83)) (-3926 (($ (-1 |#1| (-572)) $) 80)) (-2438 (((-112) $) 26)) (-4333 (($ |#1| (-572)) 22) (($ $ (-1093) (-572)) NIL) (($ $ (-652 (-1093)) (-652 (-572))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1898 (($ (-1037 (-851 (-572))) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 13)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3034 (($ $) 161 (|has| |#1| (-38 (-415 (-572)))))) (-2500 (((-3 $ "failed") $ $ (-112)) 108)) (-3373 (($ $ $) 116)) (-3964 (((-1131) $) NIL)) (-2976 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 15)) (-1789 (((-1037 (-851 (-572))) $) 14)) (-2772 (($ $ (-572)) 47)) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-2641 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-572)))))) (-2196 ((|#1| $ (-572)) 62) (($ $ $) NIL (|has| (-572) (-1123)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-572) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (-4390 (((-572) $) NIL)) (-2590 (($ $) 48)) (-2940 (((-870) $) NIL) (($ (-572)) 29) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3979 ((|#1| $ (-572)) 61)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) 39 T CONST)) (-3356 ((|#1| $) NIL)) (-1369 (($ $) 198 (|has| |#1| (-38 (-415 (-572)))))) (-3111 (($ $) 169 (|has| |#1| (-38 (-415 (-572)))))) (-3935 (($ $) 202 (|has| |#1| (-38 (-415 (-572)))))) (-3324 (($ $) 174 (|has| |#1| (-38 (-415 (-572)))))) (-1550 (($ $) 201 (|has| |#1| (-38 (-415 (-572)))))) (-2383 (($ $) 173 (|has| |#1| (-38 (-415 (-572)))))) (-2175 (($ $ (-415 (-572))) 177 (|has| |#1| (-38 (-415 (-572)))))) (-2723 (($ $ |#1|) 157 (|has| |#1| (-38 (-415 (-572)))))) (-3920 (($ $) 204 (|has| |#1| (-38 (-415 (-572)))))) (-4125 (($ $) 160 (|has| |#1| (-38 (-415 (-572)))))) (-2090 (($ $) 203 (|has| |#1| (-38 (-415 (-572)))))) (-2750 (($ $) 175 (|has| |#1| (-38 (-415 (-572)))))) (-2757 (($ $) 199 (|has| |#1| (-38 (-415 (-572)))))) (-1590 (($ $) 171 (|has| |#1| (-38 (-415 (-572)))))) (-2203 (($ $) 200 (|has| |#1| (-38 (-415 (-572)))))) (-1788 (($ $) 172 (|has| |#1| (-38 (-415 (-572)))))) (-1954 (($ $) 209 (|has| |#1| (-38 (-415 (-572)))))) (-1709 (($ $) 185 (|has| |#1| (-38 (-415 (-572)))))) (-4424 (($ $) 206 (|has| |#1| (-38 (-415 (-572)))))) (-4359 (($ $) 181 (|has| |#1| (-38 (-415 (-572)))))) (-1382 (($ $) 213 (|has| |#1| (-38 (-415 (-572)))))) (-1574 (($ $) 189 (|has| |#1| (-38 (-415 (-572)))))) (-4263 (($ $) 215 (|has| |#1| (-38 (-415 (-572)))))) (-2987 (($ $) 191 (|has| |#1| (-38 (-415 (-572)))))) (-1803 (($ $) 211 (|has| |#1| (-38 (-415 (-572)))))) (-2895 (($ $) 187 (|has| |#1| (-38 (-415 (-572)))))) (-2207 (($ $) 208 (|has| |#1| (-38 (-415 (-572)))))) (-3611 (($ $) 183 (|has| |#1| (-38 (-415 (-572)))))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-3548 ((|#1| $ (-572)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2131 (($) 30 T CONST)) (-2143 (($) 40 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-572) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (-2978 (((-112) $ $) 73)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) 91) (($ $ $) 72)) (-3075 (($ $ $) 88)) (** (($ $ (-930)) NIL) (($ $ (-779)) 111)) (* (($ (-930) $) 98) (($ (-779) $) 96) (($ (-572) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-603 |#1|) (-13 (-1257 |#1| (-572)) (-10 -8 (-15 -1898 ($ (-1037 (-851 (-572))) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))))) (-15 -1789 ((-1037 (-851 (-572))) $)) (-15 -2976 ((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $)) (-15 -3620 ($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))))) (-15 -2438 ((-112) $)) (-15 -3926 ($ (-1 |#1| (-572)) $)) (-15 -2500 ((-3 $ "failed") $ $ (-112))) (-15 -2248 ($ $)) (-15 -3373 ($ $ $)) (-15 -3494 ((-870) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) (-1037 (-851 (-572))) (-1188) |#1| (-415 (-572)))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $)) (-15 -2723 ($ $ |#1|)) (-15 -2175 ($ $ (-415 (-572)))) (-15 -4125 ($ $)) (-15 -3920 ($ $)) (-15 -3324 ($ $)) (-15 -1788 ($ $)) (-15 -3111 ($ $)) (-15 -1590 ($ $)) (-15 -2383 ($ $)) (-15 -2750 ($ $)) (-15 -4359 ($ $)) (-15 -3611 ($ $)) (-15 -1709 ($ $)) (-15 -2895 ($ $)) (-15 -1574 ($ $)) (-15 -2987 ($ $)) (-15 -3935 ($ $)) (-15 -2203 ($ $)) (-15 -1369 ($ $)) (-15 -2757 ($ $)) (-15 -1550 ($ $)) (-15 -2090 ($ $)) (-15 -4424 ($ $)) (-15 -2207 ($ $)) (-15 -1954 ($ $)) (-15 -1803 ($ $)) (-15 -1382 ($ $)) (-15 -4263 ($ $))) |%noBranch|))) (-1060)) (T -603))
-((-2438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-603 *3)) (-4 *3 (-1060)))) (-1898 (*1 *1 *2 *3) (-12 (-5 *2 (-1037 (-851 (-572)))) (-5 *3 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *4)))) (-4 *4 (-1060)) (-5 *1 (-603 *4)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1037 (-851 (-572)))) (-5 *1 (-603 *3)) (-4 *3 (-1060)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3)))) (-5 *1 (-603 *3)) (-4 *3 (-1060)))) (-3620 (*1 *1 *2) (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3)))) (-4 *3 (-1060)) (-5 *1 (-603 *3)))) (-3926 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-572))) (-4 *3 (-1060)) (-5 *1 (-603 *3)))) (-2500 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-603 *3)) (-4 *3 (-1060)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1060)))) (-3373 (*1 *1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1060)))) (-3494 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *6)))) (-5 *4 (-1037 (-851 (-572)))) (-5 *5 (-1188)) (-5 *7 (-415 (-572))) (-4 *6 (-1060)) (-5 *2 (-870)) (-5 *1 (-603 *6)))) (-3034 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2723 (*1 *1 *1 *2) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2175 (*1 *1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-603 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1060)))) (-4125 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3324 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1788 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3111 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1590 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2383 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2750 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-4359 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3611 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1709 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2895 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2987 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2203 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1369 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2757 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1550 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2090 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-4424 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2207 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1954 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1803 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1382 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-4263 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(-13 (-1257 |#1| (-572)) (-10 -8 (-15 -1898 ($ (-1037 (-851 (-572))) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))))) (-15 -1789 ((-1037 (-851 (-572))) $)) (-15 -2976 ((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $)) (-15 -3620 ($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))))) (-15 -2438 ((-112) $)) (-15 -3926 ($ (-1 |#1| (-572)) $)) (-15 -2500 ((-3 $ "failed") $ $ (-112))) (-15 -2248 ($ $)) (-15 -3373 ($ $ $)) (-15 -3494 ((-870) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) (-1037 (-851 (-572))) (-1188) |#1| (-415 (-572)))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $)) (-15 -2723 ($ $ |#1|)) (-15 -2175 ($ $ (-415 (-572)))) (-15 -4125 ($ $)) (-15 -3920 ($ $)) (-15 -3324 ($ $)) (-15 -1788 ($ $)) (-15 -3111 ($ $)) (-15 -1590 ($ $)) (-15 -2383 ($ $)) (-15 -2750 ($ $)) (-15 -4359 ($ $)) (-15 -3611 ($ $)) (-15 -1709 ($ $)) (-15 -2895 ($ $)) (-15 -1574 ($ $)) (-15 -2987 ($ $)) (-15 -3935 ($ $)) (-15 -2203 ($ $)) (-15 -1369 ($ $)) (-15 -2757 ($ $)) (-15 -1550 ($ $)) (-15 -2090 ($ $)) (-15 -4424 ($ $)) (-15 -2207 ($ $)) (-15 -1954 ($ $)) (-15 -1803 ($ $)) (-15 -1382 ($ $)) (-15 -4263 ($ $))) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 63)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3620 (($ (-1168 |#1|)) 9)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) 44)) (-2579 (((-112) $) 56)) (-2956 (((-779) $) 61) (((-779) $ (-779)) 60)) (-1886 (((-112) $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2834 (((-3 $ "failed") $ $) 46 (|has| |#1| (-564)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL (|has| |#1| (-564)))) (-4268 (((-1168 |#1|) $) 25)) (-4249 (((-779)) 55 T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) 10 T CONST)) (-2143 (($) 14 T CONST)) (-2978 (((-112) $ $) 24)) (-3089 (($ $) 32) (($ $ $) 16)) (-3075 (($ $ $) 27)) (** (($ $ (-930)) NIL) (($ $ (-779)) 53)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-572)) 38)))
-(((-604 |#1|) (-13 (-1060) (-111 |#1| |#1|) (-10 -8 (-15 -4268 ((-1168 |#1|) $)) (-15 -3620 ($ (-1168 |#1|))) (-15 -2579 ((-112) $)) (-15 -2956 ((-779) $)) (-15 -2956 ((-779) $ (-779))) (-15 * ($ $ (-572))) (IF (|has| |#1| (-564)) (-6 (-564)) |%noBranch|))) (-1060)) (T -604))
-((-4268 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))) (-3620 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-604 *3)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))) (-2956 (*1 *2 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))))
-(-13 (-1060) (-111 |#1| |#1|) (-10 -8 (-15 -4268 ((-1168 |#1|) $)) (-15 -3620 ($ (-1168 |#1|))) (-15 -2579 ((-112) $)) (-15 -2956 ((-779) $)) (-15 -2956 ((-779) $ (-779))) (-15 * ($ $ (-572))) (IF (|has| |#1| (-564)) (-6 (-564)) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-2988 (($) 8 T CONST)) (-2779 (($) 7 T CONST)) (-3859 (($ $ (-652 $)) 16)) (-4347 (((-1170) $) NIL)) (-1512 (($) 6 T CONST)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL) (($ (-1193)) 15) (((-1193) $) 10)) (-3959 (($) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-605) (-13 (-1111) (-498 (-1193)) (-10 -8 (-15 -1512 ($) -1705) (-15 -2779 ($) -1705) (-15 -2988 ($) -1705) (-15 -3959 ($) -1705) (-15 -3859 ($ $ (-652 $)))))) (T -605))
-((-1512 (*1 *1) (-5 *1 (-605))) (-2779 (*1 *1) (-5 *1 (-605))) (-2988 (*1 *1) (-5 *1 (-605))) (-3959 (*1 *1) (-5 *1 (-605))) (-3859 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-605))) (-5 *1 (-605)))))
-(-13 (-1111) (-498 (-1193)) (-10 -8 (-15 -1512 ($) -1705) (-15 -2779 ($) -1705) (-15 -2988 ($) -1705) (-15 -3959 ($) -1705) (-15 -3859 ($ $ (-652 $)))))
-((-1776 (((-609 |#2|) (-1 |#2| |#1|) (-609 |#1|)) 15)))
-(((-606 |#1| |#2|) (-10 -7 (-15 -1776 ((-609 |#2|) (-1 |#2| |#1|) (-609 |#1|)))) (-1229) (-1229)) (T -606))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-609 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-609 *6)) (-5 *1 (-606 *5 *6)))))
-(-10 -7 (-15 -1776 ((-609 |#2|) (-1 |#2| |#1|) (-609 |#1|))))
-((-1776 (((-1168 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-1168 |#2|)) 20) (((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-609 |#2|)) 19) (((-609 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-609 |#2|)) 18)))
-(((-607 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-609 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-609 |#2|))) (-15 -1776 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-609 |#2|))) (-15 -1776 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-1168 |#2|)))) (-1229) (-1229) (-1229)) (T -607))
-((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-609 *6)) (-5 *5 (-1168 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8)) (-5 *1 (-607 *6 *7 *8)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1168 *6)) (-5 *5 (-609 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8)) (-5 *1 (-607 *6 *7 *8)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-609 *6)) (-5 *5 (-609 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-609 *8)) (-5 *1 (-607 *6 *7 *8)))))
-(-10 -7 (-15 -1776 ((-609 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-609 |#2|))) (-15 -1776 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-609 |#2|))) (-15 -1776 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-1168 |#2|))))
-((-1833 ((|#3| |#3| (-652 (-620 |#3|)) (-652 (-1188))) 57)) (-3895 (((-171 |#2|) |#3|) 122)) (-4165 ((|#3| (-171 |#2|)) 46)) (-3550 ((|#2| |#3|) 21)) (-3010 ((|#3| |#2|) 35)))
-(((-608 |#1| |#2| |#3|) (-10 -7 (-15 -4165 (|#3| (-171 |#2|))) (-15 -3550 (|#2| |#3|)) (-15 -3010 (|#3| |#2|)) (-15 -3895 ((-171 |#2|) |#3|)) (-15 -1833 (|#3| |#3| (-652 (-620 |#3|)) (-652 (-1188))))) (-564) (-13 (-438 |#1|) (-1013) (-1214)) (-13 (-438 (-171 |#1|)) (-1013) (-1214))) (T -608))
-((-1833 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-652 (-620 *2))) (-5 *4 (-652 (-1188))) (-4 *2 (-13 (-438 (-171 *5)) (-1013) (-1214))) (-4 *5 (-564)) (-5 *1 (-608 *5 *6 *2)) (-4 *6 (-13 (-438 *5) (-1013) (-1214))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-171 *5)) (-5 *1 (-608 *4 *5 *3)) (-4 *5 (-13 (-438 *4) (-1013) (-1214))) (-4 *3 (-13 (-438 (-171 *4)) (-1013) (-1214))))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *2 (-13 (-438 (-171 *4)) (-1013) (-1214))) (-5 *1 (-608 *4 *3 *2)) (-4 *3 (-13 (-438 *4) (-1013) (-1214))))) (-3550 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *2 (-13 (-438 *4) (-1013) (-1214))) (-5 *1 (-608 *4 *2 *3)) (-4 *3 (-13 (-438 (-171 *4)) (-1013) (-1214))))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-438 *4) (-1013) (-1214))) (-4 *4 (-564)) (-4 *2 (-13 (-438 (-171 *4)) (-1013) (-1214))) (-5 *1 (-608 *4 *5 *2)))))
-(-10 -7 (-15 -4165 (|#3| (-171 |#2|))) (-15 -3550 (|#2| |#3|)) (-15 -3010 (|#3| |#2|)) (-15 -3895 ((-171 |#2|) |#3|)) (-15 -1833 (|#3| |#3| (-652 (-620 |#3|)) (-652 (-1188)))))
-((-2162 (($ (-1 (-112) |#1|) $) 17)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2092 (($ (-1 |#1| |#1|) |#1|) 9)) (-2138 (($ (-1 (-112) |#1|) $) 13)) (-2150 (($ (-1 (-112) |#1|) $) 15)) (-2953 (((-1168 |#1|) $) 18)) (-2940 (((-870) $) NIL)))
-(((-609 |#1|) (-13 (-621 (-870)) (-10 -8 (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -2138 ($ (-1 (-112) |#1|) $)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $)) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2953 ((-1168 |#1|) $)))) (-1229)) (T -609))
-((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-2138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-2150 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-2162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-2092 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1229)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -2138 ($ (-1 (-112) |#1|) $)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $)) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2953 ((-1168 |#1|) $))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2212 (($ (-779)) NIL (|has| |#1| (-23)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-1439 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-3896 (((-697 |#1|) $ $) NIL (|has| |#1| (-1060)))) (-3787 (($ (-779) |#1|) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3499 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-1985 (((-112) $ (-779)) NIL)) (-4133 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2912 ((|#1| $) NIL (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-2264 ((|#1| $ $) NIL (|has| |#1| (-1060)))) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-4025 (($ $ $) NIL (|has| |#1| (-1060)))) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) NIL)) (-4155 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3089 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3075 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-572) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-734))) (($ $ |#1|) NIL (|has| |#1| (-734)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-610 |#1| |#2|) (-1277 |#1|) (-1229) (-572)) (T -610))
-NIL
-(-1277 |#1|)
-((-3176 (((-1284) $ |#2| |#2|) 35)) (-3175 ((|#2| $) 23)) (-3374 ((|#2| $) 21)) (-2442 (($ (-1 |#3| |#3|) $) 32)) (-1776 (($ (-1 |#3| |#3|) $) 30)) (-2912 ((|#3| $) 26)) (-2476 (($ $ |#3|) 33)) (-3821 (((-112) |#3| $) 17)) (-4110 (((-652 |#3|) $) 15)) (-2196 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-611 |#1| |#2| |#3|) (-10 -8 (-15 -3176 ((-1284) |#1| |#2| |#2|)) (-15 -2476 (|#1| |#1| |#3|)) (-15 -2912 (|#3| |#1|)) (-15 -3175 (|#2| |#1|)) (-15 -3374 (|#2| |#1|)) (-15 -3821 ((-112) |#3| |#1|)) (-15 -4110 ((-652 |#3|) |#1|)) (-15 -2196 (|#3| |#1| |#2|)) (-15 -2196 (|#3| |#1| |#2| |#3|)) (-15 -2442 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|))) (-612 |#2| |#3|) (-1111) (-1229)) (T -611))
-NIL
-(-10 -8 (-15 -3176 ((-1284) |#1| |#2| |#2|)) (-15 -2476 (|#1| |#1| |#3|)) (-15 -2912 (|#3| |#1|)) (-15 -3175 (|#2| |#1|)) (-15 -3374 (|#2| |#1|)) (-15 -3821 ((-112) |#3| |#1|)) (-15 -4110 ((-652 |#3|) |#1|)) (-15 -2196 (|#3| |#1| |#2|)) (-15 -2196 (|#3| |#1| |#2| |#3|)) (-15 -2442 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#2| (-1111)))) (-3176 (((-1284) $ |#1| |#1|) 41 (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) 8)) (-3140 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4455)))) (-3281 (($) 7 T CONST)) (-2453 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) 52)) (-1863 (((-652 |#2|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-3175 ((|#1| $) 44 (|has| |#1| (-858)))) (-1344 (((-652 |#2|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3374 ((|#1| $) 45 (|has| |#1| (-858)))) (-2442 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#2| |#2|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#2| (-1111)))) (-1986 (((-652 |#1|) $) 47)) (-1370 (((-112) |#1| $) 48)) (-3964 (((-1131) $) 21 (|has| |#2| (-1111)))) (-2912 ((|#2| $) 43 (|has| |#1| (-858)))) (-2476 (($ $ |#2|) 42 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#2|))) 27 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 26 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 24 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3973 (((-779) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4454))) (((-779) |#2| $) 29 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#2| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#2| (-1111)))) (-4380 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#2| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-612 |#1| |#2|) (-141) (-1111) (-1229)) (T -612))
-((-4110 (*1 *2 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229)) (-5 *2 (-652 *4)))) (-1370 (*1 *2 *3 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229)) (-5 *2 (-112)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229)) (-5 *2 (-652 *3)))) (-3821 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-612 *4 *3)) (-4 *4 (-1111)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-612 *2 *3)) (-4 *3 (-1229)) (-4 *2 (-1111)) (-4 *2 (-858)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-612 *2 *3)) (-4 *3 (-1229)) (-4 *2 (-1111)) (-4 *2 (-858)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1111)) (-4 *3 (-858)) (-4 *2 (-1229)))) (-2476 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-612 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))) (-3176 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229)) (-5 *2 (-1284)))))
-(-13 (-497 |t#2|) (-294 |t#1| |t#2|) (-10 -8 (-15 -4110 ((-652 |t#2|) $)) (-15 -1370 ((-112) |t#1| $)) (-15 -1986 ((-652 |t#1|) $)) (IF (|has| |t#2| (-1111)) (IF (|has| $ (-6 -4454)) (-15 -3821 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-858)) (PROGN (-15 -3374 (|t#1| $)) (-15 -3175 (|t#1| $)) (-15 -2912 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4455)) (PROGN (-15 -2476 ($ $ |t#2|)) (-15 -3176 ((-1284) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1111)) ((-621 (-870)) -2813 (|has| |#2| (-1111)) (|has| |#2| (-621 (-870)))) ((-292 |#1| |#2|) . T) ((-294 |#1| |#2|) . T) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-497 |#2|) . T) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-1111) |has| |#2| (-1111)) ((-1229) . T))
-((-2940 (((-870) $) 19) (($ (-130)) 13) (((-130) $) 14)))
-(((-613) (-13 (-621 (-870)) (-498 (-130)))) (T -613))
-NIL
-(-13 (-621 (-870)) (-498 (-130)))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL) (($ (-1193)) NIL) (((-1193) $) NIL) (((-1228) $) 14) (($ (-652 (-1228))) 13)) (-4285 (((-652 (-1228)) $) 10)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-614) (-13 (-1094) (-621 (-1228)) (-10 -8 (-15 -2940 ($ (-652 (-1228)))) (-15 -4285 ((-652 (-1228)) $))))) (T -614))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-614)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-614)))))
-(-13 (-1094) (-621 (-1228)) (-10 -8 (-15 -2940 ($ (-652 (-1228)))) (-15 -4285 ((-652 (-1228)) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3161 (((-3 $ "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1279 (-697 |#1|))) NIL (|has| |#2| (-425 |#1|))) (((-1279 (-697 |#1|)) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3621 (((-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3281 (($) NIL T CONST)) (-2892 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3760 (((-3 $ "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-1609 (((-697 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2554 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-3819 (((-697 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-4147 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2872 (((-1184 (-961 |#1|))) NIL (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-370))))) (-2673 (($ $ (-930)) NIL)) (-3747 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-3120 (((-1184 |#1|) $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3529 ((|#1|) NIL (|has| |#2| (-425 |#1|))) ((|#1| (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2493 (((-1184 |#1|) $) NIL (|has| |#2| (-374 |#1|)))) (-3043 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1913 (($ (-1279 |#1|)) NIL (|has| |#2| (-425 |#1|))) (($ (-1279 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2062 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3581 (((-930)) NIL (|has| |#2| (-374 |#1|)))) (-2522 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-4101 (($ $ (-930)) NIL)) (-3491 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1851 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2769 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3249 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2950 (((-3 $ "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2509 (((-697 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3436 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-2647 (((-697 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1353 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2853 (((-1184 (-961 |#1|))) NIL (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-370))))) (-1858 (($ $ (-930)) NIL)) (-3345 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-2267 (((-1184 |#1|) $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3452 ((|#1|) NIL (|has| |#2| (-425 |#1|))) ((|#1| (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2708 (((-1184 |#1|) $) NIL (|has| |#2| (-374 |#1|)))) (-4401 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-4347 (((-1170) $) NIL)) (-1522 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3278 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2816 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3964 (((-1131) $) NIL)) (-3534 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2196 ((|#1| $ (-572)) NIL (|has| |#2| (-425 |#1|)))) (-4329 (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-425 |#1|))) (((-1279 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $) (-1279 $)) NIL (|has| |#2| (-374 |#1|))) (((-1279 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1835 (($ (-1279 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-1279 |#1|) $) NIL (|has| |#2| (-425 |#1|)))) (-1402 (((-652 (-961 |#1|))) NIL (|has| |#2| (-425 |#1|))) (((-652 (-961 |#1|)) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-4326 (($ $ $) NIL)) (-1589 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2940 (((-870) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL (|has| |#2| (-425 |#1|)))) (-3987 (((-652 (-1279 |#1|))) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2266 (($ $ $ $) NIL)) (-1662 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2898 (($ (-697 |#1|) $) NIL (|has| |#2| (-425 |#1|)))) (-3099 (($ $ $) NIL)) (-4118 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3313 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1547 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2131 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) 24)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-615 |#1| |#2|) (-13 (-752 |#1|) (-621 |#2|) (-10 -8 (-15 -2940 ($ |#2|)) (IF (|has| |#2| (-425 |#1|)) (-6 (-425 |#1|)) |%noBranch|) (IF (|has| |#2| (-374 |#1|)) (-6 (-374 |#1|)) |%noBranch|))) (-174) (-752 |#1|)) (T -615))
-((-2940 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-615 *3 *2)) (-4 *2 (-752 *3)))))
-(-13 (-752 |#1|) (-621 |#2|) (-10 -8 (-15 -2940 ($ |#2|)) (IF (|has| |#2| (-425 |#1|)) (-6 (-425 |#1|)) |%noBranch|) (IF (|has| |#2| (-374 |#1|)) (-6 (-374 |#1|)) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-4034 (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) 39)) (-3775 (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL) (($) NIL)) (-3176 (((-1284) $ (-1170) (-1170)) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-1170) |#1|) 49)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 |#1| "failed") (-1170) $) 52)) (-3281 (($) NIL T CONST)) (-2017 (($ $ (-1170)) 25)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111))))) (-3554 (((-3 |#1| "failed") (-1170) $) 53) (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454))) (($ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL (|has| $ (-6 -4454)))) (-3332 (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454))) (($ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111))))) (-2865 (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111))))) (-2208 (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) 38)) (-2453 ((|#1| $ (-1170) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-1170)) NIL)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454))) (((-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2172 (($ $) 54)) (-1674 (($ (-396)) 23) (($ (-396) (-1170)) 22)) (-2030 (((-396) $) 40)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-1170) $) NIL (|has| (-1170) (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454))) (((-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (((-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111))))) (-3374 (((-1170) $) NIL (|has| (-1170) (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1761 (((-652 (-1170)) $) 45)) (-4198 (((-112) (-1170) $) NIL)) (-3303 (((-1170) $) 41)) (-1651 (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL)) (-2036 (($ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL)) (-1986 (((-652 (-1170)) $) NIL)) (-1370 (((-112) (-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 ((|#1| $) NIL (|has| (-1170) (-858)))) (-3770 (((-3 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) "failed") (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (($ $ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (($ $ (-652 (-300 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) 43)) (-2196 ((|#1| $ (-1170) |#1|) NIL) ((|#1| $ (-1170)) 48)) (-3438 (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL) (($) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (((-779) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (((-779) (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL)) (-2940 (((-870) $) 21)) (-3682 (($ $) 26)) (-4379 (((-112) $ $) NIL)) (-2022 (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20)) (-2860 (((-779) $) 47 (|has| $ (-6 -4454)))))
-(((-616 |#1|) (-13 (-371 (-396) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) (-1205 (-1170) |#1|) (-10 -8 (-6 -4454) (-15 -2172 ($ $)))) (-1111)) (T -616))
-((-2172 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1111)))))
-(-13 (-371 (-396) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) (-1205 (-1170) |#1|) (-10 -8 (-6 -4454) (-15 -2172 ($ $))))
-((-1864 (((-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) $) 16)) (-1761 (((-652 |#2|) $) 20)) (-4198 (((-112) |#2| $) 12)))
-(((-617 |#1| |#2| |#3|) (-10 -8 (-15 -1761 ((-652 |#2|) |#1|)) (-15 -4198 ((-112) |#2| |#1|)) (-15 -1864 ((-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|))) (-618 |#2| |#3|) (-1111) (-1111)) (T -617))
-NIL
-(-10 -8 (-15 -1761 ((-652 |#2|) |#1|)) (-15 -4198 ((-112) |#2| |#1|)) (-15 -1864 ((-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)))
-((-2846 (((-112) $ $) 19 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 46 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 56 (|has| $ (-6 -4454)))) (-2160 (((-3 |#2| "failed") |#1| $) 62)) (-3281 (($) 7 T CONST)) (-2086 (($ $) 59 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 47 (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 63)) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 55 (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 57 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 54 (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 53 (|has| $ (-6 -4454)))) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-1761 (((-652 |#1|) $) 64)) (-4198 (((-112) |#1| $) 65)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 40)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 41)) (-3964 (((-1131) $) 21 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 52)) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 42)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) 27 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 26 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 25 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 24 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3438 (($) 50) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 49)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 32 (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 60 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 51)) (-2940 (((-870) $) 18 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 43)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-618 |#1| |#2|) (-141) (-1111) (-1111)) (T -618))
-((-4198 (*1 *2 *3 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-5 *2 (-112)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-5 *2 (-652 *3)))) (-3554 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-2160 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
-(-13 (-231 (-2 (|:| -3690 |t#1|) (|:| -1907 |t#2|))) (-10 -8 (-15 -4198 ((-112) |t#1| $)) (-15 -1761 ((-652 |t#1|) $)) (-15 -3554 ((-3 |t#2| "failed") |t#1| $)) (-15 -2160 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T) ((-102) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) ((-621 (-870)) -2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870)))) ((-152 #0#) . T) ((-622 (-544)) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))) ((-231 #0#) . T) ((-239 #0#) . T) ((-315 #0#) -12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) ((-497 #0#) . T) ((-522 #0# #0#) -12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) ((-1111) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) ((-1229) . T))
-((-3603 (((-620 |#2|) |#1|) 17)) (-3376 (((-3 |#1| "failed") (-620 |#2|)) 21)))
-(((-619 |#1| |#2|) (-10 -7 (-15 -3603 ((-620 |#2|) |#1|)) (-15 -3376 ((-3 |#1| "failed") (-620 |#2|)))) (-1111) (-1111)) (T -619))
-((-3376 (*1 *2 *3) (|partial| -12 (-5 *3 (-620 *4)) (-4 *4 (-1111)) (-4 *2 (-1111)) (-5 *1 (-619 *2 *4)))) (-3603 (*1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *1 (-619 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))))
-(-10 -7 (-15 -3603 ((-620 |#2|) |#1|)) (-15 -3376 ((-3 |#1| "failed") (-620 |#2|))))
-((-2846 (((-112) $ $) NIL)) (-3363 (((-3 (-1188) "failed") $) 46)) (-3141 (((-1284) $ (-779)) 22)) (-1439 (((-779) $) 20)) (-4171 (((-115) $) 9)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-1774 (($ (-115) (-652 |#1|) (-779)) 32) (($ (-1188)) 33)) (-2695 (((-112) $ (-115)) 15) (((-112) $ (-1188)) 13)) (-1839 (((-779) $) 17)) (-3964 (((-1131) $) NIL)) (-1835 (((-901 (-572)) $) 95 (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) 102 (|has| |#1| (-622 (-901 (-386))))) (((-544) $) 88 (|has| |#1| (-622 (-544))))) (-2940 (((-870) $) 72)) (-4379 (((-112) $ $) NIL)) (-2053 (((-652 |#1|) $) 19)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 51)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 53)))
-(((-620 |#1|) (-13 (-133) (-858) (-893 |#1|) (-10 -8 (-15 -4171 ((-115) $)) (-15 -2053 ((-652 |#1|) $)) (-15 -1839 ((-779) $)) (-15 -1774 ($ (-115) (-652 |#1|) (-779))) (-15 -1774 ($ (-1188))) (-15 -3363 ((-3 (-1188) "failed") $)) (-15 -2695 ((-112) $ (-115))) (-15 -2695 ((-112) $ (-1188))) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|))) (-1111)) (T -620))
-((-4171 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-1774 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-652 *5)) (-5 *4 (-779)) (-4 *5 (-1111)) (-5 *1 (-620 *5)))) (-1774 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-3363 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-2695 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-620 *4)) (-4 *4 (-1111)))) (-2695 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-620 *4)) (-4 *4 (-1111)))))
-(-13 (-133) (-858) (-893 |#1|) (-10 -8 (-15 -4171 ((-115) $)) (-15 -2053 ((-652 |#1|) $)) (-15 -1839 ((-779) $)) (-15 -1774 ($ (-115) (-652 |#1|) (-779))) (-15 -1774 ($ (-1188))) (-15 -3363 ((-3 (-1188) "failed") $)) (-15 -2695 ((-112) $ (-115))) (-15 -2695 ((-112) $ (-1188))) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|)))
-((-2940 ((|#1| $) 6)))
-(((-621 |#1|) (-141) (-1229)) (T -621))
-((-2940 (*1 *2 *1) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1229)))))
-(-13 (-10 -8 (-15 -2940 (|t#1| $))))
-((-1835 ((|#1| $) 6)))
-(((-622 |#1|) (-141) (-1229)) (T -622))
-((-1835 (*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1229)))))
-(-13 (-10 -8 (-15 -1835 (|t#1| $))))
-((-3483 (((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 (-426 |#2|) |#2|)) 15) (((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|)) 16)))
-(((-623 |#1| |#2|) (-10 -7 (-15 -3483 ((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|))) (-15 -3483 ((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 (-426 |#2|) |#2|)))) (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -623))
-((-3483 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-1184 (-415 *6))) (-5 *1 (-623 *5 *6)) (-5 *3 (-415 *6)))) (-3483 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-1184 (-415 *5))) (-5 *1 (-623 *4 *5)) (-5 *3 (-415 *5)))))
-(-10 -7 (-15 -3483 ((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|))) (-15 -3483 ((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 (-426 |#2|) |#2|))))
-((-2940 (($ |#1|) 6)))
-(((-624 |#1|) (-141) (-1229)) (T -624))
-((-2940 (*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1229)))))
-(-13 (-10 -8 (-15 -2940 ($ |t#1|))))
-((-2846 (((-112) $ $) NIL)) (-2032 (($) 14 T CONST)) (-1561 (($) 15 T CONST)) (-2096 (($ $ $) 29)) (-2074 (($ $) 27)) (-4347 (((-1170) $) NIL)) (-3243 (($ $ $) 30)) (-3964 (((-1131) $) NIL)) (-2882 (($) 11 T CONST)) (-4058 (($ $ $) 31)) (-2940 (((-870) $) 35)) (-2120 (((-112) $ (|[\|\|]| -2882)) 24) (((-112) $ (|[\|\|]| -2032)) 26) (((-112) $ (|[\|\|]| -1561)) 21)) (-4379 (((-112) $ $) NIL)) (-2085 (($ $ $) 28)) (-2978 (((-112) $ $) 18)))
-(((-625) (-13 (-978) (-10 -8 (-15 -2032 ($) -1705) (-15 -2120 ((-112) $ (|[\|\|]| -2882))) (-15 -2120 ((-112) $ (|[\|\|]| -2032))) (-15 -2120 ((-112) $ (|[\|\|]| -1561)))))) (T -625))
-((-2032 (*1 *1) (-5 *1 (-625))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2882)) (-5 *2 (-112)) (-5 *1 (-625)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2032)) (-5 *2 (-112)) (-5 *1 (-625)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1561)) (-5 *2 (-112)) (-5 *1 (-625)))))
-(-13 (-978) (-10 -8 (-15 -2032 ($) -1705) (-15 -2120 ((-112) $ (|[\|\|]| -2882))) (-15 -2120 ((-112) $ (|[\|\|]| -2032))) (-15 -2120 ((-112) $ (|[\|\|]| -1561)))))
-((-1835 (($ |#1|) 6)))
-(((-626 |#1|) (-141) (-1229)) (T -626))
-((-1835 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1229)))))
-(-13 (-10 -8 (-15 -1835 ($ |t#1|))))
-((-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) 10)))
-(((-627 |#1| |#2|) (-10 -8 (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|))) (-628 |#2|) (-1060)) (T -627))
-NIL
-(-10 -8 (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 41)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
-(((-628 |#1|) (-141) (-1060)) (T -628))
-((-2940 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1060)))))
-(-13 (-1060) (-656 |t#1|) (-10 -8 (-15 -2940 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2840 (((-572) $) NIL (|has| |#1| (-856)))) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-3074 (((-112) $) NIL (|has| |#1| (-856)))) (-1886 (((-112) $) NIL)) (-2963 ((|#1| $) 13)) (-1623 (((-112) $) NIL (|has| |#1| (-856)))) (-3654 (($ $ $) NIL (|has| |#1| (-856)))) (-2427 (($ $ $) NIL (|has| |#1| (-856)))) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2974 ((|#3| $) 15)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL)) (-4249 (((-779)) 20 T CONST)) (-4379 (((-112) $ $) NIL)) (-2700 (($ $) NIL (|has| |#1| (-856)))) (-2131 (($) NIL T CONST)) (-2143 (($) 12 T CONST)) (-3039 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3106 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-629 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (-15 -3106 ($ $ |#3|)) (-15 -3106 ($ |#1| |#3|)) (-15 -2963 (|#1| $)) (-15 -2974 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-734) |#2|)) (T -629))
-((-3106 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-629 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-734) *4)))) (-3106 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-629 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-734) *4)))) (-2963 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-629 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-734) *3)))) (-2974 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-734) *4)) (-5 *1 (-629 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (-15 -3106 ($ $ |#3|)) (-15 -3106 ($ |#1| |#3|)) (-15 -2963 (|#1| $)) (-15 -2974 (|#3| $))))
-((-3367 ((|#2| |#2| (-1188) (-1188)) 16)))
-(((-630 |#1| |#2|) (-10 -7 (-15 -3367 (|#2| |#2| (-1188) (-1188)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-968) (-29 |#1|))) (T -630))
-((-3367 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-630 *4 *2)) (-4 *2 (-13 (-1214) (-968) (-29 *4))))))
-(-10 -7 (-15 -3367 (|#2| |#2| (-1188) (-1188))))
-((-2846 (((-112) $ $) 64)) (-2697 (((-112) $) 58)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-1819 ((|#1| $) 55)) (-3330 (((-3 $ "failed") $ $) NIL)) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2200 (((-2 (|:| -2004 $) (|:| -4350 (-415 |#2|))) (-415 |#2|)) 111 (|has| |#1| (-370)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) 27)) (-2062 (((-3 $ "failed") $) 88)) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-2956 (((-572) $) 22)) (-1886 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2438 (((-112) $) 40)) (-4333 (($ |#1| (-572)) 24)) (-1368 ((|#1| $) 57)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) 101 (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2834 (((-3 $ "failed") $ $) 93)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3847 (((-779) $) 115 (|has| |#1| (-370)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 114 (|has| |#1| (-370)))) (-3902 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-4390 (((-572) $) 38)) (-1835 (((-415 |#2|) $) 47)) (-2940 (((-870) $) 69) (($ (-572)) 35) (($ $) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 34) (($ |#2|) 25)) (-3979 ((|#1| $ (-572)) 72)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2131 (($) 9 T CONST)) (-2143 (($) 14 T CONST)) (-3608 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-2978 (((-112) $ $) 21)) (-3089 (($ $) 51) (($ $ $) NIL)) (-3075 (($ $ $) 90)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 29) (($ $ $) 49)))
-(((-631 |#1| |#2|) (-13 (-233 |#2|) (-564) (-622 (-415 |#2|)) (-419 |#1|) (-1049 |#2|) (-10 -8 (-15 -2438 ((-112) $)) (-15 -4390 ((-572) $)) (-15 -2956 ((-572) $)) (-15 -1390 ($ $)) (-15 -1368 (|#1| $)) (-15 -1819 (|#1| $)) (-15 -3979 (|#1| $ (-572))) (-15 -4333 ($ |#1| (-572))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-6 (-313)) (-15 -2200 ((-2 (|:| -2004 $) (|:| -4350 (-415 |#2|))) (-415 |#2|)))) |%noBranch|))) (-564) (-1255 |#1|)) (T -631))
-((-2438 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-631 *3 *4)) (-4 *4 (-1255 *3)))) (-4390 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-572)) (-5 *1 (-631 *3 *4)) (-4 *4 (-1255 *3)))) (-2956 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-572)) (-5 *1 (-631 *3 *4)) (-4 *4 (-1255 *3)))) (-1390 (*1 *1 *1) (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2)))) (-1368 (*1 *2 *1) (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2)))) (-1819 (*1 *2 *1) (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2)))) (-3979 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *2 (-564)) (-5 *1 (-631 *2 *4)) (-4 *4 (-1255 *2)))) (-4333 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-4 *2 (-564)) (-5 *1 (-631 *2 *4)) (-4 *4 (-1255 *2)))) (-2200 (*1 *2 *3) (-12 (-4 *4 (-370)) (-4 *4 (-564)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -2004 (-631 *4 *5)) (|:| -4350 (-415 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-415 *5)))))
-(-13 (-233 |#2|) (-564) (-622 (-415 |#2|)) (-419 |#1|) (-1049 |#2|) (-10 -8 (-15 -2438 ((-112) $)) (-15 -4390 ((-572) $)) (-15 -2956 ((-572) $)) (-15 -1390 ($ $)) (-15 -1368 (|#1| $)) (-15 -1819 (|#1| $)) (-15 -3979 (|#1| $ (-572))) (-15 -4333 ($ |#1| (-572))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-6 (-313)) (-15 -2200 ((-2 (|:| -2004 $) (|:| -4350 (-415 |#2|))) (-415 |#2|)))) |%noBranch|)))
-((-1740 (((-652 |#6|) (-652 |#4|) (-112)) 54)) (-3187 ((|#6| |#6|) 48)))
-(((-632 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3187 (|#6| |#6|)) (-15 -1740 ((-652 |#6|) (-652 |#4|) (-112)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|) (-1120 |#1| |#2| |#3| |#4|)) (T -632))
-((-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 *10)) (-5 *1 (-632 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *10 (-1120 *5 *6 *7 *8)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-632 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *2 (-1120 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3187 (|#6| |#6|)) (-15 -1740 ((-652 |#6|) (-652 |#4|) (-112))))
-((-3927 (((-112) |#3| (-779) (-652 |#3|)) 29)) (-3741 (((-3 (-2 (|:| |polfac| (-652 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-652 (-1184 |#3|)))) "failed") |#3| (-652 (-1184 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4225 (-652 (-2 (|:| |irr| |#4|) (|:| -2866 (-572)))))) (-652 |#3|) (-652 |#1|) (-652 |#3|)) 69)))
-(((-633 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3927 ((-112) |#3| (-779) (-652 |#3|))) (-15 -3741 ((-3 (-2 (|:| |polfac| (-652 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-652 (-1184 |#3|)))) "failed") |#3| (-652 (-1184 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4225 (-652 (-2 (|:| |irr| |#4|) (|:| -2866 (-572)))))) (-652 |#3|) (-652 |#1|) (-652 |#3|)))) (-858) (-801) (-313) (-958 |#3| |#2| |#1|)) (T -633))
-((-3741 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4225 (-652 (-2 (|:| |irr| *10) (|:| -2866 (-572))))))) (-5 *6 (-652 *3)) (-5 *7 (-652 *8)) (-4 *8 (-858)) (-4 *3 (-313)) (-4 *10 (-958 *3 *9 *8)) (-4 *9 (-801)) (-5 *2 (-2 (|:| |polfac| (-652 *10)) (|:| |correct| *3) (|:| |corrfact| (-652 (-1184 *3))))) (-5 *1 (-633 *8 *9 *3 *10)) (-5 *4 (-652 (-1184 *3))))) (-3927 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-779)) (-5 *5 (-652 *3)) (-4 *3 (-313)) (-4 *6 (-858)) (-4 *7 (-801)) (-5 *2 (-112)) (-5 *1 (-633 *6 *7 *3 *8)) (-4 *8 (-958 *3 *7 *6)))))
-(-10 -7 (-15 -3927 ((-112) |#3| (-779) (-652 |#3|))) (-15 -3741 ((-3 (-2 (|:| |polfac| (-652 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-652 (-1184 |#3|)))) "failed") |#3| (-652 (-1184 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4225 (-652 (-2 (|:| |irr| |#4|) (|:| -2866 (-572)))))) (-652 |#3|) (-652 |#1|) (-652 |#3|))))
-((-2846 (((-112) $ $) NIL)) (-1807 (((-1146) $) 11)) (-1794 (((-1146) $) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-634) (-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1146) $))))) (T -634))
-((-1794 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-634)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-634)))))
-(-13 (-1094) (-10 -8 (-15 -1794 ((-1146) $)) (-15 -1807 ((-1146) $))))
-((-2846 (((-112) $ $) NIL)) (-1653 (((-652 |#1|) $) NIL)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-4211 (($ $) 77)) (-3116 (((-672 |#1| |#2|) $) 60)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 81)) (-2666 (((-652 (-300 |#2|)) $ $) 42)) (-3964 (((-1131) $) NIL)) (-1608 (($ (-672 |#1| |#2|)) 56)) (-1516 (($ $ $) NIL)) (-4326 (($ $ $) NIL)) (-2940 (((-870) $) 66) (((-1294 |#1| |#2|) $) NIL) (((-1299 |#1| |#2|) $) 74)) (-4379 (((-112) $ $) NIL)) (-2143 (($) 61 T CONST)) (-2136 (((-652 (-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|))) $) 41)) (-2381 (((-652 (-672 |#1| |#2|)) (-652 |#1|)) 73)) (-1933 (((-652 (-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|))) $) 46)) (-2978 (((-112) $ $) 62)) (-3106 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ $ $) 52)))
-(((-635 |#1| |#2| |#3|) (-13 (-481) (-10 -8 (-15 -1608 ($ (-672 |#1| |#2|))) (-15 -3116 ((-672 |#1| |#2|) $)) (-15 -1933 ((-652 (-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|))) $)) (-15 -2940 ((-1294 |#1| |#2|) $)) (-15 -2940 ((-1299 |#1| |#2|) $)) (-15 -4211 ($ $)) (-15 -1653 ((-652 |#1|) $)) (-15 -2381 ((-652 (-672 |#1| |#2|)) (-652 |#1|))) (-15 -2136 ((-652 (-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|))) $)) (-15 -2666 ((-652 (-300 |#2|)) $ $)))) (-858) (-13 (-174) (-725 (-415 (-572)))) (-930)) (T -635))
-((-1608 (*1 *1 *2) (-12 (-5 *2 (-672 *3 *4)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-5 *1 (-635 *3 *4 *5)) (-14 *5 (-930)))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-672 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |k| (-902 *3)) (|:| |c| *4)))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-4211 (*1 *1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-858)) (-4 *3 (-13 (-174) (-725 (-415 (-572))))) (-14 *4 (-930)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-858)) (-5 *2 (-652 (-672 *4 *5))) (-5 *1 (-635 *4 *5 *6)) (-4 *5 (-13 (-174) (-725 (-415 (-572))))) (-14 *6 (-930)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |k| (-680 *3)) (|:| |c| *4)))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-2666 (*1 *2 *1 *1) (-12 (-5 *2 (-652 (-300 *4))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))))
-(-13 (-481) (-10 -8 (-15 -1608 ($ (-672 |#1| |#2|))) (-15 -3116 ((-672 |#1| |#2|) $)) (-15 -1933 ((-652 (-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|))) $)) (-15 -2940 ((-1294 |#1| |#2|) $)) (-15 -2940 ((-1299 |#1| |#2|) $)) (-15 -4211 ($ $)) (-15 -1653 ((-652 |#1|) $)) (-15 -2381 ((-652 (-672 |#1| |#2|)) (-652 |#1|))) (-15 -2136 ((-652 (-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|))) $)) (-15 -2666 ((-652 (-300 |#2|)) $ $))))
-((-1740 (((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112)) 103) (((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112)) 77)) (-1743 (((-112) (-652 (-788 |#1| (-872 |#2|)))) 26)) (-2667 (((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112)) 102)) (-3512 (((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112)) 76)) (-3440 (((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|)))) 30)) (-1499 (((-3 (-652 (-788 |#1| (-872 |#2|))) "failed") (-652 (-788 |#1| (-872 |#2|)))) 29)))
-(((-636 |#1| |#2|) (-10 -7 (-15 -1743 ((-112) (-652 (-788 |#1| (-872 |#2|))))) (-15 -1499 ((-3 (-652 (-788 |#1| (-872 |#2|))) "failed") (-652 (-788 |#1| (-872 |#2|))))) (-15 -3440 ((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))))) (-15 -3512 ((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -2667 ((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -1740 ((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -1740 ((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112)))) (-460) (-652 (-1188))) (T -636))
-((-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1157 *5 (-539 (-872 *6)) (-872 *6) (-788 *5 (-872 *6))))) (-5 *1 (-636 *5 *6)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-636 *5 *6)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1157 *5 (-539 (-872 *6)) (-872 *6) (-788 *5 (-872 *6))))) (-5 *1 (-636 *5 *6)))) (-3512 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-636 *5 *6)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-652 (-788 *3 (-872 *4)))) (-4 *3 (-460)) (-14 *4 (-652 (-1188))) (-5 *1 (-636 *3 *4)))) (-1499 (*1 *2 *2) (|partial| -12 (-5 *2 (-652 (-788 *3 (-872 *4)))) (-4 *3 (-460)) (-14 *4 (-652 (-1188))) (-5 *1 (-636 *3 *4)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-652 (-788 *4 (-872 *5)))) (-4 *4 (-460)) (-14 *5 (-652 (-1188))) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
-(-10 -7 (-15 -1743 ((-112) (-652 (-788 |#1| (-872 |#2|))))) (-15 -1499 ((-3 (-652 (-788 |#1| (-872 |#2|))) "failed") (-652 (-788 |#1| (-872 |#2|))))) (-15 -3440 ((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))))) (-15 -3512 ((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -2667 ((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -1740 ((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -1740 ((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112))))
-((-2358 (($ $) 38)) (-2242 (($ $) 21)) (-2338 (($ $) 37)) (-2222 (($ $) 22)) (-2384 (($ $) 36)) (-2262 (($ $) 23)) (-2997 (($) 48)) (-3116 (($ $) 45)) (-4078 (($ $) 17)) (-3223 (($ $ (-1103 $)) 7) (($ $ (-1188)) 6)) (-1608 (($ $) 46)) (-4069 (($ $) 15)) (-2211 (($ $) 16)) (-2397 (($ $) 35)) (-2270 (($ $) 24)) (-2370 (($ $) 34)) (-2252 (($ $) 25)) (-2348 (($ $) 33)) (-2231 (($ $) 26)) (-2436 (($ $) 44)) (-2300 (($ $) 32)) (-2409 (($ $) 43)) (-2282 (($ $) 31)) (-2460 (($ $) 42)) (-2320 (($ $) 30)) (-2516 (($ $) 41)) (-2329 (($ $) 29)) (-2448 (($ $) 40)) (-2310 (($ $) 28)) (-2423 (($ $) 39)) (-2292 (($ $) 27)) (-1678 (($ $) 19)) (-3687 (($ $) 20)) (-1510 (($ $) 18)) (** (($ $ $) 47)))
-(((-637) (-141)) (T -637))
-((-3687 (*1 *1 *1) (-4 *1 (-637))) (-1678 (*1 *1 *1) (-4 *1 (-637))) (-1510 (*1 *1 *1) (-4 *1 (-637))) (-4078 (*1 *1 *1) (-4 *1 (-637))) (-2211 (*1 *1 *1) (-4 *1 (-637))) (-4069 (*1 *1 *1) (-4 *1 (-637))))
-(-13 (-968) (-1214) (-10 -8 (-15 -3687 ($ $)) (-15 -1678 ($ $)) (-15 -1510 ($ $)) (-15 -4078 ($ $)) (-15 -2211 ($ $)) (-15 -4069 ($ $))))
-(((-35) . T) ((-95) . T) ((-290) . T) ((-501) . T) ((-968) . T) ((-1214) . T) ((-1217) . T))
-((-4171 (((-115) (-115)) 88)) (-4078 ((|#2| |#2|) 28)) (-3223 ((|#2| |#2| (-1103 |#2|)) 84) ((|#2| |#2| (-1188)) 50)) (-4069 ((|#2| |#2|) 27)) (-2211 ((|#2| |#2|) 29)) (-4406 (((-112) (-115)) 33)) (-1678 ((|#2| |#2|) 24)) (-3687 ((|#2| |#2|) 26)) (-1510 ((|#2| |#2|) 25)))
-(((-638 |#1| |#2|) (-10 -7 (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -3687 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1510 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -2211 (|#2| |#2|)) (-15 -3223 (|#2| |#2| (-1188))) (-15 -3223 (|#2| |#2| (-1103 |#2|)))) (-564) (-13 (-438 |#1|) (-1013) (-1214))) (T -638))
-((-3223 (*1 *2 *2 *3) (-12 (-5 *3 (-1103 *2)) (-4 *2 (-13 (-438 *4) (-1013) (-1214))) (-4 *4 (-564)) (-5 *1 (-638 *4 *2)))) (-3223 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-638 *4 *2)) (-4 *2 (-13 (-438 *4) (-1013) (-1214))))) (-2211 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-1510 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-3687 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-638 *3 *4)) (-4 *4 (-13 (-438 *3) (-1013) (-1214))))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-638 *4 *5)) (-4 *5 (-13 (-438 *4) (-1013) (-1214))))))
-(-10 -7 (-15 -4406 ((-112) (-115))) (-15 -4171 ((-115) (-115))) (-15 -3687 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1510 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -2211 (|#2| |#2|)) (-15 -3223 (|#2| |#2| (-1188))) (-15 -3223 (|#2| |#2| (-1103 |#2|))))
-((-3585 (((-489 |#1| |#2|) (-251 |#1| |#2|)) 63)) (-2410 (((-652 (-251 |#1| |#2|)) (-652 (-489 |#1| |#2|))) 89)) (-2524 (((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-872 |#1|)) 91) (((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)) (-872 |#1|)) 90)) (-2608 (((-2 (|:| |gblist| (-652 (-251 |#1| |#2|))) (|:| |gvlist| (-652 (-572)))) (-652 (-489 |#1| |#2|))) 134)) (-1637 (((-652 (-489 |#1| |#2|)) (-872 |#1|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|))) 104)) (-1438 (((-2 (|:| |glbase| (-652 (-251 |#1| |#2|))) (|:| |glval| (-652 (-572)))) (-652 (-251 |#1| |#2|))) 145)) (-1553 (((-1279 |#2|) (-489 |#1| |#2|) (-652 (-489 |#1| |#2|))) 68)) (-2959 (((-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|))) 47)) (-2699 (((-251 |#1| |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|))) 60)) (-3781 (((-251 |#1| |#2|) (-652 |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|))) 112)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -2608 ((-2 (|:| |gblist| (-652 (-251 |#1| |#2|))) (|:| |gvlist| (-652 (-572)))) (-652 (-489 |#1| |#2|)))) (-15 -1438 ((-2 (|:| |glbase| (-652 (-251 |#1| |#2|))) (|:| |glval| (-652 (-572)))) (-652 (-251 |#1| |#2|)))) (-15 -2410 ((-652 (-251 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -2524 ((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)) (-872 |#1|))) (-15 -2524 ((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-872 |#1|))) (-15 -2959 ((-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -1553 ((-1279 |#2|) (-489 |#1| |#2|) (-652 (-489 |#1| |#2|)))) (-15 -3781 ((-251 |#1| |#2|) (-652 |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|)))) (-15 -1637 ((-652 (-489 |#1| |#2|)) (-872 |#1|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -2699 ((-251 |#1| |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|)))) (-15 -3585 ((-489 |#1| |#2|) (-251 |#1| |#2|)))) (-652 (-1188)) (-460)) (T -639))
-((-3585 (*1 *2 *3) (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *2 (-489 *4 *5)) (-5 *1 (-639 *4 *5)))) (-2699 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-251 *4 *5))) (-5 *2 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-639 *4 *5)))) (-1637 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-652 (-489 *4 *5))) (-5 *3 (-872 *4)) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-639 *4 *5)))) (-3781 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-251 *5 *6))) (-4 *6 (-460)) (-5 *2 (-251 *5 *6)) (-14 *5 (-652 (-1188))) (-5 *1 (-639 *5 *6)))) (-1553 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-489 *5 *6))) (-5 *3 (-489 *5 *6)) (-14 *5 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-1279 *6)) (-5 *1 (-639 *5 *6)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-652 (-489 *3 *4))) (-14 *3 (-652 (-1188))) (-4 *4 (-460)) (-5 *1 (-639 *3 *4)))) (-2524 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-489 *5 *6))) (-5 *4 (-872 *5)) (-14 *5 (-652 (-1188))) (-5 *2 (-489 *5 *6)) (-5 *1 (-639 *5 *6)) (-4 *6 (-460)))) (-2524 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-652 (-489 *5 *6))) (-5 *4 (-872 *5)) (-14 *5 (-652 (-1188))) (-5 *2 (-489 *5 *6)) (-5 *1 (-639 *5 *6)) (-4 *6 (-460)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-652 (-489 *4 *5))) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *2 (-652 (-251 *4 *5))) (-5 *1 (-639 *4 *5)))) (-1438 (*1 *2 *3) (-12 (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *2 (-2 (|:| |glbase| (-652 (-251 *4 *5))) (|:| |glval| (-652 (-572))))) (-5 *1 (-639 *4 *5)) (-5 *3 (-652 (-251 *4 *5))))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-652 (-489 *4 *5))) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *2 (-2 (|:| |gblist| (-652 (-251 *4 *5))) (|:| |gvlist| (-652 (-572))))) (-5 *1 (-639 *4 *5)))))
-(-10 -7 (-15 -2608 ((-2 (|:| |gblist| (-652 (-251 |#1| |#2|))) (|:| |gvlist| (-652 (-572)))) (-652 (-489 |#1| |#2|)))) (-15 -1438 ((-2 (|:| |glbase| (-652 (-251 |#1| |#2|))) (|:| |glval| (-652 (-572)))) (-652 (-251 |#1| |#2|)))) (-15 -2410 ((-652 (-251 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -2524 ((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)) (-872 |#1|))) (-15 -2524 ((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-872 |#1|))) (-15 -2959 ((-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -1553 ((-1279 |#2|) (-489 |#1| |#2|) (-652 (-489 |#1| |#2|)))) (-15 -3781 ((-251 |#1| |#2|) (-652 |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|)))) (-15 -1637 ((-652 (-489 |#1| |#2|)) (-872 |#1|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -2699 ((-251 |#1| |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|)))) (-15 -3585 ((-489 |#1| |#2|) (-251 |#1| |#2|))))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) NIL)) (-3176 (((-1284) $ (-1170) (-1170)) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 (((-52) $ (-1170) (-52)) 16) (((-52) $ (-1188) (-52)) 17)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 (-52) "failed") (-1170) $) NIL)) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111))))) (-3554 (($ (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-3 (-52) "failed") (-1170) $) NIL)) (-3332 (($ (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $ (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111)))) (((-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $ (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2453 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4455)))) (-2380 (((-52) $ (-1170)) NIL)) (-1863 (((-652 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-2172 (($ $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-1170) $) NIL (|has| (-1170) (-858)))) (-1344 (((-652 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-3374 (((-1170) $) NIL (|has| (-1170) (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1462 (($ (-396)) 9)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111))))) (-1761 (((-652 (-1170)) $) NIL)) (-4198 (((-112) (-1170) $) NIL)) (-1651 (((-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) $) NIL)) (-2036 (($ (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) $) NIL)) (-1986 (((-652 (-1170)) $) NIL)) (-1370 (((-112) (-1170) $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111))))) (-2912 (((-52) $) NIL (|has| (-1170) (-858)))) (-3770 (((-3 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) "failed") (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL)) (-2476 (($ $ (-52)) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111)))) (($ $ (-300 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111)))) (($ $ (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111)))) (($ $ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111)))) (($ $ (-652 (-52)) (-652 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-300 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-652 (-300 (-52)))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-4110 (((-652 (-52)) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 (((-52) $ (-1170)) 14) (((-52) $ (-1170) (-52)) NIL) (((-52) $ (-1188)) 15)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111)))) (((-779) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111)))) (((-779) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) NIL)) (-2940 (((-870) $) NIL (-2813 (|has| (-52) (-621 (-870))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-621 (-870)))))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 (-52))) (-1111))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-640) (-13 (-1205 (-1170) (-52)) (-292 (-1188) (-52)) (-10 -8 (-15 -1462 ($ (-396))) (-15 -2172 ($ $)) (-15 -3140 ((-52) $ (-1188) (-52)))))) (T -640))
-((-1462 (*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-640)))) (-2172 (*1 *1 *1) (-5 *1 (-640))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1188)) (-5 *1 (-640)))))
-(-13 (-1205 (-1170) (-52)) (-292 (-1188) (-52)) (-10 -8 (-15 -1462 ($ (-396))) (-15 -2172 ($ $)) (-15 -3140 ((-52) $ (-1188) (-52)))))
-((-3106 (($ $ |#2|) 10)))
-(((-641 |#1| |#2|) (-10 -8 (-15 -3106 (|#1| |#1| |#2|))) (-642 |#2|) (-174)) (T -641))
-NIL
-(-10 -8 (-15 -3106 (|#1| |#1| |#2|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2953 (($ $ $) 34)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 33 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-642 |#1|) (-141) (-174)) (T -642))
-((-2953 (*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-174)))) (-3106 (*1 *1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-174)) (-4 *2 (-370)))))
-(-13 (-725 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2953 ($ $ $)) (IF (|has| |t#1| (-370)) (-15 -3106 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3161 (((-3 $ "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1279 (-697 |#1|))) NIL (|has| |#2| (-425 |#1|))) (((-1279 (-697 |#1|)) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3621 (((-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3281 (($) NIL T CONST)) (-2892 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3760 (((-3 $ "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-1609 (((-697 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2554 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-3819 (((-697 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-4147 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2872 (((-1184 (-961 |#1|))) NIL (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-370))))) (-2673 (($ $ (-930)) NIL)) (-3747 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-3120 (((-1184 |#1|) $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3529 ((|#1|) NIL (|has| |#2| (-425 |#1|))) ((|#1| (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2493 (((-1184 |#1|) $) NIL (|has| |#2| (-374 |#1|)))) (-3043 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1913 (($ (-1279 |#1|)) NIL (|has| |#2| (-425 |#1|))) (($ (-1279 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2062 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3581 (((-930)) NIL (|has| |#2| (-374 |#1|)))) (-2522 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-4101 (($ $ (-930)) NIL)) (-3491 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1851 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2769 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3249 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2950 (((-3 $ "failed")) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2509 (((-697 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3436 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-2647 (((-697 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1353 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2853 (((-1184 (-961 |#1|))) NIL (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-370))))) (-1858 (($ $ (-930)) NIL)) (-3345 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-2267 (((-1184 |#1|) $) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3452 ((|#1|) NIL (|has| |#2| (-425 |#1|))) ((|#1| (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2708 (((-1184 |#1|) $) NIL (|has| |#2| (-374 |#1|)))) (-4401 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-4347 (((-1170) $) NIL)) (-1522 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3278 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2816 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3964 (((-1131) $) NIL)) (-3534 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2196 ((|#1| $ (-572)) NIL (|has| |#2| (-425 |#1|)))) (-4329 (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-425 |#1|))) (((-1279 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $) (-1279 $)) NIL (|has| |#2| (-374 |#1|))) (((-1279 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1835 (($ (-1279 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-1279 |#1|) $) NIL (|has| |#2| (-425 |#1|)))) (-1402 (((-652 (-961 |#1|))) NIL (|has| |#2| (-425 |#1|))) (((-652 (-961 |#1|)) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-4326 (($ $ $) NIL)) (-1589 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2940 (((-870) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL (|has| |#2| (-425 |#1|)))) (-3987 (((-652 (-1279 |#1|))) NIL (-2813 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2266 (($ $ $ $) NIL)) (-1662 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2898 (($ (-697 |#1|) $) NIL (|has| |#2| (-425 |#1|)))) (-3099 (($ $ $) NIL)) (-4118 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3313 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1547 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) 20)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-643 |#1| |#2|) (-13 (-752 |#1|) (-621 |#2|) (-10 -8 (-15 -2940 ($ |#2|)) (IF (|has| |#2| (-425 |#1|)) (-6 (-425 |#1|)) |%noBranch|) (IF (|has| |#2| (-374 |#1|)) (-6 (-374 |#1|)) |%noBranch|))) (-174) (-752 |#1|)) (T -643))
-((-2940 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-643 *3 *2)) (-4 *2 (-752 *3)))))
-(-13 (-752 |#1|) (-621 |#2|) (-10 -8 (-15 -2940 ($ |#2|)) (IF (|has| |#2| (-425 |#1|)) (-6 (-425 |#1|)) |%noBranch|) (IF (|has| |#2| (-374 |#1|)) (-6 (-374 |#1|)) |%noBranch|)))
-((-3139 (((-3 (-851 |#2|) "failed") |#2| (-300 |#2|) (-1170)) 106) (((-3 (-851 |#2|) (-2 (|:| |leftHandLimit| (-3 (-851 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-851 |#2|) "failed"))) "failed") |#2| (-300 (-851 |#2|))) 131)) (-4286 (((-3 (-841 |#2|) "failed") |#2| (-300 (-841 |#2|))) 136)))
-(((-644 |#1| |#2|) (-10 -7 (-15 -3139 ((-3 (-851 |#2|) (-2 (|:| |leftHandLimit| (-3 (-851 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-851 |#2|) "failed"))) "failed") |#2| (-300 (-851 |#2|)))) (-15 -4286 ((-3 (-841 |#2|) "failed") |#2| (-300 (-841 |#2|)))) (-15 -3139 ((-3 (-851 |#2|) "failed") |#2| (-300 |#2|) (-1170)))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -644))
-((-3139 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-300 *3)) (-5 *5 (-1170)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-851 *3)) (-5 *1 (-644 *6 *3)))) (-4286 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-300 (-841 *3))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-841 *3)) (-5 *1 (-644 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-3139 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-851 *3))) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (-851 *3) (-2 (|:| |leftHandLimit| (-3 (-851 *3) "failed")) (|:| |rightHandLimit| (-3 (-851 *3) "failed"))) "failed")) (-5 *1 (-644 *5 *3)))))
-(-10 -7 (-15 -3139 ((-3 (-851 |#2|) (-2 (|:| |leftHandLimit| (-3 (-851 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-851 |#2|) "failed"))) "failed") |#2| (-300 (-851 |#2|)))) (-15 -4286 ((-3 (-841 |#2|) "failed") |#2| (-300 (-841 |#2|)))) (-15 -3139 ((-3 (-851 |#2|) "failed") |#2| (-300 |#2|) (-1170))))
-((-3139 (((-3 (-851 (-415 (-961 |#1|))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))) (-1170)) 86) (((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|)))) 20) (((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-851 (-961 |#1|)))) 35)) (-4286 (((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|)))) 23) (((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-841 (-961 |#1|)))) 43)))
-(((-645 |#1|) (-10 -7 (-15 -3139 ((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-851 (-961 |#1|))))) (-15 -3139 ((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -4286 ((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-841 (-961 |#1|))))) (-15 -4286 ((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -3139 ((-3 (-851 (-415 (-961 |#1|))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))) (-1170)))) (-460)) (T -645))
-((-3139 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-300 (-415 (-961 *6)))) (-5 *5 (-1170)) (-5 *3 (-415 (-961 *6))) (-4 *6 (-460)) (-5 *2 (-851 *3)) (-5 *1 (-645 *6)))) (-4286 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5))) (-4 *5 (-460)) (-5 *2 (-841 *3)) (-5 *1 (-645 *5)))) (-4286 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-841 (-961 *5)))) (-4 *5 (-460)) (-5 *2 (-841 (-415 (-961 *5)))) (-5 *1 (-645 *5)) (-5 *3 (-415 (-961 *5))))) (-3139 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5))) (-4 *5 (-460)) (-5 *2 (-3 (-851 *3) (-2 (|:| |leftHandLimit| (-3 (-851 *3) "failed")) (|:| |rightHandLimit| (-3 (-851 *3) "failed"))) "failed")) (-5 *1 (-645 *5)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-851 (-961 *5)))) (-4 *5 (-460)) (-5 *2 (-3 (-851 (-415 (-961 *5))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 *5))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 *5))) "failed"))) "failed")) (-5 *1 (-645 *5)) (-5 *3 (-415 (-961 *5))))))
-(-10 -7 (-15 -3139 ((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-851 (-961 |#1|))))) (-15 -3139 ((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -4286 ((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-841 (-961 |#1|))))) (-15 -4286 ((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -3139 ((-3 (-851 (-415 (-961 |#1|))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))) (-1170))))
-((-4115 (((-3 (-1279 (-415 |#1|)) "failed") (-1279 |#2|) |#2|) 64 (-2074 (|has| |#1| (-370)))) (((-3 (-1279 |#1|) "failed") (-1279 |#2|) |#2|) 49 (|has| |#1| (-370)))) (-3716 (((-112) (-1279 |#2|)) 33)) (-1599 (((-3 (-1279 |#1|) "failed") (-1279 |#2|)) 40)))
-(((-646 |#1| |#2|) (-10 -7 (-15 -3716 ((-112) (-1279 |#2|))) (-15 -1599 ((-3 (-1279 |#1|) "failed") (-1279 |#2|))) (IF (|has| |#1| (-370)) (-15 -4115 ((-3 (-1279 |#1|) "failed") (-1279 |#2|) |#2|)) (-15 -4115 ((-3 (-1279 (-415 |#1|)) "failed") (-1279 |#2|) |#2|)))) (-564) (-13 (-1060) (-647 |#1|))) (T -646))
-((-4115 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 *5))) (-2074 (-4 *5 (-370))) (-4 *5 (-564)) (-5 *2 (-1279 (-415 *5))) (-5 *1 (-646 *5 *4)))) (-4115 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 *5))) (-4 *5 (-370)) (-4 *5 (-564)) (-5 *2 (-1279 *5)) (-5 *1 (-646 *5 *4)))) (-1599 (*1 *2 *3) (|partial| -12 (-5 *3 (-1279 *5)) (-4 *5 (-13 (-1060) (-647 *4))) (-4 *4 (-564)) (-5 *2 (-1279 *4)) (-5 *1 (-646 *4 *5)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-1279 *5)) (-4 *5 (-13 (-1060) (-647 *4))) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-646 *4 *5)))))
-(-10 -7 (-15 -3716 ((-112) (-1279 |#2|))) (-15 -1599 ((-3 (-1279 |#1|) "failed") (-1279 |#2|))) (IF (|has| |#1| (-370)) (-15 -4115 ((-3 (-1279 |#1|) "failed") (-1279 |#2|) |#2|)) (-15 -4115 ((-3 (-1279 (-415 |#1|)) "failed") (-1279 |#2|) |#2|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2993 (((-697 |#1|) (-1279 $)) 31) (((-697 |#1|) (-697 $)) 30) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 29)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27)))
-(((-647 |#1|) (-141) (-1060)) (T -647))
-((-2993 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-647 *4)) (-4 *4 (-1060)) (-5 *2 (-697 *4)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-697 *1)) (-4 *1 (-647 *4)) (-4 *4 (-1060)) (-5 *2 (-697 *4)))) (-2993 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *1)) (-5 *4 (-1279 *1)) (-4 *1 (-647 *5)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -3544 (-697 *5)) (|:| |vec| (-1279 *5)))))))
-(-13 (-656 |t#1|) (-10 -8 (-15 -2993 ((-697 |t#1|) (-1279 $))) (-15 -2993 ((-697 |t#1|) (-697 $))) (-15 -2993 ((-2 (|:| -3544 (-697 |t#1|)) (|:| |vec| (-1279 |t#1|))) (-697 $) (-1279 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 16 T CONST)) (-2978 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
-(((-648 |#1|) (-141) (-1069)) (T -648))
-NIL
-(-13 (-654 |t#1|) (-1062 |t#1|))
-(((-102) . T) ((-621 (-870)) . T) ((-654 |#1|) . T) ((-1062 |#1|) . T) ((-1111) . T))
-((-2678 ((|#2| (-652 |#1|) (-652 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-652 |#1|) (-652 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) |#2|) 17) ((|#2| (-652 |#1|) (-652 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|)) 12)))
-(((-649 |#1| |#2|) (-10 -7 (-15 -2678 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|))) (-15 -2678 (|#2| (-652 |#1|) (-652 |#2|) |#1|)) (-15 -2678 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) |#2|)) (-15 -2678 (|#2| (-652 |#1|) (-652 |#2|) |#1| |#2|)) (-15 -2678 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) (-1 |#2| |#1|))) (-15 -2678 (|#2| (-652 |#1|) (-652 |#2|) |#1| (-1 |#2| |#1|)))) (-1111) (-1229)) (T -649))
-((-2678 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1111)) (-4 *2 (-1229)) (-5 *1 (-649 *5 *2)))) (-2678 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-652 *5)) (-5 *4 (-652 *6)) (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *1 (-649 *5 *6)))) (-2678 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-4 *5 (-1111)) (-4 *2 (-1229)) (-5 *1 (-649 *5 *2)))) (-2678 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 *5)) (-4 *6 (-1111)) (-4 *5 (-1229)) (-5 *2 (-1 *5 *6)) (-5 *1 (-649 *6 *5)))) (-2678 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-4 *5 (-1111)) (-4 *2 (-1229)) (-5 *1 (-649 *5 *2)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *6)) (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *5 *6)))))
-(-10 -7 (-15 -2678 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|))) (-15 -2678 (|#2| (-652 |#1|) (-652 |#2|) |#1|)) (-15 -2678 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) |#2|)) (-15 -2678 (|#2| (-652 |#1|) (-652 |#2|) |#1| |#2|)) (-15 -2678 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) (-1 |#2| |#1|))) (-15 -2678 (|#2| (-652 |#1|) (-652 |#2|) |#1| (-1 |#2| |#1|))))
-((-2273 (((-652 |#2|) (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|) 16)) (-2865 ((|#2| (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|) 18)) (-1776 (((-652 |#2|) (-1 |#2| |#1|) (-652 |#1|)) 13)))
-(((-650 |#1| |#2|) (-10 -7 (-15 -2273 ((-652 |#2|) (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|)) (-15 -2865 (|#2| (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|)) (-15 -1776 ((-652 |#2|) (-1 |#2| |#1|) (-652 |#1|)))) (-1229) (-1229)) (T -650))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-652 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-652 *6)) (-5 *1 (-650 *5 *6)))) (-2865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-652 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-650 *5 *2)))) (-2273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-652 *6)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-5 *2 (-652 *5)) (-5 *1 (-650 *6 *5)))))
-(-10 -7 (-15 -2273 ((-652 |#2|) (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|)) (-15 -2865 (|#2| (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|)) (-15 -1776 ((-652 |#2|) (-1 |#2| |#1|) (-652 |#1|))))
-((-1776 (((-652 |#3|) (-1 |#3| |#1| |#2|) (-652 |#1|) (-652 |#2|)) 21)))
-(((-651 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-652 |#3|) (-1 |#3| |#1| |#2|) (-652 |#1|) (-652 |#2|)))) (-1229) (-1229) (-1229)) (T -651))
-((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-652 *6)) (-5 *5 (-652 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-652 *8)) (-5 *1 (-651 *6 *7 *8)))))
-(-10 -7 (-15 -1776 ((-652 |#3|) (-1 |#3| |#1| |#2|) (-652 |#1|) (-652 |#2|))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) NIL)) (-2401 ((|#1| $) NIL)) (-1969 (($ $) NIL)) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-4382 (($ $ (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) $) NIL (|has| |#1| (-858))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3314 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2766 (($ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2506 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-1385 (($ $ $) NIL (|has| $ (-6 -4455)))) (-2871 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-4178 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "rest" $) NIL (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-2134 (($ $ $) 37 (|has| |#1| (-1111)))) (-2339 (($ $ $) 41 (|has| |#1| (-1111)))) (-1938 (($ $ $) 44 (|has| |#1| (-1111)))) (-2613 (($ (-1 (-112) |#1|) $) NIL)) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2388 ((|#1| $) NIL)) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2923 (($ $) 23) (($ $ (-779)) NIL)) (-2704 (($ $) NIL (|has| |#1| (-1111)))) (-2086 (($ $) 36 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3554 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) NIL)) (-3332 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-4055 (((-112) $) NIL)) (-1439 (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111))) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) (-1 (-112) |#1|) $) NIL)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2063 (((-112) $) 11)) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3518 (($) 9 T CONST)) (-3787 (($ (-779) |#1|) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-3892 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1767 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1787 (($ |#1|) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3505 (((-652 |#1|) $) NIL)) (-2087 (((-112) $) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3357 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-2036 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1593 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2912 ((|#1| $) 20) (($ $ (-779)) NIL)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3064 (((-112) $) NIL)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) 39)) (-1613 (($) 38)) (-2196 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1246 (-572))) NIL) ((|#1| $ (-572)) 42) ((|#1| $ (-572) |#1|) NIL)) (-2157 (((-572) $ $) NIL)) (-1696 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-2835 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3315 (((-112) $) NIL)) (-2285 (($ $) NIL)) (-2391 (($ $) NIL (|has| $ (-6 -4455)))) (-3417 (((-779) $) NIL)) (-3479 (($ $) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) 53 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) NIL)) (-2220 (($ |#1| $) 12)) (-1700 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4155 (($ $ $) 35) (($ |#1| $) 43) (($ (-652 $)) NIL) (($ $ |#1|) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2854 (($ $ $) 13)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3547 (((-1170) $) 31 (|has| |#1| (-836))) (((-1170) $ (-112)) 32 (|has| |#1| (-836))) (((-1284) (-830) $) 33 (|has| |#1| (-836))) (((-1284) (-830) $ (-112)) 34 (|has| |#1| (-836)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-652 |#1|) (-13 (-674 |#1|) (-10 -8 (-15 -3518 ($) -1705) (-15 -2063 ((-112) $)) (-15 -2220 ($ |#1| $)) (-15 -2854 ($ $ $)) (IF (|has| |#1| (-1111)) (PROGN (-15 -2134 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -1938 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) (-1229)) (T -652))
-((-3518 (*1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1229)))) (-2220 (*1 *1 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))) (-2854 (*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))) (-2134 (*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))) (-2339 (*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))) (-1938 (*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))))
-(-13 (-674 |#1|) (-10 -8 (-15 -3518 ($) -1705) (-15 -2063 ((-112) $)) (-15 -2220 ($ |#1| $)) (-15 -2854 ($ $ $)) (IF (|has| |#1| (-1111)) (PROGN (-15 -2134 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -1938 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 11) (($ (-1193)) NIL) (((-1193) $) NIL) ((|#1| $) 8)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-653 |#1|) (-13 (-1094) (-621 |#1|)) (-1111)) (T -653))
-NIL
-(-13 (-1094) (-621 |#1|))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 16 T CONST)) (-2978 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
-(((-654 |#1|) (-141) (-1069)) (T -654))
-((-2131 (*1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1069)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1069)))))
-(-13 (-1111) (-10 -8 (-15 (-2131) ($) -1705) (-15 -2697 ((-112) $)) (-15 * ($ |t#1| $))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3899 (($ |#1| |#1| $) 43)) (-1631 (((-112) $ (-779)) NIL)) (-2613 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-2704 (($ $) 45)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3554 (($ |#1| $) 56 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4454)))) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-1863 (((-652 |#1|) $) 9 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 37)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1651 ((|#1| $) 47)) (-2036 (($ |#1| $) 29) (($ |#1| $ (-779)) 42)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3378 ((|#1| $) 50)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 23)) (-1613 (($) 28)) (-4332 (((-112) $) 54)) (-4261 (((-652 (-2 (|:| -1907 |#1|) (|:| -3973 (-779)))) $) 67)) (-3438 (($) 26) (($ (-652 |#1|)) 19)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) 63 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) 20)) (-1835 (((-544) $) 34 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) NIL)) (-2940 (((-870) $) 14 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 24)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 69 (|has| |#1| (-1111)))) (-2860 (((-779) $) 17 (|has| $ (-6 -4454)))))
-(((-655 |#1|) (-13 (-703 |#1|) (-10 -8 (-6 -4454) (-15 -4332 ((-112) $)) (-15 -3899 ($ |#1| |#1| $)))) (-1111)) (T -655))
-((-4332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-1111)))) (-3899 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1111)))))
-(-13 (-703 |#1|) (-10 -8 (-6 -4454) (-15 -4332 ((-112) $)) (-15 -3899 ($ |#1| |#1| $))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27)))
-(((-656 |#1|) (-141) (-1069)) (T -656))
-NIL
-(-13 (-21) (-654 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779) $) 17)) (-2456 (($ $ |#1|) 69)) (-3133 (($ $) 39)) (-4421 (($ $) 37)) (-1695 (((-3 |#1| "failed") $) 61)) (-2204 ((|#1| $) NIL)) (-3743 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2532 (((-870) $ (-1 (-870) (-870) (-870)) (-1 (-870) (-870) (-870)) (-572)) 56)) (-2321 ((|#1| $ (-572)) 35)) (-1473 ((|#2| $ (-572)) 34)) (-3984 (($ (-1 |#1| |#1|) $) 41)) (-4081 (($ (-1 |#2| |#2|) $) 47)) (-4052 (($) 11)) (-1828 (($ |#1| |#2|) 24)) (-2374 (($ (-652 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|)))) 25)) (-3546 (((-652 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $) 14)) (-1558 (($ |#1| $) 71)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3158 (((-112) $ $) 76)) (-2940 (((-870) $) 21) (($ |#1|) 18)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 27)))
-(((-657 |#1| |#2| |#3|) (-13 (-1111) (-1049 |#1|) (-10 -8 (-15 -2532 ((-870) $ (-1 (-870) (-870) (-870)) (-1 (-870) (-870) (-870)) (-572))) (-15 -3546 ((-652 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $)) (-15 -1828 ($ |#1| |#2|)) (-15 -2374 ($ (-652 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))))) (-15 -1473 (|#2| $ (-572))) (-15 -2321 (|#1| $ (-572))) (-15 -4421 ($ $)) (-15 -3133 ($ $)) (-15 -1486 ((-779) $)) (-15 -4052 ($)) (-15 -2456 ($ $ |#1|)) (-15 -1558 ($ |#1| $)) (-15 -3743 ($ |#1| |#2| $)) (-15 -3743 ($ $ $)) (-15 -3158 ((-112) $ $)) (-15 -4081 ($ (-1 |#2| |#2|) $)) (-15 -3984 ($ (-1 |#1| |#1|) $)))) (-1111) (-23) |#2|) (T -657))
-((-2532 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-870) (-870) (-870))) (-5 *4 (-572)) (-5 *2 (-870)) (-5 *1 (-657 *5 *6 *7)) (-4 *5 (-1111)) (-4 *6 (-23)) (-14 *7 *6))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 *4)))) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4))) (-1828 (*1 *1 *2 *3) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 *4)))) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-657 *3 *4 *5)))) (-1473 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *2 (-23)) (-5 *1 (-657 *4 *2 *5)) (-4 *4 (-1111)) (-14 *5 *2))) (-2321 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *2 (-1111)) (-5 *1 (-657 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4421 (*1 *1 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-3133 (*1 *1 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4))) (-4052 (*1 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-2456 (*1 *1 *1 *2) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-1558 (*1 *1 *2 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-3743 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-3743 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-3158 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)))) (-3984 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-657 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1111) (-1049 |#1|) (-10 -8 (-15 -2532 ((-870) $ (-1 (-870) (-870) (-870)) (-1 (-870) (-870) (-870)) (-572))) (-15 -3546 ((-652 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $)) (-15 -1828 ($ |#1| |#2|)) (-15 -2374 ($ (-652 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))))) (-15 -1473 (|#2| $ (-572))) (-15 -2321 (|#1| $ (-572))) (-15 -4421 ($ $)) (-15 -3133 ($ $)) (-15 -1486 ((-779) $)) (-15 -4052 ($)) (-15 -2456 ($ $ |#1|)) (-15 -1558 ($ |#1| $)) (-15 -3743 ($ |#1| |#2| $)) (-15 -3743 ($ $ $)) (-15 -3158 ((-112) $ $)) (-15 -4081 ($ (-1 |#2| |#2|) $)) (-15 -3984 ($ (-1 |#1| |#1|) $))))
-((-3374 (((-572) $) 31)) (-1593 (($ |#2| $ (-572)) 27) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) 12)) (-1370 (((-112) (-572) $) 18)) (-4155 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-652 $)) NIL)))
-(((-658 |#1| |#2|) (-10 -8 (-15 -1593 (|#1| |#1| |#1| (-572))) (-15 -1593 (|#1| |#2| |#1| (-572))) (-15 -4155 (|#1| (-652 |#1|))) (-15 -4155 (|#1| |#1| |#1|)) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#2|)) (-15 -3374 ((-572) |#1|)) (-15 -1986 ((-652 (-572)) |#1|)) (-15 -1370 ((-112) (-572) |#1|))) (-659 |#2|) (-1229)) (T -658))
-NIL
-(-10 -8 (-15 -1593 (|#1| |#1| |#1| (-572))) (-15 -1593 (|#1| |#2| |#1| (-572))) (-15 -4155 (|#1| (-652 |#1|))) (-15 -4155 (|#1| |#1| |#1|)) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#2|)) (-15 -3374 ((-572) |#1|)) (-15 -1986 ((-652 (-572)) |#1|)) (-15 -1370 ((-112) (-572) |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3176 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) 8)) (-3140 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2086 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 52)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3787 (($ (-779) |#1|) 70)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 44 (|has| (-572) (-858)))) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 45 (|has| (-572) (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1986 (((-652 (-572)) $) 47)) (-1370 (((-112) (-572) $) 48)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2912 ((|#1| $) 43 (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2476 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-2835 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 72)) (-4155 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-659 |#1|) (-141) (-1229)) (T -659))
-((-3787 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-4155 (*1 *1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229)))) (-4155 (*1 *1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229)))) (-4155 (*1 *1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-1246 (-572))) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-1593 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-659 *2)) (-4 *2 (-1229)))) (-1593 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1246 (-572))) (|has| *1 (-6 -4455)) (-4 *1 (-659 *2)) (-4 *2 (-1229)))))
-(-13 (-612 (-572) |t#1|) (-152 |t#1|) (-292 (-1246 (-572)) $) (-10 -8 (-15 -3787 ($ (-779) |t#1|)) (-15 -4155 ($ $ |t#1|)) (-15 -4155 ($ |t#1| $)) (-15 -4155 ($ $ $)) (-15 -4155 ($ (-652 $))) (-15 -1776 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2835 ($ $ (-572))) (-15 -2835 ($ $ (-1246 (-572)))) (-15 -1593 ($ |t#1| $ (-572))) (-15 -1593 ($ $ $ (-572))) (IF (|has| $ (-6 -4455)) (-15 -3140 (|t#1| $ (-1246 (-572)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-1724 (((-3 |#2| "failed") |#3| |#2| (-1188) |#2| (-652 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) "failed") |#3| |#2| (-1188)) 44)))
-(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -1724 ((-3 (-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) "failed") |#3| |#2| (-1188))) (-15 -1724 ((-3 |#2| "failed") |#3| |#2| (-1188) |#2| (-652 |#2|)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968)) (-664 |#2|)) (T -660))
-((-1724 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 *2)) (-4 *2 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-660 *6 *2 *3)) (-4 *3 (-664 *2)))) (-1724 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1188)) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-4 *4 (-13 (-29 *6) (-1214) (-968))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4362 (-652 *4)))) (-5 *1 (-660 *6 *4 *3)) (-4 *3 (-664 *4)))))
-(-10 -7 (-15 -1724 ((-3 (-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) "failed") |#3| |#2| (-1188))) (-15 -1724 ((-3 |#2| "failed") |#3| |#2| (-1188) |#2| (-652 |#2|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3253 (($ $) NIL (|has| |#1| (-370)))) (-3883 (($ $ $) NIL (|has| |#1| (-370)))) (-2669 (($ $ (-779)) NIL (|has| |#1| (-370)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1490 (($ $ $) NIL (|has| |#1| (-370)))) (-4029 (($ $ $) NIL (|has| |#1| (-370)))) (-2495 (($ $ $) NIL (|has| |#1| (-370)))) (-1715 (($ $ $) NIL (|has| |#1| (-370)))) (-1865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-1556 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-460)))) (-1886 (((-112) $) NIL)) (-4333 (($ |#1| (-779)) NIL)) (-1849 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-564)))) (-2035 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-564)))) (-2649 (((-779) $) NIL)) (-2118 (($ $ $) NIL (|has| |#1| (-370)))) (-4262 (($ $ $) NIL (|has| |#1| (-370)))) (-3524 (($ $ $) NIL (|has| |#1| (-370)))) (-3272 (($ $ $) NIL (|has| |#1| (-370)))) (-4180 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-3461 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-1376 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-2196 ((|#1| $ |#1|) NIL)) (-1457 (($ $ $) NIL (|has| |#1| (-370)))) (-4390 (((-779) $) NIL)) (-1711 ((|#1| $) NIL (|has| |#1| (-460)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) NIL)) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-779)) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2898 ((|#1| $ |#1| |#1|) NIL)) (-1812 (($ $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($) NIL)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-661 |#1|) (-664 |#1|) (-237)) (T -661))
-NIL
-(-664 |#1|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3253 (($ $) NIL (|has| |#1| (-370)))) (-3883 (($ $ $) NIL (|has| |#1| (-370)))) (-2669 (($ $ (-779)) NIL (|has| |#1| (-370)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1490 (($ $ $) NIL (|has| |#1| (-370)))) (-4029 (($ $ $) NIL (|has| |#1| (-370)))) (-2495 (($ $ $) NIL (|has| |#1| (-370)))) (-1715 (($ $ $) NIL (|has| |#1| (-370)))) (-1865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-1556 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-460)))) (-1886 (((-112) $) NIL)) (-4333 (($ |#1| (-779)) NIL)) (-1849 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-564)))) (-2035 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-564)))) (-2649 (((-779) $) NIL)) (-2118 (($ $ $) NIL (|has| |#1| (-370)))) (-4262 (($ $ $) NIL (|has| |#1| (-370)))) (-3524 (($ $ $) NIL (|has| |#1| (-370)))) (-3272 (($ $ $) NIL (|has| |#1| (-370)))) (-4180 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-3461 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-1376 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-2196 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1457 (($ $ $) NIL (|has| |#1| (-370)))) (-4390 (((-779) $) NIL)) (-1711 ((|#1| $) NIL (|has| |#1| (-460)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) NIL)) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-779)) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2898 ((|#1| $ |#1| |#1|) NIL)) (-1812 (($ $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($) NIL)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-662 |#1| |#2|) (-13 (-664 |#1|) (-292 |#2| |#2|)) (-237) (-13 (-656 |#1|) (-10 -8 (-15 -3902 ($ $))))) (T -662))
-NIL
-(-13 (-664 |#1|) (-292 |#2| |#2|))
-((-3253 (($ $) 29)) (-1812 (($ $) 27)) (-3608 (($) 13)))
-(((-663 |#1| |#2|) (-10 -8 (-15 -3253 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 -3608 (|#1|))) (-664 |#2|) (-1060)) (T -663))
-NIL
-(-10 -8 (-15 -3253 (|#1| |#1|)) (-15 -1812 (|#1| |#1|)) (-15 -3608 (|#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3253 (($ $) 87 (|has| |#1| (-370)))) (-3883 (($ $ $) 89 (|has| |#1| (-370)))) (-2669 (($ $ (-779)) 88 (|has| |#1| (-370)))) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1490 (($ $ $) 50 (|has| |#1| (-370)))) (-4029 (($ $ $) 51 (|has| |#1| (-370)))) (-2495 (($ $ $) 53 (|has| |#1| (-370)))) (-1715 (($ $ $) 48 (|has| |#1| (-370)))) (-1865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 47 (|has| |#1| (-370)))) (-2760 (((-3 $ "failed") $ $) 49 (|has| |#1| (-370)))) (-1556 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 52 (|has| |#1| (-370)))) (-1695 (((-3 (-572) "failed") $) 80 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 77 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 74)) (-2204 (((-572) $) 79 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 76 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 75)) (-1390 (($ $) 69)) (-2062 (((-3 $ "failed") $) 37)) (-1876 (($ $) 60 (|has| |#1| (-460)))) (-1886 (((-112) $) 35)) (-4333 (($ |#1| (-779)) 67)) (-1849 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 62 (|has| |#1| (-564)))) (-2035 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63 (|has| |#1| (-564)))) (-2649 (((-779) $) 71)) (-2118 (($ $ $) 57 (|has| |#1| (-370)))) (-4262 (($ $ $) 58 (|has| |#1| (-370)))) (-3524 (($ $ $) 46 (|has| |#1| (-370)))) (-3272 (($ $ $) 55 (|has| |#1| (-370)))) (-4180 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 54 (|has| |#1| (-370)))) (-3461 (((-3 $ "failed") $ $) 56 (|has| |#1| (-370)))) (-1376 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 59 (|has| |#1| (-370)))) (-1368 ((|#1| $) 70)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2834 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-564)))) (-2196 ((|#1| $ |#1|) 92)) (-1457 (($ $ $) 86 (|has| |#1| (-370)))) (-4390 (((-779) $) 72)) (-1711 ((|#1| $) 61 (|has| |#1| (-460)))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 78 (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 73)) (-4268 (((-652 |#1|) $) 66)) (-3979 ((|#1| $ (-779)) 68)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2898 ((|#1| $ |#1| |#1|) 65)) (-1812 (($ $) 90)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($) 91)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-664 |#1|) (-141) (-1060)) (T -664))
-((-3608 (*1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)))) (-1812 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)))) (-3883 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-664 *3)) (-4 *3 (-1060)) (-4 *3 (-370)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-1457 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(-13 (-860 |t#1|) (-292 |t#1| |t#1|) (-10 -8 (-15 -3608 ($)) (-15 -1812 ($ $)) (IF (|has| |t#1| (-370)) (PROGN (-15 -3883 ($ $ $)) (-15 -2669 ($ $ (-779))) (-15 -3253 ($ $)) (-15 -1457 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 #0=(-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-292 |#1| |#1|) . T) ((-419 |#1|) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-734) . T) ((-1049 #0#) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) . T) ((-860 |#1|) . T))
-((-4307 (((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|))) 85 (|has| |#1| (-27)))) (-4218 (((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|))) 84 (|has| |#1| (-27))) (((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|)) 19)))
-(((-665 |#1| |#2|) (-10 -7 (-15 -4218 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4218 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)))) (-15 -4307 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|))))) |%noBranch|)) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -665))
-((-4307 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-661 (-415 *5)))) (-5 *1 (-665 *4 *5)) (-5 *3 (-661 (-415 *5))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-661 (-415 *5)))) (-5 *1 (-665 *4 *5)) (-5 *3 (-661 (-415 *5))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-661 (-415 *6)))) (-5 *1 (-665 *5 *6)) (-5 *3 (-661 (-415 *6))))))
-(-10 -7 (-15 -4218 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4218 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)))) (-15 -4307 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|))))) |%noBranch|))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3253 (($ $) NIL (|has| |#1| (-370)))) (-3883 (($ $ $) 28 (|has| |#1| (-370)))) (-2669 (($ $ (-779)) 31 (|has| |#1| (-370)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1490 (($ $ $) NIL (|has| |#1| (-370)))) (-4029 (($ $ $) NIL (|has| |#1| (-370)))) (-2495 (($ $ $) NIL (|has| |#1| (-370)))) (-1715 (($ $ $) NIL (|has| |#1| (-370)))) (-1865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-1556 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-460)))) (-1886 (((-112) $) NIL)) (-4333 (($ |#1| (-779)) NIL)) (-1849 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-564)))) (-2035 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-564)))) (-2649 (((-779) $) NIL)) (-2118 (($ $ $) NIL (|has| |#1| (-370)))) (-4262 (($ $ $) NIL (|has| |#1| (-370)))) (-3524 (($ $ $) NIL (|has| |#1| (-370)))) (-3272 (($ $ $) NIL (|has| |#1| (-370)))) (-4180 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-3461 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-1376 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-2196 ((|#1| $ |#1|) 24)) (-1457 (($ $ $) 33 (|has| |#1| (-370)))) (-4390 (((-779) $) NIL)) (-1711 ((|#1| $) NIL (|has| |#1| (-460)))) (-2940 (((-870) $) 20) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) NIL)) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-779)) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2898 ((|#1| $ |#1| |#1|) 23)) (-1812 (($ $) NIL)) (-2131 (($) 21 T CONST)) (-2143 (($) 8 T CONST)) (-3608 (($) NIL)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-666 |#1| |#2|) (-664 |#1|) (-1060) (-1 |#1| |#1|)) (T -666))
-NIL
-(-664 |#1|)
-((-3883 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2669 ((|#2| |#2| (-779) (-1 |#1| |#1|)) 45)) (-1457 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67)))
-(((-667 |#1| |#2|) (-10 -7 (-15 -3883 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2669 (|#2| |#2| (-779) (-1 |#1| |#1|))) (-15 -1457 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-370) (-664 |#1|)) (T -667))
-((-1457 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-370)) (-5 *1 (-667 *4 *2)) (-4 *2 (-664 *4)))) (-2669 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370)) (-5 *1 (-667 *5 *2)) (-4 *2 (-664 *5)))) (-3883 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-370)) (-5 *1 (-667 *4 *2)) (-4 *2 (-664 *4)))))
-(-10 -7 (-15 -3883 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2669 (|#2| |#2| (-779) (-1 |#1| |#1|))) (-15 -1457 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2922 (($ $ $) 9)))
-(((-668 |#1|) (-10 -8 (-15 -2922 (|#1| |#1| |#1|))) (-669)) (T -668))
-NIL
-(-10 -8 (-15 -2922 (|#1| |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2874 (($ $) 10)) (-2922 (($ $ $) 8)) (-2978 (((-112) $ $) 6)) (-2909 (($ $ $) 9)))
-(((-669) (-141)) (T -669))
-((-2874 (*1 *1 *1) (-4 *1 (-669))) (-2909 (*1 *1 *1 *1) (-4 *1 (-669))) (-2922 (*1 *1 *1 *1) (-4 *1 (-669))))
-(-13 (-102) (-10 -8 (-15 -2874 ($ $)) (-15 -2909 ($ $ $)) (-15 -2922 ($ $ $))))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-1860 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) NIL)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) NIL)) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) NIL)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-860)))) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1765 (((-654 |#1|) $) NIL)) (-1726 (((-112) |#1| $) NIL)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-2459 (((-654 |#1|) $) NIL)) (-2607 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-560 |#1| |#2| |#3|) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) (-1113) (-1113) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456)))) (T -560))
+NIL
+(-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456)))
+((-2740 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1186 |#2|) (-1186 |#2|))) 50)))
+(((-561 |#1| |#2|) (-10 -7 (-15 -2740 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1186 |#2|) (-1186 |#2|))))) (-566) (-13 (-27) (-440 |#1|))) (T -561))
+((-2740 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1186 *3) (-1186 *3))) (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) (-5 *1 (-561 *6 *3)))))
+(-10 -7 (-15 -2740 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1186 |#2|) (-1186 |#2|)))))
+((-3570 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-4263 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-4270 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 220)))
+(((-562 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4270 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3570 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4263 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-566) (-1051 (-574))) (-13 (-27) (-440 |#1|)) (-1257 |#2|) (-1257 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -562))
+((-4263 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *7 (-1257 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) (-4 *2 (-351 *5 *6 *7)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1257 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)))) (-4 *8 (-1257 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))) (-4270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1257 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)))) (-4 *8 (-1257 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))))
+(-10 -7 (-15 -4270 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3570 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4263 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1409 (((-112) (-574) (-574)) 12)) (-1702 (((-574) (-574)) 7)) (-1695 (((-574) (-574) (-574)) 10)))
+(((-563) (-10 -7 (-15 -1702 ((-574) (-574))) (-15 -1695 ((-574) (-574) (-574))) (-15 -1409 ((-112) (-574) (-574))))) (T -563))
+((-1409 (*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563)))) (-1695 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))) (-1702 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))))
+(-10 -7 (-15 -1702 ((-574) (-574))) (-15 -1695 ((-574) (-574) (-574))) (-15 -1409 ((-112) (-574) (-574))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-3014 ((|#1| $) 67)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2364 (($ $) 97)) (-2246 (($ $) 80)) (-1854 ((|#1| $) 68)) (-2950 (((-3 $ "failed") $ $) 20)) (-4229 (($ $) 79)) (-2343 (($ $) 96)) (-2227 (($ $) 81)) (-2388 (($ $) 95)) (-2267 (($ $) 82)) (-3670 (($) 18 T CONST)) (-1697 (((-3 (-574) "failed") $) 75)) (-2209 (((-574) $) 76)) (-1950 (((-3 $ "failed") $) 37)) (-1351 (($ |#1| |#1|) 72)) (-3434 (((-112) $) 66)) (-3001 (($) 107)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 78)) (-3244 (((-112) $) 65)) (-3658 (($ $ $) 113)) (-2106 (($ $ $) 112)) (-3119 (($ $) 104)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1491 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-417 (-574))) 70)) (-3361 ((|#1| $) 69)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-2838 (((-3 $ "failed") $ $) 48)) (-1610 (($ $) 105)) (-2402 (($ $) 94)) (-2275 (($ $) 83)) (-2375 (($ $) 93)) (-2257 (($ $) 84)) (-2353 (($ $) 92)) (-2237 (($ $) 85)) (-2702 (((-112) $ |#1|) 64)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 74)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2441 (($ $) 103)) (-2305 (($ $) 91)) (-3798 (((-112) $ $) 45)) (-2414 (($ $) 102)) (-2287 (($ $) 90)) (-2465 (($ $) 101)) (-2325 (($ $) 89)) (-2521 (($ $) 100)) (-2334 (($ $) 88)) (-2453 (($ $) 99)) (-2315 (($ $) 87)) (-2428 (($ $) 98)) (-2297 (($ $) 86)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3041 (((-112) $ $) 110)) (-3016 (((-112) $ $) 109)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 111)) (-3005 (((-112) $ $) 108)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ $) 106) (($ $ (-417 (-574))) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-564 |#1|) (-141) (-13 (-414) (-1216))) (T -564))
+((-1491 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-1351 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-1491 (*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-1491 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-1854 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112)))) (-2702 (*1 *2 *1 *3) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112)))))
+(-13 (-462) (-860) (-1216) (-1015) (-1051 (-574)) (-10 -8 (-6 -3551) (-15 -1491 ($ |t#1| |t#1|)) (-15 -1351 ($ |t#1| |t#1|)) (-15 -1491 ($ |t#1|)) (-15 -1491 ($ (-417 (-574)))) (-15 -3361 (|t#1| $)) (-15 -1854 (|t#1| $)) (-15 -3014 (|t#1| $)) (-15 -3434 ((-112) $)) (-15 -3244 ((-112) $)) (-15 -2702 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-292) . T) ((-298) . T) ((-462) . T) ((-503) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1015) . T) ((-1051 (-574)) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) . T) ((-1219) . T))
+((-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 9)) (-2814 (($ $) 11)) (-2425 (((-112) $) 20)) (-1950 (((-3 $ "failed") $) 16)) (-3798 (((-112) $ $) 22)))
+(((-565 |#1|) (-10 -8 (-15 -2425 ((-112) |#1|)) (-15 -3798 ((-112) |#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -2047 ((-2 (|:| -1708 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1950 ((-3 |#1| "failed") |#1|))) (-566)) (T -565))
+NIL
+(-10 -8 (-15 -2425 ((-112) |#1|)) (-15 -3798 ((-112) |#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -2047 ((-2 (|:| -1708 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1950 ((-3 |#1| "failed") |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-566) (-141)) (T -566))
+((-2838 (*1 *1 *1 *1) (|partial| -4 *1 (-566))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1708 *1) (|:| -4443 *1) (|:| |associate| *1))) (-4 *1 (-566)))) (-2814 (*1 *1 *1) (-4 *1 (-566))) (-3798 (*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))))
+(-13 (-174) (-38 $) (-298) (-10 -8 (-15 -2838 ((-3 $ "failed") $ $)) (-15 -2047 ((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $)) (-15 -2814 ($ $)) (-15 -3798 ((-112) $ $)) (-15 -2425 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-1547 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1190) (-654 |#2|)) 38)) (-1875 (((-596 |#2|) |#2| (-1190)) 63)) (-4327 (((-3 |#2| "failed") |#2| (-1190)) 156)) (-2232 (((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) (-622 |#2|) (-654 (-622 |#2|))) 159)) (-3403 (((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) |#2|) 41)))
+(((-567 |#1| |#2|) (-10 -7 (-15 -3403 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) |#2|)) (-15 -1547 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1190) (-654 |#2|))) (-15 -4327 ((-3 |#2| "failed") |#2| (-1190))) (-15 -1875 ((-596 |#2|) |#2| (-1190))) (-15 -2232 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) (-622 |#2|) (-654 (-622 |#2|))))) (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -567))
+((-2232 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1190)) (-5 *6 (-654 (-622 *3))) (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3))) (-5 *1 (-567 *7 *3)))) (-1875 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-4327 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-1547 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6 *3)))) (-3403 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))))
+(-10 -7 (-15 -3403 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) |#2|)) (-15 -1547 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1190) (-654 |#2|))) (-15 -4327 ((-3 |#2| "failed") |#2| (-1190))) (-15 -1875 ((-596 |#2|) |#2| (-1190))) (-15 -2232 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) (-622 |#2|) (-654 (-622 |#2|)))))
+((-3440 (((-428 |#1|) |#1|) 19)) (-4220 (((-428 |#1|) |#1|) 34)) (-3479 (((-3 |#1| "failed") |#1|) 49)) (-2732 (((-428 |#1|) |#1|) 60)))
+(((-568 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -2732 ((-428 |#1|) |#1|)) (-15 -3479 ((-3 |#1| "failed") |#1|))) (-555)) (T -568))
+((-3479 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555)))) (-2732 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))))
+(-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -2732 ((-428 |#1|) |#1|)) (-15 -3479 ((-3 |#1| "failed") |#1|)))
+((-1385 (($) 9)) (-2008 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1765 (((-654 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-1709 (($ (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-3719 (($ (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1909 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2121 (((-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3863 (((-1286)) 11)))
+(((-569) (-10 -8 (-15 -1385 ($)) (-15 -3863 ((-1286))) (-15 -1765 ((-654 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3719 ($ (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1709 ($ (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2008 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2121 ((-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1909 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -569))
+((-1909 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-2008 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-569)))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-569)))) (-3863 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-569)))) (-1385 (*1 *1) (-5 *1 (-569))))
+(-10 -8 (-15 -1385 ($)) (-15 -3863 ((-1286))) (-15 -1765 ((-654 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3719 ($ (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1709 ($ (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2008 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2121 ((-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1909 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2967 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-4194 (((-1186 (-417 (-1186 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1186 |#2|)) 35)) (-2994 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1186 |#2|)) 115)) (-3805 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))) 85) (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|)) 55)) (-3073 (((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1186 |#2|))) 92) (((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1186 |#2|)) 114)) (-1355 (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) (-622 |#2|) |#2| (-417 (-1186 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) |#2| (-1186 |#2|)) 116)) (-2700 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2722 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))) 133 (|has| |#3| (-666 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2722 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|)) 132 (|has| |#3| (-666 |#2|)))) (-4345 ((|#2| (-1186 (-417 (-1186 |#2|))) (-622 |#2|) |#2|) 53)) (-2854 (((-1186 (-417 (-1186 |#2|))) (-1186 |#2|) (-622 |#2|)) 34)))
+(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -3805 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|))) (-15 -3805 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -3073 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1186 |#2|))) (-15 -3073 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -2994 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1186 |#2|))) (-15 -2994 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -1355 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) |#2| (-1186 |#2|))) (-15 -1355 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -4194 ((-1186 (-417 (-1186 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1186 |#2|))) (-15 -4345 (|#2| (-1186 (-417 (-1186 |#2|))) (-622 |#2|) |#2|)) (-15 -2854 ((-1186 (-417 (-1186 |#2|))) (-1186 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -2700 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2722 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|))) (-15 -2700 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2722 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))))) |%noBranch|)) (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1216)) (-1113)) (T -570))
+((-2700 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1186 *4))) (-4 *4 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113)))) (-2700 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1186 *4)) (-4 *4 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1186 (-417 (-1186 *6)))) (-5 *1 (-570 *5 *6 *7)) (-5 *3 (-1186 *6)) (-4 *7 (-1113)))) (-4345 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1186 (-417 (-1186 *2)))) (-5 *4 (-622 *2)) (-4 *2 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1113)))) (-4194 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1186 (-417 (-1186 *3)))) (-5 *1 (-570 *6 *3 *7)) (-5 *5 (-1186 *3)) (-4 *7 (-1113)))) (-1355 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) (-5 *5 (-417 (-1186 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1113)))) (-1355 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) (-5 *5 (-1186 *2)) (-4 *2 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1113)))) (-2994 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-417 (-1186 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1113)))) (-2994 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1186 *3)) (-4 *3 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1113)))) (-3073 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1186 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))) (-3073 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1186 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))) (-3805 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1186 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))) (-3805 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1186 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))))
+(-10 -7 (-15 -3805 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|))) (-15 -3805 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -3073 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1186 |#2|))) (-15 -3073 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -2994 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1186 |#2|))) (-15 -2994 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -1355 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) |#2| (-1186 |#2|))) (-15 -1355 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -4194 ((-1186 (-417 (-1186 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1186 |#2|))) (-15 -4345 (|#2| (-1186 (-417 (-1186 |#2|))) (-622 |#2|) |#2|)) (-15 -2854 ((-1186 (-417 (-1186 |#2|))) (-1186 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -2700 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2722 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|))) (-15 -2700 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2722 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))))) |%noBranch|))
+((-2552 (((-574) (-574) (-781)) 85)) (-2660 (((-574) (-574)) 83)) (-1433 (((-574) (-574)) 81)) (-2773 (((-574) (-574)) 87)) (-1545 (((-574) (-574) (-574)) 65)) (-2222 (((-574) (-574) (-574)) 62)) (-3489 (((-417 (-574)) (-574)) 30)) (-4300 (((-574) (-574)) 34)) (-2904 (((-574) (-574)) 74)) (-2836 (((-574) (-574)) 46)) (-3633 (((-654 (-574)) (-574)) 80)) (-2361 (((-574) (-574) (-574) (-574) (-574)) 58)) (-2289 (((-417 (-574)) (-574)) 55)))
+(((-571) (-10 -7 (-15 -2289 ((-417 (-574)) (-574))) (-15 -2361 ((-574) (-574) (-574) (-574) (-574))) (-15 -3633 ((-654 (-574)) (-574))) (-15 -2836 ((-574) (-574))) (-15 -2904 ((-574) (-574))) (-15 -4300 ((-574) (-574))) (-15 -3489 ((-417 (-574)) (-574))) (-15 -2222 ((-574) (-574) (-574))) (-15 -1545 ((-574) (-574) (-574))) (-15 -2773 ((-574) (-574))) (-15 -1433 ((-574) (-574))) (-15 -2660 ((-574) (-574))) (-15 -2552 ((-574) (-574) (-781))))) (T -571))
+((-2552 (*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571)))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-1545 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2222 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3489 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-4300 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3633 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-2361 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2289 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))))
+(-10 -7 (-15 -2289 ((-417 (-574)) (-574))) (-15 -2361 ((-574) (-574) (-574) (-574) (-574))) (-15 -3633 ((-654 (-574)) (-574))) (-15 -2836 ((-574) (-574))) (-15 -2904 ((-574) (-574))) (-15 -4300 ((-574) (-574))) (-15 -3489 ((-417 (-574)) (-574))) (-15 -2222 ((-574) (-574) (-574))) (-15 -1545 ((-574) (-574) (-574))) (-15 -2773 ((-574) (-574))) (-15 -1433 ((-574) (-574))) (-15 -2660 ((-574) (-574))) (-15 -2552 ((-574) (-574) (-781))))
+((-2276 (((-2 (|:| |answer| |#4|) (|:| -2433 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
+(((-572 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2276 ((-2 (|:| |answer| |#4|) (|:| -2433 |#4|)) |#4| (-1 |#2| |#2|)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -572))
+((-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-4 *7 (-1257 (-417 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2433 *3))) (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7)))))
+(-10 -7 (-15 -2276 ((-2 (|:| |answer| |#4|) (|:| -2433 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2276 (((-2 (|:| |answer| (-417 |#2|)) (|:| -2433 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 18)))
+(((-573 |#1| |#2|) (-10 -7 (-15 -2276 ((-2 (|:| |answer| (-417 |#2|)) (|:| -2433 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1257 |#1|)) (T -573))
+((-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| (-417 *6)) (|:| -2433 (-417 *6)) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6)))))
+(-10 -7 (-15 -2276 ((-2 (|:| |answer| (-417 |#2|)) (|:| -2433 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 30)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 96)) (-2814 (($ $) 97)) (-2425 (((-112) $) NIL)) (-3165 (($ $ $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2573 (($ $ $ $) 52)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL)) (-3958 (($ $ $) 91)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL)) (-2209 (((-574) $) NIL)) (-2785 (($ $ $) 54)) (-2668 (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 77) (((-699 (-574)) (-699 $)) 73) (((-699 (-574)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) 93)) (-2057 (((-3 (-417 (-574)) "failed") $) NIL)) (-1811 (((-112) $) NIL)) (-4142 (((-417 (-574)) $) NIL)) (-2820 (($) 79) (($ $) 80)) (-2798 (($ $ $) 90)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-1817 (($ $ $ $) NIL)) (-3896 (($ $ $) 70)) (-3434 (((-112) $) NIL)) (-2531 (($ $ $) NIL)) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3965 (((-112) $) 34)) (-3239 (((-112) $) 85)) (-4048 (((-3 $ "failed") $) NIL)) (-3244 (((-112) $) 43)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3946 (($ $ $ $) 55)) (-3658 (($ $ $) 87)) (-2106 (($ $ $) 86)) (-3811 (($ $) NIL)) (-4135 (($ $) 49)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) 69)) (-2274 (($ $ $) NIL)) (-3818 (($) NIL T CONST)) (-1606 (($ $) 38)) (-3966 (((-1133) $) 42)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 128)) (-2874 (($ $ $) 94) (($ (-654 $)) NIL)) (-4430 (($ $) NIL)) (-4220 (((-428 $) $) 114)) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) 112)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2625 (((-112) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 89)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2295 (($ $) 40)) (-3167 (($ $) 36)) (-1837 (((-574) $) 48) (((-546) $) 64) (((-903 (-574)) $) NIL) (((-388) $) 58) (((-227) $) 61) (((-1172) $) 66)) (-2943 (((-872) $) 46) (($ (-574)) 47) (($ $) NIL) (($ (-574)) 47)) (-4160 (((-781)) NIL T CONST)) (-2490 (((-112) $ $) NIL)) (-2819 (($ $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2629 (($) 35)) (-3798 (((-112) $ $) NIL)) (-3836 (($ $ $ $) 51)) (-2946 (($ $) 78)) (-2134 (($) 6 T CONST)) (-2146 (($) 31 T CONST)) (-1520 (((-1172) $) 26) (((-1172) $ (-112)) 27) (((-1286) (-832) $) 28) (((-1286) (-832) $ (-112)) 29)) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-3041 (((-112) $ $) 50)) (-3016 (((-112) $ $) 81)) (-2982 (((-112) $ $) 33)) (-3028 (((-112) $ $) 82)) (-3005 (((-112) $ $) 10)) (-3094 (($ $) 16) (($ $ $) 39)) (-3078 (($ $ $) 37)) (** (($ $ (-932)) NIL) (($ $ (-781)) 84)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 83) (($ $ $) 53) (($ (-574) $) 83)))
+(((-574) (-13 (-555) (-624 (-1172)) (-838) (-10 -7 (-6 -4443) (-6 -4448) (-6 -4444) (-6 -4438)))) (T -574))
+NIL
+(-13 (-555) (-624 (-1172)) (-838) (-10 -7 (-6 -4443) (-6 -4448) (-6 -4444) (-6 -4438)))
+((-3284 (((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779) (-1076)) 116) (((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779)) 118)) (-2968 (((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1190)) 195) (((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1172)) 194) (((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388) (-1076)) 199) (((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388)) 200) (((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388)) 201) (((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388))))) 202) (((-1048) (-324 (-388)) (-1107 (-853 (-388)))) 190) (((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388)) 189) (((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388)) 185) (((-1048) (-779)) 177) (((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388) (-1076)) 184)))
+(((-575) (-10 -7 (-15 -2968 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388) (-1076))) (-15 -2968 ((-1048) (-779))) (-15 -2968 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388))) (-15 -2968 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388))) (-15 -2968 ((-1048) (-324 (-388)) (-1107 (-853 (-388))))) (-15 -2968 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))))) (-15 -2968 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388))) (-15 -2968 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388))) (-15 -2968 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388) (-1076))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779) (-1076))) (-15 -2968 ((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1172))) (-15 -2968 ((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1190))))) (T -575))
+((-2968 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1105 (-853 (-388)))) (-5 *5 (-1190)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2968 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1105 (-853 (-388)))) (-5 *5 (-1172)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1076)) (-5 *2 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) (-5 *1 (-575)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) (-5 *1 (-575)))) (-2968 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) (-5 *5 (-388)) (-5 *6 (-1076)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2968 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2968 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2968 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2968 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2968 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-388)) (-5 *6 (-1076)) (-5 *2 (-1048)) (-5 *1 (-575)))))
+(-10 -7 (-15 -2968 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388) (-1076))) (-15 -2968 ((-1048) (-779))) (-15 -2968 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388))) (-15 -2968 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388))) (-15 -2968 ((-1048) (-324 (-388)) (-1107 (-853 (-388))))) (-15 -2968 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))))) (-15 -2968 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388))) (-15 -2968 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388))) (-15 -2968 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388) (-1076))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779) (-1076))) (-15 -2968 ((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1172))) (-15 -2968 ((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1190))))
+((-2373 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|)) 196)) (-3418 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|)) 99)) (-1653 (((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|) 192)) (-3650 (((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190))) 201)) (-3841 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2722 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1190)) 210 (|has| |#3| (-666 |#2|)))))
+(((-576 |#1| |#2| |#3|) (-10 -7 (-15 -3418 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -1653 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -2373 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -3650 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)))) (IF (|has| |#3| (-666 |#2|)) (-15 -3841 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2722 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1190))) |%noBranch|)) (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1216)) (-1113)) (T -576))
+((-3841 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1190)) (-4 *4 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4)))) (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113)))) (-3650 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) (-4 *2 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1113)))) (-2373 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1113)))) (-1653 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3))) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1113)))) (-3418 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1113)))))
+(-10 -7 (-15 -3418 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -1653 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -2373 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -3650 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)))) (IF (|has| |#3| (-666 |#2|)) (-15 -3841 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2722 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1190))) |%noBranch|))
+((-2997 (((-2 (|:| -3120 |#2|) (|:| |nconst| |#2|)) |#2| (-1190)) 64)) (-3008 (((-3 |#2| "failed") |#2| (-1190) (-853 |#2|) (-853 |#2|)) 175 (-12 (|has| |#2| (-1152)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)) 154 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574)))))) (-2824 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)) 156 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574)))))))
+(((-577 |#1| |#2|) (-10 -7 (-15 -2997 ((-2 (|:| -3120 |#2|) (|:| |nconst| |#2|)) |#2| (-1190))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -2824 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190))) (-15 -3008 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)))) |%noBranch|) (IF (|has| |#2| (-1152)) (-15 -3008 ((-3 |#2| "failed") |#2| (-1190) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1051 (-574)) (-462) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -577))
+((-3008 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1190)) (-5 *4 (-853 *2)) (-4 *2 (-1152)) (-4 *2 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) (-5 *1 (-577 *5 *2)))) (-3008 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-2824 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-2997 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| -3120 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))))
+(-10 -7 (-15 -2997 ((-2 (|:| -3120 |#2|) (|:| |nconst| |#2|)) |#2| (-1190))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -2824 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190))) (-15 -3008 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)))) |%noBranch|) (IF (|has| |#2| (-1152)) (-15 -3008 ((-3 |#2| "failed") |#2| (-1190) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1839 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))) 41)) (-2968 (((-596 (-417 |#2|)) (-417 |#2|)) 28)) (-2285 (((-3 (-417 |#2|) "failed") (-417 |#2|)) 17)) (-1889 (((-3 (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|)) 48)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -2968 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -2285 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -1889 ((-3 (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1051 (-574))) (-1257 |#1|)) (T -578))
+((-1839 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *5 *6)))) (-1889 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -4332 (-417 *5)) (|:| |coeff| (-417 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) (-2285 (*1 *2 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148) (-1051 (-574)))) (-5 *1 (-578 *3 *4)))) (-2968 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))))
+(-10 -7 (-15 -2968 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -2285 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -1889 ((-3 (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|)))))
+((-4022 (((-3 (-574) "failed") |#1|) 14)) (-3150 (((-112) |#1|) 13)) (-4026 (((-574) |#1|) 9)))
+(((-579 |#1|) (-10 -7 (-15 -4026 ((-574) |#1|)) (-15 -3150 ((-112) |#1|)) (-15 -4022 ((-3 (-574) "failed") |#1|))) (-1051 (-574))) (T -579))
+((-4022 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1051 *2)))) (-3150 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1051 (-574))))) (-4026 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1051 *2)))))
+(-10 -7 (-15 -4026 ((-574) |#1|)) (-15 -3150 ((-112) |#1|)) (-15 -4022 ((-3 (-574) "failed") |#1|)))
+((-3511 (((-3 (-2 (|:| |mainpart| (-417 (-963 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-963 |#1|))) (|:| |logand| (-417 (-963 |#1|))))))) "failed") (-417 (-963 |#1|)) (-1190) (-654 (-417 (-963 |#1|)))) 48)) (-2009 (((-596 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-1190)) 28)) (-3261 (((-3 (-417 (-963 |#1|)) "failed") (-417 (-963 |#1|)) (-1190)) 23)) (-4068 (((-3 (-2 (|:| -4332 (-417 (-963 |#1|))) (|:| |coeff| (-417 (-963 |#1|)))) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|))) 35)))
+(((-580 |#1|) (-10 -7 (-15 -2009 ((-596 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -3261 ((-3 (-417 (-963 |#1|)) "failed") (-417 (-963 |#1|)) (-1190))) (-15 -3511 ((-3 (-2 (|:| |mainpart| (-417 (-963 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-963 |#1|))) (|:| |logand| (-417 (-963 |#1|))))))) "failed") (-417 (-963 |#1|)) (-1190) (-654 (-417 (-963 |#1|))))) (-15 -4068 ((-3 (-2 (|:| -4332 (-417 (-963 |#1|))) (|:| |coeff| (-417 (-963 |#1|)))) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|))))) (-13 (-566) (-1051 (-574)) (-148))) (T -580))
+((-4068 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)) (-148))) (-5 *2 (-2 (|:| -4332 (-417 (-963 *5))) (|:| |coeff| (-417 (-963 *5))))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-963 *5))))) (-3511 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 (-417 (-963 *6)))) (-5 *3 (-417 (-963 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6)))) (-3261 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-417 (-963 *4))) (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)) (-148))) (-5 *1 (-580 *4)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)) (-148))) (-5 *2 (-596 (-417 (-963 *5)))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-963 *5))))))
+(-10 -7 (-15 -2009 ((-596 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -3261 ((-3 (-417 (-963 |#1|)) "failed") (-417 (-963 |#1|)) (-1190))) (-15 -3511 ((-3 (-2 (|:| |mainpart| (-417 (-963 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-963 |#1|))) (|:| |logand| (-417 (-963 |#1|))))))) "failed") (-417 (-963 |#1|)) (-1190) (-654 (-417 (-963 |#1|))))) (-15 -4068 ((-3 (-2 (|:| -4332 (-417 (-963 |#1|))) (|:| |coeff| (-417 (-963 |#1|)))) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)))))
+((-2849 (((-112) $ $) 75)) (-2908 (((-112) $) 48)) (-3014 ((|#1| $) 39)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) 79)) (-2364 (($ $) 139)) (-2246 (($ $) 118)) (-1854 ((|#1| $) 37)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL)) (-2343 (($ $) 141)) (-2227 (($ $) 114)) (-2388 (($ $) 143)) (-2267 (($ $) 122)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) 93)) (-2209 (((-574) $) 95)) (-1950 (((-3 $ "failed") $) 78)) (-1351 (($ |#1| |#1|) 35)) (-3434 (((-112) $) 44)) (-3001 (($) 104)) (-3965 (((-112) $) 55)) (-3379 (($ $ (-574)) NIL)) (-3244 (((-112) $) 45)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-3119 (($ $) 106)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1491 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-417 (-574))) 92)) (-3361 ((|#1| $) 36)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) 81) (($ (-654 $)) NIL)) (-2838 (((-3 $ "failed") $ $) 80)) (-1610 (($ $) 108)) (-2402 (($ $) 147)) (-2275 (($ $) 120)) (-2375 (($ $) 149)) (-2257 (($ $) 124)) (-2353 (($ $) 145)) (-2237 (($ $) 116)) (-2702 (((-112) $ |#1|) 42)) (-2943 (((-872) $) 100) (($ (-574)) 83) (($ $) NIL) (($ (-574)) 83)) (-4160 (((-781)) 102 T CONST)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) 161)) (-2305 (($ $) 130)) (-3798 (((-112) $ $) NIL)) (-2414 (($ $) 159)) (-2287 (($ $) 126)) (-2465 (($ $) 157)) (-2325 (($ $) 137)) (-2521 (($ $) 155)) (-2334 (($ $) 135)) (-2453 (($ $) 153)) (-2315 (($ $) 132)) (-2428 (($ $) 151)) (-2297 (($ $) 128)) (-2134 (($) 30 T CONST)) (-2146 (($) 10 T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 49)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 47)) (-3094 (($ $) 53) (($ $ $) 54)) (-3078 (($ $ $) 52)) (** (($ $ (-932)) 71) (($ $ (-781)) NIL) (($ $ $) 110) (($ $ (-417 (-574))) 163)) (* (($ (-932) $) 66) (($ (-781) $) NIL) (($ (-574) $) 65) (($ $ $) 61)))
+(((-581 |#1|) (-564 |#1|) (-13 (-414) (-1216))) (T -581))
+NIL
+(-564 |#1|)
+((-3180 (((-3 (-654 (-1186 (-574))) "failed") (-654 (-1186 (-574))) (-1186 (-574))) 27)))
+(((-582) (-10 -7 (-15 -3180 ((-3 (-654 (-1186 (-574))) "failed") (-654 (-1186 (-574))) (-1186 (-574)))))) (T -582))
+((-3180 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 (-574)))) (-5 *3 (-1186 (-574))) (-5 *1 (-582)))))
+(-10 -7 (-15 -3180 ((-3 (-654 (-1186 (-574))) "failed") (-654 (-1186 (-574))) (-1186 (-574)))))
+((-2542 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1190)) 19)) (-3864 (((-654 (-622 |#2|)) (-654 |#2|) (-1190)) 23)) (-4359 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|))) 11)) (-3238 ((|#2| |#2| (-1190)) 59 (|has| |#1| (-566)))) (-1569 ((|#2| |#2| (-1190)) 87 (-12 (|has| |#2| (-292)) (|has| |#1| (-462))))) (-3571 (((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1190)) 25)) (-4134 (((-622 |#2|) (-654 (-622 |#2|))) 24)) (-3013 (((-596 |#2|) |#2| (-1190) (-1 (-596 |#2|) |#2| (-1190)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190))) 115 (-12 (|has| |#2| (-292)) (|has| |#2| (-639)) (|has| |#2| (-1051 (-1190))) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-462)) (|has| |#1| (-897 (-574)))))))
+(((-583 |#1| |#2|) (-10 -7 (-15 -2542 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1190))) (-15 -4134 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -3571 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1190))) (-15 -4359 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -3864 ((-654 (-622 |#2|)) (-654 |#2|) (-1190))) (IF (|has| |#1| (-566)) (-15 -3238 (|#2| |#2| (-1190))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -1569 (|#2| |#2| (-1190))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1051 (-1190))) (-15 -3013 ((-596 |#2|) |#2| (-1190) (-1 (-596 |#2|) |#2| (-1190)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1113) (-440 |#1|)) (T -583))
+((-3013 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-596 *3) *3 (-1190))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1190))) (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1051 *4)) (-4 *3 (-440 *7)) (-5 *4 (-1190)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) (-4 *7 (-897 (-574))) (-4 *7 (-1113)) (-5 *2 (-596 *3)) (-5 *1 (-583 *7 *3)))) (-1569 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-462)) (-4 *4 (-1113)) (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4)))) (-3238 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-4 *4 (-1113)) (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4)))) (-3864 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-1190)) (-4 *6 (-440 *5)) (-4 *5 (-1113)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6)))) (-4359 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1113)) (-5 *1 (-583 *3 *4)))) (-3571 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1190)) (-5 *2 (-622 *6)) (-4 *6 (-440 *5)) (-4 *5 (-1113)) (-5 *1 (-583 *5 *6)))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1113)) (-5 *2 (-622 *5)) (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4)))) (-2542 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1190)) (-4 *5 (-440 *4)) (-4 *4 (-1113)) (-5 *1 (-583 *4 *5)))))
+(-10 -7 (-15 -2542 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1190))) (-15 -4134 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -3571 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1190))) (-15 -4359 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -3864 ((-654 (-622 |#2|)) (-654 |#2|) (-1190))) (IF (|has| |#1| (-566)) (-15 -3238 (|#2| |#2| (-1190))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -1569 (|#2| |#2| (-1190))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1051 (-1190))) (-15 -3013 ((-596 |#2|) |#2| (-1190) (-1 (-596 |#2|) |#2| (-1190)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2558 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|)) 199)) (-2633 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|))) 174)) (-1764 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|))) 171)) (-1959 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-3756 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3253 (((-3 (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|)) 202)) (-2328 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|)) 205)) (-1548 (((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 88)) (-3851 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3528 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|))) 178)) (-2698 (((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 166)) (-2069 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 189)) (-1366 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|)) 210)))
+(((-584 |#1| |#2|) (-10 -7 (-15 -3756 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2069 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -2558 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -2328 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -1366 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -2633 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -3528 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -3253 ((-3 (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -1764 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -1959 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2698 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1548 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3851 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-372) (-1257 |#1|)) (T -584))
+((-3851 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-584 *5 *3)))) (-1548 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-2698 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-633 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3904 *4) (|:| |sol?| (-112))) (-574) *4)) (-4 *4 (-372)) (-4 *5 (-1257 *4)) (-5 *1 (-584 *4 *5)))) (-1959 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4332 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1257 *4)))) (-1764 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) (-4 *7 (-1257 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6 *7)))) (-3253 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -4332 (-417 *6)) (|:| |coeff| (-417 *6)))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-3528 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3904 *7) (|:| |sol?| (-112))) (-574) *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1257 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-2633 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4332 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1257 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-1366 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3904 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -4332 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-2328 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4332 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -4332 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-2558 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-2069 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3904 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-3756 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4332 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
+(-10 -7 (-15 -3756 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2069 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -2558 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -2328 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -1366 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -2633 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -3528 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -3253 ((-3 (-2 (|:| -4332 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -1764 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -1959 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2698 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1548 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3851 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2480 (((-3 |#2| "failed") |#2| (-1190) (-1190)) 10)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -2480 ((-3 |#2| "failed") |#2| (-1190) (-1190)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-970) (-1152) (-29 |#1|))) (T -585))
+((-2480 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1216) (-970) (-1152) (-29 *4))))))
+(-10 -7 (-15 -2480 ((-3 |#2| "failed") |#2| (-1190) (-1190))))
+((-2444 (((-701 (-1239)) $ (-1239)) 26)) (-2046 (((-701 (-559)) $ (-559)) 25)) (-2841 (((-781) $ (-129)) 27)) (-3368 (((-701 (-130)) $ (-130)) 24)) (-1435 (((-701 (-1239)) $) 12)) (-3487 (((-701 (-1237)) $) 8)) (-3122 (((-701 (-1236)) $) 10)) (-2794 (((-701 (-559)) $) 13)) (-3544 (((-701 (-557)) $) 9)) (-2359 (((-701 (-556)) $) 11)) (-4417 (((-781) $ (-129)) 7)) (-2916 (((-701 (-130)) $) 14)) (-3568 (($ $) 6)))
+(((-586) (-141)) (T -586))
+NIL
+(-13 (-537) (-870))
+(((-175) . T) ((-537) . T) ((-870) . T))
+((-2444 (((-701 (-1239)) $ (-1239)) NIL)) (-2046 (((-701 (-559)) $ (-559)) NIL)) (-2841 (((-781) $ (-129)) NIL)) (-3368 (((-701 (-130)) $ (-130)) NIL)) (-1435 (((-701 (-1239)) $) NIL)) (-3487 (((-701 (-1237)) $) NIL)) (-3122 (((-701 (-1236)) $) NIL)) (-2794 (((-701 (-559)) $) NIL)) (-3544 (((-701 (-557)) $) NIL)) (-2359 (((-701 (-556)) $) NIL)) (-4417 (((-781) $ (-129)) NIL)) (-2916 (((-701 (-130)) $) NIL)) (-3654 (((-112) $) NIL)) (-2390 (($ (-398)) 14) (($ (-1172)) 16)) (-2943 (((-872) $) NIL)) (-3568 (($ $) NIL)))
+(((-587) (-13 (-586) (-623 (-872)) (-10 -8 (-15 -2390 ($ (-398))) (-15 -2390 ($ (-1172))) (-15 -3654 ((-112) $))))) (T -587))
+((-2390 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-587)))) (-3654 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587)))))
+(-13 (-586) (-623 (-872)) (-10 -8 (-15 -2390 ($ (-398))) (-15 -2390 ($ (-1172))) (-15 -3654 ((-112) $))))
+((-2849 (((-112) $ $) NIL)) (-3248 (($) 7 T CONST)) (-2568 (((-1172) $) NIL)) (-1452 (($) 6 T CONST)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15)) (-1851 (($) 9 T CONST)) (-3954 (($) 8 T CONST)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 11)))
+(((-588) (-13 (-1113) (-10 -8 (-15 -1452 ($) -1707) (-15 -3248 ($) -1707) (-15 -3954 ($) -1707) (-15 -1851 ($) -1707)))) (T -588))
+((-1452 (*1 *1) (-5 *1 (-588))) (-3248 (*1 *1) (-5 *1 (-588))) (-3954 (*1 *1) (-5 *1 (-588))) (-1851 (*1 *1) (-5 *1 (-588))))
+(-13 (-1113) (-10 -8 (-15 -1452 ($) -1707) (-15 -3248 ($) -1707) (-15 -3954 ($) -1707) (-15 -1851 ($) -1707)))
+((-2849 (((-112) $ $) NIL)) (-1808 (((-701 $) (-501)) 21)) (-2568 (((-1172) $) NIL)) (-2094 (($ (-1172)) 14)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 33)) (-4364 (((-215 4 (-130)) $) 24)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 26)))
+(((-589) (-13 (-1113) (-10 -8 (-15 -2094 ($ (-1172))) (-15 -4364 ((-215 4 (-130)) $)) (-15 -1808 ((-701 $) (-501)))))) (T -589))
+((-2094 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-589)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589)))))
+(-13 (-1113) (-10 -8 (-15 -2094 ($ (-1172))) (-15 -4364 ((-215 4 (-130)) $)) (-15 -1808 ((-701 $) (-501)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $ (-574)) 75)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-1831 (($ (-1186 (-574)) (-574)) 81)) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) 66)) (-3635 (($ $) 43)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3593 (((-781) $) 16)) (-3965 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3201 (((-574)) 37)) (-3109 (((-574) $) 41)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4344 (($ $ (-574)) 24)) (-2838 (((-3 $ "failed") $ $) 71)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) 17)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 72)) (-3810 (((-1170 (-574)) $) 19)) (-3156 (($ $) 26)) (-2943 (((-872) $) 102) (($ (-574)) 61) (($ $) NIL)) (-4160 (((-781)) 15 T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-3551 (((-574) $ (-574)) 46)) (-2134 (($) 44 T CONST)) (-2146 (($) 21 T CONST)) (-2982 (((-112) $ $) 52)) (-3094 (($ $) 60) (($ $ $) 48)) (-3078 (($ $ $) 59)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 62) (($ $ $) 63)))
+(((-590 |#1| |#2|) (-879 |#1|) (-574) (-112)) (T -590))
+NIL
+(-879 |#1|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 30)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 (($ $ (-932)) NIL (|has| $ (-377))) (($ $) NIL)) (-1340 (((-1203 (-932) (-781)) (-574)) 59)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 $ "failed") $) 95)) (-2209 (($ $) 94)) (-3003 (($ (-1281 $)) 93)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) 44)) (-2820 (($) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) 61)) (-2878 (((-112) $) NIL)) (-3564 (($ $) NIL) (($ $ (-781)) NIL)) (-1654 (((-112) $) NIL)) (-3593 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-3965 (((-112) $) NIL)) (-2342 (($) 49 (|has| $ (-377)))) (-2079 (((-112) $) NIL (|has| $ (-377)))) (-1652 (($ $ (-932)) NIL (|has| $ (-377))) (($ $) NIL)) (-4048 (((-3 $ "failed") $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 $) $ (-932)) NIL (|has| $ (-377))) (((-1186 $) $) 104)) (-2565 (((-932) $) 67)) (-2810 (((-1186 $) $) NIL (|has| $ (-377)))) (-3795 (((-3 (-1186 $) "failed") $ $) NIL (|has| $ (-377))) (((-1186 $) $) NIL (|has| $ (-377)))) (-2338 (($ $ (-1186 $)) NIL (|has| $ (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL T CONST)) (-2576 (($ (-932)) 60)) (-3504 (((-112) $) 87)) (-3966 (((-1133) $) NIL)) (-2970 (($) 28 (|has| $ (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) 54)) (-4220 (((-428 $) $) NIL)) (-3027 (((-932)) 86) (((-843 (-932))) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-3939 (((-135)) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-1784 (((-932) $) 85) (((-843 (-932)) $) NIL)) (-1782 (((-1186 $)) 102)) (-2585 (($) 66)) (-2358 (($) 50 (|has| $ (-377)))) (-3676 (((-699 $) (-1281 $)) NIL) (((-1281 $) $) 91)) (-1837 (((-574) $) 40)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) 42) (($ $) NIL) (($ (-417 (-574))) NIL)) (-1369 (((-3 $ "failed") $) NIL) (($ $) 105)) (-4160 (((-781)) 51 T CONST)) (-2923 (((-112) $ $) 107)) (-2722 (((-1281 $) (-932)) 97) (((-1281 $)) 96)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) 31 T CONST)) (-2146 (($) 27 T CONST)) (-2007 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 34)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 81) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
+(((-591 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-932)) (T -591))
+NIL
+(-13 (-358) (-337 $) (-624 (-574)))
+((-4341 (((-1286) (-1172)) 10)))
+(((-592) (-10 -7 (-15 -4341 ((-1286) (-1172))))) (T -592))
+((-4341 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-592)))))
+(-10 -7 (-15 -4341 ((-1286) (-1172))))
+((-1483 (((-596 |#2|) (-596 |#2|)) 42)) (-2129 (((-654 |#2|) (-596 |#2|)) 44)) (-2240 ((|#2| (-596 |#2|)) 50)))
+(((-593 |#1| |#2|) (-10 -7 (-15 -1483 ((-596 |#2|) (-596 |#2|))) (-15 -2129 ((-654 |#2|) (-596 |#2|))) (-15 -2240 (|#2| (-596 |#2|)))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-29 |#1|) (-1216))) (T -593))
+((-2240 (*1 *2 *3) (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1216))) (-5 *1 (-593 *4 *2)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1216))) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) (-5 *1 (-593 *4 *5)))) (-1483 (*1 *2 *2) (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1216))) (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-593 *3 *4)))))
+(-10 -7 (-15 -1483 ((-596 |#2|) (-596 |#2|))) (-15 -2129 ((-654 |#2|) (-596 |#2|))) (-15 -2240 (|#2| (-596 |#2|))))
+((-1778 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 30)))
+(((-594 |#1| |#2|) (-10 -7 (-15 -1778 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1778 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1778 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1778 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-372) (-372)) (T -594))
+((-1778 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-594 *5 *6)))) (-1778 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2)))) (-1778 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4332 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| -4332 *6) (|:| |coeff| *6))) (-5 *1 (-594 *5 *6)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6)))))
+(-10 -7 (-15 -1778 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1778 ((-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4332 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1778 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1778 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-1400 (($ (-516) (-607)) 14)) (-4324 (($ (-516) (-607) $) 16)) (-2156 (($ (-516) (-607)) 15)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-1195)) 7) (((-1195) $) 6)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-595) (-13 (-1113) (-500 (-1195)) (-10 -8 (-15 -1400 ($ (-516) (-607))) (-15 -2156 ($ (-516) (-607))) (-15 -4324 ($ (-516) (-607) $))))) (T -595))
+((-1400 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-2156 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-4324 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))))
+(-13 (-1113) (-500 (-1195)) (-10 -8 (-15 -1400 ($ (-516) (-607))) (-15 -2156 ($ (-516) (-607))) (-15 -4324 ($ (-516) (-607) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) 76)) (-2209 ((|#1| $) NIL)) (-4332 ((|#1| $) 30)) (-2744 (((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-4145 (($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2433 (((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) $) 31)) (-2568 (((-1172) $) NIL)) (-4267 (($ |#1| |#1|) 38) (($ |#1| (-1190)) 49 (|has| |#1| (-1051 (-1190))))) (-3966 (((-1133) $) NIL)) (-3208 (((-112) $) 35)) (-3905 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1190)) 89 (|has| |#1| (-911 (-1190))))) (-2943 (((-872) $) 110) (($ |#1|) 29)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 18 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) 17) (($ $ $) NIL)) (-3078 (($ $ $) 85)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 16) (($ (-417 (-574)) $) 41) (($ $ (-417 (-574))) NIL)))
+(((-596 |#1|) (-13 (-727 (-417 (-574))) (-1051 |#1|) (-10 -8 (-15 -4145 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4332 (|#1| $)) (-15 -2433 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) $)) (-15 -2744 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3208 ((-112) $)) (-15 -4267 ($ |#1| |#1|)) (-15 -3905 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-911 (-1190))) (-15 -3905 (|#1| $ (-1190))) |%noBranch|) (IF (|has| |#1| (-1051 (-1190))) (-15 -4267 ($ |#1| (-1190))) |%noBranch|))) (-372)) (T -596))
+((-4145 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 *2)) (|:| |logand| (-1186 *2))))) (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-372)) (-5 *1 (-596 *2)))) (-4332 (*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 *3)) (|:| |logand| (-1186 *3))))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-4267 (*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3905 (*1 *2 *1 *3) (-12 (-4 *2 (-372)) (-4 *2 (-911 *3)) (-5 *1 (-596 *2)) (-5 *3 (-1190)))) (-4267 (*1 *1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *1 (-596 *2)) (-4 *2 (-1051 *3)) (-4 *2 (-372)))))
+(-13 (-727 (-417 (-574))) (-1051 |#1|) (-10 -8 (-15 -4145 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4332 (|#1| $)) (-15 -2433 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) $)) (-15 -2744 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3208 ((-112) $)) (-15 -4267 ($ |#1| |#1|)) (-15 -3905 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-911 (-1190))) (-15 -3905 (|#1| $ (-1190))) |%noBranch|) (IF (|has| |#1| (-1051 (-1190))) (-15 -4267 ($ |#1| (-1190))) |%noBranch|)))
+((-3859 (((-112) |#1|) 16)) (-2048 (((-3 |#1| "failed") |#1|) 14)) (-1493 (((-2 (|:| -2629 |#1|) (|:| -2524 (-781))) |#1|) 38) (((-3 |#1| "failed") |#1| (-781)) 18)) (-3077 (((-112) |#1| (-781)) 19)) (-4398 ((|#1| |#1|) 42)) (-2189 ((|#1| |#1| (-781)) 45)))
+(((-597 |#1|) (-10 -7 (-15 -3077 ((-112) |#1| (-781))) (-15 -1493 ((-3 |#1| "failed") |#1| (-781))) (-15 -1493 ((-2 (|:| -2629 |#1|) (|:| -2524 (-781))) |#1|)) (-15 -2189 (|#1| |#1| (-781))) (-15 -3859 ((-112) |#1|)) (-15 -2048 ((-3 |#1| "failed") |#1|)) (-15 -4398 (|#1| |#1|))) (-555)) (T -597))
+((-4398 (*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-2048 (*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-3859 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-2189 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-1493 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2629 *3) (|:| -2524 (-781)))) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-1493 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))))
+(-10 -7 (-15 -3077 ((-112) |#1| (-781))) (-15 -1493 ((-3 |#1| "failed") |#1| (-781))) (-15 -1493 ((-2 (|:| -2629 |#1|) (|:| -2524 (-781))) |#1|)) (-15 -2189 (|#1| |#1| (-781))) (-15 -3859 ((-112) |#1|)) (-15 -2048 ((-3 |#1| "failed") |#1|)) (-15 -4398 (|#1| |#1|)))
+((-4382 (((-1186 |#1|) (-932)) 44)))
+(((-598 |#1|) (-10 -7 (-15 -4382 ((-1186 |#1|) (-932)))) (-358)) (T -598))
+((-4382 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-598 *4)) (-4 *4 (-358)))))
+(-10 -7 (-15 -4382 ((-1186 |#1|) (-932))))
+((-1483 (((-596 (-417 (-963 |#1|))) (-596 (-417 (-963 |#1|)))) 27)) (-2968 (((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-963 |#1|)) (-1190)) 34 (|has| |#1| (-148)))) (-2129 (((-654 (-324 |#1|)) (-596 (-417 (-963 |#1|)))) 19)) (-1666 (((-324 |#1|) (-417 (-963 |#1|)) (-1190)) 32 (|has| |#1| (-148)))) (-2240 (((-324 |#1|) (-596 (-417 (-963 |#1|)))) 21)))
+(((-599 |#1|) (-10 -7 (-15 -1483 ((-596 (-417 (-963 |#1|))) (-596 (-417 (-963 |#1|))))) (-15 -2129 ((-654 (-324 |#1|)) (-596 (-417 (-963 |#1|))))) (-15 -2240 ((-324 |#1|) (-596 (-417 (-963 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2968 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -1666 ((-324 |#1|) (-417 (-963 |#1|)) (-1190)))) |%noBranch|)) (-13 (-462) (-1051 (-574)) (-649 (-574)))) (T -599))
+((-1666 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) (-5 *1 (-599 *5)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-963 *4)))) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-599 *4)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-963 *4)))) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4)))) (-1483 (*1 *2 *2) (-12 (-5 *2 (-596 (-417 (-963 *3)))) (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-599 *3)))))
+(-10 -7 (-15 -1483 ((-596 (-417 (-963 |#1|))) (-596 (-417 (-963 |#1|))))) (-15 -2129 ((-654 (-324 |#1|)) (-596 (-417 (-963 |#1|))))) (-15 -2240 ((-324 |#1|) (-596 (-417 (-963 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2968 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -1666 ((-324 |#1|) (-417 (-963 |#1|)) (-1190)))) |%noBranch|))
+((-2304 (((-654 (-699 (-574))) (-654 (-932)) (-654 (-916 (-574)))) 78) (((-654 (-699 (-574))) (-654 (-932))) 79) (((-699 (-574)) (-654 (-932)) (-916 (-574))) 72)) (-4414 (((-781) (-654 (-932))) 69)))
+(((-600) (-10 -7 (-15 -4414 ((-781) (-654 (-932)))) (-15 -2304 ((-699 (-574)) (-654 (-932)) (-916 (-574)))) (-15 -2304 ((-654 (-699 (-574))) (-654 (-932)))) (-15 -2304 ((-654 (-699 (-574))) (-654 (-932)) (-654 (-916 (-574))))))) (T -600))
+((-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-932))) (-5 *4 (-654 (-916 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-932))) (-5 *4 (-916 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-600)))) (-4414 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-781)) (-5 *1 (-600)))))
+(-10 -7 (-15 -4414 ((-781) (-654 (-932)))) (-15 -2304 ((-699 (-574)) (-654 (-932)) (-916 (-574)))) (-15 -2304 ((-654 (-699 (-574))) (-654 (-932)))) (-15 -2304 ((-654 (-699 (-574))) (-654 (-932)) (-654 (-916 (-574))))))
+((-1812 (((-654 |#5|) |#5| (-112)) 100)) (-1319 (((-112) |#5| (-654 |#5|)) 34)))
+(((-601 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1812 ((-654 |#5|) |#5| (-112))) (-15 -1319 ((-112) |#5| (-654 |#5|)))) (-13 (-315) (-148)) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1122 |#1| |#2| |#3| |#4|)) (T -601))
+((-1319 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1122 *5 *6 *7 *8)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-601 *5 *6 *7 *8 *3)))) (-1812 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-654 *3)) (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1122 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1812 ((-654 |#5|) |#5| (-112))) (-15 -1319 ((-112) |#5| (-654 |#5|))))
+((-2849 (((-112) $ $) NIL)) (-1809 (((-1148) $) 11)) (-1796 (((-1148) $) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-602) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))) (T -602))
+((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-602)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-602)))))
+(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))
+((-2849 (((-112) $ $) NIL (|has| (-145) (-1113)))) (-3710 (($ $) 38)) (-3750 (($ $) NIL)) (-4182 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3712 (((-112) $ $) 67)) (-3691 (((-112) $ $ (-574)) 62)) (-1483 (((-654 $) $ (-145)) 75) (((-654 $) $ (-142)) 76)) (-3850 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-4010 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-145) (-860))))) (-2771 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 (((-145) $ (-574) (-145)) 59 (|has| $ (-6 -4457))) (((-145) $ (-1248 (-574)) (-145)) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2617 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-4062 (($ $ (-1248 (-574)) $) 57)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-3335 (($ (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2462 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4457)))) (-2385 (((-145) $ (-574)) NIL)) (-3733 (((-112) $ $) 88)) (-1441 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1113))) (((-574) (-145) $ (-574)) 64 (|has| (-145) (-1113))) (((-574) $ $ (-574)) 63) (((-574) (-142) $ (-574)) 66)) (-1864 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-145)) 9)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) 32 (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| (-145) (-860)))) (-2130 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-1712 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-3429 (((-574) $) 47 (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| (-145) (-860)))) (-1326 (((-112) $ $ (-145)) 89)) (-2683 (((-781) $ $ (-145)) 86)) (-2446 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3178 (($ $) 41)) (-4425 (($ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2631 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-2568 (((-1172) $) 43 (|has| (-145) (-1113)))) (-1595 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) 27)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) 85 (|has| (-145) (-1113)))) (-2915 (((-145) $) NIL (|has| (-574) (-860)))) (-1836 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1363 (($ $ (-145)) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2121 (((-654 (-145)) $) NIL)) (-3556 (((-112) $) 15)) (-3135 (($) 10)) (-2200 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) 68) (($ $ (-1248 (-574))) 25) (($ $ $) NIL)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-1958 (($ $ $ (-574)) 81 (|has| $ (-6 -4457)))) (-3167 (($ $) 20)) (-1837 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2956 (($ (-654 (-145))) NIL)) (-4157 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-654 $)) 82)) (-2943 (($ (-145)) NIL) (((-872) $) 31 (|has| (-145) (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| (-145) (-1113)))) (-2935 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2982 (((-112) $ $) 17 (|has| (-145) (-1113)))) (-3028 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3005 (((-112) $ $) 18 (|has| (-145) (-860)))) (-2863 (((-781) $) 16 (|has| $ (-6 -4456)))))
+(((-603 |#1|) (-1157) (-574)) (T -603))
+NIL
+(-1157)
+((-3561 (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1107 |#4|)) 32)))
+(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3561 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1107 |#4|))) (-15 -3561 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) (-803) (-860) (-566) (-960 |#3| |#1| |#2|)) (T -604))
+((-3561 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-960 *6 *5 *4)))) (-3561 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1107 *3)) (-4 *3 (-960 *7 *6 *4)) (-4 *6 (-803)) (-4 *4 (-860)) (-4 *7 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3561 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1107 |#4|))) (-15 -3561 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 71)) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-1760 (($ $ (-574)) 58) (($ $ (-574) (-574)) 59)) (-4086 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 65)) (-3070 (($ $) 109)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2188 (((-872) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1039 (-853 (-574))) (-1190) |#1| (-417 (-574))) 241)) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 36)) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3030 (((-112) $) NIL)) (-3593 (((-574) $) 63) (((-574) $ (-574)) 64)) (-3965 (((-112) $) NIL)) (-1789 (($ $ (-932)) 83)) (-4025 (($ (-1 |#1| (-574)) $) 80)) (-2197 (((-112) $) 26)) (-4335 (($ |#1| (-574)) 22) (($ $ (-1095) (-574)) NIL) (($ $ (-654 (-1095)) (-654 (-574))) NIL)) (-1778 (($ (-1 |#1| |#1|) $) 75)) (-4076 (($ (-1039 (-853 (-574))) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 13)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-2968 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-1573 (((-3 $ "failed") $ $ (-112)) 108)) (-3419 (($ $ $) 116)) (-3966 (((-1133) $) NIL)) (-2479 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 15)) (-4251 (((-1039 (-853 (-574))) $) 14)) (-4344 (($ $ (-574)) 47)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-2200 ((|#1| $ (-574)) 62) (($ $ $) NIL (|has| (-574) (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-1784 (((-574) $) NIL)) (-3156 (($ $) 48)) (-2943 (((-872) $) NIL) (($ (-574)) 29) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3344 ((|#1| $ (-574)) 61)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) 39 T CONST)) (-3359 ((|#1| $) NIL)) (-3298 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2421 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-4113 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-4111 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-3817 (($ $) 201 (|has| |#1| (-38 (-417 (-574)))))) (-1753 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-3667 (($ $ (-417 (-574))) 177 (|has| |#1| (-38 (-417 (-574)))))) (-1912 (($ $ |#1|) 157 (|has| |#1| (-38 (-417 (-574)))))) (-3962 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2268 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2201 (($ $) 203 (|has| |#1| (-38 (-417 (-574)))))) (-2194 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-2264 (($ $) 199 (|has| |#1| (-38 (-417 (-574)))))) (-2924 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-3932 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-3474 (($ $) 209 (|has| |#1| (-38 (-417 (-574)))))) (-2811 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-2093 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2688 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-3605 (($ $) 213 (|has| |#1| (-38 (-417 (-574)))))) (-4021 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-3067 (($ $) 215 (|has| |#1| (-38 (-417 (-574)))))) (-2597 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-4357 (($ $) 211 (|has| |#1| (-38 (-417 (-574)))))) (-4219 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-3960 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-4047 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3551 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2134 (($) 30 T CONST)) (-2146 (($) 40 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2982 (((-112) $ $) 73)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) 91) (($ $ $) 72)) (-3078 (($ $ $) 88)) (** (($ $ (-932)) NIL) (($ $ (-781)) 111)) (* (($ (-932) $) 98) (($ (-781) $) 96) (($ (-574) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-605 |#1|) (-13 (-1259 |#1| (-574)) (-10 -8 (-15 -4076 ($ (-1039 (-853 (-574))) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -4251 ((-1039 (-853 (-574))) $)) (-15 -2479 ((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3623 ($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -2197 ((-112) $)) (-15 -4025 ($ (-1 |#1| (-574)) $)) (-15 -1573 ((-3 $ "failed") $ $ (-112))) (-15 -3070 ($ $)) (-15 -3419 ($ $ $)) (-15 -2188 ((-872) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1039 (-853 (-574))) (-1190) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $)) (-15 -1912 ($ $ |#1|)) (-15 -3667 ($ $ (-417 (-574)))) (-15 -2268 ($ $)) (-15 -3962 ($ $)) (-15 -4111 ($ $)) (-15 -4240 ($ $)) (-15 -2421 ($ $)) (-15 -2924 ($ $)) (-15 -1753 ($ $)) (-15 -2194 ($ $)) (-15 -2688 ($ $)) (-15 -4047 ($ $)) (-15 -2811 ($ $)) (-15 -4219 ($ $)) (-15 -4021 ($ $)) (-15 -2597 ($ $)) (-15 -4113 ($ $)) (-15 -3932 ($ $)) (-15 -3298 ($ $)) (-15 -2264 ($ $)) (-15 -3817 ($ $)) (-15 -2201 ($ $)) (-15 -2093 ($ $)) (-15 -3960 ($ $)) (-15 -3474 ($ $)) (-15 -4357 ($ $)) (-15 -3605 ($ $)) (-15 -3067 ($ $))) |%noBranch|))) (-1062)) (T -605))
+((-2197 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1062)))) (-4076 (*1 *1 *2 *3) (-12 (-5 *2 (-1039 (-853 (-574)))) (-5 *3 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1062)) (-5 *1 (-605 *4)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-1039 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1062)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-5 *1 (-605 *3)) (-4 *3 (-1062)))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1062)) (-5 *1 (-605 *3)))) (-4025 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1062)) (-5 *1 (-605 *3)))) (-1573 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1062)))) (-3070 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1062)))) (-3419 (*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1062)))) (-2188 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *6)))) (-5 *4 (-1039 (-853 (-574)))) (-5 *5 (-1190)) (-5 *7 (-417 (-574))) (-4 *6 (-1062)) (-5 *2 (-872)) (-5 *1 (-605 *6)))) (-2968 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-1912 (*1 *1 *1 *2) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3667 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1062)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-4111 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-4240 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2421 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2924 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-1753 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2194 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2688 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-4047 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2811 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-4219 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-4021 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2597 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-4113 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3932 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3298 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3817 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2201 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2093 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3474 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-4357 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3605 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3067 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(-13 (-1259 |#1| (-574)) (-10 -8 (-15 -4076 ($ (-1039 (-853 (-574))) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -4251 ((-1039 (-853 (-574))) $)) (-15 -2479 ((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3623 ($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -2197 ((-112) $)) (-15 -4025 ($ (-1 |#1| (-574)) $)) (-15 -1573 ((-3 $ "failed") $ $ (-112))) (-15 -3070 ($ $)) (-15 -3419 ($ $ $)) (-15 -2188 ((-872) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1039 (-853 (-574))) (-1190) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $)) (-15 -1912 ($ $ |#1|)) (-15 -3667 ($ $ (-417 (-574)))) (-15 -2268 ($ $)) (-15 -3962 ($ $)) (-15 -4111 ($ $)) (-15 -4240 ($ $)) (-15 -2421 ($ $)) (-15 -2924 ($ $)) (-15 -1753 ($ $)) (-15 -2194 ($ $)) (-15 -2688 ($ $)) (-15 -4047 ($ $)) (-15 -2811 ($ $)) (-15 -4219 ($ $)) (-15 -4021 ($ $)) (-15 -2597 ($ $)) (-15 -4113 ($ $)) (-15 -3932 ($ $)) (-15 -3298 ($ $)) (-15 -2264 ($ $)) (-15 -3817 ($ $)) (-15 -2201 ($ $)) (-15 -2093 ($ $)) (-15 -3960 ($ $)) (-15 -3474 ($ $)) (-15 -4357 ($ $)) (-15 -3605 ($ $)) (-15 -3067 ($ $))) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 63)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3623 (($ (-1170 |#1|)) 9)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) 44)) (-3030 (((-112) $) 56)) (-3593 (((-781) $) 61) (((-781) $ (-781)) 60)) (-3965 (((-112) $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ $) 46 (|has| |#1| (-566)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566)))) (-3123 (((-1170 |#1|) $) 25)) (-4160 (((-781)) 55 T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) 10 T CONST)) (-2146 (($) 14 T CONST)) (-2982 (((-112) $ $) 24)) (-3094 (($ $) 32) (($ $ $) 16)) (-3078 (($ $ $) 27)) (** (($ $ (-932)) NIL) (($ $ (-781)) 53)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-574)) 38)))
+(((-606 |#1|) (-13 (-1062) (-111 |#1| |#1|) (-10 -8 (-15 -3123 ((-1170 |#1|) $)) (-15 -3623 ($ (-1170 |#1|))) (-15 -3030 ((-112) $)) (-15 -3593 ((-781) $)) (-15 -3593 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) (-1062)) (T -606))
+((-3123 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-606 *3)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) (-3593 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))))
+(-13 (-1062) (-111 |#1| |#1|) (-10 -8 (-15 -3123 ((-1170 |#1|) $)) (-15 -3623 ($ (-1170 |#1|))) (-15 -3030 ((-112) $)) (-15 -3593 ((-781) $)) (-15 -3593 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-2603 (($) 8 T CONST)) (-4411 (($) 7 T CONST)) (-1463 (($ $ (-654 $)) 16)) (-2568 (((-1172) $) NIL)) (-1470 (($) 6 T CONST)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-1195)) 15) (((-1195) $) 10)) (-3152 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-607) (-13 (-1113) (-500 (-1195)) (-10 -8 (-15 -1470 ($) -1707) (-15 -4411 ($) -1707) (-15 -2603 ($) -1707) (-15 -3152 ($) -1707) (-15 -1463 ($ $ (-654 $)))))) (T -607))
+((-1470 (*1 *1) (-5 *1 (-607))) (-4411 (*1 *1) (-5 *1 (-607))) (-2603 (*1 *1) (-5 *1 (-607))) (-3152 (*1 *1) (-5 *1 (-607))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607)))))
+(-13 (-1113) (-500 (-1195)) (-10 -8 (-15 -1470 ($) -1707) (-15 -4411 ($) -1707) (-15 -2603 ($) -1707) (-15 -3152 ($) -1707) (-15 -1463 ($ $ (-654 $)))))
+((-1778 (((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)) 15)))
+(((-608 |#1| |#2|) (-10 -7 (-15 -1778 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) (-1231) (-1231)) (T -608))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6)))))
+(-10 -7 (-15 -1778 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|))))
+((-1778 (((-1170 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1170 |#2|)) 20) (((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-611 |#2|)) 19) (((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|)) 18)))
+(((-609 |#1| |#2| |#3|) (-10 -7 (-15 -1778 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1778 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-611 |#2|))) (-15 -1778 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1170 |#2|)))) (-1231) (-1231) (-1231)) (T -609))
+((-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1170 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1170 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-611 *8)) (-5 *1 (-609 *6 *7 *8)))))
+(-10 -7 (-15 -1778 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1778 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-611 |#2|))) (-15 -1778 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1170 |#2|))))
+((-1530 ((|#3| |#3| (-654 (-622 |#3|)) (-654 (-1190))) 57)) (-3743 (((-171 |#2|) |#3|) 122)) (-1407 ((|#3| (-171 |#2|)) 46)) (-1542 ((|#2| |#3|) 21)) (-2828 ((|#3| |#2|) 35)))
+(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -1407 (|#3| (-171 |#2|))) (-15 -1542 (|#2| |#3|)) (-15 -2828 (|#3| |#2|)) (-15 -3743 ((-171 |#2|) |#3|)) (-15 -1530 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1190))))) (-566) (-13 (-440 |#1|) (-1015) (-1216)) (-13 (-440 (-171 |#1|)) (-1015) (-1216))) (T -610))
+((-1530 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1190))) (-4 *2 (-13 (-440 (-171 *5)) (-1015) (-1216))) (-4 *5 (-566)) (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1015) (-1216))))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) (-4 *5 (-13 (-440 *4) (-1015) (-1216))) (-4 *3 (-13 (-440 (-171 *4)) (-1015) (-1216))))) (-2828 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1015) (-1216))) (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1015) (-1216))))) (-1542 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1015) (-1216))) (-5 *1 (-610 *4 *2 *3)) (-4 *3 (-13 (-440 (-171 *4)) (-1015) (-1216))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1015) (-1216))) (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1015) (-1216))) (-5 *1 (-610 *4 *5 *2)))))
+(-10 -7 (-15 -1407 (|#3| (-171 |#2|))) (-15 -1542 (|#2| |#3|)) (-15 -2828 (|#3| |#2|)) (-15 -3743 ((-171 |#2|) |#3|)) (-15 -1530 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1190)))))
+((-2166 (($ (-1 (-112) |#1|) $) 17)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2095 (($ (-1 |#1| |#1|) |#1|) 9)) (-2141 (($ (-1 (-112) |#1|) $) 13)) (-2153 (($ (-1 (-112) |#1|) $) 15)) (-2956 (((-1170 |#1|) $) 18)) (-2943 (((-872) $) NIL)))
+(((-611 |#1|) (-13 (-623 (-872)) (-10 -8 (-15 -1778 ($ (-1 |#1| |#1|) $)) (-15 -2141 ($ (-1 (-112) |#1|) $)) (-15 -2153 ($ (-1 (-112) |#1|) $)) (-15 -2166 ($ (-1 (-112) |#1|) $)) (-15 -2095 ($ (-1 |#1| |#1|) |#1|)) (-15 -2956 ((-1170 |#1|) $)))) (-1231)) (T -611))
+((-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2141 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2153 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2166 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2095 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1231)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -1778 ($ (-1 |#1| |#1|) $)) (-15 -2141 ($ (-1 (-112) |#1|) $)) (-15 -2153 ($ (-1 (-112) |#1|) $)) (-15 -2166 ($ (-1 (-112) |#1|) $)) (-15 -2095 ($ (-1 |#1| |#1|) |#1|)) (-15 -2956 ((-1170 |#1|) $))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2217 (($ (-781)) NIL (|has| |#1| (-23)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) NIL (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2239 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-2448 (((-112) $ (-781)) NIL)) (-4135 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3222 ((|#1| $ $) NIL (|has| |#1| (-1062)))) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2503 (($ $ $) NIL (|has| |#1| (-1062)))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3078 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-612 |#1| |#2|) (-1279 |#1|) (-1231) (-574)) (T -612))
+NIL
+(-1279 |#1|)
+((-1860 (((-1286) $ |#2| |#2|) 35)) (-1849 ((|#2| $) 23)) (-3429 ((|#2| $) 21)) (-2446 (($ (-1 |#3| |#3|) $) 32)) (-1778 (($ (-1 |#3| |#3|) $) 30)) (-2915 ((|#3| $) 26)) (-1363 (($ $ |#3|) 33)) (-2282 (((-112) |#3| $) 17)) (-2121 (((-654 |#3|) $) 15)) (-2200 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-613 |#1| |#2| |#3|) (-10 -8 (-15 -1860 ((-1286) |#1| |#2| |#2|)) (-15 -1363 (|#1| |#1| |#3|)) (-15 -2915 (|#3| |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -2282 ((-112) |#3| |#1|)) (-15 -2121 ((-654 |#3|) |#1|)) (-15 -2200 (|#3| |#1| |#2|)) (-15 -2200 (|#3| |#1| |#2| |#3|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1778 (|#1| (-1 |#3| |#3|) |#1|))) (-614 |#2| |#3|) (-1113) (-1231)) (T -613))
+NIL
+(-10 -8 (-15 -1860 ((-1286) |#1| |#2| |#2|)) (-15 -1363 (|#1| |#1| |#3|)) (-15 -2915 (|#3| |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -2282 ((-112) |#3| |#1|)) (-15 -2121 ((-654 |#3|) |#1|)) (-15 -2200 (|#3| |#1| |#2|)) (-15 -2200 (|#3| |#1| |#2| |#3|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1778 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#2| (-1113)))) (-1860 (((-1286) $ |#1| |#1|) 41 (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) 8)) (-3143 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4457)))) (-3670 (($) 7 T CONST)) (-2462 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) 52)) (-1864 (((-654 |#2|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1849 ((|#1| $) 44 (|has| |#1| (-860)))) (-1712 (((-654 |#2|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3429 ((|#1| $) 45 (|has| |#1| (-860)))) (-2446 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#2| |#2|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#2| (-1113)))) (-2459 (((-654 |#1|) $) 47)) (-2607 (((-112) |#1| $) 48)) (-3966 (((-1133) $) 21 (|has| |#2| (-1113)))) (-2915 ((|#2| $) 43 (|has| |#1| (-860)))) (-1363 (($ $ |#2|) 42 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3975 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4456))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#2| (-1113)))) (-2935 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#2| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-614 |#1| |#2|) (-141) (-1113) (-1231)) (T -614))
+((-2121 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) (-5 *2 (-654 *4)))) (-2607 (*1 *2 *3 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) (-5 *2 (-112)))) (-2459 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) (-5 *2 (-654 *3)))) (-2282 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1113)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1231)) (-4 *2 (-1113)) (-4 *2 (-860)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1231)) (-4 *2 (-1113)) (-4 *2 (-860)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1113)) (-4 *3 (-860)) (-4 *2 (-1231)))) (-1363 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) (-1860 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) (-5 *2 (-1286)))))
+(-13 (-499 |t#2|) (-296 |t#1| |t#2|) (-10 -8 (-15 -2121 ((-654 |t#2|) $)) (-15 -2607 ((-112) |t#1| $)) (-15 -2459 ((-654 |t#1|) $)) (IF (|has| |t#2| (-1113)) (IF (|has| $ (-6 -4456)) (-15 -2282 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -3429 (|t#1| $)) (-15 -1849 (|t#1| $)) (-15 -2915 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4457)) (PROGN (-15 -1363 ($ $ |t#2|)) (-15 -1860 ((-1286) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1113)) ((-623 (-872)) -2818 (|has| |#2| (-1113)) (|has| |#2| (-623 (-872)))) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-1113) |has| |#2| (-1113)) ((-1231) . T))
+((-2943 (((-872) $) 19) (($ (-130)) 13) (((-130) $) 14)))
+(((-615) (-13 (-623 (-872)) (-500 (-130)))) (T -615))
+NIL
+(-13 (-623 (-872)) (-500 (-130)))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-1195)) NIL) (((-1195) $) NIL) (((-1230) $) 14) (($ (-654 (-1230))) 13)) (-4291 (((-654 (-1230)) $) 10)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-616) (-13 (-1096) (-623 (-1230)) (-10 -8 (-15 -2943 ($ (-654 (-1230)))) (-15 -4291 ((-654 (-1230)) $))))) (T -616))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-616)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-616)))))
+(-13 (-1096) (-623 (-1230)) (-10 -8 (-15 -2943 ($ (-654 (-1230)))) (-15 -4291 ((-654 (-1230)) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1708 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-2750 (((-1281 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1281 (-699 |#1|)) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4136 (((-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3670 (($) NIL T CONST)) (-4192 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1738 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3099 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4029 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2263 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4014 (((-1186 (-963 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2652 (($ $ (-932)) NIL)) (-2856 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2517 (((-1186 |#1|) $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1328 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1510 (((-1186 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-3063 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3003 (($ (-1281 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1281 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1950 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3584 (((-932)) NIL (|has| |#2| (-376 |#1|)))) (-3715 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2023 (($ $ (-932)) NIL)) (-2154 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3644 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4314 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1388 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3546 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1658 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-2799 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2360 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1792 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3860 (((-1186 (-963 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3702 (($ $ (-932)) NIL)) (-3125 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3258 (((-1186 |#1|) $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1734 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1749 (((-1186 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-1894 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2568 (((-1172) $) NIL)) (-3532 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3649 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1593 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3966 (((-1133) $) NIL)) (-1383 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2200 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-3676 (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-427 |#1|))) (((-1281 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $) (-1281 $)) NIL (|has| |#2| (-376 |#1|))) (((-1281 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1837 (($ (-1281 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1281 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2528 (((-654 (-963 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-963 |#1|)) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3647 (($ $ $) NIL)) (-2910 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2943 (((-872) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL (|has| |#2| (-427 |#1|)))) (-3432 (((-654 (-1281 |#1|))) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3243 (($ $ $ $) NIL)) (-2333 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2901 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2309 (($ $ $) NIL)) (-2210 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3999 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3784 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2134 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) 24)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-617 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2943 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -617))
+((-2943 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3)))))
+(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2943 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-2596 (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) 39)) (-3778 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL) (($) NIL)) (-1860 (((-1286) $ (-1172) (-1172)) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-1172) |#1|) 49)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#1| "failed") (-1172) $) 52)) (-3670 (($) NIL T CONST)) (-2759 (($ $ (-1172)) 25)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113))))) (-1586 (((-3 |#1| "failed") (-1172) $) 53) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456))) (($ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL (|has| $ (-6 -4456)))) (-3335 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456))) (($ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113))))) (-2868 (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113))))) (-3971 (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) 38)) (-2462 ((|#1| $ (-1172) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-1172)) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-3640 (($ $) 54)) (-1676 (($ (-398)) 23) (($ (-398) (-1172)) 22)) (-2032 (((-398) $) 40)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-1172) $) NIL (|has| (-1172) (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (((-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113))))) (-3429 (((-1172) $) NIL (|has| (-1172) (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-1765 (((-654 (-1172)) $) 45)) (-1726 (((-112) (-1172) $) NIL)) (-3900 (((-1172) $) 41)) (-2234 (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL)) (-1709 (($ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL)) (-2459 (((-654 (-1172)) $) NIL)) (-2607 (((-112) (-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 ((|#1| $) NIL (|has| (-1172) (-860)))) (-1836 (((-3 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) "failed") (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (($ $ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (($ $ (-654 (-302 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) 43)) (-2200 ((|#1| $ (-1172) |#1|) NIL) ((|#1| $ (-1172)) 48)) (-2826 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL) (($) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (((-781) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (((-781) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL)) (-2943 (((-872) $) 21)) (-3568 (($ $) 26)) (-2923 (((-112) $ $) NIL)) (-2817 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456)))))
+(((-618 |#1|) (-13 (-373 (-398) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) (-1207 (-1172) |#1|) (-10 -8 (-6 -4456) (-15 -3640 ($ $)))) (-1113)) (T -618))
+((-3640 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1113)))))
+(-13 (-373 (-398) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) (-1207 (-1172) |#1|) (-10 -8 (-6 -4456) (-15 -3640 ($ $))))
+((-3759 (((-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) $) 16)) (-1765 (((-654 |#2|) $) 20)) (-1726 (((-112) |#2| $) 12)))
+(((-619 |#1| |#2| |#3|) (-10 -8 (-15 -1765 ((-654 |#2|) |#1|)) (-15 -1726 ((-112) |#2| |#1|)) (-15 -3759 ((-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|))) (-620 |#2| |#3|) (-1113) (-1113)) (T -619))
+NIL
+(-10 -8 (-15 -1765 ((-654 |#2|) |#1|)) (-15 -1726 ((-112) |#2| |#1|)) (-15 -3759 ((-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)))
+((-2849 (((-112) $ $) 19 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 46 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 56 (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) 62)) (-3670 (($) 7 T CONST)) (-2158 (($ $) 59 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 47 (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 63)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 55 (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 57 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 54 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-1765 (((-654 |#1|) $) 64)) (-1726 (((-112) |#1| $) 65)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 40)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 41)) (-3966 (((-1133) $) 21 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 52)) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 42)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) 27 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 26 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 25 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 24 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2826 (($) 50) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 49)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 32 (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 60 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 51)) (-2943 (((-872) $) 18 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 43)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-620 |#1| |#2|) (-141) (-1113) (-1113)) (T -620))
+((-1726 (*1 *2 *3 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-5 *2 (-112)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-5 *2 (-654 *3)))) (-1586 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-2163 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))))
+(-13 (-231 (-2 (|:| -3693 |t#1|) (|:| -1909 |t#2|))) (-10 -8 (-15 -1726 ((-112) |t#1| $)) (-15 -1765 ((-654 |t#1|) $)) (-15 -1586 ((-3 |t#2| "failed") |t#1| $)) (-15 -2163 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T) ((-102) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) ((-623 (-872)) -2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) ((-499 #0#) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) ((-1113) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) ((-1231) . T))
+((-3978 (((-622 |#2|) |#1|) 17)) (-3450 (((-3 |#1| "failed") (-622 |#2|)) 21)))
+(((-621 |#1| |#2|) (-10 -7 (-15 -3978 ((-622 |#2|) |#1|)) (-15 -3450 ((-3 |#1| "failed") (-622 |#2|)))) (-1113) (-1113)) (T -621))
+((-3450 (*1 *2 *3) (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1113)) (-4 *2 (-1113)) (-5 *1 (-621 *2 *4)))) (-3978 (*1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))))
+(-10 -7 (-15 -3978 ((-622 |#2|) |#1|)) (-15 -3450 ((-3 |#1| "failed") (-622 |#2|))))
+((-2849 (((-112) $ $) NIL)) (-3317 (((-3 (-1190) "failed") $) 46)) (-2739 (((-1286) $ (-781)) 22)) (-1441 (((-781) $) 20)) (-4173 (((-115) $) 9)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-1775 (($ (-115) (-654 |#1|) (-781)) 32) (($ (-1190)) 33)) (-2884 (((-112) $ (-115)) 15) (((-112) $ (-1190)) 13)) (-1840 (((-781) $) 17)) (-3966 (((-1133) $) NIL)) (-1837 (((-903 (-574)) $) 95 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 102 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 88 (|has| |#1| (-624 (-546))))) (-2943 (((-872) $) 72)) (-2923 (((-112) $ $) NIL)) (-1861 (((-654 |#1|) $) 19)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 51)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 53)))
+(((-622 |#1|) (-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4173 ((-115) $)) (-15 -1861 ((-654 |#1|) $)) (-15 -1840 ((-781) $)) (-15 -1775 ($ (-115) (-654 |#1|) (-781))) (-15 -1775 ($ (-1190))) (-15 -3317 ((-3 (-1190) "failed") $)) (-15 -2884 ((-112) $ (-115))) (-15 -2884 ((-112) $ (-1190))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-1113)) (T -622))
+((-4173 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-1775 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1113)) (-5 *1 (-622 *5)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-3317 (*1 *2 *1) (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-2884 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1113)))) (-2884 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1113)))))
+(-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4173 ((-115) $)) (-15 -1861 ((-654 |#1|) $)) (-15 -1840 ((-781) $)) (-15 -1775 ($ (-115) (-654 |#1|) (-781))) (-15 -1775 ($ (-1190))) (-15 -3317 ((-3 (-1190) "failed") $)) (-15 -2884 ((-112) $ (-115))) (-15 -2884 ((-112) $ (-1190))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|)))
+((-2943 ((|#1| $) 6)))
+(((-623 |#1|) (-141) (-1231)) (T -623))
+((-2943 (*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1231)))))
+(-13 (-10 -8 (-15 -2943 (|t#1| $))))
+((-1837 ((|#1| $) 6)))
+(((-624 |#1|) (-141) (-1231)) (T -624))
+((-1837 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1231)))))
+(-13 (-10 -8 (-15 -1837 (|t#1| $))))
+((-2064 (((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)) 15) (((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 16)))
+(((-625 |#1| |#2|) (-10 -7 (-15 -2064 ((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -2064 ((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -625))
+((-2064 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-1186 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6)))) (-2064 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-1186 (-417 *5))) (-5 *1 (-625 *4 *5)) (-5 *3 (-417 *5)))))
+(-10 -7 (-15 -2064 ((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -2064 ((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|))))
+((-2943 (($ |#1|) 6)))
+(((-626 |#1|) (-141) (-1231)) (T -626))
+((-2943 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1231)))))
+(-13 (-10 -8 (-15 -2943 ($ |t#1|))))
+((-2849 (((-112) $ $) NIL)) (-2034 (($) 14 T CONST)) (-1562 (($) 15 T CONST)) (-2099 (($ $ $) 29)) (-2077 (($ $) 27)) (-2568 (((-1172) $) NIL)) (-1346 (($ $ $) 30)) (-3966 (((-1133) $) NIL)) (-2885 (($) 11 T CONST)) (-2866 (($ $ $) 31)) (-2943 (((-872) $) 35)) (-2123 (((-112) $ (|[\|\|]| -2885)) 24) (((-112) $ (|[\|\|]| -2034)) 26) (((-112) $ (|[\|\|]| -1562)) 21)) (-2923 (((-112) $ $) NIL)) (-2088 (($ $ $) 28)) (-2982 (((-112) $ $) 18)))
+(((-627) (-13 (-980) (-10 -8 (-15 -2034 ($) -1707) (-15 -2123 ((-112) $ (|[\|\|]| -2885))) (-15 -2123 ((-112) $ (|[\|\|]| -2034))) (-15 -2123 ((-112) $ (|[\|\|]| -1562)))))) (T -627))
+((-2034 (*1 *1) (-5 *1 (-627))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2885)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2034)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1562)) (-5 *2 (-112)) (-5 *1 (-627)))))
+(-13 (-980) (-10 -8 (-15 -2034 ($) -1707) (-15 -2123 ((-112) $ (|[\|\|]| -2885))) (-15 -2123 ((-112) $ (|[\|\|]| -2034))) (-15 -2123 ((-112) $ (|[\|\|]| -1562)))))
+((-1837 (($ |#1|) 6)))
+(((-628 |#1|) (-141) (-1231)) (T -628))
+((-1837 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1231)))))
+(-13 (-10 -8 (-15 -1837 ($ |t#1|))))
+((-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10)))
+(((-629 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-630 |#2|) (-1062)) (T -629))
+NIL
+(-10 -8 (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 41)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
+(((-630 |#1|) (-141) (-1062)) (T -630))
+((-2943 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1062)))))
+(-13 (-1062) (-658 |t#1|) (-10 -8 (-15 -2943 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3747 (((-574) $) NIL (|has| |#1| (-858)))) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3434 (((-112) $) NIL (|has| |#1| (-858)))) (-3965 (((-112) $) NIL)) (-2965 ((|#1| $) 13)) (-3244 (((-112) $) NIL (|has| |#1| (-858)))) (-3658 (($ $ $) NIL (|has| |#1| (-858)))) (-2106 (($ $ $) NIL (|has| |#1| (-858)))) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2977 ((|#3| $) 15)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL)) (-4160 (((-781)) 20 T CONST)) (-2923 (((-112) $ $) NIL)) (-2946 (($ $) NIL (|has| |#1| (-858)))) (-2134 (($) NIL T CONST)) (-2146 (($) 12 T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3107 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-631 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3107 ($ $ |#3|)) (-15 -3107 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2977 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -631))
+((-3107 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3107 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2977 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3107 ($ $ |#3|)) (-15 -3107 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2977 (|#3| $))))
+((-3353 ((|#2| |#2| (-1190) (-1190)) 16)))
+(((-632 |#1| |#2|) (-10 -7 (-15 -3353 (|#2| |#2| (-1190) (-1190)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-970) (-29 |#1|))) (T -632))
+((-3353 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1216) (-970) (-29 *4))))))
+(-10 -7 (-15 -3353 (|#2| |#2| (-1190) (-1190))))
+((-2849 (((-112) $ $) 64)) (-2908 (((-112) $) 58)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-1394 ((|#1| $) 55)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-3901 (((-2 (|:| -2638 $) (|:| -2602 (-417 |#2|))) (-417 |#2|)) 111 (|has| |#1| (-372)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) 27)) (-1950 (((-3 $ "failed") $) 88)) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3593 (((-574) $) 22)) (-3965 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2197 (((-112) $) 40)) (-4335 (($ |#1| (-574)) 24)) (-1370 ((|#1| $) 57)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) 101 (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ $) 93)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1347 (((-781) $) 115 (|has| |#1| (-372)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 114 (|has| |#1| (-372)))) (-3905 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-1784 (((-574) $) 38)) (-1837 (((-417 |#2|) $) 47)) (-2943 (((-872) $) 69) (($ (-574)) 35) (($ $) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 34) (($ |#2|) 25)) (-3344 ((|#1| $ (-574)) 72)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2134 (($) 9 T CONST)) (-2146 (($) 14 T CONST)) (-3611 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2982 (((-112) $ $) 21)) (-3094 (($ $) 51) (($ $ $) NIL)) (-3078 (($ $ $) 90)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 29) (($ $ $) 49)))
+(((-633 |#1| |#2|) (-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1051 |#2|) (-10 -8 (-15 -2197 ((-112) $)) (-15 -1784 ((-574) $)) (-15 -3593 ((-574) $)) (-15 -1392 ($ $)) (-15 -1370 (|#1| $)) (-15 -1394 (|#1| $)) (-15 -3344 (|#1| $ (-574))) (-15 -4335 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -3901 ((-2 (|:| -2638 $) (|:| -2602 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) (-566) (-1257 |#1|)) (T -633))
+((-2197 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1257 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1257 *3)))) (-3593 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1257 *3)))) (-1392 (*1 *1 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2)))) (-1370 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2)))) (-1394 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2)))) (-3344 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1257 *2)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1257 *2)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -2638 (-633 *4 *5)) (|:| -2602 (-417 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5)))))
+(-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1051 |#2|) (-10 -8 (-15 -2197 ((-112) $)) (-15 -1784 ((-574) $)) (-15 -3593 ((-574) $)) (-15 -1392 ($ $)) (-15 -1370 (|#1| $)) (-15 -1394 (|#1| $)) (-15 -3344 (|#1| $ (-574))) (-15 -4335 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -3901 ((-2 (|:| -2638 $) (|:| -2602 (-417 |#2|))) (-417 |#2|)))) |%noBranch|)))
+((-1886 (((-654 |#6|) (-654 |#4|) (-112)) 54)) (-1960 ((|#6| |#6|) 48)))
+(((-634 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1960 (|#6| |#6|)) (-15 -1886 ((-654 |#6|) (-654 |#4|) (-112)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|) (-1122 |#1| |#2| |#3| |#4|)) (T -634))
+((-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *10 (-1122 *5 *6 *7 *8)))) (-1960 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *2 (-1122 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1960 (|#6| |#6|)) (-15 -1886 ((-654 |#6|) (-654 |#4|) (-112))))
+((-4036 (((-112) |#3| (-781) (-654 |#3|)) 29)) (-2804 (((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1186 |#3|)))) "failed") |#3| (-654 (-1186 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3948 (-654 (-2 (|:| |irr| |#4|) (|:| -3963 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)) 69)))
+(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4036 ((-112) |#3| (-781) (-654 |#3|))) (-15 -2804 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1186 |#3|)))) "failed") |#3| (-654 (-1186 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3948 (-654 (-2 (|:| |irr| |#4|) (|:| -3963 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) (-860) (-803) (-315) (-960 |#3| |#2| |#1|)) (T -635))
+((-2804 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3948 (-654 (-2 (|:| |irr| *10) (|:| -3963 (-574))))))) (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) (-4 *10 (-960 *3 *9 *8)) (-4 *9 (-803)) (-5 *2 (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) (|:| |corrfact| (-654 (-1186 *3))))) (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1186 *3))))) (-4036 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) (-4 *8 (-960 *3 *7 *6)))))
+(-10 -7 (-15 -4036 ((-112) |#3| (-781) (-654 |#3|))) (-15 -2804 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1186 |#3|)))) "failed") |#3| (-654 (-1186 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3948 (-654 (-2 (|:| |irr| |#4|) (|:| -3963 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|))))
+((-2849 (((-112) $ $) NIL)) (-1809 (((-1148) $) 11)) (-1796 (((-1148) $) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-636) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))) (T -636))
+((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-636)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-636)))))
+(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))
+((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) NIL)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-3826 (($ $) 77)) (-3119 (((-674 |#1| |#2|) $) 60)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 81)) (-2579 (((-654 (-302 |#2|)) $ $) 42)) (-3966 (((-1133) $) NIL)) (-1610 (($ (-674 |#1| |#2|)) 56)) (-1514 (($ $ $) NIL)) (-3647 (($ $ $) NIL)) (-2943 (((-872) $) 66) (((-1296 |#1| |#2|) $) NIL) (((-1301 |#1| |#2|) $) 74)) (-2923 (((-112) $ $) NIL)) (-2146 (($) 61 T CONST)) (-1389 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) 41)) (-1735 (((-654 (-674 |#1| |#2|)) (-654 |#1|)) 73)) (-3251 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) 46)) (-2982 (((-112) $ $) 62)) (-3107 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 52)))
+(((-637 |#1| |#2| |#3|) (-13 (-483) (-10 -8 (-15 -1610 ($ (-674 |#1| |#2|))) (-15 -3119 ((-674 |#1| |#2|) $)) (-15 -3251 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2943 ((-1296 |#1| |#2|) $)) (-15 -2943 ((-1301 |#1| |#2|) $)) (-15 -3826 ($ $)) (-15 -1655 ((-654 |#1|) $)) (-15 -1735 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -1389 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -2579 ((-654 (-302 |#2|)) $ $)))) (-860) (-13 (-174) (-727 (-417 (-574)))) (-932)) (T -637))
+((-1610 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5)) (-14 *5 (-932)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-932)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) (-14 *6 (-932)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-2579 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))))
+(-13 (-483) (-10 -8 (-15 -1610 ($ (-674 |#1| |#2|))) (-15 -3119 ((-674 |#1| |#2|) $)) (-15 -3251 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2943 ((-1296 |#1| |#2|) $)) (-15 -2943 ((-1301 |#1| |#2|) $)) (-15 -3826 ($ $)) (-15 -1655 ((-654 |#1|) $)) (-15 -1735 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -1389 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -2579 ((-654 (-302 |#2|)) $ $))))
+((-1886 (((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 103) (((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 77)) (-1905 (((-112) (-654 (-790 |#1| (-874 |#2|)))) 26)) (-2589 (((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 102)) (-4294 (((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 76)) (-2850 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) 30)) (-1344 (((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|)))) 29)))
+(((-638 |#1| |#2|) (-10 -7 (-15 -1905 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -1344 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -2850 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -4294 ((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -2589 ((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1886 ((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1886 ((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) (-462) (-654 (-1190))) (T -638))
+((-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1159 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-638 *5 *6)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1159 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-638 *5 *6)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1190))) (-5 *1 (-638 *3 *4)))) (-1344 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1190))) (-5 *1 (-638 *3 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) (-14 *5 (-654 (-1190))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5)))))
+(-10 -7 (-15 -1905 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -1344 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -2850 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -4294 ((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -2589 ((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1886 ((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1886 ((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))))
+((-2364 (($ $) 38)) (-2246 (($ $) 21)) (-2343 (($ $) 37)) (-2227 (($ $) 22)) (-2388 (($ $) 36)) (-2267 (($ $) 23)) (-3001 (($) 48)) (-3119 (($ $) 45)) (-4079 (($ $) 17)) (-4267 (($ $ (-1105 $)) 7) (($ $ (-1190)) 6)) (-1610 (($ $) 46)) (-4070 (($ $) 15)) (-2216 (($ $) 16)) (-2402 (($ $) 35)) (-2275 (($ $) 24)) (-2375 (($ $) 34)) (-2257 (($ $) 25)) (-2353 (($ $) 33)) (-2237 (($ $) 26)) (-2441 (($ $) 44)) (-2305 (($ $) 32)) (-2414 (($ $) 43)) (-2287 (($ $) 31)) (-2465 (($ $) 42)) (-2325 (($ $) 30)) (-2521 (($ $) 41)) (-2334 (($ $) 29)) (-2453 (($ $) 40)) (-2315 (($ $) 28)) (-2428 (($ $) 39)) (-2297 (($ $) 27)) (-2510 (($ $) 19)) (-3608 (($ $) 20)) (-1447 (($ $) 18)) (** (($ $ $) 47)))
+(((-639) (-141)) (T -639))
+((-3608 (*1 *1 *1) (-4 *1 (-639))) (-2510 (*1 *1 *1) (-4 *1 (-639))) (-1447 (*1 *1 *1) (-4 *1 (-639))) (-4079 (*1 *1 *1) (-4 *1 (-639))) (-2216 (*1 *1 *1) (-4 *1 (-639))) (-4070 (*1 *1 *1) (-4 *1 (-639))))
+(-13 (-970) (-1216) (-10 -8 (-15 -3608 ($ $)) (-15 -2510 ($ $)) (-15 -1447 ($ $)) (-15 -4079 ($ $)) (-15 -2216 ($ $)) (-15 -4070 ($ $))))
+(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-970) . T) ((-1216) . T) ((-1219) . T))
+((-4173 (((-115) (-115)) 88)) (-4079 ((|#2| |#2|) 28)) (-4267 ((|#2| |#2| (-1105 |#2|)) 84) ((|#2| |#2| (-1190)) 50)) (-4070 ((|#2| |#2|) 27)) (-2216 ((|#2| |#2|) 29)) (-1932 (((-112) (-115)) 33)) (-2510 ((|#2| |#2|) 24)) (-3608 ((|#2| |#2|) 26)) (-1447 ((|#2| |#2|) 25)))
+(((-640 |#1| |#2|) (-10 -7 (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -3608 (|#2| |#2|)) (-15 -2510 (|#2| |#2|)) (-15 -1447 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -4267 (|#2| |#2| (-1190))) (-15 -4267 (|#2| |#2| (-1105 |#2|)))) (-566) (-13 (-440 |#1|) (-1015) (-1216))) (T -640))
+((-4267 (*1 *2 *2 *3) (-12 (-5 *3 (-1105 *2)) (-4 *2 (-13 (-440 *4) (-1015) (-1216))) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) (-4267 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-440 *4) (-1015) (-1216))))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-2510 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-3608 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4)) (-4 *4 (-13 (-440 *3) (-1015) (-1216))))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1015) (-1216))))))
+(-10 -7 (-15 -1932 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -3608 (|#2| |#2|)) (-15 -2510 (|#2| |#2|)) (-15 -1447 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -4267 (|#2| |#2| (-1190))) (-15 -4267 (|#2| |#2| (-1105 |#2|))))
+((-3834 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-1969 (((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 89)) (-3737 (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 91) (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 90)) (-3362 (((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|))) 134)) (-3397 (((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 104)) (-3171 (((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|))) 145)) (-3847 (((-1281 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|))) 68)) (-3624 (((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 47)) (-2933 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 60)) (-1940 (((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 112)))
+(((-641 |#1| |#2|) (-10 -7 (-15 -3362 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -3171 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -1969 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3737 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3737 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3624 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3847 ((-1281 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -1940 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -3397 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2933 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -3834 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) (-654 (-1190)) (-462)) (T -641))
+((-3834 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5)))) (-2933 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-3397 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-1940 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1190))) (-5 *1 (-641 *5 *6)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) (-14 *5 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-1281 *6)) (-5 *1 (-641 *5 *6)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1190))) (-4 *4 (-462)) (-5 *1 (-641 *3 *4)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1190))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-3737 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1190))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5)))) (-3171 (*1 *2 *3) (-12 (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5))))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |gblist| (-654 (-253 *4 *5))) (|:| |gvlist| (-654 (-574))))) (-5 *1 (-641 *4 *5)))))
+(-10 -7 (-15 -3362 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -3171 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -1969 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3737 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3737 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3624 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3847 ((-1281 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -1940 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -3397 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2933 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -3834 ((-491 |#1| |#2|) (-253 |#1| |#2|))))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) NIL)) (-1860 (((-1286) $ (-1172) (-1172)) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 (((-52) $ (-1172) (-52)) 16) (((-52) $ (-1190) (-52)) 17)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 (-52) "failed") (-1172) $) NIL)) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113))))) (-1586 (($ (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-3 (-52) "failed") (-1172) $) NIL)) (-3335 (($ (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $ (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113)))) (((-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $ (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2462 (((-52) $ (-1172) (-52)) NIL (|has| $ (-6 -4457)))) (-2385 (((-52) $ (-1172)) NIL)) (-1864 (((-654 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-3640 (($ $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-1172) $) NIL (|has| (-1172) (-860)))) (-1712 (((-654 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-3429 (((-1172) $) NIL (|has| (-1172) (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1464 (($ (-398)) 9)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113))))) (-1765 (((-654 (-1172)) $) NIL)) (-1726 (((-112) (-1172) $) NIL)) (-2234 (((-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) $) NIL)) (-1709 (($ (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) $) NIL)) (-2459 (((-654 (-1172)) $) NIL)) (-2607 (((-112) (-1172) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113))))) (-2915 (((-52) $) NIL (|has| (-1172) (-860)))) (-1836 (((-3 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) "failed") (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL)) (-1363 (($ $ (-52)) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113)))) (($ $ (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-2121 (((-654 (-52)) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 (((-52) $ (-1172)) 14) (((-52) $ (-1172) (-52)) NIL) (((-52) $ (-1190)) 15)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-623 (-872)))))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-642) (-13 (-1207 (-1172) (-52)) (-294 (-1190) (-52)) (-10 -8 (-15 -1464 ($ (-398))) (-15 -3640 ($ $)) (-15 -3143 ((-52) $ (-1190) (-52)))))) (T -642))
+((-1464 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642)))) (-3640 (*1 *1 *1) (-5 *1 (-642))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1190)) (-5 *1 (-642)))))
+(-13 (-1207 (-1172) (-52)) (-294 (-1190) (-52)) (-10 -8 (-15 -1464 ($ (-398))) (-15 -3640 ($ $)) (-15 -3143 ((-52) $ (-1190) (-52)))))
+((-3107 (($ $ |#2|) 10)))
+(((-643 |#1| |#2|) (-10 -8 (-15 -3107 (|#1| |#1| |#2|))) (-644 |#2|) (-174)) (T -643))
+NIL
+(-10 -8 (-15 -3107 (|#1| |#1| |#2|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2956 (($ $ $) 34)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 33 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-644 |#1|) (-141) (-174)) (T -644))
+((-2956 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)))) (-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372)))))
+(-13 (-727 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2956 ($ $ $)) (IF (|has| |t#1| (-372)) (-15 -3107 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1708 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-2750 (((-1281 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1281 (-699 |#1|)) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4136 (((-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3670 (($) NIL T CONST)) (-4192 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1738 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3099 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4029 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2263 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4014 (((-1186 (-963 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2652 (($ $ (-932)) NIL)) (-2856 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2517 (((-1186 |#1|) $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1328 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1510 (((-1186 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-3063 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3003 (($ (-1281 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1281 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1950 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3584 (((-932)) NIL (|has| |#2| (-376 |#1|)))) (-3715 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2023 (($ $ (-932)) NIL)) (-2154 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3644 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4314 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1388 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3546 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1658 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-2799 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2360 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1792 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3860 (((-1186 (-963 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3702 (($ $ (-932)) NIL)) (-3125 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3258 (((-1186 |#1|) $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1734 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1749 (((-1186 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-1894 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2568 (((-1172) $) NIL)) (-3532 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3649 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1593 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3966 (((-1133) $) NIL)) (-1383 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2200 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-3676 (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-427 |#1|))) (((-1281 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $) (-1281 $)) NIL (|has| |#2| (-376 |#1|))) (((-1281 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1837 (($ (-1281 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1281 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2528 (((-654 (-963 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-963 |#1|)) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3647 (($ $ $) NIL)) (-2910 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2943 (((-872) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL (|has| |#2| (-427 |#1|)))) (-3432 (((-654 (-1281 |#1|))) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3243 (($ $ $ $) NIL)) (-2333 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2901 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2309 (($ $ $) NIL)) (-2210 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3999 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3784 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) 20)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-645 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2943 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -645))
+((-2943 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3)))))
+(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2943 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|)))
+((-2728 (((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1172)) 106) (((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|))) 131)) (-3291 (((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|))) 136)))
+(((-646 |#1| |#2|) (-10 -7 (-15 -2728 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -3291 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -2728 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1172)))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -646))
+((-2728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1172)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) (-3291 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-302 (-843 *3))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-2728 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-646 *5 *3)))))
+(-10 -7 (-15 -2728 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -3291 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -2728 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1172))))
+((-2728 (((-3 (-853 (-417 (-963 |#1|))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))) (-1172)) 86) (((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|)))) 20) (((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-853 (-963 |#1|)))) 35)) (-3291 (((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|)))) 23) (((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-843 (-963 |#1|)))) 43)))
+(((-647 |#1|) (-10 -7 (-15 -2728 ((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-853 (-963 |#1|))))) (-15 -2728 ((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -3291 ((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-843 (-963 |#1|))))) (-15 -3291 ((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -2728 ((-3 (-853 (-417 (-963 |#1|))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))) (-1172)))) (-462)) (T -647))
+((-2728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 (-417 (-963 *6)))) (-5 *5 (-1172)) (-5 *3 (-417 (-963 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) (-5 *1 (-647 *6)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5))) (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-843 (-963 *5)))) (-4 *5 (-462)) (-5 *2 (-843 (-417 (-963 *5)))) (-5 *1 (-647 *5)) (-5 *3 (-417 (-963 *5))))) (-2728 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5))) (-4 *5 (-462)) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-647 *5)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 (-963 *5)))) (-4 *5 (-462)) (-5 *2 (-3 (-853 (-417 (-963 *5))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 *5))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 *5))) "failed"))) "failed")) (-5 *1 (-647 *5)) (-5 *3 (-417 (-963 *5))))))
+(-10 -7 (-15 -2728 ((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-853 (-963 |#1|))))) (-15 -2728 ((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -3291 ((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-843 (-963 |#1|))))) (-15 -3291 ((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -2728 ((-3 (-853 (-417 (-963 |#1|))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))) (-1172))))
+((-2180 (((-3 (-1281 (-417 |#1|)) "failed") (-1281 |#2|) |#2|) 64 (-2077 (|has| |#1| (-372)))) (((-3 (-1281 |#1|) "failed") (-1281 |#2|) |#2|) 49 (|has| |#1| (-372)))) (-2580 (((-112) (-1281 |#2|)) 33)) (-3010 (((-3 (-1281 |#1|) "failed") (-1281 |#2|)) 40)))
+(((-648 |#1| |#2|) (-10 -7 (-15 -2580 ((-112) (-1281 |#2|))) (-15 -3010 ((-3 (-1281 |#1|) "failed") (-1281 |#2|))) (IF (|has| |#1| (-372)) (-15 -2180 ((-3 (-1281 |#1|) "failed") (-1281 |#2|) |#2|)) (-15 -2180 ((-3 (-1281 (-417 |#1|)) "failed") (-1281 |#2|) |#2|)))) (-566) (-13 (-1062) (-649 |#1|))) (T -648))
+((-2180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 *5))) (-2077 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1281 (-417 *5))) (-5 *1 (-648 *5 *4)))) (-2180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 *5))) (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1281 *5)) (-5 *1 (-648 *5 *4)))) (-3010 (*1 *2 *3) (|partial| -12 (-5 *3 (-1281 *5)) (-4 *5 (-13 (-1062) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-1281 *4)) (-5 *1 (-648 *4 *5)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-1281 *5)) (-4 *5 (-13 (-1062) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5)))))
+(-10 -7 (-15 -2580 ((-112) (-1281 |#2|))) (-15 -3010 ((-3 (-1281 |#1|) "failed") (-1281 |#2|))) (IF (|has| |#1| (-372)) (-15 -2180 ((-3 (-1281 |#1|) "failed") (-1281 |#2|) |#2|)) (-15 -2180 ((-3 (-1281 (-417 |#1|)) "failed") (-1281 |#2|) |#2|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2668 (((-699 |#1|) (-1281 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 29)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27)))
+(((-649 |#1|) (-141) (-1062)) (T -649))
+((-2668 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1062)) (-5 *2 (-699 *4)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1062)) (-5 *2 (-699 *4)))) (-2668 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *1)) (-5 *4 (-1281 *1)) (-4 *1 (-649 *5)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -1485 (-699 *5)) (|:| |vec| (-1281 *5)))))))
+(-13 (-658 |t#1|) (-10 -8 (-15 -2668 ((-699 |t#1|) (-1281 $))) (-15 -2668 ((-699 |t#1|) (-699 $))) (-15 -2668 ((-2 (|:| -1485 (-699 |t#1|)) (|:| |vec| (-1281 |t#1|))) (-699 $) (-1281 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 16 T CONST)) (-2982 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
+(((-650 |#1|) (-141) (-1071)) (T -650))
+NIL
+(-13 (-656 |t#1|) (-1064 |t#1|))
+(((-102) . T) ((-623 (-872)) . T) ((-656 |#1|) . T) ((-1064 |#1|) . T) ((-1113) . T))
+((-2683 ((|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|) 17) ((|#2| (-654 |#1|) (-654 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|)) 12)))
+(((-651 |#1| |#2|) (-10 -7 (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) (-1113) (-1231)) (T -651))
+((-2683 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1113)) (-4 *2 (-1231)) (-5 *1 (-651 *5 *2)))) (-2683 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *1 (-651 *5 *6)))) (-2683 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1113)) (-4 *2 (-1231)) (-5 *1 (-651 *5 *2)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1113)) (-4 *5 (-1231)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1113)) (-4 *2 (-1231)) (-5 *1 (-651 *5 *2)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6)))))
+(-10 -7 (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|))))
+((-3318 (((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 16)) (-2868 ((|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 18)) (-1778 (((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)) 13)))
+(((-652 |#1| |#2|) (-10 -7 (-15 -3318 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1778 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) (-1231) (-1231)) (T -652))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-652 *5 *2)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5)))))
+(-10 -7 (-15 -3318 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1778 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|))))
+((-1778 (((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)) 21)))
+(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -1778 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) (-1231) (-1231) (-1231)) (T -653))
+((-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-654 *8)) (-5 *1 (-653 *6 *7 *8)))))
+(-10 -7 (-15 -1778 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-2406 ((|#1| $) NIL)) (-1971 (($ $) NIL)) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-2960 (($ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4010 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-2771 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1630 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-4002 (($ $ $) NIL (|has| $ (-6 -4457)))) (-4003 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-1533 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "rest" $) NIL (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-1367 (($ $ $) 37 (|has| |#1| (-1113)))) (-2583 (($ $ $) 41 (|has| |#1| (-1113)))) (-3310 (($ $ $) 44 (|has| |#1| (-1113)))) (-3391 (($ (-1 (-112) |#1|) $) NIL)) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2393 ((|#1| $) NIL)) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2926 (($ $) 23) (($ $ (-781)) NIL)) (-1730 (($ $) NIL (|has| |#1| (-1113)))) (-2158 (($ $) 36 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1586 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) NIL)) (-3335 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-2829 (((-112) $) NIL)) (-1441 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113))) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2066 (((-112) $) 11)) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3521 (($) 9 T CONST)) (-3790 (($ (-781) |#1|) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-3722 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2130 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1788 (($ |#1|) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-3509 (((-654 |#1|) $) NIL)) (-2173 (((-112) $) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3360 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1709 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1595 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) 20) (($ $ (-781)) NIL)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-3322 (((-112) $) NIL)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) 39)) (-3135 (($) 38)) (-2200 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1248 (-574))) NIL) ((|#1| $ (-574)) 42) ((|#1| $ (-574) |#1|) NIL)) (-1556 (((-574) $ $) NIL)) (-2701 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2837 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-4023 (((-112) $) NIL)) (-3420 (($ $) NIL)) (-1813 (($ $) NIL (|has| $ (-6 -4457)))) (-2584 (((-781) $) NIL)) (-2022 (($ $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) 53 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-2225 (($ |#1| $) 12)) (-2734 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4157 (($ $ $) 35) (($ |#1| $) 43) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2859 (($ $ $) 13)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-1520 (((-1172) $) 31 (|has| |#1| (-838))) (((-1172) $ (-112)) 32 (|has| |#1| (-838))) (((-1286) (-832) $) 33 (|has| |#1| (-838))) (((-1286) (-832) $ (-112)) 34 (|has| |#1| (-838)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-654 |#1|) (-13 (-676 |#1|) (-10 -8 (-15 -3521 ($) -1707) (-15 -2066 ((-112) $)) (-15 -2225 ($ |#1| $)) (-15 -2859 ($ $ $)) (IF (|has| |#1| (-1113)) (PROGN (-15 -1367 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -3310 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-1231)) (T -654))
+((-3521 (*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231)))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1231)))) (-2225 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231)))) (-2859 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231)))) (-1367 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)))) (-2583 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)))) (-3310 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)))))
+(-13 (-676 |#1|) (-10 -8 (-15 -3521 ($) -1707) (-15 -2066 ((-112) $)) (-15 -2225 ($ |#1| $)) (-15 -2859 ($ $ $)) (IF (|has| |#1| (-1113)) (PROGN (-15 -1367 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -3310 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 11) (($ (-1195)) NIL) (((-1195) $) NIL) ((|#1| $) 8)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-655 |#1|) (-13 (-1096) (-623 |#1|)) (-1113)) (T -655))
+NIL
+(-13 (-1096) (-623 |#1|))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 16 T CONST)) (-2982 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
+(((-656 |#1|) (-141) (-1071)) (T -656))
+((-2134 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1071)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1071)))))
+(-13 (-1113) (-10 -8 (-15 (-2134) ($) -1707) (-15 -2908 ((-112) $)) (-15 * ($ |t#1| $))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3776 (($ |#1| |#1| $) 43)) (-3340 (((-112) $ (-781)) NIL)) (-3391 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-1730 (($ $) 45)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1586 (($ |#1| $) 56 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 9 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 37)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2234 ((|#1| $) 47)) (-1709 (($ |#1| $) 29) (($ |#1| $ (-781)) 42)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3459 ((|#1| $) 50)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 23)) (-3135 (($) 28)) (-2412 (((-112) $) 54)) (-4243 (((-654 (-2 (|:| -1909 |#1|) (|:| -3975 (-781)))) $) 67)) (-2826 (($) 26) (($ (-654 |#1|)) 19)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) 63 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 20)) (-1837 (((-546) $) 34 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-2943 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 24)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 69 (|has| |#1| (-1113)))) (-2863 (((-781) $) 17 (|has| $ (-6 -4456)))))
+(((-657 |#1|) (-13 (-705 |#1|) (-10 -8 (-6 -4456) (-15 -2412 ((-112) $)) (-15 -3776 ($ |#1| |#1| $)))) (-1113)) (T -657))
+((-2412 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1113)))) (-3776 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1113)))))
+(-13 (-705 |#1|) (-10 -8 (-6 -4456) (-15 -2412 ((-112) $)) (-15 -3776 ($ |#1| |#1| $))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27)))
+(((-658 |#1|) (-141) (-1071)) (T -658))
+NIL
+(-13 (-21) (-656 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781) $) 17)) (-4285 (($ $ |#1|) 69)) (-2672 (($ $) 39)) (-4423 (($ $) 37)) (-1697 (((-3 |#1| "failed") $) 61)) (-2209 ((|#1| $) NIL)) (-3746 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3815 (((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574)) 56)) (-2404 ((|#1| $ (-574)) 35)) (-4226 ((|#2| $ (-574)) 34)) (-3400 (($ (-1 |#1| |#1|) $) 41)) (-1835 (($ (-1 |#2| |#2|) $) 47)) (-2789 (($) 11)) (-1475 (($ |#1| |#2|) 24)) (-1684 (($ (-654 (-2 (|:| |gen| |#1|) (|:| -1610 |#2|)))) 25)) (-1511 (((-654 (-2 (|:| |gen| |#1|) (|:| -1610 |#2|))) $) 14)) (-3886 (($ |#1| $) 71)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1679 (((-112) $ $) 76)) (-2943 (((-872) $) 21) (($ |#1|) 18)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 27)))
+(((-659 |#1| |#2| |#3|) (-13 (-1113) (-1051 |#1|) (-10 -8 (-15 -3815 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -1511 ((-654 (-2 (|:| |gen| |#1|) (|:| -1610 |#2|))) $)) (-15 -1475 ($ |#1| |#2|)) (-15 -1684 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1610 |#2|))))) (-15 -4226 (|#2| $ (-574))) (-15 -2404 (|#1| $ (-574))) (-15 -4423 ($ $)) (-15 -2672 ($ $)) (-15 -1487 ((-781) $)) (-15 -2789 ($)) (-15 -4285 ($ $ |#1|)) (-15 -3886 ($ |#1| $)) (-15 -3746 ($ |#1| |#2| $)) (-15 -3746 ($ $ $)) (-15 -1679 ((-112) $ $)) (-15 -1835 ($ (-1 |#2| |#2|) $)) (-15 -3400 ($ (-1 |#1| |#1|) $)))) (-1113) (-23) |#2|) (T -659))
+((-3815 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1113)) (-4 *6 (-23)) (-14 *7 *6))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 *4)))) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4))) (-1475 (*1 *1 *2 *3) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 *4)))) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) (-4 *4 (-1113)) (-14 *5 *2))) (-2404 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-1113)) (-5 *1 (-659 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4423 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-2672 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4))) (-2789 (*1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-4285 (*1 *1 *1 *2) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-3886 (*1 *1 *2 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-3746 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-3746 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-1679 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4))) (-1835 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)))) (-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-659 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1113) (-1051 |#1|) (-10 -8 (-15 -3815 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -1511 ((-654 (-2 (|:| |gen| |#1|) (|:| -1610 |#2|))) $)) (-15 -1475 ($ |#1| |#2|)) (-15 -1684 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1610 |#2|))))) (-15 -4226 (|#2| $ (-574))) (-15 -2404 (|#1| $ (-574))) (-15 -4423 ($ $)) (-15 -2672 ($ $)) (-15 -1487 ((-781) $)) (-15 -2789 ($)) (-15 -4285 ($ $ |#1|)) (-15 -3886 ($ |#1| $)) (-15 -3746 ($ |#1| |#2| $)) (-15 -3746 ($ $ $)) (-15 -1679 ((-112) $ $)) (-15 -1835 ($ (-1 |#2| |#2|) $)) (-15 -3400 ($ (-1 |#1| |#1|) $))))
+((-3429 (((-574) $) 31)) (-1595 (($ |#2| $ (-574)) 27) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) 12)) (-2607 (((-112) (-574) $) 18)) (-4157 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-654 $)) NIL)))
+(((-660 |#1| |#2|) (-10 -8 (-15 -1595 (|#1| |#1| |#1| (-574))) (-15 -1595 (|#1| |#2| |#1| (-574))) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -3429 ((-574) |#1|)) (-15 -2459 ((-654 (-574)) |#1|)) (-15 -2607 ((-112) (-574) |#1|))) (-661 |#2|) (-1231)) (T -660))
+NIL
+(-10 -8 (-15 -1595 (|#1| |#1| |#1| (-574))) (-15 -1595 (|#1| |#2| |#1| (-574))) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -3429 ((-574) |#1|)) (-15 -2459 ((-654 (-574)) |#1|)) (-15 -2607 ((-112) (-574) |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-1860 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2158 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 70)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 44 (|has| (-574) (-860)))) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 45 (|has| (-574) (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2459 (((-654 (-574)) $) 47)) (-2607 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1363 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-2837 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-661 |#1|) (-141) (-1231)) (T -661))
+((-3790 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-4157 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231)))) (-4157 (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231)))) (-4157 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-1778 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 (-1248 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-1595 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1231)))) (-1595 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1248 (-574))) (|has| *1 (-6 -4457)) (-4 *1 (-661 *2)) (-4 *2 (-1231)))))
+(-13 (-614 (-574) |t#1|) (-152 |t#1|) (-294 (-1248 (-574)) $) (-10 -8 (-15 -3790 ($ (-781) |t#1|)) (-15 -4157 ($ $ |t#1|)) (-15 -4157 ($ |t#1| $)) (-15 -4157 ($ $ $)) (-15 -4157 ($ (-654 $))) (-15 -1778 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2837 ($ $ (-574))) (-15 -2837 ($ $ (-1248 (-574)))) (-15 -1595 ($ |t#1| $ (-574))) (-15 -1595 ($ $ $ (-574))) (IF (|has| $ (-6 -4457)) (-15 -3143 (|t#1| $ (-1248 (-574)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-1723 (((-3 |#2| "failed") |#3| |#2| (-1190) |#2| (-654 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) "failed") |#3| |#2| (-1190)) 44)))
+(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -1723 ((-3 (-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) "failed") |#3| |#2| (-1190))) (-15 -1723 ((-3 |#2| "failed") |#3| |#2| (-1190) |#2| (-654 |#2|)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970)) (-666 |#2|)) (T -662))
+((-1723 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) (-1723 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1190)) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1216) (-970))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2722 (-654 *4)))) (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4)))))
+(-10 -7 (-15 -1723 ((-3 (-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) "failed") |#3| |#2| (-1190))) (-15 -1723 ((-3 |#2| "failed") |#3| |#2| (-1190) |#2| (-654 |#2|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1429 (($ $) NIL (|has| |#1| (-372)))) (-1689 (($ $ $) NIL (|has| |#1| (-372)))) (-2612 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-4379 (($ $ $) NIL (|has| |#1| (-372)))) (-2551 (($ $ $) NIL (|has| |#1| (-372)))) (-1521 (($ $ $) NIL (|has| |#1| (-372)))) (-1636 (($ $ $) NIL (|has| |#1| (-372)))) (-3769 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2293 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3876 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#1| (-462)))) (-3965 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL)) (-3626 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-566)))) (-1699 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-566)))) (-2382 (((-781) $) NIL)) (-4362 (($ $ $) NIL (|has| |#1| (-372)))) (-4255 (($ $ $) NIL (|has| |#1| (-372)))) (-4394 (($ $ $) NIL (|has| |#1| (-372)))) (-3590 (($ $ $) NIL (|has| |#1| (-372)))) (-1553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-1833 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3333 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2200 ((|#1| $ |#1|) NIL)) (-3338 (($ $ $) NIL (|has| |#1| (-372)))) (-1784 (((-781) $) NIL)) (-1607 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) NIL)) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-781)) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2901 ((|#1| $ |#1| |#1|) NIL)) (-4434 (($ $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($) NIL)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-663 |#1|) (-666 |#1|) (-239)) (T -663))
+NIL
+(-666 |#1|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1429 (($ $) NIL (|has| |#1| (-372)))) (-1689 (($ $ $) NIL (|has| |#1| (-372)))) (-2612 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-4379 (($ $ $) NIL (|has| |#1| (-372)))) (-2551 (($ $ $) NIL (|has| |#1| (-372)))) (-1521 (($ $ $) NIL (|has| |#1| (-372)))) (-1636 (($ $ $) NIL (|has| |#1| (-372)))) (-3769 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2293 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3876 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#1| (-462)))) (-3965 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL)) (-3626 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-566)))) (-1699 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-566)))) (-2382 (((-781) $) NIL)) (-4362 (($ $ $) NIL (|has| |#1| (-372)))) (-4255 (($ $ $) NIL (|has| |#1| (-372)))) (-4394 (($ $ $) NIL (|has| |#1| (-372)))) (-3590 (($ $ $) NIL (|has| |#1| (-372)))) (-1553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-1833 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3333 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2200 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3338 (($ $ $) NIL (|has| |#1| (-372)))) (-1784 (((-781) $) NIL)) (-1607 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) NIL)) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-781)) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2901 ((|#1| $ |#1| |#1|) NIL)) (-4434 (($ $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($) NIL)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-664 |#1| |#2|) (-13 (-666 |#1|) (-294 |#2| |#2|)) (-239) (-13 (-658 |#1|) (-10 -8 (-15 -3905 ($ $))))) (T -664))
+NIL
+(-13 (-666 |#1|) (-294 |#2| |#2|))
+((-1429 (($ $) 29)) (-4434 (($ $) 27)) (-3611 (($) 13)))
+(((-665 |#1| |#2|) (-10 -8 (-15 -1429 (|#1| |#1|)) (-15 -4434 (|#1| |#1|)) (-15 -3611 (|#1|))) (-666 |#2|) (-1062)) (T -665))
+NIL
+(-10 -8 (-15 -1429 (|#1| |#1|)) (-15 -4434 (|#1| |#1|)) (-15 -3611 (|#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1429 (($ $) 87 (|has| |#1| (-372)))) (-1689 (($ $ $) 89 (|has| |#1| (-372)))) (-2612 (($ $ (-781)) 88 (|has| |#1| (-372)))) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-4379 (($ $ $) 50 (|has| |#1| (-372)))) (-2551 (($ $ $) 51 (|has| |#1| (-372)))) (-1521 (($ $ $) 53 (|has| |#1| (-372)))) (-1636 (($ $ $) 48 (|has| |#1| (-372)))) (-3769 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 47 (|has| |#1| (-372)))) (-2293 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-3876 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 52 (|has| |#1| (-372)))) (-1697 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2209 (((-574) $) 79 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 75)) (-1392 (($ $) 69)) (-1950 (((-3 $ "failed") $) 37)) (-3872 (($ $) 60 (|has| |#1| (-462)))) (-3965 (((-112) $) 35)) (-4335 (($ |#1| (-781)) 67)) (-3626 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 62 (|has| |#1| (-566)))) (-1699 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63 (|has| |#1| (-566)))) (-2382 (((-781) $) 71)) (-4362 (($ $ $) 57 (|has| |#1| (-372)))) (-4255 (($ $ $) 58 (|has| |#1| (-372)))) (-4394 (($ $ $) 46 (|has| |#1| (-372)))) (-3590 (($ $ $) 55 (|has| |#1| (-372)))) (-1553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 54 (|has| |#1| (-372)))) (-1833 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-3333 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 59 (|has| |#1| (-372)))) (-1370 ((|#1| $) 70)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-2200 ((|#1| $ |#1|) 92)) (-3338 (($ $ $) 86 (|has| |#1| (-372)))) (-1784 (((-781) $) 72)) (-1607 ((|#1| $) 61 (|has| |#1| (-462)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 73)) (-3123 (((-654 |#1|) $) 66)) (-3344 ((|#1| $ (-781)) 68)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2901 ((|#1| $ |#1| |#1|) 65)) (-4434 (($ $) 90)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($) 91)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-666 |#1|) (-141) (-1062)) (T -666))
+((-3611 (*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)))) (-4434 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)))) (-1689 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1062)) (-4 *3 (-372)))) (-1429 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3338 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(-13 (-862 |t#1|) (-294 |t#1| |t#1|) (-10 -8 (-15 -3611 ($)) (-15 -4434 ($ $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -1689 ($ $ $)) (-15 -2612 ($ $ (-781))) (-15 -1429 ($ $)) (-15 -3338 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1051 #0#) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T) ((-862 |#1|) . T))
+((-3477 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 85 (|has| |#1| (-27)))) (-4220 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 84 (|has| |#1| (-27))) (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 19)))
+(((-667 |#1| |#2|) (-10 -7 (-15 -4220 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4220 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -3477 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -667))
+((-3477 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-663 (-417 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6))))))
+(-10 -7 (-15 -4220 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4220 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -3477 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1429 (($ $) NIL (|has| |#1| (-372)))) (-1689 (($ $ $) 28 (|has| |#1| (-372)))) (-2612 (($ $ (-781)) 31 (|has| |#1| (-372)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-4379 (($ $ $) NIL (|has| |#1| (-372)))) (-2551 (($ $ $) NIL (|has| |#1| (-372)))) (-1521 (($ $ $) NIL (|has| |#1| (-372)))) (-1636 (($ $ $) NIL (|has| |#1| (-372)))) (-3769 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2293 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3876 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#1| (-462)))) (-3965 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL)) (-3626 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-566)))) (-1699 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-566)))) (-2382 (((-781) $) NIL)) (-4362 (($ $ $) NIL (|has| |#1| (-372)))) (-4255 (($ $ $) NIL (|has| |#1| (-372)))) (-4394 (($ $ $) NIL (|has| |#1| (-372)))) (-3590 (($ $ $) NIL (|has| |#1| (-372)))) (-1553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-1833 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3333 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2200 ((|#1| $ |#1|) 24)) (-3338 (($ $ $) 33 (|has| |#1| (-372)))) (-1784 (((-781) $) NIL)) (-1607 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) 20) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) NIL)) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-781)) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2901 ((|#1| $ |#1| |#1|) 23)) (-4434 (($ $) NIL)) (-2134 (($) 21 T CONST)) (-2146 (($) 8 T CONST)) (-3611 (($) NIL)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-668 |#1| |#2|) (-666 |#1|) (-1062) (-1 |#1| |#1|)) (T -668))
+NIL
+(-666 |#1|)
+((-1689 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2612 ((|#2| |#2| (-781) (-1 |#1| |#1|)) 45)) (-3338 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67)))
+(((-669 |#1| |#2|) (-10 -7 (-15 -1689 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2612 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -3338 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -669))
+((-3338 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4)))) (-2612 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5)))) (-1689 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4)))))
+(-10 -7 (-15 -1689 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2612 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -3338 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2925 (($ $ $) 9)))
+(((-670 |#1|) (-10 -8 (-15 -2925 (|#1| |#1| |#1|))) (-671)) (T -670))
+NIL
+(-10 -8 (-15 -2925 (|#1| |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2877 (($ $) 10)) (-2925 (($ $ $) 8)) (-2982 (((-112) $ $) 6)) (-2911 (($ $ $) 9)))
+(((-671) (-141)) (T -671))
+((-2877 (*1 *1 *1) (-4 *1 (-671))) (-2911 (*1 *1 *1 *1) (-4 *1 (-671))) (-2925 (*1 *1 *1 *1) (-4 *1 (-671))))
+(-13 (-102) (-10 -8 (-15 -2877 ($ $)) (-15 -2911 ($ $ $)) (-15 -2925 ($ $ $))))
(((-102) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 15)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2963 ((|#1| $) 23)) (-3654 (($ $ $) NIL (|has| |#1| (-799)))) (-2427 (($ $ $) NIL (|has| |#1| (-799)))) (-4347 (((-1170) $) 48)) (-3964 (((-1131) $) NIL)) (-2974 ((|#3| $) 24)) (-2940 (((-870) $) 43)) (-4379 (((-112) $ $) 22)) (-2131 (($) 10 T CONST)) (-3039 (((-112) $ $) NIL (|has| |#1| (-799)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-799)))) (-2978 (((-112) $ $) 20)) (-3026 (((-112) $ $) NIL (|has| |#1| (-799)))) (-3003 (((-112) $ $) 26 (|has| |#1| (-799)))) (-3106 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3089 (($ $) 17) (($ $ $) NIL)) (-3075 (($ $ $) 29)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
-(((-670 |#1| |#2| |#3|) (-13 (-725 |#2|) (-10 -8 (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|) (-15 -3106 ($ $ |#3|)) (-15 -3106 ($ |#1| |#3|)) (-15 -2963 (|#1| $)) (-15 -2974 (|#3| $)))) (-725 |#2|) (-174) (|SubsetCategory| (-734) |#2|)) (T -670))
-((-3106 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-725 *4)) (-4 *2 (|SubsetCategory| (-734) *4)))) (-3106 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-670 *2 *4 *3)) (-4 *2 (-725 *4)) (-4 *3 (|SubsetCategory| (-734) *4)))) (-2963 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-725 *3)) (-5 *1 (-670 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-734) *3)))) (-2974 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-734) *4)) (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-725 *4)))))
-(-13 (-725 |#2|) (-10 -8 (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|) (-15 -3106 ($ $ |#3|)) (-15 -3106 ($ |#1| |#3|)) (-15 -2963 (|#1| $)) (-15 -2974 (|#3| $))))
-((-4229 (((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|)) 33)))
-(((-671 |#1|) (-10 -7 (-15 -4229 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|)))) (-918)) (T -671))
-((-4229 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *4))) (-5 *3 (-1184 *4)) (-4 *4 (-918)) (-5 *1 (-671 *4)))))
-(-10 -7 (-15 -4229 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1653 (((-652 |#1|) $) 84)) (-2894 (($ $ (-779)) 94)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-3924 (((-1303 |#1| |#2|) (-1303 |#1| |#2|) $) 50)) (-1695 (((-3 (-680 |#1|) "failed") $) NIL)) (-2204 (((-680 |#1|) $) NIL)) (-1390 (($ $) 93)) (-4368 (((-779) $) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-3829 (($ (-680 |#1|) |#2|) 70)) (-4211 (($ $) 89)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3421 (((-1303 |#1| |#2|) (-1303 |#1| |#2|) $) 49)) (-3318 (((-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1357 (((-680 |#1|) $) NIL)) (-1368 ((|#2| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2641 (($ $ |#1| $) 32) (($ $ (-652 |#1|) (-652 $)) 34)) (-4390 (((-779) $) 91)) (-2953 (($ $ $) 20) (($ (-680 |#1|) (-680 |#1|)) 79) (($ (-680 |#1|) $) 77) (($ $ (-680 |#1|)) 78)) (-2940 (((-870) $) NIL) (($ |#1|) 76) (((-1294 |#1| |#2|) $) 60) (((-1303 |#1| |#2|) $) 43) (($ (-680 |#1|)) 27)) (-4268 (((-652 |#2|) $) NIL)) (-3979 ((|#2| $ (-680 |#1|)) NIL)) (-1857 ((|#2| (-1303 |#1| |#2|) $) 45)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 23 T CONST)) (-1933 (((-652 (-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4182 (((-3 $ "failed") (-1294 |#1| |#2|)) 62)) (-3642 (($ (-680 |#1|)) 14)) (-2978 (((-112) $ $) 46)) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $) 68) (($ $ $) NIL)) (-3075 (($ $ $) 31)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-680 |#1|)) NIL)))
-(((-672 |#1| |#2|) (-13 (-381 |#1| |#2|) (-389 |#2| (-680 |#1|)) (-10 -8 (-15 -4182 ((-3 $ "failed") (-1294 |#1| |#2|))) (-15 -2953 ($ (-680 |#1|) (-680 |#1|))) (-15 -2953 ($ (-680 |#1|) $)) (-15 -2953 ($ $ (-680 |#1|))))) (-858) (-174)) (T -672))
-((-4182 (*1 *1 *2) (|partial| -12 (-5 *2 (-1294 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *1 (-672 *3 *4)))) (-2953 (*1 *1 *2 *2) (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4)) (-4 *4 (-174)))) (-2953 (*1 *1 *2 *1) (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4)) (-4 *4 (-174)))) (-2953 (*1 *1 *1 *2) (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4)) (-4 *4 (-174)))))
-(-13 (-381 |#1| |#2|) (-389 |#2| (-680 |#1|)) (-10 -8 (-15 -4182 ((-3 $ "failed") (-1294 |#1| |#2|))) (-15 -2953 ($ (-680 |#1|) (-680 |#1|))) (-15 -2953 ($ (-680 |#1|) $)) (-15 -2953 ($ $ (-680 |#1|)))))
-((-2852 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3314 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2613 (($ (-1 (-112) |#2|) $) 29)) (-3133 (($ $) 65)) (-2704 (($ $) 74)) (-3554 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2865 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1439 (((-572) |#2| $ (-572)) 71) (((-572) |#2| $) NIL) (((-572) (-1 (-112) |#2|) $) 54)) (-3787 (($ (-779) |#2|) 63)) (-3892 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-1767 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1776 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1787 (($ |#2|) 15)) (-2036 (($ $ $ (-572)) 42) (($ |#2| $ (-572)) 40)) (-3770 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1696 (($ $ (-1246 (-572))) 51) (($ $ (-572)) 44)) (-4095 (($ $ $ (-572)) 70)) (-3164 (($ $) 68)) (-3003 (((-112) $ $) 76)))
-(((-673 |#1| |#2|) (-10 -8 (-15 -1787 (|#1| |#2|)) (-15 -1696 (|#1| |#1| (-572))) (-15 -1696 (|#1| |#1| (-1246 (-572)))) (-15 -3554 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2036 (|#1| |#2| |#1| (-572))) (-15 -2036 (|#1| |#1| |#1| (-572))) (-15 -3892 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2613 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3554 (|#1| |#2| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -3892 (|#1| |#1| |#1|)) (-15 -1767 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2852 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1439 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -1439 ((-572) |#2| |#1|)) (-15 -1439 ((-572) |#2| |#1| (-572))) (-15 -1767 (|#1| |#1| |#1|)) (-15 -2852 ((-112) |#1|)) (-15 -4095 (|#1| |#1| |#1| (-572))) (-15 -3133 (|#1| |#1|)) (-15 -3314 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3314 (|#1| |#1|)) (-15 -3003 ((-112) |#1| |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3770 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3787 (|#1| (-779) |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3164 (|#1| |#1|))) (-674 |#2|) (-1229)) (T -673))
-NIL
-(-10 -8 (-15 -1787 (|#1| |#2|)) (-15 -1696 (|#1| |#1| (-572))) (-15 -1696 (|#1| |#1| (-1246 (-572)))) (-15 -3554 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2036 (|#1| |#2| |#1| (-572))) (-15 -2036 (|#1| |#1| |#1| (-572))) (-15 -3892 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2613 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3554 (|#1| |#2| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -3892 (|#1| |#1| |#1|)) (-15 -1767 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2852 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1439 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -1439 ((-572) |#2| |#1|)) (-15 -1439 ((-572) |#2| |#1| (-572))) (-15 -1767 (|#1| |#1| |#1|)) (-15 -2852 ((-112) |#1|)) (-15 -4095 (|#1| |#1| |#1| (-572))) (-15 -3133 (|#1| |#1|)) (-15 -3314 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3314 (|#1| |#1|)) (-15 -3003 ((-112) |#1| |#1|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2865 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3770 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3787 (|#1| (-779) |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3164 (|#1| |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3080 ((|#1| $) 49)) (-2401 ((|#1| $) 66)) (-1969 (($ $) 68)) (-3176 (((-1284) $ (-572) (-572)) 99 (|has| $ (-6 -4455)))) (-4382 (($ $ (-572)) 53 (|has| $ (-6 -4455)))) (-2852 (((-112) $) 144 (|has| |#1| (-858))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3314 (($ $) 148 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4455)))) (-2766 (($ $) 143 (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-1631 (((-112) $ (-779)) 8)) (-2506 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-1385 (($ $ $) 57 (|has| $ (-6 -4455)))) (-2871 ((|#1| $ |#1|) 55 (|has| $ (-6 -4455)))) (-4178 ((|#1| $ |#1|) 59 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4455))) (($ $ "rest" $) 56 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 119 (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) 88 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-2613 (($ (-1 (-112) |#1|) $) 131)) (-2162 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4454)))) (-2388 ((|#1| $) 67)) (-3281 (($) 7 T CONST)) (-3133 (($ $) 146 (|has| $ (-6 -4455)))) (-4421 (($ $) 136)) (-2923 (($ $) 74) (($ $ (-779)) 72)) (-2704 (($ $) 133 (|has| |#1| (-1111)))) (-2086 (($ $) 101 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ |#1| $) 132 (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) 127)) (-3332 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4454))) (($ |#1| $) 102 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2453 ((|#1| $ (-572) |#1|) 87 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 89)) (-4055 (((-112) $) 85)) (-1439 (((-572) |#1| $ (-572)) 141 (|has| |#1| (-1111))) (((-572) |#1| $) 140 (|has| |#1| (-1111))) (((-572) (-1 (-112) |#1|) $) 139)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 51)) (-1463 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-3787 (($ (-779) |#1|) 111)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 97 (|has| (-572) (-858)))) (-3654 (($ $ $) 149 (|has| |#1| (-858)))) (-3892 (($ $ $) 134 (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-1767 (($ $ $) 142 (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 96 (|has| (-572) (-858)))) (-2427 (($ $ $) 150 (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1787 (($ |#1|) 124)) (-1985 (((-112) $ (-779)) 10)) (-3505 (((-652 |#1|) $) 46)) (-2087 (((-112) $) 50)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3357 ((|#1| $) 71) (($ $ (-779)) 69)) (-2036 (($ $ $ (-572)) 129) (($ |#1| $ (-572)) 128)) (-1593 (($ $ $ (-572)) 118) (($ |#1| $ (-572)) 117)) (-1986 (((-652 (-572)) $) 94)) (-1370 (((-112) (-572) $) 93)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2912 ((|#1| $) 77) (($ $ (-779)) 75)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2476 (($ $ |#1|) 98 (|has| $ (-6 -4455)))) (-3064 (((-112) $) 86)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) 92)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1246 (-572))) 110) ((|#1| $ (-572)) 91) ((|#1| $ (-572) |#1|) 90)) (-2157 (((-572) $ $) 45)) (-1696 (($ $ (-1246 (-572))) 126) (($ $ (-572)) 125)) (-2835 (($ $ (-1246 (-572))) 116) (($ $ (-572)) 115)) (-3315 (((-112) $) 47)) (-2285 (($ $) 63)) (-2391 (($ $) 60 (|has| $ (-6 -4455)))) (-3417 (((-779) $) 64)) (-3479 (($ $) 65)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4095 (($ $ $ (-572)) 145 (|has| $ (-6 -4455)))) (-3164 (($ $) 13)) (-1835 (((-544) $) 100 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 109)) (-1700 (($ $ $) 62) (($ $ |#1|) 61)) (-4155 (($ $ $) 79) (($ |#1| $) 78) (($ (-652 $)) 113) (($ $ |#1|) 112)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) 52)) (-2804 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) 152 (|has| |#1| (-858)))) (-3014 (((-112) $ $) 153 (|has| |#1| (-858)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3026 (((-112) $ $) 151 (|has| |#1| (-858)))) (-3003 (((-112) $ $) 154 (|has| |#1| (-858)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-674 |#1|) (-141) (-1229)) (T -674))
-((-1787 (*1 *1 *2) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1229)))))
-(-13 (-1160 |t#1|) (-380 |t#1|) (-288 |t#1|) (-10 -8 (-15 -1787 ($ |t#1|))))
-(((-34) . T) ((-102) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-288 |#1|) . T) ((-380 |#1|) . T) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1021 |#1|) . T) ((-1111) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1160 |#1|) . T) ((-1229) . T) ((-1267 |#1|) . T))
-((-1724 (((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|))))) (-652 (-652 |#1|)) (-652 (-1279 |#1|))) 22) (((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|))))) (-697 |#1|) (-652 (-1279 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|)))) (-652 (-652 |#1|)) (-1279 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|)) 14)) (-3581 (((-779) (-697 |#1|) (-1279 |#1|)) 30)) (-1362 (((-3 (-1279 |#1|) "failed") (-697 |#1|) (-1279 |#1|)) 24)) (-1728 (((-112) (-697 |#1|) (-1279 |#1|)) 27)))
-(((-675 |#1|) (-10 -7 (-15 -1724 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|))) (-15 -1724 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|)))) (-652 (-652 |#1|)) (-1279 |#1|))) (-15 -1724 ((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|))))) (-697 |#1|) (-652 (-1279 |#1|)))) (-15 -1724 ((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|))))) (-652 (-652 |#1|)) (-652 (-1279 |#1|)))) (-15 -1362 ((-3 (-1279 |#1|) "failed") (-697 |#1|) (-1279 |#1|))) (-15 -1728 ((-112) (-697 |#1|) (-1279 |#1|))) (-15 -3581 ((-779) (-697 |#1|) (-1279 |#1|)))) (-370)) (T -675))
-((-3581 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-370)) (-5 *2 (-779)) (-5 *1 (-675 *5)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-370)) (-5 *2 (-112)) (-5 *1 (-675 *5)))) (-1362 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1279 *4)) (-5 *3 (-697 *4)) (-4 *4 (-370)) (-5 *1 (-675 *4)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 *5))) (-4 *5 (-370)) (-5 *2 (-652 (-2 (|:| |particular| (-3 (-1279 *5) "failed")) (|:| -4362 (-652 (-1279 *5)))))) (-5 *1 (-675 *5)) (-5 *4 (-652 (-1279 *5))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *5)) (-4 *5 (-370)) (-5 *2 (-652 (-2 (|:| |particular| (-3 (-1279 *5) "failed")) (|:| -4362 (-652 (-1279 *5)))))) (-5 *1 (-675 *5)) (-5 *4 (-652 (-1279 *5))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 *5))) (-4 *5 (-370)) (-5 *2 (-2 (|:| |particular| (-3 (-1279 *5) "failed")) (|:| -4362 (-652 (-1279 *5))))) (-5 *1 (-675 *5)) (-5 *4 (-1279 *5)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |particular| (-3 (-1279 *5) "failed")) (|:| -4362 (-652 (-1279 *5))))) (-5 *1 (-675 *5)) (-5 *4 (-1279 *5)))))
-(-10 -7 (-15 -1724 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|))) (-15 -1724 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|)))) (-652 (-652 |#1|)) (-1279 |#1|))) (-15 -1724 ((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|))))) (-697 |#1|) (-652 (-1279 |#1|)))) (-15 -1724 ((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|))))) (-652 (-652 |#1|)) (-652 (-1279 |#1|)))) (-15 -1362 ((-3 (-1279 |#1|) "failed") (-697 |#1|) (-1279 |#1|))) (-15 -1728 ((-112) (-697 |#1|) (-1279 |#1|))) (-15 -3581 ((-779) (-697 |#1|) (-1279 |#1|))))
-((-1724 (((-652 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4362 (-652 |#3|)))) |#4| (-652 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4362 (-652 |#3|))) |#4| |#3|) 60)) (-3581 (((-779) |#4| |#3|) 18)) (-1362 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1728 (((-112) |#4| |#3|) 14)))
-(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1724 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4362 (-652 |#3|))) |#4| |#3|)) (-15 -1724 ((-652 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4362 (-652 |#3|)))) |#4| (-652 |#3|))) (-15 -1362 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1728 ((-112) |#4| |#3|)) (-15 -3581 ((-779) |#4| |#3|))) (-370) (-13 (-380 |#1|) (-10 -7 (-6 -4455))) (-13 (-380 |#1|) (-10 -7 (-6 -4455))) (-695 |#1| |#2| |#3|)) (T -676))
-((-3581 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-779)) (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))) (-1728 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-112)) (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))) (-1362 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-370)) (-4 *5 (-13 (-380 *4) (-10 -7 (-6 -4455)))) (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))) (-5 *1 (-676 *4 *5 *2 *3)) (-4 *3 (-695 *4 *5 *2)))) (-1724 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-4 *7 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-652 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4362 (-652 *7))))) (-5 *1 (-676 *5 *6 *7 *3)) (-5 *4 (-652 *7)) (-4 *3 (-695 *5 *6 *7)))) (-1724 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4)))) (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))))
-(-10 -7 (-15 -1724 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4362 (-652 |#3|))) |#4| |#3|)) (-15 -1724 ((-652 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4362 (-652 |#3|)))) |#4| (-652 |#3|))) (-15 -1362 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1728 ((-112) |#4| |#3|)) (-15 -3581 ((-779) |#4| |#3|)))
-((-3766 (((-2 (|:| |particular| (-3 (-1279 (-415 |#4|)) "failed")) (|:| -4362 (-652 (-1279 (-415 |#4|))))) (-652 |#4|) (-652 |#3|)) 51)))
-(((-677 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3766 ((-2 (|:| |particular| (-3 (-1279 (-415 |#4|)) "failed")) (|:| -4362 (-652 (-1279 (-415 |#4|))))) (-652 |#4|) (-652 |#3|)))) (-564) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -677))
-((-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *7)) (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-5 *2 (-2 (|:| |particular| (-3 (-1279 (-415 *8)) "failed")) (|:| -4362 (-652 (-1279 (-415 *8)))))) (-5 *1 (-677 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3766 ((-2 (|:| |particular| (-3 (-1279 (-415 |#4|)) "failed")) (|:| -4362 (-652 (-1279 (-415 |#4|))))) (-652 |#4|) (-652 |#3|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3161 (((-3 $ "failed")) NIL (|has| |#2| (-564)))) (-1635 ((|#2| $) NIL)) (-4136 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1279 (-697 |#2|))) NIL) (((-1279 (-697 |#2|)) (-1279 $)) NIL)) (-4210 (((-112) $) NIL)) (-3621 (((-1279 $)) 42)) (-1631 (((-112) $ (-779)) NIL)) (-3355 (($ |#2|) NIL)) (-3281 (($) NIL T CONST)) (-3076 (($ $) NIL (|has| |#2| (-313)))) (-4172 (((-244 |#1| |#2|) $ (-572)) NIL)) (-2892 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL (|has| |#2| (-564)))) (-3760 (((-3 $ "failed")) NIL (|has| |#2| (-564)))) (-1609 (((-697 |#2|)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-2554 ((|#2| $) NIL)) (-3819 (((-697 |#2|) $) NIL) (((-697 |#2|) $ (-1279 $)) NIL)) (-4147 (((-3 $ "failed") $) NIL (|has| |#2| (-564)))) (-2872 (((-1184 (-961 |#2|))) NIL (|has| |#2| (-370)))) (-2673 (($ $ (-930)) NIL)) (-3747 ((|#2| $) NIL)) (-3120 (((-1184 |#2|) $) NIL (|has| |#2| (-564)))) (-3529 ((|#2|) NIL) ((|#2| (-1279 $)) NIL)) (-2493 (((-1184 |#2|) $) NIL)) (-3043 (((-112)) NIL)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 |#2| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) ((|#2| $) NIL)) (-1913 (($ (-1279 |#2|)) NIL) (($ (-1279 |#2|) (-1279 $)) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-3581 (((-779) $) NIL (|has| |#2| (-564))) (((-930)) 43)) (-2380 ((|#2| $ (-572) (-572)) NIL)) (-2522 (((-112)) NIL)) (-4101 (($ $ (-930)) NIL)) (-1863 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1886 (((-112) $) NIL)) (-4430 (((-779) $) NIL (|has| |#2| (-564)))) (-2313 (((-652 (-244 |#1| |#2|)) $) NIL (|has| |#2| (-564)))) (-2187 (((-779) $) NIL)) (-3491 (((-112)) NIL)) (-2195 (((-779) $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3283 ((|#2| $) NIL (|has| |#2| (-6 (-4456 "*"))))) (-3822 (((-572) $) NIL)) (-3533 (((-572) $) NIL)) (-1344 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2795 (((-572) $) NIL)) (-2857 (((-572) $) NIL)) (-2911 (($ (-652 (-652 |#2|))) NIL)) (-2442 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4393 (((-652 (-652 |#2|)) $) NIL)) (-1851 (((-112)) NIL)) (-2769 (((-112)) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3249 (((-3 (-2 (|:| |particular| $) (|:| -4362 (-652 $))) "failed")) NIL (|has| |#2| (-564)))) (-2950 (((-3 $ "failed")) NIL (|has| |#2| (-564)))) (-2509 (((-697 |#2|)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-3436 ((|#2| $) NIL)) (-2647 (((-697 |#2|) $) NIL) (((-697 |#2|) $ (-1279 $)) NIL)) (-1353 (((-3 $ "failed") $) NIL (|has| |#2| (-564)))) (-2853 (((-1184 (-961 |#2|))) NIL (|has| |#2| (-370)))) (-1858 (($ $ (-930)) NIL)) (-3345 ((|#2| $) NIL)) (-2267 (((-1184 |#2|) $) NIL (|has| |#2| (-564)))) (-3452 ((|#2|) NIL) ((|#2| (-1279 $)) NIL)) (-2708 (((-1184 |#2|) $) NIL)) (-4401 (((-112)) NIL)) (-4347 (((-1170) $) NIL)) (-1522 (((-112)) NIL)) (-3278 (((-112)) NIL)) (-2816 (((-112)) NIL)) (-1982 (((-3 $ "failed") $) NIL (|has| |#2| (-370)))) (-3964 (((-1131) $) NIL)) (-3534 (((-112)) NIL)) (-2834 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564)))) (-1612 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ (-572) (-572) |#2|) NIL) ((|#2| $ (-572) (-572)) 28) ((|#2| $ (-572)) NIL)) (-3902 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-4107 ((|#2| $) NIL)) (-1640 (($ (-652 |#2|)) NIL)) (-2464 (((-112) $) NIL)) (-1746 (((-244 |#1| |#2|) $) NIL)) (-2513 ((|#2| $) NIL (|has| |#2| (-6 (-4456 "*"))))) (-3973 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3164 (($ $) NIL)) (-4329 (((-697 |#2|) (-1279 $)) NIL) (((-1279 |#2|) $) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) NIL) (((-1279 |#2|) $ (-1279 $)) 31)) (-1835 (($ (-1279 |#2|)) NIL) (((-1279 |#2|) $) NIL)) (-1402 (((-652 (-961 |#2|))) NIL) (((-652 (-961 |#2|)) (-1279 $)) NIL)) (-4326 (($ $ $) NIL)) (-1589 (((-112)) NIL)) (-1752 (((-244 |#1| |#2|) $ (-572)) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#2| (-1049 (-415 (-572))))) (($ |#2|) NIL) (((-697 |#2|) $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) 41)) (-3987 (((-652 (-1279 |#2|))) NIL (|has| |#2| (-564)))) (-2266 (($ $ $ $) NIL)) (-1662 (((-112)) NIL)) (-2898 (($ (-697 |#2|) $) NIL)) (-4380 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-4384 (((-112) $) NIL)) (-3099 (($ $ $) NIL)) (-4118 (((-112)) NIL)) (-3313 (((-112)) NIL)) (-1547 (((-112)) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#2| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-244 |#1| |#2|) $ (-244 |#1| |#2|)) NIL) (((-244 |#1| |#2|) (-244 |#1| |#2|) $) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-678 |#1| |#2|) (-13 (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-621 (-697 |#2|)) (-425 |#2|)) (-930) (-174)) (T -678))
-NIL
-(-13 (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-621 (-697 |#2|)) (-425 |#2|))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3586 (((-652 (-1146)) $) 10)) (-2940 (((-870) $) 16) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-679) (-13 (-1094) (-10 -8 (-15 -3586 ((-652 (-1146)) $))))) (T -679))
-((-3586 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-679)))))
-(-13 (-1094) (-10 -8 (-15 -3586 ((-652 (-1146)) $))))
-((-2846 (((-112) $ $) NIL)) (-1653 (((-652 |#1|) $) NIL)) (-3901 (($ $) 62)) (-2100 (((-112) $) NIL)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-3727 (((-3 $ "failed") (-827 |#1|)) 27)) (-3072 (((-112) (-827 |#1|)) 17)) (-3541 (($ (-827 |#1|)) 28)) (-1565 (((-112) $ $) 36)) (-4133 (((-930) $) 43)) (-3888 (($ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4218 (((-652 $) (-827 |#1|)) 19)) (-2940 (((-870) $) 51) (($ |#1|) 40) (((-827 |#1|) $) 47) (((-685 |#1|) $) 52)) (-4379 (((-112) $ $) NIL)) (-1469 (((-59 (-652 $)) (-652 |#1|) (-930)) 67)) (-4389 (((-652 $) (-652 |#1|) (-930)) 70)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 63)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 46)))
-(((-680 |#1|) (-13 (-858) (-1049 |#1|) (-10 -8 (-15 -2100 ((-112) $)) (-15 -3888 ($ $)) (-15 -3901 ($ $)) (-15 -4133 ((-930) $)) (-15 -1565 ((-112) $ $)) (-15 -2940 ((-827 |#1|) $)) (-15 -2940 ((-685 |#1|) $)) (-15 -4218 ((-652 $) (-827 |#1|))) (-15 -3072 ((-112) (-827 |#1|))) (-15 -3541 ($ (-827 |#1|))) (-15 -3727 ((-3 $ "failed") (-827 |#1|))) (-15 -1653 ((-652 |#1|) $)) (-15 -1469 ((-59 (-652 $)) (-652 |#1|) (-930))) (-15 -4389 ((-652 $) (-652 |#1|) (-930))))) (-858)) (T -680))
-((-2100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-3888 (*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-858)))) (-3901 (*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-858)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-1565 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-685 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-858)) (-5 *2 (-652 (-680 *4))) (-5 *1 (-680 *4)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-858)) (-5 *2 (-112)) (-5 *1 (-680 *4)))) (-3541 (*1 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *3 (-858)) (-5 *1 (-680 *3)))) (-3727 (*1 *1 *2) (|partial| -12 (-5 *2 (-827 *3)) (-4 *3 (-858)) (-5 *1 (-680 *3)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-930)) (-4 *5 (-858)) (-5 *2 (-59 (-652 (-680 *5)))) (-5 *1 (-680 *5)))) (-4389 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-930)) (-4 *5 (-858)) (-5 *2 (-652 (-680 *5))) (-5 *1 (-680 *5)))))
-(-13 (-858) (-1049 |#1|) (-10 -8 (-15 -2100 ((-112) $)) (-15 -3888 ($ $)) (-15 -3901 ($ $)) (-15 -4133 ((-930) $)) (-15 -1565 ((-112) $ $)) (-15 -2940 ((-827 |#1|) $)) (-15 -2940 ((-685 |#1|) $)) (-15 -4218 ((-652 $) (-827 |#1|))) (-15 -3072 ((-112) (-827 |#1|))) (-15 -3541 ($ (-827 |#1|))) (-15 -3727 ((-3 $ "failed") (-827 |#1|))) (-15 -1653 ((-652 |#1|) $)) (-15 -1469 ((-59 (-652 $)) (-652 |#1|) (-930))) (-15 -4389 ((-652 $) (-652 |#1|) (-930)))))
-((-3080 ((|#2| $) 100)) (-1969 (($ $) 121)) (-1631 (((-112) $ (-779)) 35)) (-2923 (($ $) 109) (($ $ (-779)) 112)) (-4055 (((-112) $) 122)) (-2089 (((-652 $) $) 96)) (-1463 (((-112) $ $) 92)) (-1861 (((-112) $ (-779)) 33)) (-3175 (((-572) $) 66)) (-3374 (((-572) $) 65)) (-1985 (((-112) $ (-779)) 31)) (-2087 (((-112) $) 98)) (-3357 ((|#2| $) 113) (($ $ (-779)) 117)) (-1593 (($ $ $ (-572)) 83) (($ |#2| $ (-572)) 82)) (-1986 (((-652 (-572)) $) 64)) (-1370 (((-112) (-572) $) 59)) (-2912 ((|#2| $) NIL) (($ $ (-779)) 108)) (-2772 (($ $ (-572)) 125)) (-3064 (((-112) $) 124)) (-1612 (((-112) (-1 (-112) |#2|) $) 42)) (-4110 (((-652 |#2|) $) 46)) (-2196 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1246 (-572))) 79) ((|#2| $ (-572)) 57) ((|#2| $ (-572) |#2|) 58)) (-2157 (((-572) $ $) 91)) (-2835 (($ $ (-1246 (-572))) 78) (($ $ (-572)) 72)) (-3315 (((-112) $) 87)) (-2285 (($ $) 105)) (-3417 (((-779) $) 104)) (-3479 (($ $) 103)) (-2953 (($ (-652 |#2|)) 53)) (-2590 (($ $) 126)) (-2065 (((-652 $) $) 90)) (-2804 (((-112) $ $) 89)) (-4380 (((-112) (-1 (-112) |#2|) $) 41)) (-2978 (((-112) $ $) 20)) (-2860 (((-779) $) 39)))
-(((-681 |#1| |#2|) (-10 -8 (-15 -2590 (|#1| |#1|)) (-15 -2772 (|#1| |#1| (-572))) (-15 -4055 ((-112) |#1|)) (-15 -3064 ((-112) |#1|)) (-15 -2196 (|#2| |#1| (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572))) (-15 -4110 ((-652 |#2|) |#1|)) (-15 -1370 ((-112) (-572) |#1|)) (-15 -1986 ((-652 (-572)) |#1|)) (-15 -3374 ((-572) |#1|)) (-15 -3175 ((-572) |#1|)) (-15 -2953 (|#1| (-652 |#2|))) (-15 -2196 (|#1| |#1| (-1246 (-572)))) (-15 -2835 (|#1| |#1| (-572))) (-15 -2835 (|#1| |#1| (-1246 (-572)))) (-15 -1593 (|#1| |#2| |#1| (-572))) (-15 -1593 (|#1| |#1| |#1| (-572))) (-15 -2285 (|#1| |#1|)) (-15 -3417 ((-779) |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3357 (|#1| |#1| (-779))) (-15 -2196 (|#2| |#1| "last")) (-15 -3357 (|#2| |#1|)) (-15 -2923 (|#1| |#1| (-779))) (-15 -2196 (|#1| |#1| "rest")) (-15 -2923 (|#1| |#1|)) (-15 -2912 (|#1| |#1| (-779))) (-15 -2196 (|#2| |#1| "first")) (-15 -2912 (|#2| |#1|)) (-15 -1463 ((-112) |#1| |#1|)) (-15 -2804 ((-112) |#1| |#1|)) (-15 -2157 ((-572) |#1| |#1|)) (-15 -3315 ((-112) |#1|)) (-15 -2196 (|#2| |#1| "value")) (-15 -3080 (|#2| |#1|)) (-15 -2087 ((-112) |#1|)) (-15 -2089 ((-652 |#1|) |#1|)) (-15 -2065 ((-652 |#1|) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2860 ((-779) |#1|)) (-15 -1631 ((-112) |#1| (-779))) (-15 -1861 ((-112) |#1| (-779))) (-15 -1985 ((-112) |#1| (-779)))) (-682 |#2|) (-1229)) (T -681))
-NIL
-(-10 -8 (-15 -2590 (|#1| |#1|)) (-15 -2772 (|#1| |#1| (-572))) (-15 -4055 ((-112) |#1|)) (-15 -3064 ((-112) |#1|)) (-15 -2196 (|#2| |#1| (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572))) (-15 -4110 ((-652 |#2|) |#1|)) (-15 -1370 ((-112) (-572) |#1|)) (-15 -1986 ((-652 (-572)) |#1|)) (-15 -3374 ((-572) |#1|)) (-15 -3175 ((-572) |#1|)) (-15 -2953 (|#1| (-652 |#2|))) (-15 -2196 (|#1| |#1| (-1246 (-572)))) (-15 -2835 (|#1| |#1| (-572))) (-15 -2835 (|#1| |#1| (-1246 (-572)))) (-15 -1593 (|#1| |#2| |#1| (-572))) (-15 -1593 (|#1| |#1| |#1| (-572))) (-15 -2285 (|#1| |#1|)) (-15 -3417 ((-779) |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3357 (|#1| |#1| (-779))) (-15 -2196 (|#2| |#1| "last")) (-15 -3357 (|#2| |#1|)) (-15 -2923 (|#1| |#1| (-779))) (-15 -2196 (|#1| |#1| "rest")) (-15 -2923 (|#1| |#1|)) (-15 -2912 (|#1| |#1| (-779))) (-15 -2196 (|#2| |#1| "first")) (-15 -2912 (|#2| |#1|)) (-15 -1463 ((-112) |#1| |#1|)) (-15 -2804 ((-112) |#1| |#1|)) (-15 -2157 ((-572) |#1| |#1|)) (-15 -3315 ((-112) |#1|)) (-15 -2196 (|#2| |#1| "value")) (-15 -3080 (|#2| |#1|)) (-15 -2087 ((-112) |#1|)) (-15 -2089 ((-652 |#1|) |#1|)) (-15 -2065 ((-652 |#1|) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -1612 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2860 ((-779) |#1|)) (-15 -1631 ((-112) |#1| (-779))) (-15 -1861 ((-112) |#1| (-779))) (-15 -1985 ((-112) |#1| (-779))))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3080 ((|#1| $) 49)) (-2401 ((|#1| $) 66)) (-1969 (($ $) 68)) (-3176 (((-1284) $ (-572) (-572)) 99 (|has| $ (-6 -4455)))) (-4382 (($ $ (-572)) 53 (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) 8)) (-2506 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-1385 (($ $ $) 57 (|has| $ (-6 -4455)))) (-2871 ((|#1| $ |#1|) 55 (|has| $ (-6 -4455)))) (-4178 ((|#1| $ |#1|) 59 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4455))) (($ $ "rest" $) 56 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 119 (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) 88 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) 104)) (-2388 ((|#1| $) 67)) (-3281 (($) 7 T CONST)) (-2353 (($ $) 126)) (-2923 (($ $) 74) (($ $ (-779)) 72)) (-2086 (($ $) 101 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#1| $) 102 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 105)) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2453 ((|#1| $ (-572) |#1|) 87 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 89)) (-4055 (((-112) $) 85)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3261 (((-779) $) 125)) (-2089 (((-652 $) $) 51)) (-1463 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-3787 (($ (-779) |#1|) 111)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 97 (|has| (-572) (-858)))) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 96 (|has| (-572) (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1985 (((-112) $ (-779)) 10)) (-3505 (((-652 |#1|) $) 46)) (-2087 (((-112) $) 50)) (-2628 (($ $) 128)) (-3237 (((-112) $) 129)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3357 ((|#1| $) 71) (($ $ (-779)) 69)) (-1593 (($ $ $ (-572)) 118) (($ |#1| $ (-572)) 117)) (-1986 (((-652 (-572)) $) 94)) (-1370 (((-112) (-572) $) 93)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-1591 ((|#1| $) 127)) (-2912 ((|#1| $) 77) (($ $ (-779)) 75)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2476 (($ $ |#1|) 98 (|has| $ (-6 -4455)))) (-2772 (($ $ (-572)) 124)) (-3064 (((-112) $) 86)) (-1468 (((-112) $) 130)) (-4075 (((-112) $) 131)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) 92)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1246 (-572))) 110) ((|#1| $ (-572)) 91) ((|#1| $ (-572) |#1|) 90)) (-2157 (((-572) $ $) 45)) (-2835 (($ $ (-1246 (-572))) 116) (($ $ (-572)) 115)) (-3315 (((-112) $) 47)) (-2285 (($ $) 63)) (-2391 (($ $) 60 (|has| $ (-6 -4455)))) (-3417 (((-779) $) 64)) (-3479 (($ $) 65)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 100 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 109)) (-1700 (($ $ $) 62 (|has| $ (-6 -4455))) (($ $ |#1|) 61 (|has| $ (-6 -4455)))) (-4155 (($ $ $) 79) (($ |#1| $) 78) (($ (-652 $)) 113) (($ $ |#1|) 112)) (-2590 (($ $) 123)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) 52)) (-2804 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-682 |#1|) (-141) (-1229)) (T -682))
-((-3332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-682 *3)) (-4 *3 (-1229)))) (-2162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-682 *3)) (-4 *3 (-1229)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-1468 (*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-2628 (*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))) (-2772 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-682 *3)) (-4 *3 (-1229)))) (-2590 (*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))))
-(-13 (-1160 |t#1|) (-10 -8 (-15 -3332 ($ (-1 (-112) |t#1|) $)) (-15 -2162 ($ (-1 (-112) |t#1|) $)) (-15 -4075 ((-112) $)) (-15 -1468 ((-112) $)) (-15 -3237 ((-112) $)) (-15 -2628 ($ $)) (-15 -1591 (|t#1| $)) (-15 -2353 ($ $)) (-15 -3261 ((-779) $)) (-15 -2772 ($ $ (-572))) (-15 -2590 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1160 |#1|) . T) ((-1229) . T) ((-1267 |#1|) . T))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4409 (($ (-779) (-779) (-779)) 53 (|has| |#1| (-1060)))) (-1631 (((-112) $ (-779)) NIL)) (-4257 ((|#1| $ (-779) (-779) (-779) |#1|) 47)) (-3281 (($) NIL T CONST)) (-3743 (($ $ $) 57 (|has| |#1| (-1060)))) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3749 (((-1279 (-779)) $) 12)) (-3401 (($ (-1188) $ $) 34)) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2439 (($ (-779)) 55 (|has| |#1| (-1060)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-779) (-779) (-779)) 44)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-2953 (($ (-652 (-652 (-652 |#1|)))) 67)) (-2940 (($ (-967 (-967 (-967 |#1|)))) 23) (((-967 (-967 (-967 |#1|))) $) 19) (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-683 |#1|) (-13 (-497 |#1|) (-10 -8 (IF (|has| |#1| (-1060)) (PROGN (-15 -4409 ($ (-779) (-779) (-779))) (-15 -2439 ($ (-779))) (-15 -3743 ($ $ $))) |%noBranch|) (-15 -2953 ($ (-652 (-652 (-652 |#1|))))) (-15 -2196 (|#1| $ (-779) (-779) (-779))) (-15 -4257 (|#1| $ (-779) (-779) (-779) |#1|)) (-15 -2940 ($ (-967 (-967 (-967 |#1|))))) (-15 -2940 ((-967 (-967 (-967 |#1|))) $)) (-15 -3401 ($ (-1188) $ $)) (-15 -3749 ((-1279 (-779)) $)))) (-1111)) (T -683))
-((-4409 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-683 *3)) (-4 *3 (-1060)) (-4 *3 (-1111)))) (-2439 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-683 *3)) (-4 *3 (-1060)) (-4 *3 (-1111)))) (-3743 (*1 *1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1060)) (-4 *2 (-1111)))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-652 *3)))) (-4 *3 (-1111)) (-5 *1 (-683 *3)))) (-2196 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-779)) (-5 *1 (-683 *2)) (-4 *2 (-1111)))) (-4257 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-683 *2)) (-4 *2 (-1111)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-967 (-967 (-967 *3)))) (-4 *3 (-1111)) (-5 *1 (-683 *3)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-967 (-967 (-967 *3)))) (-5 *1 (-683 *3)) (-4 *3 (-1111)))) (-3401 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-683 *3)) (-4 *3 (-1111)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-1279 (-779))) (-5 *1 (-683 *3)) (-4 *3 (-1111)))))
-(-13 (-497 |#1|) (-10 -8 (IF (|has| |#1| (-1060)) (PROGN (-15 -4409 ($ (-779) (-779) (-779))) (-15 -2439 ($ (-779))) (-15 -3743 ($ $ $))) |%noBranch|) (-15 -2953 ($ (-652 (-652 (-652 |#1|))))) (-15 -2196 (|#1| $ (-779) (-779) (-779))) (-15 -4257 (|#1| $ (-779) (-779) (-779) |#1|)) (-15 -2940 ($ (-967 (-967 (-967 |#1|))))) (-15 -2940 ((-967 (-967 (-967 |#1|))) $)) (-15 -3401 ($ (-1188) $ $)) (-15 -3749 ((-1279 (-779)) $))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-2502 (((-491) $) 10)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-1146) $) 12)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-684) (-13 (-1094) (-10 -8 (-15 -2502 ((-491) $)) (-15 -2042 ((-1146) $))))) (T -684))
-((-2502 (*1 *2 *1) (-12 (-5 *2 (-491)) (-5 *1 (-684)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-684)))))
-(-13 (-1094) (-10 -8 (-15 -2502 ((-491) $)) (-15 -2042 ((-1146) $))))
-((-2846 (((-112) $ $) NIL)) (-1653 (((-652 |#1|) $) 15)) (-3901 (($ $) 19)) (-2100 (((-112) $) 20)) (-1695 (((-3 |#1| "failed") $) 23)) (-2204 ((|#1| $) 21)) (-2923 (($ $) 37)) (-4211 (($ $) 25)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-1565 (((-112) $ $) 47)) (-4133 (((-930) $) 40)) (-3888 (($ $) 18)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 ((|#1| $) 36)) (-2940 (((-870) $) 32) (($ |#1|) 24) (((-827 |#1|) $) 28)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 13)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-685 |#1|) (-13 (-858) (-1049 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2940 ((-827 |#1|) $)) (-15 -2912 (|#1| $)) (-15 -3888 ($ $)) (-15 -4133 ((-930) $)) (-15 -1565 ((-112) $ $)) (-15 -4211 ($ $)) (-15 -2923 ($ $)) (-15 -2100 ((-112) $)) (-15 -3901 ($ $)) (-15 -1653 ((-652 |#1|) $)))) (-858)) (T -685))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-685 *3)) (-4 *3 (-858)))) (-2912 (*1 *2 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-3888 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-685 *3)) (-4 *3 (-858)))) (-1565 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-858)))) (-4211 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-858)))) (-3901 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-685 *3)) (-4 *3 (-858)))))
-(-13 (-858) (-1049 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2940 ((-827 |#1|) $)) (-15 -2912 (|#1| $)) (-15 -3888 ($ $)) (-15 -4133 ((-930) $)) (-15 -1565 ((-112) $ $)) (-15 -4211 ($ $)) (-15 -2923 ($ $)) (-15 -2100 ((-112) $)) (-15 -3901 ($ $)) (-15 -1653 ((-652 |#1|) $))))
-((-3831 ((|#1| (-1 |#1| (-779) |#1|) (-779) |#1|) 11)) (-4126 ((|#1| (-1 |#1| |#1|) (-779) |#1|) 9)))
-(((-686 |#1|) (-10 -7 (-15 -4126 (|#1| (-1 |#1| |#1|) (-779) |#1|)) (-15 -3831 (|#1| (-1 |#1| (-779) |#1|) (-779) |#1|))) (-1111)) (T -686))
-((-3831 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-779) *2)) (-5 *4 (-779)) (-4 *2 (-1111)) (-5 *1 (-686 *2)))) (-4126 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-779)) (-4 *2 (-1111)) (-5 *1 (-686 *2)))))
-(-10 -7 (-15 -4126 (|#1| (-1 |#1| |#1|) (-779) |#1|)) (-15 -3831 (|#1| (-1 |#1| (-779) |#1|) (-779) |#1|)))
-((-2644 ((|#2| |#1| |#2|) 9)) (-2632 ((|#1| |#1| |#2|) 8)))
-(((-687 |#1| |#2|) (-10 -7 (-15 -2632 (|#1| |#1| |#2|)) (-15 -2644 (|#2| |#1| |#2|))) (-1111) (-1111)) (T -687))
-((-2644 (*1 *2 *3 *2) (-12 (-5 *1 (-687 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-2632 (*1 *2 *2 *3) (-12 (-5 *1 (-687 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
-(-10 -7 (-15 -2632 (|#1| |#1| |#2|)) (-15 -2644 (|#2| |#1| |#2|)))
-((-4404 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-688 |#1| |#2| |#3|) (-10 -7 (-15 -4404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1111) (-1111) (-1111)) (T -688))
-((-4404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)) (-5 *1 (-688 *5 *6 *2)))))
-(-10 -7 (-15 -4404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2330 (((-1228) $) 21)) (-2281 (((-652 (-1228)) $) 19)) (-3616 (($ (-652 (-1228)) (-1228)) 14)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 29) (($ (-1193)) NIL) (((-1193) $) NIL) (((-1228) $) 22) (($ (-1129)) 10)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-689) (-13 (-1094) (-621 (-1228)) (-10 -8 (-15 -2940 ($ (-1129))) (-15 -3616 ($ (-652 (-1228)) (-1228))) (-15 -2281 ((-652 (-1228)) $)) (-15 -2330 ((-1228) $))))) (T -689))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-689)))) (-3616 (*1 *1 *2 *3) (-12 (-5 *2 (-652 (-1228))) (-5 *3 (-1228)) (-5 *1 (-689)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-689)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-689)))))
-(-13 (-1094) (-621 (-1228)) (-10 -8 (-15 -2940 ($ (-1129))) (-15 -3616 ($ (-652 (-1228)) (-1228))) (-15 -2281 ((-652 (-1228)) $)) (-15 -2330 ((-1228) $))))
-((-3831 (((-1 |#1| (-779) |#1|) (-1 |#1| (-779) |#1|)) 26)) (-3910 (((-1 |#1|) |#1|) 8)) (-2798 ((|#1| |#1|) 19)) (-3018 (((-652 |#1|) (-1 (-652 |#1|) (-652 |#1|)) (-572)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2940 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-779)) 23)))
-(((-690 |#1|) (-10 -7 (-15 -3910 ((-1 |#1|) |#1|)) (-15 -2940 ((-1 |#1|) |#1|)) (-15 -3018 (|#1| (-1 |#1| |#1|))) (-15 -3018 ((-652 |#1|) (-1 (-652 |#1|) (-652 |#1|)) (-572))) (-15 -2798 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-779))) (-15 -3831 ((-1 |#1| (-779) |#1|) (-1 |#1| (-779) |#1|)))) (-1111)) (T -690))
-((-3831 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-779) *3)) (-4 *3 (-1111)) (-5 *1 (-690 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *4 (-1111)) (-5 *1 (-690 *4)))) (-2798 (*1 *2 *2) (-12 (-5 *1 (-690 *2)) (-4 *2 (-1111)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-652 *5) (-652 *5))) (-5 *4 (-572)) (-5 *2 (-652 *5)) (-5 *1 (-690 *5)) (-4 *5 (-1111)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-690 *2)) (-4 *2 (-1111)))) (-2940 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1111)))) (-3910 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1111)))))
-(-10 -7 (-15 -3910 ((-1 |#1|) |#1|)) (-15 -2940 ((-1 |#1|) |#1|)) (-15 -3018 (|#1| (-1 |#1| |#1|))) (-15 -3018 ((-652 |#1|) (-1 (-652 |#1|) (-652 |#1|)) (-572))) (-15 -2798 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-779))) (-15 -3831 ((-1 |#1| (-779) |#1|) (-1 |#1| (-779) |#1|))))
-((-2832 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2679 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1705 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2587 (((-1 |#2| |#1|) |#2|) 11)))
-(((-691 |#1| |#2|) (-10 -7 (-15 -2587 ((-1 |#2| |#1|) |#2|)) (-15 -2679 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1705 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2832 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1111) (-1111)) (T -691))
-((-2832 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-5 *2 (-1 *5 *4)) (-5 *1 (-691 *4 *5)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1111)) (-5 *2 (-1 *5 *4)) (-5 *1 (-691 *4 *5)) (-4 *4 (-1111)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-5 *2 (-1 *5)) (-5 *1 (-691 *4 *5)))) (-2587 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-691 *4 *3)) (-4 *4 (-1111)) (-4 *3 (-1111)))))
-(-10 -7 (-15 -2587 ((-1 |#2| |#1|) |#2|)) (-15 -2679 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1705 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2832 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3458 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4318 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2599 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1505 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2309 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2599 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1505 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2309 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3458 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1111) (-1111) (-1111)) (T -692))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-1 *7 *5)) (-5 *1 (-692 *5 *6 *7)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-692 *4 *5 *6)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-692 *4 *5 *6)) (-4 *4 (-1111)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-692 *4 *5 *6)) (-4 *5 (-1111)))) (-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *4 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1111)) (-4 *4 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *5 *4 *6)))))
-(-10 -7 (-15 -4318 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2599 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1505 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2309 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3458 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2865 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1776 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-693 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1776 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2865 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1060) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|) (-1060) (-380 |#5|) (-380 |#5|) (-695 |#5| |#6| |#7|)) (T -693))
-((-2865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1060)) (-4 *2 (-1060)) (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *8 (-380 *2)) (-4 *9 (-380 *2)) (-5 *1 (-693 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-695 *5 *6 *7)) (-4 *10 (-695 *2 *8 *9)))) (-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1060)) (-4 *8 (-1060)) (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *2 (-695 *8 *9 *10)) (-5 *1 (-693 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-695 *5 *6 *7)) (-4 *9 (-380 *8)) (-4 *10 (-380 *8)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1060)) (-4 *8 (-1060)) (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *2 (-695 *8 *9 *10)) (-5 *1 (-693 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-695 *5 *6 *7)) (-4 *9 (-380 *8)) (-4 *10 (-380 *8)))))
-(-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1776 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2865 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-2212 (($ (-779) (-779)) 42)) (-2788 (($ $ $) 71)) (-3054 (($ |#3|) 66) (($ $) 67)) (-4136 (((-112) $) 36)) (-1428 (($ $ (-572) (-572)) 82)) (-2977 (($ $ (-572) (-572)) 83)) (-2958 (($ $ (-572) (-572) (-572) (-572)) 88)) (-2645 (($ $) 69)) (-4210 (((-112) $) 15)) (-2146 (($ $ (-572) (-572) $) 89)) (-3140 ((|#2| $ (-572) (-572) |#2|) NIL) (($ $ (-652 (-572)) (-652 (-572)) $) 87)) (-3355 (($ (-779) |#2|) 53)) (-2911 (($ (-652 (-652 |#2|))) 51)) (-4393 (((-652 (-652 |#2|)) $) 78)) (-2327 (($ $ $) 70)) (-2834 (((-3 $ "failed") $ |#2|) 120)) (-2196 ((|#2| $ (-572) (-572)) NIL) ((|#2| $ (-572) (-572) |#2|) NIL) (($ $ (-652 (-572)) (-652 (-572))) 86)) (-1640 (($ (-652 |#2|)) 54) (($ (-652 $)) 56)) (-2464 (((-112) $) 28)) (-2940 (($ |#4|) 61) (((-870) $) NIL)) (-4384 (((-112) $) 38)) (-3106 (($ $ |#2|) 122)) (-3089 (($ $ $) 93) (($ $) 96)) (-3075 (($ $ $) 91)) (** (($ $ (-779)) 109) (($ $ (-572)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-572) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
-(((-694 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2940 ((-870) |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -3106 (|#1| |#1| |#2|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-779))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1| (-572) (-572) |#1|)) (-15 -2958 (|#1| |#1| (-572) (-572) (-572) (-572))) (-15 -2977 (|#1| |#1| (-572) (-572))) (-15 -1428 (|#1| |#1| (-572) (-572))) (-15 -3140 (|#1| |#1| (-652 (-572)) (-652 (-572)) |#1|)) (-15 -2196 (|#1| |#1| (-652 (-572)) (-652 (-572)))) (-15 -4393 ((-652 (-652 |#2|)) |#1|)) (-15 -2788 (|#1| |#1| |#1|)) (-15 -2327 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -3054 (|#1| |#3|)) (-15 -2940 (|#1| |#4|)) (-15 -1640 (|#1| (-652 |#1|))) (-15 -1640 (|#1| (-652 |#2|))) (-15 -3355 (|#1| (-779) |#2|)) (-15 -2911 (|#1| (-652 (-652 |#2|)))) (-15 -2212 (|#1| (-779) (-779))) (-15 -4384 ((-112) |#1|)) (-15 -4136 ((-112) |#1|)) (-15 -2464 ((-112) |#1|)) (-15 -4210 ((-112) |#1|)) (-15 -3140 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572) (-572)))) (-695 |#2| |#3| |#4|) (-1060) (-380 |#2|) (-380 |#2|)) (T -694))
-NIL
-(-10 -8 (-15 -2940 ((-870) |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -3106 (|#1| |#1| |#2|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-779))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1| (-572) (-572) |#1|)) (-15 -2958 (|#1| |#1| (-572) (-572) (-572) (-572))) (-15 -2977 (|#1| |#1| (-572) (-572))) (-15 -1428 (|#1| |#1| (-572) (-572))) (-15 -3140 (|#1| |#1| (-652 (-572)) (-652 (-572)) |#1|)) (-15 -2196 (|#1| |#1| (-652 (-572)) (-652 (-572)))) (-15 -4393 ((-652 (-652 |#2|)) |#1|)) (-15 -2788 (|#1| |#1| |#1|)) (-15 -2327 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -3054 (|#1| |#3|)) (-15 -2940 (|#1| |#4|)) (-15 -1640 (|#1| (-652 |#1|))) (-15 -1640 (|#1| (-652 |#2|))) (-15 -3355 (|#1| (-779) |#2|)) (-15 -2911 (|#1| (-652 (-652 |#2|)))) (-15 -2212 (|#1| (-779) (-779))) (-15 -4384 ((-112) |#1|)) (-15 -4136 ((-112) |#1|)) (-15 -2464 ((-112) |#1|)) (-15 -4210 ((-112) |#1|)) (-15 -3140 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572) (-572))))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2212 (($ (-779) (-779)) 98)) (-2788 (($ $ $) 88)) (-3054 (($ |#2|) 92) (($ $) 91)) (-4136 (((-112) $) 100)) (-1428 (($ $ (-572) (-572)) 84)) (-2977 (($ $ (-572) (-572)) 83)) (-2958 (($ $ (-572) (-572) (-572) (-572)) 82)) (-2645 (($ $) 90)) (-4210 (((-112) $) 102)) (-1631 (((-112) $ (-779)) 8)) (-2146 (($ $ (-572) (-572) $) 81)) (-3140 ((|#1| $ (-572) (-572) |#1|) 45) (($ $ (-652 (-572)) (-652 (-572)) $) 85)) (-3864 (($ $ (-572) |#2|) 43)) (-4255 (($ $ (-572) |#3|) 42)) (-3355 (($ (-779) |#1|) 96)) (-3281 (($) 7 T CONST)) (-3076 (($ $) 68 (|has| |#1| (-313)))) (-4172 ((|#2| $ (-572)) 47)) (-3581 (((-779) $) 67 (|has| |#1| (-564)))) (-2453 ((|#1| $ (-572) (-572) |#1|) 44)) (-2380 ((|#1| $ (-572) (-572)) 49)) (-1863 (((-652 |#1|) $) 31)) (-4430 (((-779) $) 66 (|has| |#1| (-564)))) (-2313 (((-652 |#3|) $) 65 (|has| |#1| (-564)))) (-2187 (((-779) $) 52)) (-3787 (($ (-779) (-779) |#1|) 58)) (-2195 (((-779) $) 51)) (-1861 (((-112) $ (-779)) 9)) (-3283 ((|#1| $) 63 (|has| |#1| (-6 (-4456 "*"))))) (-3822 (((-572) $) 56)) (-3533 (((-572) $) 54)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2795 (((-572) $) 55)) (-2857 (((-572) $) 53)) (-2911 (($ (-652 (-652 |#1|))) 97)) (-2442 (($ (-1 |#1| |#1|) $) 35)) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4393 (((-652 (-652 |#1|)) $) 87)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1982 (((-3 $ "failed") $) 62 (|has| |#1| (-370)))) (-2327 (($ $ $) 89)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2476 (($ $ |#1|) 57)) (-2834 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-564)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ (-572) (-572)) 50) ((|#1| $ (-572) (-572) |#1|) 48) (($ $ (-652 (-572)) (-652 (-572))) 86)) (-1640 (($ (-652 |#1|)) 95) (($ (-652 $)) 94)) (-2464 (((-112) $) 101)) (-2513 ((|#1| $) 64 (|has| |#1| (-6 (-4456 "*"))))) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1752 ((|#3| $ (-572)) 46)) (-2940 (($ |#3|) 93) (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-4384 (((-112) $) 99)) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3106 (($ $ |#1|) 69 (|has| |#1| (-370)))) (-3089 (($ $ $) 79) (($ $) 78)) (-3075 (($ $ $) 80)) (** (($ $ (-779)) 71) (($ $ (-572)) 61 (|has| |#1| (-370)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-572) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-695 |#1| |#2| |#3|) (-141) (-1060) (-380 |t#1|) (-380 |t#1|)) (T -695))
-((-4210 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-112)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-112)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-112)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-112)))) (-2212 (*1 *1 *2 *2) (-12 (-5 *2 (-779)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2911 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2940 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *2)) (-4 *4 (-380 *3)) (-4 *2 (-380 *3)))) (-3054 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-4 *1 (-695 *3 *2 *4)) (-4 *2 (-380 *3)) (-4 *4 (-380 *3)))) (-3054 (*1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-2645 (*1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-2327 (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-2788 (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-4393 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-652 (-652 *3))))) (-2196 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-652 (-572))) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3140 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-652 (-572))) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-1428 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2977 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2958 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2146 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3075 (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-3089 (*1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-695 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *2 (-380 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-695 *3 *2 *4)) (-4 *3 (-1060)) (-4 *2 (-380 *3)) (-4 *4 (-380 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2834 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-564)))) (-3106 (*1 *1 *1 *2) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-370)))) (-3076 (*1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-313)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-779)))) (-4430 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-779)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-652 *5)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))) (-1982 (*1 *1 *1) (|partial| -12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-370)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-370)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -4210 ((-112) $)) (-15 -2464 ((-112) $)) (-15 -4136 ((-112) $)) (-15 -4384 ((-112) $)) (-15 -2212 ($ (-779) (-779))) (-15 -2911 ($ (-652 (-652 |t#1|)))) (-15 -3355 ($ (-779) |t#1|)) (-15 -1640 ($ (-652 |t#1|))) (-15 -1640 ($ (-652 $))) (-15 -2940 ($ |t#3|)) (-15 -3054 ($ |t#2|)) (-15 -3054 ($ $)) (-15 -2645 ($ $)) (-15 -2327 ($ $ $)) (-15 -2788 ($ $ $)) (-15 -4393 ((-652 (-652 |t#1|)) $)) (-15 -2196 ($ $ (-652 (-572)) (-652 (-572)))) (-15 -3140 ($ $ (-652 (-572)) (-652 (-572)) $)) (-15 -1428 ($ $ (-572) (-572))) (-15 -2977 ($ $ (-572) (-572))) (-15 -2958 ($ $ (-572) (-572) (-572) (-572))) (-15 -2146 ($ $ (-572) (-572) $)) (-15 -3075 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-572) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-779))) (IF (|has| |t#1| (-564)) (-15 -2834 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -3106 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-313)) (-15 -3076 ($ $)) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-15 -3581 ((-779) $)) (-15 -4430 ((-779) $)) (-15 -2313 ((-652 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4456 "*"))) (PROGN (-15 -2513 (|t#1| $)) (-15 -3283 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-370)) (PROGN (-15 -1982 ((-3 $ "failed") $)) (-15 ** ($ $ (-572)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-57 |#1| |#2| |#3|) . T) ((-1229) . T))
-((-3076 ((|#4| |#4|) 92 (|has| |#1| (-313)))) (-3581 (((-779) |#4|) 120 (|has| |#1| (-564)))) (-4430 (((-779) |#4|) 96 (|has| |#1| (-564)))) (-2313 (((-652 |#3|) |#4|) 103 (|has| |#1| (-564)))) (-2198 (((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|) 135 (|has| |#1| (-313)))) (-3283 ((|#1| |#4|) 52)) (-2714 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-564)))) (-1982 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-370)))) (-3986 ((|#4| |#4|) 88 (|has| |#1| (-564)))) (-2512 ((|#4| |#4| |#1| (-572) (-572)) 60)) (-3073 ((|#4| |#4| (-572) (-572)) 55)) (-2696 ((|#4| |#4| |#1| (-572) (-572)) 65)) (-2513 ((|#1| |#4|) 98)) (-1812 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-564)))))
-(((-696 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2513 (|#1| |#4|)) (-15 -3283 (|#1| |#4|)) (-15 -3073 (|#4| |#4| (-572) (-572))) (-15 -2512 (|#4| |#4| |#1| (-572) (-572))) (-15 -2696 (|#4| |#4| |#1| (-572) (-572))) (IF (|has| |#1| (-564)) (PROGN (-15 -3581 ((-779) |#4|)) (-15 -4430 ((-779) |#4|)) (-15 -2313 ((-652 |#3|) |#4|)) (-15 -3986 (|#4| |#4|)) (-15 -2714 ((-3 |#4| "failed") |#4|)) (-15 -1812 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-313)) (PROGN (-15 -3076 (|#4| |#4|)) (-15 -2198 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -1982 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|)) (T -696))
-((-1982 (*1 *2 *2) (|partial| -12 (-4 *3 (-370)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-2198 (*1 *2 *3 *3) (-12 (-4 *3 (-313)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-696 *3 *4 *5 *6)) (-4 *6 (-695 *3 *4 *5)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-313)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-1812 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-2714 (*1 *2 *2) (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-564)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-2313 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-652 *6)) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-4430 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-2696 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-572)) (-4 *3 (-174)) (-4 *5 (-380 *3)) (-4 *6 (-380 *3)) (-5 *1 (-696 *3 *5 *6 *2)) (-4 *2 (-695 *3 *5 *6)))) (-2512 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-572)) (-4 *3 (-174)) (-4 *5 (-380 *3)) (-4 *6 (-380 *3)) (-5 *1 (-696 *3 *5 *6 *2)) (-4 *2 (-695 *3 *5 *6)))) (-3073 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-572)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *1 (-696 *4 *5 *6 *2)) (-4 *2 (-695 *4 *5 *6)))) (-3283 (*1 *2 *3) (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-174)) (-5 *1 (-696 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5)))) (-2513 (*1 *2 *3) (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-174)) (-5 *1 (-696 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5)))))
-(-10 -7 (-15 -2513 (|#1| |#4|)) (-15 -3283 (|#1| |#4|)) (-15 -3073 (|#4| |#4| (-572) (-572))) (-15 -2512 (|#4| |#4| |#1| (-572) (-572))) (-15 -2696 (|#4| |#4| |#1| (-572) (-572))) (IF (|has| |#1| (-564)) (PROGN (-15 -3581 ((-779) |#4|)) (-15 -4430 ((-779) |#4|)) (-15 -2313 ((-652 |#3|) |#4|)) (-15 -3986 (|#4| |#4|)) (-15 -2714 ((-3 |#4| "failed") |#4|)) (-15 -1812 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-313)) (PROGN (-15 -3076 (|#4| |#4|)) (-15 -2198 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -1982 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2212 (($ (-779) (-779)) 64)) (-2788 (($ $ $) NIL)) (-3054 (($ (-1279 |#1|)) NIL) (($ $) NIL)) (-4136 (((-112) $) NIL)) (-1428 (($ $ (-572) (-572)) 22)) (-2977 (($ $ (-572) (-572)) NIL)) (-2958 (($ $ (-572) (-572) (-572) (-572)) NIL)) (-2645 (($ $) NIL)) (-4210 (((-112) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2146 (($ $ (-572) (-572) $) NIL)) (-3140 ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572)) $) NIL)) (-3864 (($ $ (-572) (-1279 |#1|)) NIL)) (-4255 (($ $ (-572) (-1279 |#1|)) NIL)) (-3355 (($ (-779) |#1|) 37)) (-3281 (($) NIL T CONST)) (-3076 (($ $) 46 (|has| |#1| (-313)))) (-4172 (((-1279 |#1|) $ (-572)) NIL)) (-3581 (((-779) $) 48 (|has| |#1| (-564)))) (-2453 ((|#1| $ (-572) (-572) |#1|) 69)) (-2380 ((|#1| $ (-572) (-572)) NIL)) (-1863 (((-652 |#1|) $) NIL)) (-4430 (((-779) $) 50 (|has| |#1| (-564)))) (-2313 (((-652 (-1279 |#1|)) $) 53 (|has| |#1| (-564)))) (-2187 (((-779) $) 32)) (-3787 (($ (-779) (-779) |#1|) 28)) (-2195 (((-779) $) 33)) (-1861 (((-112) $ (-779)) NIL)) (-3283 ((|#1| $) 44 (|has| |#1| (-6 (-4456 "*"))))) (-3822 (((-572) $) 10)) (-3533 (((-572) $) 11)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2795 (((-572) $) 14)) (-2857 (((-572) $) 65)) (-2911 (($ (-652 (-652 |#1|))) NIL)) (-2442 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4393 (((-652 (-652 |#1|)) $) 76)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1982 (((-3 $ "failed") $) 60 (|has| |#1| (-370)))) (-2327 (($ $ $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2476 (($ $ |#1|) NIL)) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572))) NIL)) (-1640 (($ (-652 |#1|)) NIL) (($ (-652 $)) NIL) (($ (-1279 |#1|)) 70)) (-2464 (((-112) $) NIL)) (-2513 ((|#1| $) 42 (|has| |#1| (-6 (-4456 "*"))))) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-1835 (((-544) $) 80 (|has| |#1| (-622 (-544))))) (-1752 (((-1279 |#1|) $ (-572)) NIL)) (-2940 (($ (-1279 |#1|)) NIL) (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-4384 (((-112) $) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-779)) 38) (($ $ (-572)) 62 (|has| |#1| (-370)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-572) $) NIL) (((-1279 |#1|) $ (-1279 |#1|)) NIL) (((-1279 |#1|) (-1279 |#1|) $) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-697 |#1|) (-13 (-695 |#1| (-1279 |#1|) (-1279 |#1|)) (-10 -8 (-15 -1640 ($ (-1279 |#1|))) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -1982 ((-3 $ "failed") $)) |%noBranch|))) (-1060)) (T -697))
-((-1982 (*1 *1 *1) (|partial| -12 (-5 *1 (-697 *2)) (-4 *2 (-370)) (-4 *2 (-1060)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1060)) (-5 *1 (-697 *3)))))
-(-13 (-695 |#1| (-1279 |#1|) (-1279 |#1|)) (-10 -8 (-15 -1640 ($ (-1279 |#1|))) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -1982 ((-3 $ "failed") $)) |%noBranch|)))
-((-2773 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|)) 37)) (-2430 (((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|) 32)) (-1916 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-779)) 43)) (-3583 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|)) 25)) (-3569 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|)) 29) (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 27)) (-1441 (((-697 |#1|) (-697 |#1|) |#1| (-697 |#1|)) 31)) (-3955 (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 23)) (** (((-697 |#1|) (-697 |#1|) (-779)) 46)))
-(((-698 |#1|) (-10 -7 (-15 -3955 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3583 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3569 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3569 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1441 ((-697 |#1|) (-697 |#1|) |#1| (-697 |#1|))) (-15 -2430 ((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|)) (-15 -2773 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1916 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-779))) (-15 ** ((-697 |#1|) (-697 |#1|) (-779)))) (-1060)) (T -698))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-697 *4)) (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *1 (-698 *4)))) (-1916 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-697 *4)) (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *1 (-698 *4)))) (-2773 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-2430 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-1441 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-3569 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-3569 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-3583 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-3955 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
-(-10 -7 (-15 -3955 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3583 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3569 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3569 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1441 ((-697 |#1|) (-697 |#1|) |#1| (-697 |#1|))) (-15 -2430 ((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|)) (-15 -2773 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1916 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-779))) (-15 ** ((-697 |#1|) (-697 |#1|) (-779))))
-((-1695 (((-3 |#1| "failed") $) 18)) (-2204 ((|#1| $) NIL)) (-2229 (($) 7 T CONST)) (-2488 (($ |#1|) 8)) (-2940 (($ |#1|) 16) (((-870) $) 23)) (-2120 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2229)) 11)) (-1330 ((|#1| $) 15)))
-(((-699 |#1|) (-13 (-1274) (-1049 |#1|) (-621 (-870)) (-10 -8 (-15 -2488 ($ |#1|)) (-15 -2120 ((-112) $ (|[\|\|]| |#1|))) (-15 -2120 ((-112) $ (|[\|\|]| -2229))) (-15 -1330 (|#1| $)) (-15 -2229 ($) -1705))) (-621 (-870))) (T -699))
-((-2488 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-621 (-870))) (-5 *2 (-112)) (-5 *1 (-699 *4)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2229)) (-5 *2 (-112)) (-5 *1 (-699 *4)) (-4 *4 (-621 (-870))))) (-1330 (*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))) (-2229 (*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))))
-(-13 (-1274) (-1049 |#1|) (-621 (-870)) (-10 -8 (-15 -2488 ($ |#1|)) (-15 -2120 ((-112) $ (|[\|\|]| |#1|))) (-15 -2120 ((-112) $ (|[\|\|]| -2229))) (-15 -1330 (|#1| $)) (-15 -2229 ($) -1705)))
-((-3943 ((|#2| |#2| |#4|) 29)) (-1908 (((-697 |#2|) |#3| |#4|) 35)) (-2670 (((-697 |#2|) |#2| |#4|) 34)) (-3233 (((-1279 |#2|) |#2| |#4|) 16)) (-4105 ((|#2| |#3| |#4|) 28)) (-1575 (((-697 |#2|) |#3| |#4| (-779) (-779)) 47)) (-3742 (((-697 |#2|) |#2| |#4| (-779)) 46)))
-(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3233 ((-1279 |#2|) |#2| |#4|)) (-15 -4105 (|#2| |#3| |#4|)) (-15 -3943 (|#2| |#2| |#4|)) (-15 -2670 ((-697 |#2|) |#2| |#4|)) (-15 -3742 ((-697 |#2|) |#2| |#4| (-779))) (-15 -1908 ((-697 |#2|) |#3| |#4|)) (-15 -1575 ((-697 |#2|) |#3| |#4| (-779) (-779)))) (-1111) (-909 |#1|) (-380 |#2|) (-13 (-380 |#1|) (-10 -7 (-6 -4454)))) (T -700))
-((-1575 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-779)) (-4 *6 (-1111)) (-4 *7 (-909 *6)) (-5 *2 (-697 *7)) (-5 *1 (-700 *6 *7 *3 *4)) (-4 *3 (-380 *7)) (-4 *4 (-13 (-380 *6) (-10 -7 (-6 -4454)))))) (-1908 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *6 (-909 *5)) (-5 *2 (-697 *6)) (-5 *1 (-700 *5 *6 *3 *4)) (-4 *3 (-380 *6)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))) (-3742 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-1111)) (-4 *3 (-909 *6)) (-5 *2 (-697 *3)) (-5 *1 (-700 *6 *3 *7 *4)) (-4 *7 (-380 *3)) (-4 *4 (-13 (-380 *6) (-10 -7 (-6 -4454)))))) (-2670 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *3 (-909 *5)) (-5 *2 (-697 *3)) (-5 *1 (-700 *5 *3 *6 *4)) (-4 *6 (-380 *3)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))) (-3943 (*1 *2 *2 *3) (-12 (-4 *4 (-1111)) (-4 *2 (-909 *4)) (-5 *1 (-700 *4 *2 *5 *3)) (-4 *5 (-380 *2)) (-4 *3 (-13 (-380 *4) (-10 -7 (-6 -4454)))))) (-4105 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *2 (-909 *5)) (-5 *1 (-700 *5 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))) (-3233 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *3 (-909 *5)) (-5 *2 (-1279 *3)) (-5 *1 (-700 *5 *3 *6 *4)) (-4 *6 (-380 *3)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
-(-10 -7 (-15 -3233 ((-1279 |#2|) |#2| |#4|)) (-15 -4105 (|#2| |#3| |#4|)) (-15 -3943 (|#2| |#2| |#4|)) (-15 -2670 ((-697 |#2|) |#2| |#4|)) (-15 -3742 ((-697 |#2|) |#2| |#4| (-779))) (-15 -1908 ((-697 |#2|) |#3| |#4|)) (-15 -1575 ((-697 |#2|) |#3| |#4| (-779) (-779))))
-((-1848 (((-2 (|:| |num| (-697 |#1|)) (|:| |den| |#1|)) (-697 |#2|)) 20)) (-4241 ((|#1| (-697 |#2|)) 9)) (-4386 (((-697 |#1|) (-697 |#2|)) 18)))
-(((-701 |#1| |#2|) (-10 -7 (-15 -4241 (|#1| (-697 |#2|))) (-15 -4386 ((-697 |#1|) (-697 |#2|))) (-15 -1848 ((-2 (|:| |num| (-697 |#1|)) (|:| |den| |#1|)) (-697 |#2|)))) (-564) (-1003 |#1|)) (T -701))
-((-1848 (*1 *2 *3) (-12 (-5 *3 (-697 *5)) (-4 *5 (-1003 *4)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |num| (-697 *4)) (|:| |den| *4))) (-5 *1 (-701 *4 *5)))) (-4386 (*1 *2 *3) (-12 (-5 *3 (-697 *5)) (-4 *5 (-1003 *4)) (-4 *4 (-564)) (-5 *2 (-697 *4)) (-5 *1 (-701 *4 *5)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-697 *4)) (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-701 *2 *4)))))
-(-10 -7 (-15 -4241 (|#1| (-697 |#2|))) (-15 -4386 ((-697 |#1|) (-697 |#2|))) (-15 -1848 ((-2 (|:| |num| (-697 |#1|)) (|:| |den| |#1|)) (-697 |#2|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3736 (((-697 (-707))) NIL) (((-697 (-707)) (-1279 $)) NIL)) (-1635 (((-707) $) NIL)) (-2358 (($ $) NIL (|has| (-707) (-1214)))) (-2242 (($ $) NIL (|has| (-707) (-1214)))) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-707) (-356)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-707) (-313)) (|has| (-707) (-918))))) (-3517 (($ $) NIL (-2813 (-12 (|has| (-707) (-313)) (|has| (-707) (-918))) (|has| (-707) (-370))))) (-2287 (((-426 $) $) NIL (-2813 (-12 (|has| (-707) (-313)) (|has| (-707) (-918))) (|has| (-707) (-370))))) (-4227 (($ $) NIL (-12 (|has| (-707) (-1013)) (|has| (-707) (-1214))))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-707) (-313)) (|has| (-707) (-918))))) (-4217 (((-112) $ $) NIL (|has| (-707) (-313)))) (-1486 (((-779)) NIL (|has| (-707) (-375)))) (-2338 (($ $) NIL (|has| (-707) (-1214)))) (-2222 (($ $) NIL (|has| (-707) (-1214)))) (-2384 (($ $) NIL (|has| (-707) (-1214)))) (-2262 (($ $) NIL (|has| (-707) (-1214)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-707) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-707) (-1049 (-415 (-572)))))) (-2204 (((-572) $) NIL) (((-707) $) NIL) (((-415 (-572)) $) NIL (|has| (-707) (-1049 (-415 (-572)))))) (-1913 (($ (-1279 (-707))) NIL) (($ (-1279 (-707)) (-1279 $)) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-707) (-356)))) (-2780 (($ $ $) NIL (|has| (-707) (-313)))) (-3485 (((-697 (-707)) $) NIL) (((-697 (-707)) $ (-1279 $)) NIL)) (-2993 (((-697 (-707)) (-1279 $)) NIL) (((-697 (-707)) (-697 $)) NIL) (((-2 (|:| -3544 (-697 (-707))) (|:| |vec| (-1279 (-707)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-707) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-707) (-647 (-572)))) (((-697 (-572)) (-1279 $)) NIL (|has| (-707) (-647 (-572))))) (-2865 (((-3 $ "failed") (-415 (-1184 (-707)))) NIL (|has| (-707) (-370))) (($ (-1184 (-707))) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-4237 (((-707) $) 29)) (-3196 (((-3 (-415 (-572)) "failed") $) NIL (|has| (-707) (-553)))) (-1733 (((-112) $) NIL (|has| (-707) (-553)))) (-2233 (((-415 (-572)) $) NIL (|has| (-707) (-553)))) (-3581 (((-930)) NIL)) (-2815 (($) NIL (|has| (-707) (-375)))) (-2792 (($ $ $) NIL (|has| (-707) (-313)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| (-707) (-313)))) (-1879 (($) NIL (|has| (-707) (-356)))) (-3442 (((-112) $) NIL (|has| (-707) (-356)))) (-2303 (($ $) NIL (|has| (-707) (-356))) (($ $ (-779)) NIL (|has| (-707) (-356)))) (-3879 (((-112) $) NIL (-2813 (-12 (|has| (-707) (-313)) (|has| (-707) (-918))) (|has| (-707) (-370))))) (-2791 (((-2 (|:| |r| (-707)) (|:| |phi| (-707))) $) NIL (-12 (|has| (-707) (-1071)) (|has| (-707) (-1214))))) (-2997 (($) NIL (|has| (-707) (-1214)))) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-707) (-895 (-386)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-707) (-895 (-572))))) (-2956 (((-841 (-930)) $) NIL (|has| (-707) (-356))) (((-930) $) NIL (|has| (-707) (-356)))) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL (-12 (|has| (-707) (-1013)) (|has| (-707) (-1214))))) (-2028 (((-707) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| (-707) (-356)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-707) (-313)))) (-3053 (((-1184 (-707)) $) NIL (|has| (-707) (-370)))) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-1776 (($ (-1 (-707) (-707)) $) NIL)) (-3715 (((-930) $) NIL (|has| (-707) (-375)))) (-3116 (($ $) NIL (|has| (-707) (-1214)))) (-2851 (((-1184 (-707)) $) NIL)) (-2825 (($ (-652 $)) NIL (|has| (-707) (-313))) (($ $ $) NIL (|has| (-707) (-313)))) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| (-707) (-370)))) (-3815 (($) NIL (|has| (-707) (-356)) CONST)) (-2571 (($ (-930)) NIL (|has| (-707) (-375)))) (-4408 (($) NIL)) (-4247 (((-707) $) 31)) (-3964 (((-1131) $) NIL)) (-2967 (($) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| (-707) (-313)))) (-2870 (($ (-652 $)) NIL (|has| (-707) (-313))) (($ $ $) NIL (|has| (-707) (-313)))) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| (-707) (-356)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-707) (-313)) (|has| (-707) (-918))))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-707) (-313)) (|has| (-707) (-918))))) (-4218 (((-426 $) $) NIL (-2813 (-12 (|has| (-707) (-313)) (|has| (-707) (-918))) (|has| (-707) (-370))))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-707) (-313))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| (-707) (-313)))) (-2834 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-707)) NIL (|has| (-707) (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-707) (-313)))) (-1608 (($ $) NIL (|has| (-707) (-1214)))) (-2641 (($ $ (-1188) (-707)) NIL (|has| (-707) (-522 (-1188) (-707)))) (($ $ (-652 (-1188)) (-652 (-707))) NIL (|has| (-707) (-522 (-1188) (-707)))) (($ $ (-652 (-300 (-707)))) NIL (|has| (-707) (-315 (-707)))) (($ $ (-300 (-707))) NIL (|has| (-707) (-315 (-707)))) (($ $ (-707) (-707)) NIL (|has| (-707) (-315 (-707)))) (($ $ (-652 (-707)) (-652 (-707))) NIL (|has| (-707) (-315 (-707))))) (-3847 (((-779) $) NIL (|has| (-707) (-313)))) (-2196 (($ $ (-707)) NIL (|has| (-707) (-292 (-707) (-707))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| (-707) (-313)))) (-3537 (((-707)) NIL) (((-707) (-1279 $)) NIL)) (-3354 (((-3 (-779) "failed") $ $) NIL (|has| (-707) (-356))) (((-779) $) NIL (|has| (-707) (-356)))) (-3902 (($ $ (-1 (-707) (-707))) NIL) (($ $ (-1 (-707) (-707)) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-1188)) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-779)) NIL (|has| (-707) (-237))) (($ $) NIL (|has| (-707) (-237)))) (-2144 (((-697 (-707)) (-1279 $) (-1 (-707) (-707))) NIL (|has| (-707) (-370)))) (-3764 (((-1184 (-707))) NIL)) (-2397 (($ $) NIL (|has| (-707) (-1214)))) (-2270 (($ $) NIL (|has| (-707) (-1214)))) (-4033 (($) NIL (|has| (-707) (-356)))) (-2370 (($ $) NIL (|has| (-707) (-1214)))) (-2252 (($ $) NIL (|has| (-707) (-1214)))) (-2348 (($ $) NIL (|has| (-707) (-1214)))) (-2231 (($ $) NIL (|has| (-707) (-1214)))) (-4329 (((-697 (-707)) (-1279 $)) NIL) (((-1279 (-707)) $) NIL) (((-697 (-707)) (-1279 $) (-1279 $)) NIL) (((-1279 (-707)) $ (-1279 $)) NIL)) (-1835 (((-544) $) NIL (|has| (-707) (-622 (-544)))) (((-171 (-227)) $) NIL (|has| (-707) (-1033))) (((-171 (-386)) $) NIL (|has| (-707) (-1033))) (((-901 (-386)) $) NIL (|has| (-707) (-622 (-901 (-386))))) (((-901 (-572)) $) NIL (|has| (-707) (-622 (-901 (-572))))) (($ (-1184 (-707))) NIL) (((-1184 (-707)) $) NIL) (($ (-1279 (-707))) NIL) (((-1279 (-707)) $) NIL)) (-1516 (($ $) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-2813 (-12 (|has| (-707) (-313)) (|has| $ (-146)) (|has| (-707) (-918))) (|has| (-707) (-356))))) (-3559 (($ (-707) (-707)) 12)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-572)) NIL) (($ (-707)) NIL) (($ (-171 (-386))) 13) (($ (-171 (-572))) 19) (($ (-171 (-707))) 28) (($ (-171 (-709))) 25) (((-171 (-386)) $) 33) (($ (-415 (-572))) NIL (-2813 (|has| (-707) (-1049 (-415 (-572)))) (|has| (-707) (-370))))) (-3849 (($ $) NIL (|has| (-707) (-356))) (((-3 $ "failed") $) NIL (-2813 (-12 (|has| (-707) (-313)) (|has| $ (-146)) (|has| (-707) (-918))) (|has| (-707) (-146))))) (-4251 (((-1184 (-707)) $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL)) (-2436 (($ $) NIL (|has| (-707) (-1214)))) (-2300 (($ $) NIL (|has| (-707) (-1214)))) (-2845 (((-112) $ $) NIL)) (-2409 (($ $) NIL (|has| (-707) (-1214)))) (-2282 (($ $) NIL (|has| (-707) (-1214)))) (-2460 (($ $) NIL (|has| (-707) (-1214)))) (-2320 (($ $) NIL (|has| (-707) (-1214)))) (-2053 (((-707) $) NIL (|has| (-707) (-1214)))) (-2516 (($ $) NIL (|has| (-707) (-1214)))) (-2329 (($ $) NIL (|has| (-707) (-1214)))) (-2448 (($ $) NIL (|has| (-707) (-1214)))) (-2310 (($ $) NIL (|has| (-707) (-1214)))) (-2423 (($ $) NIL (|has| (-707) (-1214)))) (-2292 (($ $) NIL (|has| (-707) (-1214)))) (-2700 (($ $) NIL (|has| (-707) (-1071)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-1 (-707) (-707))) NIL) (($ $ (-1 (-707) (-707)) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-1188)) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-779)) NIL (|has| (-707) (-237))) (($ $) NIL (|has| (-707) (-237)))) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL (|has| (-707) (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ $) NIL (|has| (-707) (-1214))) (($ $ (-415 (-572))) NIL (-12 (|has| (-707) (-1013)) (|has| (-707) (-1214)))) (($ $ (-572)) NIL (|has| (-707) (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ (-707) $) NIL) (($ $ (-707)) NIL) (($ (-415 (-572)) $) NIL (|has| (-707) (-370))) (($ $ (-415 (-572))) NIL (|has| (-707) (-370)))))
-(((-702) (-13 (-395) (-167 (-707)) (-10 -8 (-15 -2940 ($ (-171 (-386)))) (-15 -2940 ($ (-171 (-572)))) (-15 -2940 ($ (-171 (-707)))) (-15 -2940 ($ (-171 (-709)))) (-15 -2940 ((-171 (-386)) $))))) (T -702))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-702)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-171 (-572))) (-5 *1 (-702)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-171 (-707))) (-5 *1 (-702)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-702)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-702)))))
-(-13 (-395) (-167 (-707)) (-10 -8 (-15 -2940 ($ (-171 (-386)))) (-15 -2940 ($ (-171 (-572)))) (-15 -2940 ($ (-171 (-707)))) (-15 -2940 ($ (-171 (-709)))) (-15 -2940 ((-171 (-386)) $))))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-2613 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2704 (($ $) 63)) (-2086 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-3332 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41) (($ |#1| $ (-779)) 64)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-4261 (((-652 (-2 (|:| -1907 |#1|) (|:| -3973 (-779)))) $) 62)) (-3438 (($) 50) (($ (-652 |#1|)) 49)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 51)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 43)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-703 |#1|) (-141) (-1111)) (T -703))
-((-2036 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-703 *2)) (-4 *2 (-1111)))) (-2704 (*1 *1 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1111)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1111)) (-5 *2 (-652 (-2 (|:| -1907 *3) (|:| -3973 (-779))))))))
-(-13 (-239 |t#1|) (-10 -8 (-15 -2036 ($ |t#1| $ (-779))) (-15 -2704 ($ $)) (-15 -4261 ((-652 (-2 (|:| -1907 |t#1|) (|:| -3973 (-779)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-3172 (((-652 |#1|) (-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))) (-572)) 65)) (-2642 ((|#1| |#1| (-572)) 62)) (-2870 ((|#1| |#1| |#1| (-572)) 46)) (-4218 (((-652 |#1|) |#1| (-572)) 49)) (-1642 ((|#1| |#1| (-572) |#1| (-572)) 40)) (-1525 (((-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))) |#1| (-572)) 61)))
-(((-704 |#1|) (-10 -7 (-15 -2870 (|#1| |#1| |#1| (-572))) (-15 -2642 (|#1| |#1| (-572))) (-15 -4218 ((-652 |#1|) |#1| (-572))) (-15 -1525 ((-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))) |#1| (-572))) (-15 -3172 ((-652 |#1|) (-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))) (-572))) (-15 -1642 (|#1| |#1| (-572) |#1| (-572)))) (-1255 (-572))) (T -704))
-((-1642 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))) (-3172 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| -4218 *5) (|:| -4390 (-572))))) (-5 *4 (-572)) (-4 *5 (-1255 *4)) (-5 *2 (-652 *5)) (-5 *1 (-704 *5)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-5 *2 (-652 (-2 (|:| -4218 *3) (|:| -4390 *4)))) (-5 *1 (-704 *3)) (-4 *3 (-1255 *4)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-5 *2 (-652 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1255 *4)))) (-2642 (*1 *2 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))) (-2870 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))))
-(-10 -7 (-15 -2870 (|#1| |#1| |#1| (-572))) (-15 -2642 (|#1| |#1| (-572))) (-15 -4218 ((-652 |#1|) |#1| (-572))) (-15 -1525 ((-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))) |#1| (-572))) (-15 -3172 ((-652 |#1|) (-652 (-2 (|:| -4218 |#1|) (|:| -4390 (-572)))) (-572))) (-15 -1642 (|#1| |#1| (-572) |#1| (-572))))
-((-2052 (((-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2294 (((-1144 (-227)) (-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268))) 53) (((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268))) 55) (((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268))) 57)) (-4325 (((-1144 (-227)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-652 (-268))) NIL)) (-3719 (((-1144 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268))) 58)))
-(((-705) (-10 -7 (-15 -2294 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2294 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2294 ((-1144 (-227)) (-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -3719 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -4325 ((-1144 (-227)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2052 ((-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -705))
-((-2052 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-952 (-227)) (-227) (-227))) (-5 *1 (-705)))) (-4325 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705)))) (-3719 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705)))) (-2294 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-227))) (-5 *5 (-652 (-268))) (-5 *1 (-705)))) (-2294 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-227))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705)))) (-2294 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705)))))
-(-10 -7 (-15 -2294 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2294 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2294 ((-1144 (-227)) (-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -3719 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -4325 ((-1144 (-227)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2052 ((-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
-((-4218 (((-426 (-1184 |#4|)) (-1184 |#4|)) 86) (((-426 |#4|) |#4|) 266)))
-(((-706 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-426 |#4|) |#4|)) (-15 -4218 ((-426 (-1184 |#4|)) (-1184 |#4|)))) (-858) (-801) (-356) (-958 |#3| |#2| |#1|)) (T -706))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-356)) (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-706 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4)))))
-(-10 -7 (-15 -4218 ((-426 |#4|) |#4|)) (-15 -4218 ((-426 (-1184 |#4|)) (-1184 |#4|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 97)) (-2689 (((-572) $) 34)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3762 (($ $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4227 (($ $) NIL)) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL)) (-3281 (($) NIL T CONST)) (-1530 (($ $) NIL)) (-1695 (((-3 (-572) "failed") $) 85) (((-3 (-415 (-572)) "failed") $) 28) (((-3 (-386) "failed") $) 82)) (-2204 (((-572) $) 87) (((-415 (-572)) $) 79) (((-386) $) 80)) (-2780 (($ $ $) 109)) (-2062 (((-3 $ "failed") $) 100)) (-2792 (($ $ $) 108)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3782 (((-930)) 89) (((-930) (-930)) 88)) (-3074 (((-112) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL)) (-2956 (((-572) $) NIL)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL)) (-2028 (($ $) NIL)) (-1623 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2749 (((-572) (-572)) 94) (((-572)) 95)) (-3654 (($ $ $) NIL) (($) NIL (-12 (-2074 (|has| $ (-6 -4437))) (-2074 (|has| $ (-6 -4445)))))) (-2094 (((-572) (-572)) 92) (((-572)) 93)) (-2427 (($ $ $) NIL) (($) NIL (-12 (-2074 (|has| $ (-6 -4437))) (-2074 (|has| $ (-6 -4445)))))) (-4298 (((-572) $) 17)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 104)) (-4170 (((-930) (-572)) NIL (|has| $ (-6 -4445)))) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL)) (-3462 (($ $) NIL)) (-2379 (($ (-572) (-572)) NIL) (($ (-572) (-572) (-930)) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) 105)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1679 (((-572) $) 24)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 107)) (-2189 (((-930)) NIL) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-2691 (((-930) (-572)) NIL (|has| $ (-6 -4445)))) (-1835 (((-386) $) NIL) (((-227) $) NIL) (((-901 (-386)) $) NIL)) (-2940 (((-870) $) 63) (($ (-572)) 75) (($ $) NIL) (($ (-415 (-572))) 78) (($ (-572)) 75) (($ (-415 (-572))) 78) (($ (-386)) 72) (((-386) $) 61) (($ (-709)) 66)) (-4249 (((-779)) 119 T CONST)) (-3752 (($ (-572) (-572) (-930)) 54)) (-3614 (($ $) NIL)) (-4221 (((-930)) NIL) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-4379 (((-112) $ $) NIL)) (-2625 (((-930)) 91) (((-930) (-930)) 90)) (-2845 (((-112) $ $) NIL)) (-2700 (($ $) NIL)) (-2131 (($) 37 T CONST)) (-2143 (($) 18 T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 96)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 118)) (-3106 (($ $ $) 77)) (-3089 (($ $) 115) (($ $ $) 116)) (-3075 (($ $ $) 114)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL) (($ $ (-415 (-572))) 103)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 110) (($ $ $) 101) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
-(((-707) (-13 (-412) (-395) (-370) (-1049 (-386)) (-1049 (-415 (-572))) (-148) (-10 -8 (-15 -3782 ((-930) (-930))) (-15 -3782 ((-930))) (-15 -2625 ((-930) (-930))) (-15 -2094 ((-572) (-572))) (-15 -2094 ((-572))) (-15 -2749 ((-572) (-572))) (-15 -2749 ((-572))) (-15 -2940 ((-386) $)) (-15 -2940 ($ (-709))) (-15 -4298 ((-572) $)) (-15 -1679 ((-572) $)) (-15 -3752 ($ (-572) (-572) (-930)))))) (T -707))
-((-1679 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-3782 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707)))) (-3782 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707)))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707)))) (-2094 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-2094 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-2749 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-386)) (-5 *1 (-707)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-709)) (-5 *1 (-707)))) (-3752 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-930)) (-5 *1 (-707)))))
-(-13 (-412) (-395) (-370) (-1049 (-386)) (-1049 (-415 (-572))) (-148) (-10 -8 (-15 -3782 ((-930) (-930))) (-15 -3782 ((-930))) (-15 -2625 ((-930) (-930))) (-15 -2094 ((-572) (-572))) (-15 -2094 ((-572))) (-15 -2749 ((-572) (-572))) (-15 -2749 ((-572))) (-15 -2940 ((-386) $)) (-15 -2940 ($ (-709))) (-15 -4298 ((-572) $)) (-15 -1679 ((-572) $)) (-15 -3752 ($ (-572) (-572) (-930)))))
-((-3828 (((-697 |#1|) (-697 |#1|) |#1| |#1|) 85)) (-3076 (((-697 |#1|) (-697 |#1|) |#1|) 66)) (-4010 (((-697 |#1|) (-697 |#1|) |#1|) 86)) (-2989 (((-697 |#1|) (-697 |#1|)) 67)) (-2198 (((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|) 84)))
-(((-708 |#1|) (-10 -7 (-15 -2989 ((-697 |#1|) (-697 |#1|))) (-15 -3076 ((-697 |#1|) (-697 |#1|) |#1|)) (-15 -4010 ((-697 |#1|) (-697 |#1|) |#1|)) (-15 -3828 ((-697 |#1|) (-697 |#1|) |#1| |#1|)) (-15 -2198 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|))) (-313)) (T -708))
-((-2198 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-708 *3)) (-4 *3 (-313)))) (-3828 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))) (-4010 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))) (-3076 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))) (-2989 (*1 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))))
-(-10 -7 (-15 -2989 ((-697 |#1|) (-697 |#1|))) (-15 -3076 ((-697 |#1|) (-697 |#1|) |#1|)) (-15 -4010 ((-697 |#1|) (-697 |#1|) |#1|)) (-15 -3828 ((-697 |#1|) (-697 |#1|) |#1| |#1|)) (-15 -2198 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-1926 (($ $ $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2985 (($ $ $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL)) (-3957 (($ $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) 31)) (-2204 (((-572) $) 29)) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-3196 (((-3 (-415 (-572)) "failed") $) NIL)) (-1733 (((-112) $) NIL)) (-2233 (((-415 (-572)) $) NIL)) (-2815 (($ $) NIL) (($) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3768 (($ $ $ $) NIL)) (-4220 (($ $ $) NIL)) (-3074 (((-112) $) NIL)) (-2661 (($ $ $) NIL)) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL)) (-1886 (((-112) $) NIL)) (-2597 (((-112) $) NIL)) (-2556 (((-3 $ "failed") $) NIL)) (-1623 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2546 (($ $ $ $) NIL)) (-3654 (($ $ $) NIL)) (-1930 (((-930) (-930)) 10) (((-930)) 9)) (-2427 (($ $ $) NIL)) (-3808 (($ $) NIL)) (-4133 (($ $) NIL)) (-2825 (($ (-652 $)) NIL) (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-1656 (($ $ $) NIL)) (-3815 (($) NIL T CONST)) (-1604 (($ $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ (-652 $)) NIL) (($ $ $) NIL)) (-2128 (($ $) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) NIL) (($ $ (-779)) NIL)) (-2290 (($ $) NIL)) (-3164 (($ $) NIL)) (-1835 (((-227) $) NIL) (((-386) $) NIL) (((-901 (-572)) $) NIL) (((-544) $) NIL) (((-572) $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) 28) (($ $) NIL) (($ (-572)) 28) (((-322 $) (-322 (-572))) 18)) (-4249 (((-779)) NIL T CONST)) (-4023 (((-112) $ $) NIL)) (-3148 (($ $ $) NIL)) (-4379 (((-112) $ $) NIL)) (-2625 (($) NIL)) (-2845 (((-112) $ $) NIL)) (-4212 (($ $ $ $) NIL)) (-2700 (($ $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $) NIL) (($ $ (-779)) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL)))
-(((-709) (-13 (-395) (-553) (-10 -8 (-15 -1930 ((-930) (-930))) (-15 -1930 ((-930))) (-15 -2940 ((-322 $) (-322 (-572))))))) (T -709))
-((-1930 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-709)))) (-1930 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-709)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-322 (-572))) (-5 *2 (-322 (-709))) (-5 *1 (-709)))))
-(-13 (-395) (-553) (-10 -8 (-15 -1930 ((-930) (-930))) (-15 -1930 ((-930))) (-15 -2940 ((-322 $) (-322 (-572))))))
-((-3206 (((-1 |#4| |#2| |#3|) |#1| (-1188) (-1188)) 19)) (-2058 (((-1 |#4| |#2| |#3|) (-1188)) 12)))
-(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2058 ((-1 |#4| |#2| |#3|) (-1188))) (-15 -3206 ((-1 |#4| |#2| |#3|) |#1| (-1188) (-1188)))) (-622 (-544)) (-1229) (-1229) (-1229)) (T -710))
-((-3206 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-710 *3 *5 *6 *7)) (-4 *3 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)) (-4 *7 (-1229)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-710 *4 *5 *6 *7)) (-4 *4 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)) (-4 *7 (-1229)))))
-(-10 -7 (-15 -2058 ((-1 |#4| |#2| |#3|) (-1188))) (-15 -3206 ((-1 |#4| |#2| |#3|) |#1| (-1188) (-1188))))
-((-3932 (((-1 (-227) (-227) (-227)) |#1| (-1188) (-1188)) 43) (((-1 (-227) (-227)) |#1| (-1188)) 48)))
-(((-711 |#1|) (-10 -7 (-15 -3932 ((-1 (-227) (-227)) |#1| (-1188))) (-15 -3932 ((-1 (-227) (-227) (-227)) |#1| (-1188) (-1188)))) (-622 (-544))) (T -711))
-((-3932 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-711 *3)) (-4 *3 (-622 (-544))))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-711 *3)) (-4 *3 (-622 (-544))))))
-(-10 -7 (-15 -3932 ((-1 (-227) (-227)) |#1| (-1188))) (-15 -3932 ((-1 (-227) (-227) (-227)) |#1| (-1188) (-1188))))
-((-2705 (((-1188) |#1| (-1188) (-652 (-1188))) 10) (((-1188) |#1| (-1188) (-1188) (-1188)) 13) (((-1188) |#1| (-1188) (-1188)) 12) (((-1188) |#1| (-1188)) 11)))
-(((-712 |#1|) (-10 -7 (-15 -2705 ((-1188) |#1| (-1188))) (-15 -2705 ((-1188) |#1| (-1188) (-1188))) (-15 -2705 ((-1188) |#1| (-1188) (-1188) (-1188))) (-15 -2705 ((-1188) |#1| (-1188) (-652 (-1188))))) (-622 (-544))) (T -712))
-((-2705 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-652 (-1188))) (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544))))) (-2705 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544))))) (-2705 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544))))) (-2705 (*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544))))))
-(-10 -7 (-15 -2705 ((-1188) |#1| (-1188))) (-15 -2705 ((-1188) |#1| (-1188) (-1188))) (-15 -2705 ((-1188) |#1| (-1188) (-1188) (-1188))) (-15 -2705 ((-1188) |#1| (-1188) (-652 (-1188)))))
-((-2223 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-713 |#1| |#2|) (-10 -7 (-15 -2223 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1229) (-1229)) (T -713))
-((-2223 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-713 *3 *4)) (-4 *3 (-1229)) (-4 *4 (-1229)))))
-(-10 -7 (-15 -2223 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-1572 (((-1 |#3| |#2|) (-1188)) 11)) (-3206 (((-1 |#3| |#2|) |#1| (-1188)) 21)))
-(((-714 |#1| |#2| |#3|) (-10 -7 (-15 -1572 ((-1 |#3| |#2|) (-1188))) (-15 -3206 ((-1 |#3| |#2|) |#1| (-1188)))) (-622 (-544)) (-1229) (-1229)) (T -714))
-((-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-1 *6 *5)) (-5 *1 (-714 *3 *5 *6)) (-4 *3 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1 *6 *5)) (-5 *1 (-714 *4 *5 *6)) (-4 *4 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)))))
-(-10 -7 (-15 -1572 ((-1 |#3| |#2|) (-1188))) (-15 -3206 ((-1 |#3| |#2|) |#1| (-1188))))
-((-3327 (((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#4|)) (-652 |#3|) (-652 |#4|) (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| |#4|)))) (-652 (-779)) (-1279 (-652 (-1184 |#3|))) |#3|) 92)) (-4289 (((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#3|)) (-652 |#3|) (-652 |#4|) (-652 (-779)) |#3|) 110)) (-3580 (((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 |#3|) (-652 (-779)) (-652 (-1184 |#4|)) (-1279 (-652 (-1184 |#3|))) |#3|) 47)))
-(((-715 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3580 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 |#3|) (-652 (-779)) (-652 (-1184 |#4|)) (-1279 (-652 (-1184 |#3|))) |#3|)) (-15 -4289 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#3|)) (-652 |#3|) (-652 |#4|) (-652 (-779)) |#3|)) (-15 -3327 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#4|)) (-652 |#3|) (-652 |#4|) (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| |#4|)))) (-652 (-779)) (-1279 (-652 (-1184 |#3|))) |#3|))) (-801) (-858) (-313) (-958 |#3| |#1| |#2|)) (T -715))
-((-3327 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-652 (-1184 *13))) (-5 *3 (-1184 *13)) (-5 *4 (-652 *12)) (-5 *5 (-652 *10)) (-5 *6 (-652 *13)) (-5 *7 (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| *13))))) (-5 *8 (-652 (-779))) (-5 *9 (-1279 (-652 (-1184 *10)))) (-4 *12 (-858)) (-4 *10 (-313)) (-4 *13 (-958 *10 *11 *12)) (-4 *11 (-801)) (-5 *1 (-715 *11 *12 *10 *13)))) (-4289 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-652 *11)) (-5 *5 (-652 (-1184 *9))) (-5 *6 (-652 *9)) (-5 *7 (-652 *12)) (-5 *8 (-652 (-779))) (-4 *11 (-858)) (-4 *9 (-313)) (-4 *12 (-958 *9 *10 *11)) (-4 *10 (-801)) (-5 *2 (-652 (-1184 *12))) (-5 *1 (-715 *10 *11 *9 *12)) (-5 *3 (-1184 *12)))) (-3580 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-652 (-1184 *11))) (-5 *3 (-1184 *11)) (-5 *4 (-652 *10)) (-5 *5 (-652 *8)) (-5 *6 (-652 (-779))) (-5 *7 (-1279 (-652 (-1184 *8)))) (-4 *10 (-858)) (-4 *8 (-313)) (-4 *11 (-958 *8 *9 *10)) (-4 *9 (-801)) (-5 *1 (-715 *9 *10 *8 *11)))))
-(-10 -7 (-15 -3580 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 |#3|) (-652 (-779)) (-652 (-1184 |#4|)) (-1279 (-652 (-1184 |#3|))) |#3|)) (-15 -4289 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#3|)) (-652 |#3|) (-652 |#4|) (-652 (-779)) |#3|)) (-15 -3327 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#4|)) (-652 |#3|) (-652 |#4|) (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| |#4|)))) (-652 (-779)) (-1279 (-652 (-1184 |#3|))) |#3|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1390 (($ $) 48)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4333 (($ |#1| (-779)) 46)) (-2649 (((-779) $) 50)) (-1368 ((|#1| $) 49)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-4390 (((-779) $) 51)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3979 ((|#1| $ (-779)) 47)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
-(((-716 |#1|) (-141) (-1060)) (T -716))
-((-4390 (*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1060)))) (-1390 (*1 *1 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1060)))) (-3979 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-716 *2)) (-4 *2 (-1060)))) (-4333 (*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-716 *2)) (-4 *2 (-1060)))))
-(-13 (-1060) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4390 ((-779) $)) (-15 -2649 ((-779) $)) (-15 -1368 (|t#1| $)) (-15 -1390 ($ $)) (-15 -3979 (|t#1| $ (-779))) (-15 -4333 ($ |t#1| (-779)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-1776 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-717 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1776 (|#6| (-1 |#4| |#1|) |#3|))) (-564) (-1255 |#1|) (-1255 (-415 |#2|)) (-564) (-1255 |#4|) (-1255 (-415 |#5|))) (T -717))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-564)) (-4 *7 (-564)) (-4 *6 (-1255 *5)) (-4 *2 (-1255 (-415 *8))) (-5 *1 (-717 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1255 (-415 *6))) (-4 *8 (-1255 *7)))))
-(-10 -7 (-15 -1776 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4243 (((-1170) (-870)) 38)) (-1401 (((-1284) (-1170)) 31)) (-1765 (((-1170) (-870)) 28)) (-1614 (((-1170) (-870)) 29)) (-2940 (((-870) $) NIL) (((-1170) (-870)) 27)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-718) (-13 (-1111) (-10 -7 (-15 -2940 ((-1170) (-870))) (-15 -1765 ((-1170) (-870))) (-15 -1614 ((-1170) (-870))) (-15 -4243 ((-1170) (-870))) (-15 -1401 ((-1284) (-1170)))))) (T -718))
-((-2940 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-718)))))
-(-13 (-1111) (-10 -7 (-15 -2940 ((-1170) (-870))) (-15 -1765 ((-1170) (-870))) (-15 -1614 ((-1170) (-870))) (-15 -4243 ((-1170) (-870))) (-15 -1401 ((-1284) (-1170)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2780 (($ $ $) NIL)) (-2865 (($ |#1| |#2|) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-1886 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1929 ((|#2| $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3982 (((-3 $ "failed") $ $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) ((|#1| $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
-(((-719 |#1| |#2| |#3| |#4| |#5|) (-13 (-370) (-10 -8 (-15 -1929 (|#2| $)) (-15 -2940 (|#1| $)) (-15 -2865 ($ |#1| |#2|)) (-15 -3982 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -719))
-((-1929 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-719 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2940 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2865 (*1 *1 *2 *3) (-12 (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3982 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-370) (-10 -8 (-15 -1929 (|#2| $)) (-15 -2940 (|#1| $)) (-15 -2865 ($ |#1| |#2|)) (-15 -3982 ((-3 $ "failed") $ $))))
-((-2846 (((-112) $ $) 87)) (-2697 (((-112) $) 36)) (-4166 (((-1279 |#1|) $ (-779)) NIL)) (-4353 (((-652 (-1093)) $) NIL)) (-3169 (($ (-1184 |#1|)) NIL)) (-4191 (((-1184 $) $ (-1093)) NIL) (((-1184 |#1|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-1093))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $ $) NIL (|has| |#1| (-564)))) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3517 (($ $) NIL (|has| |#1| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-1486 (((-779)) 54 (|has| |#1| (-375)))) (-1492 (($ $ (-779)) NIL)) (-4157 (($ $ (-779)) NIL)) (-2861 ((|#2| |#2|) 50)) (-2200 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-460)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1093) "failed") $) NIL)) (-2204 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1093) $) NIL)) (-2361 (($ $ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) 40)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2865 (($ |#2|) 48)) (-2062 (((-3 $ "failed") $) 97)) (-2815 (($) 58 (|has| |#1| (-375)))) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2457 (($ $ $) NIL)) (-1809 (($ $ $) NIL (|has| |#1| (-564)))) (-3038 (((-2 (|:| -1857 |#1|) (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-564)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-1876 (($ $) NIL (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#1| (-918)))) (-2866 (((-967 $)) 89)) (-1437 (($ $ |#1| (-779) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2956 (((-779) $ $) NIL (|has| |#1| (-564)))) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-1163)))) (-4343 (($ (-1184 |#1|) (-1093)) NIL) (($ (-1184 $) (-1093)) NIL)) (-4076 (($ $ (-779)) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-779)) 85) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-1093)) NIL) (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-1929 ((|#2|) 51)) (-2649 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-2497 (($ (-1 (-779) (-779)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2297 (((-1184 |#1|) $) NIL)) (-3928 (((-3 (-1093) "failed") $) NIL)) (-3715 (((-930) $) NIL (|has| |#1| (-375)))) (-2851 ((|#2| $) 47)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) 34)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4347 (((-1170) $) NIL)) (-2507 (((-2 (|:| -4215 $) (|:| -3669 $)) $ (-779)) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-1093)) (|:| -1679 (-779))) "failed") $) NIL)) (-3034 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3815 (($) NIL (|has| |#1| (-1163)) CONST)) (-2571 (($ (-930)) NIL (|has| |#1| (-375)))) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#1| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-2054 (($ $) 88 (|has| |#1| (-356)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-918)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#1|) NIL) (($ $ (-652 (-1093)) (-652 |#1|)) NIL) (($ $ (-1093) $) NIL) (($ $ (-652 (-1093)) (-652 $)) NIL)) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-415 $) (-415 $) (-415 $)) NIL (|has| |#1| (-564))) ((|#1| (-415 $) |#1|) NIL (|has| |#1| (-370))) (((-415 $) $ (-415 $)) NIL (|has| |#1| (-564)))) (-1580 (((-3 $ "failed") $ (-779)) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 98 (|has| |#1| (-370)))) (-3537 (($ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3902 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4390 (((-779) $) 38) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-1711 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2377 (((-967 $)) 42)) (-4039 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564))) (((-3 (-415 $) "failed") (-415 $) $) NIL (|has| |#1| (-564)))) (-2940 (((-870) $) 68) (($ (-572)) NIL) (($ |#1|) 65) (($ (-1093)) NIL) (($ |#2|) 75) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-779)) 70) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) 25 T CONST)) (-3618 (((-1279 |#1|) $) 83)) (-1356 (($ (-1279 |#1|)) 57)) (-2143 (($) 8 T CONST)) (-3608 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3198 (((-1279 |#1|) $) NIL)) (-2978 (((-112) $ $) 76)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) 79) (($ $ $) NIL)) (-3075 (($ $ $) 39)) (** (($ $ (-930)) NIL) (($ $ (-779)) 92)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 64) (($ $ $) 82) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 62) (($ $ |#1|) NIL)))
-(((-720 |#1| |#2|) (-13 (-1255 |#1|) (-624 |#2|) (-10 -8 (-15 -2861 (|#2| |#2|)) (-15 -1929 (|#2|)) (-15 -2865 ($ |#2|)) (-15 -2851 (|#2| $)) (-15 -3618 ((-1279 |#1|) $)) (-15 -1356 ($ (-1279 |#1|))) (-15 -3198 ((-1279 |#1|) $)) (-15 -2866 ((-967 $))) (-15 -2377 ((-967 $))) (IF (|has| |#1| (-356)) (-15 -2054 ($ $)) |%noBranch|) (IF (|has| |#1| (-375)) (-6 (-375)) |%noBranch|))) (-1060) (-1255 |#1|)) (T -720))
-((-2861 (*1 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-720 *3 *2)) (-4 *2 (-1255 *3)))) (-1929 (*1 *2) (-12 (-4 *2 (-1255 *3)) (-5 *1 (-720 *3 *2)) (-4 *3 (-1060)))) (-2865 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-720 *3 *2)) (-4 *2 (-1255 *3)))) (-2851 (*1 *2 *1) (-12 (-4 *2 (-1255 *3)) (-5 *1 (-720 *3 *2)) (-4 *3 (-1060)))) (-3618 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-1279 *3)) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1060)) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-3198 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-1279 *3)) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-2866 (*1 *2) (-12 (-4 *3 (-1060)) (-5 *2 (-967 (-720 *3 *4))) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-2377 (*1 *2) (-12 (-4 *3 (-1060)) (-5 *2 (-967 (-720 *3 *4))) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-2054 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *2 (-1060)) (-5 *1 (-720 *2 *3)) (-4 *3 (-1255 *2)))))
-(-13 (-1255 |#1|) (-624 |#2|) (-10 -8 (-15 -2861 (|#2| |#2|)) (-15 -1929 (|#2|)) (-15 -2865 ($ |#2|)) (-15 -2851 (|#2| $)) (-15 -3618 ((-1279 |#1|) $)) (-15 -1356 ($ (-1279 |#1|))) (-15 -3198 ((-1279 |#1|) $)) (-15 -2866 ((-967 $))) (-15 -2377 ((-967 $))) (IF (|has| |#1| (-356)) (-15 -2054 ($ $)) |%noBranch|) (IF (|has| |#1| (-375)) (-6 (-375)) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 ((|#1| $) 13)) (-3964 (((-1131) $) NIL)) (-1679 ((|#2| $) 12)) (-2953 (($ |#1| |#2|) 16)) (-2940 (((-870) $) NIL) (($ (-2 (|:| -2571 |#1|) (|:| -1679 |#2|))) 15) (((-2 (|:| -2571 |#1|) (|:| -1679 |#2|)) $) 14)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 11)))
-(((-721 |#1| |#2| |#3|) (-13 (-858) (-498 (-2 (|:| -2571 |#1|) (|:| -1679 |#2|))) (-10 -8 (-15 -1679 (|#2| $)) (-15 -2571 (|#1| $)) (-15 -2953 ($ |#1| |#2|)))) (-858) (-1111) (-1 (-112) (-2 (|:| -2571 |#1|) (|:| -1679 |#2|)) (-2 (|:| -2571 |#1|) (|:| -1679 |#2|)))) (T -721))
-((-1679 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-721 *3 *2 *4)) (-4 *3 (-858)) (-14 *4 (-1 (-112) (-2 (|:| -2571 *3) (|:| -1679 *2)) (-2 (|:| -2571 *3) (|:| -1679 *2)))))) (-2571 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-721 *2 *3 *4)) (-4 *3 (-1111)) (-14 *4 (-1 (-112) (-2 (|:| -2571 *2) (|:| -1679 *3)) (-2 (|:| -2571 *2) (|:| -1679 *3)))))) (-2953 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4)) (-4 *2 (-858)) (-4 *3 (-1111)) (-14 *4 (-1 (-112) (-2 (|:| -2571 *2) (|:| -1679 *3)) (-2 (|:| -2571 *2) (|:| -1679 *3)))))))
-(-13 (-858) (-498 (-2 (|:| -2571 |#1|) (|:| -1679 |#2|))) (-10 -8 (-15 -1679 (|#2| $)) (-15 -2571 (|#1| $)) (-15 -2953 ($ |#1| |#2|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 66)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2204 ((|#1| $) NIL) (((-115) $) 39)) (-2062 (((-3 $ "failed") $) 103)) (-2893 ((|#2| (-115) |#2|) 93)) (-1886 (((-112) $) NIL)) (-2284 (($ |#1| (-368 (-115))) 14)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1689 (($ $ (-1 |#2| |#2|)) 65)) (-1583 (($ $ (-1 |#2| |#2|)) 44)) (-2196 ((|#2| $ |#2|) 33)) (-4395 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2940 (((-870) $) 73) (($ (-572)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) 37 T CONST)) (-4379 (((-112) $ $) NIL)) (-1812 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2131 (($) 21 T CONST)) (-2143 (($) 9 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) 48) (($ $ $) NIL)) (-3075 (($ $ $) 83)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ (-115) (-572)) NIL) (($ $ (-572)) 64)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174)))))
-(((-722 |#1| |#2|) (-13 (-1060) (-1049 |#1|) (-1049 (-115)) (-292 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1812 ($ $)) (-15 -1812 ($ $ $)) (-15 -4395 (|#1| |#1|))) |%noBranch|) (-15 -1583 ($ $ (-1 |#2| |#2|))) (-15 -1689 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-572))) (-15 ** ($ $ (-572))) (-15 -2893 (|#2| (-115) |#2|)) (-15 -2284 ($ |#1| (-368 (-115)))))) (-1060) (-656 |#1|)) (T -722))
-((-1812 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3)) (-4 *3 (-656 *2)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3)) (-4 *3 (-656 *2)))) (-4395 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3)) (-4 *3 (-656 *2)))) (-1583 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-656 *3)) (-4 *3 (-1060)) (-5 *1 (-722 *3 *4)))) (-1689 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-656 *3)) (-4 *3 (-1060)) (-5 *1 (-722 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-572)) (-4 *4 (-1060)) (-5 *1 (-722 *4 *5)) (-4 *5 (-656 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *3 (-1060)) (-5 *1 (-722 *3 *4)) (-4 *4 (-656 *3)))) (-2893 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1060)) (-5 *1 (-722 *4 *2)) (-4 *2 (-656 *4)))) (-2284 (*1 *1 *2 *3) (-12 (-5 *3 (-368 (-115))) (-4 *2 (-1060)) (-5 *1 (-722 *2 *4)) (-4 *4 (-656 *2)))))
-(-13 (-1060) (-1049 |#1|) (-1049 (-115)) (-292 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1812 ($ $)) (-15 -1812 ($ $ $)) (-15 -4395 (|#1| |#1|))) |%noBranch|) (-15 -1583 ($ $ (-1 |#2| |#2|))) (-15 -1689 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-572))) (-15 ** ($ $ (-572))) (-15 -2893 (|#2| (-115) |#2|)) (-15 -2284 ($ |#1| (-368 (-115))))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 33)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2865 (($ |#1| |#2|) 25)) (-2062 (((-3 $ "failed") $) 51)) (-1886 (((-112) $) 35)) (-1929 ((|#2| $) 12)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 52)) (-3964 (((-1131) $) NIL)) (-3982 (((-3 $ "failed") $ $) 50)) (-2940 (((-870) $) 24) (($ (-572)) 19) ((|#1| $) 13)) (-4249 (((-779)) 28 T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 16 T CONST)) (-2143 (($) 30 T CONST)) (-2978 (((-112) $ $) 41)) (-3089 (($ $) 46) (($ $ $) 40)) (-3075 (($ $ $) 43)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 21) (($ $ $) 20)))
-(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-1060) (-10 -8 (-15 -1929 (|#2| $)) (-15 -2940 (|#1| $)) (-15 -2865 ($ |#1| |#2|)) (-15 -3982 ((-3 $ "failed") $ $)) (-15 -2062 ((-3 $ "failed") $)) (-15 -1322 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723))
-((-2062 (*1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1929 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2940 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2865 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3982 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1322 (*1 *1 *1) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1060) (-10 -8 (-15 -1929 (|#2| $)) (-15 -2940 (|#1| $)) (-15 -2865 ($ |#1| |#2|)) (-15 -3982 ((-3 $ "failed") $ $)) (-15 -2062 ((-3 $ "failed") $)) (-15 -1322 ($ $))))
-((* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-724 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-725 |#2|) (-174)) (T -724))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-725 |#1|) (-141) (-174)) (T -725))
-NIL
-(-13 (-111 |t#1| |t#1|) (-648 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-3957 (($ |#1|) 17) (($ $ |#1|) 20)) (-3778 (($ |#1|) 18) (($ $ |#1|) 21)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1886 (((-112) $) NIL)) (-2558 (($ |#1| |#1| |#1| |#1|) 8)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 16)) (-3964 (((-1131) $) NIL)) (-2641 ((|#1| $ |#1|) 24) (((-841 |#1|) $ (-841 |#1|)) 32)) (-1516 (($ $ $) NIL)) (-4326 (($ $ $) NIL)) (-2940 (((-870) $) 39)) (-4379 (((-112) $ $) NIL)) (-2143 (($) 9 T CONST)) (-2978 (((-112) $ $) 48)) (-3106 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ $ $) 14)))
-(((-726 |#1|) (-13 (-481) (-10 -8 (-15 -2558 ($ |#1| |#1| |#1| |#1|)) (-15 -3957 ($ |#1|)) (-15 -3778 ($ |#1|)) (-15 -2062 ($)) (-15 -3957 ($ $ |#1|)) (-15 -3778 ($ $ |#1|)) (-15 -2062 ($ $)) (-15 -2641 (|#1| $ |#1|)) (-15 -2641 ((-841 |#1|) $ (-841 |#1|))))) (-370)) (T -726))
-((-2558 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-3957 (*1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-3778 (*1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-2062 (*1 *1) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-3957 (*1 *1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-2062 (*1 *1 *1) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-2641 (*1 *2 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-2641 (*1 *2 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-370)) (-5 *1 (-726 *3)))))
-(-13 (-481) (-10 -8 (-15 -2558 ($ |#1| |#1| |#1| |#1|)) (-15 -3957 ($ |#1|)) (-15 -3778 ($ |#1|)) (-15 -2062 ($)) (-15 -3957 ($ $ |#1|)) (-15 -3778 ($ $ |#1|)) (-15 -2062 ($ $)) (-15 -2641 (|#1| $ |#1|)) (-15 -2641 ((-841 |#1|) $ (-841 |#1|)))))
-((-2673 (($ $ (-930)) 19)) (-1858 (($ $ (-930)) 20)) (** (($ $ (-930)) 10)))
-(((-727 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-930))) (-15 -1858 (|#1| |#1| (-930))) (-15 -2673 (|#1| |#1| (-930)))) (-728)) (T -727))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-930))) (-15 -1858 (|#1| |#1| (-930))) (-15 -2673 (|#1| |#1| (-930))))
-((-2846 (((-112) $ $) 7)) (-2673 (($ $ (-930)) 16)) (-1858 (($ $ (-930)) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)) (** (($ $ (-930)) 14)) (* (($ $ $) 17)))
-(((-728) (-141)) (T -728))
-((* (*1 *1 *1 *1) (-4 *1 (-728))) (-2673 (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930)))) (-1858 (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930)))))
-(-13 (-1111) (-10 -8 (-15 * ($ $ $)) (-15 -2673 ($ $ (-930))) (-15 -1858 ($ $ (-930))) (-15 ** ($ $ (-930)))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2673 (($ $ (-930)) NIL) (($ $ (-779)) 18)) (-1886 (((-112) $) 10)) (-1858 (($ $ (-930)) NIL) (($ $ (-779)) 19)) (** (($ $ (-930)) NIL) (($ $ (-779)) 16)))
-(((-729 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-779))) (-15 -1858 (|#1| |#1| (-779))) (-15 -2673 (|#1| |#1| (-779))) (-15 -1886 ((-112) |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 -1858 (|#1| |#1| (-930))) (-15 -2673 (|#1| |#1| (-930)))) (-730)) (T -729))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-779))) (-15 -1858 (|#1| |#1| (-779))) (-15 -2673 (|#1| |#1| (-779))) (-15 -1886 ((-112) |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 -1858 (|#1| |#1| (-930))) (-15 -2673 (|#1| |#1| (-930))))
-((-2846 (((-112) $ $) 7)) (-4147 (((-3 $ "failed") $) 18)) (-2673 (($ $ (-930)) 16) (($ $ (-779)) 23)) (-2062 (((-3 $ "failed") $) 20)) (-1886 (((-112) $) 24)) (-1353 (((-3 $ "failed") $) 19)) (-1858 (($ $ (-930)) 15) (($ $ (-779)) 22)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2143 (($) 25 T CONST)) (-2978 (((-112) $ $) 6)) (** (($ $ (-930)) 14) (($ $ (-779)) 21)) (* (($ $ $) 17)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 15)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-2965 ((|#1| $) 23)) (-3658 (($ $ $) NIL (|has| |#1| (-801)))) (-2106 (($ $ $) NIL (|has| |#1| (-801)))) (-2568 (((-1172) $) 48)) (-3966 (((-1133) $) NIL)) (-2977 ((|#3| $) 24)) (-2943 (((-872) $) 43)) (-2923 (((-112) $ $) 22)) (-2134 (($) 10 T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-801)))) (-2982 (((-112) $ $) 20)) (-3028 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3005 (((-112) $ $) 26 (|has| |#1| (-801)))) (-3107 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3094 (($ $) 17) (($ $ $) NIL)) (-3078 (($ $ $) 29)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
+(((-672 |#1| |#2| |#3|) (-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3107 ($ $ |#3|)) (-15 -3107 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2977 (|#3| $)))) (-727 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -672))
+((-3107 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3107 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2977 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)))))
+(-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3107 ($ $ |#3|)) (-15 -3107 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2977 (|#3| $))))
+((-3980 (((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|)) 33)))
+(((-673 |#1|) (-10 -7 (-15 -3980 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|)))) (-920)) (T -673))
+((-3980 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *4))) (-5 *3 (-1186 *4)) (-4 *4 (-920)) (-5 *1 (-673 *4)))))
+(-10 -7 (-15 -3980 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1655 (((-654 |#1|) $) 84)) (-4210 (($ $ (-781)) 94)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-4004 (((-1305 |#1| |#2|) (-1305 |#1| |#2|) $) 50)) (-1697 (((-3 (-682 |#1|) "failed") $) NIL)) (-2209 (((-682 |#1|) $) NIL)) (-1392 (($ $) 93)) (-2784 (((-781) $) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-3832 (($ (-682 |#1|) |#2|) 70)) (-3826 (($ $) 89)) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-2634 (((-1305 |#1| |#2|) (-1305 |#1| |#2|) $) 49)) (-4050 (((-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1359 (((-682 |#1|) $) NIL)) (-1370 ((|#2| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2646 (($ $ |#1| $) 32) (($ $ (-654 |#1|) (-654 $)) 34)) (-1784 (((-781) $) 91)) (-2956 (($ $ $) 20) (($ (-682 |#1|) (-682 |#1|)) 79) (($ (-682 |#1|) $) 77) (($ $ (-682 |#1|)) 78)) (-2943 (((-872) $) NIL) (($ |#1|) 76) (((-1296 |#1| |#2|) $) 60) (((-1305 |#1| |#2|) $) 43) (($ (-682 |#1|)) 27)) (-3123 (((-654 |#2|) $) NIL)) (-3344 ((|#2| $ (-682 |#1|)) NIL)) (-1859 ((|#2| (-1305 |#1| |#2|) $) 45)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 23 T CONST)) (-3251 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1574 (((-3 $ "failed") (-1296 |#1| |#2|)) 62)) (-3169 (($ (-682 |#1|)) 14)) (-2982 (((-112) $ $) 46)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) 68) (($ $ $) NIL)) (-3078 (($ $ $) 31)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-682 |#1|)) NIL)))
+(((-674 |#1| |#2|) (-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -1574 ((-3 $ "failed") (-1296 |#1| |#2|))) (-15 -2956 ($ (-682 |#1|) (-682 |#1|))) (-15 -2956 ($ (-682 |#1|) $)) (-15 -2956 ($ $ (-682 |#1|))))) (-860) (-174)) (T -674))
+((-1574 (*1 *1 *2) (|partial| -12 (-5 *2 (-1296 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-674 *3 *4)))) (-2956 (*1 *1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2956 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))))
+(-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -1574 ((-3 $ "failed") (-1296 |#1| |#2|))) (-15 -2956 ($ (-682 |#1|) (-682 |#1|))) (-15 -2956 ($ (-682 |#1|) $)) (-15 -2956 ($ $ (-682 |#1|)))))
+((-3850 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-4010 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3391 (($ (-1 (-112) |#2|) $) 29)) (-2672 (($ $) 65)) (-1730 (($ $) 74)) (-1586 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2868 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1441 (((-574) |#2| $ (-574)) 71) (((-574) |#2| $) NIL) (((-574) (-1 (-112) |#2|) $) 54)) (-3790 (($ (-781) |#2|) 63)) (-3722 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2130 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1778 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1788 (($ |#2|) 15)) (-1709 (($ $ $ (-574)) 42) (($ |#2| $ (-574)) 40)) (-1836 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2701 (($ $ (-1248 (-574))) 51) (($ $ (-574)) 44)) (-1958 (($ $ $ (-574)) 70)) (-3167 (($ $) 68)) (-3005 (((-112) $ $) 76)))
+(((-675 |#1| |#2|) (-10 -8 (-15 -1788 (|#1| |#2|)) (-15 -2701 (|#1| |#1| (-574))) (-15 -2701 (|#1| |#1| (-1248 (-574)))) (-15 -1586 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1709 (|#1| |#2| |#1| (-574))) (-15 -1709 (|#1| |#1| |#1| (-574))) (-15 -3722 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1586 (|#1| |#2| |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -3722 (|#1| |#1| |#1|)) (-15 -2130 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3850 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -2130 (|#1| |#1| |#1|)) (-15 -3850 ((-112) |#1|)) (-15 -1958 (|#1| |#1| |#1| (-574))) (-15 -2672 (|#1| |#1|)) (-15 -4010 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4010 (|#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1836 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3790 (|#1| (-781) |#2|)) (-15 -1778 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| |#1|))) (-676 |#2|) (-1231)) (T -675))
+NIL
+(-10 -8 (-15 -1788 (|#1| |#2|)) (-15 -2701 (|#1| |#1| (-574))) (-15 -2701 (|#1| |#1| (-1248 (-574)))) (-15 -1586 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1709 (|#1| |#2| |#1| (-574))) (-15 -1709 (|#1| |#1| |#1| (-574))) (-15 -3722 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1586 (|#1| |#2| |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -3722 (|#1| |#1| |#1|)) (-15 -2130 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3850 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -2130 (|#1| |#1| |#1|)) (-15 -3850 ((-112) |#1|)) (-15 -1958 (|#1| |#1| |#1| (-574))) (-15 -2672 (|#1| |#1|)) (-15 -4010 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4010 (|#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1836 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3790 (|#1| (-781) |#2|)) (-15 -1778 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-2406 ((|#1| $) 66)) (-1971 (($ $) 68)) (-1860 (((-1286) $ (-574) (-574)) 99 (|has| $ (-6 -4457)))) (-2960 (($ $ (-574)) 53 (|has| $ (-6 -4457)))) (-3850 (((-112) $) 144 (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-4010 (($ $) 148 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4457)))) (-2771 (($ $) 143 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3340 (((-112) $ (-781)) 8)) (-1630 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-4002 (($ $ $) 57 (|has| $ (-6 -4457)))) (-4003 ((|#1| $ |#1|) 55 (|has| $ (-6 -4457)))) (-1533 ((|#1| $ |#1|) 59 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4457))) (($ $ "rest" $) 56 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 119 (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3391 (($ (-1 (-112) |#1|) $) 131)) (-2166 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4456)))) (-2393 ((|#1| $) 67)) (-3670 (($) 7 T CONST)) (-2672 (($ $) 146 (|has| $ (-6 -4457)))) (-4423 (($ $) 136)) (-2926 (($ $) 74) (($ $ (-781)) 72)) (-1730 (($ $) 133 (|has| |#1| (-1113)))) (-2158 (($ $) 101 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ |#1| $) 132 (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) 127)) (-3335 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4456))) (($ |#1| $) 102 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2462 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 89)) (-2829 (((-112) $) 85)) (-1441 (((-574) |#1| $ (-574)) 141 (|has| |#1| (-1113))) (((-574) |#1| $) 140 (|has| |#1| (-1113))) (((-574) (-1 (-112) |#1|) $) 139)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 51)) (-4127 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) 111)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 97 (|has| (-574) (-860)))) (-3658 (($ $ $) 149 (|has| |#1| (-860)))) (-3722 (($ $ $) 134 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-2130 (($ $ $) 142 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 96 (|has| (-574) (-860)))) (-2106 (($ $ $) 150 (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1788 (($ |#1|) 124)) (-2448 (((-112) $ (-781)) 10)) (-3509 (((-654 |#1|) $) 46)) (-2173 (((-112) $) 50)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 71) (($ $ (-781)) 69)) (-1709 (($ $ $ (-574)) 129) (($ |#1| $ (-574)) 128)) (-1595 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-2459 (((-654 (-574)) $) 94)) (-2607 (((-112) (-574) $) 93)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 77) (($ $ (-781)) 75)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1363 (($ $ |#1|) 98 (|has| $ (-6 -4457)))) (-3322 (((-112) $) 86)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) 92)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1248 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-1556 (((-574) $ $) 45)) (-2701 (($ $ (-1248 (-574))) 126) (($ $ (-574)) 125)) (-2837 (($ $ (-1248 (-574))) 116) (($ $ (-574)) 115)) (-4023 (((-112) $) 47)) (-3420 (($ $) 63)) (-1813 (($ $) 60 (|has| $ (-6 -4457)))) (-2584 (((-781) $) 64)) (-2022 (($ $) 65)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1958 (($ $ $ (-574)) 145 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1837 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 109)) (-2734 (($ $ $) 62) (($ $ |#1|) 61)) (-4157 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) 52)) (-1495 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) 152 (|has| |#1| (-860)))) (-3016 (((-112) $ $) 153 (|has| |#1| (-860)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3028 (((-112) $ $) 151 (|has| |#1| (-860)))) (-3005 (((-112) $ $) 154 (|has| |#1| (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-676 |#1|) (-141) (-1231)) (T -676))
+((-1788 (*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1231)))))
+(-13 (-1162 |t#1|) (-382 |t#1|) (-290 |t#1|) (-10 -8 (-15 -1788 ($ |t#1|))))
+(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-290 |#1|) . T) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1023 |#1|) . T) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1162 |#1|) . T) ((-1231) . T) ((-1269 |#1|) . T))
+((-1723 (((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|))))) (-654 (-654 |#1|)) (-654 (-1281 |#1|))) 22) (((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|))))) (-699 |#1|) (-654 (-1281 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|)))) (-654 (-654 |#1|)) (-1281 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|)) 14)) (-3584 (((-781) (-699 |#1|) (-1281 |#1|)) 30)) (-1943 (((-3 (-1281 |#1|) "failed") (-699 |#1|) (-1281 |#1|)) 24)) (-1763 (((-112) (-699 |#1|) (-1281 |#1|)) 27)))
+(((-677 |#1|) (-10 -7 (-15 -1723 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|))) (-15 -1723 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|)))) (-654 (-654 |#1|)) (-1281 |#1|))) (-15 -1723 ((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|))))) (-699 |#1|) (-654 (-1281 |#1|)))) (-15 -1723 ((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|))))) (-654 (-654 |#1|)) (-654 (-1281 |#1|)))) (-15 -1943 ((-3 (-1281 |#1|) "failed") (-699 |#1|) (-1281 |#1|))) (-15 -1763 ((-112) (-699 |#1|) (-1281 |#1|))) (-15 -3584 ((-781) (-699 |#1|) (-1281 |#1|)))) (-372)) (T -677))
+((-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-677 *5)))) (-1763 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-372)) (-5 *2 (-112)) (-5 *1 (-677 *5)))) (-1943 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1281 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *1 (-677 *4)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1281 *5) "failed")) (|:| -2722 (-654 (-1281 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1281 *5))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1281 *5) "failed")) (|:| -2722 (-654 (-1281 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1281 *5))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1281 *5) "failed")) (|:| -2722 (-654 (-1281 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1281 *5)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1281 *5) "failed")) (|:| -2722 (-654 (-1281 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1281 *5)))))
+(-10 -7 (-15 -1723 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|))) (-15 -1723 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|)))) (-654 (-654 |#1|)) (-1281 |#1|))) (-15 -1723 ((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|))))) (-699 |#1|) (-654 (-1281 |#1|)))) (-15 -1723 ((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|))))) (-654 (-654 |#1|)) (-654 (-1281 |#1|)))) (-15 -1943 ((-3 (-1281 |#1|) "failed") (-699 |#1|) (-1281 |#1|))) (-15 -1763 ((-112) (-699 |#1|) (-1281 |#1|))) (-15 -3584 ((-781) (-699 |#1|) (-1281 |#1|))))
+((-1723 (((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2722 (-654 |#3|)))) |#4| (-654 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2722 (-654 |#3|))) |#4| |#3|) 60)) (-3584 (((-781) |#4| |#3|) 18)) (-1943 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1763 (((-112) |#4| |#3|) 14)))
+(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1723 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2722 (-654 |#3|))) |#4| |#3|)) (-15 -1723 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2722 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -1943 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1763 ((-112) |#4| |#3|)) (-15 -3584 ((-781) |#4| |#3|))) (-372) (-13 (-382 |#1|) (-10 -7 (-6 -4457))) (-13 (-382 |#1|) (-10 -7 (-6 -4457))) (-697 |#1| |#2| |#3|)) (T -678))
+((-3584 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-781)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-1763 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-112)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-1943 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-372)) (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4457)))) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))) (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) (-1723 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-654 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2722 (-654 *7))))) (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) (-4 *3 (-697 *5 *6 *7)))) (-1723 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4)))) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))))
+(-10 -7 (-15 -1723 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2722 (-654 |#3|))) |#4| |#3|)) (-15 -1723 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2722 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -1943 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1763 ((-112) |#4| |#3|)) (-15 -3584 ((-781) |#4| |#3|)))
+((-1791 (((-2 (|:| |particular| (-3 (-1281 (-417 |#4|)) "failed")) (|:| -2722 (-654 (-1281 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)) 51)))
+(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1791 ((-2 (|:| |particular| (-3 (-1281 (-417 |#4|)) "failed")) (|:| -2722 (-654 (-1281 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) (-566) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -679))
+((-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |particular| (-3 (-1281 (-417 *8)) "failed")) (|:| -2722 (-654 (-1281 (-417 *8)))))) (-5 *1 (-679 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1791 ((-2 (|:| |particular| (-3 (-1281 (-417 |#4|)) "failed")) (|:| -2722 (-654 (-1281 (-417 |#4|))))) (-654 |#4|) (-654 |#3|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1708 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1637 ((|#2| $) NIL)) (-4286 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2750 (((-1281 (-699 |#2|))) NIL) (((-1281 (-699 |#2|)) (-1281 $)) NIL)) (-3816 (((-112) $) NIL)) (-4136 (((-1281 $)) 42)) (-3340 (((-112) $ (-781)) NIL)) (-3245 (($ |#2|) NIL)) (-3670 (($) NIL T CONST)) (-3444 (($ $) NIL (|has| |#2| (-315)))) (-1468 (((-246 |#1| |#2|) $ (-574)) NIL)) (-4192 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-1738 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-3099 (((-699 |#2|)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-4029 ((|#2| $) NIL)) (-2263 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1281 $)) NIL)) (-4369 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-4014 (((-1186 (-963 |#2|))) NIL (|has| |#2| (-372)))) (-2652 (($ $ (-932)) NIL)) (-2856 ((|#2| $) NIL)) (-2517 (((-1186 |#2|) $) NIL (|has| |#2| (-566)))) (-1328 ((|#2|) NIL) ((|#2| (-1281 $)) NIL)) (-1510 (((-1186 |#2|) $) NIL)) (-3063 (((-112)) NIL)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) ((|#2| $) NIL)) (-3003 (($ (-1281 |#2|)) NIL) (($ (-1281 |#2|) (-1281 $)) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3584 (((-781) $) NIL (|has| |#2| (-566))) (((-932)) 43)) (-2385 ((|#2| $ (-574) (-574)) NIL)) (-3715 (((-112)) NIL)) (-2023 (($ $ (-932)) NIL)) (-1864 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3965 (((-112) $) NIL)) (-2164 (((-781) $) NIL (|has| |#2| (-566)))) (-2337 (((-654 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-566)))) (-2190 (((-781) $) NIL)) (-2154 (((-112)) NIL)) (-2199 (((-781) $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-3689 ((|#2| $) NIL (|has| |#2| (-6 (-4458 "*"))))) (-2294 (((-574) $) NIL)) (-1373 (((-574) $) NIL)) (-1712 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-1431 (((-574) $) NIL)) (-3889 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#2|))) NIL)) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1820 (((-654 (-654 |#2|)) $) NIL)) (-3644 (((-112)) NIL)) (-4314 (((-112)) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-1388 (((-3 (-2 (|:| |particular| $) (|:| -2722 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-3546 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1658 (((-699 |#2|)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-2799 ((|#2| $) NIL)) (-2360 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1281 $)) NIL)) (-1792 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-3860 (((-1186 (-963 |#2|))) NIL (|has| |#2| (-372)))) (-3702 (($ $ (-932)) NIL)) (-3125 ((|#2| $) NIL)) (-3258 (((-1186 |#2|) $) NIL (|has| |#2| (-566)))) (-1734 ((|#2|) NIL) ((|#2| (-1281 $)) NIL)) (-1749 (((-1186 |#2|) $) NIL)) (-1894 (((-112)) NIL)) (-2568 (((-1172) $) NIL)) (-3532 (((-112)) NIL)) (-3649 (((-112)) NIL)) (-1593 (((-112)) NIL)) (-2422 (((-3 $ "failed") $) NIL (|has| |#2| (-372)))) (-3966 (((-1133) $) NIL)) (-1383 (((-112)) NIL)) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-3124 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) 28) ((|#2| $ (-574)) NIL)) (-3905 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2087 ((|#2| $) NIL)) (-3428 (($ (-654 |#2|)) NIL)) (-4358 (((-112) $) NIL)) (-1924 (((-246 |#1| |#2|) $) NIL)) (-3646 ((|#2| $) NIL (|has| |#2| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-3676 (((-699 |#2|) (-1281 $)) NIL) (((-1281 |#2|) $) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) NIL) (((-1281 |#2|) $ (-1281 $)) 31)) (-1837 (($ (-1281 |#2|)) NIL) (((-1281 |#2|) $) NIL)) (-2528 (((-654 (-963 |#2|))) NIL) (((-654 (-963 |#2|)) (-1281 $)) NIL)) (-3647 (($ $ $) NIL)) (-2910 (((-112)) NIL)) (-1988 (((-246 |#1| |#2|) $ (-574)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1051 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) 41)) (-3432 (((-654 (-1281 |#2|))) NIL (|has| |#2| (-566)))) (-3243 (($ $ $ $) NIL)) (-2333 (((-112)) NIL)) (-2901 (($ (-699 |#2|) $) NIL)) (-2935 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2984 (((-112) $) NIL)) (-2309 (($ $ $) NIL)) (-2210 (((-112)) NIL)) (-3999 (((-112)) NIL)) (-3784 (((-112)) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#2| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-680 |#1| |#2|) (-13 (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) (-932) (-174)) (T -680))
+NIL
+(-13 (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3845 (((-654 (-1148)) $) 10)) (-2943 (((-872) $) 16) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-681) (-13 (-1096) (-10 -8 (-15 -3845 ((-654 (-1148)) $))))) (T -681))
+((-3845 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-681)))))
+(-13 (-1096) (-10 -8 (-15 -3845 ((-654 (-1148)) $))))
+((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) NIL)) (-3904 (($ $) 62)) (-4217 (((-112) $) NIL)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2686 (((-3 $ "failed") (-829 |#1|)) 27)) (-3414 (((-112) (-829 |#1|)) 17)) (-1456 (($ (-829 |#1|)) 28)) (-3940 (((-112) $ $) 36)) (-4135 (((-932) $) 43)) (-3891 (($ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4220 (((-654 $) (-829 |#1|)) 19)) (-2943 (((-872) $) 51) (($ |#1|) 40) (((-829 |#1|) $) 47) (((-687 |#1|) $) 52)) (-2923 (((-112) $ $) NIL)) (-4189 (((-59 (-654 $)) (-654 |#1|) (-932)) 67)) (-3045 (((-654 $) (-654 |#1|) (-932)) 70)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 63)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 46)))
+(((-682 |#1|) (-13 (-860) (-1051 |#1|) (-10 -8 (-15 -4217 ((-112) $)) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -4135 ((-932) $)) (-15 -3940 ((-112) $ $)) (-15 -2943 ((-829 |#1|) $)) (-15 -2943 ((-687 |#1|) $)) (-15 -4220 ((-654 $) (-829 |#1|))) (-15 -3414 ((-112) (-829 |#1|))) (-15 -1456 ($ (-829 |#1|))) (-15 -2686 ((-3 $ "failed") (-829 |#1|))) (-15 -1655 ((-654 |#1|) $)) (-15 -4189 ((-59 (-654 $)) (-654 |#1|) (-932))) (-15 -3045 ((-654 $) (-654 |#1|) (-932))))) (-860)) (T -682))
+((-4217 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-3940 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4))) (-5 *1 (-682 *4)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) (-5 *1 (-682 *4)))) (-1456 (*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-2686 (*1 *1 *2) (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-4189 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-932)) (-4 *5 (-860)) (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5)))) (-3045 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-932)) (-4 *5 (-860)) (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5)))))
+(-13 (-860) (-1051 |#1|) (-10 -8 (-15 -4217 ((-112) $)) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -4135 ((-932) $)) (-15 -3940 ((-112) $ $)) (-15 -2943 ((-829 |#1|) $)) (-15 -2943 ((-687 |#1|) $)) (-15 -4220 ((-654 $) (-829 |#1|))) (-15 -3414 ((-112) (-829 |#1|))) (-15 -1456 ($ (-829 |#1|))) (-15 -2686 ((-3 $ "failed") (-829 |#1|))) (-15 -1655 ((-654 |#1|) $)) (-15 -4189 ((-59 (-654 $)) (-654 |#1|) (-932))) (-15 -3045 ((-654 $) (-654 |#1|) (-932)))))
+((-3083 ((|#2| $) 100)) (-1971 (($ $) 121)) (-3340 (((-112) $ (-781)) 35)) (-2926 (($ $) 109) (($ $ (-781)) 112)) (-2829 (((-112) $) 122)) (-2192 (((-654 $) $) 96)) (-4127 (((-112) $ $) 92)) (-3735 (((-112) $ (-781)) 33)) (-1849 (((-574) $) 66)) (-3429 (((-574) $) 65)) (-2448 (((-112) $ (-781)) 31)) (-2173 (((-112) $) 98)) (-3360 ((|#2| $) 113) (($ $ (-781)) 117)) (-1595 (($ $ $ (-574)) 83) (($ |#2| $ (-574)) 82)) (-2459 (((-654 (-574)) $) 64)) (-2607 (((-112) (-574) $) 59)) (-2915 ((|#2| $) NIL) (($ $ (-781)) 108)) (-4344 (($ $ (-574)) 125)) (-3322 (((-112) $) 124)) (-3124 (((-112) (-1 (-112) |#2|) $) 42)) (-2121 (((-654 |#2|) $) 46)) (-2200 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1248 (-574))) 79) ((|#2| $ (-574)) 57) ((|#2| $ (-574) |#2|) 58)) (-1556 (((-574) $ $) 91)) (-2837 (($ $ (-1248 (-574))) 78) (($ $ (-574)) 72)) (-4023 (((-112) $) 87)) (-3420 (($ $) 105)) (-2584 (((-781) $) 104)) (-2022 (($ $) 103)) (-2956 (($ (-654 |#2|)) 53)) (-3156 (($ $) 126)) (-1973 (((-654 $) $) 90)) (-1495 (((-112) $ $) 89)) (-2935 (((-112) (-1 (-112) |#2|) $) 41)) (-2982 (((-112) $ $) 20)) (-2863 (((-781) $) 39)))
+(((-683 |#1| |#2|) (-10 -8 (-15 -3156 (|#1| |#1|)) (-15 -4344 (|#1| |#1| (-574))) (-15 -2829 ((-112) |#1|)) (-15 -3322 ((-112) |#1|)) (-15 -2200 (|#2| |#1| (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574))) (-15 -2121 ((-654 |#2|) |#1|)) (-15 -2607 ((-112) (-574) |#1|)) (-15 -2459 ((-654 (-574)) |#1|)) (-15 -3429 ((-574) |#1|)) (-15 -1849 ((-574) |#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -2200 (|#1| |#1| (-1248 (-574)))) (-15 -2837 (|#1| |#1| (-574))) (-15 -2837 (|#1| |#1| (-1248 (-574)))) (-15 -1595 (|#1| |#2| |#1| (-574))) (-15 -1595 (|#1| |#1| |#1| (-574))) (-15 -3420 (|#1| |#1|)) (-15 -2584 ((-781) |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -1971 (|#1| |#1|)) (-15 -3360 (|#1| |#1| (-781))) (-15 -2200 (|#2| |#1| "last")) (-15 -3360 (|#2| |#1|)) (-15 -2926 (|#1| |#1| (-781))) (-15 -2200 (|#1| |#1| "rest")) (-15 -2926 (|#1| |#1|)) (-15 -2915 (|#1| |#1| (-781))) (-15 -2200 (|#2| |#1| "first")) (-15 -2915 (|#2| |#1|)) (-15 -4127 ((-112) |#1| |#1|)) (-15 -1495 ((-112) |#1| |#1|)) (-15 -1556 ((-574) |#1| |#1|)) (-15 -4023 ((-112) |#1|)) (-15 -2200 (|#2| |#1| "value")) (-15 -3083 (|#2| |#1|)) (-15 -2173 ((-112) |#1|)) (-15 -2192 ((-654 |#1|) |#1|)) (-15 -1973 ((-654 |#1|) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3340 ((-112) |#1| (-781))) (-15 -3735 ((-112) |#1| (-781))) (-15 -2448 ((-112) |#1| (-781)))) (-684 |#2|) (-1231)) (T -683))
+NIL
+(-10 -8 (-15 -3156 (|#1| |#1|)) (-15 -4344 (|#1| |#1| (-574))) (-15 -2829 ((-112) |#1|)) (-15 -3322 ((-112) |#1|)) (-15 -2200 (|#2| |#1| (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574))) (-15 -2121 ((-654 |#2|) |#1|)) (-15 -2607 ((-112) (-574) |#1|)) (-15 -2459 ((-654 (-574)) |#1|)) (-15 -3429 ((-574) |#1|)) (-15 -1849 ((-574) |#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -2200 (|#1| |#1| (-1248 (-574)))) (-15 -2837 (|#1| |#1| (-574))) (-15 -2837 (|#1| |#1| (-1248 (-574)))) (-15 -1595 (|#1| |#2| |#1| (-574))) (-15 -1595 (|#1| |#1| |#1| (-574))) (-15 -3420 (|#1| |#1|)) (-15 -2584 ((-781) |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -1971 (|#1| |#1|)) (-15 -3360 (|#1| |#1| (-781))) (-15 -2200 (|#2| |#1| "last")) (-15 -3360 (|#2| |#1|)) (-15 -2926 (|#1| |#1| (-781))) (-15 -2200 (|#1| |#1| "rest")) (-15 -2926 (|#1| |#1|)) (-15 -2915 (|#1| |#1| (-781))) (-15 -2200 (|#2| |#1| "first")) (-15 -2915 (|#2| |#1|)) (-15 -4127 ((-112) |#1| |#1|)) (-15 -1495 ((-112) |#1| |#1|)) (-15 -1556 ((-574) |#1| |#1|)) (-15 -4023 ((-112) |#1|)) (-15 -2200 (|#2| |#1| "value")) (-15 -3083 (|#2| |#1|)) (-15 -2173 ((-112) |#1|)) (-15 -2192 ((-654 |#1|) |#1|)) (-15 -1973 ((-654 |#1|) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -3124 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3340 ((-112) |#1| (-781))) (-15 -3735 ((-112) |#1| (-781))) (-15 -2448 ((-112) |#1| (-781))))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-2406 ((|#1| $) 66)) (-1971 (($ $) 68)) (-1860 (((-1286) $ (-574) (-574)) 99 (|has| $ (-6 -4457)))) (-2960 (($ $ (-574)) 53 (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) 8)) (-1630 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-4002 (($ $ $) 57 (|has| $ (-6 -4457)))) (-4003 ((|#1| $ |#1|) 55 (|has| $ (-6 -4457)))) (-1533 ((|#1| $ |#1|) 59 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4457))) (($ $ "rest" $) 56 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 119 (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) 104)) (-2393 ((|#1| $) 67)) (-3670 (($) 7 T CONST)) (-2736 (($ $) 126)) (-2926 (($ $) 74) (($ $ (-781)) 72)) (-2158 (($ $) 101 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 102 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 105)) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2462 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 89)) (-2829 (((-112) $) 85)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-1515 (((-781) $) 125)) (-2192 (((-654 $) $) 51)) (-4127 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) 111)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 97 (|has| (-574) (-860)))) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 96 (|has| (-574) (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2448 (((-112) $ (-781)) 10)) (-3509 (((-654 |#1|) $) 46)) (-2173 (((-112) $) 50)) (-3506 (($ $) 128)) (-4409 (((-112) $) 129)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 71) (($ $ (-781)) 69)) (-1595 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-2459 (((-654 (-574)) $) 94)) (-2607 (((-112) (-574) $) 93)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2936 ((|#1| $) 127)) (-2915 ((|#1| $) 77) (($ $ (-781)) 75)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1363 (($ $ |#1|) 98 (|has| $ (-6 -4457)))) (-4344 (($ $ (-574)) 124)) (-3322 (((-112) $) 86)) (-4180 (((-112) $) 130)) (-1776 (((-112) $) 131)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) 92)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1248 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-1556 (((-574) $ $) 45)) (-2837 (($ $ (-1248 (-574))) 116) (($ $ (-574)) 115)) (-4023 (((-112) $) 47)) (-3420 (($ $) 63)) (-1813 (($ $) 60 (|has| $ (-6 -4457)))) (-2584 (((-781) $) 64)) (-2022 (($ $) 65)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 109)) (-2734 (($ $ $) 62 (|has| $ (-6 -4457))) (($ $ |#1|) 61 (|has| $ (-6 -4457)))) (-4157 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-3156 (($ $) 123)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) 52)) (-1495 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-684 |#1|) (-141) (-1231)) (T -684))
+((-3335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1231)))) (-2166 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1231)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-4409 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))) (-2736 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) (-4344 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1231)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))))
+(-13 (-1162 |t#1|) (-10 -8 (-15 -3335 ($ (-1 (-112) |t#1|) $)) (-15 -2166 ($ (-1 (-112) |t#1|) $)) (-15 -1776 ((-112) $)) (-15 -4180 ((-112) $)) (-15 -4409 ((-112) $)) (-15 -3506 ($ $)) (-15 -2936 (|t#1| $)) (-15 -2736 ($ $)) (-15 -1515 ((-781) $)) (-15 -4344 ($ $ (-574))) (-15 -3156 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1162 |#1|) . T) ((-1231) . T) ((-1269 |#1|) . T))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1964 (($ (-781) (-781) (-781)) 53 (|has| |#1| (-1062)))) (-3340 (((-112) $ (-781)) NIL)) (-4214 ((|#1| $ (-781) (-781) (-781) |#1|) 47)) (-3670 (($) NIL T CONST)) (-3746 (($ $ $) 57 (|has| |#1| (-1062)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2882 (((-1281 (-781)) $) 12)) (-2391 (($ (-1190) $ $) 34)) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2208 (($ (-781)) 55 (|has| |#1| (-1062)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-781) (-781) (-781)) 44)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2956 (($ (-654 (-654 (-654 |#1|)))) 67)) (-2943 (($ (-969 (-969 (-969 |#1|)))) 23) (((-969 (-969 (-969 |#1|))) $) 19) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-685 |#1|) (-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1062)) (PROGN (-15 -1964 ($ (-781) (-781) (-781))) (-15 -2208 ($ (-781))) (-15 -3746 ($ $ $))) |%noBranch|) (-15 -2956 ($ (-654 (-654 (-654 |#1|))))) (-15 -2200 (|#1| $ (-781) (-781) (-781))) (-15 -4214 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2943 ($ (-969 (-969 (-969 |#1|))))) (-15 -2943 ((-969 (-969 (-969 |#1|))) $)) (-15 -2391 ($ (-1190) $ $)) (-15 -2882 ((-1281 (-781)) $)))) (-1113)) (T -685))
+((-1964 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1062)) (-4 *3 (-1113)))) (-2208 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1062)) (-4 *3 (-1113)))) (-3746 (*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1062)) (-4 *2 (-1113)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1113)) (-5 *1 (-685 *3)))) (-2200 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1113)))) (-4214 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1113)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-969 (-969 (-969 *3)))) (-4 *3 (-1113)) (-5 *1 (-685 *3)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-969 (-969 (-969 *3)))) (-5 *1 (-685 *3)) (-4 *3 (-1113)))) (-2391 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-685 *3)) (-4 *3 (-1113)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1281 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1113)))))
+(-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1062)) (PROGN (-15 -1964 ($ (-781) (-781) (-781))) (-15 -2208 ($ (-781))) (-15 -3746 ($ $ $))) |%noBranch|) (-15 -2956 ($ (-654 (-654 (-654 |#1|))))) (-15 -2200 (|#1| $ (-781) (-781) (-781))) (-15 -4214 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2943 ($ (-969 (-969 (-969 |#1|))))) (-15 -2943 ((-969 (-969 (-969 |#1|))) $)) (-15 -2391 ($ (-1190) $ $)) (-15 -2882 ((-1281 (-781)) $))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-1596 (((-493) $) 10)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-1148) $) 12)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-686) (-13 (-1096) (-10 -8 (-15 -1596 ((-493) $)) (-15 -2045 ((-1148) $))))) (T -686))
+((-1596 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-686)))))
+(-13 (-1096) (-10 -8 (-15 -1596 ((-493) $)) (-15 -2045 ((-1148) $))))
+((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) 15)) (-3904 (($ $) 19)) (-4217 (((-112) $) 20)) (-1697 (((-3 |#1| "failed") $) 23)) (-2209 ((|#1| $) 21)) (-2926 (($ $) 37)) (-3826 (($ $) 25)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-3940 (((-112) $ $) 47)) (-4135 (((-932) $) 40)) (-3891 (($ $) 18)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 ((|#1| $) 36)) (-2943 (((-872) $) 32) (($ |#1|) 24) (((-829 |#1|) $) 28)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 13)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-687 |#1|) (-13 (-860) (-1051 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2943 ((-829 |#1|) $)) (-15 -2915 (|#1| $)) (-15 -3891 ($ $)) (-15 -4135 ((-932) $)) (-15 -3940 ((-112) $ $)) (-15 -3826 ($ $)) (-15 -2926 ($ $)) (-15 -4217 ((-112) $)) (-15 -3904 ($ $)) (-15 -1655 ((-654 |#1|) $)))) (-860)) (T -687))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-2915 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3940 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))))
+(-13 (-860) (-1051 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2943 ((-829 |#1|) $)) (-15 -2915 (|#1| $)) (-15 -3891 ($ $)) (-15 -4135 ((-932) $)) (-15 -3940 ((-112) $ $)) (-15 -3826 ($ $)) (-15 -2926 ($ $)) (-15 -4217 ((-112) $)) (-15 -3904 ($ $)) (-15 -1655 ((-654 |#1|) $))))
+((-4315 ((|#1| (-1 |#1| (-781) |#1|) (-781) |#1|) 11)) (-4128 ((|#1| (-1 |#1| |#1|) (-781) |#1|) 9)))
+(((-688 |#1|) (-10 -7 (-15 -4128 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -4315 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) (-1113)) (T -688))
+((-4315 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1113)) (-5 *1 (-688 *2)))) (-4128 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1113)) (-5 *1 (-688 *2)))))
+(-10 -7 (-15 -4128 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -4315 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|)))
+((-2649 ((|#2| |#1| |#2|) 9)) (-2637 ((|#1| |#1| |#2|) 8)))
+(((-689 |#1| |#2|) (-10 -7 (-15 -2637 (|#1| |#1| |#2|)) (-15 -2649 (|#2| |#1| |#2|))) (-1113) (-1113)) (T -689))
+((-2649 (*1 *2 *3 *2) (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-2637 (*1 *2 *2 *3) (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))))
+(-10 -7 (-15 -2637 (|#1| |#1| |#2|)) (-15 -2649 (|#2| |#1| |#2|)))
+((-4403 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-690 |#1| |#2| |#3|) (-10 -7 (-15 -4403 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1113) (-1113) (-1113)) (T -690))
+((-4403 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)) (-5 *1 (-690 *5 *6 *2)))))
+(-10 -7 (-15 -4403 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2335 (((-1230) $) 21)) (-2286 (((-654 (-1230)) $) 19)) (-4097 (($ (-654 (-1230)) (-1230)) 14)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 29) (($ (-1195)) NIL) (((-1195) $) NIL) (((-1230) $) 22) (($ (-1131)) 10)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-691) (-13 (-1096) (-623 (-1230)) (-10 -8 (-15 -2943 ($ (-1131))) (-15 -4097 ($ (-654 (-1230)) (-1230))) (-15 -2286 ((-654 (-1230)) $)) (-15 -2335 ((-1230) $))))) (T -691))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-691)))) (-4097 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1230))) (-5 *3 (-1230)) (-5 *1 (-691)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-691)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-691)))))
+(-13 (-1096) (-623 (-1230)) (-10 -8 (-15 -2943 ($ (-1131))) (-15 -4097 ($ (-654 (-1230)) (-1230))) (-15 -2286 ((-654 (-1230)) $)) (-15 -2335 ((-1230) $))))
+((-4315 (((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)) 26)) (-3861 (((-1 |#1|) |#1|) 8)) (-2803 ((|#1| |#1|) 19)) (-2902 (((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2943 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-781)) 23)))
+(((-692 |#1|) (-10 -7 (-15 -3861 ((-1 |#1|) |#1|)) (-15 -2943 ((-1 |#1|) |#1|)) (-15 -2902 (|#1| (-1 |#1| |#1|))) (-15 -2902 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2803 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -4315 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) (-1113)) (T -692))
+((-4315 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1113)) (-5 *1 (-692 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1113)) (-5 *1 (-692 *4)))) (-2803 (*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1113)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1113)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1113)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1113)))) (-3861 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1113)))))
+(-10 -7 (-15 -3861 ((-1 |#1|) |#1|)) (-15 -2943 ((-1 |#1|) |#1|)) (-15 -2902 (|#1| (-1 |#1| |#1|))) (-15 -2902 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2803 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -4315 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|))))
+((-3681 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2706 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1707 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3120 (((-1 |#2| |#1|) |#2|) 11)))
+(((-693 |#1| |#2|) (-10 -7 (-15 -3120 ((-1 |#2| |#1|) |#2|)) (-15 -2706 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1707 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3681 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1113) (-1113)) (T -693))
+((-3681 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1113)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)) (-4 *4 (-1113)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5)))) (-3120 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1113)) (-4 *3 (-1113)))))
+(-10 -7 (-15 -3120 ((-1 |#2| |#1|) |#2|)) (-15 -2706 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1707 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3681 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-1799 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3579 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3264 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1408 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2316 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-694 |#1| |#2| |#3|) (-10 -7 (-15 -3579 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3264 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1408 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2316 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1799 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1113) (-1113) (-1113)) (T -694))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-1 *7 *5)) (-5 *1 (-694 *5 *6 *7)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1113)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1113)))) (-3264 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1113)) (-4 *4 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6)))))
+(-10 -7 (-15 -3579 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3264 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1408 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2316 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1799 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-2868 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1778 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-695 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1778 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1778 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2868 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1062) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1062) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -695))
+((-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1062)) (-4 *2 (-1062)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2)) (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9)))) (-1778 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1062)) (-4 *8 (-1062)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1062)) (-4 *8 (-1062)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))))
+(-10 -7 (-15 -1778 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1778 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2868 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-2217 (($ (-781) (-781)) 42)) (-1368 (($ $ $) 71)) (-3202 (($ |#3|) 66) (($ $) 67)) (-4286 (((-112) $) 36)) (-3044 (($ $ (-574) (-574)) 82)) (-2491 (($ $ (-574) (-574)) 83)) (-3617 (($ $ (-574) (-574) (-574) (-574)) 88)) (-2340 (($ $) 69)) (-3816 (((-112) $) 15)) (-1460 (($ $ (-574) (-574) $) 89)) (-3143 ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) 87)) (-3245 (($ (-781) |#2|) 53)) (-2914 (($ (-654 (-654 |#2|))) 51)) (-1820 (((-654 (-654 |#2|)) $) 78)) (-2477 (($ $ $) 70)) (-2838 (((-3 $ "failed") $ |#2|) 120)) (-2200 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-3428 (($ (-654 |#2|)) 54) (($ (-654 $)) 56)) (-4358 (((-112) $) 28)) (-2943 (($ |#4|) 61) (((-872) $) NIL)) (-2984 (((-112) $) 38)) (-3107 (($ $ |#2|) 122)) (-3094 (($ $ $) 93) (($ $) 96)) (-3078 (($ $ $) 91)) (** (($ $ (-781)) 109) (($ $ (-574)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-574) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
+(((-696 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3107 (|#1| |#1| |#2|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -1460 (|#1| |#1| (-574) (-574) |#1|)) (-15 -3617 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -2491 (|#1| |#1| (-574) (-574))) (-15 -3044 (|#1| |#1| (-574) (-574))) (-15 -3143 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2200 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -1820 ((-654 (-654 |#2|)) |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -2477 (|#1| |#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -3202 (|#1| |#1|)) (-15 -3202 (|#1| |#3|)) (-15 -2943 (|#1| |#4|)) (-15 -3428 (|#1| (-654 |#1|))) (-15 -3428 (|#1| (-654 |#2|))) (-15 -3245 (|#1| (-781) |#2|)) (-15 -2914 (|#1| (-654 (-654 |#2|)))) (-15 -2217 (|#1| (-781) (-781))) (-15 -2984 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -4358 ((-112) |#1|)) (-15 -3816 ((-112) |#1|)) (-15 -3143 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574) (-574)))) (-697 |#2| |#3| |#4|) (-1062) (-382 |#2|) (-382 |#2|)) (T -696))
+NIL
+(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3107 (|#1| |#1| |#2|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -1460 (|#1| |#1| (-574) (-574) |#1|)) (-15 -3617 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -2491 (|#1| |#1| (-574) (-574))) (-15 -3044 (|#1| |#1| (-574) (-574))) (-15 -3143 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2200 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -1820 ((-654 (-654 |#2|)) |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -2477 (|#1| |#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -3202 (|#1| |#1|)) (-15 -3202 (|#1| |#3|)) (-15 -2943 (|#1| |#4|)) (-15 -3428 (|#1| (-654 |#1|))) (-15 -3428 (|#1| (-654 |#2|))) (-15 -3245 (|#1| (-781) |#2|)) (-15 -2914 (|#1| (-654 (-654 |#2|)))) (-15 -2217 (|#1| (-781) (-781))) (-15 -2984 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -4358 ((-112) |#1|)) (-15 -3816 ((-112) |#1|)) (-15 -3143 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574) (-574))))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-2217 (($ (-781) (-781)) 98)) (-1368 (($ $ $) 88)) (-3202 (($ |#2|) 92) (($ $) 91)) (-4286 (((-112) $) 100)) (-3044 (($ $ (-574) (-574)) 84)) (-2491 (($ $ (-574) (-574)) 83)) (-3617 (($ $ (-574) (-574) (-574) (-574)) 82)) (-2340 (($ $) 90)) (-3816 (((-112) $) 102)) (-3340 (((-112) $ (-781)) 8)) (-1460 (($ $ (-574) (-574) $) 81)) (-3143 ((|#1| $ (-574) (-574) |#1|) 45) (($ $ (-654 (-574)) (-654 (-574)) $) 85)) (-1502 (($ $ (-574) |#2|) 43)) (-4196 (($ $ (-574) |#3|) 42)) (-3245 (($ (-781) |#1|) 96)) (-3670 (($) 7 T CONST)) (-3444 (($ $) 68 (|has| |#1| (-315)))) (-1468 ((|#2| $ (-574)) 47)) (-3584 (((-781) $) 67 (|has| |#1| (-566)))) (-2462 ((|#1| $ (-574) (-574) |#1|) 44)) (-2385 ((|#1| $ (-574) (-574)) 49)) (-1864 (((-654 |#1|) $) 31)) (-2164 (((-781) $) 66 (|has| |#1| (-566)))) (-2337 (((-654 |#3|) $) 65 (|has| |#1| (-566)))) (-2190 (((-781) $) 52)) (-3790 (($ (-781) (-781) |#1|) 58)) (-2199 (((-781) $) 51)) (-3735 (((-112) $ (-781)) 9)) (-3689 ((|#1| $) 63 (|has| |#1| (-6 (-4458 "*"))))) (-2294 (((-574) $) 56)) (-1373 (((-574) $) 54)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1431 (((-574) $) 55)) (-3889 (((-574) $) 53)) (-2914 (($ (-654 (-654 |#1|))) 97)) (-2446 (($ (-1 |#1| |#1|) $) 35)) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1820 (((-654 (-654 |#1|)) $) 87)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2422 (((-3 $ "failed") $) 62 (|has| |#1| (-372)))) (-2477 (($ $ $) 89)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1363 (($ $ |#1|) 57)) (-2838 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-566)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-3428 (($ (-654 |#1|)) 95) (($ (-654 $)) 94)) (-4358 (((-112) $) 101)) (-3646 ((|#1| $) 64 (|has| |#1| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1988 ((|#3| $ (-574)) 46)) (-2943 (($ |#3|) 93) (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2984 (((-112) $) 99)) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3107 (($ $ |#1|) 69 (|has| |#1| (-372)))) (-3094 (($ $ $) 79) (($ $) 78)) (-3078 (($ $ $) 80)) (** (($ $ (-781)) 71) (($ $ (-574)) 61 (|has| |#1| (-372)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-574) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-697 |#1| |#2| |#3|) (-141) (-1062) (-382 |t#1|) (-382 |t#1|)) (T -697))
+((-3816 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2217 (*1 *1 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3245 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2943 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (-3202 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (-3202 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2340 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2477 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-1368 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) (-2200 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3143 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3044 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2491 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3617 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1460 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3078 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3094 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1062)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566)))) (-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (-3444 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-315)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) (-2422 (*1 *1 *1) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -3816 ((-112) $)) (-15 -4358 ((-112) $)) (-15 -4286 ((-112) $)) (-15 -2984 ((-112) $)) (-15 -2217 ($ (-781) (-781))) (-15 -2914 ($ (-654 (-654 |t#1|)))) (-15 -3245 ($ (-781) |t#1|)) (-15 -3428 ($ (-654 |t#1|))) (-15 -3428 ($ (-654 $))) (-15 -2943 ($ |t#3|)) (-15 -3202 ($ |t#2|)) (-15 -3202 ($ $)) (-15 -2340 ($ $)) (-15 -2477 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -1820 ((-654 (-654 |t#1|)) $)) (-15 -2200 ($ $ (-654 (-574)) (-654 (-574)))) (-15 -3143 ($ $ (-654 (-574)) (-654 (-574)) $)) (-15 -3044 ($ $ (-574) (-574))) (-15 -2491 ($ $ (-574) (-574))) (-15 -3617 ($ $ (-574) (-574) (-574) (-574))) (-15 -1460 ($ $ (-574) (-574) $)) (-15 -3078 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3094 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-574) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-781))) (IF (|has| |t#1| (-566)) (-15 -2838 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -3107 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-315)) (-15 -3444 ($ $)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -3584 ((-781) $)) (-15 -2164 ((-781) $)) (-15 -2337 ((-654 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4458 "*"))) (PROGN (-15 -3646 (|t#1| $)) (-15 -3689 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -2422 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-57 |#1| |#2| |#3|) . T) ((-1231) . T))
+((-3444 ((|#4| |#4|) 92 (|has| |#1| (-315)))) (-3584 (((-781) |#4|) 120 (|has| |#1| (-566)))) (-2164 (((-781) |#4|) 96 (|has| |#1| (-566)))) (-2337 (((-654 |#3|) |#4|) 103 (|has| |#1| (-566)))) (-3878 (((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|) 135 (|has| |#1| (-315)))) (-3689 ((|#1| |#4|) 52)) (-1818 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-566)))) (-2422 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-372)))) (-3422 ((|#4| |#4|) 88 (|has| |#1| (-566)))) (-3637 ((|#4| |#4| |#1| (-574) (-574)) 60)) (-3423 ((|#4| |#4| (-574) (-574)) 55)) (-2896 ((|#4| |#4| |#1| (-574) (-574)) 65)) (-3646 ((|#1| |#4|) 98)) (-4434 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-566)))))
+(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3646 (|#1| |#4|)) (-15 -3689 (|#1| |#4|)) (-15 -3423 (|#4| |#4| (-574) (-574))) (-15 -3637 (|#4| |#4| |#1| (-574) (-574))) (-15 -2896 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3584 ((-781) |#4|)) (-15 -2164 ((-781) |#4|)) (-15 -2337 ((-654 |#3|) |#4|)) (-15 -3422 (|#4| |#4|)) (-15 -1818 ((-3 |#4| "failed") |#4|)) (-15 -4434 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -3444 (|#4| |#4|)) (-15 -3878 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -2422 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -698))
+((-2422 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3878 (*1 *2 *3 *3) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) (-3444 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-4434 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1818 (*1 *2 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3422 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2337 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2164 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3584 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2896 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-3637 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-3423 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) (-4 *2 (-697 *4 *5 *6)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))))
+(-10 -7 (-15 -3646 (|#1| |#4|)) (-15 -3689 (|#1| |#4|)) (-15 -3423 (|#4| |#4| (-574) (-574))) (-15 -3637 (|#4| |#4| |#1| (-574) (-574))) (-15 -2896 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3584 ((-781) |#4|)) (-15 -2164 ((-781) |#4|)) (-15 -2337 ((-654 |#3|) |#4|)) (-15 -3422 (|#4| |#4|)) (-15 -1818 ((-3 |#4| "failed") |#4|)) (-15 -4434 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -3444 (|#4| |#4|)) (-15 -3878 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -2422 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2217 (($ (-781) (-781)) 64)) (-1368 (($ $ $) NIL)) (-3202 (($ (-1281 |#1|)) NIL) (($ $) NIL)) (-4286 (((-112) $) NIL)) (-3044 (($ $ (-574) (-574)) 22)) (-2491 (($ $ (-574) (-574)) NIL)) (-3617 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-2340 (($ $) NIL)) (-3816 (((-112) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-1460 (($ $ (-574) (-574) $) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-1502 (($ $ (-574) (-1281 |#1|)) NIL)) (-4196 (($ $ (-574) (-1281 |#1|)) NIL)) (-3245 (($ (-781) |#1|) 37)) (-3670 (($) NIL T CONST)) (-3444 (($ $) 46 (|has| |#1| (-315)))) (-1468 (((-1281 |#1|) $ (-574)) NIL)) (-3584 (((-781) $) 48 (|has| |#1| (-566)))) (-2462 ((|#1| $ (-574) (-574) |#1|) 69)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-2164 (((-781) $) 50 (|has| |#1| (-566)))) (-2337 (((-654 (-1281 |#1|)) $) 53 (|has| |#1| (-566)))) (-2190 (((-781) $) 32)) (-3790 (($ (-781) (-781) |#1|) 28)) (-2199 (((-781) $) 33)) (-3735 (((-112) $ (-781)) NIL)) (-3689 ((|#1| $) 44 (|has| |#1| (-6 (-4458 "*"))))) (-2294 (((-574) $) 10)) (-1373 (((-574) $) 11)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1431 (((-574) $) 14)) (-3889 (((-574) $) 65)) (-2914 (($ (-654 (-654 |#1|))) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1820 (((-654 (-654 |#1|)) $) 76)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2422 (((-3 $ "failed") $) 60 (|has| |#1| (-372)))) (-2477 (($ $ $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1363 (($ $ |#1|) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-3428 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL) (($ (-1281 |#1|)) 70)) (-4358 (((-112) $) NIL)) (-3646 ((|#1| $) 42 (|has| |#1| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-1837 (((-546) $) 80 (|has| |#1| (-624 (-546))))) (-1988 (((-1281 |#1|) $ (-574)) NIL)) (-2943 (($ (-1281 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2984 (((-112) $) NIL)) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-781)) 38) (($ $ (-574)) 62 (|has| |#1| (-372)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1281 |#1|) $ (-1281 |#1|)) NIL) (((-1281 |#1|) (-1281 |#1|) $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-699 |#1|) (-13 (-697 |#1| (-1281 |#1|) (-1281 |#1|)) (-10 -8 (-15 -3428 ($ (-1281 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -2422 ((-3 $ "failed") $)) |%noBranch|))) (-1062)) (T -699))
+((-2422 (*1 *1 *1) (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1062)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1062)) (-5 *1 (-699 *3)))))
+(-13 (-697 |#1| (-1281 |#1|) (-1281 |#1|)) (-10 -8 (-15 -3428 ($ (-1281 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -2422 ((-3 $ "failed") $)) |%noBranch|)))
+((-4353 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 37)) (-2140 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 32)) (-3038 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781)) 43)) (-3814 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 25)) (-3675 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 29) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 27)) (-3193 (((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|)) 31)) (-3116 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 23)) (** (((-699 |#1|) (-699 |#1|) (-781)) 46)))
+(((-700 |#1|) (-10 -7 (-15 -3116 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3814 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3675 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3675 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3193 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -2140 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -4353 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3038 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) (-1062)) (T -700))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *1 (-700 *4)))) (-3038 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *1 (-700 *4)))) (-4353 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-2140 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-3193 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-3675 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-3675 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-3814 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-3116 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))))
+(-10 -7 (-15 -3116 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3814 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3675 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3675 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3193 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -2140 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -4353 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3038 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781))))
+((-1697 (((-3 |#1| "failed") $) 18)) (-2209 ((|#1| $) NIL)) (-2235 (($) 7 T CONST)) (-1466 (($ |#1|) 8)) (-2943 (($ |#1|) 16) (((-872) $) 23)) (-2123 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2235)) 11)) (-1331 ((|#1| $) 15)))
+(((-701 |#1|) (-13 (-1276) (-1051 |#1|) (-623 (-872)) (-10 -8 (-15 -1466 ($ |#1|)) (-15 -2123 ((-112) $ (|[\|\|]| |#1|))) (-15 -2123 ((-112) $ (|[\|\|]| -2235))) (-15 -1331 (|#1| $)) (-15 -2235 ($) -1707))) (-623 (-872))) (T -701))
+((-1466 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112)) (-5 *1 (-701 *4)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2235)) (-5 *2 (-112)) (-5 *1 (-701 *4)) (-4 *4 (-623 (-872))))) (-1331 (*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2235 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))))
+(-13 (-1276) (-1051 |#1|) (-623 (-872)) (-10 -8 (-15 -1466 ($ |#1|)) (-15 -2123 ((-112) $ (|[\|\|]| |#1|))) (-15 -2123 ((-112) $ (|[\|\|]| -2235))) (-15 -1331 (|#1| $)) (-15 -2235 ($) -1707)))
+((-4193 ((|#2| |#2| |#4|) 29)) (-2941 (((-699 |#2|) |#3| |#4|) 35)) (-2627 (((-699 |#2|) |#2| |#4|) 34)) (-4372 (((-1281 |#2|) |#2| |#4|) 16)) (-2065 ((|#2| |#3| |#4|) 28)) (-4032 (((-699 |#2|) |#3| |#4| (-781) (-781)) 47)) (-2822 (((-699 |#2|) |#2| |#4| (-781)) 46)))
+(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4372 ((-1281 |#2|) |#2| |#4|)) (-15 -2065 (|#2| |#3| |#4|)) (-15 -4193 (|#2| |#2| |#4|)) (-15 -2627 ((-699 |#2|) |#2| |#4|)) (-15 -2822 ((-699 |#2|) |#2| |#4| (-781))) (-15 -2941 ((-699 |#2|) |#3| |#4|)) (-15 -4032 ((-699 |#2|) |#3| |#4| (-781) (-781)))) (-1113) (-911 |#1|) (-382 |#2|) (-13 (-382 |#1|) (-10 -7 (-6 -4456)))) (T -702))
+((-4032 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1113)) (-4 *7 (-911 *6)) (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4456)))))) (-2941 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *6 (-911 *5)) (-5 *2 (-699 *6)) (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))) (-2822 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1113)) (-4 *3 (-911 *6)) (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4456)))))) (-2627 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *3 (-911 *5)) (-5 *2 (-699 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))) (-4193 (*1 *2 *2 *3) (-12 (-4 *4 (-1113)) (-4 *2 (-911 *4)) (-5 *1 (-702 *4 *2 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4456)))))) (-2065 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *2 (-911 *5)) (-5 *1 (-702 *5 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))) (-4372 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *3 (-911 *5)) (-5 *2 (-1281 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))))
+(-10 -7 (-15 -4372 ((-1281 |#2|) |#2| |#4|)) (-15 -2065 (|#2| |#3| |#4|)) (-15 -4193 (|#2| |#2| |#4|)) (-15 -2627 ((-699 |#2|) |#2| |#4|)) (-15 -2822 ((-699 |#2|) |#2| |#4| (-781))) (-15 -2941 ((-699 |#2|) |#3| |#4|)) (-15 -4032 ((-699 |#2|) |#3| |#4| (-781) (-781))))
+((-3618 (((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)) 20)) (-4090 ((|#1| (-699 |#2|)) 9)) (-3009 (((-699 |#1|) (-699 |#2|)) 18)))
+(((-703 |#1| |#2|) (-10 -7 (-15 -4090 (|#1| (-699 |#2|))) (-15 -3009 ((-699 |#1|) (-699 |#2|))) (-15 -3618 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) (-566) (-1005 |#1|)) (T -703))
+((-3618 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1005 *4)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) (-5 *1 (-703 *4 *5)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1005 *4)) (-4 *4 (-566)) (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-703 *2 *4)))))
+(-10 -7 (-15 -4090 (|#1| (-699 |#2|))) (-15 -3009 ((-699 |#1|) (-699 |#2|))) (-15 -3618 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2762 (((-699 (-709))) NIL) (((-699 (-709)) (-1281 $)) NIL)) (-1637 (((-709) $) NIL)) (-2364 (($ $) NIL (|has| (-709) (-1216)))) (-2246 (($ $) NIL (|has| (-709) (-1216)))) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-709) (-358)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-920))))) (-4348 (($ $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| (-709) (-920))) (|has| (-709) (-372))))) (-3440 (((-428 $) $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| (-709) (-920))) (|has| (-709) (-372))))) (-4229 (($ $) NIL (-12 (|has| (-709) (-1015)) (|has| (-709) (-1216))))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-920))))) (-3875 (((-112) $ $) NIL (|has| (-709) (-315)))) (-1487 (((-781)) NIL (|has| (-709) (-377)))) (-2343 (($ $) NIL (|has| (-709) (-1216)))) (-2227 (($ $) NIL (|has| (-709) (-1216)))) (-2388 (($ $) NIL (|has| (-709) (-1216)))) (-2267 (($ $) NIL (|has| (-709) (-1216)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-709) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-1051 (-417 (-574)))))) (-2209 (((-574) $) NIL) (((-709) $) NIL) (((-417 (-574)) $) NIL (|has| (-709) (-1051 (-417 (-574)))))) (-3003 (($ (-1281 (-709))) NIL) (($ (-1281 (-709)) (-1281 $)) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-709) (-358)))) (-2785 (($ $ $) NIL (|has| (-709) (-315)))) (-2085 (((-699 (-709)) $) NIL) (((-699 (-709)) $ (-1281 $)) NIL)) (-2668 (((-699 (-709)) (-1281 $)) NIL) (((-699 (-709)) (-699 $)) NIL) (((-2 (|:| -1485 (-699 (-709))) (|:| |vec| (-1281 (-709)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-1281 $)) NIL (|has| (-709) (-649 (-574))))) (-2868 (((-3 $ "failed") (-417 (-1186 (-709)))) NIL (|has| (-709) (-372))) (($ (-1186 (-709))) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-4239 (((-709) $) 29)) (-2057 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-555)))) (-1811 (((-112) $) NIL (|has| (-709) (-555)))) (-4142 (((-417 (-574)) $) NIL (|has| (-709) (-555)))) (-3584 (((-932)) NIL)) (-2820 (($) NIL (|has| (-709) (-377)))) (-2798 (($ $ $) NIL (|has| (-709) (-315)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| (-709) (-315)))) (-3906 (($) NIL (|has| (-709) (-358)))) (-2878 (((-112) $) NIL (|has| (-709) (-358)))) (-3564 (($ $) NIL (|has| (-709) (-358))) (($ $ (-781)) NIL (|has| (-709) (-358)))) (-1654 (((-112) $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| (-709) (-920))) (|has| (-709) (-372))))) (-1401 (((-2 (|:| |r| (-709)) (|:| |phi| (-709))) $) NIL (-12 (|has| (-709) (-1073)) (|has| (-709) (-1216))))) (-3001 (($) NIL (|has| (-709) (-1216)))) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-709) (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-709) (-897 (-574))))) (-3593 (((-843 (-932)) $) NIL (|has| (-709) (-358))) (((-932) $) NIL (|has| (-709) (-358)))) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL (-12 (|has| (-709) (-1015)) (|has| (-709) (-1216))))) (-1652 (((-709) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| (-709) (-358)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-3190 (((-1186 (-709)) $) NIL (|has| (-709) (-372)))) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-1778 (($ (-1 (-709) (-709)) $) NIL)) (-2565 (((-932) $) NIL (|has| (-709) (-377)))) (-3119 (($ $) NIL (|has| (-709) (-1216)))) (-2854 (((-1186 (-709)) $) NIL)) (-2834 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| (-709) (-372)))) (-3818 (($) NIL (|has| (-709) (-358)) CONST)) (-2576 (($ (-932)) NIL (|has| (-709) (-377)))) (-1953 (($) NIL)) (-4249 (((-709) $) 31)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| (-709) (-315)))) (-2874 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| (-709) (-358)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-920))))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-920))))) (-4220 (((-428 $) $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| (-709) (-920))) (|has| (-709) (-372))))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-709) (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| (-709) (-315)))) (-2838 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-709)) NIL (|has| (-709) (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-1610 (($ $) NIL (|has| (-709) (-1216)))) (-2646 (($ $ (-1190) (-709)) NIL (|has| (-709) (-524 (-1190) (-709)))) (($ $ (-654 (-1190)) (-654 (-709))) NIL (|has| (-709) (-524 (-1190) (-709)))) (($ $ (-654 (-302 (-709)))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-302 (-709))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-709) (-709)) NIL (|has| (-709) (-317 (-709)))) (($ $ (-654 (-709)) (-654 (-709))) NIL (|has| (-709) (-317 (-709))))) (-1347 (((-781) $) NIL (|has| (-709) (-315)))) (-2200 (($ $ (-709)) NIL (|has| (-709) (-294 (-709) (-709))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| (-709) (-315)))) (-1415 (((-709)) NIL) (((-709) (-1281 $)) NIL)) (-3232 (((-3 (-781) "failed") $ $) NIL (|has| (-709) (-358))) (((-781) $) NIL (|has| (-709) (-358)))) (-3905 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-1190)) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-781)) NIL (|has| (-709) (-239))) (($ $) NIL (|has| (-709) (-239)))) (-1437 (((-699 (-709)) (-1281 $) (-1 (-709) (-709))) NIL (|has| (-709) (-372)))) (-1782 (((-1186 (-709))) NIL)) (-2402 (($ $) NIL (|has| (-709) (-1216)))) (-2275 (($ $) NIL (|has| (-709) (-1216)))) (-2585 (($) NIL (|has| (-709) (-358)))) (-2375 (($ $) NIL (|has| (-709) (-1216)))) (-2257 (($ $) NIL (|has| (-709) (-1216)))) (-2353 (($ $) NIL (|has| (-709) (-1216)))) (-2237 (($ $) NIL (|has| (-709) (-1216)))) (-3676 (((-699 (-709)) (-1281 $)) NIL) (((-1281 (-709)) $) NIL) (((-699 (-709)) (-1281 $) (-1281 $)) NIL) (((-1281 (-709)) $ (-1281 $)) NIL)) (-1837 (((-546) $) NIL (|has| (-709) (-624 (-546)))) (((-171 (-227)) $) NIL (|has| (-709) (-1035))) (((-171 (-388)) $) NIL (|has| (-709) (-1035))) (((-903 (-388)) $) NIL (|has| (-709) (-624 (-903 (-388))))) (((-903 (-574)) $) NIL (|has| (-709) (-624 (-903 (-574))))) (($ (-1186 (-709))) NIL) (((-1186 (-709)) $) NIL) (($ (-1281 (-709))) NIL) (((-1281 (-709)) $) NIL)) (-1514 (($ $) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-920))) (|has| (-709) (-358))))) (-3562 (($ (-709) (-709)) 12)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-709)) NIL) (($ (-171 (-388))) 13) (($ (-171 (-574))) 19) (($ (-171 (-709))) 28) (($ (-171 (-711))) 25) (((-171 (-388)) $) 33) (($ (-417 (-574))) NIL (-2818 (|has| (-709) (-1051 (-417 (-574)))) (|has| (-709) (-372))))) (-1369 (($ $) NIL (|has| (-709) (-358))) (((-3 $ "failed") $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-920))) (|has| (-709) (-146))))) (-4169 (((-1186 (-709)) $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL)) (-2441 (($ $) NIL (|has| (-709) (-1216)))) (-2305 (($ $) NIL (|has| (-709) (-1216)))) (-3798 (((-112) $ $) NIL)) (-2414 (($ $) NIL (|has| (-709) (-1216)))) (-2287 (($ $) NIL (|has| (-709) (-1216)))) (-2465 (($ $) NIL (|has| (-709) (-1216)))) (-2325 (($ $) NIL (|has| (-709) (-1216)))) (-1861 (((-709) $) NIL (|has| (-709) (-1216)))) (-2521 (($ $) NIL (|has| (-709) (-1216)))) (-2334 (($ $) NIL (|has| (-709) (-1216)))) (-2453 (($ $) NIL (|has| (-709) (-1216)))) (-2315 (($ $) NIL (|has| (-709) (-1216)))) (-2428 (($ $) NIL (|has| (-709) (-1216)))) (-2297 (($ $) NIL (|has| (-709) (-1216)))) (-2946 (($ $) NIL (|has| (-709) (-1073)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-1190)) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-781)) NIL (|has| (-709) (-239))) (($ $) NIL (|has| (-709) (-239)))) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL (|has| (-709) (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| (-709) (-1216))) (($ $ (-417 (-574))) NIL (-12 (|has| (-709) (-1015)) (|has| (-709) (-1216)))) (($ $ (-574)) NIL (|has| (-709) (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-709) $) NIL) (($ $ (-709)) NIL) (($ (-417 (-574)) $) NIL (|has| (-709) (-372))) (($ $ (-417 (-574))) NIL (|has| (-709) (-372)))))
+(((-704) (-13 (-397) (-167 (-709)) (-10 -8 (-15 -2943 ($ (-171 (-388)))) (-15 -2943 ($ (-171 (-574)))) (-15 -2943 ($ (-171 (-709)))) (-15 -2943 ($ (-171 (-711)))) (-15 -2943 ((-171 (-388)) $))))) (T -704))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))))
+(-13 (-397) (-167 (-709)) (-10 -8 (-15 -2943 ($ (-171 (-388)))) (-15 -2943 ($ (-171 (-574)))) (-15 -2943 ($ (-171 (-709)))) (-15 -2943 ($ (-171 (-711)))) (-15 -2943 ((-171 (-388)) $))))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-3391 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-1730 (($ $) 63)) (-2158 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-4243 (((-654 (-2 (|:| -1909 |#1|) (|:| -3975 (-781)))) $) 62)) (-2826 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 43)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-705 |#1|) (-141) (-1113)) (T -705))
+((-1709 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1113)))) (-1730 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1113)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1113)) (-5 *2 (-654 (-2 (|:| -1909 *3) (|:| -3975 (-781))))))))
+(-13 (-241 |t#1|) (-10 -8 (-15 -1709 ($ |t#1| $ (-781))) (-15 -1730 ($ $)) (-15 -4243 ((-654 (-2 (|:| -1909 |t#1|) (|:| -3975 (-781)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-1815 (((-654 |#1|) (-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))) (-574)) 65)) (-2322 ((|#1| |#1| (-574)) 62)) (-2874 ((|#1| |#1| |#1| (-574)) 46)) (-4220 (((-654 |#1|) |#1| (-574)) 49)) (-3448 ((|#1| |#1| (-574) |#1| (-574)) 40)) (-3560 (((-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))) |#1| (-574)) 61)))
+(((-706 |#1|) (-10 -7 (-15 -2874 (|#1| |#1| |#1| (-574))) (-15 -2322 (|#1| |#1| (-574))) (-15 -4220 ((-654 |#1|) |#1| (-574))) (-15 -3560 ((-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))) |#1| (-574))) (-15 -1815 ((-654 |#1|) (-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))) (-574))) (-15 -3448 (|#1| |#1| (-574) |#1| (-574)))) (-1257 (-574))) (T -706))
+((-3448 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| -4220 *5) (|:| -1784 (-574))))) (-5 *4 (-574)) (-4 *5 (-1257 *4)) (-5 *2 (-654 *5)) (-5 *1 (-706 *5)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4220 *3) (|:| -1784 *4)))) (-5 *1 (-706 *3)) (-4 *3 (-1257 *4)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3)) (-4 *3 (-1257 *4)))) (-2322 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3)))) (-2874 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3)))))
+(-10 -7 (-15 -2874 (|#1| |#1| |#1| (-574))) (-15 -2322 (|#1| |#1| (-574))) (-15 -4220 ((-654 |#1|) |#1| (-574))) (-15 -3560 ((-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))) |#1| (-574))) (-15 -1815 ((-654 |#1|) (-654 (-2 (|:| -4220 |#1|) (|:| -1784 (-574)))) (-574))) (-15 -3448 (|#1| |#1| (-574) |#1| (-574))))
+((-1850 (((-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-3490 (((-1146 (-227)) (-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270))) 53) (((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270))) 55) (((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270))) 57)) (-3638 (((-1146 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-654 (-270))) NIL)) (-2613 (((-1146 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270))) 58)))
+(((-707) (-10 -7 (-15 -3490 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3490 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3490 ((-1146 (-227)) (-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -2613 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3638 ((-1146 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -1850 ((-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -707))
+((-1850 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-954 (-227)) (-227) (-227))) (-5 *1 (-707)))) (-3638 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707)))) (-2613 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707)))) (-3490 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707)))) (-3490 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-227))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707)))) (-3490 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707)))))
+(-10 -7 (-15 -3490 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3490 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3490 ((-1146 (-227)) (-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -2613 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3638 ((-1146 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -1850 ((-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
+((-4220 (((-428 (-1186 |#4|)) (-1186 |#4|)) 86) (((-428 |#4|) |#4|) 266)))
+(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4|)) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|)))) (-860) (-803) (-358) (-960 |#3| |#2| |#1|)) (T -708))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4)))))
+(-10 -7 (-15 -4220 ((-428 |#4|) |#4|)) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 97)) (-2809 (((-574) $) 34)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-1760 (($ $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-4229 (($ $) NIL)) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL)) (-3670 (($) NIL T CONST)) (-3612 (($ $) NIL)) (-1697 (((-3 (-574) "failed") $) 85) (((-3 (-417 (-574)) "failed") $) 28) (((-3 (-388) "failed") $) 82)) (-2209 (((-574) $) 87) (((-417 (-574)) $) 79) (((-388) $) 80)) (-2785 (($ $ $) 109)) (-1950 (((-3 $ "failed") $) 100)) (-2798 (($ $ $) 108)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3785 (((-932)) 89) (((-932) (-932)) 88)) (-3434 (((-112) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3593 (((-574) $) NIL)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL)) (-1652 (($ $) NIL)) (-3244 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2183 (((-574) (-574)) 94) (((-574)) 95)) (-3658 (($ $ $) NIL) (($) NIL (-12 (-2077 (|has| $ (-6 -4439))) (-2077 (|has| $ (-6 -4447)))))) (-4172 (((-574) (-574)) 92) (((-574)) 93)) (-2106 (($ $ $) NIL) (($) NIL (-12 (-2077 (|has| $ (-6 -4439))) (-2077 (|has| $ (-6 -4447)))))) (-4301 (((-574) $) 17)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 104)) (-1457 (((-932) (-574)) NIL (|has| $ (-6 -4447)))) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL)) (-1846 (($ $) NIL)) (-2384 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-932)) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) 105)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2524 (((-574) $) 24)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 107)) (-3810 (((-932)) NIL) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-2830 (((-932) (-574)) NIL (|has| $ (-6 -4447)))) (-1837 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) NIL)) (-2943 (((-872) $) 63) (($ (-574)) 75) (($ $) NIL) (($ (-417 (-574))) 78) (($ (-574)) 75) (($ (-417 (-574))) 78) (($ (-388)) 72) (((-388) $) 61) (($ (-711)) 66)) (-4160 (((-781)) 119 T CONST)) (-2921 (($ (-574) (-574) (-932)) 54)) (-4078 (($ $) NIL)) (-3909 (((-932)) NIL) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-2923 (((-112) $ $) NIL)) (-2629 (((-932)) 91) (((-932) (-932)) 90)) (-3798 (((-112) $ $) NIL)) (-2946 (($ $) NIL)) (-2134 (($) 37 T CONST)) (-2146 (($) 18 T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 96)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 118)) (-3107 (($ $ $) 77)) (-3094 (($ $) 115) (($ $ $) 116)) (-3078 (($ $ $) 114)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 103)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
+(((-709) (-13 (-414) (-397) (-372) (-1051 (-388)) (-1051 (-417 (-574))) (-148) (-10 -8 (-15 -3785 ((-932) (-932))) (-15 -3785 ((-932))) (-15 -2629 ((-932) (-932))) (-15 -4172 ((-574) (-574))) (-15 -4172 ((-574))) (-15 -2183 ((-574) (-574))) (-15 -2183 ((-574))) (-15 -2943 ((-388) $)) (-15 -2943 ($ (-711))) (-15 -4301 ((-574) $)) (-15 -2524 ((-574) $)) (-15 -2921 ($ (-574) (-574) (-932)))))) (T -709))
+((-2524 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3785 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709)))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709)))) (-4172 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4172 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2183 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2183 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709)))) (-2921 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-932)) (-5 *1 (-709)))))
+(-13 (-414) (-397) (-372) (-1051 (-388)) (-1051 (-417 (-574))) (-148) (-10 -8 (-15 -3785 ((-932) (-932))) (-15 -3785 ((-932))) (-15 -2629 ((-932) (-932))) (-15 -4172 ((-574) (-574))) (-15 -4172 ((-574))) (-15 -2183 ((-574) (-574))) (-15 -2183 ((-574))) (-15 -2943 ((-388) $)) (-15 -2943 ($ (-711))) (-15 -4301 ((-574) $)) (-15 -2524 ((-574) $)) (-15 -2921 ($ (-574) (-574) (-932)))))
+((-4292 (((-699 |#1|) (-699 |#1|) |#1| |#1|) 85)) (-3444 (((-699 |#1|) (-699 |#1|) |#1|) 66)) (-2346 (((-699 |#1|) (-699 |#1|) |#1|) 86)) (-2622 (((-699 |#1|) (-699 |#1|)) 67)) (-3878 (((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|) 84)))
+(((-710 |#1|) (-10 -7 (-15 -2622 ((-699 |#1|) (-699 |#1|))) (-15 -3444 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -2346 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -4292 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -3878 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|))) (-315)) (T -710))
+((-3878 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-710 *3)) (-4 *3 (-315)))) (-4292 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-2346 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-3444 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))))
+(-10 -7 (-15 -2622 ((-699 |#1|) (-699 |#1|))) (-15 -3444 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -2346 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -4292 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -3878 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3165 (($ $ $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2573 (($ $ $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL)) (-3958 (($ $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) 31)) (-2209 (((-574) $) 29)) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2057 (((-3 (-417 (-574)) "failed") $) NIL)) (-1811 (((-112) $) NIL)) (-4142 (((-417 (-574)) $) NIL)) (-2820 (($ $) NIL) (($) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-1817 (($ $ $ $) NIL)) (-3896 (($ $ $) NIL)) (-3434 (((-112) $) NIL)) (-2531 (($ $ $) NIL)) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3965 (((-112) $) NIL)) (-3239 (((-112) $) NIL)) (-4048 (((-3 $ "failed") $) NIL)) (-3244 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3946 (($ $ $ $) NIL)) (-3658 (($ $ $) NIL)) (-3215 (((-932) (-932)) 10) (((-932)) 9)) (-2106 (($ $ $) NIL)) (-3811 (($ $) NIL)) (-4135 (($ $) NIL)) (-2834 (($ (-654 $)) NIL) (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-2274 (($ $ $) NIL)) (-3818 (($) NIL T CONST)) (-1606 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4430 (($ $) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2625 (((-112) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) NIL) (($ $ (-781)) NIL)) (-2295 (($ $) NIL)) (-3167 (($ $) NIL)) (-1837 (((-227) $) NIL) (((-388) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (((-574) $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) 28) (($ $) NIL) (($ (-574)) 28) (((-324 $) (-324 (-574))) 18)) (-4160 (((-781)) NIL T CONST)) (-2490 (((-112) $ $) NIL)) (-2819 (($ $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2629 (($) NIL)) (-3798 (((-112) $ $) NIL)) (-3836 (($ $ $ $) NIL)) (-2946 (($ $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $) NIL) (($ $ (-781)) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL)))
+(((-711) (-13 (-397) (-555) (-10 -8 (-15 -3215 ((-932) (-932))) (-15 -3215 ((-932))) (-15 -2943 ((-324 $) (-324 (-574))))))) (T -711))
+((-3215 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-711)))) (-3215 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-711)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711)))))
+(-13 (-397) (-555) (-10 -8 (-15 -3215 ((-932) (-932))) (-15 -3215 ((-932))) (-15 -2943 ((-324 $) (-324 (-574))))))
+((-2171 (((-1 |#4| |#2| |#3|) |#1| (-1190) (-1190)) 19)) (-1911 (((-1 |#4| |#2| |#3|) (-1190)) 12)))
+(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1911 ((-1 |#4| |#2| |#3|) (-1190))) (-15 -2171 ((-1 |#4| |#2| |#3|) |#1| (-1190) (-1190)))) (-624 (-546)) (-1231) (-1231) (-1231)) (T -712))
+((-2171 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) (-4 *3 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)) (-4 *7 (-1231)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) (-4 *4 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)) (-4 *7 (-1231)))))
+(-10 -7 (-15 -1911 ((-1 |#4| |#2| |#3|) (-1190))) (-15 -2171 ((-1 |#4| |#2| |#3|) |#1| (-1190) (-1190))))
+((-4085 (((-1 (-227) (-227) (-227)) |#1| (-1190) (-1190)) 43) (((-1 (-227) (-227)) |#1| (-1190)) 48)))
+(((-713 |#1|) (-10 -7 (-15 -4085 ((-1 (-227) (-227)) |#1| (-1190))) (-15 -4085 ((-1 (-227) (-227) (-227)) |#1| (-1190) (-1190)))) (-624 (-546))) (T -713))
+((-4085 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))) (-4085 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))))
+(-10 -7 (-15 -4085 ((-1 (-227) (-227)) |#1| (-1190))) (-15 -4085 ((-1 (-227) (-227) (-227)) |#1| (-1190) (-1190))))
+((-2709 (((-1190) |#1| (-1190) (-654 (-1190))) 10) (((-1190) |#1| (-1190) (-1190) (-1190)) 13) (((-1190) |#1| (-1190) (-1190)) 12) (((-1190) |#1| (-1190)) 11)))
+(((-714 |#1|) (-10 -7 (-15 -2709 ((-1190) |#1| (-1190))) (-15 -2709 ((-1190) |#1| (-1190) (-1190))) (-15 -2709 ((-1190) |#1| (-1190) (-1190) (-1190))) (-15 -2709 ((-1190) |#1| (-1190) (-654 (-1190))))) (-624 (-546))) (T -714))
+((-2709 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-654 (-1190))) (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2709 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2709 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2709 (*1 *2 *3 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))))
+(-10 -7 (-15 -2709 ((-1190) |#1| (-1190))) (-15 -2709 ((-1190) |#1| (-1190) (-1190))) (-15 -2709 ((-1190) |#1| (-1190) (-1190) (-1190))) (-15 -2709 ((-1190) |#1| (-1190) (-654 (-1190)))))
+((-2228 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-715 |#1| |#2|) (-10 -7 (-15 -2228 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1231) (-1231)) (T -715))
+((-2228 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-715 *3 *4)) (-4 *3 (-1231)) (-4 *4 (-1231)))))
+(-10 -7 (-15 -2228 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-4011 (((-1 |#3| |#2|) (-1190)) 11)) (-2171 (((-1 |#3| |#2|) |#1| (-1190)) 21)))
+(((-716 |#1| |#2| |#3|) (-10 -7 (-15 -4011 ((-1 |#3| |#2|) (-1190))) (-15 -2171 ((-1 |#3| |#2|) |#1| (-1190)))) (-624 (-546)) (-1231) (-1231)) (T -716))
+((-2171 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) (-4 *3 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) (-4 *4 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)))))
+(-10 -7 (-15 -4011 ((-1 |#3| |#2|) (-1190))) (-15 -2171 ((-1 |#3| |#2|) |#1| (-1190))))
+((-4141 (((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1281 (-654 (-1186 |#3|))) |#3|) 92)) (-3326 (((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|) 110)) (-3793 (((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1186 |#4|)) (-1281 (-654 (-1186 |#3|))) |#3|) 47)))
+(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3793 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1186 |#4|)) (-1281 (-654 (-1186 |#3|))) |#3|)) (-15 -3326 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -4141 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1281 (-654 (-1186 |#3|))) |#3|))) (-803) (-860) (-315) (-960 |#3| |#1| |#2|)) (T -717))
+((-4141 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-654 (-1186 *13))) (-5 *3 (-1186 *13)) (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) (-5 *7 (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| *13))))) (-5 *8 (-654 (-781))) (-5 *9 (-1281 (-654 (-1186 *10)))) (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-960 *10 *11 *12)) (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13)))) (-3326 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1186 *9))) (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-960 *9 *10 *11)) (-4 *10 (-803)) (-5 *2 (-654 (-1186 *12))) (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1186 *12)))) (-3793 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-654 (-1186 *11))) (-5 *3 (-1186 *11)) (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) (-5 *7 (-1281 (-654 (-1186 *8)))) (-4 *10 (-860)) (-4 *8 (-315)) (-4 *11 (-960 *8 *9 *10)) (-4 *9 (-803)) (-5 *1 (-717 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3793 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1186 |#4|)) (-1281 (-654 (-1186 |#3|))) |#3|)) (-15 -3326 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -4141 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1281 (-654 (-1186 |#3|))) |#3|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1392 (($ $) 48)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-4335 (($ |#1| (-781)) 46)) (-2382 (((-781) $) 50)) (-1370 ((|#1| $) 49)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1784 (((-781) $) 51)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3344 ((|#1| $ (-781)) 47)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
+(((-718 |#1|) (-141) (-1062)) (T -718))
+((-1784 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1062)))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1062)))) (-3344 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1062)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1062)))))
+(-13 (-1062) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1784 ((-781) $)) (-15 -2382 ((-781) $)) (-15 -1370 (|t#1| $)) (-15 -1392 ($ $)) (-15 -3344 (|t#1| $ (-781))) (-15 -4335 ($ |t#1| (-781)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-1778 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-719 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1778 (|#6| (-1 |#4| |#1|) |#3|))) (-566) (-1257 |#1|) (-1257 (-417 |#2|)) (-566) (-1257 |#4|) (-1257 (-417 |#5|))) (T -719))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566)) (-4 *6 (-1257 *5)) (-4 *2 (-1257 (-417 *8))) (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1257 (-417 *6))) (-4 *8 (-1257 *7)))))
+(-10 -7 (-15 -1778 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4108 (((-1172) (-872)) 38)) (-1403 (((-1286) (-1172)) 31)) (-2105 (((-1172) (-872)) 28)) (-3148 (((-1172) (-872)) 29)) (-2943 (((-872) $) NIL) (((-1172) (-872)) 27)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-720) (-13 (-1113) (-10 -7 (-15 -2943 ((-1172) (-872))) (-15 -2105 ((-1172) (-872))) (-15 -3148 ((-1172) (-872))) (-15 -4108 ((-1172) (-872))) (-15 -1403 ((-1286) (-1172)))))) (T -720))
+((-2943 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-720)))))
+(-13 (-1113) (-10 -7 (-15 -2943 ((-1172) (-872))) (-15 -2105 ((-1172) (-872))) (-15 -3148 ((-1172) (-872))) (-15 -4108 ((-1172) (-872))) (-15 -1403 ((-1286) (-1172)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-2785 (($ $ $) NIL)) (-2868 (($ |#1| |#2|) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3965 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3201 ((|#2| $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3378 (((-3 $ "failed") $ $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) ((|#1| $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
+(((-721 |#1| |#2| |#3| |#4| |#5|) (-13 (-372) (-10 -8 (-15 -3201 (|#2| $)) (-15 -2943 (|#1| $)) (-15 -2868 ($ |#1| |#2|)) (-15 -3378 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -721))
+((-3201 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2943 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3378 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-372) (-10 -8 (-15 -3201 (|#2| $)) (-15 -2943 (|#1| $)) (-15 -2868 ($ |#1| |#2|)) (-15 -3378 ((-3 $ "failed") $ $))))
+((-2849 (((-112) $ $) 87)) (-2908 (((-112) $) 36)) (-1416 (((-1281 |#1|) $ (-781)) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1780 (($ (-1186 |#1|)) NIL)) (-4194 (((-1186 $) $ (-1095)) NIL) (((-1186 |#1|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-1095))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1744 (($ $ $) NIL (|has| |#1| (-566)))) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4348 (($ $) NIL (|has| |#1| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1487 (((-781)) 54 (|has| |#1| (-377)))) (-4397 (($ $ (-781)) NIL)) (-1343 (($ $ (-781)) NIL)) (-3925 ((|#2| |#2|) 50)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1095) "failed") $) NIL)) (-2209 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1095) $) NIL)) (-2800 (($ $ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) 40)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-2868 (($ |#2|) 48)) (-1950 (((-3 $ "failed") $) 97)) (-2820 (($) 58 (|has| |#1| (-377)))) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-4297 (($ $ $) NIL)) (-4404 (($ $ $) NIL (|has| |#1| (-566)))) (-3015 (((-2 (|:| -1859 |#1|) (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-566)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3872 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#1| (-920)))) (-3963 (((-969 $)) 89)) (-3157 (($ $ |#1| (-781) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3593 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-1165)))) (-4345 (($ (-1186 |#1|) (-1095)) NIL) (($ (-1186 $) (-1095)) NIL)) (-1789 (($ $ (-781)) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) 85) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-1095)) NIL) (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3201 ((|#2|) 51)) (-2382 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1541 (($ (-1 (-781) (-781)) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-3523 (((-1186 |#1|) $) NIL)) (-4045 (((-3 (-1095) "failed") $) NIL)) (-2565 (((-932) $) NIL (|has| |#1| (-377)))) (-2854 ((|#2| $) 47)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) 34)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2568 (((-1172) $) NIL)) (-1639 (((-2 (|:| -3855 $) (|:| -3435 $)) $ (-781)) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-1095)) (|:| -2524 (-781))) "failed") $) NIL)) (-2968 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (|has| |#1| (-1165)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1871 (($ $) 88 (|has| |#1| (-358)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#1|) NIL) (($ $ (-654 (-1095)) (-654 |#1|)) NIL) (($ $ (-1095) $) NIL) (($ $ (-654 (-1095)) (-654 $)) NIL)) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-4071 (((-3 $ "failed") $ (-781)) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 98 (|has| |#1| (-372)))) (-1415 (($ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1784 (((-781) $) 38) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1607 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-1715 (((-969 $)) 42)) (-2659 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2943 (((-872) $) 68) (($ (-574)) NIL) (($ |#1|) 65) (($ (-1095)) NIL) (($ |#2|) 75) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-781)) 70) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) 25 T CONST)) (-4116 (((-1281 |#1|) $) 83)) (-1830 (($ (-1281 |#1|)) 57)) (-2146 (($) 8 T CONST)) (-3611 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2080 (((-1281 |#1|) $) NIL)) (-2982 (((-112) $ $) 76)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) 79) (($ $ $) NIL)) (-3078 (($ $ $) 39)) (** (($ $ (-932)) NIL) (($ $ (-781)) 92)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 64) (($ $ $) 82) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 62) (($ $ |#1|) NIL)))
+(((-722 |#1| |#2|) (-13 (-1257 |#1|) (-626 |#2|) (-10 -8 (-15 -3925 (|#2| |#2|)) (-15 -3201 (|#2|)) (-15 -2868 ($ |#2|)) (-15 -2854 (|#2| $)) (-15 -4116 ((-1281 |#1|) $)) (-15 -1830 ($ (-1281 |#1|))) (-15 -2080 ((-1281 |#1|) $)) (-15 -3963 ((-969 $))) (-15 -1715 ((-969 $))) (IF (|has| |#1| (-358)) (-15 -1871 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) (-1062) (-1257 |#1|)) (T -722))
+((-3925 (*1 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1257 *3)))) (-3201 (*1 *2) (-12 (-4 *2 (-1257 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1062)))) (-2868 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1257 *3)))) (-2854 (*1 *2 *1) (-12 (-4 *2 (-1257 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1062)))) (-4116 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-1281 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-1830 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1062)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-2080 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-1281 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-3963 (*1 *2) (-12 (-4 *3 (-1062)) (-5 *2 (-969 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-1715 (*1 *2) (-12 (-4 *3 (-1062)) (-5 *2 (-969 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-1871 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *2 (-1062)) (-5 *1 (-722 *2 *3)) (-4 *3 (-1257 *2)))))
+(-13 (-1257 |#1|) (-626 |#2|) (-10 -8 (-15 -3925 (|#2| |#2|)) (-15 -3201 (|#2|)) (-15 -2868 ($ |#2|)) (-15 -2854 (|#2| $)) (-15 -4116 ((-1281 |#1|) $)) (-15 -1830 ($ (-1281 |#1|))) (-15 -2080 ((-1281 |#1|) $)) (-15 -3963 ((-969 $))) (-15 -1715 ((-969 $))) (IF (|has| |#1| (-358)) (-15 -1871 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 ((|#1| $) 13)) (-3966 (((-1133) $) NIL)) (-2524 ((|#2| $) 12)) (-2956 (($ |#1| |#2|) 16)) (-2943 (((-872) $) NIL) (($ (-2 (|:| -2576 |#1|) (|:| -2524 |#2|))) 15) (((-2 (|:| -2576 |#1|) (|:| -2524 |#2|)) $) 14)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 11)))
+(((-723 |#1| |#2| |#3|) (-13 (-860) (-500 (-2 (|:| -2576 |#1|) (|:| -2524 |#2|))) (-10 -8 (-15 -2524 (|#2| $)) (-15 -2576 (|#1| $)) (-15 -2956 ($ |#1| |#2|)))) (-860) (-1113) (-1 (-112) (-2 (|:| -2576 |#1|) (|:| -2524 |#2|)) (-2 (|:| -2576 |#1|) (|:| -2524 |#2|)))) (T -723))
+((-2524 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) (-14 *4 (-1 (-112) (-2 (|:| -2576 *3) (|:| -2524 *2)) (-2 (|:| -2576 *3) (|:| -2524 *2)))))) (-2576 (*1 *2 *1) (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1113)) (-14 *4 (-1 (-112) (-2 (|:| -2576 *2) (|:| -2524 *3)) (-2 (|:| -2576 *2) (|:| -2524 *3)))))) (-2956 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1113)) (-14 *4 (-1 (-112) (-2 (|:| -2576 *2) (|:| -2524 *3)) (-2 (|:| -2576 *2) (|:| -2524 *3)))))))
+(-13 (-860) (-500 (-2 (|:| -2576 |#1|) (|:| -2524 |#2|))) (-10 -8 (-15 -2524 (|#2| $)) (-15 -2576 (|#1| $)) (-15 -2956 ($ |#1| |#2|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 66)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2209 ((|#1| $) NIL) (((-115) $) 39)) (-1950 (((-3 $ "failed") $) 103)) (-4201 ((|#2| (-115) |#2|) 93)) (-3965 (((-112) $) NIL)) (-3410 (($ |#1| (-370 (-115))) 14)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2644 (($ $ (-1 |#2| |#2|)) 65)) (-2848 (($ $ (-1 |#2| |#2|)) 44)) (-2200 ((|#2| $ |#2|) 33)) (-1843 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2943 (((-872) $) 73) (($ (-574)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) 37 T CONST)) (-2923 (((-112) $ $) NIL)) (-4434 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2134 (($) 21 T CONST)) (-2146 (($) 9 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) 48) (($ $ $) NIL)) (-3078 (($ $ $) 83)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) 64)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174)))))
+(((-724 |#1| |#2|) (-13 (-1062) (-1051 |#1|) (-1051 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4434 ($ $)) (-15 -4434 ($ $ $)) (-15 -1843 (|#1| |#1|))) |%noBranch|) (-15 -2848 ($ $ (-1 |#2| |#2|))) (-15 -2644 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -4201 (|#2| (-115) |#2|)) (-15 -3410 ($ |#1| (-370 (-115)))))) (-1062) (-658 |#1|)) (T -724))
+((-4434 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-4434 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-1843 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-2848 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1062)) (-5 *1 (-724 *3 *4)))) (-2644 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1062)) (-5 *1 (-724 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1062)) (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *3 (-1062)) (-5 *1 (-724 *3 *4)) (-4 *4 (-658 *3)))) (-4201 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1062)) (-5 *1 (-724 *4 *2)) (-4 *2 (-658 *4)))) (-3410 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1062)) (-5 *1 (-724 *2 *4)) (-4 *4 (-658 *2)))))
+(-13 (-1062) (-1051 |#1|) (-1051 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4434 ($ $)) (-15 -4434 ($ $ $)) (-15 -1843 (|#1| |#1|))) |%noBranch|) (-15 -2848 ($ $ (-1 |#2| |#2|))) (-15 -2644 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -4201 (|#2| (-115) |#2|)) (-15 -3410 ($ |#1| (-370 (-115))))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 33)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-2868 (($ |#1| |#2|) 25)) (-1950 (((-3 $ "failed") $) 51)) (-3965 (((-112) $) 35)) (-3201 ((|#2| $) 12)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 52)) (-3966 (((-1133) $) NIL)) (-3378 (((-3 $ "failed") $ $) 50)) (-2943 (((-872) $) 24) (($ (-574)) 19) ((|#1| $) 13)) (-4160 (((-781)) 28 T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 16 T CONST)) (-2146 (($) 30 T CONST)) (-2982 (((-112) $ $) 41)) (-3094 (($ $) 46) (($ $ $) 40)) (-3078 (($ $ $) 43)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21) (($ $ $) 20)))
+(((-725 |#1| |#2| |#3| |#4| |#5|) (-13 (-1062) (-10 -8 (-15 -3201 (|#2| $)) (-15 -2943 (|#1| $)) (-15 -2868 ($ |#1| |#2|)) (-15 -3378 ((-3 $ "failed") $ $)) (-15 -1950 ((-3 $ "failed") $)) (-15 -1324 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -725))
+((-1950 (*1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3201 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2943 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3378 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1324 (*1 *1 *1) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1062) (-10 -8 (-15 -3201 (|#2| $)) (-15 -2943 (|#1| $)) (-15 -2868 ($ |#1| |#2|)) (-15 -3378 ((-3 $ "failed") $ $)) (-15 -1950 ((-3 $ "failed") $)) (-15 -1324 ($ $))))
+((* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-726 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-727 |#2|) (-174)) (T -726))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-727 |#1|) (-141) (-174)) (T -727))
+NIL
+(-13 (-111 |t#1| |t#1|) (-650 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-3958 (($ |#1|) 17) (($ $ |#1|) 20)) (-1913 (($ |#1|) 18) (($ $ |#1|) 21)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3965 (((-112) $) NIL)) (-4067 (($ |#1| |#1| |#1| |#1|) 8)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 16)) (-3966 (((-1133) $) NIL)) (-2646 ((|#1| $ |#1|) 24) (((-843 |#1|) $ (-843 |#1|)) 32)) (-1514 (($ $ $) NIL)) (-3647 (($ $ $) NIL)) (-2943 (((-872) $) 39)) (-2923 (((-112) $ $) NIL)) (-2146 (($) 9 T CONST)) (-2982 (((-112) $ $) 48)) (-3107 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 14)))
+(((-728 |#1|) (-13 (-483) (-10 -8 (-15 -4067 ($ |#1| |#1| |#1| |#1|)) (-15 -3958 ($ |#1|)) (-15 -1913 ($ |#1|)) (-15 -1950 ($)) (-15 -3958 ($ $ |#1|)) (-15 -1913 ($ $ |#1|)) (-15 -1950 ($ $)) (-15 -2646 (|#1| $ |#1|)) (-15 -2646 ((-843 |#1|) $ (-843 |#1|))))) (-372)) (T -728))
+((-4067 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3958 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-1913 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-1950 (*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-1913 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-1950 (*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2646 (*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2646 (*1 *2 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3)))))
+(-13 (-483) (-10 -8 (-15 -4067 ($ |#1| |#1| |#1| |#1|)) (-15 -3958 ($ |#1|)) (-15 -1913 ($ |#1|)) (-15 -1950 ($)) (-15 -3958 ($ $ |#1|)) (-15 -1913 ($ $ |#1|)) (-15 -1950 ($ $)) (-15 -2646 (|#1| $ |#1|)) (-15 -2646 ((-843 |#1|) $ (-843 |#1|)))))
+((-2652 (($ $ (-932)) 19)) (-3702 (($ $ (-932)) 20)) (** (($ $ (-932)) 10)))
+(((-729 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-932))) (-15 -3702 (|#1| |#1| (-932))) (-15 -2652 (|#1| |#1| (-932)))) (-730)) (T -729))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-932))) (-15 -3702 (|#1| |#1| (-932))) (-15 -2652 (|#1| |#1| (-932))))
+((-2849 (((-112) $ $) 7)) (-2652 (($ $ (-932)) 16)) (-3702 (($ $ (-932)) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)) (** (($ $ (-932)) 14)) (* (($ $ $) 17)))
(((-730) (-141)) (T -730))
-((-2143 (*1 *1) (-4 *1 (-730))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-730)) (-5 *2 (-112)))) (-2673 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))) (-1858 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))) (-2062 (*1 *1 *1) (|partial| -4 *1 (-730))) (-1353 (*1 *1 *1) (|partial| -4 *1 (-730))) (-4147 (*1 *1 *1) (|partial| -4 *1 (-730))))
-(-13 (-728) (-10 -8 (-15 (-2143) ($) -1705) (-15 -1886 ((-112) $)) (-15 -2673 ($ $ (-779))) (-15 -1858 ($ $ (-779))) (-15 ** ($ $ (-779))) (-15 -2062 ((-3 $ "failed") $)) (-15 -1353 ((-3 $ "failed") $)) (-15 -4147 ((-3 $ "failed") $))))
-(((-102) . T) ((-621 (-870)) . T) ((-728) . T) ((-1111) . T))
-((-1486 (((-779)) 39)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2204 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#2| $) 23)) (-2865 (($ |#3|) NIL) (((-3 $ "failed") (-415 |#3|)) 49)) (-2062 (((-3 $ "failed") $) 69)) (-2815 (($) 43)) (-2028 ((|#2| $) 21)) (-2967 (($) 18)) (-3902 (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-2144 (((-697 |#2|) (-1279 $) (-1 |#2| |#2|)) 64)) (-1835 (((-1279 |#2|) $) NIL) (($ (-1279 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4251 ((|#3| $) 36)) (-4362 (((-1279 $)) 33)))
-(((-731 |#1| |#2| |#3|) (-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -2815 (|#1|)) (-15 -1486 ((-779))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -2144 ((-697 |#2|) (-1279 |#1|) (-1 |#2| |#2|))) (-15 -2865 ((-3 |#1| "failed") (-415 |#3|))) (-15 -1835 (|#1| |#3|)) (-15 -2865 (|#1| |#3|)) (-15 -2967 (|#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -1835 (|#3| |#1|)) (-15 -1835 (|#1| (-1279 |#2|))) (-15 -1835 ((-1279 |#2|) |#1|)) (-15 -4362 ((-1279 |#1|))) (-15 -4251 (|#3| |#1|)) (-15 -2028 (|#2| |#1|)) (-15 -2062 ((-3 |#1| "failed") |#1|))) (-732 |#2| |#3|) (-174) (-1255 |#2|)) (T -731))
-((-1486 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-779)) (-5 *1 (-731 *3 *4 *5)) (-4 *3 (-732 *4 *5)))))
-(-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -2815 (|#1|)) (-15 -1486 ((-779))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -2144 ((-697 |#2|) (-1279 |#1|) (-1 |#2| |#2|))) (-15 -2865 ((-3 |#1| "failed") (-415 |#3|))) (-15 -1835 (|#1| |#3|)) (-15 -2865 (|#1| |#3|)) (-15 -2967 (|#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -1835 (|#3| |#1|)) (-15 -1835 (|#1| (-1279 |#2|))) (-15 -1835 ((-1279 |#2|) |#1|)) (-15 -4362 ((-1279 |#1|))) (-15 -4251 (|#3| |#1|)) (-15 -2028 (|#2| |#1|)) (-15 -2062 ((-3 |#1| "failed") |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 103 (|has| |#1| (-370)))) (-3009 (($ $) 104 (|has| |#1| (-370)))) (-4334 (((-112) $) 106 (|has| |#1| (-370)))) (-3736 (((-697 |#1|) (-1279 $)) 53) (((-697 |#1|)) 68)) (-1635 ((|#1| $) 59)) (-1814 (((-1201 (-930) (-779)) (-572)) 156 (|has| |#1| (-356)))) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 123 (|has| |#1| (-370)))) (-2287 (((-426 $) $) 124 (|has| |#1| (-370)))) (-4217 (((-112) $ $) 114 (|has| |#1| (-370)))) (-1486 (((-779)) 97 (|has| |#1| (-375)))) (-3281 (($) 18 T CONST)) (-1695 (((-3 (-572) "failed") $) 181 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 179 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 176)) (-2204 (((-572) $) 180 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 178 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 177)) (-1913 (($ (-1279 |#1|) (-1279 $)) 55) (($ (-1279 |#1|)) 71)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-356)))) (-2780 (($ $ $) 118 (|has| |#1| (-370)))) (-3485 (((-697 |#1|) $ (-1279 $)) 60) (((-697 |#1|) $) 66)) (-2993 (((-697 (-572)) (-1279 $)) 175 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 174 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 173 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 172) (((-697 |#1|) (-697 $)) 171) (((-697 |#1|) (-1279 $)) 170)) (-2865 (($ |#2|) 167) (((-3 $ "failed") (-415 |#2|)) 164 (|has| |#1| (-370)))) (-2062 (((-3 $ "failed") $) 37)) (-3581 (((-930)) 61)) (-2815 (($) 100 (|has| |#1| (-375)))) (-2792 (($ $ $) 117 (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 112 (|has| |#1| (-370)))) (-1879 (($) 158 (|has| |#1| (-356)))) (-3442 (((-112) $) 159 (|has| |#1| (-356)))) (-2303 (($ $ (-779)) 150 (|has| |#1| (-356))) (($ $) 149 (|has| |#1| (-356)))) (-3879 (((-112) $) 125 (|has| |#1| (-370)))) (-2956 (((-930) $) 161 (|has| |#1| (-356))) (((-841 (-930)) $) 147 (|has| |#1| (-356)))) (-1886 (((-112) $) 35)) (-2028 ((|#1| $) 58)) (-2556 (((-3 $ "failed") $) 151 (|has| |#1| (-356)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 121 (|has| |#1| (-370)))) (-3053 ((|#2| $) 51 (|has| |#1| (-370)))) (-3715 (((-930) $) 99 (|has| |#1| (-375)))) (-2851 ((|#2| $) 165)) (-2825 (($ (-652 $)) 110 (|has| |#1| (-370))) (($ $ $) 109 (|has| |#1| (-370)))) (-4347 (((-1170) $) 10)) (-1322 (($ $) 126 (|has| |#1| (-370)))) (-3815 (($) 152 (|has| |#1| (-356)) CONST)) (-2571 (($ (-930)) 98 (|has| |#1| (-375)))) (-3964 (((-1131) $) 11)) (-2967 (($) 169)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 111 (|has| |#1| (-370)))) (-2870 (($ (-652 $)) 108 (|has| |#1| (-370))) (($ $ $) 107 (|has| |#1| (-370)))) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) 155 (|has| |#1| (-356)))) (-4218 (((-426 $) $) 122 (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 119 (|has| |#1| (-370)))) (-2834 (((-3 $ "failed") $ $) 102 (|has| |#1| (-370)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 113 (|has| |#1| (-370)))) (-3847 (((-779) $) 115 (|has| |#1| (-370)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 116 (|has| |#1| (-370)))) (-3537 ((|#1| (-1279 $)) 54) ((|#1|) 67)) (-3354 (((-779) $) 160 (|has| |#1| (-356))) (((-3 (-779) "failed") $ $) 148 (|has| |#1| (-356)))) (-3902 (($ $) 145 (-2813 (-2085 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-779)) 144 (-2813 (-2085 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-1188)) 142 (-2085 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-652 (-1188))) 141 (-2085 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-1188) (-779)) 140 (-2085 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 (-779))) 139 (-2085 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-1 |#1| |#1|) (-779)) 132 (|has| |#1| (-370))) (($ $ (-1 |#1| |#1|)) 131 (|has| |#1| (-370)))) (-2144 (((-697 |#1|) (-1279 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-370)))) (-3764 ((|#2|) 168)) (-4033 (($) 157 (|has| |#1| (-356)))) (-4329 (((-1279 |#1|) $ (-1279 $)) 57) (((-697 |#1|) (-1279 $) (-1279 $)) 56) (((-1279 |#1|) $) 73) (((-697 |#1|) (-1279 $)) 72)) (-1835 (((-1279 |#1|) $) 70) (($ (-1279 |#1|)) 69) ((|#2| $) 182) (($ |#2|) 166)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 154 (|has| |#1| (-356)))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44) (($ $) 101 (|has| |#1| (-370))) (($ (-415 (-572))) 96 (-2813 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))) (-3849 (($ $) 153 (|has| |#1| (-356))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4251 ((|#2| $) 52)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-4362 (((-1279 $)) 74)) (-2845 (((-112) $ $) 105 (|has| |#1| (-370)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $) 146 (-2813 (-2085 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-779)) 143 (-2813 (-2085 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-1188)) 138 (-2085 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-652 (-1188))) 137 (-2085 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-1188) (-779)) 136 (-2085 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 (-779))) 135 (-2085 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-1 |#1| |#1|) (-779)) 134 (|has| |#1| (-370))) (($ $ (-1 |#1| |#1|)) 133 (|has| |#1| (-370)))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 130 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 127 (|has| |#1| (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-415 (-572)) $) 129 (|has| |#1| (-370))) (($ $ (-415 (-572))) 128 (|has| |#1| (-370)))))
-(((-732 |#1| |#2|) (-141) (-174) (-1255 |t#1|)) (T -732))
-((-2967 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-732 *2 *3)) (-4 *3 (-1255 *2)))) (-3764 (*1 *2) (-12 (-4 *1 (-732 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3)))) (-2865 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-732 *3 *2)) (-4 *2 (-1255 *3)))) (-1835 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-732 *3 *2)) (-4 *2 (-1255 *3)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-732 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3)))) (-2865 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-370)) (-4 *3 (-174)) (-4 *1 (-732 *3 *4)))) (-2144 (*1 *2 *3 *4) (-12 (-5 *3 (-1279 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370)) (-4 *1 (-732 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1255 *5)) (-5 *2 (-697 *5)))))
-(-13 (-417 |t#1| |t#2|) (-174) (-622 |t#2|) (-419 |t#1|) (-384 |t#1|) (-10 -8 (-15 -2967 ($)) (-15 -3764 (|t#2|)) (-15 -2865 ($ |t#2|)) (-15 -1835 ($ |t#2|)) (-15 -2851 (|t#2| $)) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-6 (-233 |t#1|)) (-15 -2865 ((-3 $ "failed") (-415 |t#2|))) (-15 -2144 ((-697 |t#1|) (-1279 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-38 |#1|) . T) ((-38 $) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-102) . T) ((-111 #0# #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2813 (|has| |#1| (-356)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-624 #0#) -2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-356)) (|has| |#1| (-370))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) . T) ((-622 |#2|) . T) ((-235 $) -2813 (|has| |#1| (-356)) (-12 (|has| |#1| (-237)) (|has| |#1| (-370)))) ((-233 |#1|) |has| |#1| (-370)) ((-237) -2813 (|has| |#1| (-356)) (-12 (|has| |#1| (-237)) (|has| |#1| (-370)))) ((-247) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-296) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-313) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-370) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-410) |has| |#1| (-356)) ((-375) -2813 (|has| |#1| (-375)) (|has| |#1| (-356))) ((-356) |has| |#1| (-356)) ((-377 |#1| |#2|) . T) ((-417 |#1| |#2|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-564) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-654 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-656 #1=(-572)) |has| |#1| (-647 (-572))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-648 |#1|) . T) ((-648 $) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-647 #1#) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-725 |#1|) . T) ((-725 $) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188)))) ((-929) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-356)) ((-1229) -2813 (|has| |#1| (-356)) (-12 (|has| |#1| (-237)) (|has| |#1| (-370)))) ((-1233) -2813 (|has| |#1| (-356)) (|has| |#1| (-370))))
-((-3281 (($) 11)) (-2062 (((-3 $ "failed") $) 14)) (-1886 (((-112) $) 10)) (** (($ $ (-930)) NIL) (($ $ (-779)) 20)))
-(((-733 |#1|) (-10 -8 (-15 -2062 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 -1886 ((-112) |#1|)) (-15 -3281 (|#1|)) (-15 ** (|#1| |#1| (-930)))) (-734)) (T -733))
-NIL
-(-10 -8 (-15 -2062 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 -1886 ((-112) |#1|)) (-15 -3281 (|#1|)) (-15 ** (|#1| |#1| (-930))))
-((-2846 (((-112) $ $) 7)) (-3281 (($) 19 T CONST)) (-2062 (((-3 $ "failed") $) 16)) (-1886 (((-112) $) 18)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2143 (($) 20 T CONST)) (-2978 (((-112) $ $) 6)) (** (($ $ (-930)) 14) (($ $ (-779)) 17)) (* (($ $ $) 15)))
-(((-734) (-141)) (T -734))
-((-2143 (*1 *1) (-4 *1 (-734))) (-3281 (*1 *1) (-4 *1 (-734))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-779)))) (-2062 (*1 *1 *1) (|partial| -4 *1 (-734))))
-(-13 (-1123) (-10 -8 (-15 (-2143) ($) -1705) (-15 -3281 ($) -1705) (-15 -1886 ((-112) $)) (-15 ** ($ $ (-779))) (-15 -2062 ((-3 $ "failed") $))))
-(((-102) . T) ((-621 (-870)) . T) ((-1123) . T) ((-1111) . T))
-((-4196 (((-2 (|:| -1358 (-426 |#2|)) (|:| |special| (-426 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3861 (((-2 (|:| -1358 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1334 ((|#2| (-415 |#2|) (-1 |#2| |#2|)) 13)) (-4189 (((-2 (|:| |poly| |#2|) (|:| -1358 (-415 |#2|)) (|:| |special| (-415 |#2|))) (-415 |#2|) (-1 |#2| |#2|)) 48)))
-(((-735 |#1| |#2|) (-10 -7 (-15 -3861 ((-2 (|:| -1358 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4196 ((-2 (|:| -1358 (-426 |#2|)) (|:| |special| (-426 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1334 (|#2| (-415 |#2|) (-1 |#2| |#2|))) (-15 -4189 ((-2 (|:| |poly| |#2|) (|:| -1358 (-415 |#2|)) (|:| |special| (-415 |#2|))) (-415 |#2|) (-1 |#2| |#2|)))) (-370) (-1255 |#1|)) (T -735))
-((-4189 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1358 (-415 *6)) (|:| |special| (-415 *6)))) (-5 *1 (-735 *5 *6)) (-5 *3 (-415 *6)))) (-1334 (*1 *2 *3 *4) (-12 (-5 *3 (-415 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1255 *5)) (-5 *1 (-735 *5 *2)) (-4 *5 (-370)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| -1358 (-426 *3)) (|:| |special| (-426 *3)))) (-5 *1 (-735 *5 *3)))) (-3861 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| -1358 *3) (|:| |special| *3))) (-5 *1 (-735 *5 *3)))))
-(-10 -7 (-15 -3861 ((-2 (|:| -1358 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4196 ((-2 (|:| -1358 (-426 |#2|)) (|:| |special| (-426 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1334 (|#2| (-415 |#2|) (-1 |#2| |#2|))) (-15 -4189 ((-2 (|:| |poly| |#2|) (|:| -1358 (-415 |#2|)) (|:| |special| (-415 |#2|))) (-415 |#2|) (-1 |#2| |#2|))))
-((-1337 ((|#7| (-652 |#5|) |#6|) NIL)) (-1776 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-736 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1776 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1337 (|#7| (-652 |#5|) |#6|))) (-858) (-801) (-801) (-1060) (-1060) (-958 |#4| |#2| |#1|) (-958 |#5| |#3| |#1|)) (T -736))
-((-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *9)) (-4 *9 (-1060)) (-4 *5 (-858)) (-4 *6 (-801)) (-4 *8 (-1060)) (-4 *2 (-958 *9 *7 *5)) (-5 *1 (-736 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-801)) (-4 *4 (-958 *8 *6 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1060)) (-4 *9 (-1060)) (-4 *5 (-858)) (-4 *6 (-801)) (-4 *2 (-958 *9 *7 *5)) (-5 *1 (-736 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-801)) (-4 *4 (-958 *8 *6 *5)))))
-(-10 -7 (-15 -1776 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1337 (|#7| (-652 |#5|) |#6|)))
-((-1776 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-737 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1776 (|#7| (-1 |#2| |#1|) |#6|))) (-858) (-858) (-801) (-801) (-1060) (-958 |#5| |#3| |#1|) (-958 |#5| |#4| |#2|)) (T -737))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-858)) (-4 *6 (-858)) (-4 *7 (-801)) (-4 *9 (-1060)) (-4 *2 (-958 *9 *8 *6)) (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-801)) (-4 *4 (-958 *9 *7 *5)))))
-(-10 -7 (-15 -1776 (|#7| (-1 |#2| |#1|) |#6|)))
-((-4218 (((-426 |#4|) |#4|) 42)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-426 |#4|) |#4|))) (-801) (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188))))) (-313) (-958 (-961 |#3|) |#1| |#2|)) (T -738))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188)))))) (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-958 (-961 *6) *4 *5)))))
-(-10 -7 (-15 -4218 ((-426 |#4|) |#4|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-872 |#1|)) $) NIL)) (-4191 (((-1184 $) $ (-872 |#1|)) NIL) (((-1184 |#2|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-3009 (($ $) NIL (|has| |#2| (-564)))) (-4334 (((-112) $) NIL (|has| |#2| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-872 |#1|))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3517 (($ $) NIL (|has| |#2| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-872 |#1|) "failed") $) NIL)) (-2204 ((|#2| $) NIL) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-872 |#1|) $) NIL)) (-2361 (($ $ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-1390 (($ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#2| (-918)))) (-1437 (($ $ |#2| (-539 (-872 |#1|)) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-4343 (($ (-1184 |#2|) (-872 |#1|)) NIL) (($ (-1184 $) (-872 |#1|)) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#2| (-539 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-872 |#1|)) NIL)) (-2649 (((-539 (-872 |#1|)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-2497 (($ (-1 (-539 (-872 |#1|)) (-539 (-872 |#1|))) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3928 (((-3 (-872 |#1|) "failed") $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#2| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-4347 (((-1170) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-872 |#1|)) (|:| -1679 (-779))) "failed") $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#2| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#2| (-918)))) (-2834 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-872 |#1|) |#2|) NIL) (($ $ (-652 (-872 |#1|)) (-652 |#2|)) NIL) (($ $ (-872 |#1|) $) NIL) (($ $ (-652 (-872 |#1|)) (-652 $)) NIL)) (-3537 (($ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-3902 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-4390 (((-539 (-872 |#1|)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-872 |#1|) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-1711 ((|#2| $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-872 |#1|)) NIL) (($ $) NIL (|has| |#2| (-564))) (($ (-415 (-572))) NIL (-2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))))) (-4268 (((-652 |#2|) $) NIL)) (-3979 ((|#2| $ (-539 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-739 |#1| |#2|) (-958 |#2| (-539 (-872 |#1|)) (-872 |#1|)) (-652 (-1188)) (-1060)) (T -739))
-NIL
-(-958 |#2| (-539 (-872 |#1|)) (-872 |#1|))
-((-2740 (((-2 (|:| -1360 (-961 |#3|)) (|:| -3661 (-961 |#3|))) |#4|) 14)) (-1435 ((|#4| |#4| |#2|) 33)) (-3809 ((|#4| (-415 (-961 |#3|)) |#2|) 64)) (-3398 ((|#4| (-1184 (-961 |#3|)) |#2|) 77)) (-2122 ((|#4| (-1184 |#4|) |#2|) 51)) (-4299 ((|#4| |#4| |#2|) 54)) (-4218 (((-426 |#4|) |#4|) 40)))
-(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2740 ((-2 (|:| -1360 (-961 |#3|)) (|:| -3661 (-961 |#3|))) |#4|)) (-15 -4299 (|#4| |#4| |#2|)) (-15 -2122 (|#4| (-1184 |#4|) |#2|)) (-15 -1435 (|#4| |#4| |#2|)) (-15 -3398 (|#4| (-1184 (-961 |#3|)) |#2|)) (-15 -3809 (|#4| (-415 (-961 |#3|)) |#2|)) (-15 -4218 ((-426 |#4|) |#4|))) (-801) (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)))) (-564) (-958 (-415 (-961 |#3|)) |#1| |#2|)) (T -740))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))) (-4 *6 (-564)) (-5 *2 (-426 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-958 (-415 (-961 *6)) *4 *5)))) (-3809 (*1 *2 *3 *4) (-12 (-4 *6 (-564)) (-4 *2 (-958 *3 *5 *4)) (-5 *1 (-740 *5 *4 *6 *2)) (-5 *3 (-415 (-961 *6))) (-4 *5 (-801)) (-4 *4 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))))) (-3398 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 (-961 *6))) (-4 *6 (-564)) (-4 *2 (-958 (-415 (-961 *6)) *5 *4)) (-5 *1 (-740 *5 *4 *6 *2)) (-4 *5 (-801)) (-4 *4 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))))) (-1435 (*1 *2 *2 *3) (-12 (-4 *4 (-801)) (-4 *3 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))) (-4 *5 (-564)) (-5 *1 (-740 *4 *3 *5 *2)) (-4 *2 (-958 (-415 (-961 *5)) *4 *3)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *2)) (-4 *2 (-958 (-415 (-961 *6)) *5 *4)) (-5 *1 (-740 *5 *4 *6 *2)) (-4 *5 (-801)) (-4 *4 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))) (-4 *6 (-564)))) (-4299 (*1 *2 *2 *3) (-12 (-4 *4 (-801)) (-4 *3 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))) (-4 *5 (-564)) (-5 *1 (-740 *4 *3 *5 *2)) (-4 *2 (-958 (-415 (-961 *5)) *4 *3)))) (-2740 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))) (-4 *6 (-564)) (-5 *2 (-2 (|:| -1360 (-961 *6)) (|:| -3661 (-961 *6)))) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-958 (-415 (-961 *6)) *4 *5)))))
-(-10 -7 (-15 -2740 ((-2 (|:| -1360 (-961 |#3|)) (|:| -3661 (-961 |#3|))) |#4|)) (-15 -4299 (|#4| |#4| |#2|)) (-15 -2122 (|#4| (-1184 |#4|) |#2|)) (-15 -1435 (|#4| |#4| |#2|)) (-15 -3398 (|#4| (-1184 (-961 |#3|)) |#2|)) (-15 -3809 (|#4| (-415 (-961 |#3|)) |#2|)) (-15 -4218 ((-426 |#4|) |#4|)))
-((-4218 (((-426 |#4|) |#4|) 54)))
-(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-426 |#4|) |#4|))) (-801) (-858) (-13 (-313) (-148)) (-958 (-415 |#3|) |#1| |#2|)) (T -741))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-13 (-313) (-148))) (-5 *2 (-426 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-958 (-415 *6) *4 *5)))))
-(-10 -7 (-15 -4218 ((-426 |#4|) |#4|)))
-((-1776 (((-743 |#2| |#3|) (-1 |#2| |#1|) (-743 |#1| |#3|)) 18)))
-(((-742 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-743 |#2| |#3|) (-1 |#2| |#1|) (-743 |#1| |#3|)))) (-1060) (-1060) (-734)) (T -742))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5 *7)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-4 *7 (-734)) (-5 *2 (-743 *6 *7)) (-5 *1 (-742 *5 *6 *7)))))
-(-10 -7 (-15 -1776 ((-743 |#2| |#3|) (-1 |#2| |#1|) (-743 |#1| |#3|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 36)) (-1899 (((-652 (-2 (|:| -1857 |#1|) (|:| -3829 |#2|))) $) 37)) (-3330 (((-3 $ "failed") $ $) NIL)) (-1486 (((-779)) 22 (-12 (|has| |#2| (-375)) (|has| |#1| (-375))))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2204 ((|#2| $) NIL) ((|#1| $) NIL)) (-1390 (($ $) 102 (|has| |#2| (-858)))) (-2062 (((-3 $ "failed") $) 85)) (-2815 (($) 48 (-12 (|has| |#2| (-375)) (|has| |#1| (-375))))) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) 70)) (-1843 (((-652 $) $) 52)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| |#2|) 17)) (-1776 (($ (-1 |#1| |#1|) $) 68)) (-3715 (((-930) $) 43 (-12 (|has| |#2| (-375)) (|has| |#1| (-375))))) (-1357 ((|#2| $) 101 (|has| |#2| (-858)))) (-1368 ((|#1| $) 100 (|has| |#2| (-858)))) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) 35 (-12 (|has| |#2| (-375)) (|has| |#1| (-375))))) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 99) (($ (-572)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-652 (-2 (|:| -1857 |#1|) (|:| -3829 |#2|)))) 11)) (-4268 (((-652 |#1|) $) 54)) (-3979 ((|#1| $ |#2|) 115)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 12 T CONST)) (-2143 (($) 44 T CONST)) (-2978 (((-112) $ $) 105)) (-3089 (($ $) 61) (($ $ $) NIL)) (-3075 (($ $ $) 33)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-743 |#1| |#2|) (-13 (-1060) (-1049 |#2|) (-1049 |#1|) (-10 -8 (-15 -4333 ($ |#1| |#2|)) (-15 -3979 (|#1| $ |#2|)) (-15 -2940 ($ (-652 (-2 (|:| -1857 |#1|) (|:| -3829 |#2|))))) (-15 -1899 ((-652 (-2 (|:| -1857 |#1|) (|:| -3829 |#2|))) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -2438 ((-112) $)) (-15 -4268 ((-652 |#1|) $)) (-15 -1843 ((-652 $) $)) (-15 -4368 ((-779) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-858)) (PROGN (-15 -1357 (|#2| $)) (-15 -1368 (|#1| $)) (-15 -1390 ($ $))) |%noBranch|))) (-1060) (-734)) (T -743))
-((-4333 (*1 *1 *2 *3) (-12 (-5 *1 (-743 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-734)))) (-3979 (*1 *2 *1 *3) (-12 (-4 *2 (-1060)) (-5 *1 (-743 *2 *3)) (-4 *3 (-734)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -1857 *3) (|:| -3829 *4)))) (-4 *3 (-1060)) (-4 *4 (-734)) (-5 *1 (-743 *3 *4)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| -1857 *3) (|:| -3829 *4)))) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-743 *3 *4)) (-4 *4 (-734)))) (-2438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-652 (-743 *3 *4))) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-1357 (*1 *2 *1) (-12 (-4 *2 (-734)) (-4 *2 (-858)) (-5 *1 (-743 *3 *2)) (-4 *3 (-1060)))) (-1368 (*1 *2 *1) (-12 (-4 *2 (-1060)) (-5 *1 (-743 *2 *3)) (-4 *3 (-858)) (-4 *3 (-734)))) (-1390 (*1 *1 *1) (-12 (-5 *1 (-743 *2 *3)) (-4 *3 (-858)) (-4 *2 (-1060)) (-4 *3 (-734)))))
-(-13 (-1060) (-1049 |#2|) (-1049 |#1|) (-10 -8 (-15 -4333 ($ |#1| |#2|)) (-15 -3979 (|#1| $ |#2|)) (-15 -2940 ($ (-652 (-2 (|:| -1857 |#1|) (|:| -3829 |#2|))))) (-15 -1899 ((-652 (-2 (|:| -1857 |#1|) (|:| -3829 |#2|))) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -2438 ((-112) $)) (-15 -4268 ((-652 |#1|) $)) (-15 -1843 ((-652 $) $)) (-15 -4368 ((-779) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-858)) (PROGN (-15 -1357 (|#2| $)) (-15 -1368 (|#1| $)) (-15 -1390 ($ $))) |%noBranch|)))
-((-2846 (((-112) $ $) 19)) (-4357 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2774 (($ $ $) 73)) (-1890 (((-112) $ $) 74)) (-1631 (((-112) $ (-779)) 8)) (-1506 (($ (-652 |#1|)) 69) (($) 68)) (-2613 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2704 (($ $) 63)) (-2086 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-3332 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3310 (((-112) $ $) 65)) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22)) (-1346 (($ $ $) 70)) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41) (($ |#1| $ (-779)) 64)) (-3964 (((-1131) $) 21)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-4261 (((-652 (-2 (|:| -1907 |#1|) (|:| -3973 (-779)))) $) 62)) (-4020 (($ $ |#1|) 72) (($ $ $) 71)) (-3438 (($) 50) (($ (-652 |#1|)) 49)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 51)) (-2940 (((-870) $) 18)) (-4279 (($ (-652 |#1|)) 67) (($) 66)) (-4379 (((-112) $ $) 23)) (-2022 (($ (-652 |#1|)) 43)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20)) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-744 |#1|) (-141) (-1111)) (T -744))
-NIL
-(-13 (-703 |t#1|) (-1109 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-703 |#1|) . T) ((-1109 |#1|) . T) ((-1111) . T) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-4357 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-2774 (($ $ $) 96)) (-1890 (((-112) $ $) 104)) (-1631 (((-112) $ (-779)) NIL)) (-1506 (($ (-652 |#1|)) 26) (($) 17)) (-2613 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-2704 (($ $) 85)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3554 (($ |#1| $) 70 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454))) (($ |#1| $ (-572)) 75) (($ (-1 (-112) |#1|) $ (-572)) 78)) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (($ |#1| $ (-572)) 80) (($ (-1 (-112) |#1|) $ (-572)) 81)) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-1863 (((-652 |#1|) $) 32 (|has| $ (-6 -4454)))) (-3310 (((-112) $ $) 103)) (-2782 (($) 15) (($ |#1|) 28) (($ (-652 |#1|)) 23)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) 38)) (-1864 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 89)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1346 (($ $ $) 94)) (-1651 ((|#1| $) 62)) (-2036 (($ |#1| $) 63) (($ |#1| $ (-779)) 86)) (-3964 (((-1131) $) NIL)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3378 ((|#1| $) 61)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 56)) (-1613 (($) 14)) (-4261 (((-652 (-2 (|:| -1907 |#1|) (|:| -3973 (-779)))) $) 55)) (-4020 (($ $ |#1|) NIL) (($ $ $) 95)) (-3438 (($) 16) (($ (-652 |#1|)) 25)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) 68 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) 79)) (-1835 (((-544) $) 36 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 22)) (-2940 (((-870) $) 49)) (-4279 (($ (-652 |#1|)) 27) (($) 18)) (-4379 (((-112) $ $) NIL)) (-2022 (($ (-652 |#1|)) 24)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 100)) (-2860 (((-779) $) 67 (|has| $ (-6 -4454)))))
-(((-745 |#1|) (-13 (-744 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -2782 ($)) (-15 -2782 ($ |#1|)) (-15 -2782 ($ (-652 |#1|))) (-15 -1344 ((-652 |#1|) $)) (-15 -3332 ($ |#1| $ (-572))) (-15 -3332 ($ (-1 (-112) |#1|) $ (-572))) (-15 -3554 ($ |#1| $ (-572))) (-15 -3554 ($ (-1 (-112) |#1|) $ (-572))))) (-1111)) (T -745))
-((-2782 (*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1111)))) (-2782 (*1 *1 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1111)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-745 *3)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-745 *3)) (-4 *3 (-1111)))) (-3332 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-745 *2)) (-4 *2 (-1111)))) (-3332 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-572)) (-4 *4 (-1111)) (-5 *1 (-745 *4)))) (-3554 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-745 *2)) (-4 *2 (-1111)))) (-3554 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-572)) (-4 *4 (-1111)) (-5 *1 (-745 *4)))))
-(-13 (-744 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -2782 ($)) (-15 -2782 ($ |#1|)) (-15 -2782 ($ (-652 |#1|))) (-15 -1344 ((-652 |#1|) $)) (-15 -3332 ($ |#1| $ (-572))) (-15 -3332 ($ (-1 (-112) |#1|) $ (-572))) (-15 -3554 ($ |#1| $ (-572))) (-15 -3554 ($ (-1 (-112) |#1|) $ (-572)))))
-((-1321 (((-1284) (-1170)) 8)))
-(((-746) (-10 -7 (-15 -1321 ((-1284) (-1170))))) (T -746))
-((-1321 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-746)))))
-(-10 -7 (-15 -1321 ((-1284) (-1170))))
-((-3166 (((-652 |#1|) (-652 |#1|) (-652 |#1|)) 15)))
-(((-747 |#1|) (-10 -7 (-15 -3166 ((-652 |#1|) (-652 |#1|) (-652 |#1|)))) (-858)) (T -747))
-((-3166 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-747 *3)))))
-(-10 -7 (-15 -3166 ((-652 |#1|) (-652 |#1|) (-652 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4353 (((-652 |#2|) $) 148)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 141 (|has| |#1| (-564)))) (-3009 (($ $) 140 (|has| |#1| (-564)))) (-4334 (((-112) $) 138 (|has| |#1| (-564)))) (-2358 (($ $) 97 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 80 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) 20)) (-4227 (($ $) 79 (|has| |#1| (-38 (-415 (-572)))))) (-2338 (($ $) 96 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 81 (|has| |#1| (-38 (-415 (-572)))))) (-2384 (($ $) 95 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 82 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) 18 T CONST)) (-1390 (($ $) 132)) (-2062 (((-3 $ "failed") $) 37)) (-4051 (((-961 |#1|) $ (-779)) 110) (((-961 |#1|) $ (-779) (-779)) 109)) (-2579 (((-112) $) 149)) (-2997 (($) 107 (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-779) $ |#2|) 112) (((-779) $ |#2| (-779)) 111)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 78 (|has| |#1| (-38 (-415 (-572)))))) (-2438 (((-112) $) 130)) (-4333 (($ $ (-652 |#2|) (-652 (-539 |#2|))) 147) (($ $ |#2| (-539 |#2|)) 146) (($ |#1| (-539 |#2|)) 131) (($ $ |#2| (-779)) 114) (($ $ (-652 |#2|) (-652 (-779))) 113)) (-1776 (($ (-1 |#1| |#1|) $) 129)) (-3116 (($ $) 104 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) 127)) (-1368 ((|#1| $) 126)) (-4347 (((-1170) $) 10)) (-3034 (($ $ |#2|) 108 (|has| |#1| (-38 (-415 (-572)))))) (-3964 (((-1131) $) 11)) (-2772 (($ $ (-779)) 115)) (-2834 (((-3 $ "failed") $ $) 142 (|has| |#1| (-564)))) (-1608 (($ $) 105 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (($ $ |#2| $) 123) (($ $ (-652 |#2|) (-652 $)) 122) (($ $ (-652 (-300 $))) 121) (($ $ (-300 $)) 120) (($ $ $ $) 119) (($ $ (-652 $) (-652 $)) 118)) (-3902 (($ $ |#2|) 46) (($ $ (-652 |#2|)) 45) (($ $ |#2| (-779)) 44) (($ $ (-652 |#2|) (-652 (-779))) 43)) (-4390 (((-539 |#2|) $) 128)) (-2397 (($ $) 94 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 83 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 93 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 84 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 92 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 85 (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) 150)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-564))) (($ (-415 (-572))) 135 (|has| |#1| (-38 (-415 (-572)))))) (-3979 ((|#1| $ (-539 |#2|)) 133) (($ $ |#2| (-779)) 117) (($ $ (-652 |#2|) (-652 (-779))) 116)) (-3849 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2436 (($ $) 103 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 91 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) 139 (|has| |#1| (-564)))) (-2409 (($ $) 102 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 90 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 101 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 89 (|has| |#1| (-38 (-415 (-572)))))) (-2516 (($ $) 100 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 88 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 99 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 87 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 98 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 86 (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ |#2|) 42) (($ $ (-652 |#2|)) 41) (($ $ |#2| (-779)) 40) (($ $ (-652 |#2|) (-652 (-779))) 39)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 134 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ $) 106 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 77 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 137 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 136 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
-(((-748 |#1| |#2|) (-141) (-1060) (-858)) (T -748))
-((-3979 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *2)) (-4 *4 (-1060)) (-4 *2 (-858)))) (-3979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *5)) (-5 *3 (-652 (-779))) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-858)))) (-2772 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-748 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-858)))) (-4333 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *2)) (-4 *4 (-1060)) (-4 *2 (-858)))) (-4333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *5)) (-5 *3 (-652 (-779))) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-858)))) (-2956 (*1 *2 *1 *3) (-12 (-4 *1 (-748 *4 *3)) (-4 *4 (-1060)) (-4 *3 (-858)) (-5 *2 (-779)))) (-2956 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-779)) (-4 *1 (-748 *4 *3)) (-4 *4 (-1060)) (-4 *3 (-858)))) (-4051 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-858)) (-5 *2 (-961 *4)))) (-4051 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-858)) (-5 *2 (-961 *4)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-748 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-858)) (-4 *3 (-38 (-415 (-572)))))))
-(-13 (-909 |t#2|) (-984 |t#1| (-539 |t#2|) |t#2|) (-522 |t#2| $) (-315 $) (-10 -8 (-15 -3979 ($ $ |t#2| (-779))) (-15 -3979 ($ $ (-652 |t#2|) (-652 (-779)))) (-15 -2772 ($ $ (-779))) (-15 -4333 ($ $ |t#2| (-779))) (-15 -4333 ($ $ (-652 |t#2|) (-652 (-779)))) (-15 -2956 ((-779) $ |t#2|)) (-15 -2956 ((-779) $ |t#2| (-779))) (-15 -4051 ((-961 |t#1|) $ (-779))) (-15 -4051 ((-961 |t#1|) $ (-779) (-779))) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $ |t#2|)) (-6 (-1013)) (-6 (-1214))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-539 |#2|)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-296) |has| |#1| (-564)) ((-315 $) . T) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-522 |#2| $) . T) ((-522 $ $) . T) ((-564) |has| |#1| (-564)) ((-654 #1#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #1#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-909 |#2|) . T) ((-984 |#1| #0# |#2|) . T) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1062 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))))
-((-4218 (((-426 (-1184 |#4|)) (-1184 |#4|)) 30) (((-426 |#4|) |#4|) 26)))
-(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-426 |#4|) |#4|)) (-15 -4218 ((-426 (-1184 |#4|)) (-1184 |#4|)))) (-858) (-801) (-13 (-313) (-148)) (-958 |#3| |#2| |#1|)) (T -749))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-749 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-13 (-313) (-148))) (-5 *2 (-426 *3)) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4)))))
-(-10 -7 (-15 -4218 ((-426 |#4|) |#4|)) (-15 -4218 ((-426 (-1184 |#4|)) (-1184 |#4|))))
-((-3619 (((-426 |#4|) |#4| |#2|) 140)) (-3477 (((-426 |#4|) |#4|) NIL)) (-2287 (((-426 (-1184 |#4|)) (-1184 |#4|)) 127) (((-426 |#4|) |#4|) 52)) (-2255 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-652 (-2 (|:| -4218 (-1184 |#4|)) (|:| -1679 (-572)))))) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|))) 81)) (-2021 (((-1184 |#3|) (-1184 |#3|) (-572)) 166)) (-1341 (((-652 (-779)) (-1184 |#4|) (-652 |#2|) (-779)) 75)) (-2851 (((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-1184 |#3|) (-1184 |#3|) |#4| (-652 |#2|) (-652 (-779)) (-652 |#3|)) 79)) (-2994 (((-2 (|:| |upol| (-1184 |#3|)) (|:| |Lval| (-652 |#3|)) (|:| |Lfact| (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572))))) (|:| |ctpol| |#3|)) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|))) 27)) (-3906 (((-2 (|:| -2057 (-1184 |#4|)) (|:| |polval| (-1184 |#3|))) (-1184 |#4|) (-1184 |#3|) (-572)) 72)) (-1970 (((-572) (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572))))) 162)) (-3041 ((|#4| (-572) (-426 |#4|)) 73)) (-1693 (((-112) (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572)))) (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572))))) NIL)))
-(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2287 ((-426 |#4|) |#4|)) (-15 -2287 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -3477 ((-426 |#4|) |#4|)) (-15 -1970 ((-572) (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572)))))) (-15 -3619 ((-426 |#4|) |#4| |#2|)) (-15 -3906 ((-2 (|:| -2057 (-1184 |#4|)) (|:| |polval| (-1184 |#3|))) (-1184 |#4|) (-1184 |#3|) (-572))) (-15 -2255 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-652 (-2 (|:| -4218 (-1184 |#4|)) (|:| -1679 (-572)))))) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|)))) (-15 -2994 ((-2 (|:| |upol| (-1184 |#3|)) (|:| |Lval| (-652 |#3|)) (|:| |Lfact| (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572))))) (|:| |ctpol| |#3|)) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|)))) (-15 -3041 (|#4| (-572) (-426 |#4|))) (-15 -1693 ((-112) (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572)))) (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572)))))) (-15 -2851 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-1184 |#3|) (-1184 |#3|) |#4| (-652 |#2|) (-652 (-779)) (-652 |#3|))) (-15 -1341 ((-652 (-779)) (-1184 |#4|) (-652 |#2|) (-779))) (-15 -2021 ((-1184 |#3|) (-1184 |#3|) (-572)))) (-801) (-858) (-313) (-958 |#3| |#1| |#2|)) (T -750))
-((-2021 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *6)) (-5 *3 (-572)) (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-1341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-4 *7 (-858)) (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801)) (-4 *8 (-313)) (-5 *2 (-652 (-779))) (-5 *1 (-750 *6 *7 *8 *9)) (-5 *5 (-779)))) (-2851 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1184 *11)) (-5 *6 (-652 *10)) (-5 *7 (-652 (-779))) (-5 *8 (-652 *11)) (-4 *10 (-858)) (-4 *11 (-313)) (-4 *9 (-801)) (-4 *5 (-958 *11 *9 *10)) (-5 *2 (-652 (-1184 *5))) (-5 *1 (-750 *9 *10 *11 *5)) (-5 *3 (-1184 *5)))) (-1693 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-2 (|:| -4218 (-1184 *6)) (|:| -1679 (-572))))) (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *3 (-572)) (-5 *4 (-426 *2)) (-4 *2 (-958 *7 *5 *6)) (-5 *1 (-750 *5 *6 *7 *2)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-313)))) (-2994 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-5 *5 (-652 (-652 *8))) (-4 *7 (-858)) (-4 *8 (-313)) (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801)) (-5 *2 (-2 (|:| |upol| (-1184 *8)) (|:| |Lval| (-652 *8)) (|:| |Lfact| (-652 (-2 (|:| -4218 (-1184 *8)) (|:| -1679 (-572))))) (|:| |ctpol| *8))) (-5 *1 (-750 *6 *7 *8 *9)))) (-2255 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-652 *7)) (-5 *5 (-652 (-652 *8))) (-4 *7 (-858)) (-4 *8 (-313)) (-4 *6 (-801)) (-4 *9 (-958 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-652 (-2 (|:| -4218 (-1184 *9)) (|:| -1679 (-572))))))) (-5 *1 (-750 *6 *7 *8 *9)) (-5 *3 (-1184 *9)))) (-3906 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-572)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-313)) (-4 *9 (-958 *8 *6 *7)) (-5 *2 (-2 (|:| -2057 (-1184 *9)) (|:| |polval| (-1184 *8)))) (-5 *1 (-750 *6 *7 *8 *9)) (-5 *3 (-1184 *9)) (-5 *4 (-1184 *8)))) (-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-750 *5 *4 *6 *3)) (-4 *3 (-958 *6 *5 *4)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -4218 (-1184 *6)) (|:| -1679 (-572))))) (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-572)) (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-3477 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-958 *6 *4 *5)))) (-2287 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-750 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-2287 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-958 *6 *4 *5)))))
-(-10 -7 (-15 -2287 ((-426 |#4|) |#4|)) (-15 -2287 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -3477 ((-426 |#4|) |#4|)) (-15 -1970 ((-572) (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572)))))) (-15 -3619 ((-426 |#4|) |#4| |#2|)) (-15 -3906 ((-2 (|:| -2057 (-1184 |#4|)) (|:| |polval| (-1184 |#3|))) (-1184 |#4|) (-1184 |#3|) (-572))) (-15 -2255 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-652 (-2 (|:| -4218 (-1184 |#4|)) (|:| -1679 (-572)))))) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|)))) (-15 -2994 ((-2 (|:| |upol| (-1184 |#3|)) (|:| |Lval| (-652 |#3|)) (|:| |Lfact| (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572))))) (|:| |ctpol| |#3|)) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|)))) (-15 -3041 (|#4| (-572) (-426 |#4|))) (-15 -1693 ((-112) (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572)))) (-652 (-2 (|:| -4218 (-1184 |#3|)) (|:| -1679 (-572)))))) (-15 -2851 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-1184 |#3|) (-1184 |#3|) |#4| (-652 |#2|) (-652 (-779)) (-652 |#3|))) (-15 -1341 ((-652 (-779)) (-1184 |#4|) (-652 |#2|) (-779))) (-15 -2021 ((-1184 |#3|) (-1184 |#3|) (-572))))
-((-4101 (($ $ (-930)) 17)))
-(((-751 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| |#1| (-930)))) (-752 |#2|) (-174)) (T -751))
-NIL
-(-10 -8 (-15 -4101 (|#1| |#1| (-930))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2673 (($ $ (-930)) 31)) (-4101 (($ $ (-930)) 38)) (-1858 (($ $ (-930)) 32)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-4326 (($ $ $) 28)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2266 (($ $ $ $) 29)) (-3099 (($ $ $) 27)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 33)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-752 |#1|) (-141) (-174)) (T -752))
-((-4101 (*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-752 *3)) (-4 *3 (-174)))))
-(-13 (-769) (-725 |t#1|) (-10 -8 (-15 -4101 ($ $ (-930)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-728) . T) ((-769) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
-((-3242 (((-1046) (-697 (-227)) (-572) (-112) (-572)) 25)) (-3890 (((-1046) (-697 (-227)) (-572) (-112) (-572)) 24)))
-(((-753) (-10 -7 (-15 -3890 ((-1046) (-697 (-227)) (-572) (-112) (-572))) (-15 -3242 ((-1046) (-697 (-227)) (-572) (-112) (-572))))) (T -753))
-((-3242 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-112)) (-5 *2 (-1046)) (-5 *1 (-753)))) (-3890 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-112)) (-5 *2 (-1046)) (-5 *1 (-753)))))
-(-10 -7 (-15 -3890 ((-1046) (-697 (-227)) (-572) (-112) (-572))) (-15 -3242 ((-1046) (-697 (-227)) (-572) (-112) (-572))))
-((-1967 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN)))) 43)) (-2754 (((-1046) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN)))) 39)) (-4312 (((-1046) (-227) (-227) (-227) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) 32)))
-(((-754) (-10 -7 (-15 -4312 ((-1046) (-227) (-227) (-227) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -2754 ((-1046) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN))))) (-15 -1967 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN))))))) (T -754))
-((-1967 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1046)) (-5 *1 (-754)))) (-2754 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1046)) (-5 *1 (-754)))) (-4312 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) (-5 *2 (-1046)) (-5 *1 (-754)))))
-(-10 -7 (-15 -4312 ((-1046) (-227) (-227) (-227) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -2754 ((-1046) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN))))) (-15 -1967 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN))))))
-((-2905 (((-1046) (-572) (-572) (-697 (-227)) (-572)) 34)) (-3309 (((-1046) (-572) (-572) (-697 (-227)) (-572)) 33)) (-3521 (((-1046) (-572) (-697 (-227)) (-572)) 32)) (-1755 (((-1046) (-572) (-697 (-227)) (-572)) 31)) (-1950 (((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 30)) (-2727 (((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 29)) (-3201 (((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572)) 28)) (-2796 (((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572)) 27)) (-2263 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 24)) (-3751 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572)) 23)) (-3954 (((-1046) (-572) (-697 (-227)) (-572)) 22)) (-3664 (((-1046) (-572) (-697 (-227)) (-572)) 21)))
-(((-755) (-10 -7 (-15 -3664 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3954 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3751 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2263 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2796 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3201 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2727 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1950 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1755 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3521 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3309 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -2905 ((-1046) (-572) (-572) (-697 (-227)) (-572))))) (T -755))
-((-2905 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-3309 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-3521 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-1755 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-1950 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-2727 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-3201 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-2796 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-2263 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-3751 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-3954 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-3664 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))))
-(-10 -7 (-15 -3664 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3954 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3751 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2263 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2796 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3201 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2727 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1950 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1755 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3521 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3309 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -2905 ((-1046) (-572) (-572) (-697 (-227)) (-572))))
-((-4017 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1348 (((-1046) (-697 (-227)) (-697 (-227)) (-572) (-572)) 51)) (-2948 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN)))) 50)) (-4323 (((-1046) (-227) (-227) (-572) (-572) (-572) (-572)) 46)) (-3653 (((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) 45)) (-4087 (((-1046) (-227) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) 44)) (-1626 (((-1046) (-227) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) 43)) (-2821 (((-1046) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) 42)) (-2732 (((-1046) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) 38)) (-1749 (((-1046) (-227) (-227) (-572) (-697 (-227)) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) 37)) (-1632 (((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) 33)) (-4427 (((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) 32)))
-(((-756) (-10 -7 (-15 -4427 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -1632 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -1749 ((-1046) (-227) (-227) (-572) (-697 (-227)) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -2732 ((-1046) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -2821 ((-1046) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -1626 ((-1046) (-227) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -4087 ((-1046) (-227) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -3653 ((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -4323 ((-1046) (-227) (-227) (-572) (-572) (-572) (-572))) (-15 -2948 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))) (-15 -1348 ((-1046) (-697 (-227)) (-697 (-227)) (-572) (-572))) (-15 -4017 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))))) (T -756))
-((-4017 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-1348 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-756)))) (-2948 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-4323 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-756)))) (-3653 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-4087 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-1626 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-2821 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-2732 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-1749 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-756)))) (-1632 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-4427 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) (-5 *2 (-1046)) (-5 *1 (-756)))))
-(-10 -7 (-15 -4427 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -1632 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -1749 ((-1046) (-227) (-227) (-572) (-697 (-227)) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -2732 ((-1046) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))) (-15 -2821 ((-1046) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -1626 ((-1046) (-227) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -4087 ((-1046) (-227) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -3653 ((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -4323 ((-1046) (-227) (-227) (-572) (-572) (-572) (-572))) (-15 -2948 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))) (-15 -1348 ((-1046) (-697 (-227)) (-697 (-227)) (-572) (-572))) (-15 -4017 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))))
-((-3981 (((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-4203 (((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))) (-396) (-396)) 69) (((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1513 (((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG)))) 57)) (-3685 (((-1046) (-697 (-227)) (-697 (-227)) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) 50)) (-1931 (((-1046) (-227) (-572) (-572) (-1170) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2480 (((-1046) (-227) (-572) (-572) (-227) (-1170) (-227) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2674 (((-1046) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) 42)) (-4114 (((-1046) (-227) (-572) (-572) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-757) (-10 -7 (-15 -4114 ((-1046) (-227) (-572) (-572) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -2674 ((-1046) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))) (-15 -2480 ((-1046) (-227) (-572) (-572) (-227) (-1170) (-227) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -1931 ((-1046) (-227) (-572) (-572) (-1170) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -3685 ((-1046) (-697 (-227)) (-697 (-227)) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))) (-15 -1513 ((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG))))) (-15 -4203 ((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))))) (-15 -4203 ((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))) (-396) (-396))) (-15 -3981 ((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -757))
-((-3981 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-4203 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-396)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-4203 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1046)) (-5 *1 (-757)))) (-1513 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-3685 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1046)) (-5 *1 (-757)))) (-1931 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-697 (-227))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-2480 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-697 (-227))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-2674 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-4114 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
-(-10 -7 (-15 -4114 ((-1046) (-227) (-572) (-572) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -2674 ((-1046) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))) (-15 -2480 ((-1046) (-227) (-572) (-572) (-227) (-1170) (-227) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -1931 ((-1046) (-227) (-572) (-572) (-1170) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -3685 ((-1046) (-697 (-227)) (-697 (-227)) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))) (-15 -1513 ((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG))))) (-15 -4203 ((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))))) (-15 -4203 ((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))) (-396) (-396))) (-15 -3981 ((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-3697 (((-1046) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-683 (-227)) (-572)) 45)) (-2400 (((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-1170) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY)))) 41)) (-2915 (((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 23)))
-(((-758) (-10 -7 (-15 -2915 ((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2400 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-1170) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY))))) (-15 -3697 ((-1046) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-683 (-227)) (-572))))) (T -758))
-((-3697 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-683 (-227))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-758)))) (-2400 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1046)) (-5 *1 (-758)))) (-2915 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-758)))))
-(-10 -7 (-15 -2915 ((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2400 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-1170) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY))))) (-15 -3697 ((-1046) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-683 (-227)) (-572))))
-((-2960 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-697 (-227)) (-227) (-227) (-572)) 35)) (-1409 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-227) (-227) (-572)) 34)) (-3624 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-697 (-227)) (-227) (-227) (-572)) 33)) (-4383 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 29)) (-1570 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 28)) (-2711 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572)) 27)) (-3545 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572)) 24)) (-4001 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572)) 23)) (-3772 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572)) 22)) (-4179 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572)) 21)))
-(((-759) (-10 -7 (-15 -4179 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))) (-15 -3772 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4001 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -3545 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -2711 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572))) (-15 -1570 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4383 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3624 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-697 (-227)) (-227) (-227) (-572))) (-15 -1409 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-227) (-227) (-572))) (-15 -2960 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-697 (-227)) (-227) (-227) (-572))))) (T -759))
-((-2960 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-759)))) (-1409 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-759)))) (-3624 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *6 (-227)) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-759)))) (-4383 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-1570 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-2711 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-759)))) (-3545 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-4001 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-3772 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-4179 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))))
-(-10 -7 (-15 -4179 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))) (-15 -3772 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4001 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -3545 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -2711 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572))) (-15 -1570 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4383 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3624 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-697 (-227)) (-227) (-227) (-572))) (-15 -1409 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-227) (-227) (-572))) (-15 -2960 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-697 (-227)) (-227) (-227) (-572))))
-((-2945 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572)) 45)) (-1712 (((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-572)) 44)) (-1688 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572)) 43)) (-1380 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 42)) (-2451 (((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572)) 41)) (-2246 (((-1046) (-1170) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572)) 40)) (-3016 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572) (-572) (-572) (-227) (-697 (-227)) (-572)) 39)) (-4132 (((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572))) 38)) (-3813 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572)) 35)) (-3173 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572)) 34)) (-1909 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572)) 33)) (-1514 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 32)) (-2265 (((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572)) 31)) (-3286 (((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-572)) 30)) (-2412 (((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-572) (-572) (-572)) 29)) (-1660 (((-1046) (-572) (-572) (-572) (-227) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-572)) (-572) (-572) (-572)) 28)) (-3757 (((-1046) (-572) (-697 (-227)) (-227) (-572)) 24)) (-3989 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 21)))
-(((-760) (-10 -7 (-15 -3989 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3757 ((-1046) (-572) (-697 (-227)) (-227) (-572))) (-15 -1660 ((-1046) (-572) (-572) (-572) (-227) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-572)) (-572) (-572) (-572))) (-15 -2412 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-572) (-572) (-572))) (-15 -3286 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-572))) (-15 -2265 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572))) (-15 -1514 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1909 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572))) (-15 -3173 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572))) (-15 -3813 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4132 ((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)))) (-15 -3016 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572) (-572) (-572) (-227) (-697 (-227)) (-572))) (-15 -2246 ((-1046) (-1170) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572))) (-15 -2451 ((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1380 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1688 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))) (-15 -1712 ((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2945 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))))) (T -760))
-((-2945 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1712 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1688 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1380 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2451 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2246 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-227)) (-5 *7 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3016 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *6 (-227)) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-4132 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-227)) (-5 *7 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3813 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3173 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1909 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1514 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2265 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3286 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2412 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1660 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572))) (-5 *3 (-572)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3757 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3989 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))))
-(-10 -7 (-15 -3989 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3757 ((-1046) (-572) (-697 (-227)) (-227) (-572))) (-15 -1660 ((-1046) (-572) (-572) (-572) (-227) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-572)) (-572) (-572) (-572))) (-15 -2412 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-572) (-572) (-572))) (-15 -3286 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-572))) (-15 -2265 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572))) (-15 -1514 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1909 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572))) (-15 -3173 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572))) (-15 -3813 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4132 ((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)))) (-15 -3016 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572) (-572) (-572) (-227) (-697 (-227)) (-572))) (-15 -2246 ((-1046) (-1170) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572))) (-15 -2451 ((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1380 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1688 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))) (-15 -1712 ((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2945 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))))
-((-4310 (((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-572) (-697 (-227)) (-572)) 63)) (-4364 (((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-112) (-227) (-572) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-572) (-572) (-572) (-572) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3495 (((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-112) (-112) (-572) (-572) (-697 (-227)) (-697 (-572)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS)))) 58)) (-2209 (((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-572) (-572) (-697 (-227)) (-572)) 51)) (-2961 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3451 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2)))) 46)) (-1386 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3252 (((-1046) (-572) (-227) (-227) (-572) (-227) (-112) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-761) (-10 -7 (-15 -3252 ((-1046) (-572) (-227) (-227) (-572) (-227) (-112) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))) (-15 -1386 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1))))) (-15 -3451 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2))))) (-15 -2961 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1))))) (-15 -2209 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-572) (-572) (-697 (-227)) (-572))) (-15 -3495 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-112) (-112) (-572) (-572) (-697 (-227)) (-697 (-572)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS))))) (-15 -4364 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-112) (-227) (-572) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-572) (-572) (-572) (-572) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))) (-15 -4310 ((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-572) (-697 (-227)) (-572))))) (T -761))
-((-4310 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))) (-4364 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-697 (-572))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-761)))) (-3495 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-697 (-227))) (-5 *6 (-112)) (-5 *7 (-697 (-572))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-572)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))) (-2209 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-112)) (-5 *2 (-1046)) (-5 *1 (-761)))) (-2961 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1046)) (-5 *1 (-761)))) (-3451 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1046)) (-5 *1 (-761)))) (-1386 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1046)) (-5 *1 (-761)))) (-3252 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-572)) (-5 *5 (-112)) (-5 *6 (-697 (-227))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))))
-(-10 -7 (-15 -3252 ((-1046) (-572) (-227) (-227) (-572) (-227) (-112) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))) (-15 -1386 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1))))) (-15 -3451 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2))))) (-15 -2961 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1))))) (-15 -2209 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-572) (-572) (-697 (-227)) (-572))) (-15 -3495 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-112) (-112) (-572) (-572) (-697 (-227)) (-697 (-572)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS))))) (-15 -4364 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-112) (-227) (-572) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-572) (-572) (-572) (-572) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))) (-15 -4310 ((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-572) (-697 (-227)) (-572))))
-((-2702 (((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572)) 47)) (-1363 (((-1046) (-1170) (-1170) (-572) (-572) (-697 (-171 (-227))) (-572) (-697 (-171 (-227))) (-572) (-572) (-697 (-171 (-227))) (-572)) 46)) (-1387 (((-1046) (-572) (-572) (-572) (-697 (-171 (-227))) (-572)) 45)) (-3877 (((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 40)) (-4240 (((-1046) (-1170) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)) (-572)) 39)) (-1535 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-572)) 36)) (-3486 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572)) 35)) (-2024 (((-1046) (-572) (-572) (-572) (-572) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-227) (-227) (-572)) 34)) (-2809 (((-1046) (-572) (-572) (-572) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-112) (-227) (-112) (-697 (-572)) (-697 (-227)) (-572)) 33)) (-1666 (((-1046) (-572) (-572) (-572) (-572) (-227) (-112) (-112) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-572)) 32)))
-(((-762) (-10 -7 (-15 -1666 ((-1046) (-572) (-572) (-572) (-572) (-227) (-112) (-112) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-572))) (-15 -2809 ((-1046) (-572) (-572) (-572) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-112) (-227) (-112) (-697 (-572)) (-697 (-227)) (-572))) (-15 -2024 ((-1046) (-572) (-572) (-572) (-572) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-227) (-227) (-572))) (-15 -3486 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572))) (-15 -1535 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-572))) (-15 -4240 ((-1046) (-1170) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)) (-572))) (-15 -3877 ((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1387 ((-1046) (-572) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -1363 ((-1046) (-1170) (-1170) (-572) (-572) (-697 (-171 (-227))) (-572) (-697 (-171 (-227))) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -2702 ((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572))))) (T -762))
-((-2702 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-1363 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-1387 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-3877 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-4240 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-1535 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-3486 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-762)))) (-2024 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-652 (-112))) (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572))) (-5 *7 (-227)) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-762)))) (-2809 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-697 (-572))) (-5 *5 (-112)) (-5 *7 (-697 (-227))) (-5 *3 (-572)) (-5 *6 (-227)) (-5 *2 (-1046)) (-5 *1 (-762)))) (-1666 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-652 (-112))) (-5 *7 (-697 (-227))) (-5 *8 (-697 (-572))) (-5 *3 (-572)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1046)) (-5 *1 (-762)))))
-(-10 -7 (-15 -1666 ((-1046) (-572) (-572) (-572) (-572) (-227) (-112) (-112) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-572))) (-15 -2809 ((-1046) (-572) (-572) (-572) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-112) (-227) (-112) (-697 (-572)) (-697 (-227)) (-572))) (-15 -2024 ((-1046) (-572) (-572) (-572) (-572) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-227) (-227) (-572))) (-15 -3486 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572))) (-15 -1535 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-572))) (-15 -4240 ((-1046) (-1170) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)) (-572))) (-15 -3877 ((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1387 ((-1046) (-572) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -1363 ((-1046) (-1170) (-1170) (-572) (-572) (-697 (-171 (-227))) (-572) (-697 (-171 (-227))) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -2702 ((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572))))
-((-3490 (((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572)) 79)) (-1977 (((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572)) 68)) (-4143 (((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))) (-396)) 56) (((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) 55)) (-3028 (((-1046) (-572) (-572) (-572) (-227) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572)) 37)) (-3023 (((-1046) (-572) (-572) (-227) (-227) (-572) (-572) (-697 (-227)) (-572)) 33)) (-3587 (((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572) (-572)) 30)) (-2600 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 29)) (-2447 (((-1046) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 28)) (-1726 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 27)) (-4354 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572)) 26)) (-1840 (((-1046) (-572) (-572) (-697 (-227)) (-572)) 25)) (-3424 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 24)) (-4047 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 23)) (-3361 (((-1046) (-697 (-227)) (-572) (-572) (-572) (-572)) 22)) (-3593 (((-1046) (-572) (-572) (-697 (-227)) (-572)) 21)))
-(((-763) (-10 -7 (-15 -3593 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -3361 ((-1046) (-697 (-227)) (-572) (-572) (-572) (-572))) (-15 -4047 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3424 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1840 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -4354 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572))) (-15 -1726 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2447 ((-1046) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2600 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3587 ((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572) (-572))) (-15 -3023 ((-1046) (-572) (-572) (-227) (-227) (-572) (-572) (-697 (-227)) (-572))) (-15 -3028 ((-1046) (-572) (-572) (-572) (-227) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4143 ((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))))) (-15 -4143 ((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))) (-396))) (-15 -1977 ((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3490 ((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572))))) (T -763))
-((-3490 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-112)) (-5 *5 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-1977 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-112)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-4143 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-396)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-4143 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3028 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-572)) (-5 *5 (-112)) (-5 *6 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3023 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3587 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-2600 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-2447 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-1726 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-4354 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-1840 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3424 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-4047 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3361 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3593 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))))
-(-10 -7 (-15 -3593 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -3361 ((-1046) (-697 (-227)) (-572) (-572) (-572) (-572))) (-15 -4047 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3424 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1840 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -4354 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572))) (-15 -1726 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2447 ((-1046) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2600 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3587 ((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572) (-572))) (-15 -3023 ((-1046) (-572) (-572) (-227) (-227) (-572) (-572) (-697 (-227)) (-572))) (-15 -3028 ((-1046) (-572) (-572) (-572) (-227) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4143 ((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))))) (-15 -4143 ((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))) (-396))) (-15 -1977 ((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3490 ((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572))))
-((-3274 (((-1046) (-572) (-572) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD)))) 64)) (-1925 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572)) 60)) (-3412 (((-1046) (-572) (-697 (-227)) (-112) (-227) (-572) (-572) (-572) (-572) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3360 (((-1046) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572)) 37)) (-2463 (((-1046) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-572)) 36)) (-3646 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 33)) (-3317 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227))) 32)) (-3321 (((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572)) 28)) (-2112 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572)) 27)) (-2023 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572)) 26)) (-3047 (((-1046) (-572) (-697 (-171 (-227))) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-572)) 22)))
-(((-764) (-10 -7 (-15 -3047 ((-1046) (-572) (-697 (-171 (-227))) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -2023 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -2112 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -3321 ((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572))) (-15 -3317 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)))) (-15 -3646 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2463 ((-1046) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3360 ((-1046) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572))) (-15 -3412 ((-1046) (-572) (-697 (-227)) (-112) (-227) (-572) (-572) (-572) (-572) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE))))) (-15 -1925 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572))) (-15 -3274 ((-1046) (-572) (-572) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD))))))) (T -764))
-((-3274 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-1925 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-3412 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1046)) (-5 *1 (-764)))) (-3360 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2463 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-3646 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-764)))) (-3317 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-3321 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2112 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2023 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-764)))) (-3047 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-764)))))
-(-10 -7 (-15 -3047 ((-1046) (-572) (-697 (-171 (-227))) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -2023 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -2112 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -3321 ((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572))) (-15 -3317 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)))) (-15 -3646 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2463 ((-1046) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3360 ((-1046) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572))) (-15 -3412 ((-1046) (-572) (-697 (-227)) (-112) (-227) (-572) (-572) (-572) (-572) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE))))) (-15 -1925 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572))) (-15 -3274 ((-1046) (-572) (-572) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD))))))
-((-1668 (((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-572) (-697 (-227))) 29)) (-3526 (((-1046) (-1170) (-572) (-572) (-697 (-227))) 28)) (-3291 (((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-227))) 27)) (-3944 (((-1046) (-572) (-572) (-572) (-697 (-227))) 21)))
-(((-765) (-10 -7 (-15 -3944 ((-1046) (-572) (-572) (-572) (-697 (-227)))) (-15 -3291 ((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-227)))) (-15 -3526 ((-1046) (-1170) (-572) (-572) (-697 (-227)))) (-15 -1668 ((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)))))) (T -765))
-((-1668 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-765)))) (-3526 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-765)))) (-3291 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-765)))) (-3944 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-765)))))
-(-10 -7 (-15 -3944 ((-1046) (-572) (-572) (-572) (-697 (-227)))) (-15 -3291 ((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-227)))) (-15 -3526 ((-1046) (-1170) (-572) (-572) (-697 (-227)))) (-15 -1668 ((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)))))
-((-2606 (((-1046) (-227) (-227) (-227) (-227) (-572)) 62)) (-3615 (((-1046) (-227) (-227) (-227) (-572)) 61)) (-3346 (((-1046) (-227) (-227) (-227) (-572)) 60)) (-1359 (((-1046) (-227) (-227) (-572)) 59)) (-2407 (((-1046) (-227) (-572)) 58)) (-1421 (((-1046) (-227) (-572)) 57)) (-3464 (((-1046) (-227) (-572)) 56)) (-3689 (((-1046) (-227) (-572)) 55)) (-2765 (((-1046) (-227) (-572)) 54)) (-3359 (((-1046) (-227) (-572)) 53)) (-3773 (((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572)) 52)) (-2751 (((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572)) 51)) (-3783 (((-1046) (-227) (-572)) 50)) (-2629 (((-1046) (-227) (-572)) 49)) (-1997 (((-1046) (-227) (-572)) 48)) (-1936 (((-1046) (-227) (-572)) 47)) (-4290 (((-1046) (-572) (-227) (-171 (-227)) (-572) (-1170) (-572)) 46)) (-2559 (((-1046) (-1170) (-171 (-227)) (-1170) (-572)) 45)) (-3056 (((-1046) (-1170) (-171 (-227)) (-1170) (-572)) 44)) (-3441 (((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572)) 43)) (-2181 (((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572)) 42)) (-3328 (((-1046) (-227) (-572)) 39)) (-1622 (((-1046) (-227) (-572)) 38)) (-2943 (((-1046) (-227) (-572)) 37)) (-1615 (((-1046) (-227) (-572)) 36)) (-3562 (((-1046) (-227) (-572)) 35)) (-2839 (((-1046) (-227) (-572)) 34)) (-1827 (((-1046) (-227) (-572)) 33)) (-2084 (((-1046) (-227) (-572)) 32)) (-2966 (((-1046) (-227) (-572)) 31)) (-2161 (((-1046) (-227) (-572)) 30)) (-2763 (((-1046) (-227) (-227) (-227) (-572)) 29)) (-2492 (((-1046) (-227) (-572)) 28)) (-2367 (((-1046) (-227) (-572)) 27)) (-1518 (((-1046) (-227) (-572)) 26)) (-3114 (((-1046) (-227) (-572)) 25)) (-1396 (((-1046) (-227) (-572)) 24)) (-2415 (((-1046) (-171 (-227)) (-572)) 21)))
-(((-766) (-10 -7 (-15 -2415 ((-1046) (-171 (-227)) (-572))) (-15 -1396 ((-1046) (-227) (-572))) (-15 -3114 ((-1046) (-227) (-572))) (-15 -1518 ((-1046) (-227) (-572))) (-15 -2367 ((-1046) (-227) (-572))) (-15 -2492 ((-1046) (-227) (-572))) (-15 -2763 ((-1046) (-227) (-227) (-227) (-572))) (-15 -2161 ((-1046) (-227) (-572))) (-15 -2966 ((-1046) (-227) (-572))) (-15 -2084 ((-1046) (-227) (-572))) (-15 -1827 ((-1046) (-227) (-572))) (-15 -2839 ((-1046) (-227) (-572))) (-15 -3562 ((-1046) (-227) (-572))) (-15 -1615 ((-1046) (-227) (-572))) (-15 -2943 ((-1046) (-227) (-572))) (-15 -1622 ((-1046) (-227) (-572))) (-15 -3328 ((-1046) (-227) (-572))) (-15 -2181 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3441 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3056 ((-1046) (-1170) (-171 (-227)) (-1170) (-572))) (-15 -2559 ((-1046) (-1170) (-171 (-227)) (-1170) (-572))) (-15 -4290 ((-1046) (-572) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -1936 ((-1046) (-227) (-572))) (-15 -1997 ((-1046) (-227) (-572))) (-15 -2629 ((-1046) (-227) (-572))) (-15 -3783 ((-1046) (-227) (-572))) (-15 -2751 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3773 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3359 ((-1046) (-227) (-572))) (-15 -2765 ((-1046) (-227) (-572))) (-15 -3689 ((-1046) (-227) (-572))) (-15 -3464 ((-1046) (-227) (-572))) (-15 -1421 ((-1046) (-227) (-572))) (-15 -2407 ((-1046) (-227) (-572))) (-15 -1359 ((-1046) (-227) (-227) (-572))) (-15 -3346 ((-1046) (-227) (-227) (-227) (-572))) (-15 -3615 ((-1046) (-227) (-227) (-227) (-572))) (-15 -2606 ((-1046) (-227) (-227) (-227) (-227) (-572))))) (T -766))
-((-2606 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3615 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3346 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1359 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3464 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2765 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3773 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170)) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2751 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170)) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-4290 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-572)) (-5 *5 (-171 (-227))) (-5 *6 (-1170)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2559 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1170)) (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3056 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1170)) (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3441 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170)) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2181 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170)) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3328 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2943 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1615 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2084 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2966 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2161 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2763 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1396 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(-10 -7 (-15 -2415 ((-1046) (-171 (-227)) (-572))) (-15 -1396 ((-1046) (-227) (-572))) (-15 -3114 ((-1046) (-227) (-572))) (-15 -1518 ((-1046) (-227) (-572))) (-15 -2367 ((-1046) (-227) (-572))) (-15 -2492 ((-1046) (-227) (-572))) (-15 -2763 ((-1046) (-227) (-227) (-227) (-572))) (-15 -2161 ((-1046) (-227) (-572))) (-15 -2966 ((-1046) (-227) (-572))) (-15 -2084 ((-1046) (-227) (-572))) (-15 -1827 ((-1046) (-227) (-572))) (-15 -2839 ((-1046) (-227) (-572))) (-15 -3562 ((-1046) (-227) (-572))) (-15 -1615 ((-1046) (-227) (-572))) (-15 -2943 ((-1046) (-227) (-572))) (-15 -1622 ((-1046) (-227) (-572))) (-15 -3328 ((-1046) (-227) (-572))) (-15 -2181 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3441 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3056 ((-1046) (-1170) (-171 (-227)) (-1170) (-572))) (-15 -2559 ((-1046) (-1170) (-171 (-227)) (-1170) (-572))) (-15 -4290 ((-1046) (-572) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -1936 ((-1046) (-227) (-572))) (-15 -1997 ((-1046) (-227) (-572))) (-15 -2629 ((-1046) (-227) (-572))) (-15 -3783 ((-1046) (-227) (-572))) (-15 -2751 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3773 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3359 ((-1046) (-227) (-572))) (-15 -2765 ((-1046) (-227) (-572))) (-15 -3689 ((-1046) (-227) (-572))) (-15 -3464 ((-1046) (-227) (-572))) (-15 -1421 ((-1046) (-227) (-572))) (-15 -2407 ((-1046) (-227) (-572))) (-15 -1359 ((-1046) (-227) (-227) (-572))) (-15 -3346 ((-1046) (-227) (-227) (-227) (-572))) (-15 -3615 ((-1046) (-227) (-227) (-227) (-572))) (-15 -2606 ((-1046) (-227) (-227) (-227) (-227) (-572))))
-((-2228 (((-1284)) 20)) (-4044 (((-1170)) 31)) (-2837 (((-1170)) 30)) (-3296 (((-1115) (-1188) (-697 (-572))) 45) (((-1115) (-1188) (-697 (-227))) 41)) (-3683 (((-112)) 19)) (-3740 (((-1170) (-1170)) 34)))
-(((-767) (-10 -7 (-15 -2837 ((-1170))) (-15 -4044 ((-1170))) (-15 -3740 ((-1170) (-1170))) (-15 -3296 ((-1115) (-1188) (-697 (-227)))) (-15 -3296 ((-1115) (-1188) (-697 (-572)))) (-15 -3683 ((-112))) (-15 -2228 ((-1284))))) (T -767))
-((-2228 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-767)))) (-3683 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-767)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-697 (-572))) (-5 *2 (-1115)) (-5 *1 (-767)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-697 (-227))) (-5 *2 (-1115)) (-5 *1 (-767)))) (-3740 (*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))) (-4044 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))) (-2837 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))))
-(-10 -7 (-15 -2837 ((-1170))) (-15 -4044 ((-1170))) (-15 -3740 ((-1170) (-1170))) (-15 -3296 ((-1115) (-1188) (-697 (-227)))) (-15 -3296 ((-1115) (-1188) (-697 (-572)))) (-15 -3683 ((-112))) (-15 -2228 ((-1284))))
-((-4326 (($ $ $) 10)) (-2266 (($ $ $ $) 9)) (-3099 (($ $ $) 12)))
-(((-768 |#1|) (-10 -8 (-15 -3099 (|#1| |#1| |#1|)) (-15 -4326 (|#1| |#1| |#1|)) (-15 -2266 (|#1| |#1| |#1| |#1|))) (-769)) (T -768))
-NIL
-(-10 -8 (-15 -3099 (|#1| |#1| |#1|)) (-15 -4326 (|#1| |#1| |#1|)) (-15 -2266 (|#1| |#1| |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2673 (($ $ (-930)) 31)) (-1858 (($ $ (-930)) 32)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-4326 (($ $ $) 28)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2266 (($ $ $ $) 29)) (-3099 (($ $ $) 27)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 33)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30)))
-(((-769) (-141)) (T -769))
-((-2266 (*1 *1 *1 *1 *1) (-4 *1 (-769))) (-4326 (*1 *1 *1 *1) (-4 *1 (-769))) (-3099 (*1 *1 *1 *1) (-4 *1 (-769))))
-(-13 (-21) (-728) (-10 -8 (-15 -2266 ($ $ $ $)) (-15 -4326 ($ $ $)) (-15 -3099 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-728) . T) ((-1111) . T))
-((-2940 (((-870) $) NIL) (($ (-572)) 10)))
-(((-770 |#1|) (-10 -8 (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|))) (-771)) (T -770))
-NIL
-(-10 -8 (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4147 (((-3 $ "failed") $) 43)) (-2673 (($ $ (-930)) 31) (($ $ (-779)) 38)) (-2062 (((-3 $ "failed") $) 41)) (-1886 (((-112) $) 37)) (-1353 (((-3 $ "failed") $) 42)) (-1858 (($ $ (-930)) 32) (($ $ (-779)) 39)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-4326 (($ $ $) 28)) (-2940 (((-870) $) 12) (($ (-572)) 34)) (-4249 (((-779)) 35 T CONST)) (-4379 (((-112) $ $) 9)) (-2266 (($ $ $ $) 29)) (-3099 (($ $ $) 27)) (-2131 (($) 19 T CONST)) (-2143 (($) 36 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 33) (($ $ (-779)) 40)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30)))
+((* (*1 *1 *1 *1) (-4 *1 (-730))) (-2652 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932)))))
+(-13 (-1113) (-10 -8 (-15 * ($ $ $)) (-15 -2652 ($ $ (-932))) (-15 -3702 ($ $ (-932))) (-15 ** ($ $ (-932)))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2652 (($ $ (-932)) NIL) (($ $ (-781)) 18)) (-3965 (((-112) $) 10)) (-3702 (($ $ (-932)) NIL) (($ $ (-781)) 19)) (** (($ $ (-932)) NIL) (($ $ (-781)) 16)))
+(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -3702 (|#1| |#1| (-781))) (-15 -2652 (|#1| |#1| (-781))) (-15 -3965 ((-112) |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 -3702 (|#1| |#1| (-932))) (-15 -2652 (|#1| |#1| (-932)))) (-732)) (T -731))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -3702 (|#1| |#1| (-781))) (-15 -2652 (|#1| |#1| (-781))) (-15 -3965 ((-112) |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 -3702 (|#1| |#1| (-932))) (-15 -2652 (|#1| |#1| (-932))))
+((-2849 (((-112) $ $) 7)) (-4369 (((-3 $ "failed") $) 18)) (-2652 (($ $ (-932)) 16) (($ $ (-781)) 23)) (-1950 (((-3 $ "failed") $) 20)) (-3965 (((-112) $) 24)) (-1792 (((-3 $ "failed") $) 19)) (-3702 (($ $ (-932)) 15) (($ $ (-781)) 22)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2146 (($) 25 T CONST)) (-2982 (((-112) $ $) 6)) (** (($ $ (-932)) 14) (($ $ (-781)) 21)) (* (($ $ $) 17)))
+(((-732) (-141)) (T -732))
+((-2146 (*1 *1) (-4 *1 (-732))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) (-2652 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-1950 (*1 *1 *1) (|partial| -4 *1 (-732))) (-1792 (*1 *1 *1) (|partial| -4 *1 (-732))) (-4369 (*1 *1 *1) (|partial| -4 *1 (-732))))
+(-13 (-730) (-10 -8 (-15 (-2146) ($) -1707) (-15 -3965 ((-112) $)) (-15 -2652 ($ $ (-781))) (-15 -3702 ($ $ (-781))) (-15 ** ($ $ (-781))) (-15 -1950 ((-3 $ "failed") $)) (-15 -1792 ((-3 $ "failed") $)) (-15 -4369 ((-3 $ "failed") $))))
+(((-102) . T) ((-623 (-872)) . T) ((-730) . T) ((-1113) . T))
+((-1487 (((-781)) 39)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2209 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 23)) (-2868 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) 49)) (-1950 (((-3 $ "failed") $) 69)) (-2820 (($) 43)) (-1652 ((|#2| $) 21)) (-2970 (($) 18)) (-3905 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-1437 (((-699 |#2|) (-1281 $) (-1 |#2| |#2|)) 64)) (-1837 (((-1281 |#2|) $) NIL) (($ (-1281 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4169 ((|#3| $) 36)) (-2722 (((-1281 $)) 33)))
+(((-733 |#1| |#2| |#3|) (-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -2820 (|#1|)) (-15 -1487 ((-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -1437 ((-699 |#2|) (-1281 |#1|) (-1 |#2| |#2|))) (-15 -2868 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1837 (|#1| |#3|)) (-15 -2868 (|#1| |#3|)) (-15 -2970 (|#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -1837 (|#3| |#1|)) (-15 -1837 (|#1| (-1281 |#2|))) (-15 -1837 ((-1281 |#2|) |#1|)) (-15 -2722 ((-1281 |#1|))) (-15 -4169 (|#3| |#1|)) (-15 -1652 (|#2| |#1|)) (-15 -1950 ((-3 |#1| "failed") |#1|))) (-734 |#2| |#3|) (-174) (-1257 |#2|)) (T -733))
+((-1487 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-781)) (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5)))))
+(-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -2820 (|#1|)) (-15 -1487 ((-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -1437 ((-699 |#2|) (-1281 |#1|) (-1 |#2| |#2|))) (-15 -2868 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1837 (|#1| |#3|)) (-15 -2868 (|#1| |#3|)) (-15 -2970 (|#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -1837 (|#3| |#1|)) (-15 -1837 (|#1| (-1281 |#2|))) (-15 -1837 ((-1281 |#2|) |#1|)) (-15 -2722 ((-1281 |#1|))) (-15 -4169 (|#3| |#1|)) (-15 -1652 (|#2| |#1|)) (-15 -1950 ((-3 |#1| "failed") |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 103 (|has| |#1| (-372)))) (-2814 (($ $) 104 (|has| |#1| (-372)))) (-2425 (((-112) $) 106 (|has| |#1| (-372)))) (-2762 (((-699 |#1|) (-1281 $)) 53) (((-699 |#1|)) 68)) (-1637 ((|#1| $) 59)) (-1340 (((-1203 (-932) (-781)) (-574)) 156 (|has| |#1| (-358)))) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 123 (|has| |#1| (-372)))) (-3440 (((-428 $) $) 124 (|has| |#1| (-372)))) (-3875 (((-112) $ $) 114 (|has| |#1| (-372)))) (-1487 (((-781)) 97 (|has| |#1| (-377)))) (-3670 (($) 18 T CONST)) (-1697 (((-3 (-574) "failed") $) 181 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 176)) (-2209 (((-574) $) 180 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 178 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 177)) (-3003 (($ (-1281 |#1|) (-1281 $)) 55) (($ (-1281 |#1|)) 71)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-358)))) (-2785 (($ $ $) 118 (|has| |#1| (-372)))) (-2085 (((-699 |#1|) $ (-1281 $)) 60) (((-699 |#1|) $) 66)) (-2668 (((-699 (-574)) (-1281 $)) 175 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 173 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 172) (((-699 |#1|) (-699 $)) 171) (((-699 |#1|) (-1281 $)) 170)) (-2868 (($ |#2|) 167) (((-3 $ "failed") (-417 |#2|)) 164 (|has| |#1| (-372)))) (-1950 (((-3 $ "failed") $) 37)) (-3584 (((-932)) 61)) (-2820 (($) 100 (|has| |#1| (-377)))) (-2798 (($ $ $) 117 (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 112 (|has| |#1| (-372)))) (-3906 (($) 158 (|has| |#1| (-358)))) (-2878 (((-112) $) 159 (|has| |#1| (-358)))) (-3564 (($ $ (-781)) 150 (|has| |#1| (-358))) (($ $) 149 (|has| |#1| (-358)))) (-1654 (((-112) $) 125 (|has| |#1| (-372)))) (-3593 (((-932) $) 161 (|has| |#1| (-358))) (((-843 (-932)) $) 147 (|has| |#1| (-358)))) (-3965 (((-112) $) 35)) (-1652 ((|#1| $) 58)) (-4048 (((-3 $ "failed") $) 151 (|has| |#1| (-358)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| |#1| (-372)))) (-3190 ((|#2| $) 51 (|has| |#1| (-372)))) (-2565 (((-932) $) 99 (|has| |#1| (-377)))) (-2854 ((|#2| $) 165)) (-2834 (($ (-654 $)) 110 (|has| |#1| (-372))) (($ $ $) 109 (|has| |#1| (-372)))) (-2568 (((-1172) $) 10)) (-1324 (($ $) 126 (|has| |#1| (-372)))) (-3818 (($) 152 (|has| |#1| (-358)) CONST)) (-2576 (($ (-932)) 98 (|has| |#1| (-377)))) (-3966 (((-1133) $) 11)) (-2970 (($) 169)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 111 (|has| |#1| (-372)))) (-2874 (($ (-654 $)) 108 (|has| |#1| (-372))) (($ $ $) 107 (|has| |#1| (-372)))) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) 155 (|has| |#1| (-358)))) (-4220 (((-428 $) $) 122 (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 119 (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ $) 102 (|has| |#1| (-372)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| |#1| (-372)))) (-1347 (((-781) $) 115 (|has| |#1| (-372)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 116 (|has| |#1| (-372)))) (-1415 ((|#1| (-1281 $)) 54) ((|#1|) 67)) (-3232 (((-781) $) 160 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 148 (|has| |#1| (-358)))) (-3905 (($ $) 145 (-2818 (-2088 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-781)) 144 (-2818 (-2088 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1190)) 142 (-2088 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-654 (-1190))) 141 (-2088 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-1190) (-781)) 140 (-2088 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 (-781))) 139 (-2088 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 132 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 131 (|has| |#1| (-372)))) (-1437 (((-699 |#1|) (-1281 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-372)))) (-1782 ((|#2|) 168)) (-2585 (($) 157 (|has| |#1| (-358)))) (-3676 (((-1281 |#1|) $ (-1281 $)) 57) (((-699 |#1|) (-1281 $) (-1281 $)) 56) (((-1281 |#1|) $) 73) (((-699 |#1|) (-1281 $)) 72)) (-1837 (((-1281 |#1|) $) 70) (($ (-1281 |#1|)) 69) ((|#2| $) 182) (($ |#2|) 166)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 154 (|has| |#1| (-358)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ $) 101 (|has| |#1| (-372))) (($ (-417 (-574))) 96 (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574))))))) (-1369 (($ $) 153 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4169 ((|#2| $) 52)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2722 (((-1281 $)) 74)) (-3798 (((-112) $ $) 105 (|has| |#1| (-372)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $) 146 (-2818 (-2088 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-781)) 143 (-2818 (-2088 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1190)) 138 (-2088 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-654 (-1190))) 137 (-2088 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-1190) (-781)) 136 (-2088 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 (-781))) 135 (-2088 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 134 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 133 (|has| |#1| (-372)))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 130 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 127 (|has| |#1| (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 129 (|has| |#1| (-372))) (($ $ (-417 (-574))) 128 (|has| |#1| (-372)))))
+(((-734 |#1| |#2|) (-141) (-174) (-1257 |t#1|)) (T -734))
+((-2970 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1257 *2)))) (-1782 (*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3)))) (-2868 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1257 *3)))) (-1837 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1257 *3)))) (-2854 (*1 *2 *1) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3)))) (-2868 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-372)) (-4 *3 (-174)) (-4 *1 (-734 *3 *4)))) (-1437 (*1 *2 *3 *4) (-12 (-5 *3 (-1281 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1257 *5)) (-5 *2 (-699 *5)))))
+(-13 (-419 |t#1| |t#2|) (-174) (-624 |t#2|) (-421 |t#1|) (-386 |t#1|) (-10 -8 (-15 -2970 ($)) (-15 -1782 (|t#2|)) (-15 -2868 ($ |t#2|)) (-15 -1837 ($ |t#2|)) (-15 -2854 (|t#2| $)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-6 (-233 |t#1|)) (-15 -2868 ((-3 $ "failed") (-417 |t#2|))) (-15 -1437 ((-699 |t#1|) (-1281 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-102) . T) ((-111 #0# #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#2|) . T) ((-235 $) -2818 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-233 |#1|) |has| |#1| (-372)) ((-239) -2818 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-249) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-298) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-315) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-372) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2818 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| |#2|) . T) ((-419 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-566) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190)))) ((-931) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-358)) ((-1231) -2818 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-1235) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))))
+((-3670 (($) 11)) (-1950 (((-3 $ "failed") $) 14)) (-3965 (((-112) $) 10)) (** (($ $ (-932)) NIL) (($ $ (-781)) 20)))
+(((-735 |#1|) (-10 -8 (-15 -1950 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -3965 ((-112) |#1|)) (-15 -3670 (|#1|)) (-15 ** (|#1| |#1| (-932)))) (-736)) (T -735))
+NIL
+(-10 -8 (-15 -1950 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -3965 ((-112) |#1|)) (-15 -3670 (|#1|)) (-15 ** (|#1| |#1| (-932))))
+((-2849 (((-112) $ $) 7)) (-3670 (($) 19 T CONST)) (-1950 (((-3 $ "failed") $) 16)) (-3965 (((-112) $) 18)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2146 (($) 20 T CONST)) (-2982 (((-112) $ $) 6)) (** (($ $ (-932)) 14) (($ $ (-781)) 17)) (* (($ $ $) 15)))
+(((-736) (-141)) (T -736))
+((-2146 (*1 *1) (-4 *1 (-736))) (-3670 (*1 *1) (-4 *1 (-736))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781)))) (-1950 (*1 *1 *1) (|partial| -4 *1 (-736))))
+(-13 (-1125) (-10 -8 (-15 (-2146) ($) -1707) (-15 -3670 ($) -1707) (-15 -3965 ((-112) $)) (-15 ** ($ $ (-781))) (-15 -1950 ((-3 $ "failed") $))))
+(((-102) . T) ((-623 (-872)) . T) ((-1125) . T) ((-1113) . T))
+((-1705 (((-2 (|:| -1360 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-1483 (((-2 (|:| -1360 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1633 ((|#2| (-417 |#2|) (-1 |#2| |#2|)) 13)) (-1650 (((-2 (|:| |poly| |#2|) (|:| -1360 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)) 48)))
+(((-737 |#1| |#2|) (-10 -7 (-15 -1483 ((-2 (|:| -1360 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1705 ((-2 (|:| -1360 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1633 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -1650 ((-2 (|:| |poly| |#2|) (|:| -1360 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1257 |#1|)) (T -737))
+((-1650 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1360 (-417 *6)) (|:| |special| (-417 *6)))) (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1257 *5)) (-5 *1 (-737 *5 *2)) (-4 *5 (-372)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1360 (-428 *3)) (|:| |special| (-428 *3)))) (-5 *1 (-737 *5 *3)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1360 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3)))))
+(-10 -7 (-15 -1483 ((-2 (|:| -1360 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1705 ((-2 (|:| -1360 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1633 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -1650 ((-2 (|:| |poly| |#2|) (|:| -1360 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|))))
+((-1339 ((|#7| (-654 |#5|) |#6|) NIL)) (-1778 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-738 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1778 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1339 (|#7| (-654 |#5|) |#6|))) (-860) (-803) (-803) (-1062) (-1062) (-960 |#4| |#2| |#1|) (-960 |#5| |#3| |#1|)) (T -738))
+((-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *9)) (-4 *9 (-1062)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-1062)) (-4 *2 (-960 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-960 *8 *6 *5)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1062)) (-4 *9 (-1062)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-960 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-960 *8 *6 *5)))))
+(-10 -7 (-15 -1778 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1339 (|#7| (-654 |#5|) |#6|)))
+((-1778 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-739 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1778 (|#7| (-1 |#2| |#1|) |#6|))) (-860) (-860) (-803) (-803) (-1062) (-960 |#5| |#3| |#1|) (-960 |#5| |#4| |#2|)) (T -739))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803)) (-4 *9 (-1062)) (-4 *2 (-960 *9 *8 *6)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803)) (-4 *4 (-960 *9 *7 *5)))))
+(-10 -7 (-15 -1778 (|#7| (-1 |#2| |#1|) |#6|)))
+((-4220 (((-428 |#4|) |#4|) 42)))
+(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190))))) (-315) (-960 (-963 |#3|) |#1| |#2|)) (T -740))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190)))))) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-960 (-963 *6) *4 *5)))))
+(-10 -7 (-15 -4220 ((-428 |#4|) |#4|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-874 |#1|)) $) NIL)) (-4194 (((-1186 $) $ (-874 |#1|)) NIL) (((-1186 |#2|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2814 (($ $) NIL (|has| |#2| (-566)))) (-2425 (((-112) $) NIL (|has| |#2| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4348 (($ $) NIL (|has| |#2| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2209 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-874 |#1|) $) NIL)) (-2800 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-1392 (($ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#2| (-920)))) (-3157 (($ $ |#2| (-541 (-874 |#1|)) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4345 (($ (-1186 |#2|) (-874 |#1|)) NIL) (($ (-1186 $) (-874 |#1|)) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#2| (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-874 |#1|)) NIL)) (-2382 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1541 (($ (-1 (-541 (-874 |#1|)) (-541 (-874 |#1|))) $) NIL)) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-4045 (((-3 (-874 |#1|) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2568 (((-1172) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2524 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#2| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-1415 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-1784 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1607 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ $) NIL (|has| |#2| (-566))) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))))) (-3123 (((-654 |#2|) $) NIL)) (-3344 ((|#2| $ (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-741 |#1| |#2|) (-960 |#2| (-541 (-874 |#1|)) (-874 |#1|)) (-654 (-1190)) (-1062)) (T -741))
+NIL
+(-960 |#2| (-541 (-874 |#1|)) (-874 |#1|))
+((-2082 (((-2 (|:| -1854 (-963 |#3|)) (|:| -3361 (-963 |#3|))) |#4|) 14)) (-3134 ((|#4| |#4| |#2|) 33)) (-2174 ((|#4| (-417 (-963 |#3|)) |#2|) 64)) (-2355 ((|#4| (-1186 (-963 |#3|)) |#2|) 77)) (-4380 ((|#4| (-1186 |#4|) |#2|) 51)) (-3407 ((|#4| |#4| |#2|) 54)) (-4220 (((-428 |#4|) |#4|) 40)))
+(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 ((-2 (|:| -1854 (-963 |#3|)) (|:| -3361 (-963 |#3|))) |#4|)) (-15 -3407 (|#4| |#4| |#2|)) (-15 -4380 (|#4| (-1186 |#4|) |#2|)) (-15 -3134 (|#4| |#4| |#2|)) (-15 -2355 (|#4| (-1186 (-963 |#3|)) |#2|)) (-15 -2174 (|#4| (-417 (-963 |#3|)) |#2|)) (-15 -4220 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)))) (-566) (-960 (-417 (-963 |#3|)) |#1| |#2|)) (T -742))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))) (-4 *6 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-960 (-417 (-963 *6)) *4 *5)))) (-2174 (*1 *2 *3 *4) (-12 (-4 *6 (-566)) (-4 *2 (-960 *3 *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-963 *6))) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 (-963 *6))) (-4 *6 (-566)) (-4 *2 (-960 (-417 (-963 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))))) (-3134 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-960 (-417 (-963 *5)) *4 *3)))) (-4380 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *2)) (-4 *2 (-960 (-417 (-963 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))) (-4 *6 (-566)))) (-3407 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-960 (-417 (-963 *5)) *4 *3)))) (-2082 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))) (-4 *6 (-566)) (-5 *2 (-2 (|:| -1854 (-963 *6)) (|:| -3361 (-963 *6)))) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-960 (-417 (-963 *6)) *4 *5)))))
+(-10 -7 (-15 -2082 ((-2 (|:| -1854 (-963 |#3|)) (|:| -3361 (-963 |#3|))) |#4|)) (-15 -3407 (|#4| |#4| |#2|)) (-15 -4380 (|#4| (-1186 |#4|) |#2|)) (-15 -3134 (|#4| |#4| |#2|)) (-15 -2355 (|#4| (-1186 (-963 |#3|)) |#2|)) (-15 -2174 (|#4| (-417 (-963 |#3|)) |#2|)) (-15 -4220 ((-428 |#4|) |#4|)))
+((-4220 (((-428 |#4|) |#4|) 54)))
+(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4|))) (-803) (-860) (-13 (-315) (-148)) (-960 (-417 |#3|) |#1| |#2|)) (T -743))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-960 (-417 *6) *4 *5)))))
+(-10 -7 (-15 -4220 ((-428 |#4|) |#4|)))
+((-1778 (((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)) 18)))
+(((-744 |#1| |#2| |#3|) (-10 -7 (-15 -1778 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) (-1062) (-1062) (-736)) (T -744))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) (-5 *1 (-744 *5 *6 *7)))))
+(-10 -7 (-15 -1778 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 36)) (-4086 (((-654 (-2 (|:| -1859 |#1|) (|:| -3832 |#2|))) $) 37)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781)) 22 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2209 ((|#2| $) NIL) ((|#1| $) NIL)) (-1392 (($ $) 102 (|has| |#2| (-860)))) (-1950 (((-3 $ "failed") $) 85)) (-2820 (($) 48 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) 70)) (-3576 (((-654 $) $) 52)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| |#2|) 17)) (-1778 (($ (-1 |#1| |#1|) $) 68)) (-2565 (((-932) $) 43 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-1359 ((|#2| $) 101 (|has| |#2| (-860)))) (-1370 ((|#1| $) 100 (|has| |#2| (-860)))) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) 35 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 99) (($ (-574)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-654 (-2 (|:| -1859 |#1|) (|:| -3832 |#2|)))) 11)) (-3123 (((-654 |#1|) $) 54)) (-3344 ((|#1| $ |#2|) 115)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 12 T CONST)) (-2146 (($) 44 T CONST)) (-2982 (((-112) $ $) 105)) (-3094 (($ $) 61) (($ $ $) NIL)) (-3078 (($ $ $) 33)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-745 |#1| |#2|) (-13 (-1062) (-1051 |#2|) (-1051 |#1|) (-10 -8 (-15 -4335 ($ |#1| |#2|)) (-15 -3344 (|#1| $ |#2|)) (-15 -2943 ($ (-654 (-2 (|:| -1859 |#1|) (|:| -3832 |#2|))))) (-15 -4086 ((-654 (-2 (|:| -1859 |#1|) (|:| -3832 |#2|))) $)) (-15 -1778 ($ (-1 |#1| |#1|) $)) (-15 -2197 ((-112) $)) (-15 -3123 ((-654 |#1|) $)) (-15 -3576 ((-654 $) $)) (-15 -2784 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1359 (|#2| $)) (-15 -1370 (|#1| $)) (-15 -1392 ($ $))) |%noBranch|))) (-1062) (-736)) (T -745))
+((-4335 (*1 *1 *2 *3) (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-736)))) (-3344 (*1 *2 *1 *3) (-12 (-4 *2 (-1062)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -1859 *3) (|:| -3832 *4)))) (-4 *3 (-1062)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -1859 *3) (|:| -3832 *4)))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-745 *3 *4)) (-4 *4 (-736)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-1359 (*1 *2 *1) (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2)) (-4 *3 (-1062)))) (-1370 (*1 *2 *1) (-12 (-4 *2 (-1062)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *3 (-736)))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1062)) (-4 *3 (-736)))))
+(-13 (-1062) (-1051 |#2|) (-1051 |#1|) (-10 -8 (-15 -4335 ($ |#1| |#2|)) (-15 -3344 (|#1| $ |#2|)) (-15 -2943 ($ (-654 (-2 (|:| -1859 |#1|) (|:| -3832 |#2|))))) (-15 -4086 ((-654 (-2 (|:| -1859 |#1|) (|:| -3832 |#2|))) $)) (-15 -1778 ($ (-1 |#1| |#1|) $)) (-15 -2197 ((-112) $)) (-15 -3123 ((-654 |#1|) $)) (-15 -3576 ((-654 $) $)) (-15 -2784 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1359 (|#2| $)) (-15 -1370 (|#1| $)) (-15 -1392 ($ $))) |%noBranch|)))
+((-2849 (((-112) $ $) 19)) (-4359 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4365 (($ $ $) 73)) (-4006 (((-112) $ $) 74)) (-3340 (((-112) $ (-781)) 8)) (-1508 (($ (-654 |#1|)) 69) (($) 68)) (-3391 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-1730 (($ $) 63)) (-2158 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3972 (((-112) $ $) 65)) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22)) (-1731 (($ $ $) 70)) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3966 (((-1133) $) 21)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-4243 (((-654 (-2 (|:| -1909 |#1|) (|:| -3975 (-781)))) $) 62)) (-2457 (($ $ |#1|) 72) (($ $ $) 71)) (-2826 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18)) (-4281 (($ (-654 |#1|)) 67) (($) 66)) (-2923 (((-112) $ $) 23)) (-2817 (($ (-654 |#1|)) 43)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-746 |#1|) (-141) (-1113)) (T -746))
+NIL
+(-13 (-705 |t#1|) (-1111 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-705 |#1|) . T) ((-1111 |#1|) . T) ((-1113) . T) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-4359 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-4365 (($ $ $) 96)) (-4006 (((-112) $ $) 104)) (-3340 (((-112) $ (-781)) NIL)) (-1508 (($ (-654 |#1|)) 26) (($) 17)) (-3391 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-1730 (($ $) 85)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1586 (($ |#1| $) 70 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456))) (($ |#1| $ (-574)) 75) (($ (-1 (-112) |#1|) $ (-574)) 78)) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (($ |#1| $ (-574)) 80) (($ (-1 (-112) |#1|) $ (-574)) 81)) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 32 (|has| $ (-6 -4456)))) (-3972 (((-112) $ $) 103)) (-4432 (($) 15) (($ |#1|) 28) (($ (-654 |#1|)) 23)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) 38)) (-3759 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 89)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-1731 (($ $ $) 94)) (-2234 ((|#1| $) 62)) (-1709 (($ |#1| $) 63) (($ |#1| $ (-781)) 86)) (-3966 (((-1133) $) NIL)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3459 ((|#1| $) 61)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 56)) (-3135 (($) 14)) (-4243 (((-654 (-2 (|:| -1909 |#1|) (|:| -3975 (-781)))) $) 55)) (-2457 (($ $ |#1|) NIL) (($ $ $) 95)) (-2826 (($) 16) (($ (-654 |#1|)) 25)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) 68 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 79)) (-1837 (((-546) $) 36 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 22)) (-2943 (((-872) $) 49)) (-4281 (($ (-654 |#1|)) 27) (($) 18)) (-2923 (((-112) $ $) NIL)) (-2817 (($ (-654 |#1|)) 24)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 100)) (-2863 (((-781) $) 67 (|has| $ (-6 -4456)))))
+(((-747 |#1|) (-13 (-746 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -4432 ($)) (-15 -4432 ($ |#1|)) (-15 -4432 ($ (-654 |#1|))) (-15 -1712 ((-654 |#1|) $)) (-15 -3335 ($ |#1| $ (-574))) (-15 -3335 ($ (-1 (-112) |#1|) $ (-574))) (-15 -1586 ($ |#1| $ (-574))) (-15 -1586 ($ (-1 (-112) |#1|) $ (-574))))) (-1113)) (T -747))
+((-4432 (*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1113)))) (-4432 (*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1113)))) (-4432 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-747 *3)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1113)))) (-3335 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1113)))) (-3335 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1113)) (-5 *1 (-747 *4)))) (-1586 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1113)))) (-1586 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1113)) (-5 *1 (-747 *4)))))
+(-13 (-746 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -4432 ($)) (-15 -4432 ($ |#1|)) (-15 -4432 ($ (-654 |#1|))) (-15 -1712 ((-654 |#1|) $)) (-15 -3335 ($ |#1| $ (-574))) (-15 -3335 ($ (-1 (-112) |#1|) $ (-574))) (-15 -1586 ($ |#1| $ (-574))) (-15 -1586 ($ (-1 (-112) |#1|) $ (-574)))))
+((-1323 (((-1286) (-1172)) 8)))
+(((-748) (-10 -7 (-15 -1323 ((-1286) (-1172))))) (T -748))
+((-1323 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-748)))))
+(-10 -7 (-15 -1323 ((-1286) (-1172))))
+((-1748 (((-654 |#1|) (-654 |#1|) (-654 |#1|)) 15)))
+(((-749 |#1|) (-10 -7 (-15 -1748 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) (-860)) (T -749))
+((-1748 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3)))))
+(-10 -7 (-15 -1748 ((-654 |#1|) (-654 |#1|) (-654 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4355 (((-654 |#2|) $) 148)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 141 (|has| |#1| (-566)))) (-2814 (($ $) 140 (|has| |#1| (-566)))) (-2425 (((-112) $) 138 (|has| |#1| (-566)))) (-2364 (($ $) 97 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 80 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) 20)) (-4229 (($ $) 79 (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 95 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) 18 T CONST)) (-1392 (($ $) 132)) (-1950 (((-3 $ "failed") $) 37)) (-4053 (((-963 |#1|) $ (-781)) 110) (((-963 |#1|) $ (-781) (-781)) 109)) (-3030 (((-112) $) 149)) (-3001 (($) 107 (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-781) $ |#2|) 112) (((-781) $ |#2| (-781)) 111)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 78 (|has| |#1| (-38 (-417 (-574)))))) (-2197 (((-112) $) 130)) (-4335 (($ $ (-654 |#2|) (-654 (-541 |#2|))) 147) (($ $ |#2| (-541 |#2|)) 146) (($ |#1| (-541 |#2|)) 131) (($ $ |#2| (-781)) 114) (($ $ (-654 |#2|) (-654 (-781))) 113)) (-1778 (($ (-1 |#1| |#1|) $) 129)) (-3119 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 127)) (-1370 ((|#1| $) 126)) (-2568 (((-1172) $) 10)) (-2968 (($ $ |#2|) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) 11)) (-4344 (($ $ (-781)) 115)) (-2838 (((-3 $ "failed") $ $) 142 (|has| |#1| (-566)))) (-1610 (($ $) 105 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (($ $ |#2| $) 123) (($ $ (-654 |#2|) (-654 $)) 122) (($ $ (-654 (-302 $))) 121) (($ $ (-302 $)) 120) (($ $ $ $) 119) (($ $ (-654 $) (-654 $)) 118)) (-3905 (($ $ |#2|) 46) (($ $ (-654 |#2|)) 45) (($ $ |#2| (-781)) 44) (($ $ (-654 |#2|) (-654 (-781))) 43)) (-1784 (((-541 |#2|) $) 128)) (-2402 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 83 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 93 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 84 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 85 (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) 150)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-566))) (($ (-417 (-574))) 135 (|has| |#1| (-38 (-417 (-574)))))) (-3344 ((|#1| $ (-541 |#2|)) 133) (($ $ |#2| (-781)) 117) (($ $ (-654 |#2|) (-654 (-781))) 116)) (-1369 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2441 (($ $) 103 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 91 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) 139 (|has| |#1| (-566)))) (-2414 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 101 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 89 (|has| |#1| (-38 (-417 (-574)))))) (-2521 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 99 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 87 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 86 (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ |#2|) 42) (($ $ (-654 |#2|)) 41) (($ $ |#2| (-781)) 40) (($ $ (-654 |#2|) (-654 (-781))) 39)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 134 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ $) 106 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 77 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 136 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
+(((-750 |#1| |#2|) (-141) (-1062) (-860)) (T -750))
+((-3344 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1062)) (-4 *2 (-860)))) (-3344 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-860)))) (-4344 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-860)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1062)) (-4 *2 (-860)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-860)))) (-3593 (*1 *2 *1 *3) (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1062)) (-4 *3 (-860)) (-5 *2 (-781)))) (-3593 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1062)) (-4 *3 (-860)))) (-4053 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-860)) (-5 *2 (-963 *4)))) (-4053 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-860)) (-5 *2 (-963 *4)))) (-2968 (*1 *1 *1 *2) (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-860)) (-4 *3 (-38 (-417 (-574)))))))
+(-13 (-911 |t#2|) (-986 |t#1| (-541 |t#2|) |t#2|) (-524 |t#2| $) (-317 $) (-10 -8 (-15 -3344 ($ $ |t#2| (-781))) (-15 -3344 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -4344 ($ $ (-781))) (-15 -4335 ($ $ |t#2| (-781))) (-15 -4335 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -3593 ((-781) $ |t#2|)) (-15 -3593 ((-781) $ |t#2| (-781))) (-15 -4053 ((-963 |t#1|) $ (-781))) (-15 -4053 ((-963 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $ |t#2|)) (-6 (-1015)) (-6 (-1216))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-541 |#2|)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-298) |has| |#1| (-566)) ((-317 $) . T) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 |#2| $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-911 |#2|) . T) ((-986 |#1| #0# |#2|) . T) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1064 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))))
+((-4220 (((-428 (-1186 |#4|)) (-1186 |#4|)) 30) (((-428 |#4|) |#4|) 26)))
+(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4|)) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|)))) (-860) (-803) (-13 (-315) (-148)) (-960 |#3| |#2| |#1|)) (T -751))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4)))))
+(-10 -7 (-15 -4220 ((-428 |#4|) |#4|)) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|))))
+((-4124 (((-428 |#4|) |#4| |#2|) 140)) (-2000 (((-428 |#4|) |#4|) NIL)) (-3440 (((-428 (-1186 |#4|)) (-1186 |#4|)) 127) (((-428 |#4|) |#4|) 52)) (-3136 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4220 (-1186 |#4|)) (|:| -2524 (-574)))))) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 81)) (-2806 (((-1186 |#3|) (-1186 |#3|) (-574)) 166)) (-1681 (((-654 (-781)) (-1186 |#4|) (-654 |#2|) (-781)) 75)) (-2854 (((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-1186 |#3|) (-1186 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|)) 79)) (-2680 (((-2 (|:| |upol| (-1186 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574))))) (|:| |ctpol| |#3|)) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 27)) (-3831 (((-2 (|:| -1900 (-1186 |#4|)) (|:| |polval| (-1186 |#3|))) (-1186 |#4|) (-1186 |#3|) (-574)) 72)) (-2301 (((-574) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574))))) 162)) (-3039 ((|#4| (-574) (-428 |#4|)) 73)) (-2690 (((-112) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574)))) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574))))) NIL)))
+(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3440 ((-428 |#4|) |#4|)) (-15 -3440 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -2000 ((-428 |#4|) |#4|)) (-15 -2301 ((-574) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574)))))) (-15 -4124 ((-428 |#4|) |#4| |#2|)) (-15 -3831 ((-2 (|:| -1900 (-1186 |#4|)) (|:| |polval| (-1186 |#3|))) (-1186 |#4|) (-1186 |#3|) (-574))) (-15 -3136 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4220 (-1186 |#4|)) (|:| -2524 (-574)))))) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2680 ((-2 (|:| |upol| (-1186 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574))))) (|:| |ctpol| |#3|)) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3039 (|#4| (-574) (-428 |#4|))) (-15 -2690 ((-112) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574)))) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574)))))) (-15 -2854 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-1186 |#3|) (-1186 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -1681 ((-654 (-781)) (-1186 |#4|) (-654 |#2|) (-781))) (-15 -2806 ((-1186 |#3|) (-1186 |#3|) (-574)))) (-803) (-860) (-315) (-960 |#3| |#1| |#2|)) (T -752))
+((-2806 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-1681 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781)))) (-2854 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1186 *11)) (-5 *6 (-654 *10)) (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860)) (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-960 *11 *9 *10)) (-5 *2 (-654 (-1186 *5))) (-5 *1 (-752 *9 *10 *11 *5)) (-5 *3 (-1186 *5)))) (-2690 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-2 (|:| -4220 (-1186 *6)) (|:| -2524 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-3039 (*1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-960 *7 *5 *6)) (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-315)))) (-2680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |upol| (-1186 *8)) (|:| |Lval| (-654 *8)) (|:| |Lfact| (-654 (-2 (|:| -4220 (-1186 *8)) (|:| -2524 (-574))))) (|:| |ctpol| *8))) (-5 *1 (-752 *6 *7 *8 *9)))) (-3136 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-960 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-654 (-2 (|:| -4220 (-1186 *9)) (|:| -2524 (-574))))))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1186 *9)))) (-3831 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-960 *8 *6 *7)) (-5 *2 (-2 (|:| -1900 (-1186 *9)) (|:| |polval| (-1186 *8)))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1186 *9)) (-5 *4 (-1186 *8)))) (-4124 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-960 *6 *5 *4)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4220 (-1186 *6)) (|:| -2524 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-2000 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-960 *6 *4 *5)))) (-3440 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-3440 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-960 *6 *4 *5)))))
+(-10 -7 (-15 -3440 ((-428 |#4|) |#4|)) (-15 -3440 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -2000 ((-428 |#4|) |#4|)) (-15 -2301 ((-574) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574)))))) (-15 -4124 ((-428 |#4|) |#4| |#2|)) (-15 -3831 ((-2 (|:| -1900 (-1186 |#4|)) (|:| |polval| (-1186 |#3|))) (-1186 |#4|) (-1186 |#3|) (-574))) (-15 -3136 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4220 (-1186 |#4|)) (|:| -2524 (-574)))))) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2680 ((-2 (|:| |upol| (-1186 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574))))) (|:| |ctpol| |#3|)) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3039 (|#4| (-574) (-428 |#4|))) (-15 -2690 ((-112) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574)))) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -2524 (-574)))))) (-15 -2854 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-1186 |#3|) (-1186 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -1681 ((-654 (-781)) (-1186 |#4|) (-654 |#2|) (-781))) (-15 -2806 ((-1186 |#3|) (-1186 |#3|) (-574))))
+((-2023 (($ $ (-932)) 17)))
+(((-753 |#1| |#2|) (-10 -8 (-15 -2023 (|#1| |#1| (-932)))) (-754 |#2|) (-174)) (T -753))
+NIL
+(-10 -8 (-15 -2023 (|#1| |#1| (-932))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2652 (($ $ (-932)) 31)) (-2023 (($ $ (-932)) 38)) (-3702 (($ $ (-932)) 32)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3647 (($ $ $) 28)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3243 (($ $ $ $) 29)) (-2309 (($ $ $) 27)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 33)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-754 |#1|) (-141) (-174)) (T -754))
+((-2023 (*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-754 *3)) (-4 *3 (-174)))))
+(-13 (-771) (-727 |t#1|) (-10 -8 (-15 -2023 ($ $ (-932)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-771) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T))
+((-1335 (((-1048) (-699 (-227)) (-574) (-112) (-574)) 25)) (-3700 (((-1048) (-699 (-227)) (-574) (-112) (-574)) 24)))
+(((-755) (-10 -7 (-15 -3700 ((-1048) (-699 (-227)) (-574) (-112) (-574))) (-15 -1335 ((-1048) (-699 (-227)) (-574) (-112) (-574))))) (T -755))
+((-1335 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1048)) (-5 *1 (-755)))) (-3700 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1048)) (-5 *1 (-755)))))
+(-10 -7 (-15 -3700 ((-1048) (-699 (-227)) (-574) (-112) (-574))) (-15 -1335 ((-1048) (-699 (-227)) (-574) (-112) (-574))))
+((-2281 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) 43)) (-2233 (((-1048) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) 39)) (-3519 (((-1048) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 32)))
+(((-756) (-10 -7 (-15 -3519 ((-1048) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -2233 ((-1048) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -2281 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN))))))) (T -756))
+((-2281 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1048)) (-5 *1 (-756)))) (-2233 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1048)) (-5 *1 (-756)))) (-3519 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *2 (-1048)) (-5 *1 (-756)))))
+(-10 -7 (-15 -3519 ((-1048) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -2233 ((-1048) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -2281 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN))))))
+((-3128 (((-1048) (-574) (-574) (-699 (-227)) (-574)) 34)) (-3961 (((-1048) (-574) (-574) (-699 (-227)) (-574)) 33)) (-4376 (((-1048) (-574) (-699 (-227)) (-574)) 32)) (-2010 (((-1048) (-574) (-699 (-227)) (-574)) 31)) (-3443 (((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 30)) (-1951 (((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-2111 (((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-1439 (((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-3209 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-2906 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-3103 (((-1048) (-574) (-699 (-227)) (-574)) 22)) (-3394 (((-1048) (-574) (-699 (-227)) (-574)) 21)))
+(((-757) (-10 -7 (-15 -3394 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -3103 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -2906 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3209 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1439 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2111 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1951 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3443 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2010 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -4376 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -3961 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -3128 ((-1048) (-574) (-574) (-699 (-227)) (-574))))) (T -757))
+((-3128 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-3961 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-4376 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-2010 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-3443 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-1951 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-2111 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-1439 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-3209 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-2906 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-3103 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-3394 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))))
+(-10 -7 (-15 -3394 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -3103 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -2906 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3209 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1439 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2111 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1951 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3443 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2010 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -4376 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -3961 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -3128 ((-1048) (-574) (-574) (-699 (-227)) (-574))))
+((-2418 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1740 (((-1048) (-699 (-227)) (-699 (-227)) (-574) (-574)) 51)) (-3525 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3619 (((-1048) (-227) (-227) (-574) (-574) (-574) (-574)) 46)) (-3275 (((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 45)) (-1898 (((-1048) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 44)) (-3280 (((-1048) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 43)) (-1634 (((-1048) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 42)) (-1995 (((-1048) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 38)) (-1954 (((-1048) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 37)) (-3352 (((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 33)) (-2128 (((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 32)))
+(((-758) (-10 -7 (-15 -2128 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -3352 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -1954 ((-1048) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -1995 ((-1048) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -1634 ((-1048) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3280 ((-1048) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1898 ((-1048) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3275 ((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3619 ((-1048) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -3525 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -1740 ((-1048) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -2418 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))))) (T -758))
+((-2418 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-1740 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3525 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3619 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3275 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-1898 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3280 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-1634 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-1995 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-1954 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3352 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-2128 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *2 (-1048)) (-5 *1 (-758)))))
+(-10 -7 (-15 -2128 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -3352 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -1954 ((-1048) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -1995 ((-1048) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -1634 ((-1048) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3280 ((-1048) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1898 ((-1048) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3275 ((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3619 ((-1048) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -3525 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -1740 ((-1048) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -2418 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))))
+((-3367 (((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3739 (((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398)) 69) (((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1480 (((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) 57)) (-3585 (((-1048) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 50)) (-3225 (((-1048) (-227) (-574) (-574) (-1172) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 49)) (-1395 (((-1048) (-227) (-574) (-574) (-227) (-1172) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2663 (((-1048) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 42)) (-2169 (((-1048) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-759) (-10 -7 (-15 -2169 ((-1048) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2663 ((-1048) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -1395 ((-1048) (-227) (-574) (-574) (-227) (-1172) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3225 ((-1048) (-227) (-574) (-574) (-1172) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3585 ((-1048) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -1480 ((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -3739 ((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -3739 ((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -3367 ((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -759))
+((-3367 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-3739 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-398)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-3739 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1048)) (-5 *1 (-759)))) (-1480 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-3585 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1048)) (-5 *1 (-759)))) (-3225 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-1395 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-2663 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-2169 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))))
+(-10 -7 (-15 -2169 ((-1048) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2663 ((-1048) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -1395 ((-1048) (-227) (-574) (-574) (-227) (-1172) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3225 ((-1048) (-227) (-574) (-574) (-1172) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3585 ((-1048) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -1480 ((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -3739 ((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -3739 ((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -3367 ((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-2381 (((-1048) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)) 45)) (-1896 (((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1172) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) 41)) (-3210 (((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 23)))
+(((-760) (-10 -7 (-15 -3210 ((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1896 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1172) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -2381 ((-1048) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574))))) (T -760))
+((-2381 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-760)))) (-1896 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1048)) (-5 *1 (-760)))) (-3210 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-760)))))
+(-10 -7 (-15 -3210 ((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1896 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1172) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -2381 ((-1048) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574))))
+((-3634 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)) 35)) (-3040 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574)) 34)) (-4168 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574)) 33)) (-2971 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-3990 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-1777 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574)) 27)) (-1497 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 24)) (-3574 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 23)) (-1862 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574)) 22)) (-1543 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 21)))
+(((-761) (-10 -7 (-15 -1543 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -1862 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3574 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1497 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1777 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3990 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2971 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4168 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3040 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -3634 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574))))) (T -761))
+((-3634 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-761)))) (-3040 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-761)))) (-4168 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-761)))) (-2971 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-3990 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-1777 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-761)))) (-1497 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-3574 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-1862 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-1543 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))))
+(-10 -7 (-15 -1543 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -1862 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3574 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1497 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1777 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3990 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2971 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4168 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3040 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -3634 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574))))
+((-3492 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 45)) (-1618 (((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574)) 44)) (-2632 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 43)) (-1948 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 42)) (-4241 (((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574)) 41)) (-3047 (((-1048) (-1172) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 40)) (-2881 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574)) 39)) (-2318 (((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574))) 38)) (-2213 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574)) 35)) (-1826 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574)) 34)) (-2954 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574)) 33)) (-1492 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 32)) (-3233 (((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574)) 31)) (-3720 (((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574)) 30)) (-1990 (((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 29)) (-2314 (((-1048) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574)) 28)) (-1710 (((-1048) (-574) (-699 (-227)) (-227) (-574)) 24)) (-3451 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 21)))
+(((-762) (-10 -7 (-15 -3451 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1710 ((-1048) (-574) (-699 (-227)) (-227) (-574))) (-15 -2314 ((-1048) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -1990 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -3720 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -3233 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -1492 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2954 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -1826 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -2213 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2318 ((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -2881 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -3047 ((-1048) (-1172) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -4241 ((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1948 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2632 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -1618 ((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3492 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))))) (T -762))
+((-3492 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-1618 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2632 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-1948 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-4241 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-3047 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2881 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2318 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2213 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-1826 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2954 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-1492 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-3233 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-3720 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-1990 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2314 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-1710 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-3451 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))))
+(-10 -7 (-15 -3451 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1710 ((-1048) (-574) (-699 (-227)) (-227) (-574))) (-15 -2314 ((-1048) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -1990 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -3720 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -3233 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -1492 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2954 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -1826 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -2213 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2318 ((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -2881 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -3047 ((-1048) (-1172) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -4241 ((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1948 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2632 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -1618 ((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3492 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))))
+((-3499 (((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)) 63)) (-2743 (((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2196 (((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) 58)) (-3983 (((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574)) 51)) (-3642 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) 50)) (-1724 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) 46)) (-4012 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1419 (((-1048) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-763) (-10 -7 (-15 -1419 ((-1048) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -4012 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -1724 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -3642 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -3983 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -2196 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2743 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -3499 ((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574))))) (T -763))
+((-3499 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763)))) (-2743 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-763)))) (-2196 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763)))) (-3983 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *2 (-1048)) (-5 *1 (-763)))) (-3642 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1048)) (-5 *1 (-763)))) (-1724 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1048)) (-5 *1 (-763)))) (-4012 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1048)) (-5 *1 (-763)))) (-1419 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763)))))
+(-10 -7 (-15 -1419 ((-1048) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -4012 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -1724 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -3642 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -3983 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -2196 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2743 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -3499 ((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574))))
+((-1711 (((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 47)) (-2160 (((-1048) (-1172) (-1172) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574)) 46)) (-2269 (((-1048) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 45)) (-1635 (((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 40)) (-4080 (((-1048) (-1172) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574)) 39)) (-3657 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-574)) 36)) (-2096 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574)) 35)) (-2843 (((-1048) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574)) 34)) (-1549 (((-1048) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574)) 33)) (-2374 (((-1048) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574)) 32)))
+(((-764) (-10 -7 (-15 -2374 ((-1048) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -1549 ((-1048) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -2843 ((-1048) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -2096 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3657 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -4080 ((-1048) (-1172) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -1635 ((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2269 ((-1048) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2160 ((-1048) (-1172) (-1172) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -1711 ((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -764))
+((-1711 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-2160 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-2269 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-1635 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-4080 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-3657 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-2096 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-764)))) (-2843 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-764)))) (-1549 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1048)) (-5 *1 (-764)))) (-2374 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1048)) (-5 *1 (-764)))))
+(-10 -7 (-15 -2374 ((-1048) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -1549 ((-1048) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -2843 ((-1048) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -2096 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3657 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -4080 ((-1048) (-1172) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -1635 ((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2269 ((-1048) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2160 ((-1048) (-1172) (-1172) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -1711 ((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))
+((-2143 (((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 79)) (-2371 (((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 68)) (-4349 (((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398)) 56) (((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) 55)) (-2892 (((-1048) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 37)) (-2964 (((-1048) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574)) 33)) (-3853 (((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 30)) (-3276 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-4213 (((-1048) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-1742 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-2642 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574)) 26)) (-1584 (((-1048) (-574) (-574) (-699 (-227)) (-574)) 25)) (-2666 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-2747 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-3294 (((-1048) (-699 (-227)) (-574) (-574) (-574) (-574)) 22)) (-3895 (((-1048) (-574) (-574) (-699 (-227)) (-574)) 21)))
+(((-765) (-10 -7 (-15 -3895 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -3294 ((-1048) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -2747 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2666 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1584 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -2642 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -1742 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4213 ((-1048) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3276 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3853 ((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -2964 ((-1048) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -2892 ((-1048) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4349 ((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -4349 ((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -2371 ((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2143 ((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -765))
+((-2143 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2371 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-4349 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-4349 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2892 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2964 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-3853 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-3276 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-4213 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-1742 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2642 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-1584 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2666 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2747 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-3294 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-3895 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))))
+(-10 -7 (-15 -3895 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -3294 ((-1048) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -2747 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2666 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1584 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -2642 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -1742 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4213 ((-1048) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3276 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3853 ((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -2964 ((-1048) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -2892 ((-1048) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4349 ((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -4349 ((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -2371 ((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2143 ((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))
+((-3613 (((-1048) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) 64)) (-3153 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574)) 60)) (-2526 (((-1048) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3282 (((-1048) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 37)) (-4347 (((-1048) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574)) 36)) (-3217 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 33)) (-4043 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227))) 32)) (-4083 (((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574)) 28)) (-4322 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 27)) (-2832 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 26)) (-3117 (((-1048) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 22)))
+(((-766) (-10 -7 (-15 -3117 ((-1048) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2832 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4322 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4083 ((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -4043 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -3217 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4347 ((-1048) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3282 ((-1048) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2526 ((-1048) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -3153 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -3613 ((-1048) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD))))))) (T -766))
+((-3613 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-3153 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-2526 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1048)) (-5 *1 (-766)))) (-3282 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-4347 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-3217 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-766)))) (-4043 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-4083 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-4322 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-766)))) (-2832 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-766)))) (-3117 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-766)))))
+(-10 -7 (-15 -3117 ((-1048) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2832 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4322 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4083 ((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -4043 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -3217 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4347 ((-1048) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3282 ((-1048) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2526 ((-1048) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -3153 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -3613 ((-1048) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD))))))
+((-2401 (((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))) 29)) (-4415 (((-1048) (-1172) (-574) (-574) (-699 (-227))) 28)) (-3775 (((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227))) 27)) (-4200 (((-1048) (-574) (-574) (-574) (-699 (-227))) 21)))
+(((-767) (-10 -7 (-15 -4200 ((-1048) (-574) (-574) (-574) (-699 (-227)))) (-15 -3775 ((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -4415 ((-1048) (-1172) (-574) (-574) (-699 (-227)))) (-15 -2401 ((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)))))) (T -767))
+((-2401 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-767)))) (-4415 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-767)))) (-3775 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-767)))) (-4200 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-767)))))
+(-10 -7 (-15 -4200 ((-1048) (-574) (-574) (-574) (-699 (-227)))) (-15 -3775 ((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -4415 ((-1048) (-1172) (-574) (-574) (-699 (-227)))) (-15 -2401 ((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)))))
+((-3336 (((-1048) (-227) (-227) (-227) (-227) (-574)) 62)) (-4088 (((-1048) (-227) (-227) (-227) (-574)) 61)) (-3137 (((-1048) (-227) (-227) (-227) (-574)) 60)) (-1842 (((-1048) (-227) (-227) (-574)) 59)) (-1946 (((-1048) (-227) (-574)) 58)) (-2958 (((-1048) (-227) (-574)) 57)) (-1867 (((-1048) (-227) (-574)) 56)) (-2311 (((-1048) (-227) (-574)) 55)) (-4279 (((-1048) (-227) (-574)) 54)) (-3268 (((-1048) (-227) (-574)) 53)) (-1873 (((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574)) 52)) (-2203 (((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574)) 51)) (-1952 (((-1048) (-227) (-574)) 50)) (-3518 (((-1048) (-227) (-574)) 49)) (-2563 (((-1048) (-227) (-574)) 48)) (-3287 (((-1048) (-227) (-574)) 47)) (-3339 (((-1048) (-574) (-227) (-171 (-227)) (-574) (-1172) (-574)) 46)) (-4077 (((-1048) (-1172) (-171 (-227)) (-1172) (-574)) 45)) (-3226 (((-1048) (-1172) (-171 (-227)) (-1172) (-574)) 44)) (-2865 (((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574)) 43)) (-3731 (((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574)) 42)) (-4152 (((-1048) (-227) (-574)) 39)) (-3231 (((-1048) (-227) (-574)) 38)) (-3471 (((-1048) (-227) (-574)) 37)) (-3160 (((-1048) (-227) (-574)) 36)) (-1649 (((-1048) (-227) (-574)) 35)) (-3730 (((-1048) (-227) (-574)) 34)) (-1465 (((-1048) (-227) (-574)) 33)) (-2147 (((-1048) (-227) (-574)) 32)) (-2378 (((-1048) (-227) (-574)) 31)) (-1591 (((-1048) (-227) (-574)) 30)) (-4259 (((-1048) (-227) (-227) (-227) (-574)) 29)) (-1499 (((-1048) (-227) (-574)) 28)) (-2864 (((-1048) (-227) (-574)) 27)) (-1535 (((-1048) (-227) (-574)) 26)) (-2460 (((-1048) (-227) (-574)) 25)) (-1594 (((-1048) (-227) (-574)) 24)) (-2012 (((-1048) (-171 (-227)) (-574)) 21)))
+(((-768) (-10 -7 (-15 -2012 ((-1048) (-171 (-227)) (-574))) (-15 -1594 ((-1048) (-227) (-574))) (-15 -2460 ((-1048) (-227) (-574))) (-15 -1535 ((-1048) (-227) (-574))) (-15 -2864 ((-1048) (-227) (-574))) (-15 -1499 ((-1048) (-227) (-574))) (-15 -4259 ((-1048) (-227) (-227) (-227) (-574))) (-15 -1591 ((-1048) (-227) (-574))) (-15 -2378 ((-1048) (-227) (-574))) (-15 -2147 ((-1048) (-227) (-574))) (-15 -1465 ((-1048) (-227) (-574))) (-15 -3730 ((-1048) (-227) (-574))) (-15 -1649 ((-1048) (-227) (-574))) (-15 -3160 ((-1048) (-227) (-574))) (-15 -3471 ((-1048) (-227) (-574))) (-15 -3231 ((-1048) (-227) (-574))) (-15 -4152 ((-1048) (-227) (-574))) (-15 -3731 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -2865 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3226 ((-1048) (-1172) (-171 (-227)) (-1172) (-574))) (-15 -4077 ((-1048) (-1172) (-171 (-227)) (-1172) (-574))) (-15 -3339 ((-1048) (-574) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3287 ((-1048) (-227) (-574))) (-15 -2563 ((-1048) (-227) (-574))) (-15 -3518 ((-1048) (-227) (-574))) (-15 -1952 ((-1048) (-227) (-574))) (-15 -2203 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -1873 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3268 ((-1048) (-227) (-574))) (-15 -4279 ((-1048) (-227) (-574))) (-15 -2311 ((-1048) (-227) (-574))) (-15 -1867 ((-1048) (-227) (-574))) (-15 -2958 ((-1048) (-227) (-574))) (-15 -1946 ((-1048) (-227) (-574))) (-15 -1842 ((-1048) (-227) (-227) (-574))) (-15 -3137 ((-1048) (-227) (-227) (-227) (-574))) (-15 -4088 ((-1048) (-227) (-227) (-227) (-574))) (-15 -3336 ((-1048) (-227) (-227) (-227) (-227) (-574))))) (T -768))
+((-3336 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4088 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3137 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1842 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1946 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1867 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2311 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1873 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2203 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3518 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3339 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1172)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4077 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1172)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3226 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1172)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2865 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3731 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3471 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2378 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1591 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4259 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(-10 -7 (-15 -2012 ((-1048) (-171 (-227)) (-574))) (-15 -1594 ((-1048) (-227) (-574))) (-15 -2460 ((-1048) (-227) (-574))) (-15 -1535 ((-1048) (-227) (-574))) (-15 -2864 ((-1048) (-227) (-574))) (-15 -1499 ((-1048) (-227) (-574))) (-15 -4259 ((-1048) (-227) (-227) (-227) (-574))) (-15 -1591 ((-1048) (-227) (-574))) (-15 -2378 ((-1048) (-227) (-574))) (-15 -2147 ((-1048) (-227) (-574))) (-15 -1465 ((-1048) (-227) (-574))) (-15 -3730 ((-1048) (-227) (-574))) (-15 -1649 ((-1048) (-227) (-574))) (-15 -3160 ((-1048) (-227) (-574))) (-15 -3471 ((-1048) (-227) (-574))) (-15 -3231 ((-1048) (-227) (-574))) (-15 -4152 ((-1048) (-227) (-574))) (-15 -3731 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -2865 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3226 ((-1048) (-1172) (-171 (-227)) (-1172) (-574))) (-15 -4077 ((-1048) (-1172) (-171 (-227)) (-1172) (-574))) (-15 -3339 ((-1048) (-574) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3287 ((-1048) (-227) (-574))) (-15 -2563 ((-1048) (-227) (-574))) (-15 -3518 ((-1048) (-227) (-574))) (-15 -1952 ((-1048) (-227) (-574))) (-15 -2203 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -1873 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3268 ((-1048) (-227) (-574))) (-15 -4279 ((-1048) (-227) (-574))) (-15 -2311 ((-1048) (-227) (-574))) (-15 -1867 ((-1048) (-227) (-574))) (-15 -2958 ((-1048) (-227) (-574))) (-15 -1946 ((-1048) (-227) (-574))) (-15 -1842 ((-1048) (-227) (-227) (-574))) (-15 -3137 ((-1048) (-227) (-227) (-227) (-574))) (-15 -4088 ((-1048) (-227) (-227) (-227) (-574))) (-15 -3336 ((-1048) (-227) (-227) (-227) (-227) (-574))))
+((-4120 (((-1286)) 20)) (-2716 (((-1172)) 31)) (-3711 (((-1172)) 30)) (-3829 (((-1117) (-1190) (-699 (-574))) 45) (((-1117) (-1190) (-699 (-227))) 41)) (-3686 (((-112)) 19)) (-2795 (((-1172) (-1172)) 34)))
+(((-769) (-10 -7 (-15 -3711 ((-1172))) (-15 -2716 ((-1172))) (-15 -2795 ((-1172) (-1172))) (-15 -3829 ((-1117) (-1190) (-699 (-227)))) (-15 -3829 ((-1117) (-1190) (-699 (-574)))) (-15 -3686 ((-112))) (-15 -4120 ((-1286))))) (T -769))
+((-4120 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-769)))) (-3686 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-699 (-574))) (-5 *2 (-1117)) (-5 *1 (-769)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-699 (-227))) (-5 *2 (-1117)) (-5 *1 (-769)))) (-2795 (*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769)))) (-2716 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769)))) (-3711 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769)))))
+(-10 -7 (-15 -3711 ((-1172))) (-15 -2716 ((-1172))) (-15 -2795 ((-1172) (-1172))) (-15 -3829 ((-1117) (-1190) (-699 (-227)))) (-15 -3829 ((-1117) (-1190) (-699 (-574)))) (-15 -3686 ((-112))) (-15 -4120 ((-1286))))
+((-3647 (($ $ $) 10)) (-3243 (($ $ $ $) 9)) (-2309 (($ $ $) 12)))
+(((-770 |#1|) (-10 -8 (-15 -2309 (|#1| |#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3243 (|#1| |#1| |#1| |#1|))) (-771)) (T -770))
+NIL
+(-10 -8 (-15 -2309 (|#1| |#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3243 (|#1| |#1| |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2652 (($ $ (-932)) 31)) (-3702 (($ $ (-932)) 32)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3647 (($ $ $) 28)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3243 (($ $ $ $) 29)) (-2309 (($ $ $) 27)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 33)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30)))
(((-771) (-141)) (T -771))
-((-4249 (*1 *2) (-12 (-4 *1 (-771)) (-5 *2 (-779)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-771)))))
-(-13 (-769) (-730) (-10 -8 (-15 -4249 ((-779)) -1705) (-15 -2940 ($ (-572)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-728) . T) ((-730) . T) ((-769) . T) ((-1111) . T))
-((-3000 (((-652 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 (-171 |#1|)))))) (-697 (-171 (-415 (-572)))) |#1|) 33)) (-1881 (((-652 (-171 |#1|)) (-697 (-171 (-415 (-572)))) |#1|) 23)) (-4251 (((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))) (-1188)) 20) (((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572))))) 19)))
-(((-772 |#1|) (-10 -7 (-15 -4251 ((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))))) (-15 -4251 ((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))) (-1188))) (-15 -1881 ((-652 (-171 |#1|)) (-697 (-171 (-415 (-572)))) |#1|)) (-15 -3000 ((-652 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 (-171 |#1|)))))) (-697 (-171 (-415 (-572)))) |#1|))) (-13 (-370) (-856))) (T -772))
-((-3000 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *2 (-652 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 (-171 *4))))))) (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))) (-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *2 (-652 (-171 *4))) (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *4 (-1188)) (-5 *2 (-961 (-171 (-415 (-572))))) (-5 *1 (-772 *5)) (-4 *5 (-13 (-370) (-856))))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *2 (-961 (-171 (-415 (-572))))) (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))))
-(-10 -7 (-15 -4251 ((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))))) (-15 -4251 ((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))) (-1188))) (-15 -1881 ((-652 (-171 |#1|)) (-697 (-171 (-415 (-572)))) |#1|)) (-15 -3000 ((-652 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 (-171 |#1|)))))) (-697 (-171 (-415 (-572)))) |#1|)))
-((-3147 (((-176 (-572)) |#1|) 27)))
-(((-773 |#1|) (-10 -7 (-15 -3147 ((-176 (-572)) |#1|))) (-412)) (T -773))
-((-3147 (*1 *2 *3) (-12 (-5 *2 (-176 (-572))) (-5 *1 (-773 *3)) (-4 *3 (-412)))))
-(-10 -7 (-15 -3147 ((-176 (-572)) |#1|)))
-((-2118 ((|#1| |#1| |#1|) 28)) (-4262 ((|#1| |#1| |#1|) 27)) (-3524 ((|#1| |#1| |#1|) 38)) (-3272 ((|#1| |#1| |#1|) 34)) (-3461 (((-3 |#1| "failed") |#1| |#1|) 31)) (-1376 (((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|) 26)))
-(((-774 |#1| |#2|) (-10 -7 (-15 -1376 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -4262 (|#1| |#1| |#1|)) (-15 -2118 (|#1| |#1| |#1|)) (-15 -3461 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3272 (|#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| |#1|))) (-716 |#2|) (-370)) (T -774))
-((-3524 (*1 *2 *2 *2) (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-3272 (*1 *2 *2 *2) (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-3461 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-2118 (*1 *2 *2 *2) (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-4262 (*1 *2 *2 *2) (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-1376 (*1 *2 *3 *3) (-12 (-4 *4 (-370)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-774 *3 *4)) (-4 *3 (-716 *4)))))
-(-10 -7 (-15 -1376 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -4262 (|#1| |#1| |#1|)) (-15 -2118 (|#1| |#1| |#1|)) (-15 -3461 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3272 (|#1| |#1| |#1|)) (-15 -3524 (|#1| |#1| |#1|)))
-((-2972 (((-699 (-1237)) $ (-1237)) 26)) (-4103 (((-699 (-557)) $ (-557)) 25)) (-3012 (((-779) $ (-129)) 27)) (-2931 (((-699 (-130)) $ (-130)) 24)) (-4168 (((-699 (-1237)) $) 12)) (-2624 (((-699 (-1235)) $) 8)) (-1434 (((-699 (-1234)) $) 10)) (-2688 (((-699 (-557)) $) 13)) (-2299 (((-699 (-555)) $) 9)) (-1976 (((-699 (-554)) $) 11)) (-4152 (((-779) $ (-129)) 7)) (-3019 (((-699 (-130)) $) 14)) (-2584 (((-112) $) 31)) (-3659 (((-699 $) |#1| (-963)) 32)) (-3682 (($ $) 6)))
-(((-775 |#1|) (-141) (-1111)) (T -775))
-((-3659 (*1 *2 *3 *4) (-12 (-5 *4 (-963)) (-4 *3 (-1111)) (-5 *2 (-699 *1)) (-4 *1 (-775 *3)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-775 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
-(-13 (-584) (-10 -8 (-15 -3659 ((-699 $) |t#1| (-963))) (-15 -2584 ((-112) $))))
-(((-175) . T) ((-535) . T) ((-584) . T) ((-868) . T))
-((-1702 (((-2 (|:| -4362 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))) (-572)) 71)) (-4219 (((-2 (|:| -4362 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572))))) 69)) (-3537 (((-572)) 85)))
-(((-776 |#1| |#2|) (-10 -7 (-15 -3537 ((-572))) (-15 -4219 ((-2 (|:| -4362 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))))) (-15 -1702 ((-2 (|:| -4362 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))) (-572)))) (-1255 (-572)) (-417 (-572) |#1|)) (T -776))
-((-1702 (*1 *2 *3) (-12 (-5 *3 (-572)) (-4 *4 (-1255 *3)) (-5 *2 (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-776 *4 *5)) (-4 *5 (-417 *3 *4)))) (-4219 (*1 *2) (-12 (-4 *3 (-1255 (-572))) (-5 *2 (-2 (|:| -4362 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572))))) (-5 *1 (-776 *3 *4)) (-4 *4 (-417 (-572) *3)))) (-3537 (*1 *2) (-12 (-4 *3 (-1255 *2)) (-5 *2 (-572)) (-5 *1 (-776 *3 *4)) (-4 *4 (-417 *2 *3)))))
-(-10 -7 (-15 -3537 ((-572))) (-15 -4219 ((-2 (|:| -4362 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))))) (-15 -1702 ((-2 (|:| -4362 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))) (-572))))
-((-2846 (((-112) $ $) NIL)) (-2204 (((-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 20) (($ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-777) (-13 (-1111) (-10 -8 (-15 -2940 ($ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2940 ($ (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2940 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2204 ((-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -777))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-777)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-777)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-777)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-777)))))
-(-13 (-1111) (-10 -8 (-15 -2940 ($ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2940 ($ (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2940 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2204 ((-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))
-((-4140 (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|))) 18) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188))) 17)) (-1724 (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|))) 20) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188))) 19)))
-(((-778 |#1|) (-10 -7 (-15 -4140 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -4140 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|))))) (-564)) (T -778))
-((-1724 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-778 *4)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-778 *5)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-778 *4)))) (-4140 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-778 *5)))))
-(-10 -7 (-15 -4140 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -4140 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1360 (($ $ $) 10)) (-3330 (((-3 $ "failed") $ $) 15)) (-3957 (($ $ (-572)) 11)) (-3281 (($) NIL T CONST)) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($ $) NIL)) (-2792 (($ $ $) NIL)) (-1886 (((-112) $) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2870 (($ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 6 T CONST)) (-2143 (($) NIL T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ $ $) NIL)))
-(((-779) (-13 (-801) (-734) (-10 -8 (-15 -2792 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -2870 ($ $ $)) (-15 -1669 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -2834 ((-3 $ "failed") $ $)) (-15 -3957 ($ $ (-572))) (-15 -2815 ($ $)) (-6 (-4456 "*"))))) (T -779))
-((-2792 (*1 *1 *1 *1) (-5 *1 (-779))) (-2780 (*1 *1 *1 *1) (-5 *1 (-779))) (-2870 (*1 *1 *1 *1) (-5 *1 (-779))) (-1669 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4215 (-779)) (|:| -3669 (-779)))) (-5 *1 (-779)))) (-2834 (*1 *1 *1 *1) (|partial| -5 *1 (-779))) (-3957 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-779)))) (-2815 (*1 *1 *1) (-5 *1 (-779))))
-(-13 (-801) (-734) (-10 -8 (-15 -2792 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -2870 ($ $ $)) (-15 -1669 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -2834 ((-3 $ "failed") $ $)) (-15 -3957 ($ $ (-572))) (-15 -2815 ($ $)) (-6 (-4456 "*"))))
+((-3243 (*1 *1 *1 *1 *1) (-4 *1 (-771))) (-3647 (*1 *1 *1 *1) (-4 *1 (-771))) (-2309 (*1 *1 *1 *1) (-4 *1 (-771))))
+(-13 (-21) (-730) (-10 -8 (-15 -3243 ($ $ $ $)) (-15 -3647 ($ $ $)) (-15 -2309 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-1113) . T))
+((-2943 (((-872) $) NIL) (($ (-574)) 10)))
+(((-772 |#1|) (-10 -8 (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-773)) (T -772))
+NIL
+(-10 -8 (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-4369 (((-3 $ "failed") $) 43)) (-2652 (($ $ (-932)) 31) (($ $ (-781)) 38)) (-1950 (((-3 $ "failed") $) 41)) (-3965 (((-112) $) 37)) (-1792 (((-3 $ "failed") $) 42)) (-3702 (($ $ (-932)) 32) (($ $ (-781)) 39)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3647 (($ $ $) 28)) (-2943 (((-872) $) 12) (($ (-574)) 34)) (-4160 (((-781)) 35 T CONST)) (-2923 (((-112) $ $) 9)) (-3243 (($ $ $ $) 29)) (-2309 (($ $ $) 27)) (-2134 (($) 19 T CONST)) (-2146 (($) 36 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 33) (($ $ (-781)) 40)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30)))
+(((-773) (-141)) (T -773))
+((-4160 (*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773)))))
+(-13 (-771) (-732) (-10 -8 (-15 -4160 ((-781)) -1707) (-15 -2943 ($ (-574)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-732) . T) ((-771) . T) ((-1113) . T))
+((-2727 (((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|) 33)) (-3917 (((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|) 23)) (-4169 (((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1190)) 20) (((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574))))) 19)))
+(((-774 |#1|) (-10 -7 (-15 -4169 ((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -4169 ((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1190))) (-15 -3917 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -2727 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) (-13 (-372) (-858))) (T -774))
+((-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 *4))))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1190)) (-5 *2 (-963 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) (-4 *5 (-13 (-372) (-858))))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-963 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))))
+(-10 -7 (-15 -4169 ((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -4169 ((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1190))) (-15 -3917 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -2727 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|)))
+((-2807 (((-176 (-574)) |#1|) 27)))
+(((-775 |#1|) (-10 -7 (-15 -2807 ((-176 (-574)) |#1|))) (-414)) (T -775))
+((-2807 (*1 *2 *3) (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414)))))
+(-10 -7 (-15 -2807 ((-176 (-574)) |#1|)))
+((-4362 ((|#1| |#1| |#1|) 28)) (-4255 ((|#1| |#1| |#1|) 27)) (-4394 ((|#1| |#1| |#1|) 38)) (-3590 ((|#1| |#1| |#1|) 34)) (-1833 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3333 (((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|) 26)))
+(((-776 |#1| |#2|) (-10 -7 (-15 -3333 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -4255 (|#1| |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1|)) (-15 -1833 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -4394 (|#1| |#1| |#1|))) (-718 |#2|) (-372)) (T -776))
+((-4394 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-3590 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-1833 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-4362 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-4255 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-3333 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4)))))
+(-10 -7 (-15 -3333 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -4255 (|#1| |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1|)) (-15 -1833 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -4394 (|#1| |#1| |#1|)))
+((-2444 (((-701 (-1239)) $ (-1239)) 26)) (-2046 (((-701 (-559)) $ (-559)) 25)) (-2841 (((-781) $ (-129)) 27)) (-3368 (((-701 (-130)) $ (-130)) 24)) (-1435 (((-701 (-1239)) $) 12)) (-3487 (((-701 (-1237)) $) 8)) (-3122 (((-701 (-1236)) $) 10)) (-2794 (((-701 (-559)) $) 13)) (-3544 (((-701 (-557)) $) 9)) (-2359 (((-701 (-556)) $) 11)) (-4417 (((-781) $ (-129)) 7)) (-2916 (((-701 (-130)) $) 14)) (-3090 (((-112) $) 31)) (-3337 (((-701 $) |#1| (-965)) 32)) (-3568 (($ $) 6)))
+(((-777 |#1|) (-141) (-1113)) (T -777))
+((-3337 (*1 *2 *3 *4) (-12 (-5 *4 (-965)) (-4 *3 (-1113)) (-5 *2 (-701 *1)) (-4 *1 (-777 *3)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))))
+(-13 (-586) (-10 -8 (-15 -3337 ((-701 $) |t#1| (-965))) (-15 -3090 ((-112) $))))
+(((-175) . T) ((-537) . T) ((-586) . T) ((-870) . T))
+((-2754 (((-2 (|:| -2722 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)) 71)) (-3885 (((-2 (|:| -2722 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) 69)) (-1415 (((-574)) 85)))
+(((-778 |#1| |#2|) (-10 -7 (-15 -1415 ((-574))) (-15 -3885 ((-2 (|:| -2722 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -2754 ((-2 (|:| -2722 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) (-1257 (-574)) (-419 (-574) |#1|)) (T -778))
+((-2754 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1257 *3)) (-5 *2 (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3885 (*1 *2) (-12 (-4 *3 (-1257 (-574))) (-5 *2 (-2 (|:| -2722 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) (-1415 (*1 *2) (-12 (-4 *3 (-1257 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 *2 *3)))))
+(-10 -7 (-15 -1415 ((-574))) (-15 -3885 ((-2 (|:| -2722 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -2754 ((-2 (|:| -2722 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574))))
+((-2849 (((-112) $ $) NIL)) (-2209 (((-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20) (($ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-779) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2943 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2943 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2209 ((-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -779))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))))
+(-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2943 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2943 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2209 ((-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))
+((-4329 (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|))) 18) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190))) 17)) (-1723 (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|))) 20) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190))) 19)))
+(((-780 |#1|) (-10 -7 (-15 -4329 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -4329 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|))))) (-566)) (T -780))
+((-1723 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-780 *4)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-780 *5)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-780 *4)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-780 *5)))))
+(-10 -7 (-15 -4329 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -4329 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1854 (($ $ $) 10)) (-2950 (((-3 $ "failed") $ $) 15)) (-3958 (($ $ (-574)) 11)) (-3670 (($) NIL T CONST)) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($ $) NIL)) (-2798 (($ $ $) NIL)) (-3965 (((-112) $) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2874 (($ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 6 T CONST)) (-2146 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ $ $) NIL)))
+(((-781) (-13 (-803) (-736) (-10 -8 (-15 -2798 ($ $ $)) (-15 -2785 ($ $ $)) (-15 -2874 ($ $ $)) (-15 -2413 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -2838 ((-3 $ "failed") $ $)) (-15 -3958 ($ $ (-574))) (-15 -2820 ($ $)) (-6 (-4458 "*"))))) (T -781))
+((-2798 (*1 *1 *1 *1) (-5 *1 (-781))) (-2785 (*1 *1 *1 *1) (-5 *1 (-781))) (-2874 (*1 *1 *1 *1) (-5 *1 (-781))) (-2413 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3855 (-781)) (|:| -3435 (-781)))) (-5 *1 (-781)))) (-2838 (*1 *1 *1 *1) (|partial| -5 *1 (-781))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781)))) (-2820 (*1 *1 *1) (-5 *1 (-781))))
+(-13 (-803) (-736) (-10 -8 (-15 -2798 ($ $ $)) (-15 -2785 ($ $ $)) (-15 -2874 ($ $ $)) (-15 -2413 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -2838 ((-3 $ "failed") $ $)) (-15 -3958 ($ $ (-574))) (-15 -2820 ($ $)) (-6 (-4458 "*"))))
((|Integer|) (|%ige| |#1| 0))
-((-1724 (((-3 |#2| "failed") |#2| |#2| (-115) (-1188)) 37)))
-(((-780 |#1| |#2|) (-10 -7 (-15 -1724 ((-3 |#2| "failed") |#2| |#2| (-115) (-1188)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968))) (T -780))
-((-1724 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-780 *5 *2)) (-4 *2 (-13 (-29 *5) (-1214) (-968))))))
-(-10 -7 (-15 -1724 ((-3 |#2| "failed") |#2| |#2| (-115) (-1188))))
-((-2940 (((-782) |#1|) 8)))
-(((-781 |#1|) (-10 -7 (-15 -2940 ((-782) |#1|))) (-1229)) (T -781))
-((-2940 (*1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-781 *3)) (-4 *3 (-1229)))))
-(-10 -7 (-15 -2940 ((-782) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 7)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 9)))
-(((-782) (-1111)) (T -782))
-NIL
-(-1111)
-((-2028 ((|#2| |#4|) 35)))
-(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2028 (|#2| |#4|))) (-460) (-1255 |#1|) (-732 |#1| |#2|) (-1255 |#3|)) (T -783))
-((-2028 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-732 *4 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-783 *4 *2 *5 *3)) (-4 *3 (-1255 *5)))))
-(-10 -7 (-15 -2028 (|#2| |#4|)))
-((-2062 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1648 (((-1284) (-1170) (-1170) |#4| |#5|) 33)) (-3227 ((|#4| |#4| |#5|) 74)) (-2346 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|) 79)) (-1630 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 16)))
-(((-784 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2062 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3227 (|#4| |#4| |#5|)) (-15 -2346 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -1648 ((-1284) (-1170) (-1170) |#4| |#5|)) (-15 -1630 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -784))
-((-1630 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-1648 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1170)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *4 (-1076 *6 *7 *8)) (-5 *2 (-1284)) (-5 *1 (-784 *6 *7 *8 *4 *5)) (-4 *5 (-1082 *6 *7 *8 *4)))) (-2346 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3227 (*1 *2 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *2 (-1076 *4 *5 *6)) (-5 *1 (-784 *4 *5 *6 *2 *3)) (-4 *3 (-1082 *4 *5 *6 *2)))) (-2062 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(-10 -7 (-15 -2062 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3227 (|#4| |#4| |#5|)) (-15 -2346 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -1648 ((-1284) (-1170) (-1170) |#4| |#5|)) (-15 -1630 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)))
-((-1695 (((-3 (-1184 (-1184 |#1|)) "failed") |#4|) 51)) (-4092 (((-652 |#4|) |#4|) 22)) (-3790 ((|#4| |#4|) 17)))
-(((-785 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4092 ((-652 |#4|) |#4|)) (-15 -1695 ((-3 (-1184 (-1184 |#1|)) "failed") |#4|)) (-15 -3790 (|#4| |#4|))) (-356) (-335 |#1|) (-1255 |#2|) (-1255 |#3|) (-930)) (T -785))
-((-3790 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-335 *3)) (-4 *5 (-1255 *4)) (-5 *1 (-785 *3 *4 *5 *2 *6)) (-4 *2 (-1255 *5)) (-14 *6 (-930)))) (-1695 (*1 *2 *3) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-335 *4)) (-4 *6 (-1255 *5)) (-5 *2 (-1184 (-1184 *4))) (-5 *1 (-785 *4 *5 *6 *3 *7)) (-4 *3 (-1255 *6)) (-14 *7 (-930)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-335 *4)) (-4 *6 (-1255 *5)) (-5 *2 (-652 *3)) (-5 *1 (-785 *4 *5 *6 *3 *7)) (-4 *3 (-1255 *6)) (-14 *7 (-930)))))
-(-10 -7 (-15 -4092 ((-652 |#4|) |#4|)) (-15 -1695 ((-3 (-1184 (-1184 |#1|)) "failed") |#4|)) (-15 -3790 (|#4| |#4|)))
-((-1496 (((-2 (|:| |deter| (-652 (-1184 |#5|))) (|:| |dterm| (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-652 |#1|)) (|:| |nlead| (-652 |#5|))) (-1184 |#5|) (-652 |#1|) (-652 |#5|)) 72)) (-2498 (((-652 (-779)) |#1|) 20)))
-(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1496 ((-2 (|:| |deter| (-652 (-1184 |#5|))) (|:| |dterm| (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-652 |#1|)) (|:| |nlead| (-652 |#5|))) (-1184 |#5|) (-652 |#1|) (-652 |#5|))) (-15 -2498 ((-652 (-779)) |#1|))) (-1255 |#4|) (-801) (-858) (-313) (-958 |#4| |#2| |#3|)) (T -786))
-((-2498 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-652 (-779))) (-5 *1 (-786 *3 *4 *5 *6 *7)) (-4 *3 (-1255 *6)) (-4 *7 (-958 *6 *4 *5)))) (-1496 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1255 *9)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-313)) (-4 *10 (-958 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-652 (-1184 *10))) (|:| |dterm| (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| *10))))) (|:| |nfacts| (-652 *6)) (|:| |nlead| (-652 *10)))) (-5 *1 (-786 *6 *7 *8 *9 *10)) (-5 *3 (-1184 *10)) (-5 *4 (-652 *6)) (-5 *5 (-652 *10)))))
-(-10 -7 (-15 -1496 ((-2 (|:| |deter| (-652 (-1184 |#5|))) (|:| |dterm| (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-652 |#1|)) (|:| |nlead| (-652 |#5|))) (-1184 |#5|) (-652 |#1|) (-652 |#5|))) (-15 -2498 ((-652 (-779)) |#1|)))
-((-3918 (((-652 (-2 (|:| |outval| |#1|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#1|))))) (-697 (-415 (-572))) |#1|) 31)) (-3270 (((-652 |#1|) (-697 (-415 (-572))) |#1|) 21)) (-4251 (((-961 (-415 (-572))) (-697 (-415 (-572))) (-1188)) 18) (((-961 (-415 (-572))) (-697 (-415 (-572)))) 17)))
-(((-787 |#1|) (-10 -7 (-15 -4251 ((-961 (-415 (-572))) (-697 (-415 (-572))))) (-15 -4251 ((-961 (-415 (-572))) (-697 (-415 (-572))) (-1188))) (-15 -3270 ((-652 |#1|) (-697 (-415 (-572))) |#1|)) (-15 -3918 ((-652 (-2 (|:| |outval| |#1|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#1|))))) (-697 (-415 (-572))) |#1|))) (-13 (-370) (-856))) (T -787))
-((-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-652 (-2 (|:| |outval| *4) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 *4)))))) (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856))))) (-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-652 *4)) (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856))))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *4 (-1188)) (-5 *2 (-961 (-415 (-572)))) (-5 *1 (-787 *5)) (-4 *5 (-13 (-370) (-856))))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-961 (-415 (-572)))) (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856))))))
-(-10 -7 (-15 -4251 ((-961 (-415 (-572))) (-697 (-415 (-572))))) (-15 -4251 ((-961 (-415 (-572))) (-697 (-415 (-572))) (-1188))) (-15 -3270 ((-652 |#1|) (-697 (-415 (-572))) |#1|)) (-15 -3918 ((-652 (-2 (|:| |outval| |#1|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#1|))))) (-697 (-415 (-572))) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 36)) (-4353 (((-652 |#2|) $) NIL)) (-4191 (((-1184 $) $ |#2|) NIL) (((-1184 |#1|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 |#2|)) NIL)) (-1969 (($ $) 30)) (-2148 (((-112) $ $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $ $) 110 (|has| |#1| (-564)))) (-2110 (((-652 $) $ $) 123 (|has| |#1| (-564)))) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3517 (($ $) NIL (|has| |#1| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-961 (-415 (-572)))) NIL (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))))) (((-3 $ "failed") (-961 (-572))) NIL (-2813 (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-2074 (|has| |#1| (-38 (-415 (-572)))))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188)))))) (((-3 $ "failed") (-961 |#1|)) NIL (-2813 (-12 (|has| |#2| (-622 (-1188))) (-2074 (|has| |#1| (-38 (-415 (-572))))) (-2074 (|has| |#1| (-38 (-572))))) (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-2074 (|has| |#1| (-38 (-415 (-572))))) (-2074 (|has| |#1| (-553)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))) (-2074 (|has| |#1| (-1003 (-572))))))) (((-3 (-1136 |#1| |#2|) "failed") $) 21)) (-2204 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) ((|#2| $) NIL) (($ (-961 (-415 (-572)))) NIL (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))))) (($ (-961 (-572))) NIL (-2813 (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-2074 (|has| |#1| (-38 (-415 (-572)))))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188)))))) (($ (-961 |#1|)) NIL (-2813 (-12 (|has| |#2| (-622 (-1188))) (-2074 (|has| |#1| (-38 (-415 (-572))))) (-2074 (|has| |#1| (-38 (-572))))) (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-2074 (|has| |#1| (-38 (-415 (-572))))) (-2074 (|has| |#1| (-553)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))) (-2074 (|has| |#1| (-1003 (-572))))))) (((-1136 |#1| |#2|) $) NIL)) (-2361 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-564)))) (-1390 (($ $) NIL) (($ $ |#2|) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2888 (((-112) $ $) NIL) (((-112) $ (-652 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2616 (((-112) $) NIL)) (-3038 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 81)) (-2620 (($ $) 136 (|has| |#1| (-460)))) (-1876 (($ $) NIL (|has| |#1| (-460))) (($ $ |#2|) NIL (|has| |#1| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#1| (-918)))) (-2387 (($ $) NIL (|has| |#1| (-564)))) (-3905 (($ $) NIL (|has| |#1| (-564)))) (-2462 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2213 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1437 (($ $ |#1| (-539 |#2|) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| |#1| (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| |#1| (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-1886 (((-112) $) 57)) (-4368 (((-779) $) NIL)) (-4338 (((-112) $ $) NIL) (((-112) $ (-652 $)) NIL)) (-3423 (($ $ $ $ $) 107 (|has| |#1| (-564)))) (-2366 ((|#2| $) 22)) (-4343 (($ (-1184 |#1|) |#2|) NIL) (($ (-1184 $) |#2|) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-539 |#2|)) NIL) (($ $ |#2| (-779)) 38) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-1685 (($ $ $) 63)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ |#2|) NIL)) (-3306 (((-112) $) NIL)) (-2649 (((-539 |#2|) $) NIL) (((-779) $ |#2|) NIL) (((-652 (-779)) $ (-652 |#2|)) NIL)) (-3109 (((-779) $) 23)) (-2497 (($ (-1 (-539 |#2|) (-539 |#2|)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3928 (((-3 |#2| "failed") $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-460)))) (-4244 (($ $) NIL (|has| |#1| (-460)))) (-3194 (((-652 $) $) NIL)) (-3288 (($ $) 39)) (-2261 (($ $) NIL (|has| |#1| (-460)))) (-2029 (((-652 $) $) 43)) (-1777 (($ $) 41)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3289 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3029 (-779))) $ $) 96)) (-4130 (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $) 78) (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $ |#2|) NIL)) (-1867 (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -3669 $)) $ $) NIL) (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -3669 $)) $ $ |#2|) NIL)) (-2984 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-4303 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-4347 (((-1170) $) NIL)) (-3487 (($ $ $) 125 (|has| |#1| (-564)))) (-2738 (((-652 $) $) 32)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| |#2|) (|:| -1679 (-779))) "failed") $) NIL)) (-3005 (((-112) $ $) NIL) (((-112) $ (-652 $)) NIL)) (-2755 (($ $ $) NIL)) (-3815 (($ $) 24)) (-2323 (((-112) $ $) NIL)) (-3536 (((-112) $ $) NIL) (((-112) $ (-652 $)) NIL)) (-1825 (($ $ $) NIL)) (-2502 (($ $) 26)) (-3964 (((-1131) $) NIL)) (-3431 (((-2 (|:| -2870 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-564)))) (-1638 (((-2 (|:| -2870 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-564)))) (-1336 (((-112) $) 56)) (-1347 ((|#1| $) 58)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-2870 ((|#1| |#1| $) 133 (|has| |#1| (-460))) (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-918)))) (-2045 (((-2 (|:| -2870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-564)))) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-564)))) (-3259 (($ $ |#1|) 129 (|has| |#1| (-564))) (($ $ $) NIL (|has| |#1| (-564)))) (-1605 (($ $ |#1|) 128 (|has| |#1| (-564))) (($ $ $) NIL (|has| |#1| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-652 |#2|) (-652 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-652 |#2|) (-652 $)) NIL)) (-3537 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3902 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-4390 (((-539 |#2|) $) NIL) (((-779) $ |#2|) 45) (((-652 (-779)) $ (-652 |#2|)) NIL)) (-1619 (($ $) NIL)) (-2325 (($ $) 35)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| |#1| (-622 (-544))) (|has| |#2| (-622 (-544))))) (($ (-961 (-415 (-572)))) NIL (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))))) (($ (-961 (-572))) NIL (-2813 (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-2074 (|has| |#1| (-38 (-415 (-572)))))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188)))))) (($ (-961 |#1|)) NIL (|has| |#2| (-622 (-1188)))) (((-1170) $) NIL (-12 (|has| |#1| (-1049 (-572))) (|has| |#2| (-622 (-1188))))) (((-961 |#1|) $) NIL (|has| |#2| (-622 (-1188))))) (-1711 ((|#1| $) 132 (|has| |#1| (-460))) (($ $ |#2|) NIL (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-961 |#1|) $) NIL (|has| |#2| (-622 (-1188)))) (((-1136 |#1| |#2|) $) 18) (($ (-1136 |#1| |#2|)) 19) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-539 |#2|)) NIL) (($ $ |#2| (-779)) 47) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) 13 T CONST)) (-1816 (((-3 (-112) "failed") $ $) NIL)) (-2143 (($) 37 T CONST)) (-3092 (($ $ $ $ (-779)) 105 (|has| |#1| (-564)))) (-3301 (($ $ $ (-779)) 104 (|has| |#1| (-564)))) (-3608 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) 75)) (-3075 (($ $ $) 85)) (** (($ $ (-930)) NIL) (($ $ (-779)) 70)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 62) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
-(((-788 |#1| |#2|) (-13 (-1076 |#1| (-539 |#2|) |#2|) (-621 (-1136 |#1| |#2|)) (-1049 (-1136 |#1| |#2|))) (-1060) (-858)) (T -788))
-NIL
-(-13 (-1076 |#1| (-539 |#2|) |#2|) (-621 (-1136 |#1| |#2|)) (-1049 (-1136 |#1| |#2|)))
-((-1776 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 13)))
-(((-789 |#1| |#2|) (-10 -7 (-15 -1776 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)))) (-1060) (-1060)) (T -789))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))))
-(-10 -7 (-15 -1776 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 12)) (-4166 (((-1279 |#1|) $ (-779)) NIL)) (-4353 (((-652 (-1093)) $) NIL)) (-3169 (($ (-1184 |#1|)) NIL)) (-4191 (((-1184 $) $ (-1093)) NIL) (((-1184 |#1|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-1093))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2070 (((-652 $) $ $) 54 (|has| |#1| (-564)))) (-3453 (($ $ $) 50 (|has| |#1| (-564)))) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3517 (($ $) NIL (|has| |#1| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-1492 (($ $ (-779)) NIL)) (-4157 (($ $ (-779)) NIL)) (-2200 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-460)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1093) "failed") $) NIL) (((-3 (-1184 |#1|) "failed") $) 10)) (-2204 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1093) $) NIL) (((-1184 |#1|) $) NIL)) (-2361 (($ $ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2457 (($ $ $) NIL)) (-1809 (($ $ $) 87 (|has| |#1| (-564)))) (-3038 (((-2 (|:| -1857 |#1|) (|:| -4215 $) (|:| -3669 $)) $ $) 86 (|has| |#1| (-564)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-1876 (($ $) NIL (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#1| (-918)))) (-1437 (($ $ |#1| (-779) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2956 (((-779) $ $) NIL (|has| |#1| (-564)))) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-1163)))) (-4343 (($ (-1184 |#1|) (-1093)) NIL) (($ (-1184 $) (-1093)) NIL)) (-4076 (($ $ (-779)) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-779)) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-1685 (($ $ $) 27)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-1093)) NIL) (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2649 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-2497 (($ (-1 (-779) (-779)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2297 (((-1184 |#1|) $) NIL)) (-3928 (((-3 (-1093) "failed") $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3289 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3029 (-779))) $ $) 37)) (-3571 (($ $ $) 41)) (-3432 (($ $ $) 47)) (-4130 (((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $) 46)) (-4347 (((-1170) $) NIL)) (-3487 (($ $ $) 56 (|has| |#1| (-564)))) (-2507 (((-2 (|:| -4215 $) (|:| -3669 $)) $ (-779)) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-1093)) (|:| -1679 (-779))) "failed") $) NIL)) (-3034 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3815 (($) NIL (|has| |#1| (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-3431 (((-2 (|:| -2870 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-564)))) (-1638 (((-2 (|:| -2870 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-564)))) (-1894 (((-2 (|:| -2361 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-564)))) (-1790 (((-2 (|:| -2361 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-564)))) (-1336 (((-112) $) 13)) (-1347 ((|#1| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3070 (($ $ (-779) |#1| $) 26)) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-918)))) (-2045 (((-2 (|:| -2870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-564)))) (-3844 (((-2 (|:| -2361 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-564)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#1|) NIL) (($ $ (-652 (-1093)) (-652 |#1|)) NIL) (($ $ (-1093) $) NIL) (($ $ (-652 (-1093)) (-652 $)) NIL)) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-415 $) (-415 $) (-415 $)) NIL (|has| |#1| (-564))) ((|#1| (-415 $) |#1|) NIL (|has| |#1| (-370))) (((-415 $) $ (-415 $)) NIL (|has| |#1| (-564)))) (-1580 (((-3 $ "failed") $ (-779)) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3537 (($ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3902 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4390 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-1711 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-4039 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564))) (((-3 (-415 $) "failed") (-415 $) $) NIL (|has| |#1| (-564)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-1093)) NIL) (((-1184 |#1|) $) 7) (($ (-1184 |#1|)) 8) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-779)) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) 28 T CONST)) (-2143 (($) 32 T CONST)) (-3608 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) 40) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-790 |#1|) (-13 (-1255 |#1|) (-621 (-1184 |#1|)) (-1049 (-1184 |#1|)) (-10 -8 (-15 -3070 ($ $ (-779) |#1| $)) (-15 -1685 ($ $ $)) (-15 -3289 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3029 (-779))) $ $)) (-15 -3571 ($ $ $)) (-15 -4130 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -3432 ($ $ $)) (IF (|has| |#1| (-564)) (PROGN (-15 -2070 ((-652 $) $ $)) (-15 -3487 ($ $ $)) (-15 -2045 ((-2 (|:| -2870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1638 ((-2 (|:| -2870 $) (|:| |coef1| $)) $ $)) (-15 -3431 ((-2 (|:| -2870 $) (|:| |coef2| $)) $ $)) (-15 -3844 ((-2 (|:| -2361 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1790 ((-2 (|:| -2361 |#1|) (|:| |coef1| $)) $ $)) (-15 -1894 ((-2 (|:| -2361 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1060)) (T -790))
-((-3070 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-779)) (-5 *1 (-790 *3)) (-4 *3 (-1060)))) (-1685 (*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))) (-3289 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-790 *3)) (|:| |polden| *3) (|:| -3029 (-779)))) (-5 *1 (-790 *3)) (-4 *3 (-1060)))) (-3571 (*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))) (-4130 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1857 *3) (|:| |gap| (-779)) (|:| -4215 (-790 *3)) (|:| -3669 (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-1060)))) (-3432 (*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))) (-2070 (*1 *2 *1 *1) (-12 (-5 *2 (-652 (-790 *3))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-3487 (*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-564)) (-4 *2 (-1060)))) (-2045 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2870 (-790 *3)) (|:| |coef1| (-790 *3)) (|:| |coef2| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-1638 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2870 (-790 *3)) (|:| |coef1| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-3431 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2870 (-790 *3)) (|:| |coef2| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-3844 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2361 *3) (|:| |coef1| (-790 *3)) (|:| |coef2| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-1790 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2361 *3) (|:| |coef1| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2361 *3) (|:| |coef2| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
-(-13 (-1255 |#1|) (-621 (-1184 |#1|)) (-1049 (-1184 |#1|)) (-10 -8 (-15 -3070 ($ $ (-779) |#1| $)) (-15 -1685 ($ $ $)) (-15 -3289 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3029 (-779))) $ $)) (-15 -3571 ($ $ $)) (-15 -4130 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -3432 ($ $ $)) (IF (|has| |#1| (-564)) (PROGN (-15 -2070 ((-652 $) $ $)) (-15 -3487 ($ $ $)) (-15 -2045 ((-2 (|:| -2870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1638 ((-2 (|:| -2870 $) (|:| |coef1| $)) $ $)) (-15 -3431 ((-2 (|:| -2870 $) (|:| |coef2| $)) $ $)) (-15 -3844 ((-2 (|:| -2361 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1790 ((-2 (|:| -2361 |#1|) (|:| |coef1| $)) $ $)) (-15 -1894 ((-2 (|:| -2361 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-2060 ((|#1| (-779) |#1|) 33 (|has| |#1| (-38 (-415 (-572)))))) (-4176 ((|#1| (-779) |#1|) 23)) (-3143 ((|#1| (-779) |#1|) 35 (|has| |#1| (-38 (-415 (-572)))))))
-(((-791 |#1|) (-10 -7 (-15 -4176 (|#1| (-779) |#1|)) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3143 (|#1| (-779) |#1|)) (-15 -2060 (|#1| (-779) |#1|))) |%noBranch|)) (-174)) (T -791))
-((-2060 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-174)))) (-3143 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-174)))) (-4176 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-174)))))
-(-10 -7 (-15 -4176 (|#1| (-779) |#1|)) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3143 (|#1| (-779) |#1|)) (-15 -2060 (|#1| (-779) |#1|))) |%noBranch|))
-((-2846 (((-112) $ $) 7)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |#4|)))) (-652 |#4|)) 86)) (-1740 (((-652 $) (-652 |#4|)) 87) (((-652 $) (-652 |#4|) (-112)) 112)) (-4353 (((-652 |#3|) $) 34)) (-1544 (((-112) $) 27)) (-2639 (((-112) $) 18 (|has| |#1| (-564)))) (-2621 (((-112) |#4| $) 102) (((-112) $) 98)) (-3558 ((|#4| |#4| $) 93)) (-3517 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) 28)) (-1631 (((-112) $ (-779)) 45)) (-2162 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-3281 (($) 46 T CONST)) (-2390 (((-112) $) 23 (|has| |#1| (-564)))) (-2783 (((-112) $ $) 25 (|has| |#1| (-564)))) (-3937 (((-112) $ $) 24 (|has| |#1| (-564)))) (-1616 (((-112) $) 26 (|has| |#1| (-564)))) (-3713 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1566 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) 37)) (-2204 (($ (-652 |#4|)) 36)) (-2923 (((-3 $ "failed") $) 83)) (-2020 ((|#4| |#4| $) 90)) (-2086 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2888 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1758 ((|#4| |#4| $) 88)) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3433 (((-2 (|:| -1379 (-652 |#4|)) (|:| -1674 (-652 |#4|))) $) 106)) (-1939 (((-112) |#4| $) 137)) (-4131 (((-112) |#4| $) 134)) (-1554 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-4338 (((-112) |#4| $) 105) (((-112) $) 104)) (-2366 ((|#3| $) 35)) (-1861 (((-112) $ (-779)) 44)) (-1344 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-3015 (((-652 |#3|) $) 33)) (-1683 (((-112) |#3| $) 32)) (-1985 (((-112) $ (-779)) 43)) (-4347 (((-1170) $) 10)) (-4431 (((-3 |#4| (-652 $)) |#4| |#4| $) 129)) (-3487 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3357 (((-3 |#4| "failed") $) 84)) (-3326 (((-652 $) |#4| $) 130)) (-4399 (((-3 (-112) (-652 $)) |#4| $) 133)) (-1892 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1346 (((-652 $) |#4| $) 126) (((-652 $) (-652 |#4|) $) 125) (((-652 $) (-652 |#4|) (-652 $)) 124) (((-652 $) |#4| (-652 $)) 123)) (-3761 (($ |#4| $) 118) (($ (-652 |#4|) $) 117)) (-2234 (((-652 |#4|) $) 108)) (-3005 (((-112) |#4| $) 100) (((-112) $) 96)) (-2755 ((|#4| |#4| $) 91)) (-2323 (((-112) $ $) 111)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-3536 (((-112) |#4| $) 101) (((-112) $) 97)) (-1825 ((|#4| |#4| $) 92)) (-3964 (((-1131) $) 11)) (-2912 (((-3 |#4| "failed") $) 85)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3632 (((-3 $ "failed") $ |#4|) 79)) (-2772 (($ $ |#4|) 78) (((-652 $) |#4| $) 116) (((-652 $) |#4| (-652 $)) 115) (((-652 $) (-652 |#4|) $) 114) (((-652 $) (-652 |#4|) (-652 $)) 113)) (-1612 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) 39)) (-1841 (((-112) $) 42)) (-1613 (($) 41)) (-4390 (((-779) $) 107)) (-3973 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3164 (($ $) 40)) (-1835 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) 61)) (-2748 (($ $ |#3|) 29)) (-2365 (($ $ |#3|) 31)) (-3862 (($ $) 89)) (-1670 (($ $ |#3|) 30)) (-2940 (((-870) $) 12) (((-652 |#4|) $) 38)) (-3678 (((-779) $) 77 (|has| |#3| (-375)))) (-4379 (((-112) $ $) 9)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3447 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-3007 (((-652 $) |#4| $) 122) (((-652 $) |#4| (-652 $)) 121) (((-652 $) (-652 |#4|) $) 120) (((-652 $) (-652 |#4|) (-652 $)) 119)) (-4380 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-4041 (((-652 |#3|) $) 82)) (-4377 (((-112) |#4| $) 136)) (-1482 (((-112) |#3| $) 81)) (-2978 (((-112) $ $) 6)) (-2860 (((-779) $) 47 (|has| $ (-6 -4454)))))
-(((-792 |#1| |#2| |#3| |#4|) (-141) (-460) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -792))
-NIL
-(-13 (-1082 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1222 |#1| |#2| |#3| |#4|) . T) ((-1229) . T))
-((-3037 (((-3 (-386) "failed") (-322 |#1|) (-930)) 62 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-386) "failed") (-322 |#1|)) 54 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-386) "failed") (-415 (-961 |#1|)) (-930)) 41 (|has| |#1| (-564))) (((-3 (-386) "failed") (-415 (-961 |#1|))) 40 (|has| |#1| (-564))) (((-3 (-386) "failed") (-961 |#1|) (-930)) 31 (|has| |#1| (-1060))) (((-3 (-386) "failed") (-961 |#1|)) 30 (|has| |#1| (-1060)))) (-3086 (((-386) (-322 |#1|) (-930)) 99 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-386) (-322 |#1|)) 94 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-386) (-415 (-961 |#1|)) (-930)) 91 (|has| |#1| (-564))) (((-386) (-415 (-961 |#1|))) 90 (|has| |#1| (-564))) (((-386) (-961 |#1|) (-930)) 86 (|has| |#1| (-1060))) (((-386) (-961 |#1|)) 85 (|has| |#1| (-1060))) (((-386) |#1| (-930)) 76) (((-386) |#1|) 22)) (-2847 (((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)) (-930)) 71 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-171 (-386)) "failed") (-322 (-171 |#1|))) 70 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-171 (-386)) "failed") (-322 |#1|) (-930)) 63 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-171 (-386)) "failed") (-322 |#1|)) 61 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))) (-930)) 46 (|has| |#1| (-564))) (((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|)))) 45 (|has| |#1| (-564))) (((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)) (-930)) 39 (|has| |#1| (-564))) (((-3 (-171 (-386)) "failed") (-415 (-961 |#1|))) 38 (|has| |#1| (-564))) (((-3 (-171 (-386)) "failed") (-961 |#1|) (-930)) 28 (|has| |#1| (-1060))) (((-3 (-171 (-386)) "failed") (-961 |#1|)) 26 (|has| |#1| (-1060))) (((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)) (-930)) 18 (|has| |#1| (-174))) (((-3 (-171 (-386)) "failed") (-961 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4142 (((-171 (-386)) (-322 (-171 |#1|)) (-930)) 102 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-171 (-386)) (-322 (-171 |#1|))) 101 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-171 (-386)) (-322 |#1|) (-930)) 100 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-171 (-386)) (-322 |#1|)) 98 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-171 (-386)) (-415 (-961 (-171 |#1|))) (-930)) 93 (|has| |#1| (-564))) (((-171 (-386)) (-415 (-961 (-171 |#1|)))) 92 (|has| |#1| (-564))) (((-171 (-386)) (-415 (-961 |#1|)) (-930)) 89 (|has| |#1| (-564))) (((-171 (-386)) (-415 (-961 |#1|))) 88 (|has| |#1| (-564))) (((-171 (-386)) (-961 |#1|) (-930)) 84 (|has| |#1| (-1060))) (((-171 (-386)) (-961 |#1|)) 83 (|has| |#1| (-1060))) (((-171 (-386)) (-961 (-171 |#1|)) (-930)) 78 (|has| |#1| (-174))) (((-171 (-386)) (-961 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-386)) (-171 |#1|) (-930)) 80 (|has| |#1| (-174))) (((-171 (-386)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-386)) |#1| (-930)) 27) (((-171 (-386)) |#1|) 25)))
-(((-793 |#1|) (-10 -7 (-15 -3086 ((-386) |#1|)) (-15 -3086 ((-386) |#1| (-930))) (-15 -4142 ((-171 (-386)) |#1|)) (-15 -4142 ((-171 (-386)) |#1| (-930))) (IF (|has| |#1| (-174)) (PROGN (-15 -4142 ((-171 (-386)) (-171 |#1|))) (-15 -4142 ((-171 (-386)) (-171 |#1|) (-930))) (-15 -4142 ((-171 (-386)) (-961 (-171 |#1|)))) (-15 -4142 ((-171 (-386)) (-961 (-171 |#1|)) (-930)))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-15 -3086 ((-386) (-961 |#1|))) (-15 -3086 ((-386) (-961 |#1|) (-930))) (-15 -4142 ((-171 (-386)) (-961 |#1|))) (-15 -4142 ((-171 (-386)) (-961 |#1|) (-930)))) |%noBranch|) (IF (|has| |#1| (-564)) (PROGN (-15 -3086 ((-386) (-415 (-961 |#1|)))) (-15 -3086 ((-386) (-415 (-961 |#1|)) (-930))) (-15 -4142 ((-171 (-386)) (-415 (-961 |#1|)))) (-15 -4142 ((-171 (-386)) (-415 (-961 |#1|)) (-930))) (-15 -4142 ((-171 (-386)) (-415 (-961 (-171 |#1|))))) (-15 -4142 ((-171 (-386)) (-415 (-961 (-171 |#1|))) (-930))) (IF (|has| |#1| (-858)) (PROGN (-15 -3086 ((-386) (-322 |#1|))) (-15 -3086 ((-386) (-322 |#1|) (-930))) (-15 -4142 ((-171 (-386)) (-322 |#1|))) (-15 -4142 ((-171 (-386)) (-322 |#1|) (-930))) (-15 -4142 ((-171 (-386)) (-322 (-171 |#1|)))) (-15 -4142 ((-171 (-386)) (-322 (-171 |#1|)) (-930)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2847 ((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)) (-930)))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-15 -3037 ((-3 (-386) "failed") (-961 |#1|))) (-15 -3037 ((-3 (-386) "failed") (-961 |#1|) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-961 |#1|))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-961 |#1|) (-930)))) |%noBranch|) (IF (|has| |#1| (-564)) (PROGN (-15 -3037 ((-3 (-386) "failed") (-415 (-961 |#1|)))) (-15 -3037 ((-3 (-386) "failed") (-415 (-961 |#1|)) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))) (-930))) (IF (|has| |#1| (-858)) (PROGN (-15 -3037 ((-3 (-386) "failed") (-322 |#1|))) (-15 -3037 ((-3 (-386) "failed") (-322 |#1|) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-322 |#1|))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-322 |#1|) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)) (-930)))) |%noBranch|)) |%noBranch|)) (-622 (-386))) (T -793))
-((-2847 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-322 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2847 (*1 *2 *3) (|partial| -12 (-5 *3 (-322 (-171 *4))) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2847 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2847 (*1 *2 *3) (|partial| -12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-3037 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-3037 (*1 *2 *3) (|partial| -12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-2847 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-415 (-961 (-171 *5)))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2847 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 (-171 *4)))) (-4 *4 (-564)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2847 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2847 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-3037 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-3037 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-2847 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2847 (*1 *2 *3) (|partial| -12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-3037 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-3037 (*1 *2 *3) (|partial| -12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-2847 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-961 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-174)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2847 (*1 *2 *3) (|partial| -12 (-5 *3 (-961 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-322 (-171 *4))) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-171 *5)))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 (-171 *4)))) (-4 *4 (-564)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-961 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-174)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-961 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-930)) (-4 *5 (-174)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-5 *2 (-171 (-386))) (-5 *1 (-793 *3)) (-4 *3 (-622 (-386))))) (-4142 (*1 *2 *3) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-793 *3)) (-4 *3 (-622 (-386))))) (-3086 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-5 *2 (-386)) (-5 *1 (-793 *3)) (-4 *3 (-622 *2)))) (-3086 (*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-793 *3)) (-4 *3 (-622 *2)))))
-(-10 -7 (-15 -3086 ((-386) |#1|)) (-15 -3086 ((-386) |#1| (-930))) (-15 -4142 ((-171 (-386)) |#1|)) (-15 -4142 ((-171 (-386)) |#1| (-930))) (IF (|has| |#1| (-174)) (PROGN (-15 -4142 ((-171 (-386)) (-171 |#1|))) (-15 -4142 ((-171 (-386)) (-171 |#1|) (-930))) (-15 -4142 ((-171 (-386)) (-961 (-171 |#1|)))) (-15 -4142 ((-171 (-386)) (-961 (-171 |#1|)) (-930)))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-15 -3086 ((-386) (-961 |#1|))) (-15 -3086 ((-386) (-961 |#1|) (-930))) (-15 -4142 ((-171 (-386)) (-961 |#1|))) (-15 -4142 ((-171 (-386)) (-961 |#1|) (-930)))) |%noBranch|) (IF (|has| |#1| (-564)) (PROGN (-15 -3086 ((-386) (-415 (-961 |#1|)))) (-15 -3086 ((-386) (-415 (-961 |#1|)) (-930))) (-15 -4142 ((-171 (-386)) (-415 (-961 |#1|)))) (-15 -4142 ((-171 (-386)) (-415 (-961 |#1|)) (-930))) (-15 -4142 ((-171 (-386)) (-415 (-961 (-171 |#1|))))) (-15 -4142 ((-171 (-386)) (-415 (-961 (-171 |#1|))) (-930))) (IF (|has| |#1| (-858)) (PROGN (-15 -3086 ((-386) (-322 |#1|))) (-15 -3086 ((-386) (-322 |#1|) (-930))) (-15 -4142 ((-171 (-386)) (-322 |#1|))) (-15 -4142 ((-171 (-386)) (-322 |#1|) (-930))) (-15 -4142 ((-171 (-386)) (-322 (-171 |#1|)))) (-15 -4142 ((-171 (-386)) (-322 (-171 |#1|)) (-930)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2847 ((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)) (-930)))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-15 -3037 ((-3 (-386) "failed") (-961 |#1|))) (-15 -3037 ((-3 (-386) "failed") (-961 |#1|) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-961 |#1|))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-961 |#1|) (-930)))) |%noBranch|) (IF (|has| |#1| (-564)) (PROGN (-15 -3037 ((-3 (-386) "failed") (-415 (-961 |#1|)))) (-15 -3037 ((-3 (-386) "failed") (-415 (-961 |#1|)) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))) (-930))) (IF (|has| |#1| (-858)) (PROGN (-15 -3037 ((-3 (-386) "failed") (-322 |#1|))) (-15 -3037 ((-3 (-386) "failed") (-322 |#1|) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-322 |#1|))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-322 |#1|) (-930))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)))) (-15 -2847 ((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)) (-930)))) |%noBranch|)) |%noBranch|))
-((-3396 (((-930) (-1170)) 89)) (-3083 (((-3 (-386) "failed") (-1170)) 36)) (-2826 (((-386) (-1170)) 34)) (-1779 (((-930) (-1170)) 63)) (-4057 (((-1170) (-930)) 73)) (-3216 (((-1170) (-930)) 62)))
-(((-794) (-10 -7 (-15 -3216 ((-1170) (-930))) (-15 -1779 ((-930) (-1170))) (-15 -4057 ((-1170) (-930))) (-15 -3396 ((-930) (-1170))) (-15 -2826 ((-386) (-1170))) (-15 -3083 ((-3 (-386) "failed") (-1170))))) (T -794))
-((-3083 (*1 *2 *3) (|partial| -12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-794)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-794)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-930)) (-5 *1 (-794)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1170)) (-5 *1 (-794)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-930)) (-5 *1 (-794)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1170)) (-5 *1 (-794)))))
-(-10 -7 (-15 -3216 ((-1170) (-930))) (-15 -1779 ((-930) (-1170))) (-15 -4057 ((-1170) (-930))) (-15 -3396 ((-930) (-1170))) (-15 -2826 ((-386) (-1170))) (-15 -3083 ((-3 (-386) "failed") (-1170))))
-((-2846 (((-112) $ $) 7)) (-3606 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 16) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 14)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-795) (-141)) (T -795))
-((-3972 (*1 *2 *3 *4) (-12 (-4 *1 (-795)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046)))))) (-3606 (*1 *2 *3 *2) (-12 (-4 *1 (-795)) (-5 *2 (-1046)) (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-3972 (*1 *2 *3 *4) (-12 (-4 *1 (-795)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046)))))) (-3606 (*1 *2 *3 *2) (-12 (-4 *1 (-795)) (-5 *2 (-1046)) (-5 *3 (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
-(-13 (-1111) (-10 -7 (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3606 ((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3606 ((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-3364 (((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386))) 55) (((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386))) 52)) (-3113 (((-1284) (-1279 (-386)) (-572) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386))) 61)) (-1559 (((-1284) (-1279 (-386)) (-572) (-386) (-386) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386))) 50)) (-3368 (((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386))) 63) (((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386))) 62)))
-(((-796) (-10 -7 (-15 -3368 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -3368 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)))) (-15 -1559 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -3364 ((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -3364 ((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)))) (-15 -3113 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))))) (T -796))
-((-3113 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-3364 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-572)) (-5 *6 (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386)))) (-5 *7 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-3364 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-572)) (-5 *6 (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386)))) (-5 *7 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-1559 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-3368 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-3368 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))))
-(-10 -7 (-15 -3368 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -3368 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)))) (-15 -1559 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -3364 ((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -3364 ((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)))) (-15 -3113 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))))
-((-3193 (((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 64)) (-3968 (((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 40)) (-3118 (((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 63)) (-2602 (((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 38)) (-1634 (((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 62)) (-4320 (((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 24)) (-4074 (((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572)) 41)) (-2828 (((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572)) 39)) (-3999 (((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572)) 37)))
-(((-797) (-10 -7 (-15 -3999 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -2828 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -4074 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -4320 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -2602 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3968 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -1634 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3118 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3193 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))))) (T -797))
-((-3193 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-3118 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-1634 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-3968 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-2602 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-4320 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-4074 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-2828 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-3999 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))))
-(-10 -7 (-15 -3999 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -2828 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -4074 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -4320 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -2602 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3968 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -1634 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3118 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3193 ((-2 (|:| -3080 (-386)) (|:| -2671 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))))
-((-4281 (((-1224 |#1|) |#1| (-227) (-572)) 69)))
-(((-798 |#1|) (-10 -7 (-15 -4281 ((-1224 |#1|) |#1| (-227) (-572)))) (-985)) (T -798))
-((-4281 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-572)) (-5 *2 (-1224 *3)) (-5 *1 (-798 *3)) (-4 *3 (-985)))))
-(-10 -7 (-15 -4281 ((-1224 |#1|) |#1| (-227) (-572))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 25)) (-3330 (((-3 $ "failed") $ $) 27)) (-3281 (($) 24 T CONST)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 23 T CONST)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)) (-3089 (($ $ $) 31) (($ $) 30)) (-3075 (($ $ $) 21)) (* (($ (-930) $) 22) (($ (-779) $) 26) (($ (-572) $) 29)))
-(((-799) (-141)) (T -799))
-NIL
-(-13 (-803) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-858) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 25)) (-3281 (($) 24 T CONST)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 23 T CONST)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)) (-3075 (($ $ $) 21)) (* (($ (-930) $) 22) (($ (-779) $) 26)))
-(((-800) (-141)) (T -800))
-NIL
-(-13 (-802) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-802) . T) ((-858) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 25)) (-1360 (($ $ $) 28)) (-3330 (((-3 $ "failed") $ $) 27)) (-3281 (($) 24 T CONST)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 23 T CONST)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)) (-3075 (($ $ $) 21)) (* (($ (-930) $) 22) (($ (-779) $) 26)))
+((-1723 (((-3 |#2| "failed") |#2| |#2| (-115) (-1190)) 37)))
+(((-782 |#1| |#2|) (-10 -7 (-15 -1723 ((-3 |#2| "failed") |#2| |#2| (-115) (-1190)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970))) (T -782))
+((-1723 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1216) (-970))))))
+(-10 -7 (-15 -1723 ((-3 |#2| "failed") |#2| |#2| (-115) (-1190))))
+((-2943 (((-784) |#1|) 8)))
+(((-783 |#1|) (-10 -7 (-15 -2943 ((-784) |#1|))) (-1231)) (T -783))
+((-2943 (*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1231)))))
+(-10 -7 (-15 -2943 ((-784) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 7)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 9)))
+(((-784) (-1113)) (T -784))
+NIL
+(-1113)
+((-1652 ((|#2| |#4|) 35)))
+(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1652 (|#2| |#4|))) (-462) (-1257 |#1|) (-734 |#1| |#2|) (-1257 |#3|)) (T -785))
+((-1652 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1257 *5)))))
+(-10 -7 (-15 -1652 (|#2| |#4|)))
+((-1950 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2206 (((-1286) (-1172) (-1172) |#4| |#5|) 33)) (-4312 ((|#4| |#4| |#5|) 74)) (-2667 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|) 79)) (-3327 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 16)))
+(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1950 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4312 (|#4| |#4| |#5|)) (-15 -2667 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -2206 ((-1286) (-1172) (-1172) |#4| |#5|)) (-15 -3327 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -786))
+((-3327 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2206 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1172)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *4 (-1078 *6 *7 *8)) (-5 *2 (-1286)) (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1084 *6 *7 *8 *4)))) (-2667 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-4312 (*1 *2 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *2 (-1078 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) (-4 *3 (-1084 *4 *5 *6 *2)))) (-1950 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(-10 -7 (-15 -1950 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4312 (|#4| |#4| |#5|)) (-15 -2667 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -2206 ((-1286) (-1172) (-1172) |#4| |#5|)) (-15 -3327 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)))
+((-1697 (((-3 (-1186 (-1186 |#1|)) "failed") |#4|) 51)) (-1927 (((-654 |#4|) |#4|) 22)) (-2007 ((|#4| |#4|) 17)))
+(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1927 ((-654 |#4|) |#4|)) (-15 -1697 ((-3 (-1186 (-1186 |#1|)) "failed") |#4|)) (-15 -2007 (|#4| |#4|))) (-358) (-337 |#1|) (-1257 |#2|) (-1257 |#3|) (-932)) (T -787))
+((-2007 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1257 *4)) (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1257 *5)) (-14 *6 (-932)))) (-1697 (*1 *2 *3) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1257 *5)) (-5 *2 (-1186 (-1186 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1257 *6)) (-14 *7 (-932)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1257 *5)) (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1257 *6)) (-14 *7 (-932)))))
+(-10 -7 (-15 -1927 ((-654 |#4|) |#4|)) (-15 -1697 ((-3 (-1186 (-1186 |#1|)) "failed") |#4|)) (-15 -2007 (|#4| |#4|)))
+((-1318 (((-2 (|:| |deter| (-654 (-1186 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1186 |#5|) (-654 |#1|) (-654 |#5|)) 72)) (-1552 (((-654 (-781)) |#1|) 20)))
+(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1318 ((-2 (|:| |deter| (-654 (-1186 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1186 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -1552 ((-654 (-781)) |#1|))) (-1257 |#4|) (-803) (-860) (-315) (-960 |#4| |#2| |#3|)) (T -788))
+((-1552 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) (-4 *3 (-1257 *6)) (-4 *7 (-960 *6 *4 *5)))) (-1318 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1257 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) (-4 *10 (-960 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-654 (-1186 *10))) (|:| |dterm| (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| *10))))) (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1186 *10)) (-5 *4 (-654 *6)) (-5 *5 (-654 *10)))))
+(-10 -7 (-15 -1318 ((-2 (|:| |deter| (-654 (-1186 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1186 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -1552 ((-654 (-781)) |#1|)))
+((-3943 (((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|) 31)) (-1615 (((-654 |#1|) (-699 (-417 (-574))) |#1|) 21)) (-4169 (((-963 (-417 (-574))) (-699 (-417 (-574))) (-1190)) 18) (((-963 (-417 (-574))) (-699 (-417 (-574)))) 17)))
+(((-789 |#1|) (-10 -7 (-15 -4169 ((-963 (-417 (-574))) (-699 (-417 (-574))))) (-15 -4169 ((-963 (-417 (-574))) (-699 (-417 (-574))) (-1190))) (-15 -1615 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -3943 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) (-13 (-372) (-858))) (T -789))
+((-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 (-2 (|:| |outval| *4) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *4)))))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-1615 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1190)) (-5 *2 (-963 (-417 (-574)))) (-5 *1 (-789 *5)) (-4 *5 (-13 (-372) (-858))))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-963 (-417 (-574)))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))))
+(-10 -7 (-15 -4169 ((-963 (-417 (-574))) (-699 (-417 (-574))))) (-15 -4169 ((-963 (-417 (-574))) (-699 (-417 (-574))) (-1190))) (-15 -1615 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -3943 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 36)) (-4355 (((-654 |#2|) $) NIL)) (-4194 (((-1186 $) $ |#2|) NIL) (((-1186 |#1|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 |#2|)) NIL)) (-1971 (($ $) 30)) (-1482 (((-112) $ $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1744 (($ $ $) 110 (|has| |#1| (-566)))) (-4302 (((-654 $) $ $) 123 (|has| |#1| (-566)))) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4348 (($ $) NIL (|has| |#1| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-963 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))))) (((-3 $ "failed") (-963 (-574))) NIL (-2818 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2077 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190)))))) (((-3 $ "failed") (-963 |#1|)) NIL (-2818 (-12 (|has| |#2| (-624 (-1190))) (-2077 (|has| |#1| (-38 (-417 (-574))))) (-2077 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2077 (|has| |#1| (-38 (-417 (-574))))) (-2077 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))) (-2077 (|has| |#1| (-1005 (-574))))))) (((-3 (-1138 |#1| |#2|) "failed") $) 21)) (-2209 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) ((|#2| $) NIL) (($ (-963 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))))) (($ (-963 (-574))) NIL (-2818 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2077 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190)))))) (($ (-963 |#1|)) NIL (-2818 (-12 (|has| |#2| (-624 (-1190))) (-2077 (|has| |#1| (-38 (-417 (-574))))) (-2077 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2077 (|has| |#1| (-38 (-417 (-574))))) (-2077 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))) (-2077 (|has| |#1| (-1005 (-574))))))) (((-1138 |#1| |#2|) $) NIL)) (-2800 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-566)))) (-1392 (($ $) NIL) (($ $ |#2|) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-4155 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3415 (((-112) $) NIL)) (-3015 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 81)) (-3446 (($ $) 136 (|has| |#1| (-462)))) (-3872 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#1| (-920)))) (-1787 (($ $) NIL (|has| |#1| (-566)))) (-3821 (($ $) NIL (|has| |#1| (-566)))) (-4338 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4001 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3157 (($ $ |#1| (-541 |#2|) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3965 (((-112) $) 57)) (-2784 (((-781) $) NIL)) (-2474 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-2657 (($ $ $ $ $) 107 (|has| |#1| (-566)))) (-2851 ((|#2| $) 22)) (-4345 (($ (-1186 |#1|) |#2|) NIL) (($ (-1186 $) |#2|) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 38) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2593 (($ $ $) 63)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ |#2|) NIL)) (-3933 (((-112) $) NIL)) (-2382 (((-541 |#2|) $) NIL) (((-781) $ |#2|) NIL) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-2396 (((-781) $) 23)) (-1541 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-4045 (((-3 |#2| "failed") $) NIL)) (-1570 (($ $) NIL (|has| |#1| (-462)))) (-4117 (($ $) NIL (|has| |#1| (-462)))) (-2037 (((-654 $) $) NIL)) (-3745 (($ $) 39)) (-3197 (($ $) NIL (|has| |#1| (-462)))) (-1662 (((-654 $) $) 43)) (-4156 (($ $) 41)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3755 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2905 (-781))) $ $) 96)) (-2300 (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $) 78) (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $ |#2|) NIL)) (-3791 (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3435 $)) $ $) NIL) (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3435 $)) $ $ |#2|) NIL)) (-2561 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3437 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2568 (((-1172) $) NIL)) (-2107 (($ $ $) 125 (|has| |#1| (-566)))) (-2060 (((-654 $) $) 32)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| |#2|) (|:| -2524 (-781))) "failed") $) NIL)) (-2768 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-2244 (($ $ $) NIL)) (-3818 (($ $) 24)) (-2430 (((-112) $ $) NIL)) (-1406 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-1443 (($ $ $) NIL)) (-1596 (($ $) 26)) (-3966 (((-1133) $) NIL)) (-2746 (((-2 (|:| -2874 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-566)))) (-3408 (((-2 (|:| -2874 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-566)))) (-1338 (((-112) $) 56)) (-1349 ((|#1| $) 58)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2874 ((|#1| |#1| $) 133 (|has| |#1| (-462))) (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-1779 (((-2 (|:| -2874 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-566)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-566)))) (-1494 (($ $ |#1|) 129 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-3057 (($ $ |#1|) 128 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-654 |#2|) (-654 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-654 |#2|) (-654 $)) NIL)) (-1415 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3905 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1784 (((-541 |#2|) $) NIL) (((-781) $ |#2|) 45) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-3195 (($ $) NIL)) (-2455 (($ $) 35)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) (($ (-963 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))))) (($ (-963 (-574))) NIL (-2818 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2077 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190)))))) (($ (-963 |#1|)) NIL (|has| |#2| (-624 (-1190)))) (((-1172) $) NIL (-12 (|has| |#1| (-1051 (-574))) (|has| |#2| (-624 (-1190))))) (((-963 |#1|) $) NIL (|has| |#2| (-624 (-1190))))) (-1607 ((|#1| $) 132 (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-963 |#1|) $) NIL (|has| |#2| (-624 (-1190)))) (((-1138 |#1| |#2|) $) 18) (($ (-1138 |#1| |#2|)) 19) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) 47) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) 13 T CONST)) (-1361 (((-3 (-112) "failed") $ $) NIL)) (-2146 (($) 37 T CONST)) (-2252 (($ $ $ $ (-781)) 105 (|has| |#1| (-566)))) (-3879 (($ $ $ (-781)) 104 (|has| |#1| (-566)))) (-3611 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) 75)) (-3078 (($ $ $) 85)) (** (($ $ (-932)) NIL) (($ $ (-781)) 70)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 62) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
+(((-790 |#1| |#2|) (-13 (-1078 |#1| (-541 |#2|) |#2|) (-623 (-1138 |#1| |#2|)) (-1051 (-1138 |#1| |#2|))) (-1062) (-860)) (T -790))
+NIL
+(-13 (-1078 |#1| (-541 |#2|) |#2|) (-623 (-1138 |#1| |#2|)) (-1051 (-1138 |#1| |#2|)))
+((-1778 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 13)))
+(((-791 |#1| |#2|) (-10 -7 (-15 -1778 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1062) (-1062)) (T -791))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))))
+(-10 -7 (-15 -1778 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 12)) (-1416 (((-1281 |#1|) $ (-781)) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1780 (($ (-1186 |#1|)) NIL)) (-4194 (((-1186 $) $ (-1095)) NIL) (((-1186 |#1|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-1095))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2024 (((-654 $) $ $) 54 (|has| |#1| (-566)))) (-1744 (($ $ $) 50 (|has| |#1| (-566)))) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4348 (($ $) NIL (|has| |#1| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-4397 (($ $ (-781)) NIL)) (-1343 (($ $ (-781)) NIL)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1095) "failed") $) NIL) (((-3 (-1186 |#1|) "failed") $) 10)) (-2209 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1095) $) NIL) (((-1186 |#1|) $) NIL)) (-2800 (($ $ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-4297 (($ $ $) NIL)) (-4404 (($ $ $) 87 (|has| |#1| (-566)))) (-3015 (((-2 (|:| -1859 |#1|) (|:| -3855 $) (|:| -3435 $)) $ $) 86 (|has| |#1| (-566)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3872 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#1| (-920)))) (-3157 (($ $ |#1| (-781) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3593 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-1165)))) (-4345 (($ (-1186 |#1|) (-1095)) NIL) (($ (-1186 $) (-1095)) NIL)) (-1789 (($ $ (-781)) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-2593 (($ $ $) 27)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-1095)) NIL) (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-2382 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1541 (($ (-1 (-781) (-781)) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-3523 (((-1186 |#1|) $) NIL)) (-4045 (((-3 (-1095) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3755 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2905 (-781))) $ $) 37)) (-3695 (($ $ $) 41)) (-2756 (($ $ $) 47)) (-2300 (((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $) 46)) (-2568 (((-1172) $) NIL)) (-2107 (($ $ $) 56 (|has| |#1| (-566)))) (-1639 (((-2 (|:| -3855 $) (|:| -3435 $)) $ (-781)) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-1095)) (|:| -2524 (-781))) "failed") $) NIL)) (-2968 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2746 (((-2 (|:| -2874 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-566)))) (-3408 (((-2 (|:| -2874 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-566)))) (-4046 (((-2 (|:| -2800 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-566)))) (-4262 (((-2 (|:| -2800 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-566)))) (-1338 (((-112) $) 13)) (-1349 ((|#1| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3393 (($ $ (-781) |#1| $) 26)) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-1779 (((-2 (|:| -2874 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-566)))) (-4433 (((-2 (|:| -2800 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-566)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#1|) NIL) (($ $ (-654 (-1095)) (-654 |#1|)) NIL) (($ $ (-1095) $) NIL) (($ $ (-654 (-1095)) (-654 $)) NIL)) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-4071 (((-3 $ "failed") $ (-781)) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-1415 (($ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1784 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1607 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2659 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1095)) NIL) (((-1186 |#1|) $) 7) (($ (-1186 |#1|)) 8) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-781)) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) 28 T CONST)) (-2146 (($) 32 T CONST)) (-3611 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) 40) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-792 |#1|) (-13 (-1257 |#1|) (-623 (-1186 |#1|)) (-1051 (-1186 |#1|)) (-10 -8 (-15 -3393 ($ $ (-781) |#1| $)) (-15 -2593 ($ $ $)) (-15 -3755 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2905 (-781))) $ $)) (-15 -3695 ($ $ $)) (-15 -2300 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -2756 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -2024 ((-654 $) $ $)) (-15 -2107 ($ $ $)) (-15 -1779 ((-2 (|:| -2874 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3408 ((-2 (|:| -2874 $) (|:| |coef1| $)) $ $)) (-15 -2746 ((-2 (|:| -2874 $) (|:| |coef2| $)) $ $)) (-15 -4433 ((-2 (|:| -2800 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4262 ((-2 (|:| -2800 |#1|) (|:| |coef1| $)) $ $)) (-15 -4046 ((-2 (|:| -2800 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1062)) (T -792))
+((-3393 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1062)))) (-2593 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062)))) (-3755 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -2905 (-781)))) (-5 *1 (-792 *3)) (-4 *3 (-1062)))) (-3695 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062)))) (-2300 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1859 *3) (|:| |gap| (-781)) (|:| -3855 (-792 *3)) (|:| -3435 (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-1062)))) (-2756 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062)))) (-2024 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-2107 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1062)))) (-1779 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2874 (-792 *3)) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-3408 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2874 (-792 *3)) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-2746 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2874 (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-4433 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2800 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-4262 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2800 *3) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-4046 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2800 *3) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))))
+(-13 (-1257 |#1|) (-623 (-1186 |#1|)) (-1051 (-1186 |#1|)) (-10 -8 (-15 -3393 ($ $ (-781) |#1| $)) (-15 -2593 ($ $ $)) (-15 -3755 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2905 (-781))) $ $)) (-15 -3695 ($ $ $)) (-15 -2300 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -2756 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -2024 ((-654 $) $ $)) (-15 -2107 ($ $ $)) (-15 -1779 ((-2 (|:| -2874 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3408 ((-2 (|:| -2874 $) (|:| |coef1| $)) $ $)) (-15 -2746 ((-2 (|:| -2874 $) (|:| |coef2| $)) $ $)) (-15 -4433 ((-2 (|:| -2800 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4262 ((-2 (|:| -2800 |#1|) (|:| |coef1| $)) $ $)) (-15 -4046 ((-2 (|:| -2800 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-1928 ((|#1| (-781) |#1|) 33 (|has| |#1| (-38 (-417 (-574)))))) (-1512 ((|#1| (-781) |#1|) 23)) (-2760 ((|#1| (-781) |#1|) 35 (|has| |#1| (-38 (-417 (-574)))))))
+(((-793 |#1|) (-10 -7 (-15 -1512 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2760 (|#1| (-781) |#1|)) (-15 -1928 (|#1| (-781) |#1|))) |%noBranch|)) (-174)) (T -793))
+((-1928 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2760 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174)))))
+(-10 -7 (-15 -1512 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2760 (|#1| (-781) |#1|)) (-15 -1928 (|#1| (-781) |#1|))) |%noBranch|))
+((-2849 (((-112) $ $) 7)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |#4|)))) (-654 |#4|)) 86)) (-1886 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4355 (((-654 |#3|) $) 34)) (-3753 (((-112) $) 27)) (-3609 (((-112) $) 18 (|has| |#1| (-566)))) (-3456 (((-112) |#4| $) 102) (((-112) $) 98)) (-1621 ((|#4| |#4| $) 93)) (-4348 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 127)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) 28)) (-3340 (((-112) $ (-781)) 45)) (-2166 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3670 (($) 46 T CONST)) (-1800 (((-112) $) 23 (|has| |#1| (-566)))) (-1322 (((-112) $ $) 25 (|has| |#1| (-566)))) (-4133 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3172 (((-112) $) 26 (|has| |#1| (-566)))) (-2543 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3949 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) 37)) (-2209 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-2793 ((|#4| |#4| $) 90)) (-2158 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-4155 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2043 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2766 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1676 (-654 |#4|))) $) 106)) (-3321 (((-112) |#4| $) 137)) (-2308 (((-112) |#4| $) 134)) (-3857 (((-112) |#4| $) 138) (((-112) $) 135)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-2474 (((-112) |#4| $) 105) (((-112) $) 104)) (-2851 ((|#3| $) 35)) (-3735 (((-112) $ (-781)) 44)) (-1712 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 48)) (-2867 (((-654 |#3|) $) 33)) (-2570 (((-112) |#3| $) 32)) (-2448 (((-112) $ (-781)) 43)) (-2568 (((-1172) $) 10)) (-2176 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2107 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 128)) (-3360 (((-3 |#4| "failed") $) 84)) (-4130 (((-654 $) |#4| $) 130)) (-1885 (((-3 (-112) (-654 $)) |#4| $) 133)) (-4027 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1731 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1750 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4153 (((-654 |#4|) $) 108)) (-2768 (((-112) |#4| $) 100) (((-112) $) 96)) (-2244 ((|#4| |#4| $) 91)) (-2430 (((-112) $ $) 111)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1406 (((-112) |#4| $) 101) (((-112) $) 97)) (-1443 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3043 (((-3 $ "failed") $ |#4|) 79)) (-4344 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-3124 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) 39)) (-3556 (((-112) $) 42)) (-3135 (($) 41)) (-1784 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1837 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-2175 (($ $ |#3|) 29)) (-2840 (($ $ |#3|) 31)) (-1496 (($ $) 89)) (-2427 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3530 (((-781) $) 77 (|has| |#3| (-377)))) (-2923 (((-112) $ $) 9)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1685 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2790 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2935 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2681 (((-654 |#3|) $) 82)) (-2897 (((-112) |#4| $) 136)) (-4321 (((-112) |#3| $) 81)) (-2982 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456)))))
+(((-794 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -794))
+NIL
+(-13 (-1084 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1084 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1224 |#1| |#2| |#3| |#4|) . T) ((-1231) . T))
+((-3004 (((-3 (-388) "failed") (-324 |#1|) (-932)) 62 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-324 |#1|)) 54 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-417 (-963 |#1|)) (-932)) 41 (|has| |#1| (-566))) (((-3 (-388) "failed") (-417 (-963 |#1|))) 40 (|has| |#1| (-566))) (((-3 (-388) "failed") (-963 |#1|) (-932)) 31 (|has| |#1| (-1062))) (((-3 (-388) "failed") (-963 |#1|)) 30 (|has| |#1| (-1062)))) (-3088 (((-388) (-324 |#1|) (-932)) 99 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-324 |#1|)) 94 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-417 (-963 |#1|)) (-932)) 91 (|has| |#1| (-566))) (((-388) (-417 (-963 |#1|))) 90 (|has| |#1| (-566))) (((-388) (-963 |#1|) (-932)) 86 (|has| |#1| (-1062))) (((-388) (-963 |#1|)) 85 (|has| |#1| (-1062))) (((-388) |#1| (-932)) 76) (((-388) |#1|) 22)) (-3812 (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-932)) 71 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|))) 70 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|) (-932)) 63 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|)) 61 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))) (-932)) 46 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|)))) 45 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)) (-932)) 39 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-963 |#1|))) 38 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-963 |#1|) (-932)) 28 (|has| |#1| (-1062))) (((-3 (-171 (-388)) "failed") (-963 |#1|)) 26 (|has| |#1| (-1062))) (((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)) (-932)) 18 (|has| |#1| (-174))) (((-3 (-171 (-388)) "failed") (-963 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4143 (((-171 (-388)) (-324 (-171 |#1|)) (-932)) 102 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 (-171 |#1|))) 101 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|) (-932)) 100 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|)) 98 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-417 (-963 (-171 |#1|))) (-932)) 93 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-963 (-171 |#1|)))) 92 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-963 |#1|)) (-932)) 89 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-963 |#1|))) 88 (|has| |#1| (-566))) (((-171 (-388)) (-963 |#1|) (-932)) 84 (|has| |#1| (-1062))) (((-171 (-388)) (-963 |#1|)) 83 (|has| |#1| (-1062))) (((-171 (-388)) (-963 (-171 |#1|)) (-932)) 78 (|has| |#1| (-174))) (((-171 (-388)) (-963 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|) (-932)) 80 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-388)) |#1| (-932)) 27) (((-171 (-388)) |#1|) 25)))
+(((-795 |#1|) (-10 -7 (-15 -3088 ((-388) |#1|)) (-15 -3088 ((-388) |#1| (-932))) (-15 -4143 ((-171 (-388)) |#1|)) (-15 -4143 ((-171 (-388)) |#1| (-932))) (IF (|has| |#1| (-174)) (PROGN (-15 -4143 ((-171 (-388)) (-171 |#1|))) (-15 -4143 ((-171 (-388)) (-171 |#1|) (-932))) (-15 -4143 ((-171 (-388)) (-963 (-171 |#1|)))) (-15 -4143 ((-171 (-388)) (-963 (-171 |#1|)) (-932)))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-15 -3088 ((-388) (-963 |#1|))) (-15 -3088 ((-388) (-963 |#1|) (-932))) (-15 -4143 ((-171 (-388)) (-963 |#1|))) (-15 -4143 ((-171 (-388)) (-963 |#1|) (-932)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3088 ((-388) (-417 (-963 |#1|)))) (-15 -3088 ((-388) (-417 (-963 |#1|)) (-932))) (-15 -4143 ((-171 (-388)) (-417 (-963 |#1|)))) (-15 -4143 ((-171 (-388)) (-417 (-963 |#1|)) (-932))) (-15 -4143 ((-171 (-388)) (-417 (-963 (-171 |#1|))))) (-15 -4143 ((-171 (-388)) (-417 (-963 (-171 |#1|))) (-932))) (IF (|has| |#1| (-860)) (PROGN (-15 -3088 ((-388) (-324 |#1|))) (-15 -3088 ((-388) (-324 |#1|) (-932))) (-15 -4143 ((-171 (-388)) (-324 |#1|))) (-15 -4143 ((-171 (-388)) (-324 |#1|) (-932))) (-15 -4143 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4143 ((-171 (-388)) (-324 (-171 |#1|)) (-932)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3812 ((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)) (-932)))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-15 -3004 ((-3 (-388) "failed") (-963 |#1|))) (-15 -3004 ((-3 (-388) "failed") (-963 |#1|) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-963 |#1|))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-963 |#1|) (-932)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3004 ((-3 (-388) "failed") (-417 (-963 |#1|)))) (-15 -3004 ((-3 (-388) "failed") (-417 (-963 |#1|)) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))) (-932))) (IF (|has| |#1| (-860)) (PROGN (-15 -3004 ((-3 (-388) "failed") (-324 |#1|))) (-15 -3004 ((-3 (-388) "failed") (-324 |#1|) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-932)))) |%noBranch|)) |%noBranch|)) (-624 (-388))) (T -795))
+((-3812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3812 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3812 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3004 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3004 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-3812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-963 (-171 *5)))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3812 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3812 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3004 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3004 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-3812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3812 (*1 *2 *3) (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3004 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3004 (*1 *2 *3) (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-3812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3812 (*1 *2 *3) (|partial| -12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-171 *5)))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-932)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-4143 (*1 *2 *3) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-3088 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))))
+(-10 -7 (-15 -3088 ((-388) |#1|)) (-15 -3088 ((-388) |#1| (-932))) (-15 -4143 ((-171 (-388)) |#1|)) (-15 -4143 ((-171 (-388)) |#1| (-932))) (IF (|has| |#1| (-174)) (PROGN (-15 -4143 ((-171 (-388)) (-171 |#1|))) (-15 -4143 ((-171 (-388)) (-171 |#1|) (-932))) (-15 -4143 ((-171 (-388)) (-963 (-171 |#1|)))) (-15 -4143 ((-171 (-388)) (-963 (-171 |#1|)) (-932)))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-15 -3088 ((-388) (-963 |#1|))) (-15 -3088 ((-388) (-963 |#1|) (-932))) (-15 -4143 ((-171 (-388)) (-963 |#1|))) (-15 -4143 ((-171 (-388)) (-963 |#1|) (-932)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3088 ((-388) (-417 (-963 |#1|)))) (-15 -3088 ((-388) (-417 (-963 |#1|)) (-932))) (-15 -4143 ((-171 (-388)) (-417 (-963 |#1|)))) (-15 -4143 ((-171 (-388)) (-417 (-963 |#1|)) (-932))) (-15 -4143 ((-171 (-388)) (-417 (-963 (-171 |#1|))))) (-15 -4143 ((-171 (-388)) (-417 (-963 (-171 |#1|))) (-932))) (IF (|has| |#1| (-860)) (PROGN (-15 -3088 ((-388) (-324 |#1|))) (-15 -3088 ((-388) (-324 |#1|) (-932))) (-15 -4143 ((-171 (-388)) (-324 |#1|))) (-15 -4143 ((-171 (-388)) (-324 |#1|) (-932))) (-15 -4143 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4143 ((-171 (-388)) (-324 (-171 |#1|)) (-932)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3812 ((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)) (-932)))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-15 -3004 ((-3 (-388) "failed") (-963 |#1|))) (-15 -3004 ((-3 (-388) "failed") (-963 |#1|) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-963 |#1|))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-963 |#1|) (-932)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3004 ((-3 (-388) "failed") (-417 (-963 |#1|)))) (-15 -3004 ((-3 (-388) "failed") (-417 (-963 |#1|)) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))) (-932))) (IF (|has| |#1| (-860)) (PROGN (-15 -3004 ((-3 (-388) "failed") (-324 |#1|))) (-15 -3004 ((-3 (-388) "failed") (-324 |#1|) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-932))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -3812 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-932)))) |%noBranch|)) |%noBranch|))
+((-2336 (((-932) (-1172)) 89)) (-3496 (((-3 (-388) "failed") (-1172)) 36)) (-1670 (((-388) (-1172)) 34)) (-4176 (((-932) (-1172)) 63)) (-2852 (((-1172) (-932)) 73)) (-4198 (((-1172) (-932)) 62)))
+(((-796) (-10 -7 (-15 -4198 ((-1172) (-932))) (-15 -4176 ((-932) (-1172))) (-15 -2852 ((-1172) (-932))) (-15 -2336 ((-932) (-1172))) (-15 -1670 ((-388) (-1172))) (-15 -3496 ((-3 (-388) "failed") (-1172))))) (T -796))
+((-3496 (*1 *2 *3) (|partial| -12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-796)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-796)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-932)) (-5 *1 (-796)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1172)) (-5 *1 (-796)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-932)) (-5 *1 (-796)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1172)) (-5 *1 (-796)))))
+(-10 -7 (-15 -4198 ((-1172) (-932))) (-15 -4176 ((-932) (-1172))) (-15 -2852 ((-1172) (-932))) (-15 -2336 ((-932) (-1172))) (-15 -1670 ((-388) (-1172))) (-15 -3496 ((-3 (-388) "failed") (-1172))))
+((-2849 (((-112) $ $) 7)) (-4008 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 16) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 14)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-797) (-141)) (T -797))
+((-3284 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048)))))) (-4008 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1048)) (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-3284 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048)))))) (-4008 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1048)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
+(-13 (-1113) (-10 -7 (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4008 ((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4008 ((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-3329 (((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388))) 55) (((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388))) 52)) (-2447 (((-1286) (-1281 (-388)) (-574) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388))) 61)) (-3898 (((-1286) (-1281 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388))) 50)) (-3366 (((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388))) 63) (((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388))) 62)))
+(((-798) (-10 -7 (-15 -3366 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -3366 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)))) (-15 -3898 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -3329 ((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -3329 ((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)))) (-15 -2447 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))))) (T -798))
+((-2447 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-3329 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388)))) (-5 *7 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-3329 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388)))) (-5 *7 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-3898 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-3366 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-3366 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))))
+(-10 -7 (-15 -3366 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -3366 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)))) (-15 -3898 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -3329 ((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -3329 ((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)))) (-15 -2447 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))))
+((-2025 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 64)) (-3235 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 40)) (-2493 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 63)) (-3301 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 38)) (-3375 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 62)) (-3587 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 24)) (-1766 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 41)) (-1682 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 39)) (-3555 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 37)))
+(((-799) (-10 -7 (-15 -3555 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -1682 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -1766 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3587 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3301 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3235 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3375 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2493 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2025 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))))) (T -799))
+((-2025 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2493 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3375 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3235 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3301 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3587 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-1766 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-1682 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3555 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))))
+(-10 -7 (-15 -3555 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -1682 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -1766 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3587 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3301 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3235 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3375 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2493 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2025 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))))
+((-3240 (((-1226 |#1|) |#1| (-227) (-574)) 69)))
+(((-800 |#1|) (-10 -7 (-15 -3240 ((-1226 |#1|) |#1| (-227) (-574)))) (-987)) (T -800))
+((-3240 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1226 *3)) (-5 *1 (-800 *3)) (-4 *3 (-987)))))
+(-10 -7 (-15 -3240 ((-1226 |#1|) |#1| (-227) (-574))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 25)) (-2950 (((-3 $ "failed") $ $) 27)) (-3670 (($) 24 T CONST)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3094 (($ $ $) 31) (($ $) 30)) (-3078 (($ $ $) 21)) (* (($ (-932) $) 22) (($ (-781) $) 26) (($ (-574) $) 29)))
(((-801) (-141)) (T -801))
-((-1360 (*1 *1 *1 *1) (-4 *1 (-801))))
-(-13 (-803) (-10 -8 (-15 -1360 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-858) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 7)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)) (-3075 (($ $ $) 21)) (* (($ (-930) $) 22)))
+NIL
+(-13 (-805) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 25)) (-3670 (($) 24 T CONST)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3078 (($ $ $) 21)) (* (($ (-932) $) 22) (($ (-781) $) 26)))
(((-802) (-141)) (T -802))
NIL
-(-13 (-858) (-25))
-(((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-858) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 25)) (-3330 (((-3 $ "failed") $ $) 27)) (-3281 (($) 24 T CONST)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 23 T CONST)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)) (-3075 (($ $ $) 21)) (* (($ (-930) $) 22) (($ (-779) $) 26)))
+(-13 (-804) (-23))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-804) . T) ((-860) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 25)) (-1854 (($ $ $) 28)) (-2950 (((-3 $ "failed") $ $) 27)) (-3670 (($) 24 T CONST)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3078 (($ $ $) 21)) (* (($ (-932) $) 22) (($ (-781) $) 26)))
(((-803) (-141)) (T -803))
-NIL
-(-13 (-800) (-132))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-800) . T) ((-802) . T) ((-858) . T) ((-1111) . T))
-((-2697 (((-112) $) 42)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2204 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#2| $) 43)) (-3196 (((-3 (-415 (-572)) "failed") $) 78)) (-1733 (((-112) $) 72)) (-2233 (((-415 (-572)) $) 76)) (-2028 ((|#2| $) 26)) (-1776 (($ (-1 |#2| |#2|) $) 23)) (-1322 (($ $) 58)) (-1835 (((-544) $) 67)) (-1516 (($ $) 21)) (-2940 (((-870) $) 53) (($ (-572)) 40) (($ |#2|) 38) (($ (-415 (-572))) NIL)) (-4249 (((-779)) 10)) (-2700 ((|#2| $) 71)) (-2978 (((-112) $ $) 30)) (-3003 (((-112) $ $) 69)) (-3089 (($ $) 32) (($ $ $) NIL)) (-3075 (($ $ $) 31)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-804 |#1| |#2|) (-10 -8 (-15 -3003 ((-112) |#1| |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -2700 (|#2| |#1|)) (-15 -2028 (|#2| |#1|)) (-15 -1516 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 -2697 ((-112) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|))) (-805 |#2|) (-174)) (T -804))
-((-4249 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-804 *3 *4)) (-4 *3 (-805 *4)))))
-(-10 -8 (-15 -3003 ((-112) |#1| |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -2700 (|#2| |#1|)) (-15 -2028 (|#2| |#1|)) (-15 -1516 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 -2697 ((-112) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-1486 (((-779)) 58 (|has| |#1| (-375)))) (-3281 (($) 18 T CONST)) (-1695 (((-3 (-572) "failed") $) 100 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 97 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 94)) (-2204 (((-572) $) 99 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 96 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 95)) (-2062 (((-3 $ "failed") $) 37)) (-4237 ((|#1| $) 84)) (-3196 (((-3 (-415 (-572)) "failed") $) 71 (|has| |#1| (-553)))) (-1733 (((-112) $) 73 (|has| |#1| (-553)))) (-2233 (((-415 (-572)) $) 72 (|has| |#1| (-553)))) (-2815 (($) 61 (|has| |#1| (-375)))) (-1886 (((-112) $) 35)) (-3001 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2028 ((|#1| $) 76)) (-3654 (($ $ $) 67 (|has| |#1| (-858)))) (-2427 (($ $ $) 66 (|has| |#1| (-858)))) (-1776 (($ (-1 |#1| |#1|) $) 86)) (-3715 (((-930) $) 60 (|has| |#1| (-375)))) (-4347 (((-1170) $) 10)) (-1322 (($ $) 70 (|has| |#1| (-370)))) (-2571 (($ (-930)) 59 (|has| |#1| (-375)))) (-2781 ((|#1| $) 81)) (-2899 ((|#1| $) 82)) (-3404 ((|#1| $) 83)) (-1818 ((|#1| $) 77)) (-3304 ((|#1| $) 78)) (-3210 ((|#1| $) 79)) (-3443 ((|#1| $) 80)) (-3964 (((-1131) $) 11)) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) 92 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 90 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 89 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 88 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) 87 (|has| |#1| (-522 (-1188) |#1|)))) (-2196 (($ $ |#1|) 93 (|has| |#1| (-292 |#1| |#1|)))) (-1835 (((-544) $) 68 (|has| |#1| (-622 (-544))))) (-1516 (($ $) 85)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44) (($ (-415 (-572))) 98 (|has| |#1| (-1049 (-415 (-572)))))) (-3849 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2700 ((|#1| $) 74 (|has| |#1| (-1071)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3039 (((-112) $ $) 64 (|has| |#1| (-858)))) (-3014 (((-112) $ $) 63 (|has| |#1| (-858)))) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 65 (|has| |#1| (-858)))) (-3003 (((-112) $ $) 62 (|has| |#1| (-858)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-805 |#1|) (-141) (-174)) (T -805))
-((-1516 (*1 *1 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-2781 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-3001 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))) (-3196 (*1 *2 *1) (|partial| -12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))) (-1322 (*1 *1 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)) (-4 *2 (-370)))))
-(-13 (-38 |t#1|) (-419 |t#1|) (-345 |t#1|) (-10 -8 (-15 -1516 ($ $)) (-15 -4237 (|t#1| $)) (-15 -3404 (|t#1| $)) (-15 -2899 (|t#1| $)) (-15 -2781 (|t#1| $)) (-15 -3443 (|t#1| $)) (-15 -3210 (|t#1| $)) (-15 -3304 (|t#1| $)) (-15 -1818 (|t#1| $)) (-15 -2028 (|t#1| $)) (-15 -3001 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1071)) (-15 -2700 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -1322 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0=(-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-375) |has| |#1| (-375)) ((-345 |#1|) . T) ((-419 |#1|) . T) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-734) . T) ((-858) |has| |#1| (-858)) ((-1049 #0#) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) |has| |#1| (-292 |#1| |#1|)))
-((-1776 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) (-805 |#2|) (-174) (-805 |#4|) (-174)) (T -806))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-805 *6)) (-5 *1 (-806 *4 *5 *2 *6)) (-4 *4 (-805 *5)))))
-(-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-1486 (((-779)) NIL (|has| |#1| (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-1010 |#1|) "failed") $) 35) (((-3 (-572) "failed") $) NIL (-2813 (|has| (-1010 |#1|) (-1049 (-572))) (|has| |#1| (-1049 (-572))))) (((-3 (-415 (-572)) "failed") $) NIL (-2813 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-2204 ((|#1| $) NIL) (((-1010 |#1|) $) 33) (((-572) $) NIL (-2813 (|has| (-1010 |#1|) (-1049 (-572))) (|has| |#1| (-1049 (-572))))) (((-415 (-572)) $) NIL (-2813 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-2062 (((-3 $ "failed") $) NIL)) (-4237 ((|#1| $) 16)) (-3196 (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-553)))) (-1733 (((-112) $) NIL (|has| |#1| (-553)))) (-2233 (((-415 (-572)) $) NIL (|has| |#1| (-553)))) (-2815 (($) NIL (|has| |#1| (-375)))) (-1886 (((-112) $) NIL)) (-3001 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1010 |#1|) (-1010 |#1|)) 29)) (-2028 ((|#1| $) NIL)) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3715 (((-930) $) NIL (|has| |#1| (-375)))) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-2571 (($ (-930)) NIL (|has| |#1| (-375)))) (-2781 ((|#1| $) 22)) (-2899 ((|#1| $) 20)) (-3404 ((|#1| $) 18)) (-1818 ((|#1| $) 26)) (-3304 ((|#1| $) 25)) (-3210 ((|#1| $) 24)) (-3443 ((|#1| $) 23)) (-3964 (((-1131) $) NIL)) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|)))) (-2196 (($ $ |#1|) NIL (|has| |#1| (-292 |#1| |#1|)))) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-1516 (($ $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-1010 |#1|)) 30) (($ (-415 (-572))) NIL (-2813 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2700 ((|#1| $) NIL (|has| |#1| (-1071)))) (-2131 (($) 8 T CONST)) (-2143 (($) 12 T CONST)) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-807 |#1|) (-13 (-805 |#1|) (-419 (-1010 |#1|)) (-10 -8 (-15 -3001 ($ (-1010 |#1|) (-1010 |#1|))))) (-174)) (T -807))
-((-3001 (*1 *1 *2 *2) (-12 (-5 *2 (-1010 *3)) (-4 *3 (-174)) (-5 *1 (-807 *3)))))
-(-13 (-805 |#1|) (-419 (-1010 |#1|)) (-10 -8 (-15 -3001 ($ (-1010 |#1|) (-1010 |#1|)))))
-((-2846 (((-112) $ $) 7)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2458 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2978 (((-112) $ $) 6)))
-(((-808) (-141)) (T -808))
-((-3972 (*1 *2 *3 *4) (-12 (-4 *1 (-808)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)))))) (-2458 (*1 *2 *3) (-12 (-4 *1 (-808)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1046)))))
-(-13 (-1111) (-10 -7 (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2458 ((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-4037 (((-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) |#3| |#2| (-1188)) 19)))
-(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -4037 ((-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) |#3| |#2| (-1188)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968)) (-664 |#2|)) (T -809))
-((-4037 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1188)) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-4 *4 (-13 (-29 *6) (-1214) (-968))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4362 (-652 *4)))) (-5 *1 (-809 *6 *4 *3)) (-4 *3 (-664 *4)))))
-(-10 -7 (-15 -4037 ((-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) |#3| |#2| (-1188))))
-((-1724 (((-3 |#2| "failed") |#2| (-115) (-300 |#2|) (-652 |#2|)) 28) (((-3 |#2| "failed") (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) |#2| "failed") |#2| (-115) (-1188)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) |#2| "failed") (-300 |#2|) (-115) (-1188)) 18) (((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -4362 (-652 (-1279 |#2|)))) "failed") (-652 |#2|) (-652 (-115)) (-1188)) 24) (((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -4362 (-652 (-1279 |#2|)))) "failed") (-652 (-300 |#2|)) (-652 (-115)) (-1188)) 26) (((-3 (-652 (-1279 |#2|)) "failed") (-697 |#2|) (-1188)) 37) (((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -4362 (-652 (-1279 |#2|)))) "failed") (-697 |#2|) (-1279 |#2|) (-1188)) 35)))
-(((-810 |#1| |#2|) (-10 -7 (-15 -1724 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -4362 (-652 (-1279 |#2|)))) "failed") (-697 |#2|) (-1279 |#2|) (-1188))) (-15 -1724 ((-3 (-652 (-1279 |#2|)) "failed") (-697 |#2|) (-1188))) (-15 -1724 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -4362 (-652 (-1279 |#2|)))) "failed") (-652 (-300 |#2|)) (-652 (-115)) (-1188))) (-15 -1724 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -4362 (-652 (-1279 |#2|)))) "failed") (-652 |#2|) (-652 (-115)) (-1188))) (-15 -1724 ((-3 (-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) |#2| "failed") (-300 |#2|) (-115) (-1188))) (-15 -1724 ((-3 (-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) |#2| "failed") |#2| (-115) (-1188))) (-15 -1724 ((-3 |#2| "failed") (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|))) (-15 -1724 ((-3 |#2| "failed") |#2| (-115) (-300 |#2|) (-652 |#2|)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968))) (T -810))
-((-1724 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-300 *2)) (-5 *5 (-652 *2)) (-4 *2 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-810 *6 *2)))) (-1724 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-300 *2)) (-5 *4 (-115)) (-5 *5 (-652 *2)) (-4 *2 (-13 (-29 *6) (-1214) (-968))) (-5 *1 (-810 *6 *2)) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))))) (-1724 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1188)) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4362 (-652 *3))) *3 "failed")) (-5 *1 (-810 *6 *3)) (-4 *3 (-13 (-29 *6) (-1214) (-968))))) (-1724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 *7)) (-5 *4 (-115)) (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4362 (-652 *7))) *7 "failed")) (-5 *1 (-810 *6 *7)))) (-1724 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-652 *7)) (-5 *4 (-652 (-115))) (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-2 (|:| |particular| (-1279 *7)) (|:| -4362 (-652 (-1279 *7))))) (-5 *1 (-810 *6 *7)))) (-1724 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-652 (-300 *7))) (-5 *4 (-652 (-115))) (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-2 (|:| |particular| (-1279 *7)) (|:| -4362 (-652 (-1279 *7))))) (-5 *1 (-810 *6 *7)))) (-1724 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-697 *6)) (-5 *4 (-1188)) (-4 *6 (-13 (-29 *5) (-1214) (-968))) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-1279 *6))) (-5 *1 (-810 *5 *6)))) (-1724 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-697 *7)) (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-2 (|:| |particular| (-1279 *7)) (|:| -4362 (-652 (-1279 *7))))) (-5 *1 (-810 *6 *7)) (-5 *4 (-1279 *7)))))
-(-10 -7 (-15 -1724 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -4362 (-652 (-1279 |#2|)))) "failed") (-697 |#2|) (-1279 |#2|) (-1188))) (-15 -1724 ((-3 (-652 (-1279 |#2|)) "failed") (-697 |#2|) (-1188))) (-15 -1724 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -4362 (-652 (-1279 |#2|)))) "failed") (-652 (-300 |#2|)) (-652 (-115)) (-1188))) (-15 -1724 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -4362 (-652 (-1279 |#2|)))) "failed") (-652 |#2|) (-652 (-115)) (-1188))) (-15 -1724 ((-3 (-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) |#2| "failed") (-300 |#2|) (-115) (-1188))) (-15 -1724 ((-3 (-2 (|:| |particular| |#2|) (|:| -4362 (-652 |#2|))) |#2| "failed") |#2| (-115) (-1188))) (-15 -1724 ((-3 |#2| "failed") (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|))) (-15 -1724 ((-3 |#2| "failed") |#2| (-115) (-300 |#2|) (-652 |#2|))))
-((-3595 (($) 9)) (-2992 (((-3 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1761 (((-652 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2036 (($ (-2 (|:| -3690 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))))) 24)) (-1555 (($ (-652 (-2 (|:| -3690 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))))) 22)) (-1927 (((-1284)) 11)))
-(((-811) (-10 -8 (-15 -3595 ($)) (-15 -1927 ((-1284))) (-15 -1761 ((-652 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1555 ($ (-652 (-2 (|:| -3690 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))))))) (-15 -2036 ($ (-2 (|:| -3690 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))))) (-15 -2992 ((-3 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -811))
-((-2992 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))) (-5 *1 (-811)))) (-2036 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3690 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))))) (-5 *1 (-811)))) (-1555 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -3690 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))))) (-5 *1 (-811)))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-811)))) (-1927 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-811)))) (-3595 (*1 *1) (-5 *1 (-811))))
-(-10 -8 (-15 -3595 ($)) (-15 -1927 ((-1284))) (-15 -1761 ((-652 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1555 ($ (-652 (-2 (|:| -3690 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))))))) (-15 -2036 ($ (-2 (|:| -3690 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))))) (-15 -2992 ((-3 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-3088 ((|#2| |#2| (-1188)) 17)) (-1576 ((|#2| |#2| (-1188)) 56)) (-3027 (((-1 |#2| |#2|) (-1188)) 11)))
-(((-812 |#1| |#2|) (-10 -7 (-15 -3088 (|#2| |#2| (-1188))) (-15 -1576 (|#2| |#2| (-1188))) (-15 -3027 ((-1 |#2| |#2|) (-1188)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968))) (T -812))
-((-3027 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-13 (-29 *4) (-1214) (-968))))) (-1576 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-812 *4 *2)) (-4 *2 (-13 (-29 *4) (-1214) (-968))))) (-3088 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-812 *4 *2)) (-4 *2 (-13 (-29 *4) (-1214) (-968))))))
-(-10 -7 (-15 -3088 (|#2| |#2| (-1188))) (-15 -1576 (|#2| |#2| (-1188))) (-15 -3027 ((-1 |#2| |#2|) (-1188))))
-((-1724 (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386) (-386)) 128) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386)) 129) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-652 (-386)) (-386)) 131) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-386)) 133) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-386)) 134) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386))) 136) (((-1046) (-816) (-1074)) 120) (((-1046) (-816)) 121)) (-3972 (((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816) (-1074)) 80) (((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816)) 82)))
-(((-813) (-10 -7 (-15 -1724 ((-1046) (-816))) (-15 -1724 ((-1046) (-816) (-1074))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-386))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-386))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-652 (-386)) (-386))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386) (-386))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816) (-1074))))) (T -813))
-((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1074)) (-5 *2 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-813)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-813)))) (-1724 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386))) (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1724 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386))) (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1724 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1724 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386))) (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1724 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1724 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1046)) (-5 *1 (-813)))))
-(-10 -7 (-15 -1724 ((-1046) (-816))) (-15 -1724 ((-1046) (-816) (-1074))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-386))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-386))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-652 (-386)) (-386))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386))) (-15 -1724 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386) (-386))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816) (-1074))))
-((-2822 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4362 (-652 |#4|))) (-661 |#4|) |#4|) 33)))
-(((-814 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2822 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4362 (-652 |#4|))) (-661 |#4|) |#4|))) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -814))
-((-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *4)) (-4 *4 (-349 *5 *6 *7)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4)))) (-5 *1 (-814 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2822 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4362 (-652 |#4|))) (-661 |#4|) |#4|)))
-((-1848 (((-2 (|:| -4121 |#3|) (|:| |rh| (-652 (-415 |#2|)))) |#4| (-652 (-415 |#2|))) 53)) (-4119 (((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#4| |#2|) 62) (((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#4|) 61) (((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#3| |#2|) 20) (((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#3|) 21)) (-1741 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2725 ((|#2| |#3| (-652 (-415 |#2|))) 109) (((-3 |#2| "failed") |#3| (-415 |#2|)) 105)))
-(((-815 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2725 ((-3 |#2| "failed") |#3| (-415 |#2|))) (-15 -2725 (|#2| |#3| (-652 (-415 |#2|)))) (-15 -4119 ((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#3|)) (-15 -4119 ((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#3| |#2|)) (-15 -1741 (|#2| |#3| |#1|)) (-15 -4119 ((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#4|)) (-15 -4119 ((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#4| |#2|)) (-15 -1741 (|#2| |#4| |#1|)) (-15 -1848 ((-2 (|:| -4121 |#3|) (|:| |rh| (-652 (-415 |#2|)))) |#4| (-652 (-415 |#2|))))) (-13 (-370) (-148) (-1049 (-415 (-572)))) (-1255 |#1|) (-664 |#2|) (-664 (-415 |#2|))) (T -815))
-((-1848 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-2 (|:| -4121 *7) (|:| |rh| (-652 (-415 *6))))) (-5 *1 (-815 *5 *6 *7 *3)) (-5 *4 (-652 (-415 *6))) (-4 *7 (-664 *6)) (-4 *3 (-664 (-415 *6))))) (-1741 (*1 *2 *3 *4) (-12 (-4 *2 (-1255 *4)) (-5 *1 (-815 *4 *2 *5 *3)) (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-664 *2)) (-4 *3 (-664 (-415 *2))))) (-4119 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *4 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -3356 *4) (|:| -2687 *4)))) (-5 *1 (-815 *5 *4 *6 *3)) (-4 *6 (-664 *4)) (-4 *3 (-664 (-415 *4))))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| -3356 *5) (|:| -2687 *5)))) (-5 *1 (-815 *4 *5 *6 *3)) (-4 *6 (-664 *5)) (-4 *3 (-664 (-415 *5))))) (-1741 (*1 *2 *3 *4) (-12 (-4 *2 (-1255 *4)) (-5 *1 (-815 *4 *2 *3 *5)) (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2)) (-4 *5 (-664 (-415 *2))))) (-4119 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *4 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -3356 *4) (|:| -2687 *4)))) (-5 *1 (-815 *5 *4 *3 *6)) (-4 *3 (-664 *4)) (-4 *6 (-664 (-415 *4))))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| -3356 *5) (|:| -2687 *5)))) (-5 *1 (-815 *4 *5 *3 *6)) (-4 *3 (-664 *5)) (-4 *6 (-664 (-415 *5))))) (-2725 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-415 *2))) (-4 *2 (-1255 *5)) (-5 *1 (-815 *5 *2 *3 *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2)) (-4 *6 (-664 (-415 *2))))) (-2725 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-415 *2)) (-4 *2 (-1255 *5)) (-5 *1 (-815 *5 *2 *3 *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2)) (-4 *6 (-664 *4)))))
-(-10 -7 (-15 -2725 ((-3 |#2| "failed") |#3| (-415 |#2|))) (-15 -2725 (|#2| |#3| (-652 (-415 |#2|)))) (-15 -4119 ((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#3|)) (-15 -4119 ((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#3| |#2|)) (-15 -1741 (|#2| |#3| |#1|)) (-15 -4119 ((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#4|)) (-15 -4119 ((-652 (-2 (|:| -3356 |#2|) (|:| -2687 |#2|))) |#4| |#2|)) (-15 -1741 (|#2| |#4| |#1|)) (-15 -1848 ((-2 (|:| -4121 |#3|) (|:| |rh| (-652 (-415 |#2|)))) |#4| (-652 (-415 |#2|)))))
-((-2846 (((-112) $ $) NIL)) (-2204 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-816) (-13 (-1111) (-10 -8 (-15 -2940 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2204 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -816))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-816)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-816)))))
-(-13 (-1111) (-10 -8 (-15 -2940 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2204 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))
-((-1606 (((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -4121 |#3|))) |#3| (-1 (-652 |#2|) |#2| (-1184 |#2|)) (-1 (-426 |#2|) |#2|)) 154)) (-2990 (((-652 (-2 (|:| |poly| |#2|) (|:| -4121 |#3|))) |#3| (-1 (-652 |#1|) |#2|)) 52)) (-1855 (((-652 (-2 (|:| |deg| (-779)) (|:| -4121 |#2|))) |#3|) 122)) (-3969 ((|#2| |#3|) 42)) (-3437 (((-652 (-2 (|:| -1705 |#1|) (|:| -4121 |#3|))) |#3| (-1 (-652 |#1|) |#2|)) 99)) (-3454 ((|#3| |#3| (-415 |#2|)) 72) ((|#3| |#3| |#2|) 96)))
-(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3969 (|#2| |#3|)) (-15 -1855 ((-652 (-2 (|:| |deg| (-779)) (|:| -4121 |#2|))) |#3|)) (-15 -3437 ((-652 (-2 (|:| -1705 |#1|) (|:| -4121 |#3|))) |#3| (-1 (-652 |#1|) |#2|))) (-15 -2990 ((-652 (-2 (|:| |poly| |#2|) (|:| -4121 |#3|))) |#3| (-1 (-652 |#1|) |#2|))) (-15 -1606 ((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -4121 |#3|))) |#3| (-1 (-652 |#2|) |#2| (-1184 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -3454 (|#3| |#3| |#2|)) (-15 -3454 (|#3| |#3| (-415 |#2|)))) (-13 (-370) (-148) (-1049 (-415 (-572)))) (-1255 |#1|) (-664 |#2|) (-664 (-415 |#2|))) (T -817))
-((-3454 (*1 *2 *2 *3) (-12 (-5 *3 (-415 *5)) (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *1 (-817 *4 *5 *2 *6)) (-4 *2 (-664 *5)) (-4 *6 (-664 *3)))) (-3454 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-1255 *4)) (-5 *1 (-817 *4 *3 *2 *5)) (-4 *2 (-664 *3)) (-4 *5 (-664 (-415 *3))))) (-1606 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-652 *7) *7 (-1184 *7))) (-5 *5 (-1 (-426 *7) *7)) (-4 *7 (-1255 *6)) (-4 *6 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-5 *2 (-652 (-2 (|:| |frac| (-415 *7)) (|:| -4121 *3)))) (-5 *1 (-817 *6 *7 *3 *8)) (-4 *3 (-664 *7)) (-4 *8 (-664 (-415 *7))))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-2 (|:| |poly| *6) (|:| -4121 *3)))) (-5 *1 (-817 *5 *6 *3 *7)) (-4 *3 (-664 *6)) (-4 *7 (-664 (-415 *6))))) (-3437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -1705 *5) (|:| -4121 *3)))) (-5 *1 (-817 *5 *6 *3 *7)) (-4 *3 (-664 *6)) (-4 *7 (-664 (-415 *6))))) (-1855 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| |deg| (-779)) (|:| -4121 *5)))) (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-664 *5)) (-4 *6 (-664 (-415 *5))))) (-3969 (*1 *2 *3) (-12 (-4 *2 (-1255 *4)) (-5 *1 (-817 *4 *2 *3 *5)) (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2)) (-4 *5 (-664 (-415 *2))))))
-(-10 -7 (-15 -3969 (|#2| |#3|)) (-15 -1855 ((-652 (-2 (|:| |deg| (-779)) (|:| -4121 |#2|))) |#3|)) (-15 -3437 ((-652 (-2 (|:| -1705 |#1|) (|:| -4121 |#3|))) |#3| (-1 (-652 |#1|) |#2|))) (-15 -2990 ((-652 (-2 (|:| |poly| |#2|) (|:| -4121 |#3|))) |#3| (-1 (-652 |#1|) |#2|))) (-15 -1606 ((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -4121 |#3|))) |#3| (-1 (-652 |#2|) |#2| (-1184 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -3454 (|#3| |#3| |#2|)) (-15 -3454 (|#3| |#3| (-415 |#2|))))
-((-4258 (((-2 (|:| -4362 (-652 (-415 |#2|))) (|:| -3544 (-697 |#1|))) (-662 |#2| (-415 |#2|)) (-652 (-415 |#2|))) 147) (((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -4362 (-652 (-415 |#2|)))) (-662 |#2| (-415 |#2|)) (-415 |#2|)) 146) (((-2 (|:| -4362 (-652 (-415 |#2|))) (|:| -3544 (-697 |#1|))) (-661 (-415 |#2|)) (-652 (-415 |#2|))) 141) (((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -4362 (-652 (-415 |#2|)))) (-661 (-415 |#2|)) (-415 |#2|)) 139)) (-1349 ((|#2| (-662 |#2| (-415 |#2|))) 88) ((|#2| (-661 (-415 |#2|))) 91)))
-(((-818 |#1| |#2|) (-10 -7 (-15 -4258 ((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -4362 (-652 (-415 |#2|)))) (-661 (-415 |#2|)) (-415 |#2|))) (-15 -4258 ((-2 (|:| -4362 (-652 (-415 |#2|))) (|:| -3544 (-697 |#1|))) (-661 (-415 |#2|)) (-652 (-415 |#2|)))) (-15 -4258 ((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -4362 (-652 (-415 |#2|)))) (-662 |#2| (-415 |#2|)) (-415 |#2|))) (-15 -4258 ((-2 (|:| -4362 (-652 (-415 |#2|))) (|:| -3544 (-697 |#1|))) (-662 |#2| (-415 |#2|)) (-652 (-415 |#2|)))) (-15 -1349 (|#2| (-661 (-415 |#2|)))) (-15 -1349 (|#2| (-662 |#2| (-415 |#2|))))) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -818))
-((-1349 (*1 *2 *3) (-12 (-5 *3 (-662 *2 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-818 *4 *2)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-661 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-818 *4 *2)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *6 (-415 *6))) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-2 (|:| -4362 (-652 (-415 *6))) (|:| -3544 (-697 *5)))) (-5 *1 (-818 *5 *6)) (-5 *4 (-652 (-415 *6))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-415 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4)))) (-5 *1 (-818 *5 *6)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-415 *6))) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-2 (|:| -4362 (-652 (-415 *6))) (|:| -3544 (-697 *5)))) (-5 *1 (-818 *5 *6)) (-5 *4 (-652 (-415 *6))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-415 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4)))) (-5 *1 (-818 *5 *6)))))
-(-10 -7 (-15 -4258 ((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -4362 (-652 (-415 |#2|)))) (-661 (-415 |#2|)) (-415 |#2|))) (-15 -4258 ((-2 (|:| -4362 (-652 (-415 |#2|))) (|:| -3544 (-697 |#1|))) (-661 (-415 |#2|)) (-652 (-415 |#2|)))) (-15 -4258 ((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -4362 (-652 (-415 |#2|)))) (-662 |#2| (-415 |#2|)) (-415 |#2|))) (-15 -4258 ((-2 (|:| -4362 (-652 (-415 |#2|))) (|:| -3544 (-697 |#1|))) (-662 |#2| (-415 |#2|)) (-652 (-415 |#2|)))) (-15 -1349 (|#2| (-661 (-415 |#2|)))) (-15 -1349 (|#2| (-662 |#2| (-415 |#2|)))))
-((-4030 (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) |#5| |#4|) 49)))
-(((-819 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4030 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) |#5| |#4|))) (-370) (-664 |#1|) (-1255 |#1|) (-732 |#1| |#3|) (-664 |#4|)) (T -819))
-((-4030 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *7 (-1255 *5)) (-4 *4 (-732 *5 *7)) (-5 *2 (-2 (|:| -3544 (-697 *6)) (|:| |vec| (-1279 *5)))) (-5 *1 (-819 *5 *6 *7 *4 *3)) (-4 *6 (-664 *5)) (-4 *3 (-664 *4)))))
-(-10 -7 (-15 -4030 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) |#5| |#4|)))
-((-1606 (((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -4121 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|)) 47)) (-2793 (((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|))) 164 (|has| |#1| (-27))) (((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-426 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-652 (-415 |#2|)) (-661 (-415 |#2|))) 166 (|has| |#1| (-27))) (((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|)) 38) (((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|)) 39) (((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|)) 36) (((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|)) 37)) (-2990 (((-652 (-2 (|:| |poly| |#2|) (|:| -4121 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|)) 96)))
-(((-820 |#1| |#2|) (-10 -7 (-15 -2793 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (-15 -2793 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|))) (-15 -2793 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (-15 -2793 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|))) (-15 -1606 ((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -4121 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -2990 ((-652 (-2 (|:| |poly| |#2|) (|:| -4121 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2793 ((-652 (-415 |#2|)) (-661 (-415 |#2|)))) (-15 -2793 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -2793 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)))) (-15 -2793 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|)))) |%noBranch|)) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -820))
-((-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-662 *5 (-415 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-415 *5))) (-5 *1 (-820 *4 *5)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-661 (-415 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-415 *5))) (-5 *1 (-820 *4 *5)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-2 (|:| |poly| *6) (|:| -4121 (-662 *6 (-415 *6)))))) (-5 *1 (-820 *5 *6)) (-5 *3 (-662 *6 (-415 *6))))) (-1606 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-2 (|:| |frac| (-415 *6)) (|:| -4121 (-662 *6 (-415 *6)))))) (-5 *1 (-820 *5 *6)) (-5 *3 (-662 *6 (-415 *6))))) (-2793 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-662 *7 (-415 *7))) (-5 *4 (-1 (-652 *6) *7)) (-5 *5 (-1 (-426 *7) *7)) (-4 *6 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *7 (-1255 *6)) (-5 *2 (-652 (-415 *7))) (-5 *1 (-820 *6 *7)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))) (-2793 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-415 *7))) (-5 *4 (-1 (-652 *6) *7)) (-5 *5 (-1 (-426 *7) *7)) (-4 *6 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *7 (-1255 *6)) (-5 *2 (-652 (-415 *7))) (-5 *1 (-820 *6 *7)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))))
-(-10 -7 (-15 -2793 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (-15 -2793 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|))) (-15 -2793 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (-15 -2793 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|))) (-15 -1606 ((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -4121 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -2990 ((-652 (-2 (|:| |poly| |#2|) (|:| -4121 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2793 ((-652 (-415 |#2|)) (-661 (-415 |#2|)))) (-15 -2793 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -2793 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)))) (-15 -2793 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|)))) |%noBranch|))
-((-1917 (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) (-697 |#2|) (-1279 |#1|)) 110) (((-2 (|:| A (-697 |#1|)) (|:| |eqs| (-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)) (|:| -4121 |#2|) (|:| |rh| |#1|))))) (-697 |#1|) (-1279 |#1|)) 15)) (-4140 (((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|)))) (-697 |#2|) (-1279 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4362 (-652 |#1|))) |#2| |#1|)) 116)) (-1724 (((-3 (-2 (|:| |particular| (-1279 |#1|)) (|:| -4362 (-697 |#1|))) "failed") (-697 |#1|) (-1279 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4362 (-652 |#1|))) "failed") |#2| |#1|)) 54)))
-(((-821 |#1| |#2|) (-10 -7 (-15 -1917 ((-2 (|:| A (-697 |#1|)) (|:| |eqs| (-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)) (|:| -4121 |#2|) (|:| |rh| |#1|))))) (-697 |#1|) (-1279 |#1|))) (-15 -1917 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) (-697 |#2|) (-1279 |#1|))) (-15 -1724 ((-3 (-2 (|:| |particular| (-1279 |#1|)) (|:| -4362 (-697 |#1|))) "failed") (-697 |#1|) (-1279 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4362 (-652 |#1|))) "failed") |#2| |#1|))) (-15 -4140 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|)))) (-697 |#2|) (-1279 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4362 (-652 |#1|))) |#2| |#1|)))) (-370) (-664 |#1|)) (T -821))
-((-4140 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4362 (-652 *6))) *7 *6)) (-4 *6 (-370)) (-4 *7 (-664 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1279 *6) "failed")) (|:| -4362 (-652 (-1279 *6))))) (-5 *1 (-821 *6 *7)) (-5 *4 (-1279 *6)))) (-1724 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4362 (-652 *6))) "failed") *7 *6)) (-4 *6 (-370)) (-4 *7 (-664 *6)) (-5 *2 (-2 (|:| |particular| (-1279 *6)) (|:| -4362 (-697 *6)))) (-5 *1 (-821 *6 *7)) (-5 *3 (-697 *6)) (-5 *4 (-1279 *6)))) (-1917 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-664 *5)) (-5 *2 (-2 (|:| -3544 (-697 *6)) (|:| |vec| (-1279 *5)))) (-5 *1 (-821 *5 *6)) (-5 *3 (-697 *6)) (-5 *4 (-1279 *5)))) (-1917 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-5 *2 (-2 (|:| A (-697 *5)) (|:| |eqs| (-652 (-2 (|:| C (-697 *5)) (|:| |g| (-1279 *5)) (|:| -4121 *6) (|:| |rh| *5)))))) (-5 *1 (-821 *5 *6)) (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *6 (-664 *5)))))
-(-10 -7 (-15 -1917 ((-2 (|:| A (-697 |#1|)) (|:| |eqs| (-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)) (|:| -4121 |#2|) (|:| |rh| |#1|))))) (-697 |#1|) (-1279 |#1|))) (-15 -1917 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) (-697 |#2|) (-1279 |#1|))) (-15 -1724 ((-3 (-2 (|:| |particular| (-1279 |#1|)) (|:| -4362 (-697 |#1|))) "failed") (-697 |#1|) (-1279 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4362 (-652 |#1|))) "failed") |#2| |#1|))) (-15 -4140 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -4362 (-652 (-1279 |#1|)))) (-697 |#2|) (-1279 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4362 (-652 |#1|))) |#2| |#1|))))
-((-3277 (((-697 |#1|) (-652 |#1|) (-779)) 14) (((-697 |#1|) (-652 |#1|)) 15)) (-2166 (((-3 (-1279 |#1|) "failed") |#2| |#1| (-652 |#1|)) 39)) (-1362 (((-3 |#1| "failed") |#2| |#1| (-652 |#1|) (-1 |#1| |#1|)) 46)))
-(((-822 |#1| |#2|) (-10 -7 (-15 -3277 ((-697 |#1|) (-652 |#1|))) (-15 -3277 ((-697 |#1|) (-652 |#1|) (-779))) (-15 -2166 ((-3 (-1279 |#1|) "failed") |#2| |#1| (-652 |#1|))) (-15 -1362 ((-3 |#1| "failed") |#2| |#1| (-652 |#1|) (-1 |#1| |#1|)))) (-370) (-664 |#1|)) (T -822))
-((-1362 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-652 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-370)) (-5 *1 (-822 *2 *3)) (-4 *3 (-664 *2)))) (-2166 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-652 *4)) (-4 *4 (-370)) (-5 *2 (-1279 *4)) (-5 *1 (-822 *4 *3)) (-4 *3 (-664 *4)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-779)) (-4 *5 (-370)) (-5 *2 (-697 *5)) (-5 *1 (-822 *5 *6)) (-4 *6 (-664 *5)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-370)) (-5 *2 (-697 *4)) (-5 *1 (-822 *4 *5)) (-4 *5 (-664 *4)))))
-(-10 -7 (-15 -3277 ((-697 |#1|) (-652 |#1|))) (-15 -3277 ((-697 |#1|) (-652 |#1|) (-779))) (-15 -2166 ((-3 (-1279 |#1|) "failed") |#2| |#1| (-652 |#1|))) (-15 -1362 ((-3 |#1| "failed") |#2| |#1| (-652 |#1|) (-1 |#1| |#1|))))
-((-2846 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-2697 (((-112) $) NIL (|has| |#2| (-132)))) (-2601 (($ (-930)) NIL (|has| |#2| (-1060)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-1360 (($ $ $) NIL (|has| |#2| (-801)))) (-3330 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-1631 (((-112) $ (-779)) NIL)) (-1486 (((-779)) NIL (|has| |#2| (-375)))) (-2840 (((-572) $) NIL (|has| |#2| (-856)))) (-3140 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1111)))) (-2204 (((-572) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) ((|#2| $) NIL (|has| |#2| (-1111)))) (-2993 (((-697 (-572)) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL (|has| |#2| (-1060))) (((-697 |#2|) (-697 $)) NIL (|has| |#2| (-1060))) (((-697 |#2|) (-1279 $)) NIL (|has| |#2| (-1060)))) (-2062 (((-3 $ "failed") $) NIL (|has| |#2| (-734)))) (-2815 (($) NIL (|has| |#2| (-375)))) (-2453 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ (-572)) NIL)) (-3074 (((-112) $) NIL (|has| |#2| (-856)))) (-1863 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1886 (((-112) $) NIL (|has| |#2| (-734)))) (-1623 (((-112) $) NIL (|has| |#2| (-856)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-1344 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-2442 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3715 (((-930) $) NIL (|has| |#2| (-375)))) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#2| (-1111)))) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-2571 (($ (-930)) NIL (|has| |#2| (-375)))) (-3964 (((-1131) $) NIL (|has| |#2| (-1111)))) (-2912 ((|#2| $) NIL (|has| (-572) (-858)))) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-572)) NIL)) (-2264 ((|#2| $ $) NIL (|has| |#2| (-1060)))) (-4259 (($ (-1279 |#2|)) NIL)) (-4224 (((-135)) NIL (|has| |#2| (-370)))) (-3902 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-3973 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-1279 |#2|) $) NIL) (($ (-572)) NIL (-2813 (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (($ |#2|) NIL (|has| |#2| (-1111))) (((-870) $) NIL (|has| |#2| (-621 (-870))))) (-4249 (((-779)) NIL (|has| |#2| (-1060)) CONST)) (-4379 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-4380 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2700 (($ $) NIL (|has| |#2| (-856)))) (-2131 (($) NIL (|has| |#2| (-132)) CONST)) (-2143 (($) NIL (|has| |#2| (-734)) CONST)) (-3608 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-3039 (((-112) $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3014 (((-112) $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-2978 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3026 (((-112) $ $) NIL (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3003 (((-112) $ $) 11 (-2813 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $ $) NIL (|has| |#2| (-1060))) (($ $) NIL (|has| |#2| (-1060)))) (-3075 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-779)) NIL (|has| |#2| (-734))) (($ $ (-930)) NIL (|has| |#2| (-734)))) (* (($ (-572) $) NIL (|has| |#2| (-1060))) (($ $ $) NIL (|has| |#2| (-734))) (($ $ |#2|) NIL (|has| |#2| (-734))) (($ |#2| $) NIL (|has| |#2| (-734))) (($ (-779) $) NIL (|has| |#2| (-132))) (($ (-930) $) NIL (|has| |#2| (-25)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-823 |#1| |#2| |#3|) (-242 |#1| |#2|) (-779) (-801) (-1 (-112) (-1279 |#2|) (-1279 |#2|))) (T -823))
-NIL
-(-242 |#1| |#2|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3258 (((-652 (-779)) $) NIL) (((-652 (-779)) $ (-1188)) NIL)) (-3298 (((-779) $) NIL) (((-779) $ (-1188)) NIL)) (-4353 (((-652 (-826 (-1188))) $) NIL)) (-4191 (((-1184 $) $ (-826 (-1188))) NIL) (((-1184 |#1|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-826 (-1188)))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3517 (($ $) NIL (|has| |#1| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2652 (($ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-826 (-1188)) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL) (((-3 (-1136 |#1| (-1188)) "failed") $) NIL)) (-2204 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-826 (-1188)) $) NIL) (((-1188) $) NIL) (((-1136 |#1| (-1188)) $) NIL)) (-2361 (($ $ $ (-826 (-1188))) NIL (|has| |#1| (-174)))) (-1390 (($ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-460))) (($ $ (-826 (-1188))) NIL (|has| |#1| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#1| (-918)))) (-1437 (($ $ |#1| (-539 (-826 (-1188))) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-826 (-1188)) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-826 (-1188)) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2956 (((-779) $ (-1188)) NIL) (((-779) $) NIL)) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-4343 (($ (-1184 |#1|) (-826 (-1188))) NIL) (($ (-1184 $) (-826 (-1188))) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-539 (-826 (-1188)))) NIL) (($ $ (-826 (-1188)) (-779)) NIL) (($ $ (-652 (-826 (-1188))) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-826 (-1188))) NIL)) (-2649 (((-539 (-826 (-1188))) $) NIL) (((-779) $ (-826 (-1188))) NIL) (((-652 (-779)) $ (-652 (-826 (-1188)))) NIL)) (-2497 (($ (-1 (-539 (-826 (-1188))) (-539 (-826 (-1188)))) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2564 (((-1 $ (-779)) (-1188)) NIL) (((-1 $ (-779)) $) NIL (|has| |#1| (-237)))) (-3928 (((-3 (-826 (-1188)) "failed") $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-3703 (((-826 (-1188)) $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4347 (((-1170) $) NIL)) (-1407 (((-112) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-826 (-1188))) (|:| -1679 (-779))) "failed") $) NIL)) (-2586 (($ $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#1| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-918)))) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-826 (-1188)) |#1|) NIL) (($ $ (-652 (-826 (-1188))) (-652 |#1|)) NIL) (($ $ (-826 (-1188)) $) NIL) (($ $ (-652 (-826 (-1188))) (-652 $)) NIL) (($ $ (-1188) $) NIL (|has| |#1| (-237))) (($ $ (-652 (-1188)) (-652 $)) NIL (|has| |#1| (-237))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-237))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-237)))) (-3537 (($ $ (-826 (-1188))) NIL (|has| |#1| (-174)))) (-3902 (($ $ (-826 (-1188))) NIL) (($ $ (-652 (-826 (-1188)))) NIL) (($ $ (-826 (-1188)) (-779)) NIL) (($ $ (-652 (-826 (-1188))) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4048 (((-652 (-1188)) $) NIL)) (-4390 (((-539 (-826 (-1188))) $) NIL) (((-779) $ (-826 (-1188))) NIL) (((-652 (-779)) $ (-652 (-826 (-1188)))) NIL) (((-779) $ (-1188)) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-826 (-1188)) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-826 (-1188)) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-826 (-1188)) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-1711 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-826 (-1188))) NIL (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-826 (-1188))) NIL) (($ (-1188)) NIL) (($ (-1136 |#1| (-1188))) NIL) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-539 (-826 (-1188)))) NIL) (($ $ (-826 (-1188)) (-779)) NIL) (($ $ (-652 (-826 (-1188))) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-826 (-1188))) NIL) (($ $ (-652 (-826 (-1188)))) NIL) (($ $ (-826 (-1188)) (-779)) NIL) (($ $ (-652 (-826 (-1188))) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-824 |#1|) (-13 (-258 |#1| (-1188) (-826 (-1188)) (-539 (-826 (-1188)))) (-1049 (-1136 |#1| (-1188)))) (-1060)) (T -824))
-NIL
-(-13 (-258 |#1| (-1188) (-826 (-1188)) (-539 (-826 (-1188)))) (-1049 (-1136 |#1| (-1188))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-370)))) (-3009 (($ $) NIL (|has| |#2| (-370)))) (-4334 (((-112) $) NIL (|has| |#2| (-370)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| |#2| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#2| (-370)))) (-4217 (((-112) $ $) NIL (|has| |#2| (-370)))) (-3281 (($) NIL T CONST)) (-2780 (($ $ $) NIL (|has| |#2| (-370)))) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL (|has| |#2| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#2| (-370)))) (-3879 (((-112) $) NIL (|has| |#2| (-370)))) (-1886 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#2| (-370)))) (-2825 (($ (-652 $)) NIL (|has| |#2| (-370))) (($ $ $) NIL (|has| |#2| (-370)))) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 20 (|has| |#2| (-370)))) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#2| (-370))) (($ $ $) NIL (|has| |#2| (-370)))) (-4218 (((-426 $) $) NIL (|has| |#2| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#2| (-370)))) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#2| (-370)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#2| (-370)))) (-3847 (((-779) $) NIL (|has| |#2| (-370)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#2| (-370)))) (-3902 (($ $ (-779)) NIL) (($ $) 13)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-415 (-572))) NIL (|has| |#2| (-370))) (($ $) NIL (|has| |#2| (-370)))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#2| (-370)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) 15 (|has| |#2| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL) (($ $ (-572)) 18 (|has| |#2| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-415 (-572)) $) NIL (|has| |#2| (-370))) (($ $ (-415 (-572))) NIL (|has| |#2| (-370)))))
-(((-825 |#1| |#2| |#3|) (-13 (-111 $ $) (-237) (-498 |#2|) (-10 -7 (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|))) (-1111) (-909 |#1|) |#1|) (T -825))
-NIL
-(-13 (-111 $ $) (-237) (-498 |#2|) (-10 -7 (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-3298 (((-779) $) NIL)) (-1487 ((|#1| $) 10)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-2956 (((-779) $) 11)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-2564 (($ |#1| (-779)) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3902 (($ $) NIL) (($ $ (-779)) NIL)) (-2940 (((-870) $) NIL) (($ |#1|) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-826 |#1|) (-271 |#1|) (-858)) (T -826))
-NIL
-(-271 |#1|)
-((-2846 (((-112) $ $) NIL)) (-1653 (((-652 |#1|) $) 38)) (-1486 (((-779) $) NIL)) (-3281 (($) NIL T CONST)) (-3924 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-2923 (($ $) 42)) (-2062 (((-3 $ "failed") $) NIL)) (-4064 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1886 (((-112) $) NIL)) (-2321 ((|#1| $ (-572)) NIL)) (-1473 (((-779) $ (-572)) NIL)) (-4211 (($ $) 54)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-3984 (($ (-1 |#1| |#1|) $) NIL)) (-4081 (($ (-1 (-779) (-779)) $) NIL)) (-3421 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-1565 (((-112) $ $) 51)) (-4133 (((-779) $) 34)) (-4347 (((-1170) $) NIL)) (-1942 (($ $ $) NIL)) (-2362 (($ $ $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 ((|#1| $) 41)) (-4225 (((-652 (-2 (|:| |gen| |#1|) (|:| -1608 (-779)))) $) NIL)) (-1669 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2820 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2940 (((-870) $) NIL) (($ |#1|) NIL)) (-4379 (((-112) $ $) NIL)) (-2143 (($) 20 T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 53)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ |#1| (-779)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-827 |#1|) (-13 (-393 |#1|) (-854) (-10 -8 (-15 -2912 (|#1| $)) (-15 -2923 ($ $)) (-15 -4211 ($ $)) (-15 -1565 ((-112) $ $)) (-15 -3421 ((-3 $ "failed") $ |#1|)) (-15 -3924 ((-3 $ "failed") $ |#1|)) (-15 -2820 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4133 ((-779) $)) (-15 -1653 ((-652 |#1|) $)))) (-858)) (T -827))
-((-2912 (*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-4211 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-1565 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-858)))) (-3421 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-3924 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-2820 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-827 *3)) (|:| |rm| (-827 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-858)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-827 *3)) (-4 *3 (-858)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-827 *3)) (-4 *3 (-858)))))
-(-13 (-393 |#1|) (-854) (-10 -8 (-15 -2912 (|#1| $)) (-15 -2923 ($ $)) (-15 -4211 ($ $)) (-15 -1565 ((-112) $ $)) (-15 -3421 ((-3 $ "failed") $ |#1|)) (-15 -3924 ((-3 $ "failed") $ |#1|)) (-15 -2820 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4133 ((-779) $)) (-15 -1653 ((-652 |#1|) $))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-2840 (((-572) $) 59)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-3074 (((-112) $) 57)) (-1886 (((-112) $) 35)) (-1623 (((-112) $) 58)) (-3654 (($ $ $) 56)) (-2427 (($ $ $) 55)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2834 (((-3 $ "failed") $ $) 48)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2700 (($ $) 60)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3039 (((-112) $ $) 53)) (-3014 (((-112) $ $) 52)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 54)) (-3003 (((-112) $ $) 51)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-828) (-141)) (T -828))
-NIL
-(-13 (-564) (-856))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-856) . T) ((-858) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-1442 (($ (-1131)) 7)) (-3094 (((-112) $ (-1170) (-1131)) 15)) (-1786 (((-830) $) 12)) (-4432 (((-830) $) 11)) (-2752 (((-1284) $) 9)) (-2737 (((-112) $ (-1131)) 16)))
-(((-829) (-10 -8 (-15 -1442 ($ (-1131))) (-15 -2752 ((-1284) $)) (-15 -4432 ((-830) $)) (-15 -1786 ((-830) $)) (-15 -3094 ((-112) $ (-1170) (-1131))) (-15 -2737 ((-112) $ (-1131))))) (T -829))
-((-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-829)))) (-3094 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1131)) (-5 *2 (-112)) (-5 *1 (-829)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-829)))) (-4432 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-829)))) (-2752 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-829)))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-829)))))
-(-10 -8 (-15 -1442 ($ (-1131))) (-15 -2752 ((-1284) $)) (-15 -4432 ((-830) $)) (-15 -1786 ((-830) $)) (-15 -3094 ((-112) $ (-1170) (-1131))) (-15 -2737 ((-112) $ (-1131))))
-((-4223 (((-1284) $ (-831)) 12)) (-3837 (((-1284) $ (-1188)) 32)) (-2256 (((-1284) $ (-1170) (-1170)) 34)) (-2449 (((-1284) $ (-1170)) 33)) (-3482 (((-1284) $) 19)) (-2467 (((-1284) $ (-572)) 28)) (-3568 (((-1284) $ (-227)) 30)) (-3042 (((-1284) $) 18)) (-2889 (((-1284) $) 26)) (-3179 (((-1284) $) 25)) (-2519 (((-1284) $) 23)) (-2540 (((-1284) $) 24)) (-1366 (((-1284) $) 22)) (-3965 (((-1284) $) 21)) (-1911 (((-1284) $) 20)) (-4228 (((-1284) $) 16)) (-4396 (((-1284) $) 17)) (-4429 (((-1284) $) 15)) (-2080 (((-1284) $) 14)) (-3963 (((-1284) $) 13)) (-3564 (($ (-1170) (-831)) 9)) (-2585 (($ (-1170) (-1170) (-831)) 8)) (-2838 (((-1188) $) 51)) (-3840 (((-1188) $) 55)) (-2867 (((-2 (|:| |cd| (-1170)) (|:| -2030 (-1170))) $) 54)) (-4097 (((-1170) $) 52)) (-3409 (((-1284) $) 41)) (-4096 (((-572) $) 49)) (-2744 (((-227) $) 50)) (-3630 (((-1284) $) 40)) (-3372 (((-1284) $) 48)) (-2392 (((-1284) $) 47)) (-3655 (((-1284) $) 45)) (-1624 (((-1284) $) 46)) (-2743 (((-1284) $) 44)) (-4376 (((-1284) $) 43)) (-2360 (((-1284) $) 42)) (-4283 (((-1284) $) 38)) (-3825 (((-1284) $) 39)) (-3244 (((-1284) $) 37)) (-2858 (((-1284) $) 36)) (-4061 (((-1284) $) 35)) (-1373 (((-1284) $) 11)))
-(((-830) (-10 -8 (-15 -2585 ($ (-1170) (-1170) (-831))) (-15 -3564 ($ (-1170) (-831))) (-15 -1373 ((-1284) $)) (-15 -4223 ((-1284) $ (-831))) (-15 -3963 ((-1284) $)) (-15 -2080 ((-1284) $)) (-15 -4429 ((-1284) $)) (-15 -4228 ((-1284) $)) (-15 -4396 ((-1284) $)) (-15 -3042 ((-1284) $)) (-15 -3482 ((-1284) $)) (-15 -1911 ((-1284) $)) (-15 -3965 ((-1284) $)) (-15 -1366 ((-1284) $)) (-15 -2519 ((-1284) $)) (-15 -2540 ((-1284) $)) (-15 -3179 ((-1284) $)) (-15 -2889 ((-1284) $)) (-15 -2467 ((-1284) $ (-572))) (-15 -3568 ((-1284) $ (-227))) (-15 -3837 ((-1284) $ (-1188))) (-15 -2449 ((-1284) $ (-1170))) (-15 -2256 ((-1284) $ (-1170) (-1170))) (-15 -4061 ((-1284) $)) (-15 -2858 ((-1284) $)) (-15 -3244 ((-1284) $)) (-15 -4283 ((-1284) $)) (-15 -3825 ((-1284) $)) (-15 -3630 ((-1284) $)) (-15 -3409 ((-1284) $)) (-15 -2360 ((-1284) $)) (-15 -4376 ((-1284) $)) (-15 -2743 ((-1284) $)) (-15 -3655 ((-1284) $)) (-15 -1624 ((-1284) $)) (-15 -2392 ((-1284) $)) (-15 -3372 ((-1284) $)) (-15 -4096 ((-572) $)) (-15 -2744 ((-227) $)) (-15 -2838 ((-1188) $)) (-15 -4097 ((-1170) $)) (-15 -2867 ((-2 (|:| |cd| (-1170)) (|:| -2030 (-1170))) $)) (-15 -3840 ((-1188) $)))) (T -830))
-((-3840 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-830)))) (-2867 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1170)) (|:| -2030 (-1170)))) (-5 *1 (-830)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-830)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-830)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-830)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-830)))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2256 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-3837 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4429 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3564 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-831)) (-5 *1 (-830)))) (-2585 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-831)) (-5 *1 (-830)))))
-(-10 -8 (-15 -2585 ($ (-1170) (-1170) (-831))) (-15 -3564 ($ (-1170) (-831))) (-15 -1373 ((-1284) $)) (-15 -4223 ((-1284) $ (-831))) (-15 -3963 ((-1284) $)) (-15 -2080 ((-1284) $)) (-15 -4429 ((-1284) $)) (-15 -4228 ((-1284) $)) (-15 -4396 ((-1284) $)) (-15 -3042 ((-1284) $)) (-15 -3482 ((-1284) $)) (-15 -1911 ((-1284) $)) (-15 -3965 ((-1284) $)) (-15 -1366 ((-1284) $)) (-15 -2519 ((-1284) $)) (-15 -2540 ((-1284) $)) (-15 -3179 ((-1284) $)) (-15 -2889 ((-1284) $)) (-15 -2467 ((-1284) $ (-572))) (-15 -3568 ((-1284) $ (-227))) (-15 -3837 ((-1284) $ (-1188))) (-15 -2449 ((-1284) $ (-1170))) (-15 -2256 ((-1284) $ (-1170) (-1170))) (-15 -4061 ((-1284) $)) (-15 -2858 ((-1284) $)) (-15 -3244 ((-1284) $)) (-15 -4283 ((-1284) $)) (-15 -3825 ((-1284) $)) (-15 -3630 ((-1284) $)) (-15 -3409 ((-1284) $)) (-15 -2360 ((-1284) $)) (-15 -4376 ((-1284) $)) (-15 -2743 ((-1284) $)) (-15 -3655 ((-1284) $)) (-15 -1624 ((-1284) $)) (-15 -2392 ((-1284) $)) (-15 -3372 ((-1284) $)) (-15 -4096 ((-572) $)) (-15 -2744 ((-227) $)) (-15 -2838 ((-1188) $)) (-15 -4097 ((-1170) $)) (-15 -2867 ((-2 (|:| |cd| (-1170)) (|:| -2030 (-1170))) $)) (-15 -3840 ((-1188) $)))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 13)) (-4379 (((-112) $ $) NIL)) (-4214 (($) 16)) (-4201 (($) 14)) (-1994 (($) 17)) (-2071 (($) 15)) (-2978 (((-112) $ $) 9)))
-(((-831) (-13 (-1111) (-10 -8 (-15 -4201 ($)) (-15 -4214 ($)) (-15 -1994 ($)) (-15 -2071 ($))))) (T -831))
-((-4201 (*1 *1) (-5 *1 (-831))) (-4214 (*1 *1) (-5 *1 (-831))) (-1994 (*1 *1) (-5 *1 (-831))) (-2071 (*1 *1) (-5 *1 (-831))))
-(-13 (-1111) (-10 -8 (-15 -4201 ($)) (-15 -4214 ($)) (-15 -1994 ($)) (-15 -2071 ($))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 23) (($ (-1188)) 19)) (-4379 (((-112) $ $) NIL)) (-3062 (((-112) $) 10)) (-4274 (((-112) $) 9)) (-2995 (((-112) $) 11)) (-3930 (((-112) $) 8)) (-2978 (((-112) $ $) 21)))
-(((-832) (-13 (-1111) (-10 -8 (-15 -2940 ($ (-1188))) (-15 -3930 ((-112) $)) (-15 -4274 ((-112) $)) (-15 -3062 ((-112) $)) (-15 -2995 ((-112) $))))) (T -832))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-832)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
-(-13 (-1111) (-10 -8 (-15 -2940 ($ (-1188))) (-15 -3930 ((-112) $)) (-15 -4274 ((-112) $)) (-15 -3062 ((-112) $)) (-15 -2995 ((-112) $))))
-((-2846 (((-112) $ $) NIL)) (-3262 (($ (-832) (-652 (-1188))) 32)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1941 (((-832) $) 33)) (-3294 (((-652 (-1188)) $) 34)) (-2940 (((-870) $) 31)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-833) (-13 (-1111) (-10 -8 (-15 -1941 ((-832) $)) (-15 -3294 ((-652 (-1188)) $)) (-15 -3262 ($ (-832) (-652 (-1188))))))) (T -833))
-((-1941 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-833)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-833)))) (-3262 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-652 (-1188))) (-5 *1 (-833)))))
-(-13 (-1111) (-10 -8 (-15 -1941 ((-832) $)) (-15 -3294 ((-652 (-1188)) $)) (-15 -3262 ($ (-832) (-652 (-1188))))))
-((-3547 (((-1284) (-830) (-322 |#1|) (-112)) 23) (((-1284) (-830) (-322 |#1|)) 89) (((-1170) (-322 |#1|) (-112)) 88) (((-1170) (-322 |#1|)) 87)))
-(((-834 |#1|) (-10 -7 (-15 -3547 ((-1170) (-322 |#1|))) (-15 -3547 ((-1170) (-322 |#1|) (-112))) (-15 -3547 ((-1284) (-830) (-322 |#1|))) (-15 -3547 ((-1284) (-830) (-322 |#1|) (-112)))) (-13 (-836) (-1060))) (T -834))
-((-3547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-830)) (-5 *4 (-322 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-836) (-1060))) (-5 *2 (-1284)) (-5 *1 (-834 *6)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-322 *5)) (-4 *5 (-13 (-836) (-1060))) (-5 *2 (-1284)) (-5 *1 (-834 *5)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-322 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-836) (-1060))) (-5 *2 (-1170)) (-5 *1 (-834 *5)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-322 *4)) (-4 *4 (-13 (-836) (-1060))) (-5 *2 (-1170)) (-5 *1 (-834 *4)))))
-(-10 -7 (-15 -3547 ((-1170) (-322 |#1|))) (-15 -3547 ((-1170) (-322 |#1|) (-112))) (-15 -3547 ((-1284) (-830) (-322 |#1|))) (-15 -3547 ((-1284) (-830) (-322 |#1|) (-112))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-3878 ((|#1| $) 10)) (-4294 (($ |#1|) 9)) (-1886 (((-112) $) NIL)) (-4333 (($ |#2| (-779)) NIL)) (-2649 (((-779) $) NIL)) (-1368 ((|#2| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3902 (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $) NIL (|has| |#1| (-237)))) (-4390 (((-779) $) NIL)) (-2940 (((-870) $) 17) (($ (-572)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3979 ((|#2| $ (-779)) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $) NIL (|has| |#1| (-237)))) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-835 |#1| |#2|) (-13 (-716 |#2|) (-10 -8 (IF (|has| |#1| (-237)) (-6 (-237)) |%noBranch|) (-15 -4294 ($ |#1|)) (-15 -3878 (|#1| $)))) (-716 |#2|) (-1060)) (T -835))
-((-4294 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-835 *2 *3)) (-4 *2 (-716 *3)))) (-3878 (*1 *2 *1) (-12 (-4 *2 (-716 *3)) (-5 *1 (-835 *2 *3)) (-4 *3 (-1060)))))
-(-13 (-716 |#2|) (-10 -8 (IF (|has| |#1| (-237)) (-6 (-237)) |%noBranch|) (-15 -4294 ($ |#1|)) (-15 -3878 (|#1| $))))
-((-3547 (((-1284) (-830) $ (-112)) 9) (((-1284) (-830) $) 8) (((-1170) $ (-112)) 7) (((-1170) $) 6)))
-(((-836) (-141)) (T -836))
-((-3547 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-836)) (-5 *3 (-830)) (-5 *4 (-112)) (-5 *2 (-1284)))) (-3547 (*1 *2 *3 *1) (-12 (-4 *1 (-836)) (-5 *3 (-830)) (-5 *2 (-1284)))) (-3547 (*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-112)) (-5 *2 (-1170)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-836)) (-5 *2 (-1170)))))
-(-13 (-10 -8 (-15 -3547 ((-1170) $)) (-15 -3547 ((-1170) $ (-112))) (-15 -3547 ((-1284) (-830) $)) (-15 -3547 ((-1284) (-830) $ (-112)))))
-((-4356 (((-318) (-1170) (-1170)) 12)) (-3570 (((-112) (-1170) (-1170)) 34)) (-2218 (((-112) (-1170)) 33)) (-1408 (((-52) (-1170)) 25)) (-1342 (((-52) (-1170)) 23)) (-1729 (((-52) (-830)) 17)) (-3384 (((-652 (-1170)) (-1170)) 28)) (-2221 (((-652 (-1170))) 27)))
-(((-837) (-10 -7 (-15 -1729 ((-52) (-830))) (-15 -1342 ((-52) (-1170))) (-15 -1408 ((-52) (-1170))) (-15 -2221 ((-652 (-1170)))) (-15 -3384 ((-652 (-1170)) (-1170))) (-15 -2218 ((-112) (-1170))) (-15 -3570 ((-112) (-1170) (-1170))) (-15 -4356 ((-318) (-1170) (-1170))))) (T -837))
-((-4356 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-837)))) (-3570 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-837)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-837)))) (-3384 (*1 *2 *3) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-837)) (-5 *3 (-1170)))) (-2221 (*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-837)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-837)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-837)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-52)) (-5 *1 (-837)))))
-(-10 -7 (-15 -1729 ((-52) (-830))) (-15 -1342 ((-52) (-1170))) (-15 -1408 ((-52) (-1170))) (-15 -2221 ((-652 (-1170)))) (-15 -3384 ((-652 (-1170)) (-1170))) (-15 -2218 ((-112) (-1170))) (-15 -3570 ((-112) (-1170) (-1170))) (-15 -4356 ((-318) (-1170) (-1170))))
-((-2846 (((-112) $ $) 19)) (-4357 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2774 (($ $ $) 73)) (-1890 (((-112) $ $) 74)) (-1631 (((-112) $ (-779)) 8)) (-1506 (($ (-652 |#1|)) 69) (($) 68)) (-2613 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2704 (($ $) 63)) (-2086 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-3332 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3310 (((-112) $ $) 65)) (-1861 (((-112) $ (-779)) 9)) (-3654 ((|#1| $) 79)) (-3892 (($ $ $) 82)) (-1767 (($ $ $) 81)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2427 ((|#1| $) 80)) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22)) (-1346 (($ $ $) 70)) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41) (($ |#1| $ (-779)) 64)) (-3964 (((-1131) $) 21)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-4261 (((-652 (-2 (|:| -1907 |#1|) (|:| -3973 (-779)))) $) 62)) (-4020 (($ $ |#1|) 72) (($ $ $) 71)) (-3438 (($) 50) (($ (-652 |#1|)) 49)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 51)) (-2940 (((-870) $) 18)) (-4279 (($ (-652 |#1|)) 67) (($) 66)) (-4379 (((-112) $ $) 23)) (-2022 (($ (-652 |#1|)) 43)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20)) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-838 |#1|) (-141) (-858)) (T -838))
-((-3654 (*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-858)))))
-(-13 (-744 |t#1|) (-979 |t#1|) (-10 -8 (-15 -3654 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-703 |#1|) . T) ((-744 |#1|) . T) ((-979 |#1|) . T) ((-1109 |#1|) . T) ((-1111) . T) ((-1229) . T))
-((-3993 (((-1284) (-1131) (-1131)) 48)) (-1423 (((-1284) (-829) (-52)) 45)) (-1838 (((-52) (-829)) 16)))
-(((-839) (-10 -7 (-15 -1838 ((-52) (-829))) (-15 -1423 ((-1284) (-829) (-52))) (-15 -3993 ((-1284) (-1131) (-1131))))) (T -839))
-((-3993 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1284)) (-5 *1 (-839)))) (-1423 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-52)) (-5 *2 (-1284)) (-5 *1 (-839)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-52)) (-5 *1 (-839)))))
-(-10 -7 (-15 -1838 ((-52) (-829))) (-15 -1423 ((-1284) (-829) (-52))) (-15 -3993 ((-1284) (-1131) (-1131))))
-((-1776 (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|)) 12) (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)) 13)))
-(((-840 |#1| |#2|) (-10 -7 (-15 -1776 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|))) (-15 -1776 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|)))) (-1111) (-1111)) (T -840))
-((-1776 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-841 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *1 (-840 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6)))))
-(-10 -7 (-15 -1776 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|))) (-15 -1776 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL (|has| |#1| (-21)))) (-3330 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2840 (((-572) $) NIL (|has| |#1| (-856)))) (-3281 (($) NIL (|has| |#1| (-21)) CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 15)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 9)) (-2062 (((-3 $ "failed") $) 42 (|has| |#1| (-856)))) (-3196 (((-3 (-415 (-572)) "failed") $) 52 (|has| |#1| (-553)))) (-1733 (((-112) $) 46 (|has| |#1| (-553)))) (-2233 (((-415 (-572)) $) 49 (|has| |#1| (-553)))) (-3074 (((-112) $) NIL (|has| |#1| (-856)))) (-1886 (((-112) $) NIL (|has| |#1| (-856)))) (-1623 (((-112) $) NIL (|has| |#1| (-856)))) (-3654 (($ $ $) NIL (|has| |#1| (-856)))) (-2427 (($ $ $) NIL (|has| |#1| (-856)))) (-4347 (((-1170) $) NIL)) (-1744 (($) 13)) (-1400 (((-112) $) 12)) (-3964 (((-1131) $) NIL)) (-1875 (((-112) $) 11)) (-2940 (((-870) $) 18) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 8) (($ (-572)) NIL (-2813 (|has| |#1| (-856)) (|has| |#1| (-1049 (-572)))))) (-4249 (((-779)) 36 (|has| |#1| (-856)) CONST)) (-4379 (((-112) $ $) 54)) (-2700 (($ $) NIL (|has| |#1| (-856)))) (-2131 (($) 23 (|has| |#1| (-21)) CONST)) (-2143 (($) 33 (|has| |#1| (-856)) CONST)) (-3039 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2978 (((-112) $ $) 21)) (-3026 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3003 (((-112) $ $) 45 (|has| |#1| (-856)))) (-3089 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3075 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-930)) NIL (|has| |#1| (-856))) (($ $ (-779)) NIL (|has| |#1| (-856)))) (* (($ $ $) 39 (|has| |#1| (-856))) (($ (-572) $) 27 (|has| |#1| (-21))) (($ (-779) $) NIL (|has| |#1| (-21))) (($ (-930) $) NIL (|has| |#1| (-21)))))
-(((-841 |#1|) (-13 (-1111) (-419 |#1|) (-10 -8 (-15 -1744 ($)) (-15 -1875 ((-112) $)) (-15 -1400 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $))) |%noBranch|))) (-1111)) (T -841))
-((-1744 (*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1111)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1111)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1111)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-841 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))) (-3196 (*1 *2 *1) (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-841 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))))
-(-13 (-1111) (-419 |#1|) (-10 -8 (-15 -1744 ($)) (-15 -1875 ((-112) $)) (-15 -1400 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $))) |%noBranch|)))
-((-2695 (((-112) $ |#2|) 14)) (-2940 (((-870) $) 11)))
-(((-842 |#1| |#2|) (-10 -8 (-15 -2695 ((-112) |#1| |#2|)) (-15 -2940 ((-870) |#1|))) (-843 |#2|) (-1111)) (T -842))
-NIL
-(-10 -8 (-15 -2695 ((-112) |#1| |#2|)) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2030 ((|#1| $) 16)) (-4347 (((-1170) $) 10)) (-2695 (((-112) $ |#1|) 14)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2863 (((-55) $) 15)) (-2978 (((-112) $ $) 6)))
-(((-843 |#1|) (-141) (-1111)) (T -843))
-((-2030 (*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1111)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1111)) (-5 *2 (-55)))) (-2695 (*1 *2 *1 *3) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
-(-13 (-1111) (-10 -8 (-15 -2030 (|t#1| $)) (-15 -2863 ((-55) $)) (-15 -2695 ((-112) $ |t#1|))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2204 ((|#1| $) NIL) (((-115) $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2893 ((|#1| (-115) |#1|) NIL)) (-1886 (((-112) $) NIL)) (-2284 (($ |#1| (-368 (-115))) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1689 (($ $ (-1 |#1| |#1|)) NIL)) (-1583 (($ $ (-1 |#1| |#1|)) NIL)) (-2196 ((|#1| $ |#1|) NIL)) (-4395 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-1812 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ (-115) (-572)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-844 |#1|) (-13 (-1060) (-1049 |#1|) (-1049 (-115)) (-292 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1812 ($ $)) (-15 -1812 ($ $ $)) (-15 -4395 (|#1| |#1|))) |%noBranch|) (-15 -1583 ($ $ (-1 |#1| |#1|))) (-15 -1689 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-572))) (-15 ** ($ $ (-572))) (-15 -2893 (|#1| (-115) |#1|)) (-15 -2284 ($ |#1| (-368 (-115)))))) (-1060)) (T -844))
-((-1812 (*1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))) (-1812 (*1 *1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))) (-4395 (*1 *2 *2) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))) (-1583 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-844 *3)))) (-1689 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-844 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-572)) (-5 *1 (-844 *4)) (-4 *4 (-1060)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-844 *3)) (-4 *3 (-1060)))) (-2893 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-844 *2)) (-4 *2 (-1060)))) (-2284 (*1 *1 *2 *3) (-12 (-5 *3 (-368 (-115))) (-5 *1 (-844 *2)) (-4 *2 (-1060)))))
-(-13 (-1060) (-1049 |#1|) (-1049 (-115)) (-292 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1812 ($ $)) (-15 -1812 ($ $ $)) (-15 -4395 (|#1| |#1|))) |%noBranch|) (-15 -1583 ($ $ (-1 |#1| |#1|))) (-15 -1689 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-572))) (-15 ** ($ $ (-572))) (-15 -2893 (|#1| (-115) |#1|)) (-15 -2284 ($ |#1| (-368 (-115))))))
-((-2817 (((-216 (-510)) (-1170)) 9)))
-(((-845) (-10 -7 (-15 -2817 ((-216 (-510)) (-1170))))) (T -845))
-((-2817 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-216 (-510))) (-5 *1 (-845)))))
-(-10 -7 (-15 -2817 ((-216 (-510)) (-1170))))
-((-2846 (((-112) $ $) NIL)) (-3137 (((-1129) $) 10)) (-2030 (((-514) $) 9)) (-4347 (((-1170) $) NIL)) (-2695 (((-112) $ (-514)) NIL)) (-3964 (((-1131) $) NIL)) (-2953 (($ (-514) (-1129)) 8)) (-2940 (((-870) $) 25)) (-4379 (((-112) $ $) NIL)) (-2863 (((-55) $) 20)) (-2978 (((-112) $ $) 12)))
-(((-846) (-13 (-843 (-514)) (-10 -8 (-15 -3137 ((-1129) $)) (-15 -2953 ($ (-514) (-1129)))))) (T -846))
-((-3137 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-846)))) (-2953 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1129)) (-5 *1 (-846)))))
-(-13 (-843 (-514)) (-10 -8 (-15 -3137 ((-1129) $)) (-15 -2953 ($ (-514) (-1129)))))
-((-2846 (((-112) $ $) 7)) (-4159 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) 15) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 14)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 17) (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) 16)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-847) (-141)) (T -847))
-((-3972 (*1 *2 *3 *4) (-12 (-4 *1 (-847)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)))))) (-3972 (*1 *2 *3 *4) (-12 (-4 *1 (-847)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)))))) (-4159 (*1 *2 *3) (-12 (-4 *1 (-847)) (-5 *3 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) (-5 *2 (-1046)))) (-4159 (*1 *2 *3) (-12 (-4 *1 (-847)) (-5 *3 (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (-5 *2 (-1046)))))
-(-13 (-1111) (-10 -7 (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) (-15 -4159 ((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) (-15 -4159 ((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2707 (((-1046) (-652 (-322 (-386))) (-652 (-386))) 166) (((-1046) (-322 (-386)) (-652 (-386))) 164) (((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-851 (-386)))) 162) (((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-322 (-386))) (-652 (-851 (-386)))) 160) (((-1046) (-849)) 125) (((-1046) (-849) (-1074)) 124)) (-3972 (((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849) (-1074)) 85) (((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849)) 87)) (-3663 (((-1046) (-652 (-322 (-386))) (-652 (-386))) 167) (((-1046) (-849)) 150)))
-(((-848) (-10 -7 (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849) (-1074))) (-15 -2707 ((-1046) (-849) (-1074))) (-15 -2707 ((-1046) (-849))) (-15 -3663 ((-1046) (-849))) (-15 -2707 ((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-322 (-386))) (-652 (-851 (-386))))) (-15 -2707 ((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-851 (-386))))) (-15 -2707 ((-1046) (-322 (-386)) (-652 (-386)))) (-15 -2707 ((-1046) (-652 (-322 (-386))) (-652 (-386)))) (-15 -3663 ((-1046) (-652 (-322 (-386))) (-652 (-386)))))) (T -848))
-((-3663 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-322 (-386)))) (-5 *4 (-652 (-386))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-322 (-386)))) (-5 *4 (-652 (-386))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-386))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-2707 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-386))) (-5 *5 (-652 (-851 (-386)))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-2707 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-652 (-386))) (-5 *5 (-652 (-851 (-386)))) (-5 *6 (-652 (-322 (-386)))) (-5 *3 (-322 (-386))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1046)) (-5 *1 (-848)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1046)) (-5 *1 (-848)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-848)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1074)) (-5 *2 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-848)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-848)))))
-(-10 -7 (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849) (-1074))) (-15 -2707 ((-1046) (-849) (-1074))) (-15 -2707 ((-1046) (-849))) (-15 -3663 ((-1046) (-849))) (-15 -2707 ((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-322 (-386))) (-652 (-851 (-386))))) (-15 -2707 ((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-851 (-386))))) (-15 -2707 ((-1046) (-322 (-386)) (-652 (-386)))) (-15 -2707 ((-1046) (-652 (-322 (-386))) (-652 (-386)))) (-15 -3663 ((-1046) (-652 (-322 (-386))) (-652 (-386)))))
-((-2846 (((-112) $ $) NIL)) (-2204 (((-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) $) 21)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 20) (($ (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 14) (($ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))))) 18)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-849) (-13 (-1111) (-10 -8 (-15 -2940 ($ (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -2940 ($ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) (-15 -2940 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))))) (-15 -2204 ((-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) $))))) (T -849))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (-5 *1 (-849)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))) (-5 *1 (-849)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))))) (-5 *1 (-849)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227))))))) (-5 *1 (-849)))))
-(-13 (-1111) (-10 -8 (-15 -2940 ($ (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -2940 ($ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) (-15 -2940 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))))) (-15 -2204 ((-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))) $))))
-((-1776 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|) (-851 |#2|) (-851 |#2|)) 13) (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 14)))
-(((-850 |#1| |#2|) (-10 -7 (-15 -1776 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|))) (-15 -1776 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|) (-851 |#2|) (-851 |#2|)))) (-1111) (-1111)) (T -850))
-((-1776 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-851 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *1 (-850 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6)))))
-(-10 -7 (-15 -1776 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|))) (-15 -1776 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|) (-851 |#2|) (-851 |#2|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL (|has| |#1| (-21)))) (-3170 (((-1131) $) 31)) (-3330 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2840 (((-572) $) NIL (|has| |#1| (-856)))) (-3281 (($) NIL (|has| |#1| (-21)) CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 18)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 9)) (-2062 (((-3 $ "failed") $) 58 (|has| |#1| (-856)))) (-3196 (((-3 (-415 (-572)) "failed") $) 65 (|has| |#1| (-553)))) (-1733 (((-112) $) 60 (|has| |#1| (-553)))) (-2233 (((-415 (-572)) $) 63 (|has| |#1| (-553)))) (-3074 (((-112) $) NIL (|has| |#1| (-856)))) (-2301 (($) 14)) (-1886 (((-112) $) NIL (|has| |#1| (-856)))) (-1623 (((-112) $) NIL (|has| |#1| (-856)))) (-2311 (($) 16)) (-3654 (($ $ $) NIL (|has| |#1| (-856)))) (-2427 (($ $ $) NIL (|has| |#1| (-856)))) (-4347 (((-1170) $) NIL)) (-1400 (((-112) $) 12)) (-3964 (((-1131) $) NIL)) (-1875 (((-112) $) 11)) (-2940 (((-870) $) 24) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 8) (($ (-572)) NIL (-2813 (|has| |#1| (-856)) (|has| |#1| (-1049 (-572)))))) (-4249 (((-779)) 51 (|has| |#1| (-856)) CONST)) (-4379 (((-112) $ $) NIL)) (-2700 (($ $) NIL (|has| |#1| (-856)))) (-2131 (($) 37 (|has| |#1| (-21)) CONST)) (-2143 (($) 48 (|has| |#1| (-856)) CONST)) (-3039 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2978 (((-112) $ $) 35)) (-3026 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3003 (((-112) $ $) 59 (|has| |#1| (-856)))) (-3089 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3075 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-930)) NIL (|has| |#1| (-856))) (($ $ (-779)) NIL (|has| |#1| (-856)))) (* (($ $ $) 55 (|has| |#1| (-856))) (($ (-572) $) 42 (|has| |#1| (-21))) (($ (-779) $) NIL (|has| |#1| (-21))) (($ (-930) $) NIL (|has| |#1| (-21)))))
-(((-851 |#1|) (-13 (-1111) (-419 |#1|) (-10 -8 (-15 -2301 ($)) (-15 -2311 ($)) (-15 -1875 ((-112) $)) (-15 -1400 ((-112) $)) (-15 -3170 ((-1131) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $))) |%noBranch|))) (-1111)) (T -851))
-((-2301 (*1 *1) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1111)))) (-2311 (*1 *1) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1111)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-851 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))) (-3196 (*1 *2 *1) (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-851 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))))
-(-13 (-1111) (-419 |#1|) (-10 -8 (-15 -2301 ($)) (-15 -2311 ($)) (-15 -1875 ((-112) $)) (-15 -1400 ((-112) $)) (-15 -3170 ((-1131) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $))) |%noBranch|)))
-((-2846 (((-112) $ $) 7)) (-1486 (((-779)) 23)) (-2815 (($) 26)) (-3654 (($ $ $) 14) (($) 22 T CONST)) (-2427 (($ $ $) 15) (($) 21 T CONST)) (-3715 (((-930) $) 25)) (-4347 (((-1170) $) 10)) (-2571 (($ (-930)) 24)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)))
-(((-852) (-141)) (T -852))
-((-3654 (*1 *1) (-4 *1 (-852))) (-2427 (*1 *1) (-4 *1 (-852))))
-(-13 (-858) (-375) (-10 -8 (-15 -3654 ($) -1705) (-15 -2427 ($) -1705)))
-(((-102) . T) ((-621 (-870)) . T) ((-375) . T) ((-858) . T) ((-1111) . T))
-((-3793 (((-112) (-1279 |#2|) (-1279 |#2|)) 19)) (-4137 (((-112) (-1279 |#2|) (-1279 |#2|)) 20)) (-3060 (((-112) (-1279 |#2|) (-1279 |#2|)) 16)))
-(((-853 |#1| |#2|) (-10 -7 (-15 -3060 ((-112) (-1279 |#2|) (-1279 |#2|))) (-15 -3793 ((-112) (-1279 |#2|) (-1279 |#2|))) (-15 -4137 ((-112) (-1279 |#2|) (-1279 |#2|)))) (-779) (-800)) (T -853))
-((-4137 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112)) (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))) (-3793 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112)) (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))) (-3060 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112)) (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))))
-(-10 -7 (-15 -3060 ((-112) (-1279 |#2|) (-1279 |#2|))) (-15 -3793 ((-112) (-1279 |#2|) (-1279 |#2|))) (-15 -4137 ((-112) (-1279 |#2|) (-1279 |#2|))))
-((-2846 (((-112) $ $) 7)) (-3281 (($) 24 T CONST)) (-2062 (((-3 $ "failed") $) 27)) (-1886 (((-112) $) 25)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2143 (($) 23 T CONST)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)) (** (($ $ (-930)) 22) (($ $ (-779)) 26)) (* (($ $ $) 21)))
+((-1854 (*1 *1 *1 *1) (-4 *1 (-803))))
+(-13 (-805) (-10 -8 (-15 -1854 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 7)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3078 (($ $ $) 21)) (* (($ (-932) $) 22)))
+(((-804) (-141)) (T -804))
+NIL
+(-13 (-860) (-25))
+(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 25)) (-2950 (((-3 $ "failed") $ $) 27)) (-3670 (($) 24 T CONST)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3078 (($ $ $) 21)) (* (($ (-932) $) 22) (($ (-781) $) 26)))
+(((-805) (-141)) (T -805))
+NIL
+(-13 (-802) (-132))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-860) . T) ((-1113) . T))
+((-2908 (((-112) $) 42)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2209 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 43)) (-2057 (((-3 (-417 (-574)) "failed") $) 78)) (-1811 (((-112) $) 72)) (-4142 (((-417 (-574)) $) 76)) (-1652 ((|#2| $) 26)) (-1778 (($ (-1 |#2| |#2|) $) 23)) (-1324 (($ $) 58)) (-1837 (((-546) $) 67)) (-1514 (($ $) 21)) (-2943 (((-872) $) 53) (($ (-574)) 40) (($ |#2|) 38) (($ (-417 (-574))) NIL)) (-4160 (((-781)) 10)) (-2946 ((|#2| $) 71)) (-2982 (((-112) $ $) 30)) (-3005 (((-112) $ $) 69)) (-3094 (($ $) 32) (($ $ $) NIL)) (-3078 (($ $ $) 31)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-806 |#1| |#2|) (-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -1324 (|#1| |#1|)) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -2946 (|#2| |#1|)) (-15 -1652 (|#2| |#1|)) (-15 -1514 (|#1| |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -2908 ((-112) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|))) (-807 |#2|) (-174)) (T -806))
+((-4160 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) (-4 *3 (-807 *4)))))
+(-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -1324 (|#1| |#1|)) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -2946 (|#2| |#1|)) (-15 -1652 (|#2| |#1|)) (-15 -1514 (|#1| |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -2908 ((-112) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-1487 (((-781)) 58 (|has| |#1| (-377)))) (-3670 (($) 18 T CONST)) (-1697 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 94)) (-2209 (((-574) $) 99 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 96 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 95)) (-1950 (((-3 $ "failed") $) 37)) (-4239 ((|#1| $) 84)) (-2057 (((-3 (-417 (-574)) "failed") $) 71 (|has| |#1| (-555)))) (-1811 (((-112) $) 73 (|has| |#1| (-555)))) (-4142 (((-417 (-574)) $) 72 (|has| |#1| (-555)))) (-2820 (($) 61 (|has| |#1| (-377)))) (-3965 (((-112) $) 35)) (-2737 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-1652 ((|#1| $) 76)) (-3658 (($ $ $) 67 (|has| |#1| (-860)))) (-2106 (($ $ $) 66 (|has| |#1| (-860)))) (-1778 (($ (-1 |#1| |#1|) $) 86)) (-2565 (((-932) $) 60 (|has| |#1| (-377)))) (-2568 (((-1172) $) 10)) (-1324 (($ $) 70 (|has| |#1| (-372)))) (-2576 (($ (-932)) 59 (|has| |#1| (-377)))) (-4421 ((|#1| $) 81)) (-3050 ((|#1| $) 82)) (-2429 ((|#1| $) 83)) (-1382 ((|#1| $) 77)) (-3913 ((|#1| $) 78)) (-2202 ((|#1| $) 79)) (-2889 ((|#1| $) 80)) (-3966 (((-1133) $) 11)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 92 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 90 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 89 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 88 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) 87 (|has| |#1| (-524 (-1190) |#1|)))) (-2200 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|)))) (-1837 (((-546) $) 68 (|has| |#1| (-624 (-546))))) (-1514 (($ $) 85)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 98 (|has| |#1| (-1051 (-417 (-574)))))) (-1369 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2946 ((|#1| $) 74 (|has| |#1| (-1073)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3041 (((-112) $ $) 64 (|has| |#1| (-860)))) (-3016 (((-112) $ $) 63 (|has| |#1| (-860)))) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 65 (|has| |#1| (-860)))) (-3005 (((-112) $ $) 62 (|has| |#1| (-860)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-807 |#1|) (-141) (-174)) (T -807))
+((-1514 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3050 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4421 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2737 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2946 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1073)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-2057 (*1 *2 *1) (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1324 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372)))))
+(-13 (-38 |t#1|) (-421 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1514 ($ $)) (-15 -4239 (|t#1| $)) (-15 -2429 (|t#1| $)) (-15 -3050 (|t#1| $)) (-15 -4421 (|t#1| $)) (-15 -2889 (|t#1| $)) (-15 -2202 (|t#1| $)) (-15 -3913 (|t#1| $)) (-15 -1382 (|t#1| $)) (-15 -1652 (|t#1| $)) (-15 -2737 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1073)) (-15 -2946 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -1324 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0=(-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-377) |has| |#1| (-377)) ((-347 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1051 #0#) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) |has| |#1| (-294 |#1| |#1|)))
+((-1778 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 (|#3| (-1 |#4| |#2|) |#1|))) (-807 |#2|) (-174) (-807 |#4|) (-174)) (T -808))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5)))))
+(-10 -7 (-15 -1778 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL) (((-3 (-1012 |#1|) "failed") $) 35) (((-3 (-574) "failed") $) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-574))) (|has| |#1| (-1051 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-2209 ((|#1| $) NIL) (((-1012 |#1|) $) 33) (((-574) $) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-574))) (|has| |#1| (-1051 (-574))))) (((-417 (-574)) $) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-1950 (((-3 $ "failed") $) NIL)) (-4239 ((|#1| $) 16)) (-2057 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-1811 (((-112) $) NIL (|has| |#1| (-555)))) (-4142 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-2820 (($) NIL (|has| |#1| (-377)))) (-3965 (((-112) $) NIL)) (-2737 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1012 |#1|) (-1012 |#1|)) 29)) (-1652 ((|#1| $) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2565 (((-932) $) NIL (|has| |#1| (-377)))) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-4421 ((|#1| $) 22)) (-3050 ((|#1| $) 20)) (-2429 ((|#1| $) 18)) (-1382 ((|#1| $) 26)) (-3913 ((|#1| $) 25)) (-2202 ((|#1| $) 24)) (-2889 ((|#1| $) 23)) (-3966 (((-1133) $) NIL)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|)))) (-2200 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-1514 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1012 |#1|)) 30) (($ (-417 (-574))) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2946 ((|#1| $) NIL (|has| |#1| (-1073)))) (-2134 (($) 8 T CONST)) (-2146 (($) 12 T CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-809 |#1|) (-13 (-807 |#1|) (-421 (-1012 |#1|)) (-10 -8 (-15 -2737 ($ (-1012 |#1|) (-1012 |#1|))))) (-174)) (T -809))
+((-2737 (*1 *1 *2 *2) (-12 (-5 *2 (-1012 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3)))))
+(-13 (-807 |#1|) (-421 (-1012 |#1|)) (-10 -8 (-15 -2737 ($ (-1012 |#1|) (-1012 |#1|)))))
+((-2849 (((-112) $ $) 7)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-4307 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2982 (((-112) $ $) 6)))
+(((-810) (-141)) (T -810))
+((-3284 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)))))) (-4307 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1048)))))
+(-13 (-1113) (-10 -7 (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4307 ((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2635 (((-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) |#3| |#2| (-1190)) 19)))
+(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -2635 ((-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) |#3| |#2| (-1190)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970)) (-666 |#2|)) (T -811))
+((-2635 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1190)) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1216) (-970))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2722 (-654 *4)))) (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4)))))
+(-10 -7 (-15 -2635 ((-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) |#3| |#2| (-1190))))
+((-1723 (((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)) 28) (((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1190)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1190)) 18) (((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -2722 (-654 (-1281 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1190)) 24) (((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -2722 (-654 (-1281 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1190)) 26) (((-3 (-654 (-1281 |#2|)) "failed") (-699 |#2|) (-1190)) 37) (((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -2722 (-654 (-1281 |#2|)))) "failed") (-699 |#2|) (-1281 |#2|) (-1190)) 35)))
+(((-812 |#1| |#2|) (-10 -7 (-15 -1723 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -2722 (-654 (-1281 |#2|)))) "failed") (-699 |#2|) (-1281 |#2|) (-1190))) (-15 -1723 ((-3 (-654 (-1281 |#2|)) "failed") (-699 |#2|) (-1190))) (-15 -1723 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -2722 (-654 (-1281 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1190))) (-15 -1723 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -2722 (-654 (-1281 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1190))) (-15 -1723 ((-3 (-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1190))) (-15 -1723 ((-3 (-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1190))) (-15 -1723 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -1723 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970))) (T -812))
+((-1723 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-812 *6 *2)))) (-1723 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1216) (-970))) (-5 *1 (-812 *6 *2)) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))))) (-1723 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1190)) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2722 (-654 *3))) *3 "failed")) (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1216) (-970))))) (-1723 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2722 (-654 *7))) *7 "failed")) (-5 *1 (-812 *6 *7)))) (-1723 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1281 *7)) (|:| -2722 (-654 (-1281 *7))))) (-5 *1 (-812 *6 *7)))) (-1723 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1281 *7)) (|:| -2722 (-654 (-1281 *7))))) (-5 *1 (-812 *6 *7)))) (-1723 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1190)) (-4 *6 (-13 (-29 *5) (-1216) (-970))) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-1281 *6))) (-5 *1 (-812 *5 *6)))) (-1723 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1281 *7)) (|:| -2722 (-654 (-1281 *7))))) (-5 *1 (-812 *6 *7)) (-5 *4 (-1281 *7)))))
+(-10 -7 (-15 -1723 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -2722 (-654 (-1281 |#2|)))) "failed") (-699 |#2|) (-1281 |#2|) (-1190))) (-15 -1723 ((-3 (-654 (-1281 |#2|)) "failed") (-699 |#2|) (-1190))) (-15 -1723 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -2722 (-654 (-1281 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1190))) (-15 -1723 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -2722 (-654 (-1281 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1190))) (-15 -1723 ((-3 (-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1190))) (-15 -1723 ((-3 (-2 (|:| |particular| |#2|) (|:| -2722 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1190))) (-15 -1723 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -1723 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|))))
+((-3919 (($) 9)) (-2658 (((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1765 (((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-1709 (($ (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) 24)) (-3867 (($ (-654 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) 22)) (-3177 (((-1286)) 11)))
+(((-813) (-10 -8 (-15 -3919 ($)) (-15 -3177 ((-1286))) (-15 -1765 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3867 ($ (-654 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -1709 ($ (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -2658 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -813))
+((-2658 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *1 (-813)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) (-5 *1 (-813)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-5 *1 (-813)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-813)))) (-3177 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-813)))) (-3919 (*1 *1) (-5 *1 (-813))))
+(-10 -8 (-15 -3919 ($)) (-15 -3177 ((-1286))) (-15 -1765 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3867 ($ (-654 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -1709 ($ (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1909 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -2658 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-3091 ((|#2| |#2| (-1190)) 17)) (-4041 ((|#2| |#2| (-1190)) 56)) (-3000 (((-1 |#2| |#2|) (-1190)) 11)))
+(((-814 |#1| |#2|) (-10 -7 (-15 -3091 (|#2| |#2| (-1190))) (-15 -4041 (|#2| |#2| (-1190))) (-15 -3000 ((-1 |#2| |#2|) (-1190)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970))) (T -814))
+((-3000 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-13 (-29 *4) (-1216) (-970))))) (-4041 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1216) (-970))))) (-3091 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1216) (-970))))))
+(-10 -7 (-15 -3091 (|#2| |#2| (-1190))) (-15 -4041 (|#2| |#2| (-1190))) (-15 -3000 ((-1 |#2| |#2|) (-1190))))
+((-1723 (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388)) 128) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388)) 129) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388)) 131) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388)) 133) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388)) 134) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388))) 136) (((-1048) (-818) (-1076)) 120) (((-1048) (-818)) 121)) (-3284 (((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818) (-1076)) 80) (((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818)) 82)))
+(((-815) (-10 -7 (-15 -1723 ((-1048) (-818))) (-15 -1723 ((-1048) (-818) (-1076))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818) (-1076))))) (T -815))
+((-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1076)) (-5 *2 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-815)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-815)))) (-1723 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1723 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1723 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1723 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1723 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1723 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1048)) (-5 *1 (-815)))))
+(-10 -7 (-15 -1723 ((-1048) (-818))) (-15 -1723 ((-1048) (-818) (-1076))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -1723 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818) (-1076))))
+((-1644 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2722 (-654 |#4|))) (-663 |#4|) |#4|) 33)))
+(((-816 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1644 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2722 (-654 |#4|))) (-663 |#4|) |#4|))) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -816))
+((-1644 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4)))) (-5 *1 (-816 *5 *6 *7 *4)))))
+(-10 -7 (-15 -1644 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2722 (-654 |#4|))) (-663 |#4|) |#4|)))
+((-3618 (((-2 (|:| -4122 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))) 53)) (-2220 (((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4| |#2|) 62) (((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4|) 61) (((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3| |#2|) 20) (((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3|) 21)) (-1895 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-1931 ((|#2| |#3| (-654 (-417 |#2|))) 109) (((-3 |#2| "failed") |#3| (-417 |#2|)) 105)))
+(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1931 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -1931 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -2220 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3|)) (-15 -2220 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3| |#2|)) (-15 -1895 (|#2| |#3| |#1|)) (-15 -2220 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4|)) (-15 -2220 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4| |#2|)) (-15 -1895 (|#2| |#4| |#1|)) (-15 -3618 ((-2 (|:| -4122 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1051 (-417 (-574)))) (-1257 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -817))
+((-3618 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-2 (|:| -4122 *7) (|:| |rh| (-654 (-417 *6))))) (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) (-1895 (*1 *2 *3 *4) (-12 (-4 *2 (-1257 *4)) (-5 *1 (-817 *4 *2 *5 *3)) (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-666 *2)) (-4 *3 (-666 (-417 *2))))) (-2220 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *4 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -3359 *4) (|:| -2692 *4)))) (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) (-4 *3 (-666 (-417 *4))))) (-2220 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| -3359 *5) (|:| -2692 *5)))) (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 (-417 *5))))) (-1895 (*1 *2 *3 *4) (-12 (-4 *2 (-1257 *4)) (-5 *1 (-817 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2))))) (-2220 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *4 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -3359 *4) (|:| -2692 *4)))) (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) (-4 *6 (-666 (-417 *4))))) (-2220 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| -3359 *5) (|:| -2692 *5)))) (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-1931 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1257 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 (-417 *2))))) (-1931 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1257 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 *4)))))
+(-10 -7 (-15 -1931 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -1931 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -2220 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3|)) (-15 -2220 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3| |#2|)) (-15 -1895 (|#2| |#3| |#1|)) (-15 -2220 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4|)) (-15 -2220 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4| |#2|)) (-15 -1895 (|#2| |#4| |#1|)) (-15 -3618 ((-2 (|:| -4122 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|)))))
+((-2849 (((-112) $ $) NIL)) (-2209 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-818) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2209 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -818))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))))
+(-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2209 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))
+((-3069 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1186 |#2|)) (-1 (-428 |#2|) |#2|)) 154)) (-2636 (((-654 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 52)) (-3682 (((-654 (-2 (|:| |deg| (-781)) (|:| -4122 |#2|))) |#3|) 122)) (-3246 ((|#2| |#3|) 42)) (-2813 (((-654 (-2 (|:| -1707 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 99)) (-1754 ((|#3| |#3| (-417 |#2|)) 72) ((|#3| |#3| |#2|) 96)))
+(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3246 (|#2| |#3|)) (-15 -3682 ((-654 (-2 (|:| |deg| (-781)) (|:| -4122 |#2|))) |#3|)) (-15 -2813 ((-654 (-2 (|:| -1707 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -2636 ((-654 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3069 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1186 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -1754 (|#3| |#3| |#2|)) (-15 -1754 (|#3| |#3| (-417 |#2|)))) (-13 (-372) (-148) (-1051 (-417 (-574)))) (-1257 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -819))
+((-1754 (*1 *2 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3)))) (-1754 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-1257 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) (-4 *5 (-666 (-417 *3))))) (-3069 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-654 *7) *7 (-1186 *7))) (-5 *5 (-1 (-428 *7) *7)) (-4 *7 (-1257 *6)) (-4 *6 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4122 *3)))) (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) (-4 *8 (-666 (-417 *7))))) (-2636 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4122 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-2813 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -1707 *5) (|:| -4122 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4122 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-3246 (*1 *2 *3) (-12 (-4 *2 (-1257 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2))))))
+(-10 -7 (-15 -3246 (|#2| |#3|)) (-15 -3682 ((-654 (-2 (|:| |deg| (-781)) (|:| -4122 |#2|))) |#3|)) (-15 -2813 ((-654 (-2 (|:| -1707 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -2636 ((-654 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3069 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1186 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -1754 (|#3| |#3| |#2|)) (-15 -1754 (|#3| |#3| (-417 |#2|))))
+((-4225 (((-2 (|:| -2722 (-654 (-417 |#2|))) (|:| -1485 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|))) 147) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2722 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|)) 146) (((-2 (|:| -2722 (-654 (-417 |#2|))) (|:| -1485 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|))) 141) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2722 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|)) 139)) (-1751 ((|#2| (-664 |#2| (-417 |#2|))) 88) ((|#2| (-663 (-417 |#2|))) 91)))
+(((-820 |#1| |#2|) (-10 -7 (-15 -4225 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2722 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -4225 ((-2 (|:| -2722 (-654 (-417 |#2|))) (|:| -1485 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -4225 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2722 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -4225 ((-2 (|:| -2722 (-654 (-417 |#2|))) (|:| -1485 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1751 (|#2| (-663 (-417 |#2|)))) (-15 -1751 (|#2| (-664 |#2| (-417 |#2|))))) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -820))
+((-1751 (*1 *2 *3) (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))))) (-4225 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-2 (|:| -2722 (-654 (-417 *6))) (|:| -1485 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-4225 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4)))) (-5 *1 (-820 *5 *6)))) (-4225 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-2 (|:| -2722 (-654 (-417 *6))) (|:| -1485 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-4225 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4)))) (-5 *1 (-820 *5 *6)))))
+(-10 -7 (-15 -4225 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2722 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -4225 ((-2 (|:| -2722 (-654 (-417 |#2|))) (|:| -1485 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -4225 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -2722 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -4225 ((-2 (|:| -2722 (-654 (-417 |#2|))) (|:| -1485 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1751 (|#2| (-663 (-417 |#2|)))) (-15 -1751 (|#2| (-664 |#2| (-417 |#2|)))))
+((-2559 (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) |#5| |#4|) 49)))
+(((-821 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2559 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) |#5| |#4|))) (-372) (-666 |#1|) (-1257 |#1|) (-734 |#1| |#3|) (-666 |#4|)) (T -821))
+((-2559 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *7 (-1257 *5)) (-4 *4 (-734 *5 *7)) (-5 *2 (-2 (|:| -1485 (-699 *6)) (|:| |vec| (-1281 *5)))) (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4)))))
+(-10 -7 (-15 -2559 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) |#5| |#4|)))
+((-3069 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 47)) (-1412 (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|))) 164 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|))) 166 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 38) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 39) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 36) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 37)) (-2636 (((-654 (-2 (|:| |poly| |#2|) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 96)))
+(((-822 |#1| |#2|) (-10 -7 (-15 -1412 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -1412 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -1412 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -1412 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3069 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2636 ((-654 (-2 (|:| |poly| |#2|) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1412 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -1412 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -1412 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -1412 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -822))
+((-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1257 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1257 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-2636 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4122 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-3069 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4122 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-1412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *7 (-1257 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-1412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *7 (-1257 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))))
+(-10 -7 (-15 -1412 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -1412 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -1412 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -1412 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3069 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2636 ((-654 (-2 (|:| |poly| |#2|) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1412 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -1412 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -1412 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -1412 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|))
+((-3051 (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) (-699 |#2|) (-1281 |#1|)) 110) (((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1281 |#1|)) 15)) (-4329 (((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|)))) (-699 |#2|) (-1281 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2722 (-654 |#1|))) |#2| |#1|)) 116)) (-1723 (((-3 (-2 (|:| |particular| (-1281 |#1|)) (|:| -2722 (-699 |#1|))) "failed") (-699 |#1|) (-1281 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2722 (-654 |#1|))) "failed") |#2| |#1|)) 54)))
+(((-823 |#1| |#2|) (-10 -7 (-15 -3051 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1281 |#1|))) (-15 -3051 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) (-699 |#2|) (-1281 |#1|))) (-15 -1723 ((-3 (-2 (|:| |particular| (-1281 |#1|)) (|:| -2722 (-699 |#1|))) "failed") (-699 |#1|) (-1281 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2722 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -4329 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|)))) (-699 |#2|) (-1281 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2722 (-654 |#1|))) |#2| |#1|)))) (-372) (-666 |#1|)) (T -823))
+((-4329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2722 (-654 *6))) *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1281 *6) "failed")) (|:| -2722 (-654 (-1281 *6))))) (-5 *1 (-823 *6 *7)) (-5 *4 (-1281 *6)))) (-1723 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2722 (-654 *6))) "failed") *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-1281 *6)) (|:| -2722 (-699 *6)))) (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1281 *6)))) (-3051 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) (-5 *2 (-2 (|:| -1485 (-699 *6)) (|:| |vec| (-1281 *5)))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1281 *5)))) (-3051 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| A (-699 *5)) (|:| |eqs| (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1281 *5)) (|:| -4122 *6) (|:| |rh| *5)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *6 (-666 *5)))))
+(-10 -7 (-15 -3051 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1281 |#1|))) (-15 -3051 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) (-699 |#2|) (-1281 |#1|))) (-15 -1723 ((-3 (-2 (|:| |particular| (-1281 |#1|)) (|:| -2722 (-699 |#1|))) "failed") (-699 |#1|) (-1281 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2722 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -4329 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -2722 (-654 (-1281 |#1|)))) (-699 |#2|) (-1281 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2722 (-654 |#1|))) |#2| |#1|))))
+((-3641 (((-699 |#1|) (-654 |#1|) (-781)) 14) (((-699 |#1|) (-654 |#1|)) 15)) (-3589 (((-3 (-1281 |#1|) "failed") |#2| |#1| (-654 |#1|)) 39)) (-1943 (((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)) 46)))
+(((-824 |#1| |#2|) (-10 -7 (-15 -3641 ((-699 |#1|) (-654 |#1|))) (-15 -3641 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -3589 ((-3 (-1281 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -1943 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -824))
+((-1943 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) (-3589 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1281 *4)) (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4)))))
+(-10 -7 (-15 -3641 ((-699 |#1|) (-654 |#1|))) (-15 -3641 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -3589 ((-3 (-1281 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -1943 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|))))
+((-2849 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-2908 (((-112) $) NIL (|has| |#2| (-132)))) (-3290 (($ (-932)) NIL (|has| |#2| (-1062)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1854 (($ $ $) NIL (|has| |#2| (-803)))) (-2950 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3340 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#2| (-377)))) (-3747 (((-574) $) NIL (|has| |#2| (-858)))) (-3143 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1113)))) (-2209 (((-574) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) ((|#2| $) NIL (|has| |#2| (-1113)))) (-2668 (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-1281 $)) NIL (|has| |#2| (-1062)))) (-1950 (((-3 $ "failed") $) NIL (|has| |#2| (-736)))) (-2820 (($) NIL (|has| |#2| (-377)))) (-2462 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ (-574)) NIL)) (-3434 (((-112) $) NIL (|has| |#2| (-858)))) (-1864 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3965 (((-112) $) NIL (|has| |#2| (-736)))) (-3244 (((-112) $) NIL (|has| |#2| (-858)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-1712 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-2565 (((-932) $) NIL (|has| |#2| (-377)))) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#2| (-1113)))) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#2| (-377)))) (-3966 (((-1133) $) NIL (|has| |#2| (-1113)))) (-2915 ((|#2| $) NIL (|has| (-574) (-860)))) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-3222 ((|#2| $ $) NIL (|has| |#2| (-1062)))) (-4261 (($ (-1281 |#2|)) NIL)) (-3939 (((-135)) NIL (|has| |#2| (-372)))) (-3905 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#2|) $) NIL) (($ (-574)) NIL (-2818 (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (($ |#2|) NIL (|has| |#2| (-1113))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-4160 (((-781)) NIL (|has| |#2| (-1062)) CONST)) (-2923 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-2935 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2946 (($ $) NIL (|has| |#2| (-858)))) (-2134 (($) NIL (|has| |#2| (-132)) CONST)) (-2146 (($) NIL (|has| |#2| (-736)) CONST)) (-3611 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3041 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3016 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2982 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3028 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3005 (((-112) $ $) 11 (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $ $) NIL (|has| |#2| (-1062))) (($ $) NIL (|has| |#2| (-1062)))) (-3078 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-736))) (($ $ (-932)) NIL (|has| |#2| (-736)))) (* (($ (-574) $) NIL (|has| |#2| (-1062))) (($ $ $) NIL (|has| |#2| (-736))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-932) $) NIL (|has| |#2| (-25)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-825 |#1| |#2| |#3|) (-244 |#1| |#2|) (-781) (-803) (-1 (-112) (-1281 |#2|) (-1281 |#2|))) (T -825))
+NIL
+(-244 |#1| |#2|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1481 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1190)) NIL)) (-3848 (((-781) $) NIL) (((-781) $ (-1190)) NIL)) (-4355 (((-654 (-828 (-1190))) $) NIL)) (-4194 (((-1186 $) $ (-828 (-1190))) NIL) (((-1186 |#1|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-828 (-1190)))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4348 (($ $) NIL (|has| |#1| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2419 (($ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-828 (-1190)) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL) (((-3 (-1138 |#1| (-1190)) "failed") $) NIL)) (-2209 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-828 (-1190)) $) NIL) (((-1190) $) NIL) (((-1138 |#1| (-1190)) $) NIL)) (-2800 (($ $ $ (-828 (-1190))) NIL (|has| |#1| (-174)))) (-1392 (($ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1190))) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#1| (-920)))) (-3157 (($ $ |#1| (-541 (-828 (-1190))) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-828 (-1190)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-828 (-1190)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3593 (((-781) $ (-1190)) NIL) (((-781) $) NIL)) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4345 (($ (-1186 |#1|) (-828 (-1190))) NIL) (($ (-1186 $) (-828 (-1190))) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-541 (-828 (-1190)))) NIL) (($ $ (-828 (-1190)) (-781)) NIL) (($ $ (-654 (-828 (-1190))) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-828 (-1190))) NIL)) (-2382 (((-541 (-828 (-1190))) $) NIL) (((-781) $ (-828 (-1190))) NIL) (((-654 (-781)) $ (-654 (-828 (-1190)))) NIL)) (-1541 (($ (-1 (-541 (-828 (-1190))) (-541 (-828 (-1190)))) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-4115 (((-1 $ (-781)) (-1190)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-4045 (((-3 (-828 (-1190)) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-3706 (((-828 (-1190)) $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2568 (((-1172) $) NIL)) (-3740 (((-112) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-828 (-1190))) (|:| -2524 (-781))) "failed") $) NIL)) (-2591 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-828 (-1190)) |#1|) NIL) (($ $ (-654 (-828 (-1190))) (-654 |#1|)) NIL) (($ $ (-828 (-1190)) $) NIL) (($ $ (-654 (-828 (-1190))) (-654 $)) NIL) (($ $ (-1190) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1190)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-1415 (($ $ (-828 (-1190))) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-828 (-1190))) NIL) (($ $ (-654 (-828 (-1190)))) NIL) (($ $ (-828 (-1190)) (-781)) NIL) (($ $ (-654 (-828 (-1190))) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2757 (((-654 (-1190)) $) NIL)) (-1784 (((-541 (-828 (-1190))) $) NIL) (((-781) $ (-828 (-1190))) NIL) (((-654 (-781)) $ (-654 (-828 (-1190)))) NIL) (((-781) $ (-1190)) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-828 (-1190)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-828 (-1190)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-828 (-1190)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1607 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1190))) NIL (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-828 (-1190))) NIL) (($ (-1190)) NIL) (($ (-1138 |#1| (-1190))) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-541 (-828 (-1190)))) NIL) (($ $ (-828 (-1190)) (-781)) NIL) (($ $ (-654 (-828 (-1190))) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-828 (-1190))) NIL) (($ $ (-654 (-828 (-1190)))) NIL) (($ $ (-828 (-1190)) (-781)) NIL) (($ $ (-654 (-828 (-1190))) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-826 |#1|) (-13 (-260 |#1| (-1190) (-828 (-1190)) (-541 (-828 (-1190)))) (-1051 (-1138 |#1| (-1190)))) (-1062)) (T -826))
+NIL
+(-13 (-260 |#1| (-1190) (-828 (-1190)) (-541 (-828 (-1190)))) (-1051 (-1138 |#1| (-1190))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-372)))) (-2814 (($ $) NIL (|has| |#2| (-372)))) (-2425 (((-112) $) NIL (|has| |#2| (-372)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| |#2| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#2| (-372)))) (-3875 (((-112) $ $) NIL (|has| |#2| (-372)))) (-3670 (($) NIL T CONST)) (-2785 (($ $ $) NIL (|has| |#2| (-372)))) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL (|has| |#2| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-1654 (((-112) $) NIL (|has| |#2| (-372)))) (-3965 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2834 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 20 (|has| |#2| (-372)))) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#2| (-372)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-1347 (((-781) $) NIL (|has| |#2| (-372)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#2| (-372)))) (-3905 (($ $ (-781)) NIL) (($ $) 13)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-417 (-574))) NIL (|has| |#2| (-372))) (($ $) NIL (|has| |#2| (-372)))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#2| (-372)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) 15 (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL) (($ $ (-574)) 18 (|has| |#2| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) NIL (|has| |#2| (-372))) (($ $ (-417 (-574))) NIL (|has| |#2| (-372)))))
+(((-827 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|))) (-1113) (-911 |#1|) |#1|) (T -827))
+NIL
+(-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-3848 (((-781) $) NIL)) (-1489 ((|#1| $) 10)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-3593 (((-781) $) 11)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-4115 (($ |#1| (-781)) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3905 (($ $) NIL) (($ $ (-781)) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-828 |#1|) (-273 |#1|) (-860)) (T -828))
+NIL
+(-273 |#1|)
+((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) 38)) (-1487 (((-781) $) NIL)) (-3670 (($) NIL T CONST)) (-4004 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-2926 (($ $) 42)) (-1950 (((-3 $ "failed") $) NIL)) (-2940 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3965 (((-112) $) NIL)) (-2404 ((|#1| $ (-574)) NIL)) (-4226 (((-781) $ (-574)) NIL)) (-3826 (($ $) 54)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-3400 (($ (-1 |#1| |#1|) $) NIL)) (-1835 (($ (-1 (-781) (-781)) $) NIL)) (-2634 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3940 (((-112) $ $) 51)) (-4135 (((-781) $) 34)) (-2568 (((-1172) $) NIL)) (-3358 (($ $ $) NIL)) (-2812 (($ $ $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 ((|#1| $) 41)) (-3948 (((-654 (-2 (|:| |gen| |#1|) (|:| -1610 (-781)))) $) NIL)) (-2413 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2825 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-2923 (((-112) $ $) NIL)) (-2146 (($) 20 T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 53)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-829 |#1|) (-13 (-395 |#1|) (-856) (-10 -8 (-15 -2915 (|#1| $)) (-15 -2926 ($ $)) (-15 -3826 ($ $)) (-15 -3940 ((-112) $ $)) (-15 -2634 ((-3 $ "failed") $ |#1|)) (-15 -4004 ((-3 $ "failed") $ |#1|)) (-15 -2825 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4135 ((-781) $)) (-15 -1655 ((-654 |#1|) $)))) (-860)) (T -829))
+((-2915 (*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-3940 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-2634 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-4004 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2825 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860)))))
+(-13 (-395 |#1|) (-856) (-10 -8 (-15 -2915 (|#1| $)) (-15 -2926 ($ $)) (-15 -3826 ($ $)) (-15 -3940 ((-112) $ $)) (-15 -2634 ((-3 $ "failed") $ |#1|)) (-15 -4004 ((-3 $ "failed") $ |#1|)) (-15 -2825 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4135 ((-781) $)) (-15 -1655 ((-654 |#1|) $))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-3747 (((-574) $) 59)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3434 (((-112) $) 57)) (-3965 (((-112) $) 35)) (-3244 (((-112) $) 58)) (-3658 (($ $ $) 56)) (-2106 (($ $ $) 55)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2946 (($ $) 60)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3041 (((-112) $ $) 53)) (-3016 (((-112) $ $) 52)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 54)) (-3005 (((-112) $ $) 51)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-830) (-141)) (T -830))
+NIL
+(-13 (-566) (-858))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-3206 (($ (-1133)) 7)) (-2271 (((-112) $ (-1172) (-1133)) 15)) (-4230 (((-832) $) 12)) (-2185 (((-832) $) 11)) (-2214 (((-1286) $) 9)) (-2050 (((-112) $ (-1133)) 16)))
+(((-831) (-10 -8 (-15 -3206 ($ (-1133))) (-15 -2214 ((-1286) $)) (-15 -2185 ((-832) $)) (-15 -4230 ((-832) $)) (-15 -2271 ((-112) $ (-1172) (-1133))) (-15 -2050 ((-112) $ (-1133))))) (T -831))
+((-2050 (*1 *2 *1 *3) (-12 (-5 *3 (-1133)) (-5 *2 (-112)) (-5 *1 (-831)))) (-2271 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-1133)) (-5 *2 (-112)) (-5 *1 (-831)))) (-4230 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-831)))) (-3206 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-831)))))
+(-10 -8 (-15 -3206 ($ (-1133))) (-15 -2214 ((-1286) $)) (-15 -2185 ((-832) $)) (-15 -4230 ((-832) $)) (-15 -2271 ((-112) $ (-1172) (-1133))) (-15 -2050 ((-112) $ (-1133))))
+((-3930 (((-1286) $ (-833)) 12)) (-4374 (((-1286) $ (-1190)) 32)) (-3149 (((-1286) $ (-1172) (-1172)) 34)) (-4223 (((-1286) $ (-1172)) 33)) (-2054 (((-1286) $) 19)) (-4385 (((-1286) $ (-574)) 28)) (-3665 (((-1286) $ (-227)) 30)) (-3052 (((-1286) $) 18)) (-4165 (((-1286) $) 26)) (-1891 (((-1286) $) 25)) (-3683 (((-1286) $) 23)) (-3883 (((-1286) $) 24)) (-3922 (((-1286) $) 22)) (-3199 (((-1286) $) 21)) (-2980 (((-1286) $) 20)) (-3969 (((-1286) $) 16)) (-1853 (((-1286) $) 17)) (-2151 (((-1286) $) 15)) (-2101 (((-1286) $) 14)) (-3187 (((-1286) $) 13)) (-3628 (($ (-1172) (-833)) 9)) (-3108 (($ (-1172) (-1172) (-833)) 8)) (-3721 (((-1190) $) 51)) (-4391 (((-1190) $) 55)) (-3973 (((-2 (|:| |cd| (-1172)) (|:| -2032 (-1172))) $) 54)) (-1980 (((-1172) $) 52)) (-2488 (((-1286) $) 41)) (-1970 (((-574) $) 49)) (-2127 (((-227) $) 50)) (-3017 (((-1286) $) 40)) (-3409 (((-1286) $) 48)) (-1823 (((-1286) $) 47)) (-3289 (((-1286) $) 45)) (-3256 (((-1286) $) 46)) (-2112 (((-1286) $) 44)) (-2886 (((-1286) $) 43)) (-2788 (((-1286) $) 42)) (-3266 (((-1286) $) 38)) (-4260 (((-1286) $) 39)) (-1356 (((-1286) $) 37)) (-3902 (((-1286) $) 36)) (-2903 (((-1286) $) 35)) (-1638 (((-1286) $) 11)))
+(((-832) (-10 -8 (-15 -3108 ($ (-1172) (-1172) (-833))) (-15 -3628 ($ (-1172) (-833))) (-15 -1638 ((-1286) $)) (-15 -3930 ((-1286) $ (-833))) (-15 -3187 ((-1286) $)) (-15 -2101 ((-1286) $)) (-15 -2151 ((-1286) $)) (-15 -3969 ((-1286) $)) (-15 -1853 ((-1286) $)) (-15 -3052 ((-1286) $)) (-15 -2054 ((-1286) $)) (-15 -2980 ((-1286) $)) (-15 -3199 ((-1286) $)) (-15 -3922 ((-1286) $)) (-15 -3683 ((-1286) $)) (-15 -3883 ((-1286) $)) (-15 -1891 ((-1286) $)) (-15 -4165 ((-1286) $)) (-15 -4385 ((-1286) $ (-574))) (-15 -3665 ((-1286) $ (-227))) (-15 -4374 ((-1286) $ (-1190))) (-15 -4223 ((-1286) $ (-1172))) (-15 -3149 ((-1286) $ (-1172) (-1172))) (-15 -2903 ((-1286) $)) (-15 -3902 ((-1286) $)) (-15 -1356 ((-1286) $)) (-15 -3266 ((-1286) $)) (-15 -4260 ((-1286) $)) (-15 -3017 ((-1286) $)) (-15 -2488 ((-1286) $)) (-15 -2788 ((-1286) $)) (-15 -2886 ((-1286) $)) (-15 -2112 ((-1286) $)) (-15 -3289 ((-1286) $)) (-15 -3256 ((-1286) $)) (-15 -1823 ((-1286) $)) (-15 -3409 ((-1286) $)) (-15 -1970 ((-574) $)) (-15 -2127 ((-227) $)) (-15 -3721 ((-1190) $)) (-15 -1980 ((-1172) $)) (-15 -3973 ((-2 (|:| |cd| (-1172)) (|:| -2032 (-1172))) $)) (-15 -4391 ((-1190) $)))) (T -832))
+((-4391 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-832)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1172)) (|:| -2032 (-1172)))) (-5 *1 (-832)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-832)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-832)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-4260 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3149 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-4374 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-3665 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-4385 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3930 (*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3628 (*1 *1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-833)) (-5 *1 (-832)))) (-3108 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-833)) (-5 *1 (-832)))))
+(-10 -8 (-15 -3108 ($ (-1172) (-1172) (-833))) (-15 -3628 ($ (-1172) (-833))) (-15 -1638 ((-1286) $)) (-15 -3930 ((-1286) $ (-833))) (-15 -3187 ((-1286) $)) (-15 -2101 ((-1286) $)) (-15 -2151 ((-1286) $)) (-15 -3969 ((-1286) $)) (-15 -1853 ((-1286) $)) (-15 -3052 ((-1286) $)) (-15 -2054 ((-1286) $)) (-15 -2980 ((-1286) $)) (-15 -3199 ((-1286) $)) (-15 -3922 ((-1286) $)) (-15 -3683 ((-1286) $)) (-15 -3883 ((-1286) $)) (-15 -1891 ((-1286) $)) (-15 -4165 ((-1286) $)) (-15 -4385 ((-1286) $ (-574))) (-15 -3665 ((-1286) $ (-227))) (-15 -4374 ((-1286) $ (-1190))) (-15 -4223 ((-1286) $ (-1172))) (-15 -3149 ((-1286) $ (-1172) (-1172))) (-15 -2903 ((-1286) $)) (-15 -3902 ((-1286) $)) (-15 -1356 ((-1286) $)) (-15 -3266 ((-1286) $)) (-15 -4260 ((-1286) $)) (-15 -3017 ((-1286) $)) (-15 -2488 ((-1286) $)) (-15 -2788 ((-1286) $)) (-15 -2886 ((-1286) $)) (-15 -2112 ((-1286) $)) (-15 -3289 ((-1286) $)) (-15 -3256 ((-1286) $)) (-15 -1823 ((-1286) $)) (-15 -3409 ((-1286) $)) (-15 -1970 ((-574) $)) (-15 -2127 ((-227) $)) (-15 -3721 ((-1190) $)) (-15 -1980 ((-1172) $)) (-15 -3973 ((-2 (|:| |cd| (-1172)) (|:| -2032 (-1172))) $)) (-15 -4391 ((-1190) $)))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 13)) (-2923 (((-112) $ $) NIL)) (-3846 (($) 16)) (-3717 (($) 14)) (-2553 (($) 17)) (-2036 (($) 15)) (-2982 (((-112) $ $) 9)))
+(((-833) (-13 (-1113) (-10 -8 (-15 -3717 ($)) (-15 -3846 ($)) (-15 -2553 ($)) (-15 -2036 ($))))) (T -833))
+((-3717 (*1 *1) (-5 *1 (-833))) (-3846 (*1 *1) (-5 *1 (-833))) (-2553 (*1 *1) (-5 *1 (-833))) (-2036 (*1 *1) (-5 *1 (-833))))
+(-13 (-1113) (-10 -8 (-15 -3717 ($)) (-15 -3846 ($)) (-15 -2553 ($)) (-15 -2036 ($))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 23) (($ (-1190)) 19)) (-2923 (((-112) $ $) NIL)) (-3299 (((-112) $) 10)) (-3194 (((-112) $) 9)) (-2693 (((-112) $) 11)) (-4063 (((-112) $) 8)) (-2982 (((-112) $ $) 21)))
+(((-834) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-1190))) (-15 -4063 ((-112) $)) (-15 -3194 ((-112) $)) (-15 -3299 ((-112) $)) (-15 -2693 ((-112) $))))) (T -834))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-834)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
+(-13 (-1113) (-10 -8 (-15 -2943 ($ (-1190))) (-15 -4063 ((-112) $)) (-15 -3194 ((-112) $)) (-15 -3299 ((-112) $)) (-15 -2693 ((-112) $))))
+((-2849 (((-112) $ $) NIL)) (-1526 (($ (-834) (-654 (-1190))) 32)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3346 (((-834) $) 33)) (-3809 (((-654 (-1190)) $) 34)) (-2943 (((-872) $) 31)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-835) (-13 (-1113) (-10 -8 (-15 -3346 ((-834) $)) (-15 -3809 ((-654 (-1190)) $)) (-15 -1526 ($ (-834) (-654 (-1190))))))) (T -835))
+((-3346 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-835)))) (-1526 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1190))) (-5 *1 (-835)))))
+(-13 (-1113) (-10 -8 (-15 -3346 ((-834) $)) (-15 -3809 ((-654 (-1190)) $)) (-15 -1526 ($ (-834) (-654 (-1190))))))
+((-1520 (((-1286) (-832) (-324 |#1|) (-112)) 23) (((-1286) (-832) (-324 |#1|)) 89) (((-1172) (-324 |#1|) (-112)) 88) (((-1172) (-324 |#1|)) 87)))
+(((-836 |#1|) (-10 -7 (-15 -1520 ((-1172) (-324 |#1|))) (-15 -1520 ((-1172) (-324 |#1|) (-112))) (-15 -1520 ((-1286) (-832) (-324 |#1|))) (-15 -1520 ((-1286) (-832) (-324 |#1|) (-112)))) (-13 (-838) (-1062))) (T -836))
+((-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-838) (-1062))) (-5 *2 (-1286)) (-5 *1 (-836 *6)))) (-1520 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1062))) (-5 *2 (-1286)) (-5 *1 (-836 *5)))) (-1520 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1062))) (-5 *2 (-1172)) (-5 *1 (-836 *5)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1062))) (-5 *2 (-1172)) (-5 *1 (-836 *4)))))
+(-10 -7 (-15 -1520 ((-1172) (-324 |#1|))) (-15 -1520 ((-1172) (-324 |#1|) (-112))) (-15 -1520 ((-1286) (-832) (-324 |#1|))) (-15 -1520 ((-1286) (-832) (-324 |#1|) (-112))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-1645 ((|#1| $) 10)) (-4296 (($ |#1|) 9)) (-3965 (((-112) $) NIL)) (-4335 (($ |#2| (-781)) NIL)) (-2382 (((-781) $) NIL)) (-1370 ((|#2| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3905 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239)))) (-1784 (((-781) $) NIL)) (-2943 (((-872) $) 17) (($ (-574)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3344 ((|#2| $ (-781)) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239)))) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-837 |#1| |#2|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4296 ($ |#1|)) (-15 -1645 (|#1| $)))) (-718 |#2|) (-1062)) (T -837))
+((-4296 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3)))) (-1645 (*1 *2 *1) (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1062)))))
+(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4296 ($ |#1|)) (-15 -1645 (|#1| $))))
+((-1520 (((-1286) (-832) $ (-112)) 9) (((-1286) (-832) $) 8) (((-1172) $ (-112)) 7) (((-1172) $) 6)))
+(((-838) (-141)) (T -838))
+((-1520 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1286)))) (-1520 (*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1286)))) (-1520 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1172)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1172)))))
+(-13 (-10 -8 (-15 -1520 ((-1172) $)) (-15 -1520 ((-1172) $ (-112))) (-15 -1520 ((-1286) (-832) $)) (-15 -1520 ((-1286) (-832) $ (-112)))))
+((-2664 (((-320) (-1172) (-1172)) 12)) (-3684 (((-112) (-1172) (-1172)) 34)) (-4052 (((-112) (-1172)) 33)) (-1422 (((-52) (-1172)) 25)) (-1691 (((-52) (-1172)) 23)) (-1772 (((-52) (-832)) 17)) (-3522 (((-654 (-1172)) (-1172)) 28)) (-4073 (((-654 (-1172))) 27)))
+(((-839) (-10 -7 (-15 -1772 ((-52) (-832))) (-15 -1691 ((-52) (-1172))) (-15 -1422 ((-52) (-1172))) (-15 -4073 ((-654 (-1172)))) (-15 -3522 ((-654 (-1172)) (-1172))) (-15 -4052 ((-112) (-1172))) (-15 -3684 ((-112) (-1172) (-1172))) (-15 -2664 ((-320) (-1172) (-1172))))) (T -839))
+((-2664 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-839)))) (-3684 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-112)) (-5 *1 (-839)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-112)) (-5 *1 (-839)))) (-3522 (*1 *2 *3) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-839)) (-5 *3 (-1172)))) (-4073 (*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-839)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-839)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-839)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839)))))
+(-10 -7 (-15 -1772 ((-52) (-832))) (-15 -1691 ((-52) (-1172))) (-15 -1422 ((-52) (-1172))) (-15 -4073 ((-654 (-1172)))) (-15 -3522 ((-654 (-1172)) (-1172))) (-15 -4052 ((-112) (-1172))) (-15 -3684 ((-112) (-1172) (-1172))) (-15 -2664 ((-320) (-1172) (-1172))))
+((-2849 (((-112) $ $) 19)) (-4359 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4365 (($ $ $) 73)) (-4006 (((-112) $ $) 74)) (-3340 (((-112) $ (-781)) 8)) (-1508 (($ (-654 |#1|)) 69) (($) 68)) (-3391 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-1730 (($ $) 63)) (-2158 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3972 (((-112) $ $) 65)) (-3735 (((-112) $ (-781)) 9)) (-3658 ((|#1| $) 79)) (-3722 (($ $ $) 82)) (-2130 (($ $ $) 81)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2106 ((|#1| $) 80)) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22)) (-1731 (($ $ $) 70)) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3966 (((-1133) $) 21)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-4243 (((-654 (-2 (|:| -1909 |#1|) (|:| -3975 (-781)))) $) 62)) (-2457 (($ $ |#1|) 72) (($ $ $) 71)) (-2826 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18)) (-4281 (($ (-654 |#1|)) 67) (($) 66)) (-2923 (((-112) $ $) 23)) (-2817 (($ (-654 |#1|)) 43)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-840 |#1|) (-141) (-860)) (T -840))
+((-3658 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860)))))
+(-13 (-746 |t#1|) (-981 |t#1|) (-10 -8 (-15 -3658 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-705 |#1|) . T) ((-746 |#1|) . T) ((-981 |#1|) . T) ((-1111 |#1|) . T) ((-1113) . T) ((-1231) . T))
+((-3493 (((-1286) (-1133) (-1133)) 48)) (-2983 (((-1286) (-831) (-52)) 45)) (-1571 (((-52) (-831)) 16)))
+(((-841) (-10 -7 (-15 -1571 ((-52) (-831))) (-15 -2983 ((-1286) (-831) (-52))) (-15 -3493 ((-1286) (-1133) (-1133))))) (T -841))
+((-3493 (*1 *2 *3 *3) (-12 (-5 *3 (-1133)) (-5 *2 (-1286)) (-5 *1 (-841)))) (-2983 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1286)) (-5 *1 (-841)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841)))))
+(-10 -7 (-15 -1571 ((-52) (-831))) (-15 -2983 ((-1286) (-831) (-52))) (-15 -3493 ((-1286) (-1133) (-1133))))
+((-1778 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)) 12) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 13)))
+(((-842 |#1| |#2|) (-10 -7 (-15 -1778 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1778 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) (-1113) (-1113)) (T -842))
+((-1778 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *1 (-842 *5 *6)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6)))))
+(-10 -7 (-15 -1778 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1778 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL (|has| |#1| (-21)))) (-2950 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3747 (((-574) $) NIL (|has| |#1| (-858)))) (-3670 (($) NIL (|has| |#1| (-21)) CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 15)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 9)) (-1950 (((-3 $ "failed") $) 42 (|has| |#1| (-858)))) (-2057 (((-3 (-417 (-574)) "failed") $) 52 (|has| |#1| (-555)))) (-1811 (((-112) $) 46 (|has| |#1| (-555)))) (-4142 (((-417 (-574)) $) 49 (|has| |#1| (-555)))) (-3434 (((-112) $) NIL (|has| |#1| (-858)))) (-3965 (((-112) $) NIL (|has| |#1| (-858)))) (-3244 (((-112) $) NIL (|has| |#1| (-858)))) (-3658 (($ $ $) NIL (|has| |#1| (-858)))) (-2106 (($ $ $) NIL (|has| |#1| (-858)))) (-2568 (((-1172) $) NIL)) (-1746 (($) 13)) (-3498 (((-112) $) 12)) (-3966 (((-1133) $) NIL)) (-3862 (((-112) $) 11)) (-2943 (((-872) $) 18) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2818 (|has| |#1| (-858)) (|has| |#1| (-1051 (-574)))))) (-4160 (((-781)) 36 (|has| |#1| (-858)) CONST)) (-2923 (((-112) $ $) 54)) (-2946 (($ $) NIL (|has| |#1| (-858)))) (-2134 (($) 23 (|has| |#1| (-21)) CONST)) (-2146 (($) 33 (|has| |#1| (-858)) CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2982 (((-112) $ $) 21)) (-3028 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3005 (((-112) $ $) 45 (|has| |#1| (-858)))) (-3094 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3078 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-932)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 39 (|has| |#1| (-858))) (($ (-574) $) 27 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-932) $) NIL (|has| |#1| (-21)))))
+(((-843 |#1|) (-13 (-1113) (-421 |#1|) (-10 -8 (-15 -1746 ($)) (-15 -3862 ((-112) $)) (-15 -3498 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1113)) (T -843))
+((-1746 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1113)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1113)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1113)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) (-2057 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))))
+(-13 (-1113) (-421 |#1|) (-10 -8 (-15 -1746 ($)) (-15 -3862 ((-112) $)) (-15 -3498 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $))) |%noBranch|)))
+((-2884 (((-112) $ |#2|) 14)) (-2943 (((-872) $) 11)))
+(((-844 |#1| |#2|) (-10 -8 (-15 -2884 ((-112) |#1| |#2|)) (-15 -2943 ((-872) |#1|))) (-845 |#2|) (-1113)) (T -844))
+NIL
+(-10 -8 (-15 -2884 ((-112) |#1| |#2|)) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2032 ((|#1| $) 16)) (-2568 (((-1172) $) 10)) (-2884 (((-112) $ |#1|) 14)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3944 (((-55) $) 15)) (-2982 (((-112) $ $) 6)))
+(((-845 |#1|) (-141) (-1113)) (T -845))
+((-2032 (*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1113)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1113)) (-5 *2 (-55)))) (-2884 (*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))))
+(-13 (-1113) (-10 -8 (-15 -2032 (|t#1| $)) (-15 -3944 ((-55) $)) (-15 -2884 ((-112) $ |t#1|))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2209 ((|#1| $) NIL) (((-115) $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-4201 ((|#1| (-115) |#1|) NIL)) (-3965 (((-112) $) NIL)) (-3410 (($ |#1| (-370 (-115))) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2644 (($ $ (-1 |#1| |#1|)) NIL)) (-2848 (($ $ (-1 |#1| |#1|)) NIL)) (-2200 ((|#1| $ |#1|) NIL)) (-1843 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-4434 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-846 |#1|) (-13 (-1062) (-1051 |#1|) (-1051 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4434 ($ $)) (-15 -4434 ($ $ $)) (-15 -1843 (|#1| |#1|))) |%noBranch|) (-15 -2848 ($ $ (-1 |#1| |#1|))) (-15 -2644 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -4201 (|#1| (-115) |#1|)) (-15 -3410 ($ |#1| (-370 (-115)))))) (-1062)) (T -846))
+((-4434 (*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062)))) (-4434 (*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062)))) (-1843 (*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062)))) (-2848 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-846 *3)))) (-2644 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-846 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1062)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1062)))) (-4201 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1062)))) (-3410 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1062)))))
+(-13 (-1062) (-1051 |#1|) (-1051 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4434 ($ $)) (-15 -4434 ($ $ $)) (-15 -1843 (|#1| |#1|))) |%noBranch|) (-15 -2848 ($ $ (-1 |#1| |#1|))) (-15 -2644 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -4201 (|#1| (-115) |#1|)) (-15 -3410 ($ |#1| (-370 (-115))))))
+((-1605 (((-216 (-512)) (-1172)) 9)))
+(((-847) (-10 -7 (-15 -1605 ((-216 (-512)) (-1172))))) (T -847))
+((-1605 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-216 (-512))) (-5 *1 (-847)))))
+(-10 -7 (-15 -1605 ((-216 (-512)) (-1172))))
+((-2849 (((-112) $ $) NIL)) (-3140 (((-1131) $) 10)) (-2032 (((-516) $) 9)) (-2568 (((-1172) $) NIL)) (-2884 (((-112) $ (-516)) NIL)) (-3966 (((-1133) $) NIL)) (-2956 (($ (-516) (-1131)) 8)) (-2943 (((-872) $) 25)) (-2923 (((-112) $ $) NIL)) (-3944 (((-55) $) 20)) (-2982 (((-112) $ $) 12)))
+(((-848) (-13 (-845 (-516)) (-10 -8 (-15 -3140 ((-1131) $)) (-15 -2956 ($ (-516) (-1131)))))) (T -848))
+((-3140 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-848)))) (-2956 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1131)) (-5 *1 (-848)))))
+(-13 (-845 (-516)) (-10 -8 (-15 -3140 ((-1131) $)) (-15 -2956 ($ (-516) (-1131)))))
+((-2849 (((-112) $ $) 7)) (-1364 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 15) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 17) (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 16)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-849) (-141)) (T -849))
+((-3284 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)))))) (-3284 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)))))) (-1364 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *2 (-1048)))) (-1364 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-1048)))))
+(-13 (-1113) (-10 -7 (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -1364 ((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -1364 ((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2712 (((-1048) (-654 (-324 (-388))) (-654 (-388))) 166) (((-1048) (-324 (-388)) (-654 (-388))) 164) (((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388)))) 162) (((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388)))) 160) (((-1048) (-851)) 125) (((-1048) (-851) (-1076)) 124)) (-3284 (((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851) (-1076)) 85) (((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851)) 87)) (-3384 (((-1048) (-654 (-324 (-388))) (-654 (-388))) 167) (((-1048) (-851)) 150)))
+(((-850) (-10 -7 (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851) (-1076))) (-15 -2712 ((-1048) (-851) (-1076))) (-15 -2712 ((-1048) (-851))) (-15 -3384 ((-1048) (-851))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)))) (-15 -2712 ((-1048) (-654 (-324 (-388))) (-654 (-388)))) (-15 -3384 ((-1048) (-654 (-324 (-388))) (-654 (-388)))))) (T -850))
+((-3384 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-850)))) (-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1076)) (-5 *2 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-850)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-850)))))
+(-10 -7 (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851) (-1076))) (-15 -2712 ((-1048) (-851) (-1076))) (-15 -2712 ((-1048) (-851))) (-15 -3384 ((-1048) (-851))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)))) (-15 -2712 ((-1048) (-654 (-324 (-388))) (-654 (-388)))) (-15 -3384 ((-1048) (-654 (-324 (-388))) (-654 (-388)))))
+((-2849 (((-112) $ $) NIL)) (-2209 (((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) $) 21)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14) (($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) 18)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-851) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2943 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -2943 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))))) (-15 -2209 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) $))))) (T -851))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-851)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *1 (-851)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) (-5 *1 (-851)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) (-5 *1 (-851)))))
+(-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2943 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -2943 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))))) (-15 -2209 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) $))))
+((-1778 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)) 13) (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14)))
+(((-852 |#1| |#2|) (-10 -7 (-15 -1778 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1778 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) (-1113) (-1113)) (T -852))
+((-1778 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *1 (-852 *5 *6)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))))
+(-10 -7 (-15 -1778 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1778 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL (|has| |#1| (-21)))) (-1793 (((-1133) $) 31)) (-2950 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3747 (((-574) $) NIL (|has| |#1| (-858)))) (-3670 (($) NIL (|has| |#1| (-21)) CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 18)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 9)) (-1950 (((-3 $ "failed") $) 58 (|has| |#1| (-858)))) (-2057 (((-3 (-417 (-574)) "failed") $) 65 (|has| |#1| (-555)))) (-1811 (((-112) $) 60 (|has| |#1| (-555)))) (-4142 (((-417 (-574)) $) 63 (|has| |#1| (-555)))) (-3434 (((-112) $) NIL (|has| |#1| (-858)))) (-2306 (($) 14)) (-3965 (((-112) $) NIL (|has| |#1| (-858)))) (-3244 (((-112) $) NIL (|has| |#1| (-858)))) (-2317 (($) 16)) (-3658 (($ $ $) NIL (|has| |#1| (-858)))) (-2106 (($ $ $) NIL (|has| |#1| (-858)))) (-2568 (((-1172) $) NIL)) (-3498 (((-112) $) 12)) (-3966 (((-1133) $) NIL)) (-3862 (((-112) $) 11)) (-2943 (((-872) $) 24) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2818 (|has| |#1| (-858)) (|has| |#1| (-1051 (-574)))))) (-4160 (((-781)) 51 (|has| |#1| (-858)) CONST)) (-2923 (((-112) $ $) NIL)) (-2946 (($ $) NIL (|has| |#1| (-858)))) (-2134 (($) 37 (|has| |#1| (-21)) CONST)) (-2146 (($) 48 (|has| |#1| (-858)) CONST)) (-3041 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2982 (((-112) $ $) 35)) (-3028 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3005 (((-112) $ $) 59 (|has| |#1| (-858)))) (-3094 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3078 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-932)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 55 (|has| |#1| (-858))) (($ (-574) $) 42 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-932) $) NIL (|has| |#1| (-21)))))
+(((-853 |#1|) (-13 (-1113) (-421 |#1|) (-10 -8 (-15 -2306 ($)) (-15 -2317 ($)) (-15 -3862 ((-112) $)) (-15 -3498 ((-112) $)) (-15 -1793 ((-1133) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1113)) (T -853))
+((-2306 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1113)))) (-2317 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1113)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1113)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1113)))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-853 *3)) (-4 *3 (-1113)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) (-2057 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))))
+(-13 (-1113) (-421 |#1|) (-10 -8 (-15 -2306 ($)) (-15 -2317 ($)) (-15 -3862 ((-112) $)) (-15 -3498 ((-112) $)) (-15 -1793 ((-1133) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $))) |%noBranch|)))
+((-2849 (((-112) $ $) 7)) (-1487 (((-781)) 23)) (-2820 (($) 26)) (-3658 (($ $ $) 14) (($) 22 T CONST)) (-2106 (($ $ $) 15) (($) 21 T CONST)) (-2565 (((-932) $) 25)) (-2568 (((-1172) $) 10)) (-2576 (($ (-932)) 24)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)))
(((-854) (-141)) (T -854))
+((-3658 (*1 *1) (-4 *1 (-854))) (-2106 (*1 *1) (-4 *1 (-854))))
+(-13 (-860) (-377) (-10 -8 (-15 -3658 ($) -1707) (-15 -2106 ($) -1707)))
+(((-102) . T) ((-623 (-872)) . T) ((-377) . T) ((-860) . T) ((-1113) . T))
+((-2039 (((-112) (-1281 |#2|) (-1281 |#2|)) 19)) (-4298 (((-112) (-1281 |#2|) (-1281 |#2|)) 20)) (-3274 (((-112) (-1281 |#2|) (-1281 |#2|)) 16)))
+(((-855 |#1| |#2|) (-10 -7 (-15 -3274 ((-112) (-1281 |#2|) (-1281 |#2|))) (-15 -2039 ((-112) (-1281 |#2|) (-1281 |#2|))) (-15 -4298 ((-112) (-1281 |#2|) (-1281 |#2|)))) (-781) (-802)) (T -855))
+((-4298 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-2039 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))))
+(-10 -7 (-15 -3274 ((-112) (-1281 |#2|) (-1281 |#2|))) (-15 -2039 ((-112) (-1281 |#2|) (-1281 |#2|))) (-15 -4298 ((-112) (-1281 |#2|) (-1281 |#2|))))
+((-2849 (((-112) $ $) 7)) (-3670 (($) 24 T CONST)) (-1950 (((-3 $ "failed") $) 27)) (-3965 (((-112) $) 25)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2146 (($) 23 T CONST)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (** (($ $ (-932)) 22) (($ $ (-781)) 26)) (* (($ $ $) 21)))
+(((-856) (-141)) (T -856))
NIL
-(-13 (-865) (-734))
-(((-102) . T) ((-621 (-870)) . T) ((-734) . T) ((-865) . T) ((-858) . T) ((-1123) . T) ((-1111) . T))
-((-2840 (((-572) $) 21)) (-3074 (((-112) $) 10)) (-1623 (((-112) $) 12)) (-2700 (($ $) 23)))
-(((-855 |#1|) (-10 -8 (-15 -2700 (|#1| |#1|)) (-15 -2840 ((-572) |#1|)) (-15 -1623 ((-112) |#1|)) (-15 -3074 ((-112) |#1|))) (-856)) (T -855))
+(-13 (-867) (-736))
+(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-867) . T) ((-860) . T) ((-1125) . T) ((-1113) . T))
+((-3747 (((-574) $) 21)) (-3434 (((-112) $) 10)) (-3244 (((-112) $) 12)) (-2946 (($ $) 23)))
+(((-857 |#1|) (-10 -8 (-15 -2946 (|#1| |#1|)) (-15 -3747 ((-574) |#1|)) (-15 -3244 ((-112) |#1|)) (-15 -3434 ((-112) |#1|))) (-858)) (T -857))
NIL
-(-10 -8 (-15 -2700 (|#1| |#1|)) (-15 -2840 ((-572) |#1|)) (-15 -1623 ((-112) |#1|)) (-15 -3074 ((-112) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 25)) (-3330 (((-3 $ "failed") $ $) 27)) (-2840 (((-572) $) 37)) (-3281 (($) 24 T CONST)) (-2062 (((-3 $ "failed") $) 42)) (-3074 (((-112) $) 39)) (-1886 (((-112) $) 44)) (-1623 (((-112) $) 38)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 46)) (-4249 (((-779)) 47 T CONST)) (-4379 (((-112) $ $) 9)) (-2700 (($ $) 36)) (-2131 (($) 23 T CONST)) (-2143 (($) 45 T CONST)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)) (-3089 (($ $ $) 31) (($ $) 30)) (-3075 (($ $ $) 21)) (** (($ $ (-779)) 43) (($ $ (-930)) 40)) (* (($ (-930) $) 22) (($ (-779) $) 26) (($ (-572) $) 29) (($ $ $) 41)))
-(((-856) (-141)) (T -856))
-((-3074 (*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-572)))) (-2700 (*1 *1 *1) (-4 *1 (-856))))
-(-13 (-799) (-1060) (-734) (-10 -8 (-15 -3074 ((-112) $)) (-15 -1623 ((-112) $)) (-15 -2840 ((-572) $)) (-15 -2700 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-858) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-3654 (($ $ $) 12)) (-2427 (($ $ $) 11)) (-4379 (((-112) $ $) 9)) (-3039 (((-112) $ $) 15)) (-3014 (((-112) $ $) 13)) (-3026 (((-112) $ $) 16)))
-(((-857 |#1|) (-10 -8 (-15 -3654 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| |#1|)) (-15 -3026 ((-112) |#1| |#1|)) (-15 -3039 ((-112) |#1| |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -4379 ((-112) |#1| |#1|))) (-858)) (T -857))
-NIL
-(-10 -8 (-15 -3654 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| |#1|)) (-15 -3026 ((-112) |#1| |#1|)) (-15 -3039 ((-112) |#1| |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -4379 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)))
+(-10 -8 (-15 -2946 (|#1| |#1|)) (-15 -3747 ((-574) |#1|)) (-15 -3244 ((-112) |#1|)) (-15 -3434 ((-112) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 25)) (-2950 (((-3 $ "failed") $ $) 27)) (-3747 (((-574) $) 37)) (-3670 (($) 24 T CONST)) (-1950 (((-3 $ "failed") $) 42)) (-3434 (((-112) $) 39)) (-3965 (((-112) $) 44)) (-3244 (((-112) $) 38)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 46)) (-4160 (((-781)) 47 T CONST)) (-2923 (((-112) $ $) 9)) (-2946 (($ $) 36)) (-2134 (($) 23 T CONST)) (-2146 (($) 45 T CONST)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3094 (($ $ $) 31) (($ $) 30)) (-3078 (($ $ $) 21)) (** (($ $ (-781)) 43) (($ $ (-932)) 40)) (* (($ (-932) $) 22) (($ (-781) $) 26) (($ (-574) $) 29) (($ $ $) 41)))
(((-858) (-141)) (T -858))
-((-3003 (*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3014 (*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3039 (*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3026 (*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-2427 (*1 *1 *1 *1) (-4 *1 (-858))) (-3654 (*1 *1 *1 *1) (-4 *1 (-858))))
-(-13 (-1111) (-10 -8 (-15 -3003 ((-112) $ $)) (-15 -3014 ((-112) $ $)) (-15 -3039 ((-112) $ $)) (-15 -3026 ((-112) $ $)) (-15 -2427 ($ $ $)) (-15 -3654 ($ $ $))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-1490 (($ $ $) 49)) (-4029 (($ $ $) 48)) (-2495 (($ $ $) 46)) (-1715 (($ $ $) 55)) (-1865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 50)) (-2760 (((-3 $ "failed") $ $) 53)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1876 (($ $) 39)) (-2118 (($ $ $) 43)) (-4262 (($ $ $) 42)) (-3524 (($ $ $) 51)) (-3272 (($ $ $) 57)) (-4180 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 45)) (-3461 (((-3 $ "failed") $ $) 52)) (-2834 (((-3 $ "failed") $ |#2|) 32)) (-1711 ((|#2| $) 36)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ |#2|) 13)) (-4268 (((-652 |#2|) $) 21)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-859 |#1| |#2|) (-10 -8 (-15 -3524 (|#1| |#1| |#1|)) (-15 -1865 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2967 |#1|)) |#1| |#1|)) (-15 -1715 (|#1| |#1| |#1|)) (-15 -2760 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1490 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -2495 (|#1| |#1| |#1|)) (-15 -4180 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2967 |#1|)) |#1| |#1|)) (-15 -3272 (|#1| |#1| |#1|)) (-15 -3461 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2118 (|#1| |#1| |#1|)) (-15 -4262 (|#1| |#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4268 ((-652 |#2|) |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2940 (|#1| (-572))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -2940 ((-870) |#1|))) (-860 |#2|) (-1060)) (T -859))
-NIL
-(-10 -8 (-15 -3524 (|#1| |#1| |#1|)) (-15 -1865 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2967 |#1|)) |#1| |#1|)) (-15 -1715 (|#1| |#1| |#1|)) (-15 -2760 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1490 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -2495 (|#1| |#1| |#1|)) (-15 -4180 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2967 |#1|)) |#1| |#1|)) (-15 -3272 (|#1| |#1| |#1|)) (-15 -3461 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2118 (|#1| |#1| |#1|)) (-15 -4262 (|#1| |#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -2834 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4268 ((-652 |#2|) |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2940 (|#1| (-572))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1490 (($ $ $) 50 (|has| |#1| (-370)))) (-4029 (($ $ $) 51 (|has| |#1| (-370)))) (-2495 (($ $ $) 53 (|has| |#1| (-370)))) (-1715 (($ $ $) 48 (|has| |#1| (-370)))) (-1865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 47 (|has| |#1| (-370)))) (-2760 (((-3 $ "failed") $ $) 49 (|has| |#1| (-370)))) (-1556 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 52 (|has| |#1| (-370)))) (-1695 (((-3 (-572) "failed") $) 80 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 77 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 74)) (-2204 (((-572) $) 79 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 76 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 75)) (-1390 (($ $) 69)) (-2062 (((-3 $ "failed") $) 37)) (-1876 (($ $) 60 (|has| |#1| (-460)))) (-1886 (((-112) $) 35)) (-4333 (($ |#1| (-779)) 67)) (-1849 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 62 (|has| |#1| (-564)))) (-2035 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63 (|has| |#1| (-564)))) (-2649 (((-779) $) 71)) (-2118 (($ $ $) 57 (|has| |#1| (-370)))) (-4262 (($ $ $) 58 (|has| |#1| (-370)))) (-3524 (($ $ $) 46 (|has| |#1| (-370)))) (-3272 (($ $ $) 55 (|has| |#1| (-370)))) (-4180 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 54 (|has| |#1| (-370)))) (-3461 (((-3 $ "failed") $ $) 56 (|has| |#1| (-370)))) (-1376 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 59 (|has| |#1| (-370)))) (-1368 ((|#1| $) 70)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2834 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-564)))) (-4390 (((-779) $) 72)) (-1711 ((|#1| $) 61 (|has| |#1| (-460)))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 78 (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 73)) (-4268 (((-652 |#1|) $) 66)) (-3979 ((|#1| $ (-779)) 68)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2898 ((|#1| $ |#1| |#1|) 65)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-860 |#1|) (-141) (-1060)) (T -860))
-((-4390 (*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-1390 (*1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-3979 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-4333 (*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-652 *3)))) (-2898 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-2834 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))) (-2035 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-860 *3)))) (-1849 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-860 *3)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-460)))) (-1876 (*1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-460)))) (-1376 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-860 *3)))) (-4262 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-2118 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-3461 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-3272 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-4180 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2967 *1))) (-4 *1 (-860 *3)))) (-2495 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-1556 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-860 *3)))) (-4029 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-1490 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-2760 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-1715 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-1865 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2967 *1))) (-4 *1 (-860 *3)))) (-3524 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(-13 (-1060) (-111 |t#1| |t#1|) (-419 |t#1|) (-10 -8 (-15 -4390 ((-779) $)) (-15 -2649 ((-779) $)) (-15 -1368 (|t#1| $)) (-15 -1390 ($ $)) (-15 -3979 (|t#1| $ (-779))) (-15 -4333 ($ |t#1| (-779))) (-15 -4268 ((-652 |t#1|) $)) (-15 -2898 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-15 -2834 ((-3 $ "failed") $ |t#1|)) (-15 -2035 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -1849 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-460)) (PROGN (-15 -1711 (|t#1| $)) (-15 -1876 ($ $))) |%noBranch|) (IF (|has| |t#1| (-370)) (PROGN (-15 -1376 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -4262 ($ $ $)) (-15 -2118 ($ $ $)) (-15 -3461 ((-3 $ "failed") $ $)) (-15 -3272 ($ $ $)) (-15 -4180 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $)) (-15 -2495 ($ $ $)) (-15 -1556 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -4029 ($ $ $)) (-15 -1490 ($ $ $)) (-15 -2760 ((-3 $ "failed") $ $)) (-15 -1715 ($ $ $)) (-15 -1865 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $)) (-15 -3524 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 #0=(-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-419 |#1|) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-734) . T) ((-1049 #0#) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-3785 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-1556 (((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-370)))) (-1849 (((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-564)))) (-2035 (((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-564)))) (-1376 (((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-370)))) (-2898 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33)))
-(((-861 |#1| |#2|) (-10 -7 (-15 -3785 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2898 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-564)) (PROGN (-15 -2035 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1849 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -1376 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1556 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1060) (-860 |#1|)) (T -861))
-((-1556 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-861 *5 *3)) (-4 *3 (-860 *5)))) (-1376 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-861 *5 *3)) (-4 *3 (-860 *5)))) (-1849 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-564)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-861 *5 *3)) (-4 *3 (-860 *5)))) (-2035 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-564)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-861 *5 *3)) (-4 *3 (-860 *5)))) (-2898 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1060)) (-5 *1 (-861 *2 *3)) (-4 *3 (-860 *2)))) (-3785 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1060)) (-5 *1 (-861 *5 *2)) (-4 *2 (-860 *5)))))
-(-10 -7 (-15 -3785 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2898 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-564)) (PROGN (-15 -2035 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1849 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -1376 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1556 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1490 (($ $ $) NIL (|has| |#1| (-370)))) (-4029 (($ $ $) NIL (|has| |#1| (-370)))) (-2495 (($ $ $) NIL (|has| |#1| (-370)))) (-1715 (($ $ $) NIL (|has| |#1| (-370)))) (-1865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-1556 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 34 (|has| |#1| (-370)))) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-460)))) (-2532 (((-870) $ (-870)) NIL)) (-1886 (((-112) $) NIL)) (-4333 (($ |#1| (-779)) NIL)) (-1849 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 30 (|has| |#1| (-564)))) (-2035 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 28 (|has| |#1| (-564)))) (-2649 (((-779) $) NIL)) (-2118 (($ $ $) NIL (|has| |#1| (-370)))) (-4262 (($ $ $) NIL (|has| |#1| (-370)))) (-3524 (($ $ $) NIL (|has| |#1| (-370)))) (-3272 (($ $ $) NIL (|has| |#1| (-370)))) (-4180 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-3461 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-1376 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 32 (|has| |#1| (-370)))) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-4390 (((-779) $) NIL)) (-1711 ((|#1| $) NIL (|has| |#1| (-460)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) NIL)) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-779)) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2898 ((|#1| $ |#1| |#1|) 15)) (-2131 (($) NIL T CONST)) (-2143 (($) 23 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) 19) (($ $ (-779)) 24)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-862 |#1| |#2| |#3|) (-13 (-860 |#1|) (-10 -8 (-15 -2532 ((-870) $ (-870))))) (-1060) (-99 |#1|) (-1 |#1| |#1|)) (T -862))
-((-2532 (*1 *2 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-862 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-860 |#1|) (-10 -8 (-15 -2532 ((-870) $ (-870)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1490 (($ $ $) NIL (|has| |#2| (-370)))) (-4029 (($ $ $) NIL (|has| |#2| (-370)))) (-2495 (($ $ $) NIL (|has| |#2| (-370)))) (-1715 (($ $ $) NIL (|has| |#2| (-370)))) (-1865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#2| (-370)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#2| (-370)))) (-1556 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#2| (-370)))) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 |#2| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) ((|#2| $) NIL)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#2| (-460)))) (-1886 (((-112) $) NIL)) (-4333 (($ |#2| (-779)) 17)) (-1849 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#2| (-564)))) (-2035 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#2| (-564)))) (-2649 (((-779) $) NIL)) (-2118 (($ $ $) NIL (|has| |#2| (-370)))) (-4262 (($ $ $) NIL (|has| |#2| (-370)))) (-3524 (($ $ $) NIL (|has| |#2| (-370)))) (-3272 (($ $ $) NIL (|has| |#2| (-370)))) (-4180 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#2| (-370)))) (-3461 (((-3 $ "failed") $ $) NIL (|has| |#2| (-370)))) (-1376 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#2| (-370)))) (-1368 ((|#2| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2834 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564)))) (-4390 (((-779) $) NIL)) (-1711 ((|#2| $) NIL (|has| |#2| (-460)))) (-2940 (((-870) $) 24) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#2| (-1049 (-415 (-572))))) (($ |#2|) NIL) (($ (-1275 |#1|)) 19)) (-4268 (((-652 |#2|) $) NIL)) (-3979 ((|#2| $ (-779)) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2898 ((|#2| $ |#2| |#2|) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) 13 T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-863 |#1| |#2| |#3| |#4|) (-13 (-860 |#2|) (-624 (-1275 |#1|))) (-1188) (-1060) (-99 |#2|) (-1 |#2| |#2|)) (T -863))
-NIL
-(-13 (-860 |#2|) (-624 (-1275 |#1|)))
-((-2868 ((|#1| (-779) |#1|) 45 (|has| |#1| (-38 (-415 (-572)))))) (-2331 ((|#1| (-779) (-779) |#1|) 36) ((|#1| (-779) |#1|) 24)) (-2413 ((|#1| (-779) |#1|) 40)) (-3657 ((|#1| (-779) |#1|) 38)) (-2102 ((|#1| (-779) |#1|) 37)))
-(((-864 |#1|) (-10 -7 (-15 -2102 (|#1| (-779) |#1|)) (-15 -3657 (|#1| (-779) |#1|)) (-15 -2413 (|#1| (-779) |#1|)) (-15 -2331 (|#1| (-779) |#1|)) (-15 -2331 (|#1| (-779) (-779) |#1|)) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -2868 (|#1| (-779) |#1|)) |%noBranch|)) (-174)) (T -864))
-((-2868 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-174)))) (-2331 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))) (-2331 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))) (-2413 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))) (-3657 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))) (-2102 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))))
-(-10 -7 (-15 -2102 (|#1| (-779) |#1|)) (-15 -3657 (|#1| (-779) |#1|)) (-15 -2413 (|#1| (-779) |#1|)) (-15 -2331 (|#1| (-779) |#1|)) (-15 -2331 (|#1| (-779) (-779) |#1|)) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -2868 (|#1| (-779) |#1|)) |%noBranch|))
-((-2846 (((-112) $ $) 7)) (-3654 (($ $ $) 14)) (-2427 (($ $ $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-3039 (((-112) $ $) 17)) (-3014 (((-112) $ $) 18)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 16)) (-3003 (((-112) $ $) 19)) (** (($ $ (-930)) 22)) (* (($ $ $) 21)))
-(((-865) (-141)) (T -865))
-NIL
-(-13 (-858) (-1123))
-(((-102) . T) ((-621 (-870)) . T) ((-858) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-3080 (((-572) $) 14)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 20) (($ (-572)) 13)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 9)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 11)))
-(((-866) (-13 (-858) (-10 -8 (-15 -2940 ($ (-572))) (-15 -3080 ((-572) $))))) (T -866))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-866)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-866)))))
-(-13 (-858) (-10 -8 (-15 -2940 ($ (-572))) (-15 -3080 ((-572) $))))
-((-2972 (((-699 (-1237)) $ (-1237)) 15)) (-4103 (((-699 (-557)) $ (-557)) 12)) (-3012 (((-779) $ (-129)) 30)))
-(((-867 |#1|) (-10 -8 (-15 -3012 ((-779) |#1| (-129))) (-15 -2972 ((-699 (-1237)) |#1| (-1237))) (-15 -4103 ((-699 (-557)) |#1| (-557)))) (-868)) (T -867))
-NIL
-(-10 -8 (-15 -3012 ((-779) |#1| (-129))) (-15 -2972 ((-699 (-1237)) |#1| (-1237))) (-15 -4103 ((-699 (-557)) |#1| (-557))))
-((-2972 (((-699 (-1237)) $ (-1237)) 8)) (-4103 (((-699 (-557)) $ (-557)) 9)) (-3012 (((-779) $ (-129)) 7)) (-2931 (((-699 (-130)) $ (-130)) 10)) (-3682 (($ $) 6)))
-(((-868) (-141)) (T -868))
-((-2931 (*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *2 (-699 (-130))) (-5 *3 (-130)))) (-4103 (*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *2 (-699 (-557))) (-5 *3 (-557)))) (-2972 (*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *2 (-699 (-1237))) (-5 *3 (-1237)))) (-3012 (*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *3 (-129)) (-5 *2 (-779)))))
-(-13 (-175) (-10 -8 (-15 -2931 ((-699 (-130)) $ (-130))) (-15 -4103 ((-699 (-557)) $ (-557))) (-15 -2972 ((-699 (-1237)) $ (-1237))) (-15 -3012 ((-779) $ (-129)))))
+((-3434 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) (-2946 (*1 *1 *1) (-4 *1 (-858))))
+(-13 (-801) (-1062) (-736) (-10 -8 (-15 -3434 ((-112) $)) (-15 -3244 ((-112) $)) (-15 -3747 ((-574) $)) (-15 -2946 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-3658 (($ $ $) 12)) (-2106 (($ $ $) 11)) (-2923 (((-112) $ $) 9)) (-3041 (((-112) $ $) 15)) (-3016 (((-112) $ $) 13)) (-3028 (((-112) $ $) 16)))
+(((-859 |#1|) (-10 -8 (-15 -3658 (|#1| |#1| |#1|)) (-15 -2106 (|#1| |#1| |#1|)) (-15 -3028 ((-112) |#1| |#1|)) (-15 -3041 ((-112) |#1| |#1|)) (-15 -3016 ((-112) |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-860)) (T -859))
+NIL
+(-10 -8 (-15 -3658 (|#1| |#1| |#1|)) (-15 -2106 (|#1| |#1| |#1|)) (-15 -3028 ((-112) |#1| |#1|)) (-15 -3041 ((-112) |#1| |#1|)) (-15 -3016 ((-112) |#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)))
+(((-860) (-141)) (T -860))
+((-3005 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3016 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3041 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-2106 (*1 *1 *1 *1) (-4 *1 (-860))) (-3658 (*1 *1 *1 *1) (-4 *1 (-860))))
+(-13 (-1113) (-10 -8 (-15 -3005 ((-112) $ $)) (-15 -3016 ((-112) $ $)) (-15 -3041 ((-112) $ $)) (-15 -3028 ((-112) $ $)) (-15 -2106 ($ $ $)) (-15 -3658 ($ $ $))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-4379 (($ $ $) 49)) (-2551 (($ $ $) 48)) (-1521 (($ $ $) 46)) (-1636 (($ $ $) 55)) (-3769 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 50)) (-2293 (((-3 $ "failed") $ $) 53)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3872 (($ $) 39)) (-4362 (($ $ $) 43)) (-4255 (($ $ $) 42)) (-4394 (($ $ $) 51)) (-3590 (($ $ $) 57)) (-1553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 45)) (-1833 (((-3 $ "failed") $ $) 52)) (-2838 (((-3 $ "failed") $ |#2|) 32)) (-1607 ((|#2| $) 36)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#2|) 13)) (-3123 (((-654 |#2|) $) 21)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-861 |#1| |#2|) (-10 -8 (-15 -4394 (|#1| |#1| |#1|)) (-15 -3769 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -1636 (|#1| |#1| |#1|)) (-15 -2293 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|)) (-15 -2551 (|#1| |#1| |#1|)) (-15 -1521 (|#1| |#1| |#1|)) (-15 -1553 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -1833 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1|)) (-15 -4255 (|#1| |#1| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -1607 (|#2| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3123 ((-654 |#2|) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -2943 ((-872) |#1|))) (-862 |#2|) (-1062)) (T -861))
+NIL
+(-10 -8 (-15 -4394 (|#1| |#1| |#1|)) (-15 -3769 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -1636 (|#1| |#1| |#1|)) (-15 -2293 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|)) (-15 -2551 (|#1| |#1| |#1|)) (-15 -1521 (|#1| |#1| |#1|)) (-15 -1553 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -1833 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1|)) (-15 -4255 (|#1| |#1| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -1607 (|#2| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3123 ((-654 |#2|) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-4379 (($ $ $) 50 (|has| |#1| (-372)))) (-2551 (($ $ $) 51 (|has| |#1| (-372)))) (-1521 (($ $ $) 53 (|has| |#1| (-372)))) (-1636 (($ $ $) 48 (|has| |#1| (-372)))) (-3769 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 47 (|has| |#1| (-372)))) (-2293 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-3876 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 52 (|has| |#1| (-372)))) (-1697 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2209 (((-574) $) 79 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 75)) (-1392 (($ $) 69)) (-1950 (((-3 $ "failed") $) 37)) (-3872 (($ $) 60 (|has| |#1| (-462)))) (-3965 (((-112) $) 35)) (-4335 (($ |#1| (-781)) 67)) (-3626 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 62 (|has| |#1| (-566)))) (-1699 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63 (|has| |#1| (-566)))) (-2382 (((-781) $) 71)) (-4362 (($ $ $) 57 (|has| |#1| (-372)))) (-4255 (($ $ $) 58 (|has| |#1| (-372)))) (-4394 (($ $ $) 46 (|has| |#1| (-372)))) (-3590 (($ $ $) 55 (|has| |#1| (-372)))) (-1553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 54 (|has| |#1| (-372)))) (-1833 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-3333 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 59 (|has| |#1| (-372)))) (-1370 ((|#1| $) 70)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-1784 (((-781) $) 72)) (-1607 ((|#1| $) 61 (|has| |#1| (-462)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 73)) (-3123 (((-654 |#1|) $) 66)) (-3344 ((|#1| $ (-781)) 68)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2901 ((|#1| $ |#1| |#1|) 65)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-862 |#1|) (-141) (-1062)) (T -862))
+((-1784 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-3344 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-654 *3)))) (-2901 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))) (-1699 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-862 *3)))) (-3626 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-862 *3)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-462)))) (-3872 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-462)))) (-3333 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-862 *3)))) (-4255 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-4362 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-1833 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3590 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-1553 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1))) (-4 *1 (-862 *3)))) (-1521 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3876 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-862 *3)))) (-2551 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-4379 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-2293 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-1636 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3769 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1))) (-4 *1 (-862 *3)))) (-4394 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(-13 (-1062) (-111 |t#1| |t#1|) (-421 |t#1|) (-10 -8 (-15 -1784 ((-781) $)) (-15 -2382 ((-781) $)) (-15 -1370 (|t#1| $)) (-15 -1392 ($ $)) (-15 -3344 (|t#1| $ (-781))) (-15 -4335 ($ |t#1| (-781))) (-15 -3123 ((-654 |t#1|) $)) (-15 -2901 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -2838 ((-3 $ "failed") $ |t#1|)) (-15 -1699 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -3626 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -1607 (|t#1| $)) (-15 -3872 ($ $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -3333 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -4255 ($ $ $)) (-15 -4362 ($ $ $)) (-15 -1833 ((-3 $ "failed") $ $)) (-15 -3590 ($ $ $)) (-15 -1553 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $)) (-15 -1521 ($ $ $)) (-15 -3876 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -2551 ($ $ $)) (-15 -4379 ($ $ $)) (-15 -2293 ((-3 $ "failed") $ $)) (-15 -1636 ($ $ $)) (-15 -3769 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $)) (-15 -4394 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1051 #0#) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-3787 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3876 (((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-372)))) (-3626 (((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-566)))) (-1699 (((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-566)))) (-3333 (((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-372)))) (-2901 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33)))
+(((-863 |#1| |#2|) (-10 -7 (-15 -3787 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2901 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -1699 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3626 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -3333 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3876 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1062) (-862 |#1|)) (T -863))
+((-3876 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-3333 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-3626 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-1699 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2901 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1062)) (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2)))) (-3787 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1062)) (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5)))))
+(-10 -7 (-15 -3787 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2901 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -1699 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3626 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -3333 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3876 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-4379 (($ $ $) NIL (|has| |#1| (-372)))) (-2551 (($ $ $) NIL (|has| |#1| (-372)))) (-1521 (($ $ $) NIL (|has| |#1| (-372)))) (-1636 (($ $ $) NIL (|has| |#1| (-372)))) (-3769 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2293 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3876 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 34 (|has| |#1| (-372)))) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#1| (-462)))) (-3815 (((-872) $ (-872)) NIL)) (-3965 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL)) (-3626 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 30 (|has| |#1| (-566)))) (-1699 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 28 (|has| |#1| (-566)))) (-2382 (((-781) $) NIL)) (-4362 (($ $ $) NIL (|has| |#1| (-372)))) (-4255 (($ $ $) NIL (|has| |#1| (-372)))) (-4394 (($ $ $) NIL (|has| |#1| (-372)))) (-3590 (($ $ $) NIL (|has| |#1| (-372)))) (-1553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-1833 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3333 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 32 (|has| |#1| (-372)))) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-1784 (((-781) $) NIL)) (-1607 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) NIL)) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-781)) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2901 ((|#1| $ |#1| |#1|) 15)) (-2134 (($) NIL T CONST)) (-2146 (($) 23 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) 19) (($ $ (-781)) 24)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-864 |#1| |#2| |#3|) (-13 (-862 |#1|) (-10 -8 (-15 -3815 ((-872) $ (-872))))) (-1062) (-99 |#1|) (-1 |#1| |#1|)) (T -864))
+((-3815 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-862 |#1|) (-10 -8 (-15 -3815 ((-872) $ (-872)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-4379 (($ $ $) NIL (|has| |#2| (-372)))) (-2551 (($ $ $) NIL (|has| |#2| (-372)))) (-1521 (($ $ $) NIL (|has| |#2| (-372)))) (-1636 (($ $ $) NIL (|has| |#2| (-372)))) (-3769 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#2| (-372)))) (-2293 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-3876 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#2| (-372)))) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) ((|#2| $) NIL)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#2| (-462)))) (-3965 (((-112) $) NIL)) (-4335 (($ |#2| (-781)) 17)) (-3626 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#2| (-566)))) (-1699 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#2| (-566)))) (-2382 (((-781) $) NIL)) (-4362 (($ $ $) NIL (|has| |#2| (-372)))) (-4255 (($ $ $) NIL (|has| |#2| (-372)))) (-4394 (($ $ $) NIL (|has| |#2| (-372)))) (-3590 (($ $ $) NIL (|has| |#2| (-372)))) (-1553 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#2| (-372)))) (-1833 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-3333 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#2| (-372)))) (-1370 ((|#2| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-1784 (((-781) $) NIL)) (-1607 ((|#2| $) NIL (|has| |#2| (-462)))) (-2943 (((-872) $) 24) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1051 (-417 (-574))))) (($ |#2|) NIL) (($ (-1277 |#1|)) 19)) (-3123 (((-654 |#2|) $) NIL)) (-3344 ((|#2| $ (-781)) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2901 ((|#2| $ |#2| |#2|) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) 13 T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-865 |#1| |#2| |#3| |#4|) (-13 (-862 |#2|) (-626 (-1277 |#1|))) (-1190) (-1062) (-99 |#2|) (-1 |#2| |#2|)) (T -865))
+NIL
+(-13 (-862 |#2|) (-626 (-1277 |#1|)))
+((-3985 ((|#1| (-781) |#1|) 45 (|has| |#1| (-38 (-417 (-574)))))) (-2501 ((|#1| (-781) (-781) |#1|) 36) ((|#1| (-781) |#1|) 24)) (-2001 ((|#1| (-781) |#1|) 40)) (-3313 ((|#1| (-781) |#1|) 38)) (-4235 ((|#1| (-781) |#1|) 37)))
+(((-866 |#1|) (-10 -7 (-15 -4235 (|#1| (-781) |#1|)) (-15 -3313 (|#1| (-781) |#1|)) (-15 -2001 (|#1| (-781) |#1|)) (-15 -2501 (|#1| (-781) |#1|)) (-15 -2501 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3985 (|#1| (-781) |#1|)) |%noBranch|)) (-174)) (T -866))
+((-3985 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2501 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-2501 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-2001 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-3313 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-4235 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))))
+(-10 -7 (-15 -4235 (|#1| (-781) |#1|)) (-15 -3313 (|#1| (-781) |#1|)) (-15 -2001 (|#1| (-781) |#1|)) (-15 -2501 (|#1| (-781) |#1|)) (-15 -2501 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3985 (|#1| (-781) |#1|)) |%noBranch|))
+((-2849 (((-112) $ $) 7)) (-3658 (($ $ $) 14)) (-2106 (($ $ $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3041 (((-112) $ $) 17)) (-3016 (((-112) $ $) 18)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (** (($ $ (-932)) 22)) (* (($ $ $) 21)))
+(((-867) (-141)) (T -867))
+NIL
+(-13 (-860) (-1125))
+(((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-3083 (((-574) $) 14)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20) (($ (-574)) 13)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 9)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 11)))
+(((-868) (-13 (-860) (-10 -8 (-15 -2943 ($ (-574))) (-15 -3083 ((-574) $))))) (T -868))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868)))))
+(-13 (-860) (-10 -8 (-15 -2943 ($ (-574))) (-15 -3083 ((-574) $))))
+((-2444 (((-701 (-1239)) $ (-1239)) 15)) (-2046 (((-701 (-559)) $ (-559)) 12)) (-2841 (((-781) $ (-129)) 30)))
+(((-869 |#1|) (-10 -8 (-15 -2841 ((-781) |#1| (-129))) (-15 -2444 ((-701 (-1239)) |#1| (-1239))) (-15 -2046 ((-701 (-559)) |#1| (-559)))) (-870)) (T -869))
+NIL
+(-10 -8 (-15 -2841 ((-781) |#1| (-129))) (-15 -2444 ((-701 (-1239)) |#1| (-1239))) (-15 -2046 ((-701 (-559)) |#1| (-559))))
+((-2444 (((-701 (-1239)) $ (-1239)) 8)) (-2046 (((-701 (-559)) $ (-559)) 9)) (-2841 (((-781) $ (-129)) 7)) (-3368 (((-701 (-130)) $ (-130)) 10)) (-3568 (($ $) 6)))
+(((-870) (-141)) (T -870))
+((-3368 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130)))) (-2046 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559)))) (-2444 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1239))) (-5 *3 (-1239)))) (-2841 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781)))))
+(-13 (-175) (-10 -8 (-15 -3368 ((-701 (-130)) $ (-130))) (-15 -2046 ((-701 (-559)) $ (-559))) (-15 -2444 ((-701 (-1239)) $ (-1239))) (-15 -2841 ((-781) $ (-129)))))
(((-175) . T))
-((-2972 (((-699 (-1237)) $ (-1237)) NIL)) (-4103 (((-699 (-557)) $ (-557)) NIL)) (-3012 (((-779) $ (-129)) NIL)) (-2931 (((-699 (-130)) $ (-130)) 22)) (-4175 (($ (-396)) 12) (($ (-1170)) 14)) (-3567 (((-112) $) 19)) (-2940 (((-870) $) 26)) (-3682 (($ $) 23)))
-(((-869) (-13 (-868) (-621 (-870)) (-10 -8 (-15 -4175 ($ (-396))) (-15 -4175 ($ (-1170))) (-15 -3567 ((-112) $))))) (T -869))
-((-4175 (*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-869)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-869)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869)))))
-(-13 (-868) (-621 (-870)) (-10 -8 (-15 -4175 ($ (-396))) (-15 -4175 ($ (-1170))) (-15 -3567 ((-112) $))))
-((-2846 (((-112) $ $) NIL) (($ $ $) 85)) (-3121 (($ $ $) 125)) (-3011 (((-572) $) 31) (((-572)) 36)) (-1922 (($ (-572)) 53)) (-2306 (($ $ $) 54) (($ (-652 $)) 84)) (-1405 (($ $ (-652 $)) 82)) (-4079 (((-572) $) 34)) (-3648 (($ $ $) 73)) (-3557 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3835 (((-572) $) 33)) (-1453 (($ $ $) 72)) (-3246 (($ $) 114)) (-3236 (($ $ $) 129)) (-3528 (($ (-652 $)) 61)) (-4145 (($ $ (-652 $)) 79)) (-1372 (($ (-572) (-572)) 55)) (-4394 (($ $) 126) (($ $ $) 127)) (-3901 (($ $ (-572)) 43) (($ $) 46)) (-2780 (($ $ $) 97)) (-3976 (($ $ $) 132)) (-3914 (($ $) 115)) (-2792 (($ $ $) 98)) (-4371 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1791 (((-1284) $) 10)) (-2286 (($ $) 118) (($ $ (-779)) 122)) (-3124 (($ $ $) 75)) (-2567 (($ $ $) 74)) (-4213 (($ $ (-652 $)) 110)) (-2962 (($ $ $) 113)) (-3939 (($ (-652 $)) 59)) (-3033 (($ $) 70) (($ (-652 $)) 71)) (-2887 (($ $ $) 123)) (-4184 (($ $) 116)) (-1497 (($ $ $) 128)) (-2532 (($ (-572)) 21) (($ (-1188)) 23) (($ (-1170)) 30) (($ (-227)) 25)) (-2096 (($ $ $) 101)) (-2074 (($ $) 102)) (-1968 (((-1284) (-1170)) 15)) (-2167 (($ (-1170)) 14)) (-2911 (($ (-652 (-652 $))) 58)) (-3888 (($ $ (-572)) 42) (($ $) 45)) (-4347 (((-1170) $) NIL)) (-1897 (($ $ $) 131)) (-3088 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3797 (((-112) $) 108)) (-4238 (($ $ (-652 $)) 111) (($ $ $ $) 112)) (-2578 (($ (-572)) 39)) (-1839 (((-572) $) 32) (((-572)) 35)) (-1932 (($ $ $) 40) (($ (-652 $)) 83)) (-3964 (((-1131) $) NIL)) (-2834 (($ $ $) 99)) (-1613 (($) 13)) (-2196 (($ $ (-652 $)) 109)) (-2589 (((-1170) (-1170)) 8)) (-2264 (($ $) 117) (($ $ (-779)) 121)) (-2820 (($ $ $) 96)) (-3902 (($ $ (-779)) 139)) (-1832 (($ (-652 $)) 60)) (-2940 (((-870) $) 19)) (-3356 (($ $ (-572)) 41) (($ $) 44)) (-3660 (($ $) 68) (($ (-652 $)) 69)) (-4279 (($ $) 66) (($ (-652 $)) 67)) (-3952 (($ $) 124)) (-4344 (($ (-652 $)) 65)) (-3148 (($ $ $) 105)) (-4379 (((-112) $ $) NIL)) (-1345 (($ $ $) 130)) (-2085 (($ $ $) 100)) (-4275 (($ $ $) 103) (($ $) 104)) (-3039 (($ $ $) 89)) (-3014 (($ $ $) 87)) (-2978 (((-112) $ $) 16) (($ $ $) 17)) (-3026 (($ $ $) 88)) (-3003 (($ $ $) 86)) (-3106 (($ $ $) 94)) (-3089 (($ $ $) 91) (($ $) 92)) (-3075 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
-(((-870) (-13 (-1111) (-10 -8 (-15 -1791 ((-1284) $)) (-15 -2167 ($ (-1170))) (-15 -1968 ((-1284) (-1170))) (-15 -2532 ($ (-572))) (-15 -2532 ($ (-1188))) (-15 -2532 ($ (-1170))) (-15 -2532 ($ (-227))) (-15 -1613 ($)) (-15 -2589 ((-1170) (-1170))) (-15 -3011 ((-572) $)) (-15 -1839 ((-572) $)) (-15 -3011 ((-572))) (-15 -1839 ((-572))) (-15 -3835 ((-572) $)) (-15 -4079 ((-572) $)) (-15 -2578 ($ (-572))) (-15 -1922 ($ (-572))) (-15 -1372 ($ (-572) (-572))) (-15 -3888 ($ $ (-572))) (-15 -3901 ($ $ (-572))) (-15 -3356 ($ $ (-572))) (-15 -3888 ($ $)) (-15 -3901 ($ $)) (-15 -3356 ($ $)) (-15 -1932 ($ $ $)) (-15 -2306 ($ $ $)) (-15 -1932 ($ (-652 $))) (-15 -2306 ($ (-652 $))) (-15 -4213 ($ $ (-652 $))) (-15 -4238 ($ $ (-652 $))) (-15 -4238 ($ $ $ $)) (-15 -2962 ($ $ $)) (-15 -3797 ((-112) $)) (-15 -2196 ($ $ (-652 $))) (-15 -3246 ($ $)) (-15 -1897 ($ $ $)) (-15 -3952 ($ $)) (-15 -2911 ($ (-652 (-652 $)))) (-15 -3121 ($ $ $)) (-15 -4394 ($ $)) (-15 -4394 ($ $ $)) (-15 -1497 ($ $ $)) (-15 -3236 ($ $ $)) (-15 -1345 ($ $ $)) (-15 -3976 ($ $ $)) (-15 -3902 ($ $ (-779))) (-15 -3148 ($ $ $)) (-15 -1453 ($ $ $)) (-15 -3648 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -3124 ($ $ $)) (-15 -4145 ($ $ (-652 $))) (-15 -1405 ($ $ (-652 $))) (-15 -3914 ($ $)) (-15 -2264 ($ $)) (-15 -2264 ($ $ (-779))) (-15 -2286 ($ $)) (-15 -2286 ($ $ (-779))) (-15 -4184 ($ $)) (-15 -2887 ($ $ $)) (-15 -3557 ($ $)) (-15 -3557 ($ $ $)) (-15 -3557 ($ $ $ $)) (-15 -4371 ($ $)) (-15 -4371 ($ $ $)) (-15 -4371 ($ $ $ $)) (-15 -3088 ($ $)) (-15 -3088 ($ $ $)) (-15 -3088 ($ $ $ $)) (-15 -4279 ($ $)) (-15 -4279 ($ (-652 $))) (-15 -3660 ($ $)) (-15 -3660 ($ (-652 $))) (-15 -3033 ($ $)) (-15 -3033 ($ (-652 $))) (-15 -3939 ($ (-652 $))) (-15 -1832 ($ (-652 $))) (-15 -3528 ($ (-652 $))) (-15 -4344 ($ (-652 $))) (-15 -2978 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -3003 ($ $ $)) (-15 -3014 ($ $ $)) (-15 -3026 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $)) (-15 * ($ $ $)) (-15 -3106 ($ $ $)) (-15 ** ($ $ $)) (-15 -2820 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -2792 ($ $ $)) (-15 -2834 ($ $ $)) (-15 -2085 ($ $ $)) (-15 -2096 ($ $ $)) (-15 -2074 ($ $)) (-15 -4275 ($ $ $)) (-15 -4275 ($ $))))) (T -870))
-((-1791 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-870)))) (-2167 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-870)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-870)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-870)))) (-1613 (*1 *1) (-5 *1 (-870))) (-2589 (*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3011 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-1839 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-2578 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-1372 (*1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3888 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3901 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3356 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3888 (*1 *1 *1) (-5 *1 (-870))) (-3901 (*1 *1 *1) (-5 *1 (-870))) (-3356 (*1 *1 *1) (-5 *1 (-870))) (-1932 (*1 *1 *1 *1) (-5 *1 (-870))) (-2306 (*1 *1 *1 *1) (-5 *1 (-870))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-2306 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-4213 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-4238 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-4238 (*1 *1 *1 *1 *1) (-5 *1 (-870))) (-2962 (*1 *1 *1 *1) (-5 *1 (-870))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-870)))) (-2196 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3246 (*1 *1 *1) (-5 *1 (-870))) (-1897 (*1 *1 *1 *1) (-5 *1 (-870))) (-3952 (*1 *1 *1) (-5 *1 (-870))) (-2911 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-870)))) (-5 *1 (-870)))) (-3121 (*1 *1 *1 *1) (-5 *1 (-870))) (-4394 (*1 *1 *1) (-5 *1 (-870))) (-4394 (*1 *1 *1 *1) (-5 *1 (-870))) (-1497 (*1 *1 *1 *1) (-5 *1 (-870))) (-3236 (*1 *1 *1 *1) (-5 *1 (-870))) (-1345 (*1 *1 *1 *1) (-5 *1 (-870))) (-3976 (*1 *1 *1 *1) (-5 *1 (-870))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870)))) (-3148 (*1 *1 *1 *1) (-5 *1 (-870))) (-1453 (*1 *1 *1 *1) (-5 *1 (-870))) (-3648 (*1 *1 *1 *1) (-5 *1 (-870))) (-2567 (*1 *1 *1 *1) (-5 *1 (-870))) (-3124 (*1 *1 *1 *1) (-5 *1 (-870))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-1405 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3914 (*1 *1 *1) (-5 *1 (-870))) (-2264 (*1 *1 *1) (-5 *1 (-870))) (-2264 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870)))) (-2286 (*1 *1 *1) (-5 *1 (-870))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870)))) (-4184 (*1 *1 *1) (-5 *1 (-870))) (-2887 (*1 *1 *1 *1) (-5 *1 (-870))) (-3557 (*1 *1 *1) (-5 *1 (-870))) (-3557 (*1 *1 *1 *1) (-5 *1 (-870))) (-3557 (*1 *1 *1 *1 *1) (-5 *1 (-870))) (-4371 (*1 *1 *1) (-5 *1 (-870))) (-4371 (*1 *1 *1 *1) (-5 *1 (-870))) (-4371 (*1 *1 *1 *1 *1) (-5 *1 (-870))) (-3088 (*1 *1 *1) (-5 *1 (-870))) (-3088 (*1 *1 *1 *1) (-5 *1 (-870))) (-3088 (*1 *1 *1 *1 *1) (-5 *1 (-870))) (-4279 (*1 *1 *1) (-5 *1 (-870))) (-4279 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3660 (*1 *1 *1) (-5 *1 (-870))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3033 (*1 *1 *1) (-5 *1 (-870))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-4344 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-2978 (*1 *1 *1 *1) (-5 *1 (-870))) (-2846 (*1 *1 *1 *1) (-5 *1 (-870))) (-3003 (*1 *1 *1 *1) (-5 *1 (-870))) (-3014 (*1 *1 *1 *1) (-5 *1 (-870))) (-3026 (*1 *1 *1 *1) (-5 *1 (-870))) (-3039 (*1 *1 *1 *1) (-5 *1 (-870))) (-3075 (*1 *1 *1 *1) (-5 *1 (-870))) (-3089 (*1 *1 *1 *1) (-5 *1 (-870))) (-3089 (*1 *1 *1) (-5 *1 (-870))) (* (*1 *1 *1 *1) (-5 *1 (-870))) (-3106 (*1 *1 *1 *1) (-5 *1 (-870))) (** (*1 *1 *1 *1) (-5 *1 (-870))) (-2820 (*1 *1 *1 *1) (-5 *1 (-870))) (-2780 (*1 *1 *1 *1) (-5 *1 (-870))) (-2792 (*1 *1 *1 *1) (-5 *1 (-870))) (-2834 (*1 *1 *1 *1) (-5 *1 (-870))) (-2085 (*1 *1 *1 *1) (-5 *1 (-870))) (-2096 (*1 *1 *1 *1) (-5 *1 (-870))) (-2074 (*1 *1 *1) (-5 *1 (-870))) (-4275 (*1 *1 *1 *1) (-5 *1 (-870))) (-4275 (*1 *1 *1) (-5 *1 (-870))))
-(-13 (-1111) (-10 -8 (-15 -1791 ((-1284) $)) (-15 -2167 ($ (-1170))) (-15 -1968 ((-1284) (-1170))) (-15 -2532 ($ (-572))) (-15 -2532 ($ (-1188))) (-15 -2532 ($ (-1170))) (-15 -2532 ($ (-227))) (-15 -1613 ($)) (-15 -2589 ((-1170) (-1170))) (-15 -3011 ((-572) $)) (-15 -1839 ((-572) $)) (-15 -3011 ((-572))) (-15 -1839 ((-572))) (-15 -3835 ((-572) $)) (-15 -4079 ((-572) $)) (-15 -2578 ($ (-572))) (-15 -1922 ($ (-572))) (-15 -1372 ($ (-572) (-572))) (-15 -3888 ($ $ (-572))) (-15 -3901 ($ $ (-572))) (-15 -3356 ($ $ (-572))) (-15 -3888 ($ $)) (-15 -3901 ($ $)) (-15 -3356 ($ $)) (-15 -1932 ($ $ $)) (-15 -2306 ($ $ $)) (-15 -1932 ($ (-652 $))) (-15 -2306 ($ (-652 $))) (-15 -4213 ($ $ (-652 $))) (-15 -4238 ($ $ (-652 $))) (-15 -4238 ($ $ $ $)) (-15 -2962 ($ $ $)) (-15 -3797 ((-112) $)) (-15 -2196 ($ $ (-652 $))) (-15 -3246 ($ $)) (-15 -1897 ($ $ $)) (-15 -3952 ($ $)) (-15 -2911 ($ (-652 (-652 $)))) (-15 -3121 ($ $ $)) (-15 -4394 ($ $)) (-15 -4394 ($ $ $)) (-15 -1497 ($ $ $)) (-15 -3236 ($ $ $)) (-15 -1345 ($ $ $)) (-15 -3976 ($ $ $)) (-15 -3902 ($ $ (-779))) (-15 -3148 ($ $ $)) (-15 -1453 ($ $ $)) (-15 -3648 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -3124 ($ $ $)) (-15 -4145 ($ $ (-652 $))) (-15 -1405 ($ $ (-652 $))) (-15 -3914 ($ $)) (-15 -2264 ($ $)) (-15 -2264 ($ $ (-779))) (-15 -2286 ($ $)) (-15 -2286 ($ $ (-779))) (-15 -4184 ($ $)) (-15 -2887 ($ $ $)) (-15 -3557 ($ $)) (-15 -3557 ($ $ $)) (-15 -3557 ($ $ $ $)) (-15 -4371 ($ $)) (-15 -4371 ($ $ $)) (-15 -4371 ($ $ $ $)) (-15 -3088 ($ $)) (-15 -3088 ($ $ $)) (-15 -3088 ($ $ $ $)) (-15 -4279 ($ $)) (-15 -4279 ($ (-652 $))) (-15 -3660 ($ $)) (-15 -3660 ($ (-652 $))) (-15 -3033 ($ $)) (-15 -3033 ($ (-652 $))) (-15 -3939 ($ (-652 $))) (-15 -1832 ($ (-652 $))) (-15 -3528 ($ (-652 $))) (-15 -4344 ($ (-652 $))) (-15 -2978 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -3003 ($ $ $)) (-15 -3014 ($ $ $)) (-15 -3026 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $)) (-15 * ($ $ $)) (-15 -3106 ($ $ $)) (-15 ** ($ $ $)) (-15 -2820 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -2792 ($ $ $)) (-15 -2834 ($ $ $)) (-15 -2085 ($ $ $)) (-15 -2096 ($ $ $)) (-15 -2074 ($ $)) (-15 -4275 ($ $ $)) (-15 -4275 ($ $))))
-((-2364 (((-1284) (-652 (-52))) 23)) (-3245 (((-1284) (-1170) (-870)) 13) (((-1284) (-870)) 8) (((-1284) (-1170)) 10)))
-(((-871) (-10 -7 (-15 -3245 ((-1284) (-1170))) (-15 -3245 ((-1284) (-870))) (-15 -3245 ((-1284) (-1170) (-870))) (-15 -2364 ((-1284) (-652 (-52)))))) (T -871))
-((-2364 (*1 *2 *3) (-12 (-5 *3 (-652 (-52))) (-5 *2 (-1284)) (-5 *1 (-871)))) (-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-870)) (-5 *2 (-1284)) (-5 *1 (-871)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-871)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-871)))))
-(-10 -7 (-15 -3245 ((-1284) (-1170))) (-15 -3245 ((-1284) (-870))) (-15 -3245 ((-1284) (-1170) (-870))) (-15 -2364 ((-1284) (-652 (-52)))))
-((-2846 (((-112) $ $) NIL)) (-1487 (((-3 $ "failed") (-1188)) 36)) (-1486 (((-779)) 32)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) 29)) (-4347 (((-1170) $) 43)) (-2571 (($ (-930)) 28)) (-3964 (((-1131) $) NIL)) (-1835 (((-1188) $) 13) (((-544) $) 19) (((-901 (-386)) $) 26) (((-901 (-572)) $) 22)) (-2940 (((-870) $) 16)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 40)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 38)))
-(((-872 |#1|) (-13 (-852) (-622 (-1188)) (-622 (-544)) (-622 (-901 (-386))) (-622 (-901 (-572))) (-10 -8 (-15 -1487 ((-3 $ "failed") (-1188))))) (-652 (-1188))) (T -872))
-((-1487 (*1 *1 *2) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-872 *3)) (-14 *3 (-652 *2)))))
-(-13 (-852) (-622 (-1188)) (-622 (-544)) (-622 (-901 (-386))) (-622 (-901 (-572))) (-10 -8 (-15 -1487 ((-3 $ "failed") (-1188)))))
-((-2846 (((-112) $ $) NIL)) (-2030 (((-514) $) 9)) (-1344 (((-652 (-447)) $) 13)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 21)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 16)))
-(((-873) (-13 (-1111) (-10 -8 (-15 -2030 ((-514) $)) (-15 -1344 ((-652 (-447)) $))))) (T -873))
-((-2030 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-873)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-652 (-447))) (-5 *1 (-873)))))
-(-13 (-1111) (-10 -8 (-15 -2030 ((-514) $)) (-15 -1344 ((-652 (-447)) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-961 |#1|)) NIL) (((-961 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-4249 (((-779)) NIL T CONST)) (-2159 (((-1284) (-779)) NIL)) (-4379 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3106 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-874 |#1| |#2| |#3| |#4|) (-13 (-1060) (-498 (-961 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -3106 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2159 ((-1284) (-779))))) (-1060) (-652 (-1188)) (-652 (-779)) (-779)) (T -874))
-((-3106 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-874 *2 *3 *4 *5)) (-4 *2 (-370)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-779))) (-14 *5 (-779)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-874 *4 *5 *6 *7)) (-4 *4 (-1060)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 *3)) (-14 *7 *3))))
-(-13 (-1060) (-498 (-961 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -3106 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2159 ((-1284) (-779)))))
-((-3656 (((-3 (-176 |#3|) "failed") (-779) (-779) |#2| |#2|) 38)) (-2446 (((-3 (-415 |#3|) "failed") (-779) (-779) |#2| |#2|) 29)))
-(((-875 |#1| |#2| |#3|) (-10 -7 (-15 -2446 ((-3 (-415 |#3|) "failed") (-779) (-779) |#2| |#2|)) (-15 -3656 ((-3 (-176 |#3|) "failed") (-779) (-779) |#2| |#2|))) (-370) (-1270 |#1|) (-1255 |#1|)) (T -875))
-((-3656 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-779)) (-4 *5 (-370)) (-5 *2 (-176 *6)) (-5 *1 (-875 *5 *4 *6)) (-4 *4 (-1270 *5)) (-4 *6 (-1255 *5)))) (-2446 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-779)) (-4 *5 (-370)) (-5 *2 (-415 *6)) (-5 *1 (-875 *5 *4 *6)) (-4 *4 (-1270 *5)) (-4 *6 (-1255 *5)))))
-(-10 -7 (-15 -2446 ((-3 (-415 |#3|) "failed") (-779) (-779) |#2| |#2|)) (-15 -3656 ((-3 (-176 |#3|) "failed") (-779) (-779) |#2| |#2|)))
-((-2446 (((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|)) 30) (((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) 28)))
-(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -2446 ((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) (-15 -2446 ((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|)))) (-370) (-1188) |#1|) (T -876))
-((-2446 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-779)) (-5 *4 (-1271 *5 *6 *7)) (-4 *5 (-370)) (-14 *6 (-1188)) (-14 *7 *5) (-5 *2 (-415 (-1252 *6 *5))) (-5 *1 (-876 *5 *6 *7)))) (-2446 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-779)) (-5 *4 (-1271 *5 *6 *7)) (-4 *5 (-370)) (-14 *6 (-1188)) (-14 *7 *5) (-5 *2 (-415 (-1252 *6 *5))) (-5 *1 (-876 *5 *6 *7)))))
-(-10 -7 (-15 -2446 ((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) (-15 -2446 ((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-4227 (($ $ (-572)) 68)) (-4217 (((-112) $ $) 65)) (-3281 (($) 18 T CONST)) (-4394 (($ (-1184 (-572)) (-572)) 67)) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-1850 (($ $) 70)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-2956 (((-779) $) 75)) (-1886 (((-112) $) 35)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-1929 (((-572)) 72)) (-3637 (((-572) $) 71)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2772 (($ $ (-572)) 74)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-2189 (((-1168 (-572)) $) 76)) (-2590 (($ $) 73)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-3548 (((-572) $ (-572)) 69)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-877 |#1|) (-141) (-572)) (T -877))
-((-2189 (*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-1168 (-572))))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-779)))) (-2772 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-2590 (*1 *1 *1) (-4 *1 (-877 *2))) (-1929 (*1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-1850 (*1 *1 *1) (-4 *1 (-877 *2))) (-3548 (*1 *2 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-4227 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-4394 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *3 (-572)) (-4 *1 (-877 *4)))))
-(-13 (-313) (-148) (-10 -8 (-15 -2189 ((-1168 (-572)) $)) (-15 -2956 ((-779) $)) (-15 -2772 ($ $ (-572))) (-15 -2590 ($ $)) (-15 -1929 ((-572))) (-15 -3637 ((-572) $)) (-15 -1850 ($ $)) (-15 -3548 ((-572) $ (-572))) (-15 -4227 ($ $ (-572))) (-15 -4394 ($ (-1184 (-572)) (-572)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-313) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-4227 (($ $ (-572)) NIL)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-4394 (($ (-1184 (-572)) (-572)) NIL)) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1850 (($ $) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-2956 (((-779) $) NIL)) (-1886 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1929 (((-572)) NIL)) (-3637 (((-572) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2772 (($ $ (-572)) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2189 (((-1168 (-572)) $) NIL)) (-2590 (($ $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-3548 (((-572) $ (-572)) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL)))
-(((-878 |#1|) (-877 |#1|) (-572)) (T -878))
-NIL
-(-877 |#1|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 (((-878 |#1|) $) NIL (|has| (-878 |#1|) (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-878 |#1|) (-918)))) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-878 |#1|) (-918)))) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL (|has| (-878 |#1|) (-828)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-878 |#1|) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-878 |#1|) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-878 |#1|) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-878 |#1|) (-1049 (-572))))) (-2204 (((-878 |#1|) $) NIL) (((-1188) $) NIL (|has| (-878 |#1|) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-878 |#1|) (-1049 (-572)))) (((-572) $) NIL (|has| (-878 |#1|) (-1049 (-572))))) (-3560 (($ $) NIL) (($ (-572) $) NIL)) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| (-878 |#1|) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-878 |#1|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-878 |#1|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-878 |#1|))) (|:| |vec| (-1279 (-878 |#1|)))) (-697 $) (-1279 $)) NIL) (((-697 (-878 |#1|)) (-697 $)) NIL) (((-697 (-878 |#1|)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-878 |#1|) (-553)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3074 (((-112) $) NIL (|has| (-878 |#1|) (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-878 |#1|) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-878 |#1|) (-895 (-386))))) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL)) (-2963 (((-878 |#1|) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| (-878 |#1|) (-1163)))) (-1623 (((-112) $) NIL (|has| (-878 |#1|) (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL (|has| (-878 |#1|) (-858)))) (-2427 (($ $ $) NIL (|has| (-878 |#1|) (-858)))) (-1776 (($ (-1 (-878 |#1|) (-878 |#1|)) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-878 |#1|) (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL (|has| (-878 |#1|) (-313)))) (-3462 (((-878 |#1|) $) NIL (|has| (-878 |#1|) (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-878 |#1|) (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-878 |#1|) (-918)))) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2641 (($ $ (-652 (-878 |#1|)) (-652 (-878 |#1|))) NIL (|has| (-878 |#1|) (-315 (-878 |#1|)))) (($ $ (-878 |#1|) (-878 |#1|)) NIL (|has| (-878 |#1|) (-315 (-878 |#1|)))) (($ $ (-300 (-878 |#1|))) NIL (|has| (-878 |#1|) (-315 (-878 |#1|)))) (($ $ (-652 (-300 (-878 |#1|)))) NIL (|has| (-878 |#1|) (-315 (-878 |#1|)))) (($ $ (-652 (-1188)) (-652 (-878 |#1|))) NIL (|has| (-878 |#1|) (-522 (-1188) (-878 |#1|)))) (($ $ (-1188) (-878 |#1|)) NIL (|has| (-878 |#1|) (-522 (-1188) (-878 |#1|))))) (-3847 (((-779) $) NIL)) (-2196 (($ $ (-878 |#1|)) NIL (|has| (-878 |#1|) (-292 (-878 |#1|) (-878 |#1|))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) NIL (|has| (-878 |#1|) (-237))) (($ $ (-779)) NIL (|has| (-878 |#1|) (-237))) (($ $ (-1188)) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-1 (-878 |#1|) (-878 |#1|)) (-779)) NIL) (($ $ (-1 (-878 |#1|) (-878 |#1|))) NIL)) (-1520 (($ $) NIL)) (-2974 (((-878 |#1|) $) NIL)) (-1835 (((-901 (-572)) $) NIL (|has| (-878 |#1|) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-878 |#1|) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-878 |#1|) (-622 (-544)))) (((-386) $) NIL (|has| (-878 |#1|) (-1033))) (((-227) $) NIL (|has| (-878 |#1|) (-1033)))) (-3147 (((-176 (-415 (-572))) $) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-878 |#1|) (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-878 |#1|)) NIL) (($ (-1188)) NIL (|has| (-878 |#1|) (-1049 (-1188))))) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| (-878 |#1|) (-918))) (|has| (-878 |#1|) (-146))))) (-4249 (((-779)) NIL T CONST)) (-3614 (((-878 |#1|) $) NIL (|has| (-878 |#1|) (-553)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-3548 (((-415 (-572)) $ (-572)) NIL)) (-2700 (($ $) NIL (|has| (-878 |#1|) (-828)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $) NIL (|has| (-878 |#1|) (-237))) (($ $ (-779)) NIL (|has| (-878 |#1|) (-237))) (($ $ (-1188)) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-1 (-878 |#1|) (-878 |#1|)) (-779)) NIL) (($ $ (-1 (-878 |#1|) (-878 |#1|))) NIL)) (-3039 (((-112) $ $) NIL (|has| (-878 |#1|) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-878 |#1|) (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| (-878 |#1|) (-858)))) (-3003 (((-112) $ $) NIL (|has| (-878 |#1|) (-858)))) (-3106 (($ $ $) NIL) (($ (-878 |#1|) (-878 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-878 |#1|) $) NIL) (($ $ (-878 |#1|)) NIL)))
-(((-879 |#1|) (-13 (-1003 (-878 |#1|)) (-10 -8 (-15 -3548 ((-415 (-572)) $ (-572))) (-15 -3147 ((-176 (-415 (-572))) $)) (-15 -3560 ($ $)) (-15 -3560 ($ (-572) $)))) (-572)) (T -879))
-((-3548 (*1 *2 *1 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-879 *4)) (-14 *4 *3) (-5 *3 (-572)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-879 *3)) (-14 *3 (-572)))) (-3560 (*1 *1 *1) (-12 (-5 *1 (-879 *2)) (-14 *2 (-572)))) (-3560 (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-879 *3)) (-14 *3 *2))))
-(-13 (-1003 (-878 |#1|)) (-10 -8 (-15 -3548 ((-415 (-572)) $ (-572))) (-15 -3147 ((-176 (-415 (-572))) $)) (-15 -3560 ($ $)) (-15 -3560 ($ (-572) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 ((|#2| $) NIL (|has| |#2| (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL (|has| |#2| (-828)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| |#2| (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572))))) (-2204 ((|#2| $) NIL) (((-1188) $) NIL (|has| |#2| (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-572)))) (((-572) $) NIL (|has| |#2| (-1049 (-572))))) (-3560 (($ $) 35) (($ (-572) $) 38)) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) 64)) (-2815 (($) NIL (|has| |#2| (-553)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3074 (((-112) $) NIL (|has| |#2| (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| |#2| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| |#2| (-895 (-386))))) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL)) (-2963 ((|#2| $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| |#2| (-1163)))) (-1623 (((-112) $) NIL (|has| |#2| (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL (|has| |#2| (-858)))) (-2427 (($ $ $) NIL (|has| |#2| (-858)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 60)) (-3815 (($) NIL (|has| |#2| (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL (|has| |#2| (-313)))) (-3462 ((|#2| $) NIL (|has| |#2| (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2641 (($ $ (-652 |#2|) (-652 |#2|)) NIL (|has| |#2| (-315 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-315 |#2|))) (($ $ (-300 |#2|)) NIL (|has| |#2| (-315 |#2|))) (($ $ (-652 (-300 |#2|))) NIL (|has| |#2| (-315 |#2|))) (($ $ (-652 (-1188)) (-652 |#2|)) NIL (|has| |#2| (-522 (-1188) |#2|))) (($ $ (-1188) |#2|) NIL (|has| |#2| (-522 (-1188) |#2|)))) (-3847 (((-779) $) NIL)) (-2196 (($ $ |#2|) NIL (|has| |#2| (-292 |#2| |#2|)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-237))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1520 (($ $) NIL)) (-2974 ((|#2| $) NIL)) (-1835 (((-901 (-572)) $) NIL (|has| |#2| (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| |#2| (-622 (-901 (-386))))) (((-544) $) NIL (|has| |#2| (-622 (-544)))) (((-386) $) NIL (|has| |#2| (-1033))) (((-227) $) NIL (|has| |#2| (-1033)))) (-3147 (((-176 (-415 (-572))) $) 78)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-2940 (((-870) $) 106) (($ (-572)) 20) (($ $) NIL) (($ (-415 (-572))) 25) (($ |#2|) 19) (($ (-1188)) NIL (|has| |#2| (-1049 (-1188))))) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-4249 (((-779)) NIL T CONST)) (-3614 ((|#2| $) NIL (|has| |#2| (-553)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-3548 (((-415 (-572)) $ (-572)) 71)) (-2700 (($ $) NIL (|has| |#2| (-828)))) (-2131 (($) 15 T CONST)) (-2143 (($) 17 T CONST)) (-3608 (($ $) NIL (|has| |#2| (-237))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3039 (((-112) $ $) NIL (|has| |#2| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#2| (-858)))) (-2978 (((-112) $ $) 46)) (-3026 (((-112) $ $) NIL (|has| |#2| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#2| (-858)))) (-3106 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3089 (($ $) 50) (($ $ $) 52)) (-3075 (($ $ $) 48)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 61)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 53) (($ $ $) 55) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
-(((-880 |#1| |#2|) (-13 (-1003 |#2|) (-10 -8 (-15 -3548 ((-415 (-572)) $ (-572))) (-15 -3147 ((-176 (-415 (-572))) $)) (-15 -3560 ($ $)) (-15 -3560 ($ (-572) $)))) (-572) (-877 |#1|)) (T -880))
-((-3548 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-415 (-572))) (-5 *1 (-880 *4 *5)) (-5 *3 (-572)) (-4 *5 (-877 *4)))) (-3147 (*1 *2 *1) (-12 (-14 *3 (-572)) (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-880 *3 *4)) (-4 *4 (-877 *3)))) (-3560 (*1 *1 *1) (-12 (-14 *2 (-572)) (-5 *1 (-880 *2 *3)) (-4 *3 (-877 *2)))) (-3560 (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-14 *3 *2) (-5 *1 (-880 *3 *4)) (-4 *4 (-877 *3)))))
-(-13 (-1003 |#2|) (-10 -8 (-15 -3548 ((-415 (-572)) $ (-572))) (-15 -3147 ((-176 (-415 (-572))) $)) (-15 -3560 ($ $)) (-15 -3560 ($ (-572) $))))
-((-2846 (((-112) $ $) NIL (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))) (-2388 ((|#2| $) 12)) (-2604 (($ |#1| |#2|) 9)) (-4347 (((-1170) $) NIL (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))) (-3964 (((-1131) $) NIL (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))) (-2912 ((|#1| $) 11)) (-2953 (($ |#1| |#2|) 10)) (-2940 (((-870) $) 18 (-2813 (-12 (|has| |#1| (-621 (-870))) (|has| |#2| (-621 (-870)))) (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111)))))) (-4379 (((-112) $ $) NIL (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))) (-2978 (((-112) $ $) 23 (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))))
-(((-881 |#1| |#2|) (-13 (-1229) (-10 -8 (IF (|has| |#1| (-621 (-870))) (IF (|has| |#2| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1111)) (IF (|has| |#2| (-1111)) (-6 (-1111)) |%noBranch|) |%noBranch|) (-15 -2604 ($ |#1| |#2|)) (-15 -2953 ($ |#1| |#2|)) (-15 -2912 (|#1| $)) (-15 -2388 (|#2| $)))) (-1229) (-1229)) (T -881))
-((-2604 (*1 *1 *2 *3) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1229)) (-4 *3 (-1229)))) (-2953 (*1 *1 *2 *3) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1229)) (-4 *3 (-1229)))) (-2912 (*1 *2 *1) (-12 (-4 *2 (-1229)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1229)))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-1229)) (-5 *1 (-881 *3 *2)) (-4 *3 (-1229)))))
-(-13 (-1229) (-10 -8 (IF (|has| |#1| (-621 (-870))) (IF (|has| |#2| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1111)) (IF (|has| |#2| (-1111)) (-6 (-1111)) |%noBranch|) |%noBranch|) (-15 -2604 ($ |#1| |#2|)) (-15 -2953 ($ |#1| |#2|)) (-15 -2912 (|#1| $)) (-15 -2388 (|#2| $))))
-((-2846 (((-112) $ $) NIL)) (-4192 (((-572) $) 16)) (-3300 (($ (-158)) 13)) (-3777 (($ (-158)) 14)) (-4347 (((-1170) $) NIL)) (-2399 (((-158) $) 15)) (-3964 (((-1131) $) NIL)) (-4127 (($ (-158)) 11)) (-1918 (($ (-158)) 10)) (-2940 (((-870) $) 24) (($ (-158)) 17)) (-2615 (($ (-158)) 12)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-882) (-13 (-1111) (-10 -8 (-15 -1918 ($ (-158))) (-15 -4127 ($ (-158))) (-15 -2615 ($ (-158))) (-15 -3300 ($ (-158))) (-15 -3777 ($ (-158))) (-15 -2399 ((-158) $)) (-15 -4192 ((-572) $)) (-15 -2940 ($ (-158)))))) (T -882))
-((-1918 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-3300 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-3777 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-882)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
-(-13 (-1111) (-10 -8 (-15 -1918 ($ (-158))) (-15 -4127 ($ (-158))) (-15 -2615 ($ (-158))) (-15 -3300 ($ (-158))) (-15 -3777 ($ (-158))) (-15 -2399 ((-158) $)) (-15 -4192 ((-572) $)) (-15 -2940 ($ (-158)))))
-((-2940 (((-322 (-572)) (-415 (-961 (-48)))) 23) (((-322 (-572)) (-961 (-48))) 18)))
-(((-883) (-10 -7 (-15 -2940 ((-322 (-572)) (-961 (-48)))) (-15 -2940 ((-322 (-572)) (-415 (-961 (-48))))))) (T -883))
-((-2940 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 (-48)))) (-5 *2 (-322 (-572))) (-5 *1 (-883)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-961 (-48))) (-5 *2 (-322 (-572))) (-5 *1 (-883)))))
-(-10 -7 (-15 -2940 ((-322 (-572)) (-961 (-48)))) (-15 -2940 ((-322 (-572)) (-415 (-961 (-48))))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 18) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2120 (((-112) $ (|[\|\|]| (-514))) 9) (((-112) $ (|[\|\|]| (-1170))) 13)) (-4379 (((-112) $ $) NIL)) (-1330 (((-514) $) 10) (((-1170) $) 14)) (-2978 (((-112) $ $) 15)))
-(((-884) (-13 (-1094) (-1274) (-10 -8 (-15 -2120 ((-112) $ (|[\|\|]| (-514)))) (-15 -1330 ((-514) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1170)))) (-15 -1330 ((-1170) $))))) (T -884))
-((-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)) (-5 *1 (-884)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-884)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-884)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-884)))))
-(-13 (-1094) (-1274) (-10 -8 (-15 -2120 ((-112) $ (|[\|\|]| (-514)))) (-15 -1330 ((-514) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1170)))) (-15 -1330 ((-1170) $))))
-((-1776 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 15)))
-(((-885 |#1| |#2|) (-10 -7 (-15 -1776 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-1229) (-1229)) (T -885))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6)))))
-(-10 -7 (-15 -1776 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|))))
-((-1320 (($ |#1| |#1|) 8)) (-3392 ((|#1| $ (-779)) 15)))
-(((-886 |#1|) (-10 -8 (-15 -1320 ($ |#1| |#1|)) (-15 -3392 (|#1| $ (-779)))) (-1229)) (T -886))
-((-3392 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-886 *2)) (-4 *2 (-1229)))) (-1320 (*1 *1 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1229)))))
-(-10 -8 (-15 -1320 ($ |#1| |#1|)) (-15 -3392 (|#1| $ (-779))))
-((-1776 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -1776 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1229) (-1229)) (T -887))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
-(-10 -7 (-15 -1776 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
-((-1320 (($ |#1| |#1| |#1|) 8)) (-3392 ((|#1| $ (-779)) 15)))
-(((-888 |#1|) (-10 -8 (-15 -1320 ($ |#1| |#1| |#1|)) (-15 -3392 (|#1| $ (-779)))) (-1229)) (T -888))
-((-3392 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-888 *2)) (-4 *2 (-1229)))) (-1320 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1229)))))
-(-10 -8 (-15 -1320 ($ |#1| |#1| |#1|)) (-15 -3392 (|#1| $ (-779))))
-((-4199 (((-652 (-1193)) (-1170)) 9)))
-(((-889) (-10 -7 (-15 -4199 ((-652 (-1193)) (-1170))))) (T -889))
-((-4199 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-1193))) (-5 *1 (-889)))))
-(-10 -7 (-15 -4199 ((-652 (-1193)) (-1170))))
-((-1776 (((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)) 15)))
-(((-890 |#1| |#2|) (-10 -7 (-15 -1776 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) (-1229) (-1229)) (T -890))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6)))))
-(-10 -7 (-15 -1776 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|))))
-((-2109 (($ |#1| |#1| |#1|) 8)) (-3392 ((|#1| $ (-779)) 15)))
-(((-891 |#1|) (-10 -8 (-15 -2109 ($ |#1| |#1| |#1|)) (-15 -3392 (|#1| $ (-779)))) (-1229)) (T -891))
-((-3392 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-891 *2)) (-4 *2 (-1229)))) (-2109 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1229)))))
-(-10 -8 (-15 -2109 ($ |#1| |#1| |#1|)) (-15 -3392 (|#1| $ (-779))))
-((-3515 (((-1168 (-652 (-572))) (-652 (-572)) (-1168 (-652 (-572)))) 41)) (-3638 (((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572))) 31)) (-2055 (((-1168 (-652 (-572))) (-652 (-572))) 53) (((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572))) 50)) (-3622 (((-1168 (-652 (-572))) (-572)) 55)) (-3706 (((-1168 (-652 (-930))) (-1168 (-652 (-930)))) 22)) (-1516 (((-652 (-930)) (-652 (-930))) 18)))
-(((-892) (-10 -7 (-15 -1516 ((-652 (-930)) (-652 (-930)))) (-15 -3706 ((-1168 (-652 (-930))) (-1168 (-652 (-930))))) (-15 -3638 ((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572)))) (-15 -3515 ((-1168 (-652 (-572))) (-652 (-572)) (-1168 (-652 (-572))))) (-15 -2055 ((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572)))) (-15 -2055 ((-1168 (-652 (-572))) (-652 (-572)))) (-15 -3622 ((-1168 (-652 (-572))) (-572))))) (T -892))
-((-3622 (*1 *2 *3) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-572)))) (-2055 (*1 *2 *3) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-652 (-572))))) (-2055 (*1 *2 *3 *3) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-652 (-572))))) (-3515 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *3 (-652 (-572))) (-5 *1 (-892)))) (-3638 (*1 *2 *3 *3) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-652 (-572))))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-1168 (-652 (-930)))) (-5 *1 (-892)))) (-1516 (*1 *2 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-892)))))
-(-10 -7 (-15 -1516 ((-652 (-930)) (-652 (-930)))) (-15 -3706 ((-1168 (-652 (-930))) (-1168 (-652 (-930))))) (-15 -3638 ((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572)))) (-15 -3515 ((-1168 (-652 (-572))) (-652 (-572)) (-1168 (-652 (-572))))) (-15 -2055 ((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572)))) (-15 -2055 ((-1168 (-652 (-572))) (-652 (-572)))) (-15 -3622 ((-1168 (-652 (-572))) (-572))))
-((-1835 (((-901 (-386)) $) 9 (|has| |#1| (-622 (-901 (-386))))) (((-901 (-572)) $) 8 (|has| |#1| (-622 (-901 (-572)))))))
-(((-893 |#1|) (-141) (-1229)) (T -893))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-622 (-901 (-572)))) (-6 (-622 (-901 (-572)))) |%noBranch|) (IF (|has| |t#1| (-622 (-901 (-386)))) (-6 (-622 (-901 (-386)))) |%noBranch|)))
-(((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))))
-((-2846 (((-112) $ $) NIL)) (-3787 (($) 14)) (-2934 (($ (-898 |#1| |#2|) (-898 |#1| |#3|)) 28)) (-3650 (((-898 |#1| |#3|) $) 16)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3631 (((-112) $) 22)) (-3597 (($) 19)) (-2940 (((-870) $) 31)) (-4379 (((-112) $ $) NIL)) (-2307 (((-898 |#1| |#2|) $) 15)) (-2978 (((-112) $ $) 26)))
-(((-894 |#1| |#2| |#3|) (-13 (-1111) (-10 -8 (-15 -3631 ((-112) $)) (-15 -3597 ($)) (-15 -3787 ($)) (-15 -2934 ($ (-898 |#1| |#2|) (-898 |#1| |#3|))) (-15 -2307 ((-898 |#1| |#2|) $)) (-15 -3650 ((-898 |#1| |#3|) $)))) (-1111) (-1111) (-674 |#2|)) (T -894))
-((-3631 (*1 *2 *1) (-12 (-4 *4 (-1111)) (-5 *2 (-112)) (-5 *1 (-894 *3 *4 *5)) (-4 *3 (-1111)) (-4 *5 (-674 *4)))) (-3597 (*1 *1) (-12 (-4 *3 (-1111)) (-5 *1 (-894 *2 *3 *4)) (-4 *2 (-1111)) (-4 *4 (-674 *3)))) (-3787 (*1 *1) (-12 (-4 *3 (-1111)) (-5 *1 (-894 *2 *3 *4)) (-4 *2 (-1111)) (-4 *4 (-674 *3)))) (-2934 (*1 *1 *2 *3) (-12 (-5 *2 (-898 *4 *5)) (-5 *3 (-898 *4 *6)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-674 *5)) (-5 *1 (-894 *4 *5 *6)))) (-2307 (*1 *2 *1) (-12 (-4 *4 (-1111)) (-5 *2 (-898 *3 *4)) (-5 *1 (-894 *3 *4 *5)) (-4 *3 (-1111)) (-4 *5 (-674 *4)))) (-3650 (*1 *2 *1) (-12 (-4 *4 (-1111)) (-5 *2 (-898 *3 *5)) (-5 *1 (-894 *3 *4 *5)) (-4 *3 (-1111)) (-4 *5 (-674 *4)))))
-(-13 (-1111) (-10 -8 (-15 -3631 ((-112) $)) (-15 -3597 ($)) (-15 -3787 ($)) (-15 -2934 ($ (-898 |#1| |#2|) (-898 |#1| |#3|))) (-15 -2307 ((-898 |#1| |#2|) $)) (-15 -3650 ((-898 |#1| |#3|) $))))
-((-2846 (((-112) $ $) 7)) (-1594 (((-898 |#1| $) $ (-901 |#1|) (-898 |#1| $)) 14)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-895 |#1|) (-141) (-1111)) (T -895))
-((-1594 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-898 *4 *1)) (-5 *3 (-901 *4)) (-4 *1 (-895 *4)) (-4 *4 (-1111)))))
-(-13 (-1111) (-10 -8 (-15 -1594 ((-898 |t#1| $) $ (-901 |t#1|) (-898 |t#1| $)))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2695 (((-112) (-652 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-4028 (((-898 |#1| |#2|) |#2| |#3|) 45 (-12 (-2074 (|has| |#2| (-1049 (-1188)))) (-2074 (|has| |#2| (-1060))))) (((-652 (-300 (-961 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1060)) (-2074 (|has| |#2| (-1049 (-1188)))))) (((-652 (-300 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1049 (-1188)))) (((-894 |#1| |#2| (-652 |#2|)) (-652 |#2|) |#3|) 21)))
-(((-896 |#1| |#2| |#3|) (-10 -7 (-15 -2695 ((-112) |#2| |#3|)) (-15 -2695 ((-112) (-652 |#2|) |#3|)) (-15 -4028 ((-894 |#1| |#2| (-652 |#2|)) (-652 |#2|) |#3|)) (IF (|has| |#2| (-1049 (-1188))) (-15 -4028 ((-652 (-300 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1060)) (-15 -4028 ((-652 (-300 (-961 |#2|))) |#2| |#3|)) (-15 -4028 ((-898 |#1| |#2|) |#2| |#3|))))) (-1111) (-895 |#1|) (-622 (-901 |#1|))) (T -896))
-((-4028 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-5 *2 (-898 *5 *3)) (-5 *1 (-896 *5 *3 *4)) (-2074 (-4 *3 (-1049 (-1188)))) (-2074 (-4 *3 (-1060))) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))) (-4028 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-5 *2 (-652 (-300 (-961 *3)))) (-5 *1 (-896 *5 *3 *4)) (-4 *3 (-1060)) (-2074 (-4 *3 (-1049 (-1188)))) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))) (-4028 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-5 *2 (-652 (-300 *3))) (-5 *1 (-896 *5 *3 *4)) (-4 *3 (-1049 (-1188))) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))) (-4028 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *6 (-895 *5)) (-5 *2 (-894 *5 *6 (-652 *6))) (-5 *1 (-896 *5 *6 *4)) (-5 *3 (-652 *6)) (-4 *4 (-622 (-901 *5))))) (-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-4 *6 (-895 *5)) (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6 *4)) (-4 *4 (-622 (-901 *5))))) (-2695 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-896 *5 *3 *4)) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))))
-(-10 -7 (-15 -2695 ((-112) |#2| |#3|)) (-15 -2695 ((-112) (-652 |#2|) |#3|)) (-15 -4028 ((-894 |#1| |#2| (-652 |#2|)) (-652 |#2|) |#3|)) (IF (|has| |#2| (-1049 (-1188))) (-15 -4028 ((-652 (-300 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1060)) (-15 -4028 ((-652 (-300 (-961 |#2|))) |#2| |#3|)) (-15 -4028 ((-898 |#1| |#2|) |#2| |#3|)))))
-((-1776 (((-898 |#1| |#3|) (-1 |#3| |#2|) (-898 |#1| |#2|)) 22)))
-(((-897 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-898 |#1| |#3|) (-1 |#3| |#2|) (-898 |#1| |#2|)))) (-1111) (-1111) (-1111)) (T -897))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-898 *5 *6)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-898 *5 *7)) (-5 *1 (-897 *5 *6 *7)))))
-(-10 -7 (-15 -1776 ((-898 |#1| |#3|) (-1 |#3| |#2|) (-898 |#1| |#2|))))
-((-2846 (((-112) $ $) NIL)) (-4357 (($ $ $) 40)) (-1397 (((-3 (-112) "failed") $ (-901 |#1|)) 37)) (-3787 (($) 12)) (-4347 (((-1170) $) NIL)) (-1988 (($ (-901 |#1|) |#2| $) 20)) (-3964 (((-1131) $) NIL)) (-2548 (((-3 |#2| "failed") (-901 |#1|) $) 51)) (-3631 (((-112) $) 15)) (-3597 (($) 13)) (-4291 (((-652 (-2 (|:| -3690 (-1188)) (|:| -1907 |#2|))) $) 25)) (-2953 (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 |#2|)))) 23)) (-2940 (((-870) $) 45)) (-4379 (((-112) $ $) NIL)) (-3058 (($ (-901 |#1|) |#2| $ |#2|) 49)) (-3912 (($ (-901 |#1|) |#2| $) 48)) (-2978 (((-112) $ $) 42)))
-(((-898 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -3631 ((-112) $)) (-15 -3597 ($)) (-15 -3787 ($)) (-15 -4357 ($ $ $)) (-15 -2548 ((-3 |#2| "failed") (-901 |#1|) $)) (-15 -3912 ($ (-901 |#1|) |#2| $)) (-15 -1988 ($ (-901 |#1|) |#2| $)) (-15 -3058 ($ (-901 |#1|) |#2| $ |#2|)) (-15 -4291 ((-652 (-2 (|:| -3690 (-1188)) (|:| -1907 |#2|))) $)) (-15 -2953 ($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 |#2|))))) (-15 -1397 ((-3 (-112) "failed") $ (-901 |#1|))))) (-1111) (-1111)) (T -898))
-((-3631 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-3597 (*1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-3787 (*1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-4357 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-2548 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-4 *2 (-1111)) (-5 *1 (-898 *4 *2)))) (-3912 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1111)))) (-1988 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1111)))) (-3058 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1111)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 *4)))) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 *4)))) (-4 *4 (-1111)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111)))) (-1397 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-112)) (-5 *1 (-898 *4 *5)) (-4 *5 (-1111)))))
-(-13 (-1111) (-10 -8 (-15 -3631 ((-112) $)) (-15 -3597 ($)) (-15 -3787 ($)) (-15 -4357 ($ $ $)) (-15 -2548 ((-3 |#2| "failed") (-901 |#1|) $)) (-15 -3912 ($ (-901 |#1|) |#2| $)) (-15 -1988 ($ (-901 |#1|) |#2| $)) (-15 -3058 ($ (-901 |#1|) |#2| $ |#2|)) (-15 -4291 ((-652 (-2 (|:| -3690 (-1188)) (|:| -1907 |#2|))) $)) (-15 -2953 ($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 |#2|))))) (-15 -1397 ((-3 (-112) "failed") $ (-901 |#1|)))))
-((-2566 (((-901 |#1|) (-901 |#1|) (-652 (-1188)) (-1 (-112) (-652 |#2|))) 32) (((-901 |#1|) (-901 |#1|) (-652 (-1 (-112) |#2|))) 46) (((-901 |#1|) (-901 |#1|) (-1 (-112) |#2|)) 35)) (-1397 (((-112) (-652 |#2|) (-901 |#1|)) 42) (((-112) |#2| (-901 |#1|)) 36)) (-2510 (((-1 (-112) |#2|) (-901 |#1|)) 16)) (-2064 (((-652 |#2|) (-901 |#1|)) 24)) (-3942 (((-901 |#1|) (-901 |#1|) |#2|) 20)))
-(((-899 |#1| |#2|) (-10 -7 (-15 -2566 ((-901 |#1|) (-901 |#1|) (-1 (-112) |#2|))) (-15 -2566 ((-901 |#1|) (-901 |#1|) (-652 (-1 (-112) |#2|)))) (-15 -2566 ((-901 |#1|) (-901 |#1|) (-652 (-1188)) (-1 (-112) (-652 |#2|)))) (-15 -2510 ((-1 (-112) |#2|) (-901 |#1|))) (-15 -1397 ((-112) |#2| (-901 |#1|))) (-15 -1397 ((-112) (-652 |#2|) (-901 |#1|))) (-15 -3942 ((-901 |#1|) (-901 |#1|) |#2|)) (-15 -2064 ((-652 |#2|) (-901 |#1|)))) (-1111) (-1229)) (T -899))
-((-2064 (*1 *2 *3) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-652 *5)) (-5 *1 (-899 *4 *5)) (-4 *5 (-1229)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1229)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *2 (-112)) (-5 *1 (-899 *5 *6)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-899 *5 *3)) (-4 *3 (-1229)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-899 *4 *5)) (-4 *5 (-1229)))) (-2566 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-901 *5)) (-5 *3 (-652 (-1188))) (-5 *4 (-1 (-112) (-652 *6))) (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *1 (-899 *5 *6)))) (-2566 (*1 *2 *2 *3) (-12 (-5 *2 (-901 *4)) (-5 *3 (-652 (-1 (-112) *5))) (-4 *4 (-1111)) (-4 *5 (-1229)) (-5 *1 (-899 *4 *5)))) (-2566 (*1 *2 *2 *3) (-12 (-5 *2 (-901 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1111)) (-4 *5 (-1229)) (-5 *1 (-899 *4 *5)))))
-(-10 -7 (-15 -2566 ((-901 |#1|) (-901 |#1|) (-1 (-112) |#2|))) (-15 -2566 ((-901 |#1|) (-901 |#1|) (-652 (-1 (-112) |#2|)))) (-15 -2566 ((-901 |#1|) (-901 |#1|) (-652 (-1188)) (-1 (-112) (-652 |#2|)))) (-15 -2510 ((-1 (-112) |#2|) (-901 |#1|))) (-15 -1397 ((-112) |#2| (-901 |#1|))) (-15 -1397 ((-112) (-652 |#2|) (-901 |#1|))) (-15 -3942 ((-901 |#1|) (-901 |#1|) |#2|)) (-15 -2064 ((-652 |#2|) (-901 |#1|))))
-((-1776 (((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)) 19)))
-(((-900 |#1| |#2|) (-10 -7 (-15 -1776 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) (-1111) (-1111)) (T -900))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))))
-(-10 -7 (-15 -1776 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|))))
-((-2846 (((-112) $ $) NIL)) (-3414 (($ $ (-652 (-52))) 74)) (-4353 (((-652 $) $) 139)) (-4269 (((-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52))) $) 30)) (-1475 (((-112) $) 35)) (-3941 (($ $ (-652 (-1188)) (-52)) 31)) (-1860 (($ $ (-652 (-52))) 73)) (-1695 (((-3 |#1| "failed") $) 71) (((-3 (-1188) "failed") $) 164)) (-2204 ((|#1| $) 68) (((-1188) $) NIL)) (-4202 (($ $) 126)) (-2877 (((-112) $) 55)) (-2483 (((-652 (-52)) $) 50)) (-3645 (($ (-1188) (-112) (-112) (-112)) 75)) (-3599 (((-3 (-652 $) "failed") (-652 $)) 82)) (-3841 (((-112) $) 58)) (-2593 (((-112) $) 57)) (-4347 (((-1170) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) 41)) (-1780 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4153 (((-3 (-2 (|:| |val| $) (|:| -1679 $)) "failed") $) 97)) (-3665 (((-3 (-652 $) "failed") $) 40)) (-1713 (((-3 (-652 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4294 (-115)) (|:| |arg| (-652 $))) "failed") $) 107)) (-2328 (((-3 (-652 $) "failed") $) 42)) (-1920 (((-3 (-2 (|:| |val| $) (|:| -1679 (-779))) "failed") $) 45)) (-3855 (((-112) $) 34)) (-3964 (((-1131) $) NIL)) (-3439 (((-112) $) 28)) (-1792 (((-112) $) 52)) (-3647 (((-652 (-52)) $) 130)) (-4425 (((-112) $) 56)) (-2196 (($ (-115) (-652 $)) 104)) (-4301 (((-779) $) 33)) (-3164 (($ $) 72)) (-1835 (($ (-652 $)) 69)) (-3702 (((-112) $) 32)) (-2940 (((-870) $) 63) (($ |#1|) 23) (($ (-1188)) 76)) (-4379 (((-112) $ $) NIL)) (-3942 (($ $ (-52)) 129)) (-2131 (($) 103 T CONST)) (-2143 (($) 83 T CONST)) (-2978 (((-112) $ $) 93)) (-3106 (($ $ $) 117)) (-3075 (($ $ $) 121)) (** (($ $ (-779)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
-(((-901 |#1|) (-13 (-1111) (-1049 |#1|) (-1049 (-1188)) (-10 -8 (-15 0 ($) -1705) (-15 1 ($) -1705) (-15 -3665 ((-3 (-652 $) "failed") $)) (-15 -4011 ((-3 (-652 $) "failed") $)) (-15 -1713 ((-3 (-652 $) "failed") $ (-115))) (-15 -1713 ((-3 (-2 (|:| -4294 (-115)) (|:| |arg| (-652 $))) "failed") $)) (-15 -1920 ((-3 (-2 (|:| |val| $) (|:| -1679 (-779))) "failed") $)) (-15 -1780 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2328 ((-3 (-652 $) "failed") $)) (-15 -4153 ((-3 (-2 (|:| |val| $) (|:| -1679 $)) "failed") $)) (-15 -2196 ($ (-115) (-652 $))) (-15 -3075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779))) (-15 ** ($ $ $)) (-15 -3106 ($ $ $)) (-15 -4301 ((-779) $)) (-15 -1835 ($ (-652 $))) (-15 -3164 ($ $)) (-15 -3855 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -1475 ((-112) $)) (-15 -3702 ((-112) $)) (-15 -4425 ((-112) $)) (-15 -2593 ((-112) $)) (-15 -3841 ((-112) $)) (-15 -1792 ((-112) $)) (-15 -2483 ((-652 (-52)) $)) (-15 -1860 ($ $ (-652 (-52)))) (-15 -3414 ($ $ (-652 (-52)))) (-15 -3645 ($ (-1188) (-112) (-112) (-112))) (-15 -3941 ($ $ (-652 (-1188)) (-52))) (-15 -4269 ((-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52))) $)) (-15 -3439 ((-112) $)) (-15 -4202 ($ $)) (-15 -3942 ($ $ (-52))) (-15 -3647 ((-652 (-52)) $)) (-15 -4353 ((-652 $) $)) (-15 -3599 ((-3 (-652 $) "failed") (-652 $))))) (-1111)) (T -901))
-((-2131 (*1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-2143 (*1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-3665 (*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-4011 (*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1713 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-652 (-901 *4))) (-5 *1 (-901 *4)) (-4 *4 (-1111)))) (-1713 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4294 (-115)) (|:| |arg| (-652 (-901 *3))))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1920 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-901 *3)) (|:| -1679 (-779)))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1780 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-901 *3)) (|:| |den| (-901 *3)))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2328 (*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-4153 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-901 *3)) (|:| -1679 (-901 *3)))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2196 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 (-901 *4))) (-5 *1 (-901 *4)) (-4 *4 (-1111)))) (-3075 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-3106 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3164 (*1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-4425 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1792 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1860 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3645 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-112)) (-5 *1 (-901 *4)) (-4 *4 (-1111)))) (-3941 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-52)) (-5 *1 (-901 *4)) (-4 *4 (-1111)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52)))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-4202 (*1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3599 (*1 *2 *2) (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(-13 (-1111) (-1049 |#1|) (-1049 (-1188)) (-10 -8 (-15 (-2131) ($) -1705) (-15 (-2143) ($) -1705) (-15 -3665 ((-3 (-652 $) "failed") $)) (-15 -4011 ((-3 (-652 $) "failed") $)) (-15 -1713 ((-3 (-652 $) "failed") $ (-115))) (-15 -1713 ((-3 (-2 (|:| -4294 (-115)) (|:| |arg| (-652 $))) "failed") $)) (-15 -1920 ((-3 (-2 (|:| |val| $) (|:| -1679 (-779))) "failed") $)) (-15 -1780 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2328 ((-3 (-652 $) "failed") $)) (-15 -4153 ((-3 (-2 (|:| |val| $) (|:| -1679 $)) "failed") $)) (-15 -2196 ($ (-115) (-652 $))) (-15 -3075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779))) (-15 ** ($ $ $)) (-15 -3106 ($ $ $)) (-15 -4301 ((-779) $)) (-15 -1835 ($ (-652 $))) (-15 -3164 ($ $)) (-15 -3855 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -1475 ((-112) $)) (-15 -3702 ((-112) $)) (-15 -4425 ((-112) $)) (-15 -2593 ((-112) $)) (-15 -3841 ((-112) $)) (-15 -1792 ((-112) $)) (-15 -2483 ((-652 (-52)) $)) (-15 -1860 ($ $ (-652 (-52)))) (-15 -3414 ($ $ (-652 (-52)))) (-15 -3645 ($ (-1188) (-112) (-112) (-112))) (-15 -3941 ($ $ (-652 (-1188)) (-52))) (-15 -4269 ((-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52))) $)) (-15 -3439 ((-112) $)) (-15 -4202 ($ $)) (-15 -3942 ($ $ (-52))) (-15 -3647 ((-652 (-52)) $)) (-15 -4353 ((-652 $) $)) (-15 -3599 ((-3 (-652 $) "failed") (-652 $)))))
-((-2846 (((-112) $ $) NIL)) (-1653 (((-652 |#1|) $) 19)) (-2100 (((-112) $) 49)) (-1695 (((-3 (-680 |#1|) "failed") $) 56)) (-2204 (((-680 |#1|) $) 54)) (-2923 (($ $) 23)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4133 (((-779) $) 61)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 (((-680 |#1|) $) 21)) (-2940 (((-870) $) 47) (($ (-680 |#1|)) 26) (((-827 |#1|) $) 36) (($ |#1|) 25)) (-4379 (((-112) $ $) NIL)) (-2143 (($) 9 T CONST)) (-1933 (((-652 (-680 |#1|)) $) 28)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 12)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 67)))
-(((-902 |#1|) (-13 (-858) (-1049 (-680 |#1|)) (-10 -8 (-15 1 ($) -1705) (-15 -2940 ((-827 |#1|) $)) (-15 -2940 ($ |#1|)) (-15 -2912 ((-680 |#1|) $)) (-15 -4133 ((-779) $)) (-15 -1933 ((-652 (-680 |#1|)) $)) (-15 -2923 ($ $)) (-15 -2100 ((-112) $)) (-15 -1653 ((-652 |#1|) $)))) (-858)) (T -902))
-((-2143 (*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-2940 (*1 *1 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-680 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-652 (-680 *3))) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858)))))
-(-13 (-858) (-1049 (-680 |#1|)) (-10 -8 (-15 (-2143) ($) -1705) (-15 -2940 ((-827 |#1|) $)) (-15 -2940 ($ |#1|)) (-15 -2912 ((-680 |#1|) $)) (-15 -4133 ((-779) $)) (-15 -1933 ((-652 (-680 |#1|)) $)) (-15 -2923 ($ $)) (-15 -2100 ((-112) $)) (-15 -1653 ((-652 |#1|) $))))
-((-3851 ((|#1| |#1| |#1|) 19)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -3851 (|#1| |#1| |#1|))) (-1255 |#2|) (-1060)) (T -903))
-((-3851 (*1 *2 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-903 *2 *3)) (-4 *2 (-1255 *3)))))
-(-10 -7 (-15 -3851 (|#1| |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-3972 (((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2050 (((-1046) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 14)) (-2978 (((-112) $ $) 6)))
-(((-904) (-141)) (T -904))
-((-3972 (*1 *2 *3 *4) (-12 (-4 *1 (-904)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170)))))) (-2050 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *3 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *2 (-1046)))))
-(-13 (-1111) (-10 -7 (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))) (-15 -2050 ((-1046) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-3961 ((|#1| |#1| (-779)) 27)) (-1993 (((-3 |#1| "failed") |#1| |#1|) 24)) (-4189 (((-3 (-2 (|:| -3888 |#1|) (|:| -3901 |#1|)) "failed") |#1| (-779) (-779)) 30) (((-652 |#1|) |#1|) 38)))
-(((-905 |#1| |#2|) (-10 -7 (-15 -4189 ((-652 |#1|) |#1|)) (-15 -4189 ((-3 (-2 (|:| -3888 |#1|) (|:| -3901 |#1|)) "failed") |#1| (-779) (-779))) (-15 -1993 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3961 (|#1| |#1| (-779)))) (-1255 |#2|) (-370)) (T -905))
-((-3961 (*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-370)) (-5 *1 (-905 *2 *4)) (-4 *2 (-1255 *4)))) (-1993 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-370)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1255 *3)))) (-4189 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-779)) (-4 *5 (-370)) (-5 *2 (-2 (|:| -3888 *3) (|:| -3901 *3))) (-5 *1 (-905 *3 *5)) (-4 *3 (-1255 *5)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -4189 ((-652 |#1|) |#1|)) (-15 -4189 ((-3 (-2 (|:| -3888 |#1|) (|:| -3901 |#1|)) "failed") |#1| (-779) (-779))) (-15 -1993 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3961 (|#1| |#1| (-779))))
-((-1724 (((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170)) 104) (((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170) (-227)) 100) (((-1046) (-907) (-1074)) 92) (((-1046) (-907)) 93)) (-3972 (((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907) (-1074)) 62) (((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907)) 64)))
-(((-906) (-10 -7 (-15 -1724 ((-1046) (-907))) (-15 -1724 ((-1046) (-907) (-1074))) (-15 -1724 ((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170) (-227))) (-15 -1724 ((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907) (-1074))))) (T -906))
-((-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-907)) (-5 *4 (-1074)) (-5 *2 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-906)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-907)) (-5 *2 (-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-906)))) (-1724 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-779)) (-5 *6 (-652 (-652 (-322 *3)))) (-5 *7 (-1170)) (-5 *5 (-652 (-322 (-386)))) (-5 *3 (-386)) (-5 *2 (-1046)) (-5 *1 (-906)))) (-1724 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-779)) (-5 *6 (-652 (-652 (-322 *3)))) (-5 *7 (-1170)) (-5 *8 (-227)) (-5 *5 (-652 (-322 (-386)))) (-5 *3 (-386)) (-5 *2 (-1046)) (-5 *1 (-906)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-907)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-906)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-907)) (-5 *2 (-1046)) (-5 *1 (-906)))))
-(-10 -7 (-15 -1724 ((-1046) (-907))) (-15 -1724 ((-1046) (-907) (-1074))) (-15 -1724 ((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170) (-227))) (-15 -1724 ((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907))) (-15 -3972 ((-2 (|:| -3972 (-386)) (|:| -2030 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907) (-1074))))
-((-2846 (((-112) $ $) NIL)) (-2204 (((-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))) $) 19)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 21) (($ (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 18)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-907) (-13 (-1111) (-10 -8 (-15 -2940 ($ (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))) (-15 -2204 ((-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))) $))))) (T -907))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *1 (-907)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *1 (-907)))))
-(-13 (-1111) (-10 -8 (-15 -2940 ($ (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))) (-15 -2204 ((-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))) $))))
-((-3902 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) 10) (($ $ |#2| (-779)) 12) (($ $ (-652 |#2|) (-652 (-779))) 15)) (-3608 (($ $ |#2|) 16) (($ $ (-652 |#2|)) 18) (($ $ |#2| (-779)) 19) (($ $ (-652 |#2|) (-652 (-779))) 21)))
-(((-908 |#1| |#2|) (-10 -8 (-15 -3608 (|#1| |#1| (-652 |#2|) (-652 (-779)))) (-15 -3608 (|#1| |#1| |#2| (-779))) (-15 -3608 (|#1| |#1| (-652 |#2|))) (-15 -3608 (|#1| |#1| |#2|)) (-15 -3902 (|#1| |#1| (-652 |#2|) (-652 (-779)))) (-15 -3902 (|#1| |#1| |#2| (-779))) (-15 -3902 (|#1| |#1| (-652 |#2|))) (-15 -3902 (|#1| |#1| |#2|))) (-909 |#2|) (-1111)) (T -908))
-NIL
-(-10 -8 (-15 -3608 (|#1| |#1| (-652 |#2|) (-652 (-779)))) (-15 -3608 (|#1| |#1| |#2| (-779))) (-15 -3608 (|#1| |#1| (-652 |#2|))) (-15 -3608 (|#1| |#1| |#2|)) (-15 -3902 (|#1| |#1| (-652 |#2|) (-652 (-779)))) (-15 -3902 (|#1| |#1| |#2| (-779))) (-15 -3902 (|#1| |#1| (-652 |#2|))) (-15 -3902 (|#1| |#1| |#2|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3902 (($ $ |#1|) 46) (($ $ (-652 |#1|)) 45) (($ $ |#1| (-779)) 44) (($ $ (-652 |#1|) (-652 (-779))) 43)) (-2940 (((-870) $) 12) (($ (-572)) 33)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ |#1|) 42) (($ $ (-652 |#1|)) 41) (($ $ |#1| (-779)) 40) (($ $ (-652 |#1|) (-652 (-779))) 39)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-909 |#1|) (-141) (-1111)) (T -909))
-((-3902 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1111)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *1 (-909 *3)) (-4 *3 (-1111)))) (-3902 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-909 *2)) (-4 *2 (-1111)))) (-3902 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 (-779))) (-4 *1 (-909 *4)) (-4 *4 (-1111)))) (-3608 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1111)))) (-3608 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *1 (-909 *3)) (-4 *3 (-1111)))) (-3608 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-909 *2)) (-4 *2 (-1111)))) (-3608 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 (-779))) (-4 *1 (-909 *4)) (-4 *4 (-1111)))))
-(-13 (-1060) (-10 -8 (-15 -3902 ($ $ |t#1|)) (-15 -3902 ($ $ (-652 |t#1|))) (-15 -3902 ($ $ |t#1| (-779))) (-15 -3902 ($ $ (-652 |t#1|) (-652 (-779)))) (-15 -3608 ($ $ |t#1|)) (-15 -3608 ($ $ (-652 |t#1|))) (-15 -3608 ($ $ |t#1| (-779))) (-15 -3608 ($ $ (-652 |t#1|) (-652 (-779))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) 26)) (-1631 (((-112) $ (-779)) NIL)) (-2506 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3833 (($ $ $) NIL (|has| $ (-6 -4455)))) (-2913 (($ $ $) NIL (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-3901 (($ $) 25)) (-3798 (($ |#1|) 12) (($ $ $) 17)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-3888 (($ $) 23)) (-3505 (((-652 |#1|) $) NIL)) (-2087 (((-112) $) 20)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2157 (((-572) $ $) NIL)) (-3315 (((-112) $) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-1215 |#1|) $) 9) (((-870) $) 29 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 21 (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-910 |#1|) (-13 (-120 |#1|) (-621 (-1215 |#1|)) (-10 -8 (-15 -3798 ($ |#1|)) (-15 -3798 ($ $ $)))) (-1111)) (T -910))
-((-3798 (*1 *1 *2) (-12 (-5 *1 (-910 *2)) (-4 *2 (-1111)))) (-3798 (*1 *1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-1111)))))
-(-13 (-120 |#1|) (-621 (-1215 |#1|)) (-10 -8 (-15 -3798 ($ |#1|)) (-15 -3798 ($ $ $))))
-((-3668 ((|#2| (-1153 |#1| |#2|)) 48)))
-(((-911 |#1| |#2|) (-10 -7 (-15 -3668 (|#2| (-1153 |#1| |#2|)))) (-930) (-13 (-1060) (-10 -7 (-6 (-4456 "*"))))) (T -911))
-((-3668 (*1 *2 *3) (-12 (-5 *3 (-1153 *4 *2)) (-14 *4 (-930)) (-4 *2 (-13 (-1060) (-10 -7 (-6 (-4456 "*"))))) (-5 *1 (-911 *4 *2)))))
-(-10 -7 (-15 -3668 (|#2| (-1153 |#1| |#2|))))
-((-2846 (((-112) $ $) 7)) (-2059 (((-1113 |#1|) $) 35)) (-3281 (($) 19 T CONST)) (-2062 (((-3 $ "failed") $) 16)) (-3144 (((-1113 |#1|) $ |#1|) 34)) (-1886 (((-112) $) 18)) (-3654 (($ $ $) 32 (-2813 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-2427 (($ $ $) 31 (-2813 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-4347 (((-1170) $) 10)) (-1322 (($ $) 25)) (-3964 (((-1131) $) 11)) (-2196 ((|#1| $ |#1|) 38)) (-2734 (($ (-652 (-652 |#1|))) 36)) (-4108 (($ (-652 |#1|)) 37)) (-1516 (($ $ $) 22)) (-4326 (($ $ $) 21)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2143 (($) 20 T CONST)) (-3039 (((-112) $ $) 29 (-2813 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-3014 (((-112) $ $) 28 (-2813 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 30 (-2813 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-3003 (((-112) $ $) 33)) (-3106 (($ $ $) 24)) (** (($ $ (-930)) 14) (($ $ (-779)) 17) (($ $ (-572)) 23)) (* (($ $ $) 15)))
-(((-912 |#1|) (-141) (-1111)) (T -912))
-((-4108 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-912 *3)))) (-2734 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-4 *1 (-912 *3)))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-1113 *3)))) (-3144 (*1 *2 *1 *3) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-1113 *3)))) (-3003 (*1 *2 *1 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
-(-13 (-481) (-292 |t#1| |t#1|) (-10 -8 (-15 -4108 ($ (-652 |t#1|))) (-15 -2734 ($ (-652 (-652 |t#1|)))) (-15 -2059 ((-1113 |t#1|) $)) (-15 -3144 ((-1113 |t#1|) $ |t#1|)) (-15 -3003 ((-112) $ $)) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-858)) |%noBranch|)))
-(((-102) . T) ((-621 (-870)) . T) ((-292 |#1| |#1|) . T) ((-481) . T) ((-734) . T) ((-858) -2813 (|has| |#1| (-858)) (|has| |#1| (-375))) ((-1123) . T) ((-1111) . T) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-4420 (((-652 (-652 (-779))) $) 160)) (-2025 (((-652 (-779)) (-914 |#1|) $) 188)) (-2973 (((-652 (-779)) (-914 |#1|) $) 189)) (-2059 (((-1113 |#1|) $) 152)) (-2925 (((-652 (-914 |#1|)) $) 149)) (-2815 (((-914 |#1|) $ (-572)) 154) (((-914 |#1|) $) 155)) (-1364 (($ (-652 (-914 |#1|))) 162)) (-2956 (((-779) $) 156)) (-2473 (((-1113 (-1113 |#1|)) $) 186)) (-3144 (((-1113 |#1|) $ |#1|) 177) (((-1113 (-1113 |#1|)) $ (-1113 |#1|)) 197) (((-1113 (-652 |#1|)) $ (-652 |#1|)) 200)) (-1864 (((-112) (-914 |#1|) $) 137)) (-4347 (((-1170) $) NIL)) (-3709 (((-1284) $) 142) (((-1284) $ (-572) (-572)) 201)) (-3964 (((-1131) $) NIL)) (-2405 (((-652 (-914 |#1|)) $) 143)) (-2196 (((-914 |#1|) $ (-779)) 150)) (-4390 (((-779) $) 157)) (-2940 (((-870) $) 174) (((-652 (-914 |#1|)) $) 28) (($ (-652 (-914 |#1|))) 161)) (-4379 (((-112) $ $) NIL)) (-2625 (((-652 |#1|) $) 159)) (-2978 (((-112) $ $) 194)) (-3026 (((-112) $ $) 192)) (-3003 (((-112) $ $) 191)))
-(((-913 |#1|) (-13 (-1111) (-10 -8 (-15 -2940 ((-652 (-914 |#1|)) $)) (-15 -2405 ((-652 (-914 |#1|)) $)) (-15 -2196 ((-914 |#1|) $ (-779))) (-15 -2815 ((-914 |#1|) $ (-572))) (-15 -2815 ((-914 |#1|) $)) (-15 -2956 ((-779) $)) (-15 -4390 ((-779) $)) (-15 -2625 ((-652 |#1|) $)) (-15 -2925 ((-652 (-914 |#1|)) $)) (-15 -4420 ((-652 (-652 (-779))) $)) (-15 -2940 ($ (-652 (-914 |#1|)))) (-15 -1364 ($ (-652 (-914 |#1|)))) (-15 -3144 ((-1113 |#1|) $ |#1|)) (-15 -2473 ((-1113 (-1113 |#1|)) $)) (-15 -3144 ((-1113 (-1113 |#1|)) $ (-1113 |#1|))) (-15 -3144 ((-1113 (-652 |#1|)) $ (-652 |#1|))) (-15 -1864 ((-112) (-914 |#1|) $)) (-15 -2025 ((-652 (-779)) (-914 |#1|) $)) (-15 -2973 ((-652 (-779)) (-914 |#1|) $)) (-15 -2059 ((-1113 |#1|) $)) (-15 -3003 ((-112) $ $)) (-15 -3026 ((-112) $ $)) (-15 -3709 ((-1284) $)) (-15 -3709 ((-1284) $ (-572) (-572))))) (-1111)) (T -913))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-914 *4)) (-5 *1 (-913 *4)) (-4 *4 (-1111)))) (-2815 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-914 *4)) (-5 *1 (-913 *4)) (-4 *4 (-1111)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-914 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-4420 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-779)))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-914 *3))) (-4 *3 (-1111)) (-5 *1 (-913 *3)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-652 (-914 *3))) (-4 *3 (-1111)) (-5 *1 (-913 *3)))) (-3144 (*1 *2 *1 *3) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-1113 (-1113 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3144 (*1 *2 *1 *3) (-12 (-4 *4 (-1111)) (-5 *2 (-1113 (-1113 *4))) (-5 *1 (-913 *4)) (-5 *3 (-1113 *4)))) (-3144 (*1 *2 *1 *3) (-12 (-4 *4 (-1111)) (-5 *2 (-1113 (-652 *4))) (-5 *1 (-913 *4)) (-5 *3 (-652 *4)))) (-1864 (*1 *2 *3 *1) (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-112)) (-5 *1 (-913 *4)))) (-2025 (*1 *2 *3 *1) (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-652 (-779))) (-5 *1 (-913 *4)))) (-2973 (*1 *2 *3 *1) (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-652 (-779))) (-5 *1 (-913 *4)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3003 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3026 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3709 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-913 *4)) (-4 *4 (-1111)))))
-(-13 (-1111) (-10 -8 (-15 -2940 ((-652 (-914 |#1|)) $)) (-15 -2405 ((-652 (-914 |#1|)) $)) (-15 -2196 ((-914 |#1|) $ (-779))) (-15 -2815 ((-914 |#1|) $ (-572))) (-15 -2815 ((-914 |#1|) $)) (-15 -2956 ((-779) $)) (-15 -4390 ((-779) $)) (-15 -2625 ((-652 |#1|) $)) (-15 -2925 ((-652 (-914 |#1|)) $)) (-15 -4420 ((-652 (-652 (-779))) $)) (-15 -2940 ($ (-652 (-914 |#1|)))) (-15 -1364 ($ (-652 (-914 |#1|)))) (-15 -3144 ((-1113 |#1|) $ |#1|)) (-15 -2473 ((-1113 (-1113 |#1|)) $)) (-15 -3144 ((-1113 (-1113 |#1|)) $ (-1113 |#1|))) (-15 -3144 ((-1113 (-652 |#1|)) $ (-652 |#1|))) (-15 -1864 ((-112) (-914 |#1|) $)) (-15 -2025 ((-652 (-779)) (-914 |#1|) $)) (-15 -2973 ((-652 (-779)) (-914 |#1|) $)) (-15 -2059 ((-1113 |#1|) $)) (-15 -3003 ((-112) $ $)) (-15 -3026 ((-112) $ $)) (-15 -3709 ((-1284) $)) (-15 -3709 ((-1284) $ (-572) (-572)))))
-((-2846 (((-112) $ $) NIL)) (-2059 (((-1113 |#1|) $) 60)) (-2766 (((-652 $) (-652 $)) 103)) (-2840 (((-572) $) 83)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-2956 (((-779) $) 80)) (-3144 (((-1113 |#1|) $ |#1|) 70)) (-1886 (((-112) $) NIL)) (-2597 (((-112) $) 88)) (-3539 (((-779) $) 84)) (-3654 (($ $ $) NIL (-2813 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-2427 (($ $ $) NIL (-2813 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-3344 (((-2 (|:| |preimage| (-652 |#1|)) (|:| |image| (-652 |#1|))) $) 55)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 130)) (-3964 (((-1131) $) NIL)) (-2876 (((-1113 |#1|) $) 136 (|has| |#1| (-375)))) (-2003 (((-112) $) 81)) (-2196 ((|#1| $ |#1|) 68)) (-4390 (((-779) $) 62)) (-2734 (($ (-652 (-652 |#1|))) 118)) (-2692 (((-982) $) 74)) (-4108 (($ (-652 |#1|)) 32)) (-1516 (($ $ $) NIL)) (-4326 (($ $ $) NIL)) (-3527 (($ (-652 (-652 |#1|))) 57)) (-3700 (($ (-652 (-652 |#1|))) 123)) (-1432 (($ (-652 |#1|)) 132)) (-2940 (((-870) $) 117) (($ (-652 (-652 |#1|))) 91) (($ (-652 |#1|)) 92)) (-4379 (((-112) $ $) NIL)) (-2143 (($) 24 T CONST)) (-3039 (((-112) $ $) NIL (-2813 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-3014 (((-112) $ $) NIL (-2813 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-2978 (((-112) $ $) 66)) (-3026 (((-112) $ $) NIL (-2813 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-3003 (((-112) $ $) 90)) (-3106 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ $ $) 33)))
-(((-914 |#1|) (-13 (-912 |#1|) (-10 -8 (-15 -3344 ((-2 (|:| |preimage| (-652 |#1|)) (|:| |image| (-652 |#1|))) $)) (-15 -3527 ($ (-652 (-652 |#1|)))) (-15 -2940 ($ (-652 (-652 |#1|)))) (-15 -2940 ($ (-652 |#1|))) (-15 -3700 ($ (-652 (-652 |#1|)))) (-15 -4390 ((-779) $)) (-15 -2692 ((-982) $)) (-15 -2956 ((-779) $)) (-15 -3539 ((-779) $)) (-15 -2840 ((-572) $)) (-15 -2003 ((-112) $)) (-15 -2597 ((-112) $)) (-15 -2766 ((-652 $) (-652 $))) (IF (|has| |#1| (-375)) (-15 -2876 ((-1113 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-553)) (-15 -1432 ($ (-652 |#1|))) (IF (|has| |#1| (-375)) (-15 -1432 ($ (-652 |#1|))) |%noBranch|)))) (-1111)) (T -914))
-((-3344 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-652 *3)) (|:| |image| (-652 *3)))) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-914 *3)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-982)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-914 *3)) (-4 *3 (-375)) (-4 *3 (-1111)))) (-1432 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-914 *3)))))
-(-13 (-912 |#1|) (-10 -8 (-15 -3344 ((-2 (|:| |preimage| (-652 |#1|)) (|:| |image| (-652 |#1|))) $)) (-15 -3527 ($ (-652 (-652 |#1|)))) (-15 -2940 ($ (-652 (-652 |#1|)))) (-15 -2940 ($ (-652 |#1|))) (-15 -3700 ($ (-652 (-652 |#1|)))) (-15 -4390 ((-779) $)) (-15 -2692 ((-982) $)) (-15 -2956 ((-779) $)) (-15 -3539 ((-779) $)) (-15 -2840 ((-572) $)) (-15 -2003 ((-112) $)) (-15 -2597 ((-112) $)) (-15 -2766 ((-652 $) (-652 $))) (IF (|has| |#1| (-375)) (-15 -2876 ((-1113 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-553)) (-15 -1432 ($ (-652 |#1|))) (IF (|has| |#1| (-375)) (-15 -1432 ($ (-652 |#1|))) |%noBranch|))))
-((-1449 (((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|)) 160)) (-4271 ((|#1|) 97)) (-4311 (((-426 (-1184 |#4|)) (-1184 |#4|)) 169)) (-2477 (((-426 (-1184 |#4|)) (-652 |#3|) (-1184 |#4|)) 84)) (-1874 (((-426 (-1184 |#4|)) (-1184 |#4|)) 179)) (-1577 (((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|) |#3|) 113)))
-(((-915 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1449 ((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|))) (-15 -1874 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -4311 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -4271 (|#1|)) (-15 -1577 ((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|) |#3|)) (-15 -2477 ((-426 (-1184 |#4|)) (-652 |#3|) (-1184 |#4|)))) (-918) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -915))
-((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *7)) (-4 *7 (-858)) (-4 *5 (-918)) (-4 *6 (-801)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-426 (-1184 *8))) (-5 *1 (-915 *5 *6 *7 *8)) (-5 *4 (-1184 *8)))) (-1577 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-652 (-1184 *7))) (-5 *3 (-1184 *7)) (-4 *7 (-958 *5 *6 *4)) (-4 *5 (-918)) (-4 *6 (-801)) (-4 *4 (-858)) (-5 *1 (-915 *5 *6 *4 *7)))) (-4271 (*1 *2) (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-918)) (-5 *1 (-915 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-4311 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-915 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-1874 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-915 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-1449 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *7))) (-5 *3 (-1184 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-915 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1449 ((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|))) (-15 -1874 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -4311 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -4271 (|#1|)) (-15 -1577 ((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|) |#3|)) (-15 -2477 ((-426 (-1184 |#4|)) (-652 |#3|) (-1184 |#4|))))
-((-1449 (((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|)) 39)) (-4271 ((|#1|) 72)) (-4311 (((-426 (-1184 |#2|)) (-1184 |#2|)) 121)) (-2477 (((-426 (-1184 |#2|)) (-1184 |#2|)) 105)) (-1874 (((-426 (-1184 |#2|)) (-1184 |#2|)) 132)))
-(((-916 |#1| |#2|) (-10 -7 (-15 -1449 ((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|))) (-15 -1874 ((-426 (-1184 |#2|)) (-1184 |#2|))) (-15 -4311 ((-426 (-1184 |#2|)) (-1184 |#2|))) (-15 -4271 (|#1|)) (-15 -2477 ((-426 (-1184 |#2|)) (-1184 |#2|)))) (-918) (-1255 |#1|)) (T -916))
-((-2477 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5))) (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))) (-4271 (*1 *2) (-12 (-4 *2 (-918)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1255 *2)))) (-4311 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5))) (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))) (-1874 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5))) (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))) (-1449 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *5))) (-5 *3 (-1184 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-918)) (-5 *1 (-916 *4 *5)))))
-(-10 -7 (-15 -1449 ((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|))) (-15 -1874 ((-426 (-1184 |#2|)) (-1184 |#2|))) (-15 -4311 ((-426 (-1184 |#2|)) (-1184 |#2|))) (-15 -4271 (|#1|)) (-15 -2477 ((-426 (-1184 |#2|)) (-1184 |#2|))))
-((-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 42)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 18)) (-3849 (((-3 $ "failed") $) 36)))
-(((-917 |#1|) (-10 -8 (-15 -3849 ((-3 |#1| "failed") |#1|)) (-15 -3643 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|)))) (-918)) (T -917))
-NIL
-(-10 -8 (-15 -3849 ((-3 |#1| "failed") |#1|)) (-15 -3643 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-2603 (((-426 (-1184 $)) (-1184 $)) 66)) (-3517 (($ $) 57)) (-2287 (((-426 $) $) 58)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 63)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-3879 (((-112) $) 59)) (-1886 (((-112) $) 35)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-4300 (((-426 (-1184 $)) (-1184 $)) 64)) (-1494 (((-426 (-1184 $)) (-1184 $)) 65)) (-4218 (((-426 $) $) 56)) (-2834 (((-3 $ "failed") $ $) 48)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 62 (|has| $ (-146)))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-3849 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-918) (-141)) (T -918))
-((-3126 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-918)))) (-2603 (*1 *2 *3) (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))) (-1494 (*1 *2 *3) (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))) (-4300 (*1 *2 *3) (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))) (-3643 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *1))) (-5 *3 (-1184 *1)) (-4 *1 (-918)))) (-1318 (*1 *2 *3) (|partial| -12 (-5 *3 (-697 *1)) (-4 *1 (-146)) (-4 *1 (-918)) (-5 *2 (-1279 *1)))) (-3849 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-918)))))
-(-13 (-1233) (-10 -8 (-15 -2603 ((-426 (-1184 $)) (-1184 $))) (-15 -1494 ((-426 (-1184 $)) (-1184 $))) (-15 -4300 ((-426 (-1184 $)) (-1184 $))) (-15 -3126 ((-1184 $) (-1184 $) (-1184 $))) (-15 -3643 ((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $))) (IF (|has| $ (-146)) (PROGN (-15 -1318 ((-3 (-1279 $) "failed") (-697 $))) (-15 -3849 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3995 (((-112) $) NIL)) (-3667 (((-779)) NIL)) (-1635 (($ $ (-930)) NIL (|has| $ (-375))) (($ $) NIL)) (-1814 (((-1201 (-930) (-779)) (-572)) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 $ "failed") $) NIL)) (-2204 (($ $) NIL)) (-1913 (($ (-1279 $)) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-1879 (($) NIL)) (-3442 (((-112) $) NIL)) (-2303 (($ $) NIL) (($ $ (-779)) NIL)) (-3879 (((-112) $) NIL)) (-2956 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-1886 (((-112) $) NIL)) (-1663 (($) NIL (|has| $ (-375)))) (-2078 (((-112) $) NIL (|has| $ (-375)))) (-2028 (($ $ (-930)) NIL (|has| $ (-375))) (($ $) NIL)) (-2556 (((-3 $ "failed") $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3053 (((-1184 $) $ (-930)) NIL (|has| $ (-375))) (((-1184 $) $) NIL)) (-3715 (((-930) $) NIL)) (-4370 (((-1184 $) $) NIL (|has| $ (-375)))) (-3293 (((-3 (-1184 $) "failed") $ $) NIL (|has| $ (-375))) (((-1184 $) $) NIL (|has| $ (-375)))) (-3103 (($ $ (-1184 $)) NIL (|has| $ (-375)))) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL T CONST)) (-2571 (($ (-930)) NIL)) (-2946 (((-112) $) NIL)) (-3964 (((-1131) $) NIL)) (-2967 (($) NIL (|has| $ (-375)))) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL)) (-4218 (((-426 $) $) NIL)) (-3040 (((-930)) NIL) (((-841 (-930))) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3354 (((-3 (-779) "failed") $ $) NIL) (((-779) $) NIL)) (-4224 (((-135)) NIL)) (-3902 (($ $ (-779)) NIL) (($ $) NIL)) (-4390 (((-930) $) NIL) (((-841 (-930)) $) NIL)) (-3764 (((-1184 $)) NIL)) (-4033 (($) NIL)) (-3105 (($) NIL (|has| $ (-375)))) (-4329 (((-697 $) (-1279 $)) NIL) (((-1279 $) $) NIL)) (-1835 (((-572) $) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL)) (-3849 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $) (-930)) NIL) (((-1279 $)) NIL)) (-2845 (((-112) $ $) NIL)) (-1482 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3790 (($ $ (-779)) NIL (|has| $ (-375))) (($ $) NIL (|has| $ (-375)))) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
-(((-919 |#1|) (-13 (-356) (-335 $) (-622 (-572))) (-930)) (T -919))
-NIL
-(-13 (-356) (-335 $) (-622 (-572)))
-((-2083 (((-3 (-2 (|:| -2956 (-779)) (|:| -2705 |#5|)) "failed") (-343 |#2| |#3| |#4| |#5|)) 77)) (-3676 (((-112) (-343 |#2| |#3| |#4| |#5|)) 17)) (-2956 (((-3 (-779) "failed") (-343 |#2| |#3| |#4| |#5|)) 15)))
-(((-920 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2956 ((-3 (-779) "failed") (-343 |#2| |#3| |#4| |#5|))) (-15 -3676 ((-112) (-343 |#2| |#3| |#4| |#5|))) (-15 -2083 ((-3 (-2 (|:| -2956 (-779)) (|:| -2705 |#5|)) "failed") (-343 |#2| |#3| |#4| |#5|)))) (-13 (-564) (-1049 (-572))) (-438 |#1|) (-1255 |#2|) (-1255 (-415 |#3|)) (-349 |#2| |#3| |#4|)) (T -920))
-((-2083 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-2 (|:| -2956 (-779)) (|:| -2705 *8))) (-5 *1 (-920 *4 *5 *6 *7 *8)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7 *8)))) (-2956 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-779)) (-5 *1 (-920 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2956 ((-3 (-779) "failed") (-343 |#2| |#3| |#4| |#5|))) (-15 -3676 ((-112) (-343 |#2| |#3| |#4| |#5|))) (-15 -2083 ((-3 (-2 (|:| -2956 (-779)) (|:| -2705 |#5|)) "failed") (-343 |#2| |#3| |#4| |#5|))))
-((-2083 (((-3 (-2 (|:| -2956 (-779)) (|:| -2705 |#3|)) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|)) 64)) (-3676 (((-112) (-343 (-415 (-572)) |#1| |#2| |#3|)) 16)) (-2956 (((-3 (-779) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|)) 14)))
-(((-921 |#1| |#2| |#3|) (-10 -7 (-15 -2956 ((-3 (-779) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|))) (-15 -3676 ((-112) (-343 (-415 (-572)) |#1| |#2| |#3|))) (-15 -2083 ((-3 (-2 (|:| -2956 (-779)) (|:| -2705 |#3|)) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|)))) (-1255 (-415 (-572))) (-1255 (-415 |#1|)) (-349 (-415 (-572)) |#1| |#2|)) (T -921))
-((-2083 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6)) (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-2 (|:| -2956 (-779)) (|:| -2705 *6))) (-5 *1 (-921 *4 *5 *6)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6)) (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6)))) (-2956 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6)) (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-779)) (-5 *1 (-921 *4 *5 *6)))))
-(-10 -7 (-15 -2956 ((-3 (-779) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|))) (-15 -3676 ((-112) (-343 (-415 (-572)) |#1| |#2| |#3|))) (-15 -2083 ((-3 (-2 (|:| -2956 (-779)) (|:| -2705 |#3|)) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|))))
-((-2354 ((|#2| |#2|) 26)) (-1762 (((-572) (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))))) 15)) (-3406 (((-930) (-572)) 38)) (-2356 (((-572) |#2|) 45)) (-1644 (((-572) |#2|) 21) (((-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))) |#1|) 20)))
-(((-922 |#1| |#2|) (-10 -7 (-15 -3406 ((-930) (-572))) (-15 -1644 ((-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))) |#1|)) (-15 -1644 ((-572) |#2|)) (-15 -1762 ((-572) (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572)))))) (-15 -2356 ((-572) |#2|)) (-15 -2354 (|#2| |#2|))) (-1255 (-415 (-572))) (-1255 (-415 |#1|))) (T -922))
-((-2354 (*1 *2 *2) (-12 (-4 *3 (-1255 (-415 (-572)))) (-5 *1 (-922 *3 *2)) (-4 *2 (-1255 (-415 *3))))) (-2356 (*1 *2 *3) (-12 (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *3)) (-4 *3 (-1255 (-415 *4))))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))))) (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *5)) (-4 *5 (-1255 (-415 *4))))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *3)) (-4 *3 (-1255 (-415 *4))))) (-1644 (*1 *2 *3) (-12 (-4 *3 (-1255 (-415 (-572)))) (-5 *2 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572)))) (-5 *1 (-922 *3 *4)) (-4 *4 (-1255 (-415 *3))))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-572)) (-4 *4 (-1255 (-415 *3))) (-5 *2 (-930)) (-5 *1 (-922 *4 *5)) (-4 *5 (-1255 (-415 *4))))))
-(-10 -7 (-15 -3406 ((-930) (-572))) (-15 -1644 ((-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))) |#1|)) (-15 -1644 ((-572) |#2|)) (-15 -1762 ((-572) (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572)))))) (-15 -2356 ((-572) |#2|)) (-15 -2354 (|#2| |#2|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 ((|#1| $) 100)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2780 (($ $ $) NIL)) (-2062 (((-3 $ "failed") $) 94)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-4358 (($ |#1| (-426 |#1|)) 92)) (-2724 (((-1184 |#1|) |#1| |#1|) 53)) (-2797 (($ $) 61)) (-1886 (((-112) $) NIL)) (-2426 (((-572) $) 97)) (-1507 (($ $ (-572)) 99)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4185 ((|#1| $) 96)) (-4197 (((-426 |#1|) $) 95)) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) 93)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-1392 (($ $) 50)) (-2940 (((-870) $) 124) (($ (-572)) 73) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 41) (((-415 |#1|) $) 78) (($ (-415 (-426 |#1|))) 86)) (-4249 (((-779)) 71 T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2131 (($) 26 T CONST)) (-2143 (($) 15 T CONST)) (-2978 (((-112) $ $) 87)) (-3106 (($ $ $) NIL)) (-3089 (($ $) 108) (($ $ $) NIL)) (-3075 (($ $ $) 49)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 110) (($ $ $) 48) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
-(((-923 |#1|) (-13 (-370) (-38 |#1|) (-10 -8 (-15 -2940 ((-415 |#1|) $)) (-15 -2940 ($ (-415 (-426 |#1|)))) (-15 -1392 ($ $)) (-15 -4197 ((-426 |#1|) $)) (-15 -4185 (|#1| $)) (-15 -1507 ($ $ (-572))) (-15 -2426 ((-572) $)) (-15 -2724 ((-1184 |#1|) |#1| |#1|)) (-15 -2797 ($ $)) (-15 -4358 ($ |#1| (-426 |#1|))) (-15 -2689 (|#1| $)))) (-313)) (T -923))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-415 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-415 (-426 *3))) (-4 *3 (-313)) (-5 *1 (-923 *3)))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-426 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-4185 (*1 *2 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-2724 (*1 *2 *3 *3) (-12 (-5 *2 (-1184 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-2797 (*1 *1 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))) (-4358 (*1 *1 *2 *3) (-12 (-5 *3 (-426 *2)) (-4 *2 (-313)) (-5 *1 (-923 *2)))) (-2689 (*1 *2 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))))
-(-13 (-370) (-38 |#1|) (-10 -8 (-15 -2940 ((-415 |#1|) $)) (-15 -2940 ($ (-415 (-426 |#1|)))) (-15 -1392 ($ $)) (-15 -4197 ((-426 |#1|) $)) (-15 -4185 (|#1| $)) (-15 -1507 ($ $ (-572))) (-15 -2426 ((-572) $)) (-15 -2724 ((-1184 |#1|) |#1| |#1|)) (-15 -2797 ($ $)) (-15 -4358 ($ |#1| (-426 |#1|))) (-15 -2689 (|#1| $))))
-((-4358 (((-52) (-961 |#1|) (-426 (-961 |#1|)) (-1188)) 17) (((-52) (-415 (-961 |#1|)) (-1188)) 18)))
-(((-924 |#1|) (-10 -7 (-15 -4358 ((-52) (-415 (-961 |#1|)) (-1188))) (-15 -4358 ((-52) (-961 |#1|) (-426 (-961 |#1|)) (-1188)))) (-13 (-313) (-148))) (T -924))
-((-4358 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-426 (-961 *6))) (-5 *5 (-1188)) (-5 *3 (-961 *6)) (-4 *6 (-13 (-313) (-148))) (-5 *2 (-52)) (-5 *1 (-924 *6)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-52)) (-5 *1 (-924 *5)))))
-(-10 -7 (-15 -4358 ((-52) (-415 (-961 |#1|)) (-1188))) (-15 -4358 ((-52) (-961 |#1|) (-426 (-961 |#1|)) (-1188))))
-((-1560 ((|#4| (-652 |#4|)) 147) (((-1184 |#4|) (-1184 |#4|) (-1184 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2870 (((-1184 |#4|) (-652 (-1184 |#4|))) 140) (((-1184 |#4|) (-1184 |#4|) (-1184 |#4|)) 61) ((|#4| (-652 |#4|)) 69) ((|#4| |#4| |#4|) 107)))
-(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2870 (|#4| |#4| |#4|)) (-15 -2870 (|#4| (-652 |#4|))) (-15 -2870 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -2870 ((-1184 |#4|) (-652 (-1184 |#4|)))) (-15 -1560 (|#4| |#4| |#4|)) (-15 -1560 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -1560 (|#4| (-652 |#4|)))) (-801) (-858) (-313) (-958 |#3| |#1| |#2|)) (T -925))
-((-1560 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *6 *4 *5)) (-5 *1 (-925 *4 *5 *6 *2)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)))) (-1560 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *6)))) (-1560 (*1 *2 *2 *2) (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-958 *5 *3 *4)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-652 (-1184 *7))) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-1184 *7)) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-2870 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *6)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *6 *4 *5)) (-5 *1 (-925 *4 *5 *6 *2)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)))) (-2870 (*1 *2 *2 *2) (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-958 *5 *3 *4)))))
-(-10 -7 (-15 -2870 (|#4| |#4| |#4|)) (-15 -2870 (|#4| (-652 |#4|))) (-15 -2870 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -2870 ((-1184 |#4|) (-652 (-1184 |#4|)))) (-15 -1560 (|#4| |#4| |#4|)) (-15 -1560 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -1560 (|#4| (-652 |#4|))))
-((-1980 (((-913 (-572)) (-982)) 38) (((-913 (-572)) (-652 (-572))) 34)) (-3115 (((-913 (-572)) (-652 (-572))) 67) (((-913 (-572)) (-930)) 68)) (-4236 (((-913 (-572))) 39)) (-1690 (((-913 (-572))) 53) (((-913 (-572)) (-652 (-572))) 52)) (-3807 (((-913 (-572))) 51) (((-913 (-572)) (-652 (-572))) 50)) (-2088 (((-913 (-572))) 49) (((-913 (-572)) (-652 (-572))) 48)) (-1650 (((-913 (-572))) 47) (((-913 (-572)) (-652 (-572))) 46)) (-2527 (((-913 (-572))) 45) (((-913 (-572)) (-652 (-572))) 44)) (-4267 (((-913 (-572))) 55) (((-913 (-572)) (-652 (-572))) 54)) (-4287 (((-913 (-572)) (-652 (-572))) 72) (((-913 (-572)) (-930)) 74)) (-3991 (((-913 (-572)) (-652 (-572))) 69) (((-913 (-572)) (-930)) 70)) (-2718 (((-913 (-572)) (-652 (-572))) 65) (((-913 (-572)) (-930)) 66)) (-2239 (((-913 (-572)) (-652 (-930))) 57)))
-(((-926) (-10 -7 (-15 -3115 ((-913 (-572)) (-930))) (-15 -3115 ((-913 (-572)) (-652 (-572)))) (-15 -2718 ((-913 (-572)) (-930))) (-15 -2718 ((-913 (-572)) (-652 (-572)))) (-15 -2239 ((-913 (-572)) (-652 (-930)))) (-15 -3991 ((-913 (-572)) (-930))) (-15 -3991 ((-913 (-572)) (-652 (-572)))) (-15 -4287 ((-913 (-572)) (-930))) (-15 -4287 ((-913 (-572)) (-652 (-572)))) (-15 -2527 ((-913 (-572)) (-652 (-572)))) (-15 -2527 ((-913 (-572)))) (-15 -1650 ((-913 (-572)) (-652 (-572)))) (-15 -1650 ((-913 (-572)))) (-15 -2088 ((-913 (-572)) (-652 (-572)))) (-15 -2088 ((-913 (-572)))) (-15 -3807 ((-913 (-572)) (-652 (-572)))) (-15 -3807 ((-913 (-572)))) (-15 -1690 ((-913 (-572)) (-652 (-572)))) (-15 -1690 ((-913 (-572)))) (-15 -4267 ((-913 (-572)) (-652 (-572)))) (-15 -4267 ((-913 (-572)))) (-15 -4236 ((-913 (-572)))) (-15 -1980 ((-913 (-572)) (-652 (-572)))) (-15 -1980 ((-913 (-572)) (-982))))) (T -926))
-((-1980 (*1 *2 *3) (-12 (-5 *3 (-982)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4236 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4267 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4267 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1690 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-3807 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2088 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1650 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2527 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(-10 -7 (-15 -3115 ((-913 (-572)) (-930))) (-15 -3115 ((-913 (-572)) (-652 (-572)))) (-15 -2718 ((-913 (-572)) (-930))) (-15 -2718 ((-913 (-572)) (-652 (-572)))) (-15 -2239 ((-913 (-572)) (-652 (-930)))) (-15 -3991 ((-913 (-572)) (-930))) (-15 -3991 ((-913 (-572)) (-652 (-572)))) (-15 -4287 ((-913 (-572)) (-930))) (-15 -4287 ((-913 (-572)) (-652 (-572)))) (-15 -2527 ((-913 (-572)) (-652 (-572)))) (-15 -2527 ((-913 (-572)))) (-15 -1650 ((-913 (-572)) (-652 (-572)))) (-15 -1650 ((-913 (-572)))) (-15 -2088 ((-913 (-572)) (-652 (-572)))) (-15 -2088 ((-913 (-572)))) (-15 -3807 ((-913 (-572)) (-652 (-572)))) (-15 -3807 ((-913 (-572)))) (-15 -1690 ((-913 (-572)) (-652 (-572)))) (-15 -1690 ((-913 (-572)))) (-15 -4267 ((-913 (-572)) (-652 (-572)))) (-15 -4267 ((-913 (-572)))) (-15 -4236 ((-913 (-572)))) (-15 -1980 ((-913 (-572)) (-652 (-572)))) (-15 -1980 ((-913 (-572)) (-982))))
-((-1377 (((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188))) 14)) (-1837 (((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188))) 13)))
-(((-927 |#1|) (-10 -7 (-15 -1837 ((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1377 ((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188))))) (-460)) (T -927))
-((-1377 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-961 *4))) (-5 *3 (-652 (-1188))) (-4 *4 (-460)) (-5 *1 (-927 *4)))) (-1837 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-961 *4))) (-5 *3 (-652 (-1188))) (-4 *4 (-460)) (-5 *1 (-927 *4)))))
-(-10 -7 (-15 -1837 ((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1377 ((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)))))
-((-2940 (((-322 |#1|) (-485)) 16)))
-(((-928 |#1|) (-10 -7 (-15 -2940 ((-322 |#1|) (-485)))) (-564)) (T -928))
-((-2940 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-322 *4)) (-5 *1 (-928 *4)) (-4 *4 (-564)))))
-(-10 -7 (-15 -2940 ((-322 |#1|) (-485))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-1886 (((-112) $) 35)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-929) (-141)) (T -929))
-((-2037 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-2 (|:| -1857 (-652 *1)) (|:| -2967 *1))) (-5 *3 (-652 *1)))) (-1420 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-652 *1)) (-4 *1 (-929)))))
-(-13 (-460) (-10 -8 (-15 -2037 ((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $))) (-15 -1420 ((-3 (-652 $) "failed") (-652 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2870 (($ $ $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ $ $) NIL)))
-(((-930) (-13 (-802) (-734) (-10 -8 (-15 -2870 ($ $ $)) (-6 (-4456 "*"))))) (T -930))
-((-2870 (*1 *1 *1 *1) (-5 *1 (-930))))
-(-13 (-802) (-734) (-10 -8 (-15 -2870 ($ $ $)) (-6 (-4456 "*"))))
+((-2444 (((-701 (-1239)) $ (-1239)) NIL)) (-2046 (((-701 (-559)) $ (-559)) NIL)) (-2841 (((-781) $ (-129)) NIL)) (-3368 (((-701 (-130)) $ (-130)) 22)) (-1501 (($ (-398)) 12) (($ (-1172)) 14)) (-3654 (((-112) $) 19)) (-2943 (((-872) $) 26)) (-3568 (($ $) 23)))
+(((-871) (-13 (-870) (-623 (-872)) (-10 -8 (-15 -1501 ($ (-398))) (-15 -1501 ($ (-1172))) (-15 -3654 ((-112) $))))) (T -871))
+((-1501 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871)))) (-1501 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-871)))) (-3654 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871)))))
+(-13 (-870) (-623 (-872)) (-10 -8 (-15 -1501 ($ (-398))) (-15 -1501 ($ (-1172))) (-15 -3654 ((-112) $))))
+((-2849 (((-112) $ $) NIL) (($ $ $) 85)) (-2530 (($ $ $) 125)) (-3014 (((-574) $) 31) (((-574)) 36)) (-3118 (($ (-574)) 53)) (-2288 (($ $ $) 54) (($ (-654 $)) 84)) (-2682 (($ $ (-654 $)) 82)) (-1814 (((-574) $) 34)) (-3651 (($ $ $) 73)) (-3561 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-4354 (((-574) $) 33)) (-3304 (($ $ $) 72)) (-3249 (($ $) 114)) (-4399 (($ $ $) 129)) (-4436 (($ (-654 $)) 61)) (-4147 (($ $ (-654 $)) 79)) (-1629 (($ (-574) (-574)) 55)) (-1831 (($ $) 126) (($ $ $) 127)) (-3904 (($ $ (-574)) 43) (($ $) 46)) (-2785 (($ $ $) 97)) (-3319 (($ $ $) 132)) (-3903 (($ $) 115)) (-2798 (($ $ $) 98)) (-2823 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1794 (((-1286) $) 10)) (-3430 (($ $) 118) (($ $ (-781)) 122)) (-2564 (($ $ $) 75)) (-4137 (($ $ $) 74)) (-4215 (($ $ (-654 $)) 110)) (-2347 (($ $ $) 113)) (-4154 (($ (-654 $)) 59)) (-2955 (($ $) 70) (($ (-654 $)) 71)) (-4144 (($ $ $) 123)) (-1598 (($ $) 116)) (-1332 (($ $ $) 128)) (-3815 (($ (-574)) 21) (($ (-1190)) 23) (($ (-1172)) 30) (($ (-227)) 25)) (-2099 (($ $ $) 101)) (-2077 (($ $) 102)) (-2291 (((-1286) (-1172)) 15)) (-2170 (($ (-1172)) 14)) (-2914 (($ (-654 (-654 $))) 58)) (-3891 (($ $ (-574)) 42) (($ $) 45)) (-2568 (((-1172) $) NIL)) (-1899 (($ $ $) 131)) (-3091 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3800 (((-112) $) 108)) (-4059 (($ $ (-654 $)) 111) (($ $ $ $) 112)) (-3018 (($ (-574)) 39)) (-1840 (((-574) $) 32) (((-574)) 35)) (-3237 (($ $ $) 40) (($ (-654 $)) 83)) (-3966 (((-1133) $) NIL)) (-2838 (($ $ $) 99)) (-3135 (($) 13)) (-2200 (($ $ (-654 $)) 109)) (-3144 (((-1172) (-1172)) 8)) (-3222 (($ $) 117) (($ $ (-781)) 121)) (-2825 (($ $ $) 96)) (-3905 (($ $ (-781)) 139)) (-1519 (($ (-654 $)) 60)) (-2943 (((-872) $) 19)) (-3359 (($ $ (-574)) 41) (($ $) 44)) (-3349 (($ $) 68) (($ (-654 $)) 69)) (-4281 (($ $) 66) (($ (-654 $)) 67)) (-2031 (($ $) 124)) (-2533 (($ (-654 $)) 65)) (-2819 (($ $ $) 105)) (-2923 (((-112) $ $) NIL)) (-1722 (($ $ $) 130)) (-2088 (($ $ $) 100)) (-4278 (($ $ $) 103) (($ $) 104)) (-3041 (($ $ $) 89)) (-3016 (($ $ $) 87)) (-2982 (((-112) $ $) 16) (($ $ $) 17)) (-3028 (($ $ $) 88)) (-3005 (($ $ $) 86)) (-3107 (($ $ $) 94)) (-3094 (($ $ $) 91) (($ $) 92)) (-3078 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
+(((-872) (-13 (-1113) (-10 -8 (-15 -1794 ((-1286) $)) (-15 -2170 ($ (-1172))) (-15 -2291 ((-1286) (-1172))) (-15 -3815 ($ (-574))) (-15 -3815 ($ (-1190))) (-15 -3815 ($ (-1172))) (-15 -3815 ($ (-227))) (-15 -3135 ($)) (-15 -3144 ((-1172) (-1172))) (-15 -3014 ((-574) $)) (-15 -1840 ((-574) $)) (-15 -3014 ((-574))) (-15 -1840 ((-574))) (-15 -4354 ((-574) $)) (-15 -1814 ((-574) $)) (-15 -3018 ($ (-574))) (-15 -3118 ($ (-574))) (-15 -1629 ($ (-574) (-574))) (-15 -3891 ($ $ (-574))) (-15 -3904 ($ $ (-574))) (-15 -3359 ($ $ (-574))) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -3359 ($ $)) (-15 -3237 ($ $ $)) (-15 -2288 ($ $ $)) (-15 -3237 ($ (-654 $))) (-15 -2288 ($ (-654 $))) (-15 -4215 ($ $ (-654 $))) (-15 -4059 ($ $ (-654 $))) (-15 -4059 ($ $ $ $)) (-15 -2347 ($ $ $)) (-15 -3800 ((-112) $)) (-15 -2200 ($ $ (-654 $))) (-15 -3249 ($ $)) (-15 -1899 ($ $ $)) (-15 -2031 ($ $)) (-15 -2914 ($ (-654 (-654 $)))) (-15 -2530 ($ $ $)) (-15 -1831 ($ $)) (-15 -1831 ($ $ $)) (-15 -1332 ($ $ $)) (-15 -4399 ($ $ $)) (-15 -1722 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -3905 ($ $ (-781))) (-15 -2819 ($ $ $)) (-15 -3304 ($ $ $)) (-15 -3651 ($ $ $)) (-15 -4137 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -4147 ($ $ (-654 $))) (-15 -2682 ($ $ (-654 $))) (-15 -3903 ($ $)) (-15 -3222 ($ $)) (-15 -3222 ($ $ (-781))) (-15 -3430 ($ $)) (-15 -3430 ($ $ (-781))) (-15 -1598 ($ $)) (-15 -4144 ($ $ $)) (-15 -3561 ($ $)) (-15 -3561 ($ $ $)) (-15 -3561 ($ $ $ $)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2823 ($ $ $ $)) (-15 -3091 ($ $)) (-15 -3091 ($ $ $)) (-15 -3091 ($ $ $ $)) (-15 -4281 ($ $)) (-15 -4281 ($ (-654 $))) (-15 -3349 ($ $)) (-15 -3349 ($ (-654 $))) (-15 -2955 ($ $)) (-15 -2955 ($ (-654 $))) (-15 -4154 ($ (-654 $))) (-15 -1519 ($ (-654 $))) (-15 -4436 ($ (-654 $))) (-15 -2533 ($ (-654 $))) (-15 -2982 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3016 ($ $ $)) (-15 -3028 ($ $ $)) (-15 -3041 ($ $ $)) (-15 -3078 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3094 ($ $)) (-15 * ($ $ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ $)) (-15 -2825 ($ $ $)) (-15 -2785 ($ $ $)) (-15 -2798 ($ $ $)) (-15 -2838 ($ $ $)) (-15 -2088 ($ $ $)) (-15 -2099 ($ $ $)) (-15 -2077 ($ $)) (-15 -4278 ($ $ $)) (-15 -4278 ($ $))))) (T -872))
+((-1794 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-872)))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-872)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-872)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) (-3135 (*1 *1) (-5 *1 (-872))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3014 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1840 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3118 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1629 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3891 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3359 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3891 (*1 *1 *1) (-5 *1 (-872))) (-3904 (*1 *1 *1) (-5 *1 (-872))) (-3359 (*1 *1 *1) (-5 *1 (-872))) (-3237 (*1 *1 *1 *1) (-5 *1 (-872))) (-2288 (*1 *1 *1 *1) (-5 *1 (-872))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4215 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4059 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4059 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-2347 (*1 *1 *1 *1) (-5 *1 (-872))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))) (-2200 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3249 (*1 *1 *1) (-5 *1 (-872))) (-1899 (*1 *1 *1 *1) (-5 *1 (-872))) (-2031 (*1 *1 *1) (-5 *1 (-872))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872)))) (-2530 (*1 *1 *1 *1) (-5 *1 (-872))) (-1831 (*1 *1 *1) (-5 *1 (-872))) (-1831 (*1 *1 *1 *1) (-5 *1 (-872))) (-1332 (*1 *1 *1 *1) (-5 *1 (-872))) (-4399 (*1 *1 *1 *1) (-5 *1 (-872))) (-1722 (*1 *1 *1 *1) (-5 *1 (-872))) (-3319 (*1 *1 *1 *1) (-5 *1 (-872))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-2819 (*1 *1 *1 *1) (-5 *1 (-872))) (-3304 (*1 *1 *1 *1) (-5 *1 (-872))) (-3651 (*1 *1 *1 *1) (-5 *1 (-872))) (-4137 (*1 *1 *1 *1) (-5 *1 (-872))) (-2564 (*1 *1 *1 *1) (-5 *1 (-872))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2682 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3903 (*1 *1 *1) (-5 *1 (-872))) (-3222 (*1 *1 *1) (-5 *1 (-872))) (-3222 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-3430 (*1 *1 *1) (-5 *1 (-872))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-1598 (*1 *1 *1) (-5 *1 (-872))) (-4144 (*1 *1 *1 *1) (-5 *1 (-872))) (-3561 (*1 *1 *1) (-5 *1 (-872))) (-3561 (*1 *1 *1 *1) (-5 *1 (-872))) (-3561 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-2823 (*1 *1 *1) (-5 *1 (-872))) (-2823 (*1 *1 *1 *1) (-5 *1 (-872))) (-2823 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-3091 (*1 *1 *1) (-5 *1 (-872))) (-3091 (*1 *1 *1 *1) (-5 *1 (-872))) (-3091 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-4281 (*1 *1 *1) (-5 *1 (-872))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3349 (*1 *1 *1) (-5 *1 (-872))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2955 (*1 *1 *1) (-5 *1 (-872))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4436 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2533 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2982 (*1 *1 *1 *1) (-5 *1 (-872))) (-2849 (*1 *1 *1 *1) (-5 *1 (-872))) (-3005 (*1 *1 *1 *1) (-5 *1 (-872))) (-3016 (*1 *1 *1 *1) (-5 *1 (-872))) (-3028 (*1 *1 *1 *1) (-5 *1 (-872))) (-3041 (*1 *1 *1 *1) (-5 *1 (-872))) (-3078 (*1 *1 *1 *1) (-5 *1 (-872))) (-3094 (*1 *1 *1 *1) (-5 *1 (-872))) (-3094 (*1 *1 *1) (-5 *1 (-872))) (* (*1 *1 *1 *1) (-5 *1 (-872))) (-3107 (*1 *1 *1 *1) (-5 *1 (-872))) (** (*1 *1 *1 *1) (-5 *1 (-872))) (-2825 (*1 *1 *1 *1) (-5 *1 (-872))) (-2785 (*1 *1 *1 *1) (-5 *1 (-872))) (-2798 (*1 *1 *1 *1) (-5 *1 (-872))) (-2838 (*1 *1 *1 *1) (-5 *1 (-872))) (-2088 (*1 *1 *1 *1) (-5 *1 (-872))) (-2099 (*1 *1 *1 *1) (-5 *1 (-872))) (-2077 (*1 *1 *1) (-5 *1 (-872))) (-4278 (*1 *1 *1 *1) (-5 *1 (-872))) (-4278 (*1 *1 *1) (-5 *1 (-872))))
+(-13 (-1113) (-10 -8 (-15 -1794 ((-1286) $)) (-15 -2170 ($ (-1172))) (-15 -2291 ((-1286) (-1172))) (-15 -3815 ($ (-574))) (-15 -3815 ($ (-1190))) (-15 -3815 ($ (-1172))) (-15 -3815 ($ (-227))) (-15 -3135 ($)) (-15 -3144 ((-1172) (-1172))) (-15 -3014 ((-574) $)) (-15 -1840 ((-574) $)) (-15 -3014 ((-574))) (-15 -1840 ((-574))) (-15 -4354 ((-574) $)) (-15 -1814 ((-574) $)) (-15 -3018 ($ (-574))) (-15 -3118 ($ (-574))) (-15 -1629 ($ (-574) (-574))) (-15 -3891 ($ $ (-574))) (-15 -3904 ($ $ (-574))) (-15 -3359 ($ $ (-574))) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -3359 ($ $)) (-15 -3237 ($ $ $)) (-15 -2288 ($ $ $)) (-15 -3237 ($ (-654 $))) (-15 -2288 ($ (-654 $))) (-15 -4215 ($ $ (-654 $))) (-15 -4059 ($ $ (-654 $))) (-15 -4059 ($ $ $ $)) (-15 -2347 ($ $ $)) (-15 -3800 ((-112) $)) (-15 -2200 ($ $ (-654 $))) (-15 -3249 ($ $)) (-15 -1899 ($ $ $)) (-15 -2031 ($ $)) (-15 -2914 ($ (-654 (-654 $)))) (-15 -2530 ($ $ $)) (-15 -1831 ($ $)) (-15 -1831 ($ $ $)) (-15 -1332 ($ $ $)) (-15 -4399 ($ $ $)) (-15 -1722 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -3905 ($ $ (-781))) (-15 -2819 ($ $ $)) (-15 -3304 ($ $ $)) (-15 -3651 ($ $ $)) (-15 -4137 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -4147 ($ $ (-654 $))) (-15 -2682 ($ $ (-654 $))) (-15 -3903 ($ $)) (-15 -3222 ($ $)) (-15 -3222 ($ $ (-781))) (-15 -3430 ($ $)) (-15 -3430 ($ $ (-781))) (-15 -1598 ($ $)) (-15 -4144 ($ $ $)) (-15 -3561 ($ $)) (-15 -3561 ($ $ $)) (-15 -3561 ($ $ $ $)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2823 ($ $ $ $)) (-15 -3091 ($ $)) (-15 -3091 ($ $ $)) (-15 -3091 ($ $ $ $)) (-15 -4281 ($ $)) (-15 -4281 ($ (-654 $))) (-15 -3349 ($ $)) (-15 -3349 ($ (-654 $))) (-15 -2955 ($ $)) (-15 -2955 ($ (-654 $))) (-15 -4154 ($ (-654 $))) (-15 -1519 ($ (-654 $))) (-15 -4436 ($ (-654 $))) (-15 -2533 ($ (-654 $))) (-15 -2982 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3016 ($ $ $)) (-15 -3028 ($ $ $)) (-15 -3041 ($ $ $)) (-15 -3078 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3094 ($ $)) (-15 * ($ $ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ $)) (-15 -2825 ($ $ $)) (-15 -2785 ($ $ $)) (-15 -2798 ($ $ $)) (-15 -2838 ($ $ $)) (-15 -2088 ($ $ $)) (-15 -2099 ($ $ $)) (-15 -2077 ($ $)) (-15 -4278 ($ $ $)) (-15 -4278 ($ $))))
+((-2369 (((-1286) (-654 (-52))) 23)) (-3248 (((-1286) (-1172) (-872)) 13) (((-1286) (-872)) 8) (((-1286) (-1172)) 10)))
+(((-873) (-10 -7 (-15 -3248 ((-1286) (-1172))) (-15 -3248 ((-1286) (-872))) (-15 -3248 ((-1286) (-1172) (-872))) (-15 -2369 ((-1286) (-654 (-52)))))) (T -873))
+((-2369 (*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1286)) (-5 *1 (-873)))) (-3248 (*1 *2 *3 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-872)) (-5 *2 (-1286)) (-5 *1 (-873)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-873)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-873)))))
+(-10 -7 (-15 -3248 ((-1286) (-1172))) (-15 -3248 ((-1286) (-872))) (-15 -3248 ((-1286) (-1172) (-872))) (-15 -2369 ((-1286) (-654 (-52)))))
+((-2849 (((-112) $ $) NIL)) (-1489 (((-3 $ "failed") (-1190)) 36)) (-1487 (((-781)) 32)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) 29)) (-2568 (((-1172) $) 43)) (-2576 (($ (-932)) 28)) (-3966 (((-1133) $) NIL)) (-1837 (((-1190) $) 13) (((-546) $) 19) (((-903 (-388)) $) 26) (((-903 (-574)) $) 22)) (-2943 (((-872) $) 16)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 40)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 38)))
+(((-874 |#1|) (-13 (-854) (-624 (-1190)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1489 ((-3 $ "failed") (-1190))))) (-654 (-1190))) (T -874))
+((-1489 (*1 *1 *2) (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2)))))
+(-13 (-854) (-624 (-1190)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1489 ((-3 $ "failed") (-1190)))))
+((-2849 (((-112) $ $) NIL)) (-2032 (((-516) $) 9)) (-1712 (((-654 (-449)) $) 13)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 21)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 16)))
+(((-875) (-13 (-1113) (-10 -8 (-15 -2032 ((-516) $)) (-15 -1712 ((-654 (-449)) $))))) (T -875))
+((-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875)))))
+(-13 (-1113) (-10 -8 (-15 -2032 ((-516) $)) (-15 -1712 ((-654 (-449)) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-963 |#1|)) NIL) (((-963 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-4160 (((-781)) NIL T CONST)) (-1578 (((-1286) (-781)) NIL)) (-2923 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3107 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-876 |#1| |#2| |#3| |#4|) (-13 (-1062) (-500 (-963 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3107 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1578 ((-1286) (-781))))) (-1062) (-654 (-1190)) (-654 (-781)) (-781)) (T -876))
+((-3107 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-781))) (-14 *5 (-781)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-876 *4 *5 *6 *7)) (-4 *4 (-1062)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 *3)) (-14 *7 *3))))
+(-13 (-1062) (-500 (-963 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3107 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1578 ((-1286) (-781)))))
+((-3302 (((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|) 38)) (-4204 (((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|) 29)))
+(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -4204 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -3302 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) (-372) (-1272 |#1|) (-1257 |#1|)) (T -877))
+((-3302 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1272 *5)) (-4 *6 (-1257 *5)))) (-4204 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1272 *5)) (-4 *6 (-1257 *5)))))
+(-10 -7 (-15 -4204 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -3302 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|)))
+((-4204 (((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|)) 30) (((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) 28)))
+(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -4204 ((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) (-15 -4204 ((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|)))) (-372) (-1190) |#1|) (T -878))
+((-4204 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1273 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1190)) (-14 *7 *5) (-5 *2 (-417 (-1254 *6 *5))) (-5 *1 (-878 *5 *6 *7)))) (-4204 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1273 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1190)) (-14 *7 *5) (-5 *2 (-417 (-1254 *6 *5))) (-5 *1 (-878 *5 *6 *7)))))
+(-10 -7 (-15 -4204 ((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) (-15 -4204 ((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-4229 (($ $ (-574)) 68)) (-3875 (((-112) $ $) 65)) (-3670 (($) 18 T CONST)) (-1831 (($ (-1186 (-574)) (-574)) 67)) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-3635 (($ $) 70)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3593 (((-781) $) 75)) (-3965 (((-112) $) 35)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3201 (((-574)) 72)) (-3109 (((-574) $) 71)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-4344 (($ $ (-574)) 74)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-3810 (((-1170 (-574)) $) 76)) (-3156 (($ $) 73)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-3551 (((-574) $ (-574)) 69)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-879 |#1|) (-141) (-574)) (T -879))
+((-3810 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1170 (-574))))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) (-4344 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-3156 (*1 *1 *1) (-4 *1 (-879 *2))) (-3201 (*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-3635 (*1 *1 *1) (-4 *1 (-879 *2))) (-3551 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-4229 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1831 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4)))))
+(-13 (-315) (-148) (-10 -8 (-15 -3810 ((-1170 (-574)) $)) (-15 -3593 ((-781) $)) (-15 -4344 ($ $ (-574))) (-15 -3156 ($ $)) (-15 -3201 ((-574))) (-15 -3109 ((-574) $)) (-15 -3635 ($ $)) (-15 -3551 ((-574) $ (-574))) (-15 -4229 ($ $ (-574))) (-15 -1831 ($ (-1186 (-574)) (-574)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $ (-574)) NIL)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-1831 (($ (-1186 (-574)) (-574)) NIL)) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3635 (($ $) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3593 (((-781) $) NIL)) (-3965 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3201 (((-574)) NIL)) (-3109 (((-574) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4344 (($ $ (-574)) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3810 (((-1170 (-574)) $) NIL)) (-3156 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-3551 (((-574) $ (-574)) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL)))
+(((-880 |#1|) (-879 |#1|) (-574)) (T -880))
+NIL
+(-879 |#1|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-880 |#1|) (-920)))) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-880 |#1|) (-920)))) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL (|has| (-880 |#1|) (-830)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-880 |#1|) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-880 |#1|) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-880 |#1|) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-880 |#1|) (-1051 (-574))))) (-2209 (((-880 |#1|) $) NIL) (((-1190) $) NIL (|has| (-880 |#1|) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-880 |#1|) (-1051 (-574)))) (((-574) $) NIL (|has| (-880 |#1|) (-1051 (-574))))) (-1631 (($ $) NIL) (($ (-574) $) NIL)) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-880 |#1|))) (|:| |vec| (-1281 (-880 |#1|)))) (-699 $) (-1281 $)) NIL) (((-699 (-880 |#1|)) (-699 $)) NIL) (((-699 (-880 |#1|)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-880 |#1|) (-555)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3434 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-880 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-880 |#1|) (-897 (-388))))) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL)) (-2965 (((-880 |#1|) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-1165)))) (-3244 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-2106 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-1778 (($ (-1 (-880 |#1|) (-880 |#1|)) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-880 |#1|) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL (|has| (-880 |#1|) (-315)))) (-1846 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-880 |#1|) (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-880 |#1|) (-920)))) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-880 |#1|)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-880 |#1|) (-880 |#1|)) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-302 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-302 (-880 |#1|)))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-1190)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-524 (-1190) (-880 |#1|)))) (($ $ (-1190) (-880 |#1|)) NIL (|has| (-880 |#1|) (-524 (-1190) (-880 |#1|))))) (-1347 (((-781) $) NIL)) (-2200 (($ $ (-880 |#1|)) NIL (|has| (-880 |#1|) (-294 (-880 |#1|) (-880 |#1|))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $ (-1190)) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-3520 (($ $) NIL)) (-2977 (((-880 |#1|) $) NIL)) (-1837 (((-903 (-574)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-880 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-880 |#1|) (-1035))) (((-227) $) NIL (|has| (-880 |#1|) (-1035)))) (-2807 (((-176 (-417 (-574))) $) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-880 |#1|)) NIL) (($ (-1190)) NIL (|has| (-880 |#1|) (-1051 (-1190))))) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-920))) (|has| (-880 |#1|) (-146))))) (-4160 (((-781)) NIL T CONST)) (-4078 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-3551 (((-417 (-574)) $ (-574)) NIL)) (-2946 (($ $) NIL (|has| (-880 |#1|) (-830)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $ (-1190)) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3005 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3107 (($ $ $) NIL) (($ (-880 |#1|) (-880 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-880 |#1|) $) NIL) (($ $ (-880 |#1|)) NIL)))
+(((-881 |#1|) (-13 (-1005 (-880 |#1|)) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -2807 ((-176 (-417 (-574))) $)) (-15 -1631 ($ $)) (-15 -1631 ($ (-574) $)))) (-574)) (T -881))
+((-3551 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) (-1631 (*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2))))
+(-13 (-1005 (-880 |#1|)) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -2807 ((-176 (-417 (-574))) $)) (-15 -1631 ($ $)) (-15 -1631 ($ (-574) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 ((|#2| $) NIL (|has| |#2| (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL (|has| |#2| (-830)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| |#2| (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574))))) (-2209 ((|#2| $) NIL) (((-1190) $) NIL (|has| |#2| (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-574)))) (((-574) $) NIL (|has| |#2| (-1051 (-574))))) (-1631 (($ $) 35) (($ (-574) $) 38)) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) 64)) (-2820 (($) NIL (|has| |#2| (-555)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3434 (((-112) $) NIL (|has| |#2| (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#2| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#2| (-897 (-388))))) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL)) (-2965 ((|#2| $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| |#2| (-1165)))) (-3244 (((-112) $) NIL (|has| |#2| (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-860)))) (-2106 (($ $ $) NIL (|has| |#2| (-860)))) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 60)) (-3818 (($) NIL (|has| |#2| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL (|has| |#2| (-315)))) (-1846 ((|#2| $) NIL (|has| |#2| (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 |#2|) (-654 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-317 |#2|))) (($ $ (-302 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-302 |#2|))) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-1190)) (-654 |#2|)) NIL (|has| |#2| (-524 (-1190) |#2|))) (($ $ (-1190) |#2|) NIL (|has| |#2| (-524 (-1190) |#2|)))) (-1347 (((-781) $) NIL)) (-2200 (($ $ |#2|) NIL (|has| |#2| (-294 |#2| |#2|)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3520 (($ $) NIL)) (-2977 ((|#2| $) NIL)) (-1837 (((-903 (-574)) $) NIL (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#2| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#2| (-624 (-546)))) (((-388) $) NIL (|has| |#2| (-1035))) (((-227) $) NIL (|has| |#2| (-1035)))) (-2807 (((-176 (-417 (-574))) $) 78)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) 106) (($ (-574)) 20) (($ $) NIL) (($ (-417 (-574))) 25) (($ |#2|) 19) (($ (-1190)) NIL (|has| |#2| (-1051 (-1190))))) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4078 ((|#2| $) NIL (|has| |#2| (-555)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-3551 (((-417 (-574)) $ (-574)) 71)) (-2946 (($ $) NIL (|has| |#2| (-830)))) (-2134 (($) 15 T CONST)) (-2146 (($) 17 T CONST)) (-3611 (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3041 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2982 (((-112) $ $) 46)) (-3028 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3107 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3094 (($ $) 50) (($ $ $) 52)) (-3078 (($ $ $) 48)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 61)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 53) (($ $ $) 55) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
+(((-882 |#1| |#2|) (-13 (-1005 |#2|) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -2807 ((-176 (-417 (-574))) $)) (-15 -1631 ($ $)) (-15 -1631 ($ (-574) $)))) (-574) (-879 |#1|)) (T -882))
+((-3551 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5)) (-5 *3 (-574)) (-4 *5 (-879 *4)))) (-2807 (*1 *2 *1) (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))) (-1631 (*1 *1 *1) (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))))
+(-13 (-1005 |#2|) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -2807 ((-176 (-417 (-574))) $)) (-15 -1631 ($ $)) (-15 -1631 ($ (-574) $))))
+((-2849 (((-112) $ $) NIL (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))) (-2393 ((|#2| $) 12)) (-2609 (($ |#1| |#2|) 9)) (-2568 (((-1172) $) NIL (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))) (-3966 (((-1133) $) NIL (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#1| $) 11)) (-2956 (($ |#1| |#2|) 10)) (-2943 (((-872) $) 18 (-2818 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113)))))) (-2923 (((-112) $ $) NIL (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))) (-2982 (((-112) $ $) 23 (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))))
+(((-883 |#1| |#2|) (-13 (-1231) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1113)) (IF (|has| |#2| (-1113)) (-6 (-1113)) |%noBranch|) |%noBranch|) (-15 -2609 ($ |#1| |#2|)) (-15 -2956 ($ |#1| |#2|)) (-15 -2915 (|#1| $)) (-15 -2393 (|#2| $)))) (-1231) (-1231)) (T -883))
+((-2609 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1231)) (-4 *3 (-1231)))) (-2956 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1231)) (-4 *3 (-1231)))) (-2915 (*1 *2 *1) (-12 (-4 *2 (-1231)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1231)))) (-2393 (*1 *2 *1) (-12 (-4 *2 (-1231)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1231)))))
+(-13 (-1231) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1113)) (IF (|has| |#2| (-1113)) (-6 (-1113)) |%noBranch|) |%noBranch|) (-15 -2609 ($ |#1| |#2|)) (-15 -2956 ($ |#1| |#2|)) (-15 -2915 (|#1| $)) (-15 -2393 (|#2| $))))
+((-2849 (((-112) $ $) NIL)) (-1667 (((-574) $) 16)) (-3869 (($ (-158)) 13)) (-1902 (($ (-158)) 14)) (-2568 (((-1172) $) NIL)) (-1887 (((-158) $) 15)) (-3966 (((-1133) $) NIL)) (-4129 (($ (-158)) 11)) (-3064 (($ (-158)) 10)) (-2943 (((-872) $) 24) (($ (-158)) 17)) (-2619 (($ (-158)) 12)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-884) (-13 (-1113) (-10 -8 (-15 -3064 ($ (-158))) (-15 -4129 ($ (-158))) (-15 -2619 ($ (-158))) (-15 -3869 ($ (-158))) (-15 -1902 ($ (-158))) (-15 -1887 ((-158) $)) (-15 -1667 ((-574) $)) (-15 -2943 ($ (-158)))))) (T -884))
+((-3064 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-1667 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
+(-13 (-1113) (-10 -8 (-15 -3064 ($ (-158))) (-15 -4129 ($ (-158))) (-15 -2619 ($ (-158))) (-15 -3869 ($ (-158))) (-15 -1902 ($ (-158))) (-15 -1887 ((-158) $)) (-15 -1667 ((-574) $)) (-15 -2943 ($ (-158)))))
+((-2943 (((-324 (-574)) (-417 (-963 (-48)))) 23) (((-324 (-574)) (-963 (-48))) 18)))
+(((-885) (-10 -7 (-15 -2943 ((-324 (-574)) (-963 (-48)))) (-15 -2943 ((-324 (-574)) (-417 (-963 (-48))))))) (T -885))
+((-2943 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 (-48)))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-963 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))))
+(-10 -7 (-15 -2943 ((-324 (-574)) (-963 (-48)))) (-15 -2943 ((-324 (-574)) (-417 (-963 (-48))))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 18) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2123 (((-112) $ (|[\|\|]| (-516))) 9) (((-112) $ (|[\|\|]| (-1172))) 13)) (-2923 (((-112) $ $) NIL)) (-1331 (((-516) $) 10) (((-1172) $) 14)) (-2982 (((-112) $ $) 15)))
+(((-886) (-13 (-1096) (-1276) (-10 -8 (-15 -2123 ((-112) $ (|[\|\|]| (-516)))) (-15 -1331 ((-516) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1172)))) (-15 -1331 ((-1172) $))))) (T -886))
+((-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-886)))))
+(-13 (-1096) (-1276) (-10 -8 (-15 -2123 ((-112) $ (|[\|\|]| (-516)))) (-15 -1331 ((-516) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1172)))) (-15 -1331 ((-1172) $))))
+((-1778 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -1778 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1231) (-1231)) (T -887))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
+(-10 -7 (-15 -1778 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
+((-1538 (($ |#1| |#1|) 8)) (-2298 ((|#1| $ (-781)) 15)))
+(((-888 |#1|) (-10 -8 (-15 -1538 ($ |#1| |#1|)) (-15 -2298 (|#1| $ (-781)))) (-1231)) (T -888))
+((-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1231)))) (-1538 (*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1231)))))
+(-10 -8 (-15 -1538 ($ |#1| |#1|)) (-15 -2298 (|#1| $ (-781))))
+((-1778 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15)))
+(((-889 |#1| |#2|) (-10 -7 (-15 -1778 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1231) (-1231)) (T -889))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))))
+(-10 -7 (-15 -1778 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|))))
+((-1538 (($ |#1| |#1| |#1|) 8)) (-2298 ((|#1| $ (-781)) 15)))
+(((-890 |#1|) (-10 -8 (-15 -1538 ($ |#1| |#1| |#1|)) (-15 -2298 (|#1| $ (-781)))) (-1231)) (T -890))
+((-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1231)))) (-1538 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1231)))))
+(-10 -8 (-15 -1538 ($ |#1| |#1| |#1|)) (-15 -2298 (|#1| $ (-781))))
+((-3696 (((-654 (-1195)) (-1172)) 9)))
+(((-891) (-10 -7 (-15 -3696 ((-654 (-1195)) (-1172))))) (T -891))
+((-3696 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-1195))) (-5 *1 (-891)))))
+(-10 -7 (-15 -3696 ((-654 (-1195)) (-1172))))
+((-1778 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15)))
+(((-892 |#1| |#2|) (-10 -7 (-15 -1778 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1231) (-1231)) (T -892))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))))
+(-10 -7 (-15 -1778 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|))))
+((-4290 (($ |#1| |#1| |#1|) 8)) (-2298 ((|#1| $ (-781)) 15)))
+(((-893 |#1|) (-10 -8 (-15 -4290 ($ |#1| |#1| |#1|)) (-15 -2298 (|#1| $ (-781)))) (-1231)) (T -893))
+((-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1231)))) (-4290 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1231)))))
+(-10 -8 (-15 -4290 ($ |#1| |#1| |#1|)) (-15 -2298 (|#1| $ (-781))))
+((-4328 (((-1170 (-654 (-574))) (-654 (-574)) (-1170 (-654 (-574)))) 41)) (-3121 (((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574))) 31)) (-1881 (((-1170 (-654 (-574))) (-654 (-574))) 53) (((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574))) 50)) (-4148 (((-1170 (-654 (-574))) (-574)) 55)) (-2481 (((-1170 (-654 (-932))) (-1170 (-654 (-932)))) 22)) (-1514 (((-654 (-932)) (-654 (-932))) 18)))
+(((-894) (-10 -7 (-15 -1514 ((-654 (-932)) (-654 (-932)))) (-15 -2481 ((-1170 (-654 (-932))) (-1170 (-654 (-932))))) (-15 -3121 ((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -4328 ((-1170 (-654 (-574))) (-654 (-574)) (-1170 (-654 (-574))))) (-15 -1881 ((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -1881 ((-1170 (-654 (-574))) (-654 (-574)))) (-15 -4148 ((-1170 (-654 (-574))) (-574))))) (T -894))
+((-4148 (*1 *2 *3) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574)))) (-1881 (*1 *2 *3) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-1881 (*1 *2 *3 *3) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-4328 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *3 (-654 (-574))) (-5 *1 (-894)))) (-3121 (*1 *2 *3 *3) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-1170 (-654 (-932)))) (-5 *1 (-894)))) (-1514 (*1 *2 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-894)))))
+(-10 -7 (-15 -1514 ((-654 (-932)) (-654 (-932)))) (-15 -2481 ((-1170 (-654 (-932))) (-1170 (-654 (-932))))) (-15 -3121 ((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -4328 ((-1170 (-654 (-574))) (-654 (-574)) (-1170 (-654 (-574))))) (-15 -1881 ((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -1881 ((-1170 (-654 (-574))) (-654 (-574)))) (-15 -4148 ((-1170 (-654 (-574))) (-574))))
+((-1837 (((-903 (-388)) $) 9 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 8 (|has| |#1| (-624 (-903 (-574)))))))
+(((-895 |#1|) (-141) (-1231)) (T -895))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|)))
+(((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))))
+((-2849 (((-112) $ $) NIL)) (-3790 (($) 14)) (-3401 (($ (-900 |#1| |#2|) (-900 |#1| |#3|)) 28)) (-3653 (((-900 |#1| |#3|) $) 16)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3029 (((-112) $) 22)) (-3601 (($) 19)) (-2943 (((-872) $) 31)) (-2923 (((-112) $ $) NIL)) (-2299 (((-900 |#1| |#2|) $) 15)) (-2982 (((-112) $ $) 26)))
+(((-896 |#1| |#2| |#3|) (-13 (-1113) (-10 -8 (-15 -3029 ((-112) $)) (-15 -3601 ($)) (-15 -3790 ($)) (-15 -3401 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -2299 ((-900 |#1| |#2|) $)) (-15 -3653 ((-900 |#1| |#3|) $)))) (-1113) (-1113) (-676 |#2|)) (T -896))
+((-3029 (*1 *2 *1) (-12 (-4 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1113)) (-4 *5 (-676 *4)))) (-3601 (*1 *1) (-12 (-4 *3 (-1113)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1113)) (-4 *4 (-676 *3)))) (-3790 (*1 *1) (-12 (-4 *3 (-1113)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1113)) (-4 *4 (-676 *3)))) (-3401 (*1 *1 *2 *3) (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6)))) (-2299 (*1 *2 *1) (-12 (-4 *4 (-1113)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1113)) (-4 *5 (-676 *4)))) (-3653 (*1 *2 *1) (-12 (-4 *4 (-1113)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1113)) (-4 *5 (-676 *4)))))
+(-13 (-1113) (-10 -8 (-15 -3029 ((-112) $)) (-15 -3601 ($)) (-15 -3790 ($)) (-15 -3401 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -2299 ((-900 |#1| |#2|) $)) (-15 -3653 ((-900 |#1| |#3|) $))))
+((-2849 (((-112) $ $) 7)) (-2961 (((-900 |#1| $) $ (-903 |#1|) (-900 |#1| $)) 14)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-897 |#1|) (-141) (-1113)) (T -897))
+((-2961 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) (-4 *4 (-1113)))))
+(-13 (-1113) (-10 -8 (-15 -2961 ((-900 |t#1| $) $ (-903 |t#1|) (-900 |t#1| $)))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2884 (((-112) (-654 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2539 (((-900 |#1| |#2|) |#2| |#3|) 45 (-12 (-2077 (|has| |#2| (-1051 (-1190)))) (-2077 (|has| |#2| (-1062))))) (((-654 (-302 (-963 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1062)) (-2077 (|has| |#2| (-1051 (-1190)))))) (((-654 (-302 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1051 (-1190)))) (((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|) 21)))
+(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -2884 ((-112) |#2| |#3|)) (-15 -2884 ((-112) (-654 |#2|) |#3|)) (-15 -2539 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1051 (-1190))) (-15 -2539 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1062)) (-15 -2539 ((-654 (-302 (-963 |#2|))) |#2| |#3|)) (-15 -2539 ((-900 |#1| |#2|) |#2| |#3|))))) (-1113) (-897 |#1|) (-624 (-903 |#1|))) (T -898))
+((-2539 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) (-2077 (-4 *3 (-1051 (-1190)))) (-2077 (-4 *3 (-1062))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-2539 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-5 *2 (-654 (-302 (-963 *3)))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1062)) (-2077 (-4 *3 (-1051 (-1190)))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-2539 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1051 (-1190))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-2539 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) (-2884 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5))))) (-2884 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))))
+(-10 -7 (-15 -2884 ((-112) |#2| |#3|)) (-15 -2884 ((-112) (-654 |#2|) |#3|)) (-15 -2539 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1051 (-1190))) (-15 -2539 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1062)) (-15 -2539 ((-654 (-302 (-963 |#2|))) |#2| |#3|)) (-15 -2539 ((-900 |#1| |#2|) |#2| |#3|)))))
+((-1778 (((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)) 22)))
+(((-899 |#1| |#2| |#3|) (-10 -7 (-15 -1778 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) (-1113) (-1113) (-1113)) (T -899))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-900 *5 *7)) (-5 *1 (-899 *5 *6 *7)))))
+(-10 -7 (-15 -1778 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|))))
+((-2849 (((-112) $ $) NIL)) (-4359 (($ $ $) 40)) (-3395 (((-3 (-112) "failed") $ (-903 |#1|)) 37)) (-3790 (($) 12)) (-2568 (((-1172) $) NIL)) (-2482 (($ (-903 |#1|) |#2| $) 20)) (-3966 (((-1133) $) NIL)) (-3968 (((-3 |#2| "failed") (-903 |#1|) $) 51)) (-3029 (((-112) $) 15)) (-3601 (($) 13)) (-4293 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1909 |#2|))) $) 25)) (-2956 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 |#2|)))) 23)) (-2943 (((-872) $) 45)) (-2923 (((-112) $ $) NIL)) (-3250 (($ (-903 |#1|) |#2| $ |#2|) 49)) (-3880 (($ (-903 |#1|) |#2| $) 48)) (-2982 (((-112) $ $) 42)))
+(((-900 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -3029 ((-112) $)) (-15 -3601 ($)) (-15 -3790 ($)) (-15 -4359 ($ $ $)) (-15 -3968 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -3880 ($ (-903 |#1|) |#2| $)) (-15 -2482 ($ (-903 |#1|) |#2| $)) (-15 -3250 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4293 ((-654 (-2 (|:| -3693 (-1190)) (|:| -1909 |#2|))) $)) (-15 -2956 ($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 |#2|))))) (-15 -3395 ((-3 (-112) "failed") $ (-903 |#1|))))) (-1113) (-1113)) (T -900))
+((-3029 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-3601 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-3790 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-4359 (*1 *1 *1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-3968 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-4 *2 (-1113)) (-5 *1 (-900 *4 *2)))) (-3880 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1113)))) (-2482 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1113)))) (-3250 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1113)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 *4)))) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 *4)))) (-4 *4 (-1113)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)))) (-3395 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1113)))))
+(-13 (-1113) (-10 -8 (-15 -3029 ((-112) $)) (-15 -3601 ($)) (-15 -3790 ($)) (-15 -4359 ($ $ $)) (-15 -3968 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -3880 ($ (-903 |#1|) |#2| $)) (-15 -2482 ($ (-903 |#1|) |#2| $)) (-15 -3250 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4293 ((-654 (-2 (|:| -3693 (-1190)) (|:| -1909 |#2|))) $)) (-15 -2956 ($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 |#2|))))) (-15 -3395 ((-3 (-112) "failed") $ (-903 |#1|)))))
+((-2571 (((-903 |#1|) (-903 |#1|) (-654 (-1190)) (-1 (-112) (-654 |#2|))) 32) (((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|))) 46) (((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|)) 35)) (-3395 (((-112) (-654 |#2|) (-903 |#1|)) 42) (((-112) |#2| (-903 |#1|)) 36)) (-2515 (((-1 (-112) |#2|) (-903 |#1|)) 16)) (-1961 (((-654 |#2|) (-903 |#1|)) 24)) (-4184 (((-903 |#1|) (-903 |#1|) |#2|) 20)))
+(((-901 |#1| |#2|) (-10 -7 (-15 -2571 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2571 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2571 ((-903 |#1|) (-903 |#1|) (-654 (-1190)) (-1 (-112) (-654 |#2|)))) (-15 -2515 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -3395 ((-112) |#2| (-903 |#1|))) (-15 -3395 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -4184 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -1961 ((-654 |#2|) (-903 |#1|)))) (-1113) (-1231)) (T -901))
+((-1961 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-654 *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1231)))) (-4184 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1231)))) (-3395 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6)))) (-3395 (*1 *2 *3 *4) (-12 (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-901 *5 *3)) (-4 *3 (-1231)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1231)))) (-2571 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1190))) (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *1 (-901 *5 *6)))) (-2571 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1113)) (-4 *5 (-1231)) (-5 *1 (-901 *4 *5)))) (-2571 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1113)) (-4 *5 (-1231)) (-5 *1 (-901 *4 *5)))))
+(-10 -7 (-15 -2571 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2571 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2571 ((-903 |#1|) (-903 |#1|) (-654 (-1190)) (-1 (-112) (-654 |#2|)))) (-15 -2515 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -3395 ((-112) |#2| (-903 |#1|))) (-15 -3395 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -4184 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -1961 ((-654 |#2|) (-903 |#1|))))
+((-1778 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 19)))
+(((-902 |#1| |#2|) (-10 -7 (-15 -1778 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1113) (-1113)) (T -902))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))))
+(-10 -7 (-15 -1778 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|))))
+((-2849 (((-112) $ $) NIL)) (-2549 (($ $ (-654 (-52))) 74)) (-4355 (((-654 $) $) 139)) (-3133 (((-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52))) $) 30)) (-4244 (((-112) $) 35)) (-4174 (($ $ (-654 (-1190)) (-52)) 31)) (-3725 (($ $ (-654 (-52))) 73)) (-1697 (((-3 |#1| "failed") $) 71) (((-3 (-1190) "failed") $) 164)) (-2209 ((|#1| $) 68) (((-1190) $) NIL)) (-3728 (($ $) 126)) (-4055 (((-112) $) 55)) (-1414 (((-654 (-52)) $) 50)) (-3203 (($ (-1190) (-112) (-112) (-112)) 75)) (-3938 (((-3 (-654 $) "failed") (-654 $)) 82)) (-4400 (((-112) $) 58)) (-3191 (((-112) $) 57)) (-2568 (((-1172) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) 41)) (-1781 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4428 (((-3 (-2 (|:| |val| $) (|:| -2524 $)) "failed") $) 97)) (-3405 (((-3 (-654 $) "failed") $) 40)) (-1628 (((-3 (-654 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 $))) "failed") $) 107)) (-2489 (((-3 (-654 $) "failed") $) 42)) (-3092 (((-3 (-2 (|:| |val| $) (|:| -2524 (-781))) "failed") $) 45)) (-1430 (((-112) $) 34)) (-3966 (((-1133) $) NIL)) (-2839 (((-112) $) 28)) (-4271 (((-112) $) 52)) (-3227 (((-654 (-52)) $) 130)) (-2104 (((-112) $) 56)) (-2200 (($ (-115) (-654 $)) 104)) (-4303 (((-781) $) 33)) (-3167 (($ $) 72)) (-1837 (($ (-654 $)) 69)) (-2450 (((-112) $) 32)) (-2943 (((-872) $) 63) (($ |#1|) 23) (($ (-1190)) 76)) (-2923 (((-112) $ $) NIL)) (-4184 (($ $ (-52)) 129)) (-2134 (($) 103 T CONST)) (-2146 (($) 83 T CONST)) (-2982 (((-112) $ $) 93)) (-3107 (($ $ $) 117)) (-3078 (($ $ $) 121)) (** (($ $ (-781)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
+(((-903 |#1|) (-13 (-1113) (-1051 |#1|) (-1051 (-1190)) (-10 -8 (-15 0 ($) -1707) (-15 1 ($) -1707) (-15 -3405 ((-3 (-654 $) "failed") $)) (-15 -2357 ((-3 (-654 $) "failed") $)) (-15 -1628 ((-3 (-654 $) "failed") $ (-115))) (-15 -1628 ((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -3092 ((-3 (-2 (|:| |val| $) (|:| -2524 (-781))) "failed") $)) (-15 -1781 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2489 ((-3 (-654 $) "failed") $)) (-15 -4428 ((-3 (-2 (|:| |val| $) (|:| -2524 $)) "failed") $)) (-15 -2200 ($ (-115) (-654 $))) (-15 -3078 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3107 ($ $ $)) (-15 -4303 ((-781) $)) (-15 -1837 ($ (-654 $))) (-15 -3167 ($ $)) (-15 -1430 ((-112) $)) (-15 -4055 ((-112) $)) (-15 -4244 ((-112) $)) (-15 -2450 ((-112) $)) (-15 -2104 ((-112) $)) (-15 -3191 ((-112) $)) (-15 -4400 ((-112) $)) (-15 -4271 ((-112) $)) (-15 -1414 ((-654 (-52)) $)) (-15 -3725 ($ $ (-654 (-52)))) (-15 -2549 ($ $ (-654 (-52)))) (-15 -3203 ($ (-1190) (-112) (-112) (-112))) (-15 -4174 ($ $ (-654 (-1190)) (-52))) (-15 -3133 ((-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52))) $)) (-15 -2839 ((-112) $)) (-15 -3728 ($ $)) (-15 -4184 ($ $ (-52))) (-15 -3227 ((-654 (-52)) $)) (-15 -4355 ((-654 $) $)) (-15 -3938 ((-3 (-654 $) "failed") (-654 $))))) (-1113)) (T -903))
+((-2134 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-2146 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-3405 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2357 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-1628 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1113)))) (-1628 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 (-903 *3))))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3092 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2524 (-781)))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-1781 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2489 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4428 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2524 (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2200 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1113)))) (-3078 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-3107 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3167 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4244 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3725 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3203 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-112)) (-5 *1 (-903 *4)) (-4 *4 (-1113)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-52)) (-5 *1 (-903 *4)) (-4 *4 (-1113)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52)))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3728 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-4184 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3938 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(-13 (-1113) (-1051 |#1|) (-1051 (-1190)) (-10 -8 (-15 (-2134) ($) -1707) (-15 (-2146) ($) -1707) (-15 -3405 ((-3 (-654 $) "failed") $)) (-15 -2357 ((-3 (-654 $) "failed") $)) (-15 -1628 ((-3 (-654 $) "failed") $ (-115))) (-15 -1628 ((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -3092 ((-3 (-2 (|:| |val| $) (|:| -2524 (-781))) "failed") $)) (-15 -1781 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2489 ((-3 (-654 $) "failed") $)) (-15 -4428 ((-3 (-2 (|:| |val| $) (|:| -2524 $)) "failed") $)) (-15 -2200 ($ (-115) (-654 $))) (-15 -3078 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3107 ($ $ $)) (-15 -4303 ((-781) $)) (-15 -1837 ($ (-654 $))) (-15 -3167 ($ $)) (-15 -1430 ((-112) $)) (-15 -4055 ((-112) $)) (-15 -4244 ((-112) $)) (-15 -2450 ((-112) $)) (-15 -2104 ((-112) $)) (-15 -3191 ((-112) $)) (-15 -4400 ((-112) $)) (-15 -4271 ((-112) $)) (-15 -1414 ((-654 (-52)) $)) (-15 -3725 ($ $ (-654 (-52)))) (-15 -2549 ($ $ (-654 (-52)))) (-15 -3203 ($ (-1190) (-112) (-112) (-112))) (-15 -4174 ($ $ (-654 (-1190)) (-52))) (-15 -3133 ((-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52))) $)) (-15 -2839 ((-112) $)) (-15 -3728 ($ $)) (-15 -4184 ($ $ (-52))) (-15 -3227 ((-654 (-52)) $)) (-15 -4355 ((-654 $) $)) (-15 -3938 ((-3 (-654 $) "failed") (-654 $)))))
+((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) 19)) (-4217 (((-112) $) 49)) (-1697 (((-3 (-682 |#1|) "failed") $) 56)) (-2209 (((-682 |#1|) $) 54)) (-2926 (($ $) 23)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-4135 (((-781) $) 61)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-682 |#1|) $) 21)) (-2943 (((-872) $) 47) (($ (-682 |#1|)) 26) (((-829 |#1|) $) 36) (($ |#1|) 25)) (-2923 (((-112) $ $) NIL)) (-2146 (($) 9 T CONST)) (-3251 (((-654 (-682 |#1|)) $) 28)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 12)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 67)))
+(((-904 |#1|) (-13 (-860) (-1051 (-682 |#1|)) (-10 -8 (-15 1 ($) -1707) (-15 -2943 ((-829 |#1|) $)) (-15 -2943 ($ |#1|)) (-15 -2915 ((-682 |#1|) $)) (-15 -4135 ((-781) $)) (-15 -3251 ((-654 (-682 |#1|)) $)) (-15 -2926 ($ $)) (-15 -4217 ((-112) $)) (-15 -1655 ((-654 |#1|) $)))) (-860)) (T -904))
+((-2146 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2943 (*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))))
+(-13 (-860) (-1051 (-682 |#1|)) (-10 -8 (-15 (-2146) ($) -1707) (-15 -2943 ((-829 |#1|) $)) (-15 -2943 ($ |#1|)) (-15 -2915 ((-682 |#1|) $)) (-15 -4135 ((-781) $)) (-15 -3251 ((-654 (-682 |#1|)) $)) (-15 -2926 ($ $)) (-15 -4217 ((-112) $)) (-15 -1655 ((-654 |#1|) $))))
+((-1390 ((|#1| |#1| |#1|) 19)))
+(((-905 |#1| |#2|) (-10 -7 (-15 -1390 (|#1| |#1| |#1|))) (-1257 |#2|) (-1062)) (T -905))
+((-1390 (*1 *2 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1257 *3)))))
+(-10 -7 (-15 -1390 (|#1| |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-3284 (((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-1827 (((-1048) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 14)) (-2982 (((-112) $ $) 6)))
+(((-906) (-141)) (T -906))
+((-3284 (*1 *2 *3 *4) (-12 (-4 *1 (-906)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172)))))) (-1827 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *2 (-1048)))))
+(-13 (-1113) (-10 -7 (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))) (-15 -1827 ((-1048) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-3175 ((|#1| |#1| (-781)) 27)) (-2541 (((-3 |#1| "failed") |#1| |#1|) 24)) (-1650 (((-3 (-2 (|:| -3891 |#1|) (|:| -3904 |#1|)) "failed") |#1| (-781) (-781)) 30) (((-654 |#1|) |#1|) 38)))
+(((-907 |#1| |#2|) (-10 -7 (-15 -1650 ((-654 |#1|) |#1|)) (-15 -1650 ((-3 (-2 (|:| -3891 |#1|) (|:| -3904 |#1|)) "failed") |#1| (-781) (-781))) (-15 -2541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3175 (|#1| |#1| (-781)))) (-1257 |#2|) (-372)) (T -907))
+((-3175 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-907 *2 *4)) (-4 *2 (-1257 *4)))) (-2541 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1257 *3)))) (-1650 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -3891 *3) (|:| -3904 *3))) (-5 *1 (-907 *3 *5)) (-4 *3 (-1257 *5)))) (-1650 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-907 *3 *4)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -1650 ((-654 |#1|) |#1|)) (-15 -1650 ((-3 (-2 (|:| -3891 |#1|) (|:| -3904 |#1|)) "failed") |#1| (-781) (-781))) (-15 -2541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3175 (|#1| |#1| (-781))))
+((-1723 (((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172)) 104) (((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172) (-227)) 100) (((-1048) (-909) (-1076)) 92) (((-1048) (-909)) 93)) (-3284 (((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909) (-1076)) 62) (((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909)) 64)))
+(((-908) (-10 -7 (-15 -1723 ((-1048) (-909))) (-15 -1723 ((-1048) (-909) (-1076))) (-15 -1723 ((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172) (-227))) (-15 -1723 ((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909) (-1076))))) (T -908))
+((-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1076)) (-5 *2 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-908)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-908)))) (-1723 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1172)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1048)) (-5 *1 (-908)))) (-1723 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1172)) (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1048)) (-5 *1 (-908)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-908)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1048)) (-5 *1 (-908)))))
+(-10 -7 (-15 -1723 ((-1048) (-909))) (-15 -1723 ((-1048) (-909) (-1076))) (-15 -1723 ((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172) (-227))) (-15 -1723 ((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909))) (-15 -3284 ((-2 (|:| -3284 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909) (-1076))))
+((-2849 (((-112) $ $) NIL)) (-2209 (((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))) $) 19)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 21) (($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 18)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-909) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))) (-15 -2209 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))) $))))) (T -909))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *1 (-909)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *1 (-909)))))
+(-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))) (-15 -2209 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))) $))))
+((-3905 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) 10) (($ $ |#2| (-781)) 12) (($ $ (-654 |#2|) (-654 (-781))) 15)) (-3611 (($ $ |#2|) 16) (($ $ (-654 |#2|)) 18) (($ $ |#2| (-781)) 19) (($ $ (-654 |#2|) (-654 (-781))) 21)))
+(((-910 |#1| |#2|) (-10 -8 (-15 -3611 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3611 (|#1| |#1| |#2| (-781))) (-15 -3611 (|#1| |#1| (-654 |#2|))) (-15 -3611 (|#1| |#1| |#2|)) (-15 -3905 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3905 (|#1| |#1| |#2| (-781))) (-15 -3905 (|#1| |#1| (-654 |#2|))) (-15 -3905 (|#1| |#1| |#2|))) (-911 |#2|) (-1113)) (T -910))
+NIL
+(-10 -8 (-15 -3611 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3611 (|#1| |#1| |#2| (-781))) (-15 -3611 (|#1| |#1| (-654 |#2|))) (-15 -3611 (|#1| |#1| |#2|)) (-15 -3905 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3905 (|#1| |#1| |#2| (-781))) (-15 -3905 (|#1| |#1| (-654 |#2|))) (-15 -3905 (|#1| |#1| |#2|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3905 (($ $ |#1|) 46) (($ $ (-654 |#1|)) 45) (($ $ |#1| (-781)) 44) (($ $ (-654 |#1|) (-654 (-781))) 43)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ |#1|) 42) (($ $ (-654 |#1|)) 41) (($ $ |#1| (-781)) 40) (($ $ (-654 |#1|) (-654 (-781))) 39)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-911 |#1|) (-141) (-1113)) (T -911))
+((-3905 (*1 *1 *1 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1113)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-911 *3)) (-4 *3 (-1113)))) (-3905 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-911 *2)) (-4 *2 (-1113)))) (-3905 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-911 *4)) (-4 *4 (-1113)))) (-3611 (*1 *1 *1 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1113)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-911 *3)) (-4 *3 (-1113)))) (-3611 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-911 *2)) (-4 *2 (-1113)))) (-3611 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-911 *4)) (-4 *4 (-1113)))))
+(-13 (-1062) (-10 -8 (-15 -3905 ($ $ |t#1|)) (-15 -3905 ($ $ (-654 |t#1|))) (-15 -3905 ($ $ |t#1| (-781))) (-15 -3905 ($ $ (-654 |t#1|) (-654 (-781)))) (-15 -3611 ($ $ |t#1|)) (-15 -3611 ($ $ (-654 |t#1|))) (-15 -3611 ($ $ |t#1| (-781))) (-15 -3611 ($ $ (-654 |t#1|) (-654 (-781))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 26)) (-3340 (((-112) $ (-781)) NIL)) (-1630 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-4333 (($ $ $) NIL (|has| $ (-6 -4457)))) (-3186 (($ $ $) NIL (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-3904 (($ $) 25)) (-3801 (($ |#1|) 12) (($ $ $) 17)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-3891 (($ $) 23)) (-3509 (((-654 |#1|) $) NIL)) (-2173 (((-112) $) 20)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1556 (((-574) $ $) NIL)) (-4023 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1217 |#1|) $) 9) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 21 (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-912 |#1|) (-13 (-120 |#1|) (-623 (-1217 |#1|)) (-10 -8 (-15 -3801 ($ |#1|)) (-15 -3801 ($ $ $)))) (-1113)) (T -912))
+((-3801 (*1 *1 *2) (-12 (-5 *1 (-912 *2)) (-4 *2 (-1113)))) (-3801 (*1 *1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-1113)))))
+(-13 (-120 |#1|) (-623 (-1217 |#1|)) (-10 -8 (-15 -3801 ($ |#1|)) (-15 -3801 ($ $ $))))
+((-3425 ((|#2| (-1155 |#1| |#2|)) 48)))
+(((-913 |#1| |#2|) (-10 -7 (-15 -3425 (|#2| (-1155 |#1| |#2|)))) (-932) (-13 (-1062) (-10 -7 (-6 (-4458 "*"))))) (T -913))
+((-3425 (*1 *2 *3) (-12 (-5 *3 (-1155 *4 *2)) (-14 *4 (-932)) (-4 *2 (-13 (-1062) (-10 -7 (-6 (-4458 "*"))))) (-5 *1 (-913 *4 *2)))))
+(-10 -7 (-15 -3425 (|#2| (-1155 |#1| |#2|))))
+((-2849 (((-112) $ $) 7)) (-1920 (((-1115 |#1|) $) 35)) (-3670 (($) 19 T CONST)) (-1950 (((-3 $ "failed") $) 16)) (-2769 (((-1115 |#1|) $ |#1|) 34)) (-3965 (((-112) $) 18)) (-3658 (($ $ $) 32 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2106 (($ $ $) 31 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2568 (((-1172) $) 10)) (-1324 (($ $) 25)) (-3966 (((-1133) $) 11)) (-2200 ((|#1| $ |#1|) 38)) (-2017 (($ (-654 (-654 |#1|))) 36)) (-2098 (($ (-654 |#1|)) 37)) (-1514 (($ $ $) 22)) (-3647 (($ $ $) 21)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2146 (($) 20 T CONST)) (-3041 (((-112) $ $) 29 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3016 (((-112) $ $) 28 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 30 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3005 (((-112) $ $) 33)) (-3107 (($ $ $) 24)) (** (($ $ (-932)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15)))
+(((-914 |#1|) (-141) (-1113)) (T -914))
+((-2098 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-914 *3)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-4 *1 (-914 *3)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-1115 *3)))) (-2769 (*1 *2 *1 *3) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-1115 *3)))) (-3005 (*1 *2 *1 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))))
+(-13 (-483) (-294 |t#1| |t#1|) (-10 -8 (-15 -2098 ($ (-654 |t#1|))) (-15 -2017 ($ (-654 (-654 |t#1|)))) (-15 -1920 ((-1115 |t#1|) $)) (-15 -2769 ((-1115 |t#1|) $ |t#1|)) (-15 -3005 ((-112) $ $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-377)) (-6 (-860)) |%noBranch|)))
+(((-102) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-483) . T) ((-736) . T) ((-860) -2818 (|has| |#1| (-860)) (|has| |#1| (-377))) ((-1125) . T) ((-1113) . T) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-2071 (((-654 (-654 (-781))) $) 160)) (-2857 (((-654 (-781)) (-916 |#1|) $) 188)) (-2456 (((-654 (-781)) (-916 |#1|) $) 189)) (-1920 (((-1115 |#1|) $) 152)) (-3309 (((-654 (-916 |#1|)) $) 149)) (-2820 (((-916 |#1|) $ (-574)) 154) (((-916 |#1|) $) 155)) (-2172 (($ (-654 (-916 |#1|))) 162)) (-3593 (((-781) $) 156)) (-1329 (((-1115 (-1115 |#1|)) $) 186)) (-2769 (((-1115 |#1|) $ |#1|) 177) (((-1115 (-1115 |#1|)) $ (-1115 |#1|)) 197) (((-1115 (-654 |#1|)) $ (-654 |#1|)) 200)) (-3759 (((-112) (-916 |#1|) $) 137)) (-2568 (((-1172) $) NIL)) (-2506 (((-1286) $) 142) (((-1286) $ (-574) (-574)) 201)) (-3966 (((-1133) $) NIL)) (-1935 (((-654 (-916 |#1|)) $) 143)) (-2200 (((-916 |#1|) $ (-781)) 150)) (-1784 (((-781) $) 157)) (-2943 (((-872) $) 174) (((-654 (-916 |#1|)) $) 28) (($ (-654 (-916 |#1|))) 161)) (-2923 (((-112) $ $) NIL)) (-2629 (((-654 |#1|) $) 159)) (-2982 (((-112) $ $) 194)) (-3028 (((-112) $ $) 192)) (-3005 (((-112) $ $) 191)))
+(((-915 |#1|) (-13 (-1113) (-10 -8 (-15 -2943 ((-654 (-916 |#1|)) $)) (-15 -1935 ((-654 (-916 |#1|)) $)) (-15 -2200 ((-916 |#1|) $ (-781))) (-15 -2820 ((-916 |#1|) $ (-574))) (-15 -2820 ((-916 |#1|) $)) (-15 -3593 ((-781) $)) (-15 -1784 ((-781) $)) (-15 -2629 ((-654 |#1|) $)) (-15 -3309 ((-654 (-916 |#1|)) $)) (-15 -2071 ((-654 (-654 (-781))) $)) (-15 -2943 ($ (-654 (-916 |#1|)))) (-15 -2172 ($ (-654 (-916 |#1|)))) (-15 -2769 ((-1115 |#1|) $ |#1|)) (-15 -1329 ((-1115 (-1115 |#1|)) $)) (-15 -2769 ((-1115 (-1115 |#1|)) $ (-1115 |#1|))) (-15 -2769 ((-1115 (-654 |#1|)) $ (-654 |#1|))) (-15 -3759 ((-112) (-916 |#1|) $)) (-15 -2857 ((-654 (-781)) (-916 |#1|) $)) (-15 -2456 ((-654 (-781)) (-916 |#1|) $)) (-15 -1920 ((-1115 |#1|) $)) (-15 -3005 ((-112) $ $)) (-15 -3028 ((-112) $ $)) (-15 -2506 ((-1286) $)) (-15 -2506 ((-1286) $ (-574) (-574))))) (-1113)) (T -915))
+((-2943 (*1 *2 *1) (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-916 *4)) (-5 *1 (-915 *4)) (-4 *4 (-1113)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-916 *4)) (-5 *1 (-915 *4)) (-4 *4 (-1113)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-916 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-916 *3))) (-4 *3 (-1113)) (-5 *1 (-915 *3)))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-654 (-916 *3))) (-4 *3 (-1113)) (-5 *1 (-915 *3)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-1115 (-1115 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2769 (*1 *2 *1 *3) (-12 (-4 *4 (-1113)) (-5 *2 (-1115 (-1115 *4))) (-5 *1 (-915 *4)) (-5 *3 (-1115 *4)))) (-2769 (*1 *2 *1 *3) (-12 (-4 *4 (-1113)) (-5 *2 (-1115 (-654 *4))) (-5 *1 (-915 *4)) (-5 *3 (-654 *4)))) (-3759 (*1 *2 *3 *1) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-915 *4)))) (-2857 (*1 *2 *3 *1) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-654 (-781))) (-5 *1 (-915 *4)))) (-2456 (*1 *2 *3 *1) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-654 (-781))) (-5 *1 (-915 *4)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-3005 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-3028 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2506 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-915 *4)) (-4 *4 (-1113)))))
+(-13 (-1113) (-10 -8 (-15 -2943 ((-654 (-916 |#1|)) $)) (-15 -1935 ((-654 (-916 |#1|)) $)) (-15 -2200 ((-916 |#1|) $ (-781))) (-15 -2820 ((-916 |#1|) $ (-574))) (-15 -2820 ((-916 |#1|) $)) (-15 -3593 ((-781) $)) (-15 -1784 ((-781) $)) (-15 -2629 ((-654 |#1|) $)) (-15 -3309 ((-654 (-916 |#1|)) $)) (-15 -2071 ((-654 (-654 (-781))) $)) (-15 -2943 ($ (-654 (-916 |#1|)))) (-15 -2172 ($ (-654 (-916 |#1|)))) (-15 -2769 ((-1115 |#1|) $ |#1|)) (-15 -1329 ((-1115 (-1115 |#1|)) $)) (-15 -2769 ((-1115 (-1115 |#1|)) $ (-1115 |#1|))) (-15 -2769 ((-1115 (-654 |#1|)) $ (-654 |#1|))) (-15 -3759 ((-112) (-916 |#1|) $)) (-15 -2857 ((-654 (-781)) (-916 |#1|) $)) (-15 -2456 ((-654 (-781)) (-916 |#1|) $)) (-15 -1920 ((-1115 |#1|) $)) (-15 -3005 ((-112) $ $)) (-15 -3028 ((-112) $ $)) (-15 -2506 ((-1286) $)) (-15 -2506 ((-1286) $ (-574) (-574)))))
+((-2849 (((-112) $ $) NIL)) (-1920 (((-1115 |#1|) $) 60)) (-2771 (((-654 $) (-654 $)) 103)) (-3747 (((-574) $) 83)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3593 (((-781) $) 80)) (-2769 (((-1115 |#1|) $ |#1|) 70)) (-3965 (((-112) $) NIL)) (-3239 (((-112) $) 88)) (-1434 (((-781) $) 84)) (-3658 (($ $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2106 (($ $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3114 (((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $) 55)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 130)) (-3966 (((-1133) $) NIL)) (-4044 (((-1115 |#1|) $) 136 (|has| |#1| (-377)))) (-2625 (((-112) $) 81)) (-2200 ((|#1| $ |#1|) 68)) (-1784 (((-781) $) 62)) (-2017 (($ (-654 (-654 |#1|))) 118)) (-2846 (((-984) $) 74)) (-2098 (($ (-654 |#1|)) 32)) (-1514 (($ $ $) NIL)) (-3647 (($ $ $) NIL)) (-4427 (($ (-654 (-654 |#1|))) 57)) (-2423 (($ (-654 (-654 |#1|))) 123)) (-3097 (($ (-654 |#1|)) 132)) (-2943 (((-872) $) 117) (($ (-654 (-654 |#1|))) 91) (($ (-654 |#1|)) 92)) (-2923 (((-112) $ $) NIL)) (-2146 (($) 24 T CONST)) (-3041 (((-112) $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3016 (((-112) $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2982 (((-112) $ $) 66)) (-3028 (((-112) $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3005 (((-112) $ $) 90)) (-3107 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 33)))
+(((-916 |#1|) (-13 (-914 |#1|) (-10 -8 (-15 -3114 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -4427 ($ (-654 (-654 |#1|)))) (-15 -2943 ($ (-654 (-654 |#1|)))) (-15 -2943 ($ (-654 |#1|))) (-15 -2423 ($ (-654 (-654 |#1|)))) (-15 -1784 ((-781) $)) (-15 -2846 ((-984) $)) (-15 -3593 ((-781) $)) (-15 -1434 ((-781) $)) (-15 -3747 ((-574) $)) (-15 -2625 ((-112) $)) (-15 -3239 ((-112) $)) (-15 -2771 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -4044 ((-1115 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -3097 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -3097 ($ (-654 |#1|))) |%noBranch|)))) (-1113)) (T -916))
+((-3114 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-4427 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-984)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-1434 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-916 *3)) (-4 *3 (-377)) (-4 *3 (-1113)))) (-3097 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-916 *3)))))
+(-13 (-914 |#1|) (-10 -8 (-15 -3114 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -4427 ($ (-654 (-654 |#1|)))) (-15 -2943 ($ (-654 (-654 |#1|)))) (-15 -2943 ($ (-654 |#1|))) (-15 -2423 ($ (-654 (-654 |#1|)))) (-15 -1784 ((-781) $)) (-15 -2846 ((-984) $)) (-15 -3593 ((-781) $)) (-15 -1434 ((-781) $)) (-15 -3747 ((-574) $)) (-15 -2625 ((-112) $)) (-15 -3239 ((-112) $)) (-15 -2771 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -4044 ((-1115 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -3097 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -3097 ($ (-654 |#1|))) |%noBranch|))))
+((-3278 (((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|)) 160)) (-3158 ((|#1|) 97)) (-3510 (((-428 (-1186 |#4|)) (-1186 |#4|)) 169)) (-1372 (((-428 (-1186 |#4|)) (-654 |#3|) (-1186 |#4|)) 84)) (-3852 (((-428 (-1186 |#4|)) (-1186 |#4|)) 179)) (-4051 (((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|) |#3|) 113)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3278 ((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|))) (-15 -3852 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -3510 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -3158 (|#1|)) (-15 -4051 ((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|) |#3|)) (-15 -1372 ((-428 (-1186 |#4|)) (-654 |#3|) (-1186 |#4|)))) (-920) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -917))
+((-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-920)) (-4 *6 (-803)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-428 (-1186 *8))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-1186 *8)))) (-4051 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-654 (-1186 *7))) (-5 *3 (-1186 *7)) (-4 *7 (-960 *5 *6 *4)) (-4 *5 (-920)) (-4 *6 (-803)) (-4 *4 (-860)) (-5 *1 (-917 *5 *6 *4 *7)))) (-3158 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-920)) (-5 *1 (-917 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-3852 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-3278 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *7))) (-5 *3 (-1186 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-917 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3278 ((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|))) (-15 -3852 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -3510 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -3158 (|#1|)) (-15 -4051 ((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|) |#3|)) (-15 -1372 ((-428 (-1186 |#4|)) (-654 |#3|) (-1186 |#4|))))
+((-3278 (((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|)) 39)) (-3158 ((|#1|) 72)) (-3510 (((-428 (-1186 |#2|)) (-1186 |#2|)) 121)) (-1372 (((-428 (-1186 |#2|)) (-1186 |#2|)) 105)) (-3852 (((-428 (-1186 |#2|)) (-1186 |#2|)) 132)))
+(((-918 |#1| |#2|) (-10 -7 (-15 -3278 ((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|))) (-15 -3852 ((-428 (-1186 |#2|)) (-1186 |#2|))) (-15 -3510 ((-428 (-1186 |#2|)) (-1186 |#2|))) (-15 -3158 (|#1|)) (-15 -1372 ((-428 (-1186 |#2|)) (-1186 |#2|)))) (-920) (-1257 |#1|)) (T -918))
+((-1372 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5))) (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5)))) (-3158 (*1 *2) (-12 (-4 *2 (-920)) (-5 *1 (-918 *2 *3)) (-4 *3 (-1257 *2)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5))) (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5)))) (-3852 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5))) (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5)))) (-3278 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *5))) (-5 *3 (-1186 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-920)) (-5 *1 (-918 *4 *5)))))
+(-10 -7 (-15 -3278 ((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|))) (-15 -3852 ((-428 (-1186 |#2|)) (-1186 |#2|))) (-15 -3510 ((-428 (-1186 |#2|)) (-1186 |#2|))) (-15 -3158 (|#1|)) (-15 -1372 ((-428 (-1186 |#2|)) (-1186 |#2|))))
+((-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 42)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 18)) (-1369 (((-3 $ "failed") $) 36)))
+(((-919 |#1|) (-10 -8 (-15 -1369 ((-3 |#1| "failed") |#1|)) (-15 -3180 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|)))) (-920)) (T -919))
+NIL
+(-10 -8 (-15 -1369 ((-3 |#1| "failed") |#1|)) (-15 -3180 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-3312 (((-428 (-1186 $)) (-1186 $)) 66)) (-4348 (($ $) 57)) (-3440 (((-428 $) $) 58)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 63)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-1654 (((-112) $) 59)) (-3965 (((-112) $) 35)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-3417 (((-428 (-1186 $)) (-1186 $)) 64)) (-4418 (((-428 (-1186 $)) (-1186 $)) 65)) (-4220 (((-428 $) $) 56)) (-2838 (((-3 $ "failed") $ $) 48)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 62 (|has| $ (-146)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-1369 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-920) (-141)) (T -920))
+((-2587 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-920)))) (-3312 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1)))) (-4418 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1)))) (-3417 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1)))) (-3180 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *1))) (-5 *3 (-1186 *1)) (-4 *1 (-920)))) (-1518 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-920)) (-5 *2 (-1281 *1)))) (-1369 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-920)))))
+(-13 (-1235) (-10 -8 (-15 -3312 ((-428 (-1186 $)) (-1186 $))) (-15 -4418 ((-428 (-1186 $)) (-1186 $))) (-15 -3417 ((-428 (-1186 $)) (-1186 $))) (-15 -2587 ((-1186 $) (-1186 $) (-1186 $))) (-15 -3180 ((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $))) (IF (|has| $ (-146)) (PROGN (-15 -1518 ((-3 (-1281 $) "failed") (-699 $))) (-15 -1369 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3514 (((-112) $) NIL)) (-3416 (((-781)) NIL)) (-1637 (($ $ (-932)) NIL (|has| $ (-377))) (($ $) NIL)) (-1340 (((-1203 (-932) (-781)) (-574)) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 $ "failed") $) NIL)) (-2209 (($ $) NIL)) (-3003 (($ (-1281 $)) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3906 (($) NIL)) (-2878 (((-112) $) NIL)) (-3564 (($ $) NIL) (($ $ (-781)) NIL)) (-1654 (((-112) $) NIL)) (-3593 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-3965 (((-112) $) NIL)) (-2342 (($) NIL (|has| $ (-377)))) (-2079 (((-112) $) NIL (|has| $ (-377)))) (-1652 (($ $ (-932)) NIL (|has| $ (-377))) (($ $) NIL)) (-4048 (((-3 $ "failed") $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3190 (((-1186 $) $ (-932)) NIL (|has| $ (-377))) (((-1186 $) $) NIL)) (-2565 (((-932) $) NIL)) (-2810 (((-1186 $) $) NIL (|has| $ (-377)))) (-3795 (((-3 (-1186 $) "failed") $ $) NIL (|has| $ (-377))) (((-1186 $) $) NIL (|has| $ (-377)))) (-2338 (($ $ (-1186 $)) NIL (|has| $ (-377)))) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL T CONST)) (-2576 (($ (-932)) NIL)) (-3504 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL (|has| $ (-377)))) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL)) (-4220 (((-428 $) $) NIL)) (-3027 (((-932)) NIL) (((-843 (-932))) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3232 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-3939 (((-135)) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-1784 (((-932) $) NIL) (((-843 (-932)) $) NIL)) (-1782 (((-1186 $)) NIL)) (-2585 (($) NIL)) (-2358 (($) NIL (|has| $ (-377)))) (-3676 (((-699 $) (-1281 $)) NIL) (((-1281 $) $) NIL)) (-1837 (((-574) $) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL)) (-1369 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $) (-932)) NIL) (((-1281 $)) NIL)) (-3798 (((-112) $ $) NIL)) (-4321 (((-112) $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2007 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
+(((-921 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-932)) (T -921))
+NIL
+(-13 (-358) (-337 $) (-624 (-574)))
+((-2135 (((-3 (-2 (|:| -3593 (-781)) (|:| -2709 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)) 77)) (-3508 (((-112) (-345 |#2| |#3| |#4| |#5|)) 17)) (-3593 (((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|)) 15)))
+(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3593 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -3508 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -2135 ((-3 (-2 (|:| -3593 (-781)) (|:| -2709 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) (-13 (-566) (-1051 (-574))) (-440 |#1|) (-1257 |#2|) (-1257 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -922))
+((-2135 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-2 (|:| -3593 (-781)) (|:| -2709 *8))) (-5 *1 (-922 *4 *5 *6 *7 *8)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6 *7 *8)))) (-3593 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-781)) (-5 *1 (-922 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3593 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -3508 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -2135 ((-3 (-2 (|:| -3593 (-781)) (|:| -2709 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|))))
+((-2135 (((-3 (-2 (|:| -3593 (-781)) (|:| -2709 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 64)) (-3508 (((-112) (-345 (-417 (-574)) |#1| |#2| |#3|)) 16)) (-3593 (((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 14)))
+(((-923 |#1| |#2| |#3|) (-10 -7 (-15 -3593 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -3508 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -2135 ((-3 (-2 (|:| -3593 (-781)) (|:| -2709 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) (-1257 (-417 (-574))) (-1257 (-417 |#1|)) (-351 (-417 (-574)) |#1| |#2|)) (T -923))
+((-2135 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-2 (|:| -3593 (-781)) (|:| -2709 *6))) (-5 *1 (-923 *4 *5 *6)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-923 *4 *5 *6)))) (-3593 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) (-5 *1 (-923 *4 *5 *6)))))
+(-10 -7 (-15 -3593 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -3508 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -2135 ((-3 (-2 (|:| -3593 (-781)) (|:| -2709 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))))
+((-2745 ((|#2| |#2|) 26)) (-2072 (((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) 15)) (-2454 (((-932) (-574)) 38)) (-2765 (((-574) |#2|) 45)) (-3468 (((-574) |#2|) 21) (((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|) 20)))
+(((-924 |#1| |#2|) (-10 -7 (-15 -2454 ((-932) (-574))) (-15 -3468 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -3468 ((-574) |#2|)) (-15 -2072 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -2765 ((-574) |#2|)) (-15 -2745 (|#2| |#2|))) (-1257 (-417 (-574))) (-1257 (-417 |#1|))) (T -924))
+((-2745 (*1 *2 *2) (-12 (-4 *3 (-1257 (-417 (-574)))) (-5 *1 (-924 *3 *2)) (-4 *2 (-1257 (-417 *3))))) (-2765 (*1 *2 *3) (-12 (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *3)) (-4 *3 (-1257 (-417 *4))))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *5)) (-4 *5 (-1257 (-417 *4))))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *3)) (-4 *3 (-1257 (-417 *4))))) (-3468 (*1 *2 *3) (-12 (-4 *3 (-1257 (-417 (-574)))) (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) (-5 *1 (-924 *3 *4)) (-4 *4 (-1257 (-417 *3))))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1257 (-417 *3))) (-5 *2 (-932)) (-5 *1 (-924 *4 *5)) (-4 *5 (-1257 (-417 *4))))))
+(-10 -7 (-15 -2454 ((-932) (-574))) (-15 -3468 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -3468 ((-574) |#2|)) (-15 -2072 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -2765 ((-574) |#2|)) (-15 -2745 (|#2| |#2|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 ((|#1| $) 100)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-2785 (($ $ $) NIL)) (-1950 (((-3 $ "failed") $) 94)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-2675 (($ |#1| (-428 |#1|)) 92)) (-1922 (((-1186 |#1|) |#1| |#1|) 53)) (-1450 (($ $) 61)) (-3965 (((-112) $) NIL)) (-2097 (((-574) $) 97)) (-1417 (($ $ (-574)) 99)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1611 ((|#1| $) 96)) (-1717 (((-428 |#1|) $) 95)) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) 93)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3213 (($ $) 50)) (-2943 (((-872) $) 124) (($ (-574)) 73) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 41) (((-417 |#1|) $) 78) (($ (-417 (-428 |#1|))) 86)) (-4160 (((-781)) 71 T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2134 (($) 26 T CONST)) (-2146 (($) 15 T CONST)) (-2982 (((-112) $ $) 87)) (-3107 (($ $ $) NIL)) (-3094 (($ $) 108) (($ $ $) NIL)) (-3078 (($ $ $) 49)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 48) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
+(((-925 |#1|) (-13 (-372) (-38 |#1|) (-10 -8 (-15 -2943 ((-417 |#1|) $)) (-15 -2943 ($ (-417 (-428 |#1|)))) (-15 -3213 ($ $)) (-15 -1717 ((-428 |#1|) $)) (-15 -1611 (|#1| $)) (-15 -1417 ($ $ (-574))) (-15 -2097 ((-574) $)) (-15 -1922 ((-1186 |#1|) |#1| |#1|)) (-15 -1450 ($ $)) (-15 -2675 ($ |#1| (-428 |#1|))) (-15 -2809 (|#1| $)))) (-315)) (T -925))
+((-2943 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-925 *3)))) (-3213 (*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))) (-1717 (*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-1611 (*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))) (-1417 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-1922 (*1 *2 *3 *3) (-12 (-5 *2 (-1186 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-1450 (*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))) (-2675 (*1 *1 *2 *3) (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-925 *2)))) (-2809 (*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))))
+(-13 (-372) (-38 |#1|) (-10 -8 (-15 -2943 ((-417 |#1|) $)) (-15 -2943 ($ (-417 (-428 |#1|)))) (-15 -3213 ($ $)) (-15 -1717 ((-428 |#1|) $)) (-15 -1611 (|#1| $)) (-15 -1417 ($ $ (-574))) (-15 -2097 ((-574) $)) (-15 -1922 ((-1186 |#1|) |#1| |#1|)) (-15 -1450 ($ $)) (-15 -2675 ($ |#1| (-428 |#1|))) (-15 -2809 (|#1| $))))
+((-2675 (((-52) (-963 |#1|) (-428 (-963 |#1|)) (-1190)) 17) (((-52) (-417 (-963 |#1|)) (-1190)) 18)))
+(((-926 |#1|) (-10 -7 (-15 -2675 ((-52) (-417 (-963 |#1|)) (-1190))) (-15 -2675 ((-52) (-963 |#1|) (-428 (-963 |#1|)) (-1190)))) (-13 (-315) (-148))) (T -926))
+((-2675 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-428 (-963 *6))) (-5 *5 (-1190)) (-5 *3 (-963 *6)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-926 *6)))) (-2675 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-926 *5)))))
+(-10 -7 (-15 -2675 ((-52) (-417 (-963 |#1|)) (-1190))) (-15 -2675 ((-52) (-963 |#1|) (-428 (-963 |#1|)) (-1190))))
+((-3911 ((|#4| (-654 |#4|)) 147) (((-1186 |#4|) (-1186 |#4|) (-1186 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2874 (((-1186 |#4|) (-654 (-1186 |#4|))) 140) (((-1186 |#4|) (-1186 |#4|) (-1186 |#4|)) 61) ((|#4| (-654 |#4|)) 69) ((|#4| |#4| |#4|) 107)))
+(((-927 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2874 (|#4| |#4| |#4|)) (-15 -2874 (|#4| (-654 |#4|))) (-15 -2874 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -2874 ((-1186 |#4|) (-654 (-1186 |#4|)))) (-15 -3911 (|#4| |#4| |#4|)) (-15 -3911 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -3911 (|#4| (-654 |#4|)))) (-803) (-860) (-315) (-960 |#3| |#1| |#2|)) (T -927))
+((-3911 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *6 *4 *5)) (-5 *1 (-927 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-3911 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *6)))) (-3911 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-960 *5 *3 *4)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-654 (-1186 *7))) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-1186 *7)) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-2874 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *6)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *6 *4 *5)) (-5 *1 (-927 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-2874 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-960 *5 *3 *4)))))
+(-10 -7 (-15 -2874 (|#4| |#4| |#4|)) (-15 -2874 (|#4| (-654 |#4|))) (-15 -2874 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -2874 ((-1186 |#4|) (-654 (-1186 |#4|)))) (-15 -3911 (|#4| |#4| |#4|)) (-15 -3911 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -3911 (|#4| (-654 |#4|))))
+((-2395 (((-915 (-574)) (-984)) 38) (((-915 (-574)) (-654 (-574))) 34)) (-2471 (((-915 (-574)) (-654 (-574))) 67) (((-915 (-574)) (-932)) 68)) (-4049 (((-915 (-574))) 39)) (-2655 (((-915 (-574))) 53) (((-915 (-574)) (-654 (-574))) 52)) (-2161 (((-915 (-574))) 51) (((-915 (-574)) (-654 (-574))) 50)) (-2182 (((-915 (-574))) 49) (((-915 (-574)) (-654 (-574))) 48)) (-2226 (((-915 (-574))) 47) (((-915 (-574)) (-654 (-574))) 46)) (-3771 (((-915 (-574))) 45) (((-915 (-574)) (-654 (-574))) 44)) (-3110 (((-915 (-574))) 55) (((-915 (-574)) (-654 (-574))) 54)) (-3303 (((-915 (-574)) (-654 (-574))) 72) (((-915 (-574)) (-932)) 74)) (-3472 (((-915 (-574)) (-654 (-574))) 69) (((-915 (-574)) (-932)) 70)) (-1863 (((-915 (-574)) (-654 (-574))) 65) (((-915 (-574)) (-932)) 66)) (-2986 (((-915 (-574)) (-654 (-932))) 57)))
+(((-928) (-10 -7 (-15 -2471 ((-915 (-574)) (-932))) (-15 -2471 ((-915 (-574)) (-654 (-574)))) (-15 -1863 ((-915 (-574)) (-932))) (-15 -1863 ((-915 (-574)) (-654 (-574)))) (-15 -2986 ((-915 (-574)) (-654 (-932)))) (-15 -3472 ((-915 (-574)) (-932))) (-15 -3472 ((-915 (-574)) (-654 (-574)))) (-15 -3303 ((-915 (-574)) (-932))) (-15 -3303 ((-915 (-574)) (-654 (-574)))) (-15 -3771 ((-915 (-574)) (-654 (-574)))) (-15 -3771 ((-915 (-574)))) (-15 -2226 ((-915 (-574)) (-654 (-574)))) (-15 -2226 ((-915 (-574)))) (-15 -2182 ((-915 (-574)) (-654 (-574)))) (-15 -2182 ((-915 (-574)))) (-15 -2161 ((-915 (-574)) (-654 (-574)))) (-15 -2161 ((-915 (-574)))) (-15 -2655 ((-915 (-574)) (-654 (-574)))) (-15 -2655 ((-915 (-574)))) (-15 -3110 ((-915 (-574)) (-654 (-574)))) (-15 -3110 ((-915 (-574)))) (-15 -4049 ((-915 (-574)))) (-15 -2395 ((-915 (-574)) (-654 (-574)))) (-15 -2395 ((-915 (-574)) (-984))))) (T -928))
+((-2395 (*1 *2 *3) (-12 (-5 *3 (-984)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-4049 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3110 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2655 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2161 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2182 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2226 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3771 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2986 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(-10 -7 (-15 -2471 ((-915 (-574)) (-932))) (-15 -2471 ((-915 (-574)) (-654 (-574)))) (-15 -1863 ((-915 (-574)) (-932))) (-15 -1863 ((-915 (-574)) (-654 (-574)))) (-15 -2986 ((-915 (-574)) (-654 (-932)))) (-15 -3472 ((-915 (-574)) (-932))) (-15 -3472 ((-915 (-574)) (-654 (-574)))) (-15 -3303 ((-915 (-574)) (-932))) (-15 -3303 ((-915 (-574)) (-654 (-574)))) (-15 -3771 ((-915 (-574)) (-654 (-574)))) (-15 -3771 ((-915 (-574)))) (-15 -2226 ((-915 (-574)) (-654 (-574)))) (-15 -2226 ((-915 (-574)))) (-15 -2182 ((-915 (-574)) (-654 (-574)))) (-15 -2182 ((-915 (-574)))) (-15 -2161 ((-915 (-574)) (-654 (-574)))) (-15 -2161 ((-915 (-574)))) (-15 -2655 ((-915 (-574)) (-654 (-574)))) (-15 -2655 ((-915 (-574)))) (-15 -3110 ((-915 (-574)) (-654 (-574)))) (-15 -3110 ((-915 (-574)))) (-15 -4049 ((-915 (-574)))) (-15 -2395 ((-915 (-574)) (-654 (-574)))) (-15 -2395 ((-915 (-574)) (-984))))
+((-3345 (((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190))) 14)) (-1561 (((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190))) 13)))
+(((-929 |#1|) (-10 -7 (-15 -1561 ((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3345 ((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190))))) (-462)) (T -929))
+((-3345 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-963 *4))) (-5 *3 (-654 (-1190))) (-4 *4 (-462)) (-5 *1 (-929 *4)))) (-1561 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-963 *4))) (-5 *3 (-654 (-1190))) (-4 *4 (-462)) (-5 *1 (-929 *4)))))
+(-10 -7 (-15 -1561 ((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3345 ((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)))))
+((-2943 (((-324 |#1|) (-487)) 16)))
+(((-930 |#1|) (-10 -7 (-15 -2943 ((-324 |#1|) (-487)))) (-566)) (T -930))
+((-2943 (*1 *2 *3) (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-930 *4)) (-4 *4 (-566)))))
+(-10 -7 (-15 -2943 ((-324 |#1|) (-487))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3965 (((-112) $) 35)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-931) (-141)) (T -931))
+((-1719 (*1 *2 *3) (-12 (-4 *1 (-931)) (-5 *2 (-2 (|:| -1859 (-654 *1)) (|:| -2970 *1))) (-5 *3 (-654 *1)))) (-2945 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-931)))))
+(-13 (-462) (-10 -8 (-15 -1719 ((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $))) (-15 -2945 ((-3 (-654 $) "failed") (-654 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2874 (($ $ $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2146 (($) NIL T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ $ $) NIL)))
+(((-932) (-13 (-804) (-736) (-10 -8 (-15 -2874 ($ $ $)) (-6 (-4458 "*"))))) (T -932))
+((-2874 (*1 *1 *1 *1) (-5 *1 (-932))))
+(-13 (-804) (-736) (-10 -8 (-15 -2874 ($ $ $)) (-6 (-4458 "*"))))
((|NonNegativeInteger|) (|%igt| |#1| 0))
-((-2018 ((|#2| (-652 |#1|) (-652 |#1|)) 28)))
-(((-931 |#1| |#2|) (-10 -7 (-15 -2018 (|#2| (-652 |#1|) (-652 |#1|)))) (-370) (-1255 |#1|)) (T -931))
-((-2018 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-370)) (-4 *2 (-1255 *4)) (-5 *1 (-931 *4 *2)))))
-(-10 -7 (-15 -2018 (|#2| (-652 |#1|) (-652 |#1|))))
-((-3946 (((-1184 |#2|) (-652 |#2|) (-652 |#2|)) 17) (((-1252 |#1| |#2|) (-1252 |#1| |#2|) (-652 |#2|) (-652 |#2|)) 13)))
-(((-932 |#1| |#2|) (-10 -7 (-15 -3946 ((-1252 |#1| |#2|) (-1252 |#1| |#2|) (-652 |#2|) (-652 |#2|))) (-15 -3946 ((-1184 |#2|) (-652 |#2|) (-652 |#2|)))) (-1188) (-370)) (T -932))
-((-3946 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *5)) (-4 *5 (-370)) (-5 *2 (-1184 *5)) (-5 *1 (-932 *4 *5)) (-14 *4 (-1188)))) (-3946 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1252 *4 *5)) (-5 *3 (-652 *5)) (-14 *4 (-1188)) (-4 *5 (-370)) (-5 *1 (-932 *4 *5)))))
-(-10 -7 (-15 -3946 ((-1252 |#1| |#2|) (-1252 |#1| |#2|) (-652 |#2|) (-652 |#2|))) (-15 -3946 ((-1184 |#2|) (-652 |#2|) (-652 |#2|))))
-((-3319 (((-572) (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170)) 174)) (-3275 ((|#4| |#4|) 193)) (-1692 (((-652 (-415 (-961 |#1|))) (-652 (-1188))) 146)) (-1602 (((-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-652 (-652 |#4|)) (-779) (-779) (-572)) 88)) (-3024 (((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))) (-652 |#4|)) 69)) (-2158 (((-697 |#4|) (-697 |#4|) (-652 |#4|)) 65)) (-2557 (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170)) 186)) (-3498 (((-572) (-697 |#4|) (-930) (-1170)) 166) (((-572) (-697 |#4|) (-652 (-1188)) (-930) (-1170)) 165) (((-572) (-697 |#4|) (-652 |#4|) (-930) (-1170)) 164) (((-572) (-697 |#4|) (-1170)) 154) (((-572) (-697 |#4|) (-652 (-1188)) (-1170)) 153) (((-572) (-697 |#4|) (-652 |#4|) (-1170)) 152) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-930)) 151) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)) (-930)) 150) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|) (-930)) 149) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|)) 148) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188))) 147) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|)) 143)) (-1859 ((|#4| (-961 |#1|)) 80)) (-2153 (((-112) (-652 |#4|) (-652 (-652 |#4|))) 190)) (-2244 (((-652 (-652 (-572))) (-572) (-572)) 159)) (-3234 (((-652 (-652 |#4|)) (-652 (-652 |#4|))) 106)) (-2079 (((-779) (-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|))))) 100)) (-1887 (((-779) (-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|))))) 99)) (-1862 (((-112) (-652 (-961 |#1|))) 19) (((-112) (-652 |#4|)) 15)) (-3854 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-652 |#4|)) (|:| |n0| (-652 |#4|))) (-652 |#4|) (-652 |#4|)) 84)) (-3051 (((-652 |#4|) |#4|) 57)) (-2169 (((-652 (-415 (-961 |#1|))) (-652 |#4|)) 142) (((-697 (-415 (-961 |#1|))) (-697 |#4|)) 66) (((-415 (-961 |#1|)) |#4|) 139)) (-1633 (((-2 (|:| |rgl| (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))))))) (|:| |rgsz| (-572))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-779) (-1170) (-572)) 112)) (-1607 (((-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))) (-697 |#4|) (-779)) 98)) (-2408 (((-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-697 |#4|) (-779)) 121)) (-3190 (((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| -3544 (-697 (-415 (-961 |#1|)))) (|:| |vec| (-652 (-415 (-961 |#1|)))) (|:| -3581 (-779)) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) 56)))
-(((-933 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|) (-930))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)) (-930))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-930))) (-15 -3498 ((-572) (-697 |#4|) (-652 |#4|) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-652 (-1188)) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-652 |#4|) (-930) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-652 (-1188)) (-930) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-930) (-1170))) (-15 -3319 ((-572) (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170))) (-15 -2557 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170))) (-15 -1633 ((-2 (|:| |rgl| (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))))))) (|:| |rgsz| (-572))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-779) (-1170) (-572))) (-15 -2169 ((-415 (-961 |#1|)) |#4|)) (-15 -2169 ((-697 (-415 (-961 |#1|))) (-697 |#4|))) (-15 -2169 ((-652 (-415 (-961 |#1|))) (-652 |#4|))) (-15 -1692 ((-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -1859 (|#4| (-961 |#1|))) (-15 -3854 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-652 |#4|)) (|:| |n0| (-652 |#4|))) (-652 |#4|) (-652 |#4|))) (-15 -1607 ((-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))) (-697 |#4|) (-779))) (-15 -3024 ((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))) (-652 |#4|))) (-15 -3190 ((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| -3544 (-697 (-415 (-961 |#1|)))) (|:| |vec| (-652 (-415 (-961 |#1|)))) (|:| -3581 (-779)) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (-15 -3051 ((-652 |#4|) |#4|)) (-15 -1887 ((-779) (-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))))) (-15 -2079 ((-779) (-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))))) (-15 -3234 ((-652 (-652 |#4|)) (-652 (-652 |#4|)))) (-15 -2244 ((-652 (-652 (-572))) (-572) (-572))) (-15 -2153 ((-112) (-652 |#4|) (-652 (-652 |#4|)))) (-15 -2408 ((-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-697 |#4|) (-779))) (-15 -2158 ((-697 |#4|) (-697 |#4|) (-652 |#4|))) (-15 -1602 ((-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-652 (-652 |#4|)) (-779) (-779) (-572))) (-15 -3275 (|#4| |#4|)) (-15 -1862 ((-112) (-652 |#4|))) (-15 -1862 ((-112) (-652 (-961 |#1|))))) (-13 (-313) (-148)) (-13 (-858) (-622 (-1188))) (-801) (-958 |#1| |#3| |#2|)) (T -933))
-((-1862 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-112)) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))) (-1862 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-112)) (-5 *1 (-933 *4 *5 *6 *7)))) (-3275 (*1 *2 *2) (-12 (-4 *3 (-13 (-313) (-148))) (-4 *4 (-13 (-858) (-622 (-1188)))) (-4 *5 (-801)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-958 *3 *5 *4)))) (-1602 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-5 *4 (-697 *12)) (-5 *5 (-652 (-415 (-961 *9)))) (-5 *6 (-652 (-652 *12))) (-5 *7 (-779)) (-5 *8 (-572)) (-4 *9 (-13 (-313) (-148))) (-4 *12 (-958 *9 *11 *10)) (-4 *10 (-13 (-858) (-622 (-1188)))) (-4 *11 (-801)) (-5 *2 (-2 (|:| |eqzro| (-652 *12)) (|:| |neqzro| (-652 *12)) (|:| |wcond| (-652 (-961 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *9)))) (|:| -4362 (-652 (-1279 (-415 (-961 *9))))))))) (-5 *1 (-933 *9 *10 *11 *12)))) (-2158 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *7)) (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *1 (-933 *4 *5 *6 *7)))) (-2408 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-5 *4 (-779)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| |det| *8) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (-5 *1 (-933 *5 *6 *7 *8)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-652 *8))) (-5 *3 (-652 *8)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-112)) (-5 *1 (-933 *5 *6 *7 *8)))) (-2244 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-652 (-572)))) (-5 *1 (-933 *4 *5 *6 *7)) (-5 *3 (-572)) (-4 *7 (-958 *4 *6 *5)))) (-3234 (*1 *2 *2) (-12 (-5 *2 (-652 (-652 *6))) (-4 *6 (-958 *3 *5 *4)) (-4 *3 (-13 (-313) (-148))) (-4 *4 (-13 (-858) (-622 (-1188)))) (-4 *5 (-801)) (-5 *1 (-933 *3 *4 *5 *6)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| *7) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 *7))))) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-779)) (-5 *1 (-933 *4 *5 *6 *7)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| *7) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 *7))))) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-779)) (-5 *1 (-933 *4 *5 *6 *7)))) (-3051 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 *3)) (-5 *1 (-933 *4 *5 *6 *3)) (-4 *3 (-958 *4 *6 *5)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3544 (-697 (-415 (-961 *4)))) (|:| |vec| (-652 (-415 (-961 *4)))) (|:| -3581 (-779)) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-2 (|:| |partsol| (-1279 (-415 (-961 *4)))) (|:| -4362 (-652 (-1279 (-415 (-961 *4))))))) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))) (-3024 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1279 (-415 (-961 *4)))) (|:| -4362 (-652 (-1279 (-415 (-961 *4))))))) (-5 *3 (-652 *7)) (-4 *4 (-13 (-313) (-148))) (-4 *7 (-958 *4 *6 *5)) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *1 (-933 *4 *5 *6 *7)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| *8) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 *8))))) (-5 *1 (-933 *5 *6 *7 *8)) (-5 *4 (-779)))) (-3854 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-4 *7 (-958 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-652 *7)) (|:| |n0| (-652 *7)))) (-5 *1 (-933 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-961 *4)) (-4 *4 (-13 (-313) (-148))) (-4 *2 (-958 *4 *6 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-415 (-961 *4)))) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-415 (-961 *4)))) (-5 *1 (-933 *4 *5 *6 *7)))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-697 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-697 (-415 (-961 *4)))) (-5 *1 (-933 *4 *5 *6 *7)))) (-2169 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-415 (-961 *4))) (-5 *1 (-933 *4 *5 *6 *3)) (-4 *3 (-958 *4 *6 *5)))) (-1633 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-697 *11)) (-5 *4 (-652 (-415 (-961 *8)))) (-5 *5 (-779)) (-5 *6 (-1170)) (-4 *8 (-13 (-313) (-148))) (-4 *11 (-958 *8 *10 *9)) (-4 *9 (-13 (-858) (-622 (-1188)))) (-4 *10 (-801)) (-5 *2 (-2 (|:| |rgl| (-652 (-2 (|:| |eqzro| (-652 *11)) (|:| |neqzro| (-652 *11)) (|:| |wcond| (-652 (-961 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *8)))) (|:| -4362 (-652 (-1279 (-415 (-961 *8)))))))))) (|:| |rgsz| (-572)))) (-5 *1 (-933 *8 *9 *10 *11)) (-5 *7 (-572)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *7)) (|:| |neqzro| (-652 *7)) (|:| |wcond| (-652 (-961 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *4)))) (|:| -4362 (-652 (-1279 (-415 (-961 *4)))))))))) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8)) (|:| |wcond| (-652 (-961 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *5)))) (|:| -4362 (-652 (-1279 (-415 (-961 *5)))))))))) (-5 *4 (-1170)) (-4 *5 (-13 (-313) (-148))) (-4 *8 (-958 *5 *7 *6)) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *5 *6 *7 *8)))) (-3498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *4 (-930)) (-5 *5 (-1170)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *6 *7 *8 *9)))) (-3498 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-697 *10)) (-5 *4 (-652 (-1188))) (-5 *5 (-930)) (-5 *6 (-1170)) (-4 *10 (-958 *7 *9 *8)) (-4 *7 (-13 (-313) (-148))) (-4 *8 (-13 (-858) (-622 (-1188)))) (-4 *9 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *7 *8 *9 *10)))) (-3498 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-697 *10)) (-5 *4 (-652 *10)) (-5 *5 (-930)) (-5 *6 (-1170)) (-4 *10 (-958 *7 *9 *8)) (-4 *7 (-13 (-313) (-148))) (-4 *8 (-13 (-858) (-622 (-1188)))) (-4 *9 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *7 *8 *9 *10)))) (-3498 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-5 *4 (-1170)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *5 *6 *7 *8)))) (-3498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 (-1188))) (-5 *5 (-1170)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *6 *7 *8 *9)))) (-3498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 *9)) (-5 *5 (-1170)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *6 *7 *8 *9)))) (-3498 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-5 *4 (-930)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8)) (|:| |wcond| (-652 (-961 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *5)))) (|:| -4362 (-652 (-1279 (-415 (-961 *5)))))))))) (-5 *1 (-933 *5 *6 *7 *8)))) (-3498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 (-1188))) (-5 *5 (-930)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *9)) (|:| |neqzro| (-652 *9)) (|:| |wcond| (-652 (-961 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *6)))) (|:| -4362 (-652 (-1279 (-415 (-961 *6)))))))))) (-5 *1 (-933 *6 *7 *8 *9)))) (-3498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *5 (-930)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *9)) (|:| |neqzro| (-652 *9)) (|:| |wcond| (-652 (-961 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *6)))) (|:| -4362 (-652 (-1279 (-415 (-961 *6)))))))))) (-5 *1 (-933 *6 *7 *8 *9)) (-5 *4 (-652 *9)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-697 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *7)) (|:| |neqzro| (-652 *7)) (|:| |wcond| (-652 (-961 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *4)))) (|:| -4362 (-652 (-1279 (-415 (-961 *4)))))))))) (-5 *1 (-933 *4 *5 *6 *7)))) (-3498 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-5 *4 (-652 (-1188))) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8)) (|:| |wcond| (-652 (-961 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *5)))) (|:| -4362 (-652 (-1279 (-415 (-961 *5)))))))))) (-5 *1 (-933 *5 *6 *7 *8)))) (-3498 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8)) (|:| |wcond| (-652 (-961 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *5)))) (|:| -4362 (-652 (-1279 (-415 (-961 *5)))))))))) (-5 *1 (-933 *5 *6 *7 *8)) (-5 *4 (-652 *8)))))
-(-10 -7 (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|) (-930))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)) (-930))) (-15 -3498 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-930))) (-15 -3498 ((-572) (-697 |#4|) (-652 |#4|) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-652 (-1188)) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-652 |#4|) (-930) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-652 (-1188)) (-930) (-1170))) (-15 -3498 ((-572) (-697 |#4|) (-930) (-1170))) (-15 -3319 ((-572) (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170))) (-15 -2557 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170))) (-15 -1633 ((-2 (|:| |rgl| (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))))))) (|:| |rgsz| (-572))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-779) (-1170) (-572))) (-15 -2169 ((-415 (-961 |#1|)) |#4|)) (-15 -2169 ((-697 (-415 (-961 |#1|))) (-697 |#4|))) (-15 -2169 ((-652 (-415 (-961 |#1|))) (-652 |#4|))) (-15 -1692 ((-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -1859 (|#4| (-961 |#1|))) (-15 -3854 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-652 |#4|)) (|:| |n0| (-652 |#4|))) (-652 |#4|) (-652 |#4|))) (-15 -1607 ((-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))) (-697 |#4|) (-779))) (-15 -3024 ((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))) (-652 |#4|))) (-15 -3190 ((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| -3544 (-697 (-415 (-961 |#1|)))) (|:| |vec| (-652 (-415 (-961 |#1|)))) (|:| -3581 (-779)) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (-15 -3051 ((-652 |#4|) |#4|)) (-15 -1887 ((-779) (-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))))) (-15 -2079 ((-779) (-652 (-2 (|:| -3581 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))))) (-15 -3234 ((-652 (-652 |#4|)) (-652 (-652 |#4|)))) (-15 -2244 ((-652 (-652 (-572))) (-572) (-572))) (-15 -2153 ((-112) (-652 |#4|) (-652 (-652 |#4|)))) (-15 -2408 ((-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-697 |#4|) (-779))) (-15 -2158 ((-697 |#4|) (-697 |#4|) (-652 |#4|))) (-15 -1602 ((-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -4362 (-652 (-1279 (-415 (-961 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-652 (-652 |#4|)) (-779) (-779) (-572))) (-15 -3275 (|#4| |#4|)) (-15 -1862 ((-112) (-652 |#4|))) (-15 -1862 ((-112) (-652 (-961 |#1|)))))
-((-2643 (((-936) |#1| (-1188)) 17) (((-936) |#1| (-1188) (-1105 (-227))) 21)) (-2680 (((-936) |#1| |#1| (-1188) (-1105 (-227))) 19) (((-936) |#1| (-1188) (-1105 (-227))) 15)))
-(((-934 |#1|) (-10 -7 (-15 -2680 ((-936) |#1| (-1188) (-1105 (-227)))) (-15 -2680 ((-936) |#1| |#1| (-1188) (-1105 (-227)))) (-15 -2643 ((-936) |#1| (-1188) (-1105 (-227)))) (-15 -2643 ((-936) |#1| (-1188)))) (-622 (-544))) (T -934))
-((-2643 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-936)) (-5 *1 (-934 *3)) (-4 *3 (-622 (-544))))) (-2643 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936)) (-5 *1 (-934 *3)) (-4 *3 (-622 (-544))))) (-2680 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936)) (-5 *1 (-934 *3)) (-4 *3 (-622 (-544))))) (-2680 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936)) (-5 *1 (-934 *3)) (-4 *3 (-622 (-544))))))
-(-10 -7 (-15 -2680 ((-936) |#1| (-1188) (-1105 (-227)))) (-15 -2680 ((-936) |#1| |#1| (-1188) (-1105 (-227)))) (-15 -2643 ((-936) |#1| (-1188) (-1105 (-227)))) (-15 -2643 ((-936) |#1| (-1188))))
-((-3393 (($ $ (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 121)) (-2432 (((-1105 (-227)) $) 64)) (-2419 (((-1105 (-227)) $) 63)) (-2406 (((-1105 (-227)) $) 62)) (-3590 (((-652 (-652 (-227))) $) 69)) (-1419 (((-1105 (-227)) $) 65)) (-1340 (((-572) (-572)) 57)) (-2027 (((-572) (-572)) 52)) (-1915 (((-572) (-572)) 55)) (-3031 (((-112) (-112)) 59)) (-3387 (((-572)) 56)) (-3420 (($ $ (-1105 (-227))) 124) (($ $) 125)) (-2398 (($ (-1 (-952 (-227)) (-227)) (-1105 (-227))) 131) (($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 132)) (-2680 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 135) (($ $ (-1105 (-227))) 127)) (-1951 (((-572)) 60)) (-3168 (((-572)) 50)) (-1515 (((-572)) 53)) (-2013 (((-652 (-652 (-952 (-227)))) $) 151)) (-2926 (((-112) (-112)) 61)) (-2940 (((-870) $) 149)) (-4342 (((-112)) 58)))
-(((-935) (-13 (-985) (-10 -8 (-15 -2398 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)))) (-15 -2398 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2680 ($ $ (-1105 (-227)))) (-15 -3393 ($ $ (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3420 ($ $ (-1105 (-227)))) (-15 -3420 ($ $)) (-15 -1419 ((-1105 (-227)) $)) (-15 -3590 ((-652 (-652 (-227))) $)) (-15 -3168 ((-572))) (-15 -2027 ((-572) (-572))) (-15 -1515 ((-572))) (-15 -1915 ((-572) (-572))) (-15 -3387 ((-572))) (-15 -1340 ((-572) (-572))) (-15 -4342 ((-112))) (-15 -3031 ((-112) (-112))) (-15 -1951 ((-572))) (-15 -2926 ((-112) (-112)))))) (T -935))
-((-2398 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-935)))) (-2398 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-935)))) (-2680 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-935)))) (-2680 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-935)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935)))) (-3393 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935)))) (-3420 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935)))) (-3420 (*1 *1 *1) (-5 *1 (-935))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935)))) (-3590 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-227)))) (-5 *1 (-935)))) (-3168 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-2027 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-1515 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-1915 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-3387 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-4342 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))) (-3031 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))) (-1951 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))))
-(-13 (-985) (-10 -8 (-15 -2398 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)))) (-15 -2398 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2680 ($ $ (-1105 (-227)))) (-15 -3393 ($ $ (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3420 ($ $ (-1105 (-227)))) (-15 -3420 ($ $)) (-15 -1419 ((-1105 (-227)) $)) (-15 -3590 ((-652 (-652 (-227))) $)) (-15 -3168 ((-572))) (-15 -2027 ((-572) (-572))) (-15 -1515 ((-572))) (-15 -1915 ((-572) (-572))) (-15 -3387 ((-572))) (-15 -1340 ((-572) (-572))) (-15 -4342 ((-112))) (-15 -3031 ((-112) (-112))) (-15 -1951 ((-572))) (-15 -2926 ((-112) (-112)))))
-((-3393 (($ $ (-1105 (-227))) 122) (($ $ (-1105 (-227)) (-1105 (-227))) 123)) (-2419 (((-1105 (-227)) $) 73)) (-2406 (((-1105 (-227)) $) 72)) (-1419 (((-1105 (-227)) $) 74)) (-4433 (((-572) (-572)) 66)) (-2906 (((-572) (-572)) 61)) (-3163 (((-572) (-572)) 64)) (-2968 (((-112) (-112)) 68)) (-2431 (((-572)) 65)) (-3420 (($ $ (-1105 (-227))) 126) (($ $) 127)) (-2398 (($ (-1 (-952 (-227)) (-227)) (-1105 (-227))) 141) (($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 142)) (-2643 (($ (-1 (-227) (-227)) (-1105 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2680 (($ (-1 (-227) (-227)) (-1105 (-227))) 137) (($ (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227))) 138) (($ (-652 (-1 (-227) (-227))) (-1105 (-227))) 146) (($ (-652 (-1 (-227) (-227))) (-1105 (-227)) (-1105 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 140) (($ $ (-1105 (-227))) 128)) (-3731 (((-112) $) 69)) (-2305 (((-572)) 70)) (-3577 (((-572)) 59)) (-3978 (((-572)) 62)) (-2013 (((-652 (-652 (-952 (-227)))) $) 35)) (-3596 (((-112) (-112)) 71)) (-2940 (((-870) $) 167)) (-2580 (((-112)) 67)))
-(((-936) (-13 (-964) (-10 -8 (-15 -2680 ($ (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2680 ($ (-652 (-1 (-227) (-227))) (-1105 (-227)))) (-15 -2680 ($ (-652 (-1 (-227) (-227))) (-1105 (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2398 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)))) (-15 -2398 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2643 ($ (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2643 ($ (-1 (-227) (-227)))) (-15 -2680 ($ $ (-1105 (-227)))) (-15 -3731 ((-112) $)) (-15 -3393 ($ $ (-1105 (-227)))) (-15 -3393 ($ $ (-1105 (-227)) (-1105 (-227)))) (-15 -3420 ($ $ (-1105 (-227)))) (-15 -3420 ($ $)) (-15 -1419 ((-1105 (-227)) $)) (-15 -3577 ((-572))) (-15 -2906 ((-572) (-572))) (-15 -3978 ((-572))) (-15 -3163 ((-572) (-572))) (-15 -2431 ((-572))) (-15 -4433 ((-572) (-572))) (-15 -2580 ((-112))) (-15 -2968 ((-112) (-112))) (-15 -2305 ((-572))) (-15 -3596 ((-112) (-112)))))) (T -936))
-((-2680 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2680 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2680 (*1 *1 *2 *3) (-12 (-5 *2 (-652 (-1 (-227) (-227)))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2680 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-652 (-1 (-227) (-227)))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2680 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2680 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2398 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2398 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2643 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-936)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-3393 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-3393 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-3420 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-3420 (*1 *1 *1) (-5 *1 (-936))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-3577 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-2906 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-3978 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-2431 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-4433 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-2580 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-2968 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-2305 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
-(-13 (-964) (-10 -8 (-15 -2680 ($ (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2680 ($ (-652 (-1 (-227) (-227))) (-1105 (-227)))) (-15 -2680 ($ (-652 (-1 (-227) (-227))) (-1105 (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2680 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2398 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)))) (-15 -2398 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2643 ($ (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2643 ($ (-1 (-227) (-227)))) (-15 -2680 ($ $ (-1105 (-227)))) (-15 -3731 ((-112) $)) (-15 -3393 ($ $ (-1105 (-227)))) (-15 -3393 ($ $ (-1105 (-227)) (-1105 (-227)))) (-15 -3420 ($ $ (-1105 (-227)))) (-15 -3420 ($ $)) (-15 -1419 ((-1105 (-227)) $)) (-15 -3577 ((-572))) (-15 -2906 ((-572) (-572))) (-15 -3978 ((-572))) (-15 -3163 ((-572) (-572))) (-15 -2431 ((-572))) (-15 -4433 ((-572) (-572))) (-15 -2580 ((-112))) (-15 -2968 ((-112) (-112))) (-15 -2305 ((-572))) (-15 -3596 ((-112) (-112)))))
-((-3492 (((-652 (-1105 (-227))) (-652 (-652 (-952 (-227))))) 34)))
-(((-937) (-10 -7 (-15 -3492 ((-652 (-1105 (-227))) (-652 (-652 (-952 (-227)))))))) (T -937))
-((-3492 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-652 (-1105 (-227)))) (-5 *1 (-937)))))
-(-10 -7 (-15 -3492 ((-652 (-1105 (-227))) (-652 (-652 (-952 (-227)))))))
-((-3102 ((|#2| |#2|) 28)) (-2482 ((|#2| |#2|) 29)) (-1705 ((|#2| |#2|) 27)) (-2108 ((|#2| |#2| (-514)) 26)))
-(((-938 |#1| |#2|) (-10 -7 (-15 -2108 (|#2| |#2| (-514))) (-15 -1705 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -2482 (|#2| |#2|))) (-1111) (-438 |#1|)) (T -938))
-((-2482 (*1 *2 *2) (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3)))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3)))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *3 (-514)) (-4 *4 (-1111)) (-5 *1 (-938 *4 *2)) (-4 *2 (-438 *4)))))
-(-10 -7 (-15 -2108 (|#2| |#2| (-514))) (-15 -1705 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)))
-((-3102 (((-322 (-572)) (-1188)) 16)) (-2482 (((-322 (-572)) (-1188)) 14)) (-1705 (((-322 (-572)) (-1188)) 12)) (-2108 (((-322 (-572)) (-1188) (-514)) 19)))
-(((-939) (-10 -7 (-15 -2108 ((-322 (-572)) (-1188) (-514))) (-15 -1705 ((-322 (-572)) (-1188))) (-15 -3102 ((-322 (-572)) (-1188))) (-15 -2482 ((-322 (-572)) (-1188))))) (T -939))
-((-2482 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-514)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))))
-(-10 -7 (-15 -2108 ((-322 (-572)) (-1188) (-514))) (-15 -1705 ((-322 (-572)) (-1188))) (-15 -3102 ((-322 (-572)) (-1188))) (-15 -2482 ((-322 (-572)) (-1188))))
-((-1594 (((-898 |#1| |#3|) |#2| (-901 |#1|) (-898 |#1| |#3|)) 25)) (-3473 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-940 |#1| |#2| |#3|) (-10 -7 (-15 -3473 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1594 ((-898 |#1| |#3|) |#2| (-901 |#1|) (-898 |#1| |#3|)))) (-1111) (-895 |#1|) (-13 (-1111) (-1049 |#2|))) (T -940))
-((-1594 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *6 (-13 (-1111) (-1049 *3))) (-4 *3 (-895 *5)) (-5 *1 (-940 *5 *3 *6)))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1111) (-1049 *5))) (-4 *5 (-895 *4)) (-4 *4 (-1111)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-940 *4 *5 *6)))))
-(-10 -7 (-15 -3473 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1594 ((-898 |#1| |#3|) |#2| (-901 |#1|) (-898 |#1| |#3|))))
-((-1594 (((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)) 30)))
-(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -1594 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))) (-1111) (-13 (-564) (-895 |#1|)) (-13 (-438 |#2|) (-622 (-901 |#1|)) (-895 |#1|) (-1049 (-620 $)))) (T -941))
-((-1594 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111)) (-4 *3 (-13 (-438 *6) (-622 *4) (-895 *5) (-1049 (-620 $)))) (-5 *4 (-901 *5)) (-4 *6 (-13 (-564) (-895 *5))) (-5 *1 (-941 *5 *6 *3)))))
-(-10 -7 (-15 -1594 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))))
-((-1594 (((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|)) 13)))
-(((-942 |#1|) (-10 -7 (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|)))) (-553)) (T -942))
-((-1594 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 (-572) *3)) (-5 *4 (-901 (-572))) (-4 *3 (-553)) (-5 *1 (-942 *3)))))
-(-10 -7 (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))))
-((-1594 (((-898 |#1| |#2|) (-620 |#2|) (-901 |#1|) (-898 |#1| |#2|)) 57)))
-(((-943 |#1| |#2|) (-10 -7 (-15 -1594 ((-898 |#1| |#2|) (-620 |#2|) (-901 |#1|) (-898 |#1| |#2|)))) (-1111) (-13 (-1111) (-1049 (-620 $)) (-622 (-901 |#1|)) (-895 |#1|))) (T -943))
-((-1594 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6)) (-5 *3 (-620 *6)) (-4 *5 (-1111)) (-4 *6 (-13 (-1111) (-1049 (-620 $)) (-622 *4) (-895 *5))) (-5 *4 (-901 *5)) (-5 *1 (-943 *5 *6)))))
-(-10 -7 (-15 -1594 ((-898 |#1| |#2|) (-620 |#2|) (-901 |#1|) (-898 |#1| |#2|))))
-((-1594 (((-894 |#1| |#2| |#3|) |#3| (-901 |#1|) (-894 |#1| |#2| |#3|)) 17)))
-(((-944 |#1| |#2| |#3|) (-10 -7 (-15 -1594 ((-894 |#1| |#2| |#3|) |#3| (-901 |#1|) (-894 |#1| |#2| |#3|)))) (-1111) (-895 |#1|) (-674 |#2|)) (T -944))
-((-1594 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 *5 *6 *3)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *6 (-895 *5)) (-4 *3 (-674 *6)) (-5 *1 (-944 *5 *6 *3)))))
-(-10 -7 (-15 -1594 ((-894 |#1| |#2| |#3|) |#3| (-901 |#1|) (-894 |#1| |#2| |#3|))))
-((-1594 (((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|)) 17 (|has| |#3| (-895 |#1|))) (((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|) (-1 (-898 |#1| |#5|) |#3| (-901 |#1|) (-898 |#1| |#5|))) 16)))
-(((-945 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1594 ((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|) (-1 (-898 |#1| |#5|) |#3| (-901 |#1|) (-898 |#1| |#5|)))) (IF (|has| |#3| (-895 |#1|)) (-15 -1594 ((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|))) |%noBranch|)) (-1111) (-801) (-858) (-13 (-1060) (-895 |#1|)) (-13 (-958 |#4| |#2| |#3|) (-622 (-901 |#1|)))) (T -945))
-((-1594 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111)) (-4 *3 (-13 (-958 *8 *6 *7) (-622 *4))) (-5 *4 (-901 *5)) (-4 *7 (-895 *5)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-13 (-1060) (-895 *5))) (-5 *1 (-945 *5 *6 *7 *8 *3)))) (-1594 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-898 *6 *3) *8 (-901 *6) (-898 *6 *3))) (-4 *8 (-858)) (-5 *2 (-898 *6 *3)) (-5 *4 (-901 *6)) (-4 *6 (-1111)) (-4 *3 (-13 (-958 *9 *7 *8) (-622 *4))) (-4 *7 (-801)) (-4 *9 (-13 (-1060) (-895 *6))) (-5 *1 (-945 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -1594 ((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|) (-1 (-898 |#1| |#5|) |#3| (-901 |#1|) (-898 |#1| |#5|)))) (IF (|has| |#3| (-895 |#1|)) (-15 -1594 ((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|))) |%noBranch|))
-((-2566 ((|#2| |#2| (-652 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -2566 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2566 (|#2| |#2| (-652 (-1 (-112) |#3|))))) (-1111) (-438 |#1|) (-1229)) (T -946))
-((-2566 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-1 (-112) *5))) (-4 *5 (-1229)) (-4 *4 (-1111)) (-5 *1 (-946 *4 *2 *5)) (-4 *2 (-438 *4)))) (-2566 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1229)) (-4 *4 (-1111)) (-5 *1 (-946 *4 *2 *5)) (-4 *2 (-438 *4)))))
-(-10 -7 (-15 -2566 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2566 (|#2| |#2| (-652 (-1 (-112) |#3|)))))
-((-2566 (((-322 (-572)) (-1188) (-652 (-1 (-112) |#1|))) 18) (((-322 (-572)) (-1188) (-1 (-112) |#1|)) 15)))
-(((-947 |#1|) (-10 -7 (-15 -2566 ((-322 (-572)) (-1188) (-1 (-112) |#1|))) (-15 -2566 ((-322 (-572)) (-1188) (-652 (-1 (-112) |#1|))))) (-1229)) (T -947))
-((-2566 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-652 (-1 (-112) *5))) (-4 *5 (-1229)) (-5 *2 (-322 (-572))) (-5 *1 (-947 *5)))) (-2566 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1229)) (-5 *2 (-322 (-572))) (-5 *1 (-947 *5)))))
-(-10 -7 (-15 -2566 ((-322 (-572)) (-1188) (-1 (-112) |#1|))) (-15 -2566 ((-322 (-572)) (-1188) (-652 (-1 (-112) |#1|)))))
-((-1594 (((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)) 25)))
-(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -1594 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))) (-1111) (-13 (-564) (-895 |#1|) (-622 (-901 |#1|))) (-1003 |#2|)) (T -948))
-((-1594 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111)) (-4 *3 (-1003 *6)) (-4 *6 (-13 (-564) (-895 *5) (-622 *4))) (-5 *4 (-901 *5)) (-5 *1 (-948 *5 *6 *3)))))
-(-10 -7 (-15 -1594 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))))
-((-1594 (((-898 |#1| (-1188)) (-1188) (-901 |#1|) (-898 |#1| (-1188))) 18)))
-(((-949 |#1|) (-10 -7 (-15 -1594 ((-898 |#1| (-1188)) (-1188) (-901 |#1|) (-898 |#1| (-1188))))) (-1111)) (T -949))
-((-1594 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 (-1188))) (-5 *3 (-1188)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-5 *1 (-949 *5)))))
-(-10 -7 (-15 -1594 ((-898 |#1| (-1188)) (-1188) (-901 |#1|) (-898 |#1| (-1188)))))
-((-1734 (((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))) 34)) (-1594 (((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-1 |#3| (-652 |#3|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))) 33)))
-(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -1594 ((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-1 |#3| (-652 |#3|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))) (-15 -1734 ((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))))) (-1111) (-1060) (-13 (-1060) (-622 (-901 |#1|)) (-1049 |#2|))) (T -950))
-((-1734 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-901 *6))) (-5 *5 (-1 (-898 *6 *8) *8 (-901 *6) (-898 *6 *8))) (-4 *6 (-1111)) (-4 *8 (-13 (-1060) (-622 (-901 *6)) (-1049 *7))) (-5 *2 (-898 *6 *8)) (-4 *7 (-1060)) (-5 *1 (-950 *6 *7 *8)))) (-1594 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-652 (-901 *7))) (-5 *5 (-1 *9 (-652 *9))) (-5 *6 (-1 (-898 *7 *9) *9 (-901 *7) (-898 *7 *9))) (-4 *7 (-1111)) (-4 *9 (-13 (-1060) (-622 (-901 *7)) (-1049 *8))) (-5 *2 (-898 *7 *9)) (-5 *3 (-652 *9)) (-4 *8 (-1060)) (-5 *1 (-950 *7 *8 *9)))))
-(-10 -7 (-15 -1594 ((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-1 |#3| (-652 |#3|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))) (-15 -1734 ((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))))
-((-1519 (((-1184 (-415 (-572))) (-572)) 79)) (-3136 (((-1184 (-572)) (-572)) 82)) (-1641 (((-1184 (-572)) (-572)) 76)) (-3994 (((-572) (-1184 (-572))) 72)) (-4372 (((-1184 (-415 (-572))) (-572)) 65)) (-4176 (((-1184 (-572)) (-572)) 49)) (-3657 (((-1184 (-572)) (-572)) 84)) (-2102 (((-1184 (-572)) (-572)) 83)) (-3391 (((-1184 (-415 (-572))) (-572)) 67)))
-(((-951) (-10 -7 (-15 -3391 ((-1184 (-415 (-572))) (-572))) (-15 -2102 ((-1184 (-572)) (-572))) (-15 -3657 ((-1184 (-572)) (-572))) (-15 -4176 ((-1184 (-572)) (-572))) (-15 -4372 ((-1184 (-415 (-572))) (-572))) (-15 -3994 ((-572) (-1184 (-572)))) (-15 -1641 ((-1184 (-572)) (-572))) (-15 -3136 ((-1184 (-572)) (-572))) (-15 -1519 ((-1184 (-415 (-572))) (-572))))) (T -951))
-((-1519 (*1 *2 *3) (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))) (-3136 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-1641 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-3994 (*1 *2 *3) (-12 (-5 *3 (-1184 (-572))) (-5 *2 (-572)) (-5 *1 (-951)))) (-4372 (*1 *2 *3) (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))) (-4176 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-3657 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-2102 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-3391 (*1 *2 *3) (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))))
-(-10 -7 (-15 -3391 ((-1184 (-415 (-572))) (-572))) (-15 -2102 ((-1184 (-572)) (-572))) (-15 -3657 ((-1184 (-572)) (-572))) (-15 -4176 ((-1184 (-572)) (-572))) (-15 -4372 ((-1184 (-415 (-572))) (-572))) (-15 -3994 ((-572) (-1184 (-572)))) (-15 -1641 ((-1184 (-572)) (-572))) (-15 -3136 ((-1184 (-572)) (-572))) (-15 -1519 ((-1184 (-415 (-572))) (-572))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2212 (($ (-779)) NIL (|has| |#1| (-23)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-1439 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-3588 (($ (-652 |#1|)) 9)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-3896 (((-697 |#1|) $ $) NIL (|has| |#1| (-1060)))) (-3787 (($ (-779) |#1|) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3499 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-1985 (((-112) $ (-779)) NIL)) (-4133 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2912 ((|#1| $) NIL (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-2772 (($ $ (-652 |#1|)) 25)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) 18) (($ $ (-1246 (-572))) NIL)) (-2264 ((|#1| $ $) NIL (|has| |#1| (-1060)))) (-4224 (((-930) $) 13)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-4025 (($ $ $) 23)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544)))) (($ (-652 |#1|)) 14)) (-2953 (($ (-652 |#1|)) NIL)) (-4155 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-652 $)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3089 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3075 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-572) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-734))) (($ $ |#1|) NIL (|has| |#1| (-734)))) (-2860 (((-779) $) 11 (|has| $ (-6 -4454)))))
-(((-952 |#1|) (-991 |#1|) (-1060)) (T -952))
-NIL
-(-991 |#1|)
-((-2005 (((-489 |#1| |#2|) (-961 |#2|)) 22)) (-4128 (((-251 |#1| |#2|) (-961 |#2|)) 35)) (-1595 (((-961 |#2|) (-489 |#1| |#2|)) 27)) (-2469 (((-251 |#1| |#2|) (-489 |#1| |#2|)) 57)) (-2902 (((-961 |#2|) (-251 |#1| |#2|)) 32)) (-4053 (((-489 |#1| |#2|) (-251 |#1| |#2|)) 48)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -4053 ((-489 |#1| |#2|) (-251 |#1| |#2|))) (-15 -2469 ((-251 |#1| |#2|) (-489 |#1| |#2|))) (-15 -2005 ((-489 |#1| |#2|) (-961 |#2|))) (-15 -1595 ((-961 |#2|) (-489 |#1| |#2|))) (-15 -2902 ((-961 |#2|) (-251 |#1| |#2|))) (-15 -4128 ((-251 |#1| |#2|) (-961 |#2|)))) (-652 (-1188)) (-1060)) (T -953))
-((-4128 (*1 *2 *3) (-12 (-5 *3 (-961 *5)) (-4 *5 (-1060)) (-5 *2 (-251 *4 *5)) (-5 *1 (-953 *4 *5)) (-14 *4 (-652 (-1188))))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060)) (-5 *2 (-961 *5)) (-5 *1 (-953 *4 *5)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-489 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060)) (-5 *2 (-961 *5)) (-5 *1 (-953 *4 *5)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-961 *5)) (-4 *5 (-1060)) (-5 *2 (-489 *4 *5)) (-5 *1 (-953 *4 *5)) (-14 *4 (-652 (-1188))))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-489 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060)) (-5 *2 (-251 *4 *5)) (-5 *1 (-953 *4 *5)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060)) (-5 *2 (-489 *4 *5)) (-5 *1 (-953 *4 *5)))))
-(-10 -7 (-15 -4053 ((-489 |#1| |#2|) (-251 |#1| |#2|))) (-15 -2469 ((-251 |#1| |#2|) (-489 |#1| |#2|))) (-15 -2005 ((-489 |#1| |#2|) (-961 |#2|))) (-15 -1595 ((-961 |#2|) (-489 |#1| |#2|))) (-15 -2902 ((-961 |#2|) (-251 |#1| |#2|))) (-15 -4128 ((-251 |#1| |#2|) (-961 |#2|))))
-((-2163 (((-652 |#2|) |#2| |#2|) 10)) (-3509 (((-779) (-652 |#1|)) 48 (|has| |#1| (-856)))) (-2657 (((-652 |#2|) |#2|) 11)) (-3530 (((-779) (-652 |#1|) (-572) (-572)) 52 (|has| |#1| (-856)))) (-4352 ((|#1| |#2|) 38 (|has| |#1| (-856)))))
-(((-954 |#1| |#2|) (-10 -7 (-15 -2163 ((-652 |#2|) |#2| |#2|)) (-15 -2657 ((-652 |#2|) |#2|)) (IF (|has| |#1| (-856)) (PROGN (-15 -4352 (|#1| |#2|)) (-15 -3509 ((-779) (-652 |#1|))) (-15 -3530 ((-779) (-652 |#1|) (-572) (-572)))) |%noBranch|)) (-370) (-1255 |#1|)) (T -954))
-((-3530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-572)) (-4 *5 (-856)) (-4 *5 (-370)) (-5 *2 (-779)) (-5 *1 (-954 *5 *6)) (-4 *6 (-1255 *5)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-856)) (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-954 *4 *5)) (-4 *5 (-1255 *4)))) (-4352 (*1 *2 *3) (-12 (-4 *2 (-370)) (-4 *2 (-856)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1255 *2)))) (-2657 (*1 *2 *3) (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-954 *4 *3)) (-4 *3 (-1255 *4)))) (-2163 (*1 *2 *3 *3) (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-954 *4 *3)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -2163 ((-652 |#2|) |#2| |#2|)) (-15 -2657 ((-652 |#2|) |#2|)) (IF (|has| |#1| (-856)) (PROGN (-15 -4352 (|#1| |#2|)) (-15 -3509 ((-779) (-652 |#1|))) (-15 -3530 ((-779) (-652 |#1|) (-572) (-572)))) |%noBranch|))
-((-1776 (((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)) 19)))
-(((-955 |#1| |#2|) (-10 -7 (-15 -1776 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)))) (-1060) (-1060)) (T -955))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-961 *6)) (-5 *1 (-955 *5 *6)))))
-(-10 -7 (-15 -1776 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|))))
-((-4191 (((-1252 |#1| (-961 |#2|)) (-961 |#2|) (-1275 |#1|)) 18)))
-(((-956 |#1| |#2|) (-10 -7 (-15 -4191 ((-1252 |#1| (-961 |#2|)) (-961 |#2|) (-1275 |#1|)))) (-1188) (-1060)) (T -956))
-((-4191 (*1 *2 *3 *4) (-12 (-5 *4 (-1275 *5)) (-14 *5 (-1188)) (-4 *6 (-1060)) (-5 *2 (-1252 *5 (-961 *6))) (-5 *1 (-956 *5 *6)) (-5 *3 (-961 *6)))))
-(-10 -7 (-15 -4191 ((-1252 |#1| (-961 |#2|)) (-961 |#2|) (-1275 |#1|))))
-((-2418 (((-779) $) 88) (((-779) $ (-652 |#4|)) 93)) (-3517 (($ $) 203)) (-2287 (((-426 $) $) 195)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 141)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2204 ((|#2| $) NIL) (((-415 (-572)) $) NIL) (((-572) $) NIL) ((|#4| $) 73)) (-2361 (($ $ $ |#4|) 95)) (-2993 (((-697 (-572)) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 131) (((-697 |#2|) (-697 $)) 121) (((-697 |#2|) (-1279 $)) NIL)) (-1876 (($ $) 210) (($ $ |#4|) 213)) (-1378 (((-652 $) $) 77)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 229) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 222)) (-1843 (((-652 $) $) 34)) (-4333 (($ |#2| |#3|) NIL) (($ $ |#4| (-779)) NIL) (($ $ (-652 |#4|) (-652 (-779))) 71)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ |#4|) 192)) (-4011 (((-3 (-652 $) "failed") $) 52)) (-3665 (((-3 (-652 $) "failed") $) 39)) (-1920 (((-3 (-2 (|:| |var| |#4|) (|:| -1679 (-779))) "failed") $) 57)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 134)) (-4300 (((-426 (-1184 $)) (-1184 $)) 147)) (-1494 (((-426 (-1184 $)) (-1184 $)) 145)) (-4218 (((-426 $) $) 165)) (-2641 (($ $ (-652 (-300 $))) 24) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-652 |#4|) (-652 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-652 |#4|) (-652 $)) NIL)) (-3537 (($ $ |#4|) 97)) (-1835 (((-901 (-386)) $) 243) (((-901 (-572)) $) 236) (((-544) $) 251)) (-1711 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 184)) (-3979 ((|#2| $ |#3|) NIL) (($ $ |#4| (-779)) 62) (($ $ (-652 |#4|) (-652 (-779))) 69)) (-3849 (((-3 $ "failed") $) 186)) (-4379 (((-112) $ $) 216)))
-(((-957 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3849 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -1594 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -1494 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -4300 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3643 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -1318 ((-3 (-1279 |#1|) "failed") (-697 |#1|))) (-15 -1876 (|#1| |#1| |#4|)) (-15 -1711 (|#1| |#1| |#4|)) (-15 -3537 (|#1| |#1| |#4|)) (-15 -2361 (|#1| |#1| |#1| |#4|)) (-15 -1378 ((-652 |#1|) |#1|)) (-15 -2418 ((-779) |#1| (-652 |#4|))) (-15 -2418 ((-779) |#1|)) (-15 -1920 ((-3 (-2 (|:| |var| |#4|) (|:| -1679 (-779))) "failed") |#1|)) (-15 -4011 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -3665 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -4333 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -4333 (|#1| |#1| |#4| (-779))) (-15 -2676 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1| |#4|)) (-15 -1843 ((-652 |#1|) |#1|)) (-15 -3979 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -3979 (|#1| |#1| |#4| (-779))) (-15 -2993 ((-697 |#2|) (-1279 |#1|))) (-15 -2993 ((-697 |#2|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2204 (|#4| |#1|)) (-15 -2641 (|#1| |#1| (-652 |#4|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#4| |#1|)) (-15 -2641 (|#1| |#1| (-652 |#4|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#4| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -4333 (|#1| |#2| |#3|)) (-15 -3979 (|#2| |#1| |#3|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -4379 ((-112) |#1| |#1|))) (-958 |#2| |#3| |#4|) (-1060) (-801) (-858)) (T -957))
-NIL
-(-10 -8 (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3849 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -1594 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -1494 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -4300 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3643 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -1318 ((-3 (-1279 |#1|) "failed") (-697 |#1|))) (-15 -1876 (|#1| |#1| |#4|)) (-15 -1711 (|#1| |#1| |#4|)) (-15 -3537 (|#1| |#1| |#4|)) (-15 -2361 (|#1| |#1| |#1| |#4|)) (-15 -1378 ((-652 |#1|) |#1|)) (-15 -2418 ((-779) |#1| (-652 |#4|))) (-15 -2418 ((-779) |#1|)) (-15 -1920 ((-3 (-2 (|:| |var| |#4|) (|:| -1679 (-779))) "failed") |#1|)) (-15 -4011 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -3665 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -4333 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -4333 (|#1| |#1| |#4| (-779))) (-15 -2676 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1| |#4|)) (-15 -1843 ((-652 |#1|) |#1|)) (-15 -3979 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -3979 (|#1| |#1| |#4| (-779))) (-15 -2993 ((-697 |#2|) (-1279 |#1|))) (-15 -2993 ((-697 |#2|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2204 (|#4| |#1|)) (-15 -2641 (|#1| |#1| (-652 |#4|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#4| |#1|)) (-15 -2641 (|#1| |#1| (-652 |#4|) (-652 |#2|))) (-15 -2641 (|#1| |#1| |#4| |#2|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -4333 (|#1| |#2| |#3|)) (-15 -3979 (|#2| |#1| |#3|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -4379 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4353 (((-652 |#3|) $) 112)) (-4191 (((-1184 $) $ |#3|) 127) (((-1184 |#1|) $) 126)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 89 (|has| |#1| (-564)))) (-3009 (($ $) 90 (|has| |#1| (-564)))) (-4334 (((-112) $) 92 (|has| |#1| (-564)))) (-2418 (((-779) $) 114) (((-779) $ (-652 |#3|)) 113)) (-3330 (((-3 $ "failed") $ $) 20)) (-2603 (((-426 (-1184 $)) (-1184 $)) 102 (|has| |#1| (-918)))) (-3517 (($ $) 100 (|has| |#1| (-460)))) (-2287 (((-426 $) $) 99 (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 105 (|has| |#1| (-918)))) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-415 (-572)) "failed") $) 165 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 163 (|has| |#1| (-1049 (-572)))) (((-3 |#3| "failed") $) 140)) (-2204 ((|#1| $) 167) (((-415 (-572)) $) 166 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 164 (|has| |#1| (-1049 (-572)))) ((|#3| $) 141)) (-2361 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1390 (($ $) 158)) (-2993 (((-697 (-572)) (-1279 $)) 138 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 137 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 136 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 135) (((-697 |#1|) (-697 $)) 134) (((-697 |#1|) (-1279 $)) 133)) (-2062 (((-3 $ "failed") $) 37)) (-1876 (($ $) 180 (|has| |#1| (-460))) (($ $ |#3|) 107 (|has| |#1| (-460)))) (-1378 (((-652 $) $) 111)) (-3879 (((-112) $) 98 (|has| |#1| (-918)))) (-1437 (($ $ |#1| |#2| $) 176)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 86 (-12 (|has| |#3| (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 85 (-12 (|has| |#3| (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-1886 (((-112) $) 35)) (-4368 (((-779) $) 173)) (-4343 (($ (-1184 |#1|) |#3|) 119) (($ (-1184 $) |#3|) 118)) (-1843 (((-652 $) $) 128)) (-2438 (((-112) $) 156)) (-4333 (($ |#1| |#2|) 157) (($ $ |#3| (-779)) 121) (($ $ (-652 |#3|) (-652 (-779))) 120)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ |#3|) 122)) (-2649 ((|#2| $) 174) (((-779) $ |#3|) 124) (((-652 (-779)) $ (-652 |#3|)) 123)) (-2497 (($ (-1 |#2| |#2|) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-3928 (((-3 |#3| "failed") $) 125)) (-1357 (($ $) 153)) (-1368 ((|#1| $) 152)) (-2825 (($ (-652 $)) 96 (|has| |#1| (-460))) (($ $ $) 95 (|has| |#1| (-460)))) (-4347 (((-1170) $) 10)) (-4011 (((-3 (-652 $) "failed") $) 116)) (-3665 (((-3 (-652 $) "failed") $) 117)) (-1920 (((-3 (-2 (|:| |var| |#3|) (|:| -1679 (-779))) "failed") $) 115)) (-3964 (((-1131) $) 11)) (-1336 (((-112) $) 170)) (-1347 ((|#1| $) 171)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 97 (|has| |#1| (-460)))) (-2870 (($ (-652 $)) 94 (|has| |#1| (-460))) (($ $ $) 93 (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) 104 (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) 103 (|has| |#1| (-918)))) (-4218 (((-426 $) $) 101 (|has| |#1| (-918)))) (-2834 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-564)))) (-2641 (($ $ (-652 (-300 $))) 149) (($ $ (-300 $)) 148) (($ $ $ $) 147) (($ $ (-652 $) (-652 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-652 |#3|) (-652 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-652 |#3|) (-652 $)) 142)) (-3537 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3902 (($ $ |#3|) 46) (($ $ (-652 |#3|)) 45) (($ $ |#3| (-779)) 44) (($ $ (-652 |#3|) (-652 (-779))) 43)) (-4390 ((|#2| $) 154) (((-779) $ |#3|) 132) (((-652 (-779)) $ (-652 |#3|)) 131)) (-1835 (((-901 (-386)) $) 84 (-12 (|has| |#3| (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) 83 (-12 (|has| |#3| (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) 82 (-12 (|has| |#3| (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-1711 ((|#1| $) 179 (|has| |#1| (-460))) (($ $ |#3|) 108 (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 106 (-2085 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ $) 87 (|has| |#1| (-564))) (($ (-415 (-572))) 80 (-2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))))) (-4268 (((-652 |#1|) $) 172)) (-3979 ((|#1| $ |#2|) 159) (($ $ |#3| (-779)) 130) (($ $ (-652 |#3|) (-652 (-779))) 129)) (-3849 (((-3 $ "failed") $) 81 (-2813 (-2085 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) 32 T CONST)) (-2099 (($ $ $ (-779)) 177 (|has| |#1| (-174)))) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 91 (|has| |#1| (-564)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ |#3|) 42) (($ $ (-652 |#3|)) 41) (($ $ |#3| (-779)) 40) (($ $ (-652 |#3|) (-652 (-779))) 39)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 160 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 162 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 161 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 151) (($ $ |#1|) 150)))
-(((-958 |#1| |#2| |#3|) (-141) (-1060) (-801) (-858)) (T -958))
-((-1876 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-4390 (*1 *2 *1 *3) (-12 (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-779)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-779))))) (-3979 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-958 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *2 (-858)))) (-3979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 (-779))) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)))) (-1843 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5)))) (-4191 (*1 *2 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-1184 *1)) (-4 *1 (-958 *4 *5 *3)))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-1184 *3)))) (-3928 (*1 *2 *1) (|partial| -12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-2649 (*1 *2 *1 *3) (-12 (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-779)))) (-2649 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-779))))) (-2676 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-958 *4 *5 *3)))) (-4333 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-958 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *2 (-858)))) (-4333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 (-779))) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)))) (-4343 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1060)) (-4 *1 (-958 *4 *5 *3)) (-4 *5 (-801)) (-4 *3 (-858)))) (-4343 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)))) (-3665 (*1 *2 *1) (|partial| -12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5)))) (-4011 (*1 *2 *1) (|partial| -12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5)))) (-1920 (*1 *2 *1) (|partial| -12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| |var| *5) (|:| -1679 (-779)))))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-779)))) (-2418 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-779)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *5)))) (-1378 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5)))) (-2361 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *3 (-174)))) (-3537 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *3 (-174)))) (-1711 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *3 (-460)))) (-1876 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *3 (-460)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-2287 (*1 *2 *1) (-12 (-4 *3 (-460)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-426 *1)) (-4 *1 (-958 *3 *4 *5)))))
-(-13 (-909 |t#3|) (-332 |t#1| |t#2|) (-315 $) (-522 |t#3| |t#1|) (-522 |t#3| $) (-1049 |t#3|) (-384 |t#1|) (-10 -8 (-15 -4390 ((-779) $ |t#3|)) (-15 -4390 ((-652 (-779)) $ (-652 |t#3|))) (-15 -3979 ($ $ |t#3| (-779))) (-15 -3979 ($ $ (-652 |t#3|) (-652 (-779)))) (-15 -1843 ((-652 $) $)) (-15 -4191 ((-1184 $) $ |t#3|)) (-15 -4191 ((-1184 |t#1|) $)) (-15 -3928 ((-3 |t#3| "failed") $)) (-15 -2649 ((-779) $ |t#3|)) (-15 -2649 ((-652 (-779)) $ (-652 |t#3|))) (-15 -2676 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $ |t#3|)) (-15 -4333 ($ $ |t#3| (-779))) (-15 -4333 ($ $ (-652 |t#3|) (-652 (-779)))) (-15 -4343 ($ (-1184 |t#1|) |t#3|)) (-15 -4343 ($ (-1184 $) |t#3|)) (-15 -3665 ((-3 (-652 $) "failed") $)) (-15 -4011 ((-3 (-652 $) "failed") $)) (-15 -1920 ((-3 (-2 (|:| |var| |t#3|) (|:| -1679 (-779))) "failed") $)) (-15 -2418 ((-779) $)) (-15 -2418 ((-779) $ (-652 |t#3|))) (-15 -4353 ((-652 |t#3|) $)) (-15 -1378 ((-652 $) $)) (IF (|has| |t#1| (-622 (-544))) (IF (|has| |t#3| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-622 (-901 (-572)))) (IF (|has| |t#3| (-622 (-901 (-572)))) (-6 (-622 (-901 (-572)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-622 (-901 (-386)))) (IF (|has| |t#3| (-622 (-901 (-386)))) (-6 (-622 (-901 (-386)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-895 (-572))) (IF (|has| |t#3| (-895 (-572))) (-6 (-895 (-572))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-895 (-386))) (IF (|has| |t#3| (-895 (-386))) (-6 (-895 (-386))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2361 ($ $ $ |t#3|)) (-15 -3537 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-460)) (PROGN (-6 (-460)) (-15 -1711 ($ $ |t#3|)) (-15 -1876 ($ $)) (-15 -1876 ($ $ |t#3|)) (-15 -2287 ((-426 $) $)) (-15 -3517 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |t#1| (-918)) (-6 (-918)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 |#3|) . T) ((-624 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-622 (-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572))))) ((-296) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-315 $) . T) ((-332 |#1| |#2|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -2813 (|has| |#1| (-918)) (|has| |#1| (-460))) ((-522 |#3| |#1|) . T) ((-522 |#3| $) . T) ((-522 $ $) . T) ((-564) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 #1=(-572)) |has| |#1| (-647 (-572))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-647 #1#) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-734) . T) ((-909 |#3|) . T) ((-895 (-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386)))) ((-895 (-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))) ((-918) |has| |#1| (-918)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1049 |#3|) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) |has| |#1| (-918)))
-((-4353 (((-652 |#2|) |#5|) 40)) (-4191 (((-1184 |#5|) |#5| |#2| (-1184 |#5|)) 23) (((-415 (-1184 |#5|)) |#5| |#2|) 16)) (-4343 ((|#5| (-415 (-1184 |#5|)) |#2|) 30)) (-3928 (((-3 |#2| "failed") |#5|) 71)) (-4011 (((-3 (-652 |#5|) "failed") |#5|) 65)) (-4153 (((-3 (-2 (|:| |val| |#5|) (|:| -1679 (-572))) "failed") |#5|) 53)) (-3665 (((-3 (-652 |#5|) "failed") |#5|) 67)) (-1920 (((-3 (-2 (|:| |var| |#2|) (|:| -1679 (-572))) "failed") |#5|) 57)))
-(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4353 ((-652 |#2|) |#5|)) (-15 -3928 ((-3 |#2| "failed") |#5|)) (-15 -4191 ((-415 (-1184 |#5|)) |#5| |#2|)) (-15 -4343 (|#5| (-415 (-1184 |#5|)) |#2|)) (-15 -4191 ((-1184 |#5|) |#5| |#2| (-1184 |#5|))) (-15 -3665 ((-3 (-652 |#5|) "failed") |#5|)) (-15 -4011 ((-3 (-652 |#5|) "failed") |#5|)) (-15 -1920 ((-3 (-2 (|:| |var| |#2|) (|:| -1679 (-572))) "failed") |#5|)) (-15 -4153 ((-3 (-2 (|:| |val| |#5|) (|:| -1679 (-572))) "failed") |#5|))) (-801) (-858) (-1060) (-958 |#3| |#1| |#2|) (-13 (-370) (-10 -8 (-15 -2940 ($ |#4|)) (-15 -2963 (|#4| $)) (-15 -2974 (|#4| $))))) (T -959))
-((-4153 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1679 (-572)))) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))))) (-1920 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1679 (-572)))) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))))) (-4011 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *3)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))))) (-3665 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *3)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))))) (-4191 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))) (-4 *7 (-958 *6 *5 *4)) (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-1060)) (-5 *1 (-959 *5 *4 *6 *7 *3)))) (-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-1184 *2))) (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-1060)) (-4 *2 (-13 (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))) (-5 *1 (-959 *5 *4 *6 *7 *2)) (-4 *7 (-958 *6 *5 *4)))) (-4191 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-415 (-1184 *3))) (-5 *1 (-959 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))))) (-3928 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-1060)) (-4 *6 (-958 *5 *4 *2)) (-4 *2 (-858)) (-5 *1 (-959 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -2940 ($ *6)) (-15 -2963 (*6 $)) (-15 -2974 (*6 $))))))) (-4353 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *5)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))))))
-(-10 -7 (-15 -4353 ((-652 |#2|) |#5|)) (-15 -3928 ((-3 |#2| "failed") |#5|)) (-15 -4191 ((-415 (-1184 |#5|)) |#5| |#2|)) (-15 -4343 (|#5| (-415 (-1184 |#5|)) |#2|)) (-15 -4191 ((-1184 |#5|) |#5| |#2| (-1184 |#5|))) (-15 -3665 ((-3 (-652 |#5|) "failed") |#5|)) (-15 -4011 ((-3 (-652 |#5|) "failed") |#5|)) (-15 -1920 ((-3 (-2 (|:| |var| |#2|) (|:| -1679 (-572))) "failed") |#5|)) (-15 -4153 ((-3 (-2 (|:| |val| |#5|) (|:| -1679 (-572))) "failed") |#5|)))
-((-1776 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-960 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1776 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-801) (-858) (-1060) (-958 |#3| |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -3075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779)))))) (T -960))
-((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-858)) (-4 *8 (-1060)) (-4 *6 (-801)) (-4 *2 (-13 (-1111) (-10 -8 (-15 -3075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779)))))) (-5 *1 (-960 *6 *7 *8 *5 *2)) (-4 *5 (-958 *8 *6 *7)))))
-(-10 -7 (-15 -1776 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-1188)) $) 16)) (-4191 (((-1184 $) $ (-1188)) 21) (((-1184 |#1|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-1188))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3517 (($ $) NIL (|has| |#1| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 8) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1188) "failed") $) NIL)) (-2204 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1188) $) NIL)) (-2361 (($ $ $ (-1188)) NIL (|has| |#1| (-174)))) (-1390 (($ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-460))) (($ $ (-1188)) NIL (|has| |#1| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#1| (-918)))) (-1437 (($ $ |#1| (-539 (-1188)) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1188) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1188) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-4343 (($ (-1184 |#1|) (-1188)) NIL) (($ (-1184 $) (-1188)) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-539 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-1188)) NIL)) (-2649 (((-539 (-1188)) $) NIL) (((-779) $ (-1188)) NIL) (((-652 (-779)) $ (-652 (-1188))) NIL)) (-2497 (($ (-1 (-539 (-1188)) (-539 (-1188))) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3928 (((-3 (-1188) "failed") $) 19)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4347 (((-1170) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-1188)) (|:| -1679 (-779))) "failed") $) NIL)) (-3034 (($ $ (-1188)) 29 (|has| |#1| (-38 (-415 (-572)))))) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#1| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-918)))) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1188) |#1|) NIL) (($ $ (-652 (-1188)) (-652 |#1|)) NIL) (($ $ (-1188) $) NIL) (($ $ (-652 (-1188)) (-652 $)) NIL)) (-3537 (($ $ (-1188)) NIL (|has| |#1| (-174)))) (-3902 (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-4390 (((-539 (-1188)) $) NIL) (((-779) $ (-1188)) NIL) (((-652 (-779)) $ (-652 (-1188))) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-1188) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1188) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1188) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-1711 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-1188)) NIL (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) 25) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-1188)) 27) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-539 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-961 |#1|) (-13 (-958 |#1| (-539 (-1188)) (-1188)) (-10 -8 (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1188))) |%noBranch|))) (-1060)) (T -961))
-((-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-961 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)))))
-(-13 (-958 |#1| (-539 (-1188)) (-1188)) (-10 -8 (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1188))) |%noBranch|)))
-((-4073 (((-2 (|:| -1679 (-779)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#3| (-779)) 49)) (-2501 (((-2 (|:| -1679 (-779)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) (-415 (-572)) (-779)) 44)) (-3974 (((-2 (|:| -1679 (-779)) (|:| -1857 |#4|) (|:| |radicand| (-652 |#4|))) |#4| (-779)) 65)) (-3633 (((-2 (|:| -1679 (-779)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#5| (-779)) 74 (|has| |#3| (-460)))))
-(((-962 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4073 ((-2 (|:| -1679 (-779)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#3| (-779))) (-15 -2501 ((-2 (|:| -1679 (-779)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) (-415 (-572)) (-779))) (IF (|has| |#3| (-460)) (-15 -3633 ((-2 (|:| -1679 (-779)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#5| (-779))) |%noBranch|) (-15 -3974 ((-2 (|:| -1679 (-779)) (|:| -1857 |#4|) (|:| |radicand| (-652 |#4|))) |#4| (-779)))) (-801) (-858) (-564) (-958 |#3| |#1| |#2|) (-13 (-370) (-10 -8 (-15 -2940 ($ |#4|)) (-15 -2963 (|#4| $)) (-15 -2974 (|#4| $))))) (T -962))
-((-3974 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564)) (-4 *3 (-958 *7 *5 *6)) (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *3) (|:| |radicand| (-652 *3)))) (-5 *1 (-962 *5 *6 *7 *3 *8)) (-5 *4 (-779)) (-4 *8 (-13 (-370) (-10 -8 (-15 -2940 ($ *3)) (-15 -2963 (*3 $)) (-15 -2974 (*3 $))))))) (-3633 (*1 *2 *3 *4) (-12 (-4 *7 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564)) (-4 *8 (-958 *7 *5 *6)) (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *3) (|:| |radicand| *3))) (-5 *1 (-962 *5 *6 *7 *8 *3)) (-5 *4 (-779)) (-4 *3 (-13 (-370) (-10 -8 (-15 -2940 ($ *8)) (-15 -2963 (*8 $)) (-15 -2974 (*8 $))))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-572))) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564)) (-4 *8 (-958 *7 *5 *6)) (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *9) (|:| |radicand| *9))) (-5 *1 (-962 *5 *6 *7 *8 *9)) (-5 *4 (-779)) (-4 *9 (-13 (-370) (-10 -8 (-15 -2940 ($ *8)) (-15 -2963 (*8 $)) (-15 -2974 (*8 $))))))) (-4073 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-564)) (-4 *7 (-958 *3 *5 *6)) (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *8) (|:| |radicand| *8))) (-5 *1 (-962 *5 *6 *3 *7 *8)) (-5 *4 (-779)) (-4 *8 (-13 (-370) (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))))))
-(-10 -7 (-15 -4073 ((-2 (|:| -1679 (-779)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#3| (-779))) (-15 -2501 ((-2 (|:| -1679 (-779)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) (-415 (-572)) (-779))) (IF (|has| |#3| (-460)) (-15 -3633 ((-2 (|:| -1679 (-779)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#5| (-779))) |%noBranch|) (-15 -3974 ((-2 (|:| -1679 (-779)) (|:| -1857 |#4|) (|:| |radicand| (-652 |#4|))) |#4| (-779))))
-((-2846 (((-112) $ $) NIL)) (-2116 (($ (-1131)) 8)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 15) (((-1131) $) 12)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 11)))
-(((-963) (-13 (-1111) (-621 (-1131)) (-10 -8 (-15 -2116 ($ (-1131)))))) (T -963))
-((-2116 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-963)))))
-(-13 (-1111) (-621 (-1131)) (-10 -8 (-15 -2116 ($ (-1131)))))
-((-2419 (((-1105 (-227)) $) 8)) (-2406 (((-1105 (-227)) $) 9)) (-2013 (((-652 (-652 (-952 (-227)))) $) 10)) (-2940 (((-870) $) 6)))
-(((-964) (-141)) (T -964))
-((-2013 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-652 (-652 (-952 (-227))))))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1105 (-227))))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1105 (-227))))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2013 ((-652 (-652 (-952 (-227)))) $)) (-15 -2406 ((-1105 (-227)) $)) (-15 -2419 ((-1105 (-227)) $))))
-(((-621 (-870)) . T))
-((-2814 (((-3 (-697 |#1|) "failed") |#2| (-930)) 18)))
-(((-965 |#1| |#2|) (-10 -7 (-15 -2814 ((-3 (-697 |#1|) "failed") |#2| (-930)))) (-564) (-664 |#1|)) (T -965))
-((-2814 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-930)) (-4 *5 (-564)) (-5 *2 (-697 *5)) (-5 *1 (-965 *5 *3)) (-4 *3 (-664 *5)))))
-(-10 -7 (-15 -2814 ((-3 (-697 |#1|) "failed") |#2| (-930))))
-((-2273 (((-967 |#2|) (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|) 16)) (-2865 ((|#2| (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|) 18)) (-1776 (((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|)) 13)))
-(((-966 |#1| |#2|) (-10 -7 (-15 -2273 ((-967 |#2|) (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|)) (-15 -2865 (|#2| (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|)) (-15 -1776 ((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|)))) (-1229) (-1229)) (T -966))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-967 *6)) (-5 *1 (-966 *5 *6)))) (-2865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-967 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-966 *5 *2)))) (-2273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-967 *6)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-5 *2 (-967 *5)) (-5 *1 (-966 *6 *5)))))
-(-10 -7 (-15 -2273 ((-967 |#2|) (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|)) (-15 -2865 (|#2| (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|)) (-15 -1776 ((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-572) |#1|) 19 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) 18 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 16)) (-1439 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-3787 (($ (-779) |#1|) 15)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) 11 (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2912 ((|#1| $) NIL (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) 20 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) 12)) (-2196 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) 17) (($ $ (-1246 (-572))) NIL)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) 21)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 14)) (-4155 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2860 (((-779) $) 8 (|has| $ (-6 -4454)))))
-(((-967 |#1|) (-19 |#1|) (-1229)) (T -967))
+((-2770 ((|#2| (-654 |#1|) (-654 |#1|)) 28)))
+(((-933 |#1| |#2|) (-10 -7 (-15 -2770 (|#2| (-654 |#1|) (-654 |#1|)))) (-372) (-1257 |#1|)) (T -933))
+((-2770 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1257 *4)) (-5 *1 (-933 *4 *2)))))
+(-10 -7 (-15 -2770 (|#2| (-654 |#1|) (-654 |#1|))))
+((-4221 (((-1186 |#2|) (-654 |#2|) (-654 |#2|)) 17) (((-1254 |#1| |#2|) (-1254 |#1| |#2|) (-654 |#2|) (-654 |#2|)) 13)))
+(((-934 |#1| |#2|) (-10 -7 (-15 -4221 ((-1254 |#1| |#2|) (-1254 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -4221 ((-1186 |#2|) (-654 |#2|) (-654 |#2|)))) (-1190) (-372)) (T -934))
+((-4221 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1186 *5)) (-5 *1 (-934 *4 *5)) (-14 *4 (-1190)))) (-4221 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1254 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1190)) (-4 *5 (-372)) (-5 *1 (-934 *4 *5)))))
+(-10 -7 (-15 -4221 ((-1254 |#1| |#2|) (-1254 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -4221 ((-1186 |#2|) (-654 |#2|) (-654 |#2|))))
+((-4061 (((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172)) 174)) (-3620 ((|#4| |#4|) 193)) (-2677 (((-654 (-417 (-963 |#1|))) (-654 (-1190))) 146)) (-3033 (((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574)) 88)) (-2976 (((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))) (-654 |#4|)) 69)) (-1567 (((-699 |#4|) (-699 |#4|) (-654 |#4|)) 65)) (-4058 (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172)) 186)) (-2230 (((-574) (-699 |#4|) (-932) (-1172)) 166) (((-574) (-699 |#4|) (-654 (-1190)) (-932) (-1172)) 165) (((-574) (-699 |#4|) (-654 |#4|) (-932) (-1172)) 164) (((-574) (-699 |#4|) (-1172)) 154) (((-574) (-699 |#4|) (-654 (-1190)) (-1172)) 153) (((-574) (-699 |#4|) (-654 |#4|) (-1172)) 152) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-932)) 151) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)) (-932)) 150) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-932)) 149) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|)) 148) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190))) 147) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|)) 143)) (-3714 ((|#4| (-963 |#1|)) 80)) (-1527 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 190)) (-3022 (((-654 (-654 (-574))) (-574) (-574)) 159)) (-4381 (((-654 (-654 |#4|)) (-654 (-654 |#4|))) 106)) (-2089 (((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 100)) (-3976 (((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 99)) (-3749 (((-112) (-654 (-963 |#1|))) 19) (((-112) (-654 |#4|)) 15)) (-1421 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|)) 84)) (-3166 (((-654 |#4|) |#4|) 57)) (-3614 (((-654 (-417 (-963 |#1|))) (-654 |#4|)) 142) (((-699 (-417 (-963 |#1|))) (-699 |#4|)) 66) (((-417 (-963 |#1|)) |#4|) 139)) (-3364 (((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-781) (-1172) (-574)) 112)) (-3084 (((-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781)) 98)) (-1956 (((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781)) 121)) (-1993 (((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| -1485 (-699 (-417 (-963 |#1|)))) (|:| |vec| (-654 (-417 (-963 |#1|)))) (|:| -3584 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) 56)))
+(((-935 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-932))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)) (-932))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-932))) (-15 -2230 ((-574) (-699 |#4|) (-654 |#4|) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-654 (-1190)) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-654 |#4|) (-932) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-654 (-1190)) (-932) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-932) (-1172))) (-15 -4061 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172))) (-15 -4058 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172))) (-15 -3364 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-781) (-1172) (-574))) (-15 -3614 ((-417 (-963 |#1|)) |#4|)) (-15 -3614 ((-699 (-417 (-963 |#1|))) (-699 |#4|))) (-15 -3614 ((-654 (-417 (-963 |#1|))) (-654 |#4|))) (-15 -2677 ((-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -3714 (|#4| (-963 |#1|))) (-15 -1421 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -3084 ((-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2976 ((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))) (-654 |#4|))) (-15 -1993 ((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| -1485 (-699 (-417 (-963 |#1|)))) (|:| |vec| (-654 (-417 (-963 |#1|)))) (|:| -3584 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -3166 ((-654 |#4|) |#4|)) (-15 -3976 ((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2089 ((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -4381 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -3022 ((-654 (-654 (-574))) (-574) (-574))) (-15 -1527 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -1956 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -1567 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -3033 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -3620 (|#4| |#4|)) (-15 -3749 ((-112) (-654 |#4|))) (-15 -3749 ((-112) (-654 (-963 |#1|))))) (-13 (-315) (-148)) (-13 (-860) (-624 (-1190))) (-803) (-960 |#1| |#3| |#2|)) (T -935))
+((-3749 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-935 *4 *5 *6 *7)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1190)))) (-4 *5 (-803)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-960 *3 *5 *4)))) (-3033 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-963 *9)))) (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) (-4 *9 (-13 (-315) (-148))) (-4 *12 (-960 *9 *11 *10)) (-4 *10 (-13 (-860) (-624 (-1190)))) (-4 *11 (-803)) (-5 *2 (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) (|:| |wcond| (-654 (-963 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *9)))) (|:| -2722 (-654 (-1281 (-417 (-963 *9))))))))) (-5 *1 (-935 *9 *10 *11 *12)))) (-1567 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *1 (-935 *4 *5 *6 *7)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-5 *1 (-935 *5 *6 *7 *8)))) (-1527 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-935 *5 *6 *7 *8)))) (-3022 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-960 *4 *6 *5)))) (-4381 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-960 *3 *5 *4)) (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1190)))) (-4 *5 (-803)) (-5 *1 (-935 *3 *4 *5 *6)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-935 *4 *5 *6 *7)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-935 *4 *5 *6 *7)))) (-3166 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-935 *4 *5 *6 *3)) (-4 *3 (-960 *4 *6 *5)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1485 (-699 (-417 (-963 *4)))) (|:| |vec| (-654 (-417 (-963 *4)))) (|:| -3584 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) (|:| -2722 (-654 (-1281 (-417 (-963 *4))))))) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))) (-2976 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) (|:| -2722 (-654 (-1281 (-417 (-963 *4))))))) (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) (-4 *7 (-960 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *1 (-935 *4 *5 *6 *7)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *8))))) (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-781)))) (-1421 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-4 *7 (-960 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-315) (-148))) (-4 *2 (-960 *4 *6 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-963 *4)))) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-963 *4)))) (-5 *1 (-935 *4 *5 *6 *7)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-699 (-417 (-963 *4)))) (-5 *1 (-935 *4 *5 *6 *7)))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-417 (-963 *4))) (-5 *1 (-935 *4 *5 *6 *3)) (-4 *3 (-960 *4 *6 *5)))) (-3364 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-963 *8)))) (-5 *5 (-781)) (-5 *6 (-1172)) (-4 *8 (-13 (-315) (-148))) (-4 *11 (-960 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1190)))) (-4 *10 (-803)) (-5 *2 (-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) (|:| |wcond| (-654 (-963 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *8)))) (|:| -2722 (-654 (-1281 (-417 (-963 *8)))))))))) (|:| |rgsz| (-574)))) (-5 *1 (-935 *8 *9 *10 *11)) (-5 *7 (-574)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-963 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) (|:| -2722 (-654 (-1281 (-417 (-963 *4)))))))))) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) (|:| -2722 (-654 (-1281 (-417 (-963 *5)))))))))) (-5 *4 (-1172)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-960 *5 *7 *6)) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *5 *6 *7 *8)))) (-2230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-932)) (-5 *5 (-1172)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *6 *7 *8 *9)))) (-2230 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1190))) (-5 *5 (-932)) (-5 *6 (-1172)) (-4 *10 (-960 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1190)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *7 *8 *9 *10)))) (-2230 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-932)) (-5 *6 (-1172)) (-4 *10 (-960 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1190)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *7 *8 *9 *10)))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-1172)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *5 *6 *7 *8)))) (-2230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1190))) (-5 *5 (-1172)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *6 *7 *8 *9)))) (-2230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1172)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *6 *7 *8 *9)))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-932)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) (|:| -2722 (-654 (-1281 (-417 (-963 *5)))))))))) (-5 *1 (-935 *5 *6 *7 *8)))) (-2230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1190))) (-5 *5 (-932)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-963 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *6)))) (|:| -2722 (-654 (-1281 (-417 (-963 *6)))))))))) (-5 *1 (-935 *6 *7 *8 *9)))) (-2230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *5 (-932)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-963 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *6)))) (|:| -2722 (-654 (-1281 (-417 (-963 *6)))))))))) (-5 *1 (-935 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-963 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) (|:| -2722 (-654 (-1281 (-417 (-963 *4)))))))))) (-5 *1 (-935 *4 *5 *6 *7)))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1190))) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) (|:| -2722 (-654 (-1281 (-417 (-963 *5)))))))))) (-5 *1 (-935 *5 *6 *7 *8)))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) (|:| -2722 (-654 (-1281 (-417 (-963 *5)))))))))) (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-654 *8)))))
+(-10 -7 (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-932))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)) (-932))) (-15 -2230 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-932))) (-15 -2230 ((-574) (-699 |#4|) (-654 |#4|) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-654 (-1190)) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-654 |#4|) (-932) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-654 (-1190)) (-932) (-1172))) (-15 -2230 ((-574) (-699 |#4|) (-932) (-1172))) (-15 -4061 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172))) (-15 -4058 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172))) (-15 -3364 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-781) (-1172) (-574))) (-15 -3614 ((-417 (-963 |#1|)) |#4|)) (-15 -3614 ((-699 (-417 (-963 |#1|))) (-699 |#4|))) (-15 -3614 ((-654 (-417 (-963 |#1|))) (-654 |#4|))) (-15 -2677 ((-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -3714 (|#4| (-963 |#1|))) (-15 -1421 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -3084 ((-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2976 ((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))) (-654 |#4|))) (-15 -1993 ((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| -1485 (-699 (-417 (-963 |#1|)))) (|:| |vec| (-654 (-417 (-963 |#1|)))) (|:| -3584 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -3166 ((-654 |#4|) |#4|)) (-15 -3976 ((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2089 ((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -4381 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -3022 ((-654 (-654 (-574))) (-574) (-574))) (-15 -1527 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -1956 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -1567 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -3033 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -2722 (-654 (-1281 (-417 (-963 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -3620 (|#4| |#4|)) (-15 -3749 ((-112) (-654 |#4|))) (-15 -3749 ((-112) (-654 (-963 |#1|)))))
+((-2331 (((-938) |#1| (-1190)) 17) (((-938) |#1| (-1190) (-1107 (-227))) 21)) (-2721 (((-938) |#1| |#1| (-1190) (-1107 (-227))) 19) (((-938) |#1| (-1190) (-1107 (-227))) 15)))
+(((-936 |#1|) (-10 -7 (-15 -2721 ((-938) |#1| (-1190) (-1107 (-227)))) (-15 -2721 ((-938) |#1| |#1| (-1190) (-1107 (-227)))) (-15 -2331 ((-938) |#1| (-1190) (-1107 (-227)))) (-15 -2331 ((-938) |#1| (-1190)))) (-624 (-546))) (T -936))
+((-2331 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-938)) (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))) (-2331 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938)) (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))) (-2721 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938)) (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))) (-2721 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938)) (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))))
+(-10 -7 (-15 -2721 ((-938) |#1| (-1190) (-1107 (-227)))) (-15 -2721 ((-938) |#1| |#1| (-1190) (-1107 (-227)))) (-15 -2331 ((-938) |#1| (-1190) (-1107 (-227)))) (-15 -2331 ((-938) |#1| (-1190))))
+((-2307 (($ $ (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 121)) (-2437 (((-1107 (-227)) $) 64)) (-2424 (((-1107 (-227)) $) 63)) (-2411 (((-1107 (-227)) $) 62)) (-3873 (((-654 (-654 (-227))) $) 69)) (-2934 (((-1107 (-227)) $) 65)) (-1672 (((-574) (-574)) 57)) (-1642 (((-574) (-574)) 52)) (-3026 (((-574) (-574)) 55)) (-2930 (((-112) (-112)) 59)) (-3552 (((-574)) 56)) (-2621 (($ $ (-1107 (-227))) 124) (($ $) 125)) (-1878 (($ (-1 (-954 (-227)) (-227)) (-1107 (-227))) 131) (($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 132)) (-2721 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 135) (($ $ (-1107 (-227))) 127)) (-3454 (((-574)) 60)) (-1768 (((-574)) 50)) (-1503 (((-574)) 53)) (-2719 (((-654 (-654 (-954 (-227)))) $) 151)) (-3320 (((-112) (-112)) 61)) (-2943 (((-872) $) 149)) (-2522 (((-112)) 58)))
+(((-937) (-13 (-987) (-10 -8 (-15 -1878 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)))) (-15 -1878 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2721 ($ $ (-1107 (-227)))) (-15 -2307 ($ $ (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2621 ($ $ (-1107 (-227)))) (-15 -2621 ($ $)) (-15 -2934 ((-1107 (-227)) $)) (-15 -3873 ((-654 (-654 (-227))) $)) (-15 -1768 ((-574))) (-15 -1642 ((-574) (-574))) (-15 -1503 ((-574))) (-15 -3026 ((-574) (-574))) (-15 -3552 ((-574))) (-15 -1672 ((-574) (-574))) (-15 -2522 ((-112))) (-15 -2930 ((-112) (-112))) (-15 -3454 ((-574))) (-15 -3320 ((-112) (-112)))))) (T -937))
+((-1878 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-937)))) (-1878 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-937)))) (-2721 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-937)))) (-2721 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-937)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) (-2307 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) (-2621 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) (-2621 (*1 *1 *1) (-5 *1 (-937))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-937)))) (-1768 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-1503 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-3552 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-2522 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-3454 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-3320 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))))
+(-13 (-987) (-10 -8 (-15 -1878 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)))) (-15 -1878 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2721 ($ $ (-1107 (-227)))) (-15 -2307 ($ $ (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2621 ($ $ (-1107 (-227)))) (-15 -2621 ($ $)) (-15 -2934 ((-1107 (-227)) $)) (-15 -3873 ((-654 (-654 (-227))) $)) (-15 -1768 ((-574))) (-15 -1642 ((-574) (-574))) (-15 -1503 ((-574))) (-15 -3026 ((-574) (-574))) (-15 -3552 ((-574))) (-15 -1672 ((-574) (-574))) (-15 -2522 ((-112))) (-15 -2930 ((-112) (-112))) (-15 -3454 ((-574))) (-15 -3320 ((-112) (-112)))))
+((-2307 (($ $ (-1107 (-227))) 122) (($ $ (-1107 (-227)) (-1107 (-227))) 123)) (-2424 (((-1107 (-227)) $) 73)) (-2411 (((-1107 (-227)) $) 72)) (-2934 (((-1107 (-227)) $) 74)) (-2195 (((-574) (-574)) 66)) (-3139 (((-574) (-574)) 61)) (-1728 (((-574) (-574)) 64)) (-2392 (((-112) (-112)) 68)) (-2155 (((-574)) 65)) (-2621 (($ $ (-1107 (-227))) 126) (($ $) 127)) (-1878 (($ (-1 (-954 (-227)) (-227)) (-1107 (-227))) 141) (($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 142)) (-2331 (($ (-1 (-227) (-227)) (-1107 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2721 (($ (-1 (-227) (-227)) (-1107 (-227))) 137) (($ (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227))) 138) (($ (-654 (-1 (-227) (-227))) (-1107 (-227))) 146) (($ (-654 (-1 (-227) (-227))) (-1107 (-227)) (-1107 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 140) (($ $ (-1107 (-227))) 128)) (-2720 (((-112) $) 69)) (-2277 (((-574)) 70)) (-3761 (((-574)) 59)) (-3330 (((-574)) 62)) (-2719 (((-654 (-654 (-954 (-227)))) $) 35)) (-3598 (((-112) (-112)) 71)) (-2943 (((-872) $) 167)) (-3042 (((-112)) 67)))
+(((-938) (-13 (-966) (-10 -8 (-15 -2721 ($ (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2721 ($ (-654 (-1 (-227) (-227))) (-1107 (-227)))) (-15 -2721 ($ (-654 (-1 (-227) (-227))) (-1107 (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -1878 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)))) (-15 -1878 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2331 ($ (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2331 ($ (-1 (-227) (-227)))) (-15 -2721 ($ $ (-1107 (-227)))) (-15 -2720 ((-112) $)) (-15 -2307 ($ $ (-1107 (-227)))) (-15 -2307 ($ $ (-1107 (-227)) (-1107 (-227)))) (-15 -2621 ($ $ (-1107 (-227)))) (-15 -2621 ($ $)) (-15 -2934 ((-1107 (-227)) $)) (-15 -3761 ((-574))) (-15 -3139 ((-574) (-574))) (-15 -3330 ((-574))) (-15 -1728 ((-574) (-574))) (-15 -2155 ((-574))) (-15 -2195 ((-574) (-574))) (-15 -3042 ((-112))) (-15 -2392 ((-112) (-112))) (-15 -2277 ((-574))) (-15 -3598 ((-112) (-112)))))) (T -938))
+((-2721 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-2721 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-2721 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-2721 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-2721 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-2721 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-1878 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-1878 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-2331 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-2331 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-938)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-938)))) (-2307 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-2307 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-2621 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-2621 (*1 *1 *1) (-5 *1 (-938))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-3761 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-3139 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-3330 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-2155 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-3042 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938)))) (-2277 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938)))))
+(-13 (-966) (-10 -8 (-15 -2721 ($ (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2721 ($ (-654 (-1 (-227) (-227))) (-1107 (-227)))) (-15 -2721 ($ (-654 (-1 (-227) (-227))) (-1107 (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2721 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -1878 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)))) (-15 -1878 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2331 ($ (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2331 ($ (-1 (-227) (-227)))) (-15 -2721 ($ $ (-1107 (-227)))) (-15 -2720 ((-112) $)) (-15 -2307 ($ $ (-1107 (-227)))) (-15 -2307 ($ $ (-1107 (-227)) (-1107 (-227)))) (-15 -2621 ($ $ (-1107 (-227)))) (-15 -2621 ($ $)) (-15 -2934 ((-1107 (-227)) $)) (-15 -3761 ((-574))) (-15 -3139 ((-574) (-574))) (-15 -3330 ((-574))) (-15 -1728 ((-574) (-574))) (-15 -2155 ((-574))) (-15 -2195 ((-574) (-574))) (-15 -3042 ((-112))) (-15 -2392 ((-112) (-112))) (-15 -2277 ((-574))) (-15 -3598 ((-112) (-112)))))
+((-2168 (((-654 (-1107 (-227))) (-654 (-654 (-954 (-227))))) 34)))
+(((-939) (-10 -7 (-15 -2168 ((-654 (-1107 (-227))) (-654 (-654 (-954 (-227)))))))) (T -939))
+((-2168 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-654 (-1107 (-227)))) (-5 *1 (-939)))))
+(-10 -7 (-15 -2168 ((-654 (-1107 (-227))) (-654 (-654 (-954 (-227)))))))
+((-3105 ((|#2| |#2|) 28)) (-2487 ((|#2| |#2|) 29)) (-1707 ((|#2| |#2|) 27)) (-2113 ((|#2| |#2| (-516)) 26)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -2113 (|#2| |#2| (-516))) (-15 -1707 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -2487 (|#2| |#2|))) (-1113) (-440 |#1|)) (T -940))
+((-2487 (*1 *2 *2) (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3)))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3)))) (-1707 (*1 *2 *2) (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3)))) (-2113 (*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-1113)) (-5 *1 (-940 *4 *2)) (-4 *2 (-440 *4)))))
+(-10 -7 (-15 -2113 (|#2| |#2| (-516))) (-15 -1707 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)))
+((-3105 (((-324 (-574)) (-1190)) 16)) (-2487 (((-324 (-574)) (-1190)) 14)) (-1707 (((-324 (-574)) (-1190)) 12)) (-2113 (((-324 (-574)) (-1190) (-516)) 19)))
+(((-941) (-10 -7 (-15 -2113 ((-324 (-574)) (-1190) (-516))) (-15 -1707 ((-324 (-574)) (-1190))) (-15 -3105 ((-324 (-574)) (-1190))) (-15 -2487 ((-324 (-574)) (-1190))))) (T -941))
+((-2487 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))))
+(-10 -7 (-15 -2113 ((-324 (-574)) (-1190) (-516))) (-15 -1707 ((-324 (-574)) (-1190))) (-15 -3105 ((-324 (-574)) (-1190))) (-15 -2487 ((-324 (-574)) (-1190))))
+((-2961 (((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)) 25)) (-1957 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -1957 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2961 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) (-1113) (-897 |#1|) (-13 (-1113) (-1051 |#2|))) (T -942))
+((-2961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *6 (-13 (-1113) (-1051 *3))) (-4 *3 (-897 *5)) (-5 *1 (-942 *5 *3 *6)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1113) (-1051 *5))) (-4 *5 (-897 *4)) (-4 *4 (-1113)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-942 *4 *5 *6)))))
+(-10 -7 (-15 -1957 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2961 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|))))
+((-2961 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 30)))
+(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -2961 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1113) (-13 (-566) (-897 |#1|)) (-13 (-440 |#2|) (-624 (-903 |#1|)) (-897 |#1|) (-1051 (-622 $)))) (T -943))
+((-2961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1051 (-622 $)))) (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) (-5 *1 (-943 *5 *6 *3)))))
+(-10 -7 (-15 -2961 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))
+((-2961 (((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)) 13)))
+(((-944 |#1|) (-10 -7 (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) (-555)) (T -944))
+((-2961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) (-5 *1 (-944 *3)))))
+(-10 -7 (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))))
+((-2961 (((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)) 57)))
+(((-945 |#1| |#2|) (-10 -7 (-15 -2961 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) (-1113) (-13 (-1113) (-1051 (-622 $)) (-624 (-903 |#1|)) (-897 |#1|))) (T -945))
+((-2961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1113)) (-4 *6 (-13 (-1113) (-1051 (-622 $)) (-624 *4) (-897 *5))) (-5 *4 (-903 *5)) (-5 *1 (-945 *5 *6)))))
+(-10 -7 (-15 -2961 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|))))
+((-2961 (((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)) 17)))
+(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -2961 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) (-1113) (-897 |#1|) (-676 |#2|)) (T -946))
+((-2961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-946 *5 *6 *3)))))
+(-10 -7 (-15 -2961 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|))))
+((-2961 (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|)) 17 (|has| |#3| (-897 |#1|))) (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|))) 16)))
+(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2961 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -2961 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) (-1113) (-803) (-860) (-13 (-1062) (-897 |#1|)) (-13 (-960 |#4| |#2| |#3|) (-624 (-903 |#1|)))) (T -947))
+((-2961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) (-4 *3 (-13 (-960 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-13 (-1062) (-897 *5))) (-5 *1 (-947 *5 *6 *7 *8 *3)))) (-2961 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) (-4 *6 (-1113)) (-4 *3 (-13 (-960 *9 *7 *8) (-624 *4))) (-4 *7 (-803)) (-4 *9 (-13 (-1062) (-897 *6))) (-5 *1 (-947 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -2961 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -2961 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|))
+((-2571 ((|#2| |#2| (-654 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -2571 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2571 (|#2| |#2| (-654 (-1 (-112) |#3|))))) (-1113) (-440 |#1|) (-1231)) (T -948))
+((-2571 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1231)) (-4 *4 (-1113)) (-5 *1 (-948 *4 *2 *5)) (-4 *2 (-440 *4)))) (-2571 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1231)) (-4 *4 (-1113)) (-5 *1 (-948 *4 *2 *5)) (-4 *2 (-440 *4)))))
+(-10 -7 (-15 -2571 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2571 (|#2| |#2| (-654 (-1 (-112) |#3|)))))
+((-2571 (((-324 (-574)) (-1190) (-654 (-1 (-112) |#1|))) 18) (((-324 (-574)) (-1190) (-1 (-112) |#1|)) 15)))
+(((-949 |#1|) (-10 -7 (-15 -2571 ((-324 (-574)) (-1190) (-1 (-112) |#1|))) (-15 -2571 ((-324 (-574)) (-1190) (-654 (-1 (-112) |#1|))))) (-1231)) (T -949))
+((-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1231)) (-5 *2 (-324 (-574))) (-5 *1 (-949 *5)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1231)) (-5 *2 (-324 (-574))) (-5 *1 (-949 *5)))))
+(-10 -7 (-15 -2571 ((-324 (-574)) (-1190) (-1 (-112) |#1|))) (-15 -2571 ((-324 (-574)) (-1190) (-654 (-1 (-112) |#1|)))))
+((-2961 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 25)))
+(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -2961 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1113) (-13 (-566) (-897 |#1|) (-624 (-903 |#1|))) (-1005 |#2|)) (T -950))
+((-2961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) (-4 *3 (-1005 *6)) (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) (-5 *1 (-950 *5 *6 *3)))))
+(-10 -7 (-15 -2961 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))
+((-2961 (((-900 |#1| (-1190)) (-1190) (-903 |#1|) (-900 |#1| (-1190))) 18)))
+(((-951 |#1|) (-10 -7 (-15 -2961 ((-900 |#1| (-1190)) (-1190) (-903 |#1|) (-900 |#1| (-1190))))) (-1113)) (T -951))
+((-2961 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 (-1190))) (-5 *3 (-1190)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-5 *1 (-951 *5)))))
+(-10 -7 (-15 -2961 ((-900 |#1| (-1190)) (-1190) (-903 |#1|) (-900 |#1| (-1190)))))
+((-1821 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 34)) (-2961 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 33)))
+(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -2961 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -1821 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) (-1113) (-1062) (-13 (-1062) (-624 (-903 |#1|)) (-1051 |#2|))) (T -952))
+((-1821 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1113)) (-4 *8 (-13 (-1062) (-624 (-903 *6)) (-1051 *7))) (-5 *2 (-900 *6 *8)) (-4 *7 (-1062)) (-5 *1 (-952 *6 *7 *8)))) (-2961 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1113)) (-4 *9 (-13 (-1062) (-624 (-903 *7)) (-1051 *8))) (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1062)) (-5 *1 (-952 *7 *8 *9)))))
+(-10 -7 (-15 -2961 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -1821 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))))
+((-1545 (((-1186 (-417 (-574))) (-574)) 79)) (-2708 (((-1186 (-574)) (-574)) 82)) (-3438 (((-1186 (-574)) (-574)) 76)) (-3503 (((-574) (-1186 (-574))) 72)) (-2836 (((-1186 (-417 (-574))) (-574)) 65)) (-1512 (((-1186 (-574)) (-574)) 49)) (-3313 (((-1186 (-574)) (-574)) 84)) (-4235 (((-1186 (-574)) (-574)) 83)) (-2289 (((-1186 (-417 (-574))) (-574)) 67)))
+(((-953) (-10 -7 (-15 -2289 ((-1186 (-417 (-574))) (-574))) (-15 -4235 ((-1186 (-574)) (-574))) (-15 -3313 ((-1186 (-574)) (-574))) (-15 -1512 ((-1186 (-574)) (-574))) (-15 -2836 ((-1186 (-417 (-574))) (-574))) (-15 -3503 ((-574) (-1186 (-574)))) (-15 -3438 ((-1186 (-574)) (-574))) (-15 -2708 ((-1186 (-574)) (-574))) (-15 -1545 ((-1186 (-417 (-574))) (-574))))) (T -953))
+((-1545 (*1 *2 *3) (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574)))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-3438 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-1186 (-574))) (-5 *2 (-574)) (-5 *1 (-953)))) (-2836 (*1 *2 *3) (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574)))) (-1512 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-3313 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-4235 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-2289 (*1 *2 *3) (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574)))))
+(-10 -7 (-15 -2289 ((-1186 (-417 (-574))) (-574))) (-15 -4235 ((-1186 (-574)) (-574))) (-15 -3313 ((-1186 (-574)) (-574))) (-15 -1512 ((-1186 (-574)) (-574))) (-15 -2836 ((-1186 (-417 (-574))) (-574))) (-15 -3503 ((-574) (-1186 (-574)))) (-15 -3438 ((-1186 (-574)) (-574))) (-15 -2708 ((-1186 (-574)) (-574))) (-15 -1545 ((-1186 (-417 (-574))) (-574))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2217 (($ (-781)) NIL (|has| |#1| (-23)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-3591 (($ (-654 |#1|)) 9)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) NIL (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2239 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-2448 (((-112) $ (-781)) NIL)) (-4135 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-4344 (($ $ (-654 |#1|)) 25)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 18) (($ $ (-1248 (-574))) NIL)) (-3222 ((|#1| $ $) NIL (|has| |#1| (-1062)))) (-3939 (((-932) $) 13)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2503 (($ $ $) 23)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 14)) (-2956 (($ (-654 |#1|)) NIL)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3078 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2863 (((-781) $) 11 (|has| $ (-6 -4456)))))
+(((-954 |#1|) (-993 |#1|) (-1062)) (T -954))
+NIL
+(-993 |#1|)
+((-2650 (((-491 |#1| |#2|) (-963 |#2|)) 22)) (-2278 (((-253 |#1| |#2|) (-963 |#2|)) 35)) (-2972 (((-963 |#2|) (-491 |#1| |#2|)) 27)) (-4405 (((-253 |#1| |#2|) (-491 |#1| |#2|)) 57)) (-3089 (((-963 |#2|) (-253 |#1| |#2|)) 32)) (-2802 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 48)))
+(((-955 |#1| |#2|) (-10 -7 (-15 -2802 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -4405 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -2650 ((-491 |#1| |#2|) (-963 |#2|))) (-15 -2972 ((-963 |#2|) (-491 |#1| |#2|))) (-15 -3089 ((-963 |#2|) (-253 |#1| |#2|))) (-15 -2278 ((-253 |#1| |#2|) (-963 |#2|)))) (-654 (-1190)) (-1062)) (T -955))
+((-2278 (*1 *2 *3) (-12 (-5 *3 (-963 *5)) (-4 *5 (-1062)) (-5 *2 (-253 *4 *5)) (-5 *1 (-955 *4 *5)) (-14 *4 (-654 (-1190))))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) (-5 *2 (-963 *5)) (-5 *1 (-955 *4 *5)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) (-5 *2 (-963 *5)) (-5 *1 (-955 *4 *5)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-963 *5)) (-4 *5 (-1062)) (-5 *2 (-491 *4 *5)) (-5 *1 (-955 *4 *5)) (-14 *4 (-654 (-1190))))) (-4405 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) (-5 *2 (-253 *4 *5)) (-5 *1 (-955 *4 *5)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) (-5 *2 (-491 *4 *5)) (-5 *1 (-955 *4 *5)))))
+(-10 -7 (-15 -2802 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -4405 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -2650 ((-491 |#1| |#2|) (-963 |#2|))) (-15 -2972 ((-963 |#2|) (-491 |#1| |#2|))) (-15 -3089 ((-963 |#2|) (-253 |#1| |#2|))) (-15 -2278 ((-253 |#1| |#2|) (-963 |#2|))))
+((-1602 (((-654 |#2|) |#2| |#2|) 10)) (-4264 (((-781) (-654 |#1|)) 48 (|has| |#1| (-858)))) (-2483 (((-654 |#2|) |#2|) 11)) (-1341 (((-781) (-654 |#1|) (-574) (-574)) 52 (|has| |#1| (-858)))) (-2630 ((|#1| |#2|) 38 (|has| |#1| (-858)))))
+(((-956 |#1| |#2|) (-10 -7 (-15 -1602 ((-654 |#2|) |#2| |#2|)) (-15 -2483 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -2630 (|#1| |#2|)) (-15 -4264 ((-781) (-654 |#1|))) (-15 -1341 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) (-372) (-1257 |#1|)) (T -956))
+((-1341 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-956 *5 *6)) (-4 *6 (-1257 *5)))) (-4264 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-956 *4 *5)) (-4 *5 (-1257 *4)))) (-2630 (*1 *2 *3) (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-956 *2 *3)) (-4 *3 (-1257 *2)))) (-2483 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-956 *4 *3)) (-4 *3 (-1257 *4)))) (-1602 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-956 *4 *3)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -1602 ((-654 |#2|) |#2| |#2|)) (-15 -2483 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -2630 (|#1| |#2|)) (-15 -4264 ((-781) (-654 |#1|))) (-15 -1341 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|))
+((-1778 (((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)) 19)))
+(((-957 |#1| |#2|) (-10 -7 (-15 -1778 ((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)))) (-1062) (-1062)) (T -957))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-963 *6)) (-5 *1 (-957 *5 *6)))))
+(-10 -7 (-15 -1778 ((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|))))
+((-4194 (((-1254 |#1| (-963 |#2|)) (-963 |#2|) (-1277 |#1|)) 18)))
+(((-958 |#1| |#2|) (-10 -7 (-15 -4194 ((-1254 |#1| (-963 |#2|)) (-963 |#2|) (-1277 |#1|)))) (-1190) (-1062)) (T -958))
+((-4194 (*1 *2 *3 *4) (-12 (-5 *4 (-1277 *5)) (-14 *5 (-1190)) (-4 *6 (-1062)) (-5 *2 (-1254 *5 (-963 *6))) (-5 *1 (-958 *5 *6)) (-5 *3 (-963 *6)))))
+(-10 -7 (-15 -4194 ((-1254 |#1| (-963 |#2|)) (-963 |#2|) (-1277 |#1|))))
+((-2044 (((-781) $) 88) (((-781) $ (-654 |#4|)) 93)) (-4348 (($ $) 203)) (-3440 (((-428 $) $) 195)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 141)) (-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2209 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) 73)) (-2800 (($ $ $ |#4|) 95)) (-2668 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 131) (((-699 |#2|) (-699 $)) 121) (((-699 |#2|) (-1281 $)) NIL)) (-3872 (($ $) 210) (($ $ |#4|) 213)) (-1380 (((-654 $) $) 77)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 229) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 222)) (-3576 (((-654 $) $) 34)) (-4335 (($ |#2| |#3|) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) 71)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ |#4|) 192)) (-2357 (((-3 (-654 $) "failed") $) 52)) (-3405 (((-3 (-654 $) "failed") $) 39)) (-3092 (((-3 (-2 (|:| |var| |#4|) (|:| -2524 (-781))) "failed") $) 57)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 134)) (-3417 (((-428 (-1186 $)) (-1186 $)) 147)) (-4418 (((-428 (-1186 $)) (-1186 $)) 145)) (-4220 (((-428 $) $) 165)) (-2646 (($ $ (-654 (-302 $))) 24) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL)) (-1415 (($ $ |#4|) 97)) (-1837 (((-903 (-388)) $) 243) (((-903 (-574)) $) 236) (((-546) $) 251)) (-1607 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 184)) (-3344 ((|#2| $ |#3|) NIL) (($ $ |#4| (-781)) 62) (($ $ (-654 |#4|) (-654 (-781))) 69)) (-1369 (((-3 $ "failed") $) 186)) (-2923 (((-112) $ $) 216)))
+(((-959 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -1369 ((-3 |#1| "failed") |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -2961 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4418 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3417 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3180 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -1518 ((-3 (-1281 |#1|) "failed") (-699 |#1|))) (-15 -3872 (|#1| |#1| |#4|)) (-15 -1607 (|#1| |#1| |#4|)) (-15 -1415 (|#1| |#1| |#4|)) (-15 -2800 (|#1| |#1| |#1| |#4|)) (-15 -1380 ((-654 |#1|) |#1|)) (-15 -2044 ((-781) |#1| (-654 |#4|))) (-15 -2044 ((-781) |#1|)) (-15 -3092 ((-3 (-2 (|:| |var| |#4|) (|:| -2524 (-781))) "failed") |#1|)) (-15 -2357 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3405 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4335 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4335 (|#1| |#1| |#4| (-781))) (-15 -2687 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1| |#4|)) (-15 -3576 ((-654 |#1|) |#1|)) (-15 -3344 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3344 (|#1| |#1| |#4| (-781))) (-15 -2668 ((-699 |#2|) (-1281 |#1|))) (-15 -2668 ((-699 |#2|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -1697 ((-3 |#4| "failed") |#1|)) (-15 -2209 (|#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#4| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4335 (|#1| |#2| |#3|)) (-15 -3344 (|#2| |#1| |#3|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -1607 (|#2| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-960 |#2| |#3| |#4|) (-1062) (-803) (-860)) (T -959))
+NIL
+(-10 -8 (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -1369 ((-3 |#1| "failed") |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -2961 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4418 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3417 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3180 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -1518 ((-3 (-1281 |#1|) "failed") (-699 |#1|))) (-15 -3872 (|#1| |#1| |#4|)) (-15 -1607 (|#1| |#1| |#4|)) (-15 -1415 (|#1| |#1| |#4|)) (-15 -2800 (|#1| |#1| |#1| |#4|)) (-15 -1380 ((-654 |#1|) |#1|)) (-15 -2044 ((-781) |#1| (-654 |#4|))) (-15 -2044 ((-781) |#1|)) (-15 -3092 ((-3 (-2 (|:| |var| |#4|) (|:| -2524 (-781))) "failed") |#1|)) (-15 -2357 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3405 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4335 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4335 (|#1| |#1| |#4| (-781))) (-15 -2687 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1| |#4|)) (-15 -3576 ((-654 |#1|) |#1|)) (-15 -3344 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3344 (|#1| |#1| |#4| (-781))) (-15 -2668 ((-699 |#2|) (-1281 |#1|))) (-15 -2668 ((-699 |#2|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -1697 ((-3 |#4| "failed") |#1|)) (-15 -2209 (|#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#4| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4335 (|#1| |#2| |#3|)) (-15 -3344 (|#2| |#1| |#3|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -1607 (|#2| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -2923 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4355 (((-654 |#3|) $) 112)) (-4194 (((-1186 $) $ |#3|) 127) (((-1186 |#1|) $) 126)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-2814 (($ $) 90 (|has| |#1| (-566)))) (-2425 (((-112) $) 92 (|has| |#1| (-566)))) (-2044 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-2950 (((-3 $ "failed") $ $) 20)) (-3312 (((-428 (-1186 $)) (-1186 $)) 102 (|has| |#1| (-920)))) (-4348 (($ $) 100 (|has| |#1| (-462)))) (-3440 (((-428 $) $) 99 (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 105 (|has| |#1| (-920)))) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1051 (-574)))) (((-3 |#3| "failed") $) 140)) (-2209 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1051 (-574)))) ((|#3| $) 141)) (-2800 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1392 (($ $) 158)) (-2668 (((-699 (-574)) (-1281 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1281 $)) 133)) (-1950 (((-3 $ "failed") $) 37)) (-3872 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1380 (((-654 $) $) 111)) (-1654 (((-112) $) 98 (|has| |#1| (-920)))) (-3157 (($ $ |#1| |#2| $) 176)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3965 (((-112) $) 35)) (-2784 (((-781) $) 173)) (-4345 (($ (-1186 |#1|) |#3|) 119) (($ (-1186 $) |#3|) 118)) (-3576 (((-654 $) $) 128)) (-2197 (((-112) $) 156)) (-4335 (($ |#1| |#2|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ |#3|) 122)) (-2382 ((|#2| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-1541 (($ (-1 |#2| |#2|) $) 175)) (-1778 (($ (-1 |#1| |#1|) $) 155)) (-4045 (((-3 |#3| "failed") $) 125)) (-1359 (($ $) 153)) (-1370 ((|#1| $) 152)) (-2834 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-2568 (((-1172) $) 10)) (-2357 (((-3 (-654 $) "failed") $) 116)) (-3405 (((-3 (-654 $) "failed") $) 117)) (-3092 (((-3 (-2 (|:| |var| |#3|) (|:| -2524 (-781))) "failed") $) 115)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 170)) (-1349 ((|#1| $) 171)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 97 (|has| |#1| (-462)))) (-2874 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) 104 (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) 103 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 101 (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142)) (-1415 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3905 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43)) (-1784 ((|#2| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131)) (-1837 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1607 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 106 (-2088 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ $) 87 (|has| |#1| (-566))) (($ (-417 (-574))) 80 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-3123 (((-654 |#1|) $) 172)) (-3344 ((|#1| $ |#2|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-1369 (((-3 $ "failed") $) 81 (-2818 (-2088 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) 32 T CONST)) (-4207 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150)))
+(((-960 |#1| |#2| |#3|) (-141) (-1062) (-803) (-860)) (T -960))
+((-3872 (*1 *1 *1) (-12 (-4 *1 (-960 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-1784 (*1 *2 *1 *3) (-12 (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-3344 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-960 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *2 (-860)))) (-3344 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)))) (-3576 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) (-4194 (*1 *2 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1186 *1)) (-4 *1 (-960 *4 *5 *3)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1186 *3)))) (-4045 (*1 *2 *1) (|partial| -12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2382 (*1 *2 *1 *3) (-12 (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-2382 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-2687 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-960 *4 *5 *3)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-960 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *2 (-860)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)))) (-4345 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 *4)) (-4 *4 (-1062)) (-4 *1 (-960 *4 *5 *3)) (-4 *5 (-803)) (-4 *3 (-860)))) (-4345 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)))) (-3405 (*1 *2 *1) (|partial| -12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) (-2357 (*1 *2 *1) (|partial| -12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) (-3092 (*1 *2 *1) (|partial| -12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -2524 (-781)))))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-1380 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) (-2800 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-1415 (*1 *1 *1 *2) (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-1607 (*1 *1 *1 *2) (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-3872 (*1 *1 *1 *2) (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-4348 (*1 *1 *1) (-12 (-4 *1 (-960 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3440 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-428 *1)) (-4 *1 (-960 *3 *4 *5)))))
+(-13 (-911 |t#3|) (-334 |t#1| |t#2|) (-317 $) (-524 |t#3| |t#1|) (-524 |t#3| $) (-1051 |t#3|) (-386 |t#1|) (-10 -8 (-15 -1784 ((-781) $ |t#3|)) (-15 -1784 ((-654 (-781)) $ (-654 |t#3|))) (-15 -3344 ($ $ |t#3| (-781))) (-15 -3344 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -3576 ((-654 $) $)) (-15 -4194 ((-1186 $) $ |t#3|)) (-15 -4194 ((-1186 |t#1|) $)) (-15 -4045 ((-3 |t#3| "failed") $)) (-15 -2382 ((-781) $ |t#3|)) (-15 -2382 ((-654 (-781)) $ (-654 |t#3|))) (-15 -2687 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $ |t#3|)) (-15 -4335 ($ $ |t#3| (-781))) (-15 -4335 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -4345 ($ (-1186 |t#1|) |t#3|)) (-15 -4345 ($ (-1186 $) |t#3|)) (-15 -3405 ((-3 (-654 $) "failed") $)) (-15 -2357 ((-3 (-654 $) "failed") $)) (-15 -3092 ((-3 (-2 (|:| |var| |t#3|) (|:| -2524 (-781))) "failed") $)) (-15 -2044 ((-781) $)) (-15 -2044 ((-781) $ (-654 |t#3|))) (-15 -4355 ((-654 |t#3|) $)) (-15 -1380 ((-654 $) $)) (IF (|has| |t#1| (-624 (-546))) (IF (|has| |t#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-574)))) (IF (|has| |t#3| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (IF (|has| |t#3| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-574))) (IF (|has| |t#3| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (IF (|has| |t#3| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2800 ($ $ $ |t#3|)) (-15 -1415 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-6 (-462)) (-15 -1607 ($ $ |t#3|)) (-15 -3872 ($ $)) (-15 -3872 ($ $ |t#3|)) (-15 -3440 ((-428 $) $)) (-15 -4348 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |t#1| (-920)) (-6 (-920)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-298) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-920)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-911 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-920) |has| |#1| (-920)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1051 |#3|) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) |has| |#1| (-920)))
+((-4355 (((-654 |#2|) |#5|) 40)) (-4194 (((-1186 |#5|) |#5| |#2| (-1186 |#5|)) 23) (((-417 (-1186 |#5|)) |#5| |#2|) 16)) (-4345 ((|#5| (-417 (-1186 |#5|)) |#2|) 30)) (-4045 (((-3 |#2| "failed") |#5|) 71)) (-2357 (((-3 (-654 |#5|) "failed") |#5|) 65)) (-4428 (((-3 (-2 (|:| |val| |#5|) (|:| -2524 (-574))) "failed") |#5|) 53)) (-3405 (((-3 (-654 |#5|) "failed") |#5|) 67)) (-3092 (((-3 (-2 (|:| |var| |#2|) (|:| -2524 (-574))) "failed") |#5|) 57)))
+(((-961 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4355 ((-654 |#2|) |#5|)) (-15 -4045 ((-3 |#2| "failed") |#5|)) (-15 -4194 ((-417 (-1186 |#5|)) |#5| |#2|)) (-15 -4345 (|#5| (-417 (-1186 |#5|)) |#2|)) (-15 -4194 ((-1186 |#5|) |#5| |#2| (-1186 |#5|))) (-15 -3405 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -2357 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -3092 ((-3 (-2 (|:| |var| |#2|) (|:| -2524 (-574))) "failed") |#5|)) (-15 -4428 ((-3 (-2 (|:| |val| |#5|) (|:| -2524 (-574))) "failed") |#5|))) (-803) (-860) (-1062) (-960 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2943 ($ |#4|)) (-15 -2965 (|#4| $)) (-15 -2977 (|#4| $))))) (T -961))
+((-4428 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2524 (-574)))) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))))) (-3092 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2524 (-574)))) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))))) (-2357 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))))) (-3405 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))))) (-4194 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))) (-4 *7 (-960 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1062)) (-5 *1 (-961 *5 *4 *6 *7 *3)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1186 *2))) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1062)) (-4 *2 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))) (-5 *1 (-961 *5 *4 *6 *7 *2)) (-4 *7 (-960 *6 *5 *4)))) (-4194 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-417 (-1186 *3))) (-5 *1 (-961 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))))) (-4045 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1062)) (-4 *6 (-960 *5 *4 *2)) (-4 *2 (-860)) (-5 *1 (-961 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *6)) (-15 -2965 (*6 $)) (-15 -2977 (*6 $))))))) (-4355 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *5)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))))))
+(-10 -7 (-15 -4355 ((-654 |#2|) |#5|)) (-15 -4045 ((-3 |#2| "failed") |#5|)) (-15 -4194 ((-417 (-1186 |#5|)) |#5| |#2|)) (-15 -4345 (|#5| (-417 (-1186 |#5|)) |#2|)) (-15 -4194 ((-1186 |#5|) |#5| |#2| (-1186 |#5|))) (-15 -3405 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -2357 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -3092 ((-3 (-2 (|:| |var| |#2|) (|:| -2524 (-574))) "failed") |#5|)) (-15 -4428 ((-3 (-2 (|:| |val| |#5|) (|:| -2524 (-574))) "failed") |#5|)))
+((-1778 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-962 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1778 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-803) (-860) (-1062) (-960 |#3| |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -3078 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (T -962))
+((-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) (-4 *8 (-1062)) (-4 *6 (-803)) (-4 *2 (-13 (-1113) (-10 -8 (-15 -3078 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (-5 *1 (-962 *6 *7 *8 *5 *2)) (-4 *5 (-960 *8 *6 *7)))))
+(-10 -7 (-15 -1778 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-1190)) $) 16)) (-4194 (((-1186 $) $ (-1190)) 21) (((-1186 |#1|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-1190))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4348 (($ $) NIL (|has| |#1| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) 8) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1190) "failed") $) NIL)) (-2209 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1190) $) NIL)) (-2800 (($ $ $ (-1190)) NIL (|has| |#1| (-174)))) (-1392 (($ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1190)) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#1| (-920)))) (-3157 (($ $ |#1| (-541 (-1190)) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1190) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1190) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4345 (($ (-1186 |#1|) (-1190)) NIL) (($ (-1186 $) (-1190)) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-541 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-1190)) NIL)) (-2382 (((-541 (-1190)) $) NIL) (((-781) $ (-1190)) NIL) (((-654 (-781)) $ (-654 (-1190))) NIL)) (-1541 (($ (-1 (-541 (-1190)) (-541 (-1190))) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-4045 (((-3 (-1190) "failed") $) 19)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2568 (((-1172) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-1190)) (|:| -2524 (-781))) "failed") $) NIL)) (-2968 (($ $ (-1190)) 29 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1190) |#1|) NIL) (($ $ (-654 (-1190)) (-654 |#1|)) NIL) (($ $ (-1190) $) NIL) (($ $ (-654 (-1190)) (-654 $)) NIL)) (-1415 (($ $ (-1190)) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-1784 (((-541 (-1190)) $) NIL) (((-781) $ (-1190)) NIL) (((-654 (-781)) $ (-654 (-1190))) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-1190) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1190) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1190) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1607 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1190)) NIL (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 25) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1190)) 27) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-541 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-963 |#1|) (-13 (-960 |#1| (-541 (-1190)) (-1190)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1190))) |%noBranch|))) (-1062)) (T -963))
+((-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-963 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)))))
+(-13 (-960 |#1| (-541 (-1190)) (-1190)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1190))) |%noBranch|)))
+((-1756 (((-2 (|:| -2524 (-781)) (|:| -1859 |#5|) (|:| |radicand| |#5|)) |#3| (-781)) 49)) (-1585 (((-2 (|:| -2524 (-781)) (|:| -1859 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781)) 44)) (-3297 (((-2 (|:| -2524 (-781)) (|:| -1859 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)) 65)) (-3054 (((-2 (|:| -2524 (-781)) (|:| -1859 |#5|) (|:| |radicand| |#5|)) |#5| (-781)) 74 (|has| |#3| (-462)))))
+(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1756 ((-2 (|:| -2524 (-781)) (|:| -1859 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -1585 ((-2 (|:| -2524 (-781)) (|:| -1859 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -3054 ((-2 (|:| -2524 (-781)) (|:| -1859 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -3297 ((-2 (|:| -2524 (-781)) (|:| -1859 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) (-803) (-860) (-566) (-960 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2943 ($ |#4|)) (-15 -2965 (|#4| $)) (-15 -2977 (|#4| $))))) (T -964))
+((-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *3 (-960 *7 *5 *6)) (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *3) (|:| |radicand| (-654 *3)))) (-5 *1 (-964 *5 *6 *7 *3 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2943 ($ *3)) (-15 -2965 (*3 $)) (-15 -2977 (*3 $))))))) (-3054 (*1 *2 *3 *4) (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-960 *7 *5 *6)) (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *3) (|:| |radicand| *3))) (-5 *1 (-964 *5 *6 *7 *8 *3)) (-5 *4 (-781)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *8)) (-15 -2965 (*8 $)) (-15 -2977 (*8 $))))))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-960 *7 *5 *6)) (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *9) (|:| |radicand| *9))) (-5 *1 (-964 *5 *6 *7 *8 *9)) (-5 *4 (-781)) (-4 *9 (-13 (-372) (-10 -8 (-15 -2943 ($ *8)) (-15 -2965 (*8 $)) (-15 -2977 (*8 $))))))) (-1756 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) (-4 *7 (-960 *3 *5 *6)) (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *8) (|:| |radicand| *8))) (-5 *1 (-964 *5 *6 *3 *7 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))))))
+(-10 -7 (-15 -1756 ((-2 (|:| -2524 (-781)) (|:| -1859 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -1585 ((-2 (|:| -2524 (-781)) (|:| -1859 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -3054 ((-2 (|:| -2524 (-781)) (|:| -1859 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -3297 ((-2 (|:| -2524 (-781)) (|:| -1859 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781))))
+((-2849 (((-112) $ $) NIL)) (-2119 (($ (-1133)) 8)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (((-1133) $) 12)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 11)))
+(((-965) (-13 (-1113) (-623 (-1133)) (-10 -8 (-15 -2119 ($ (-1133)))))) (T -965))
+((-2119 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-965)))))
+(-13 (-1113) (-623 (-1133)) (-10 -8 (-15 -2119 ($ (-1133)))))
+((-2424 (((-1107 (-227)) $) 8)) (-2411 (((-1107 (-227)) $) 9)) (-2719 (((-654 (-654 (-954 (-227)))) $) 10)) (-2943 (((-872) $) 6)))
+(((-966) (-141)) (T -966))
+((-2719 (*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-654 (-654 (-954 (-227))))))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-1107 (-227))))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-1107 (-227))))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2719 ((-654 (-654 (-954 (-227)))) $)) (-15 -2411 ((-1107 (-227)) $)) (-15 -2424 ((-1107 (-227)) $))))
+(((-623 (-872)) . T))
+((-1582 (((-3 (-699 |#1|) "failed") |#2| (-932)) 18)))
+(((-967 |#1| |#2|) (-10 -7 (-15 -1582 ((-3 (-699 |#1|) "failed") |#2| (-932)))) (-566) (-666 |#1|)) (T -967))
+((-1582 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-932)) (-4 *5 (-566)) (-5 *2 (-699 *5)) (-5 *1 (-967 *5 *3)) (-4 *3 (-666 *5)))))
+(-10 -7 (-15 -1582 ((-3 (-699 |#1|) "failed") |#2| (-932))))
+((-3318 (((-969 |#2|) (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|) 16)) (-2868 ((|#2| (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|) 18)) (-1778 (((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)) 13)))
+(((-968 |#1| |#2|) (-10 -7 (-15 -3318 ((-969 |#2|) (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|)) (-15 -1778 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)))) (-1231) (-1231)) (T -968))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-969 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-969 *6)) (-5 *1 (-968 *5 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-969 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-968 *5 *2)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-969 *6)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-5 *2 (-969 *5)) (-5 *1 (-968 *6 *5)))))
+(-10 -7 (-15 -3318 ((-969 |#2|) (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|)) (-15 -1778 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) 19 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) 18 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 16)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 15)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) 11 (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) 20 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) 12)) (-2200 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 17) (($ $ (-1248 (-574))) NIL)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) 21)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 14)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 8 (|has| $ (-6 -4456)))))
+(((-969 |#1|) (-19 |#1|) (-1231)) (T -969))
NIL
(-19 |#1|)
-((-3223 (($ $ (-1103 $)) 7) (($ $ (-1188)) 6)))
-(((-968) (-141)) (T -968))
-((-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-968)))) (-3223 (*1 *1 *1 *2) (-12 (-4 *1 (-968)) (-5 *2 (-1188)))))
-(-13 (-10 -8 (-15 -3223 ($ $ (-1188))) (-15 -3223 ($ $ (-1103 $)))))
-((-1879 (((-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)) (-1188)) 26) (((-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188))) 27) (((-2 (|:| |coef1| (-572)) (|:| |coef2| (-572)) (|:| |prim| (-1184 |#1|))) (-961 |#1|) (-1188) (-961 |#1|) (-1188)) 49)))
-(((-969 |#1|) (-10 -7 (-15 -1879 ((-2 (|:| |coef1| (-572)) (|:| |coef2| (-572)) (|:| |prim| (-1184 |#1|))) (-961 |#1|) (-1188) (-961 |#1|) (-1188))) (-15 -1879 ((-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1879 ((-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)) (-1188)))) (-13 (-370) (-148))) (T -969))
-((-1879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-5 *5 (-1188)) (-4 *6 (-13 (-370) (-148))) (-5 *2 (-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 *6))) (|:| |prim| (-1184 *6)))) (-5 *1 (-969 *6)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-370) (-148))) (-5 *2 (-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 *5))) (|:| |prim| (-1184 *5)))) (-5 *1 (-969 *5)))) (-1879 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-961 *5)) (-5 *4 (-1188)) (-4 *5 (-13 (-370) (-148))) (-5 *2 (-2 (|:| |coef1| (-572)) (|:| |coef2| (-572)) (|:| |prim| (-1184 *5)))) (-5 *1 (-969 *5)))))
-(-10 -7 (-15 -1879 ((-2 (|:| |coef1| (-572)) (|:| |coef2| (-572)) (|:| |prim| (-1184 |#1|))) (-961 |#1|) (-1188) (-961 |#1|) (-1188))) (-15 -1879 ((-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1879 ((-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)) (-1188))))
-((-1655 (((-652 |#1|) |#1| |#1|) 47)) (-3879 (((-112) |#1|) 44)) (-2735 ((|#1| |#1|) 79)) (-2583 ((|#1| |#1|) 78)))
-(((-970 |#1|) (-10 -7 (-15 -3879 ((-112) |#1|)) (-15 -2583 (|#1| |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -1655 ((-652 |#1|) |#1| |#1|))) (-553)) (T -970))
-((-1655 (*1 *2 *3 *3) (-12 (-5 *2 (-652 *3)) (-5 *1 (-970 *3)) (-4 *3 (-553)))) (-2735 (*1 *2 *2) (-12 (-5 *1 (-970 *2)) (-4 *2 (-553)))) (-2583 (*1 *2 *2) (-12 (-5 *1 (-970 *2)) (-4 *2 (-553)))) (-3879 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-970 *3)) (-4 *3 (-553)))))
-(-10 -7 (-15 -3879 ((-112) |#1|)) (-15 -2583 (|#1| |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -1655 ((-652 |#1|) |#1| |#1|)))
-((-1791 (((-1284) (-870)) 9)))
-(((-971) (-10 -7 (-15 -1791 ((-1284) (-870))))) (T -971))
-((-1791 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-971)))))
-(-10 -7 (-15 -1791 ((-1284) (-870))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 78 (|has| |#1| (-564)))) (-3009 (($ $) 79 (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 34)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1390 (($ $) 31)) (-2062 (((-3 $ "failed") $) 42)) (-1876 (($ $) NIL (|has| |#1| (-460)))) (-1437 (($ $ |#1| |#2| $) 62)) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) 17)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| |#2|) NIL)) (-2649 ((|#2| $) 24)) (-2497 (($ (-1 |#2| |#2|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1357 (($ $) 28)) (-1368 ((|#1| $) 26)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) 51)) (-1347 ((|#1| $) NIL)) (-3070 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-564))))) (-2834 (((-3 $ "failed") $ $) 91 (|has| |#1| (-564))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-564)))) (-4390 ((|#2| $) 22)) (-1711 ((|#1| $) NIL (|has| |#1| (-460)))) (-2940 (((-870) $) NIL) (($ (-572)) 46) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) 41) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ |#2|) 37)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) 15 T CONST)) (-2099 (($ $ $ (-779)) 74 (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) 84 (|has| |#1| (-564)))) (-2131 (($) 27 T CONST)) (-2143 (($) 12 T CONST)) (-2978 (((-112) $ $) 83)) (-3106 (($ $ |#1|) 92 (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) 69) (($ $ (-779)) 67)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-972 |#1| |#2|) (-13 (-332 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-564)) (IF (|has| |#2| (-132)) (-15 -3070 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|))) (-1060) (-800)) (T -972))
-((-3070 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-972 *3 *2)) (-4 *2 (-132)) (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *2 (-800)))))
-(-13 (-332 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-564)) (IF (|has| |#2| (-132)) (-15 -3070 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL (-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))))) (-1360 (($ $ $) 65 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))) (-3330 (((-3 $ "failed") $ $) 52 (-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))))) (-1486 (((-779)) 36 (-12 (|has| |#1| (-375)) (|has| |#2| (-375))))) (-3325 ((|#2| $) 22)) (-2761 ((|#1| $) 21)) (-3281 (($) NIL (-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))) CONST)) (-2062 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))) (-2815 (($) NIL (-12 (|has| |#1| (-375)) (|has| |#2| (-375))))) (-1886 (((-112) $) NIL (-2813 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))) (-3654 (($ $ $) NIL (-2813 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-2427 (($ $ $) NIL (-2813 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-3032 (($ |#1| |#2|) 20)) (-3715 (((-930) $) NIL (-12 (|has| |#1| (-375)) (|has| |#2| (-375))))) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 39 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))))) (-2571 (($ (-930)) NIL (-12 (|has| |#1| (-375)) (|has| |#2| (-375))))) (-3964 (((-1131) $) NIL)) (-1516 (($ $ $) NIL (-12 (|has| |#1| (-481)) (|has| |#2| (-481))))) (-4326 (($ $ $) NIL (-12 (|has| |#1| (-481)) (|has| |#2| (-481))))) (-2940 (((-870) $) 14)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 42 (-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))) CONST)) (-2143 (($) 25 (-2813 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))) CONST)) (-3039 (((-112) $ $) NIL (-2813 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-3014 (((-112) $ $) NIL (-2813 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-2978 (((-112) $ $) 19)) (-3026 (((-112) $ $) NIL (-2813 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-3003 (((-112) $ $) 69 (-2813 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-3106 (($ $ $) NIL (-12 (|has| |#1| (-481)) (|has| |#2| (-481))))) (-3089 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3075 (($ $ $) 45 (-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))))) (** (($ $ (-572)) NIL (-12 (|has| |#1| (-481)) (|has| |#2| (-481)))) (($ $ (-779)) 32 (-2813 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))))) (($ $ (-930)) NIL (-2813 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))) (* (($ (-572) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-779) $) 48 (-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))) (($ (-930) $) NIL (-2813 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))) (($ $ $) 28 (-2813 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))))
-(((-973 |#1| |#2|) (-13 (-1111) (-10 -8 (IF (|has| |#1| (-375)) (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-734)) (IF (|has| |#2| (-734)) (-6 (-734)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-481)) (IF (|has| |#2| (-481)) (-6 (-481)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-801)) (IF (|has| |#2| (-801)) (-6 (-801)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-858)) (IF (|has| |#2| (-858)) (-6 (-858)) |%noBranch|) |%noBranch|) (-15 -3032 ($ |#1| |#2|)) (-15 -2761 (|#1| $)) (-15 -3325 (|#2| $)))) (-1111) (-1111)) (T -973))
-((-3032 (*1 *1 *2 *3) (-12 (-5 *1 (-973 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-2761 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1111)))) (-3325 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-973 *3 *2)) (-4 *3 (-1111)))))
-(-13 (-1111) (-10 -8 (IF (|has| |#1| (-375)) (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-734)) (IF (|has| |#2| (-734)) (-6 (-734)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-481)) (IF (|has| |#2| (-481)) (-6 (-481)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-801)) (IF (|has| |#2| (-801)) (-6 (-801)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-858)) (IF (|has| |#2| (-858)) (-6 (-858)) |%noBranch|) |%noBranch|) (-15 -3032 ($ |#1| |#2|)) (-15 -2761 (|#1| $)) (-15 -3325 (|#2| $))))
-((-3080 (((-1115) $) 12)) (-4405 (($ (-514) (-1115)) 14)) (-2030 (((-514) $) 9)) (-2940 (((-870) $) 24)))
-(((-974) (-13 (-621 (-870)) (-10 -8 (-15 -2030 ((-514) $)) (-15 -3080 ((-1115) $)) (-15 -4405 ($ (-514) (-1115)))))) (T -974))
-((-2030 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-974)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-974)))) (-4405 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1115)) (-5 *1 (-974)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2030 ((-514) $)) (-15 -3080 ((-1115) $)) (-15 -4405 ($ (-514) (-1115)))))
-((-2846 (((-112) $ $) NIL)) (-1561 (($) NIL T CONST)) (-2096 (($ $ $) 30)) (-2074 (($ $) 24)) (-4347 (((-1170) $) NIL)) (-1697 (((-699 (-881 $ $)) $) 55)) (-1784 (((-699 $) $) 45)) (-3884 (((-699 (-881 $ $)) $) 56)) (-2646 (((-699 (-881 $ $)) $) 57)) (-2291 (((-699 |#1|) $) 36)) (-3520 (((-699 (-881 $ $)) $) 54)) (-3243 (($ $ $) 31)) (-3964 (((-1131) $) NIL)) (-2882 (($) NIL T CONST)) (-4058 (($ $ $) 32)) (-2659 (($ $ $) 29)) (-2435 (($ $ $) 27)) (-2940 (((-870) $) 59) (($ |#1|) 12)) (-4379 (((-112) $ $) NIL)) (-2085 (($ $ $) 28)) (-2978 (((-112) $ $) NIL)))
-(((-975 |#1|) (-13 (-978) (-624 |#1|) (-10 -8 (-15 -2291 ((-699 |#1|) $)) (-15 -1784 ((-699 $) $)) (-15 -3520 ((-699 (-881 $ $)) $)) (-15 -1697 ((-699 (-881 $ $)) $)) (-15 -3884 ((-699 (-881 $ $)) $)) (-15 -2646 ((-699 (-881 $ $)) $)) (-15 -2435 ($ $ $)) (-15 -2659 ($ $ $)))) (-1111)) (T -975))
-((-2291 (*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-699 (-975 *3))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-1697 (*1 *2 *1) (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-2435 (*1 *1 *1 *1) (-12 (-5 *1 (-975 *2)) (-4 *2 (-1111)))) (-2659 (*1 *1 *1 *1) (-12 (-5 *1 (-975 *2)) (-4 *2 (-1111)))))
-(-13 (-978) (-624 |#1|) (-10 -8 (-15 -2291 ((-699 |#1|) $)) (-15 -1784 ((-699 $) $)) (-15 -3520 ((-699 (-881 $ $)) $)) (-15 -1697 ((-699 (-881 $ $)) $)) (-15 -3884 ((-699 (-881 $ $)) $)) (-15 -2646 ((-699 (-881 $ $)) $)) (-15 -2435 ($ $ $)) (-15 -2659 ($ $ $))))
-((-2049 (((-975 |#1|) (-975 |#1|)) 46)) (-4337 (((-975 |#1|) (-975 |#1|)) 22)) (-2307 (((-1113 |#1|) (-975 |#1|)) 41)))
-(((-976 |#1|) (-13 (-1229) (-10 -7 (-15 -4337 ((-975 |#1|) (-975 |#1|))) (-15 -2307 ((-1113 |#1|) (-975 |#1|))) (-15 -2049 ((-975 |#1|) (-975 |#1|))))) (-1111)) (T -976))
-((-4337 (*1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1111)) (-5 *1 (-976 *3)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1111)) (-5 *2 (-1113 *4)) (-5 *1 (-976 *4)))) (-2049 (*1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1111)) (-5 *1 (-976 *3)))))
-(-13 (-1229) (-10 -7 (-15 -4337 ((-975 |#1|) (-975 |#1|))) (-15 -2307 ((-1113 |#1|) (-975 |#1|))) (-15 -2049 ((-975 |#1|) (-975 |#1|)))))
-((-1776 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 29)))
-(((-977 |#1| |#2|) (-13 (-1229) (-10 -7 (-15 -1776 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|))))) (-1111) (-1111)) (T -977))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-975 *6)) (-5 *1 (-977 *5 *6)))))
-(-13 (-1229) (-10 -7 (-15 -1776 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))))
-((-2846 (((-112) $ $) 15)) (-1561 (($) 14 T CONST)) (-2096 (($ $ $) 6)) (-2074 (($ $) 8)) (-4347 (((-1170) $) 19)) (-3243 (($ $ $) 12)) (-3964 (((-1131) $) 18)) (-2882 (($) 13 T CONST)) (-4058 (($ $ $) 11)) (-2940 (((-870) $) 17)) (-4379 (((-112) $ $) 20)) (-2085 (($ $ $) 7)) (-2978 (((-112) $ $) 16)))
-(((-978) (-141)) (T -978))
-((-1561 (*1 *1) (-4 *1 (-978))) (-2882 (*1 *1) (-4 *1 (-978))) (-3243 (*1 *1 *1 *1) (-4 *1 (-978))) (-4058 (*1 *1 *1 *1) (-4 *1 (-978))))
-(-13 (-113) (-1111) (-10 -8 (-15 -1561 ($) -1705) (-15 -2882 ($) -1705) (-15 -3243 ($ $ $)) (-15 -4058 ($ $ $))))
-(((-102) . T) ((-113) . T) ((-621 (-870)) . T) ((-1111) . T) ((-1229) . T))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-3281 (($) 7 T CONST)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-3892 (($ $ $) 44)) (-1767 (($ $ $) 45)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2427 ((|#1| $) 46)) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 43)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-979 |#1|) (-141) (-858)) (T -979))
-((-2427 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))) (-1767 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))) (-3892 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4454) (-15 -2427 (|t#1| $)) (-15 -1767 ($ $ $)) (-15 -3892 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-3566 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2870 |#2|)) |#2| |#2|) 105)) (-3453 ((|#2| |#2| |#2|) 103)) (-1350 (((-2 (|:| |coef2| |#2|) (|:| -2870 |#2|)) |#2| |#2|) 107)) (-1485 (((-2 (|:| |coef1| |#2|) (|:| -2870 |#2|)) |#2| |#2|) 109)) (-3382 (((-2 (|:| |coef2| |#2|) (|:| -3285 |#1|)) |#2| |#2|) 131 (|has| |#1| (-460)))) (-1766 (((-2 (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|) 56)) (-2745 (((-2 (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|) 80)) (-3789 (((-2 (|:| |coef1| |#2|) (|:| -2361 |#1|)) |#2| |#2|) 82)) (-3308 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3100 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779)) 89)) (-2682 (((-2 (|:| |coef2| |#2|) (|:| -3537 |#1|)) |#2|) 121)) (-3916 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779)) 92)) (-2663 (((-652 (-779)) |#2| |#2|) 102)) (-1998 ((|#1| |#2| |#2|) 50)) (-3128 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3285 |#1|)) |#2| |#2|) 129 (|has| |#1| (-460)))) (-3285 ((|#1| |#2| |#2|) 127 (|has| |#1| (-460)))) (-3640 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|) 54)) (-1955 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|) 79)) (-2361 ((|#1| |#2| |#2|) 76)) (-3038 (((-2 (|:| -1857 |#1|) (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2|) 41)) (-1680 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3880 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3487 ((|#2| |#2| |#2|) 93)) (-4111 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779)) 87)) (-2241 ((|#2| |#2| |#2| (-779)) 85)) (-2870 ((|#2| |#2| |#2|) 135 (|has| |#1| (-460)))) (-2834 (((-1279 |#2|) (-1279 |#2|) |#1|) 22)) (-1669 (((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2|) 46)) (-1452 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3537 |#1|)) |#2|) 119)) (-3537 ((|#1| |#2|) 116)) (-3231 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779)) 91)) (-1889 ((|#2| |#2| |#2| (-779)) 90)) (-2930 (((-652 |#2|) |#2| |#2|) 99)) (-2996 ((|#2| |#2| |#1| |#1| (-779)) 62)) (-2886 ((|#1| |#1| |#1| (-779)) 61)) (* (((-1279 |#2|) |#1| (-1279 |#2|)) 17)))
-(((-980 |#1| |#2|) (-10 -7 (-15 -2361 (|#1| |#2| |#2|)) (-15 -1955 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|)) (-15 -2745 ((-2 (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|)) (-15 -3789 ((-2 (|:| |coef1| |#2|) (|:| -2361 |#1|)) |#2| |#2|)) (-15 -2241 (|#2| |#2| |#2| (-779))) (-15 -4111 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -3100 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -1889 (|#2| |#2| |#2| (-779))) (-15 -3231 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -3916 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -3487 (|#2| |#2| |#2|)) (-15 -3880 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3308 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3453 (|#2| |#2| |#2|)) (-15 -3566 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2870 |#2|)) |#2| |#2|)) (-15 -1350 ((-2 (|:| |coef2| |#2|) (|:| -2870 |#2|)) |#2| |#2|)) (-15 -1485 ((-2 (|:| |coef1| |#2|) (|:| -2870 |#2|)) |#2| |#2|)) (-15 -3537 (|#1| |#2|)) (-15 -1452 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3537 |#1|)) |#2|)) (-15 -2682 ((-2 (|:| |coef2| |#2|) (|:| -3537 |#1|)) |#2|)) (-15 -2930 ((-652 |#2|) |#2| |#2|)) (-15 -2663 ((-652 (-779)) |#2| |#2|)) (IF (|has| |#1| (-460)) (PROGN (-15 -3285 (|#1| |#2| |#2|)) (-15 -3128 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3285 |#1|)) |#2| |#2|)) (-15 -3382 ((-2 (|:| |coef2| |#2|) (|:| -3285 |#1|)) |#2| |#2|)) (-15 -2870 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1279 |#2|) |#1| (-1279 |#2|))) (-15 -2834 ((-1279 |#2|) (-1279 |#2|) |#1|)) (-15 -3038 ((-2 (|:| -1857 |#1|) (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2|)) (-15 -1669 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2|)) (-15 -2886 (|#1| |#1| |#1| (-779))) (-15 -2996 (|#2| |#2| |#1| |#1| (-779))) (-15 -1680 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1998 (|#1| |#2| |#2|)) (-15 -3640 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|)) (-15 -1766 ((-2 (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|))) (-564) (-1255 |#1|)) (T -980))
-((-1766 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2361 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3640 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2361 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-1998 (*1 *2 *3 *3) (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))) (-1680 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-2996 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-2886 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *2 (-564)) (-5 *1 (-980 *2 *4)) (-4 *4 (-1255 *2)))) (-1669 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3038 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| -1857 *4) (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-2834 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-564)) (-5 *1 (-980 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-564)) (-5 *1 (-980 *3 *4)))) (-2870 (*1 *2 *2 *2) (-12 (-4 *3 (-460)) (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-3382 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3285 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3128 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3285 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3285 (*1 *2 *3 *3) (-12 (-4 *2 (-564)) (-4 *2 (-460)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))) (-2663 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 (-779))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-2930 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-2682 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3537 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3537 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3537 (*1 *2 *3) (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))) (-1485 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2870 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2870 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3566 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2870 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3453 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-3308 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3880 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3487 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-3916 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))) (-3231 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))) (-1889 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-564)) (-5 *1 (-980 *4 *2)) (-4 *2 (-1255 *4)))) (-3100 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))) (-4111 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))) (-2241 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-564)) (-5 *1 (-980 *4 *2)) (-4 *2 (-1255 *4)))) (-3789 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2361 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-2745 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2361 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-1955 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2361 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-2361 (*1 *2 *3 *3) (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))))
-(-10 -7 (-15 -2361 (|#1| |#2| |#2|)) (-15 -1955 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|)) (-15 -2745 ((-2 (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|)) (-15 -3789 ((-2 (|:| |coef1| |#2|) (|:| -2361 |#1|)) |#2| |#2|)) (-15 -2241 (|#2| |#2| |#2| (-779))) (-15 -4111 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -3100 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -1889 (|#2| |#2| |#2| (-779))) (-15 -3231 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -3916 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -3487 (|#2| |#2| |#2|)) (-15 -3880 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3308 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3453 (|#2| |#2| |#2|)) (-15 -3566 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2870 |#2|)) |#2| |#2|)) (-15 -1350 ((-2 (|:| |coef2| |#2|) (|:| -2870 |#2|)) |#2| |#2|)) (-15 -1485 ((-2 (|:| |coef1| |#2|) (|:| -2870 |#2|)) |#2| |#2|)) (-15 -3537 (|#1| |#2|)) (-15 -1452 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3537 |#1|)) |#2|)) (-15 -2682 ((-2 (|:| |coef2| |#2|) (|:| -3537 |#1|)) |#2|)) (-15 -2930 ((-652 |#2|) |#2| |#2|)) (-15 -2663 ((-652 (-779)) |#2| |#2|)) (IF (|has| |#1| (-460)) (PROGN (-15 -3285 (|#1| |#2| |#2|)) (-15 -3128 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3285 |#1|)) |#2| |#2|)) (-15 -3382 ((-2 (|:| |coef2| |#2|) (|:| -3285 |#1|)) |#2| |#2|)) (-15 -2870 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1279 |#2|) |#1| (-1279 |#2|))) (-15 -2834 ((-1279 |#2|) (-1279 |#2|) |#1|)) (-15 -3038 ((-2 (|:| -1857 |#1|) (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2|)) (-15 -1669 ((-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) |#2| |#2|)) (-15 -2886 (|#1| |#1| |#1| (-779))) (-15 -2996 (|#2| |#2| |#1| |#1| (-779))) (-15 -1680 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1998 (|#1| |#2| |#2|)) (-15 -3640 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|)) (-15 -1766 ((-2 (|:| |coef2| |#2|) (|:| -2361 |#1|)) |#2| |#2|)))
-((-2846 (((-112) $ $) NIL)) (-2330 (((-1228) $) 13)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4014 (((-1146) $) 10)) (-2940 (((-870) $) 20) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-981) (-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $)) (-15 -2330 ((-1228) $))))) (T -981))
-((-4014 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-981)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-981)))))
-(-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $)) (-15 -2330 ((-1228) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 40)) (-3330 (((-3 $ "failed") $ $) 54)) (-3281 (($) NIL T CONST)) (-3217 (((-652 (-881 (-930) (-930))) $) 67)) (-4216 (((-930) $) 94)) (-1863 (((-652 (-930)) $) 17)) (-2883 (((-1168 $) (-779)) 39)) (-3351 (($ (-652 (-930))) 16)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1516 (($ $) 70)) (-2940 (((-870) $) 90) (((-652 (-930)) $) 11)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 8 T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 44)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 42)) (-3075 (($ $ $) 46)) (* (($ (-930) $) NIL) (($ (-779) $) 49)) (-2860 (((-779) $) 22)))
-(((-982) (-13 (-803) (-621 (-652 (-930))) (-10 -8 (-15 -3351 ($ (-652 (-930)))) (-15 -1863 ((-652 (-930)) $)) (-15 -2860 ((-779) $)) (-15 -2883 ((-1168 $) (-779))) (-15 -3217 ((-652 (-881 (-930) (-930))) $)) (-15 -4216 ((-930) $)) (-15 -1516 ($ $))))) (T -982))
-((-3351 (*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-982)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-982)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-982)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1168 (-982))) (-5 *1 (-982)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-652 (-881 (-930) (-930)))) (-5 *1 (-982)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-982)))) (-1516 (*1 *1 *1) (-5 *1 (-982))))
-(-13 (-803) (-621 (-652 (-930))) (-10 -8 (-15 -3351 ($ (-652 (-930)))) (-15 -1863 ((-652 (-930)) $)) (-15 -2860 ((-779) $)) (-15 -2883 ((-1168 $) (-779))) (-15 -3217 ((-652 (-881 (-930) (-930))) $)) (-15 -4216 ((-930) $)) (-15 -1516 ($ $))))
-((-3106 (($ $ |#2|) 31)) (-3089 (($ $) 23) (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-415 (-572)) $) 27) (($ $ (-415 (-572))) 29)))
-(((-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -3106 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-984 |#2| |#3| |#4|) (-1060) (-800) (-858)) (T -983))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -3106 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4353 (((-652 |#3|) $) 86)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-3009 (($ $) 64 (|has| |#1| (-564)))) (-4334 (((-112) $) 66 (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1390 (($ $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-2579 (((-112) $) 85)) (-1886 (((-112) $) 35)) (-2438 (((-112) $) 74)) (-4333 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-652 |#3|) (-652 |#2|)) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1357 (($ $) 77)) (-1368 ((|#1| $) 78)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2834 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-4390 ((|#2| $) 76)) (-2590 (($ $) 84)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3979 ((|#1| $ |#2|) 71)) (-3849 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
-(((-984 |#1| |#2| |#3|) (-141) (-1060) (-800) (-858)) (T -984))
-((-1368 (*1 *2 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *3 (-800)) (-4 *4 (-858)) (-4 *2 (-1060)))) (-1357 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *4 (-858)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *2 *4)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *2 (-800)))) (-4333 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-984 *4 *3 *2)) (-4 *4 (-1060)) (-4 *3 (-800)) (-4 *2 (-858)))) (-4333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 *5)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-800)) (-4 *6 (-858)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-800)) (-4 *5 (-858)) (-5 *2 (-652 *5)))) (-2579 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-800)) (-4 *5 (-858)) (-5 *2 (-112)))) (-2590 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *4 (-858)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4333 ($ $ |t#3| |t#2|)) (-15 -4333 ($ $ (-652 |t#3|) (-652 |t#2|))) (-15 -1357 ($ $)) (-15 -1368 (|t#1| $)) (-15 -4390 (|t#2| $)) (-15 -4353 ((-652 |t#3|) $)) (-15 -2579 ((-112) $)) (-15 -2590 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-296) |has| |#1| (-564)) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2432 (((-1105 (-227)) $) 8)) (-2419 (((-1105 (-227)) $) 9)) (-2406 (((-1105 (-227)) $) 10)) (-2013 (((-652 (-652 (-952 (-227)))) $) 11)) (-2940 (((-870) $) 6)))
-(((-985) (-141)) (T -985))
-((-2013 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-652 (-652 (-952 (-227))))))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))) (-2432 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2013 ((-652 (-652 (-952 (-227)))) $)) (-15 -2406 ((-1105 (-227)) $)) (-15 -2419 ((-1105 (-227)) $)) (-15 -2432 ((-1105 (-227)) $))))
-(((-621 (-870)) . T))
-((-4353 (((-652 |#4|) $) 23)) (-1544 (((-112) $) 55)) (-2639 (((-112) $) 54)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#4|) 42)) (-2390 (((-112) $) 56)) (-2783 (((-112) $ $) 62)) (-3937 (((-112) $ $) 65)) (-1616 (((-112) $) 60)) (-1566 (((-652 |#5|) (-652 |#5|) $) 98)) (-2844 (((-652 |#5|) (-652 |#5|) $) 95)) (-3669 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3015 (((-652 |#4|) $) 27)) (-1683 (((-112) |#4| $) 34)) (-1433 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2748 (($ $ |#4|) 39)) (-2365 (($ $ |#4|) 38)) (-1670 (($ $ |#4|) 40)) (-2978 (((-112) $ $) 46)))
-(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2639 ((-112) |#1|)) (-15 -1566 ((-652 |#5|) (-652 |#5|) |#1|)) (-15 -2844 ((-652 |#5|) (-652 |#5|) |#1|)) (-15 -3669 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1433 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2390 ((-112) |#1|)) (-15 -3937 ((-112) |#1| |#1|)) (-15 -2783 ((-112) |#1| |#1|)) (-15 -1616 ((-112) |#1|)) (-15 -1544 ((-112) |#1|)) (-15 -2766 ((-2 (|:| |under| |#1|) (|:| -3462 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2748 (|#1| |#1| |#4|)) (-15 -1670 (|#1| |#1| |#4|)) (-15 -2365 (|#1| |#1| |#4|)) (-15 -1683 ((-112) |#4| |#1|)) (-15 -3015 ((-652 |#4|) |#1|)) (-15 -4353 ((-652 |#4|) |#1|)) (-15 -2978 ((-112) |#1| |#1|))) (-987 |#2| |#3| |#4| |#5|) (-1060) (-801) (-858) (-1076 |#2| |#3| |#4|)) (T -986))
-NIL
-(-10 -8 (-15 -2639 ((-112) |#1|)) (-15 -1566 ((-652 |#5|) (-652 |#5|) |#1|)) (-15 -2844 ((-652 |#5|) (-652 |#5|) |#1|)) (-15 -3669 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1433 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2390 ((-112) |#1|)) (-15 -3937 ((-112) |#1| |#1|)) (-15 -2783 ((-112) |#1| |#1|)) (-15 -1616 ((-112) |#1|)) (-15 -1544 ((-112) |#1|)) (-15 -2766 ((-2 (|:| |under| |#1|) (|:| -3462 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2748 (|#1| |#1| |#4|)) (-15 -1670 (|#1| |#1| |#4|)) (-15 -2365 (|#1| |#1| |#4|)) (-15 -1683 ((-112) |#4| |#1|)) (-15 -3015 ((-652 |#4|) |#1|)) (-15 -4353 ((-652 |#4|) |#1|)) (-15 -2978 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-4353 (((-652 |#3|) $) 34)) (-1544 (((-112) $) 27)) (-2639 (((-112) $) 18 (|has| |#1| (-564)))) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) 28)) (-1631 (((-112) $ (-779)) 45)) (-2162 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454)))) (-3281 (($) 46 T CONST)) (-2390 (((-112) $) 23 (|has| |#1| (-564)))) (-2783 (((-112) $ $) 25 (|has| |#1| (-564)))) (-3937 (((-112) $ $) 24 (|has| |#1| (-564)))) (-1616 (((-112) $) 26 (|has| |#1| (-564)))) (-1566 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) 37)) (-2204 (($ (-652 |#4|)) 36)) (-2086 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454)))) (-1863 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-2366 ((|#3| $) 35)) (-1861 (((-112) $ (-779)) 44)) (-1344 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-3015 (((-652 |#3|) $) 33)) (-1683 (((-112) |#3| $) 32)) (-1985 (((-112) $ (-779)) 43)) (-4347 (((-1170) $) 10)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-3964 (((-1131) $) 11)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1612 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) 39)) (-1841 (((-112) $) 42)) (-1613 (($) 41)) (-3973 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3164 (($ $) 40)) (-1835 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) 61)) (-2748 (($ $ |#3|) 29)) (-2365 (($ $ |#3|) 31)) (-1670 (($ $ |#3|) 30)) (-2940 (((-870) $) 12) (((-652 |#4|) $) 38)) (-4379 (((-112) $ $) 9)) (-4380 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 6)) (-2860 (((-779) $) 47 (|has| $ (-6 -4454)))))
-(((-987 |#1| |#2| |#3| |#4|) (-141) (-1060) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -987))
-((-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *1 (-987 *3 *4 *5 *6)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *1 (-987 *3 *4 *5 *6)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-1076 *3 *4 *2)) (-4 *2 (-858)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))) (-1683 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *3 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-112)))) (-2365 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))) (-1670 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))) (-2748 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))) (-2766 (*1 *2 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3462 *1) (|:| |upper| *1))) (-4 *1 (-987 *4 *5 *3 *6)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))) (-2783 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))) (-3937 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))) (-1433 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3669 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2844 (*1 *2 *2 *1) (-12 (-5 *2 (-652 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)))) (-1566 (*1 *2 *2 *1) (-12 (-5 *2 (-652 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))))
-(-13 (-1111) (-152 |t#4|) (-621 (-652 |t#4|)) (-10 -8 (-6 -4454) (-15 -1695 ((-3 $ "failed") (-652 |t#4|))) (-15 -2204 ($ (-652 |t#4|))) (-15 -2366 (|t#3| $)) (-15 -4353 ((-652 |t#3|) $)) (-15 -3015 ((-652 |t#3|) $)) (-15 -1683 ((-112) |t#3| $)) (-15 -2365 ($ $ |t#3|)) (-15 -1670 ($ $ |t#3|)) (-15 -2748 ($ $ |t#3|)) (-15 -2766 ((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |t#3|)) (-15 -1544 ((-112) $)) (IF (|has| |t#1| (-564)) (PROGN (-15 -1616 ((-112) $)) (-15 -2783 ((-112) $ $)) (-15 -3937 ((-112) $ $)) (-15 -2390 ((-112) $)) (-15 -1433 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3669 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2844 ((-652 |t#4|) (-652 |t#4|) $)) (-15 -1566 ((-652 |t#4|) (-652 |t#4|) $)) (-15 -2639 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-1111) . T) ((-1229) . T))
-((-3220 (((-652 |#4|) |#4| |#4|) 136)) (-1965 (((-652 |#4|) (-652 |#4|) (-112)) 125 (|has| |#1| (-460))) (((-652 |#4|) (-652 |#4|)) 126 (|has| |#1| (-460)))) (-3045 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|)) 44)) (-1830 (((-112) |#4|) 43)) (-3723 (((-652 |#4|) |#4|) 121 (|has| |#1| (-460)))) (-2617 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-1 (-112) |#4|) (-652 |#4|)) 24)) (-3096 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|)) 30)) (-2019 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|)) 31)) (-3699 (((-3 (-2 (|:| |bas| (-484 |#1| |#2| |#3| |#4|)) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|)) 90)) (-1937 (((-652 |#4|) (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3134 (((-652 |#4|) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2957 (((-652 |#4|) (-652 |#4|)) 128)) (-2573 (((-652 |#4|) (-652 |#4|) (-652 |#4|) (-112)) 59) (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 61)) (-4346 ((|#4| |#4| (-652 |#4|)) 60)) (-2174 (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 132 (|has| |#1| (-460)))) (-4374 (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 135 (|has| |#1| (-460)))) (-3714 (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 134 (|has| |#1| (-460)))) (-3407 (((-652 |#4|) (-652 |#4|) (-652 |#4|) (-1 (-652 |#4|) (-652 |#4|))) 105) (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 107) (((-652 |#4|) (-652 |#4|) |#4|) 140) (((-652 |#4|) |#4| |#4|) 137) (((-652 |#4|) (-652 |#4|)) 106)) (-2193 (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-313))))) (-3698 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|)) 52)) (-3744 (((-112) (-652 |#4|)) 79)) (-2542 (((-112) (-652 |#4|) (-652 (-652 |#4|))) 67)) (-3791 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|)) 37)) (-1332 (((-112) |#4|) 36)) (-3925 (((-652 |#4|) (-652 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-313))))) (-3497 (((-652 |#4|) (-652 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-313))))) (-4288 (((-652 |#4|) (-652 |#4|)) 83)) (-2653 (((-652 |#4|) (-652 |#4|)) 97)) (-2952 (((-112) (-652 |#4|) (-652 |#4|)) 65)) (-1398 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|)) 50)) (-3446 (((-112) |#4|) 45)))
-(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3407 ((-652 |#4|) (-652 |#4|))) (-15 -3407 ((-652 |#4|) |#4| |#4|)) (-15 -2957 ((-652 |#4|) (-652 |#4|))) (-15 -3220 ((-652 |#4|) |#4| |#4|)) (-15 -3407 ((-652 |#4|) (-652 |#4|) |#4|)) (-15 -3407 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -3407 ((-652 |#4|) (-652 |#4|) (-652 |#4|) (-1 (-652 |#4|) (-652 |#4|)))) (-15 -2952 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -2542 ((-112) (-652 |#4|) (-652 (-652 |#4|)))) (-15 -3744 ((-112) (-652 |#4|))) (-15 -2617 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-1 (-112) |#4|) (-652 |#4|))) (-15 -3096 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|))) (-15 -2019 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|))) (-15 -3698 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -1830 ((-112) |#4|)) (-15 -3045 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -1332 ((-112) |#4|)) (-15 -3791 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -3446 ((-112) |#4|)) (-15 -1398 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -2573 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -2573 ((-652 |#4|) (-652 |#4|) (-652 |#4|) (-112))) (-15 -4346 (|#4| |#4| (-652 |#4|))) (-15 -4288 ((-652 |#4|) (-652 |#4|))) (-15 -3699 ((-3 (-2 (|:| |bas| (-484 |#1| |#2| |#3| |#4|)) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|))) (-15 -2653 ((-652 |#4|) (-652 |#4|))) (-15 -1937 ((-652 |#4|) (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3134 ((-652 |#4|) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-460)) (PROGN (-15 -3723 ((-652 |#4|) |#4|)) (-15 -1965 ((-652 |#4|) (-652 |#4|))) (-15 -1965 ((-652 |#4|) (-652 |#4|) (-112))) (-15 -2174 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -3714 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -4374 ((-652 |#4|) (-652 |#4|) (-652 |#4|)))) |%noBranch|) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-148)) (PROGN (-15 -3497 ((-652 |#4|) (-652 |#4|))) (-15 -3925 ((-652 |#4|) (-652 |#4|))) (-15 -2193 ((-652 |#4|) (-652 |#4|) (-652 |#4|)))) |%noBranch|) |%noBranch|)) (-564) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -988))
-((-2193 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-4374 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-3714 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-2174 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-1965 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-112)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *7)))) (-1965 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-3723 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-3134 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-988 *5 *6 *7 *8)))) (-1937 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-652 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801)) (-4 *8 (-858)) (-5 *1 (-988 *6 *7 *8 *9)))) (-2653 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-3699 (*1 *2 *3) (|partial| -12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-484 *4 *5 *6 *7)) (|:| -2001 (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-4288 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-4346 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *2)))) (-2573 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-112)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *7)))) (-2573 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-1398 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-3446 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-3791 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-1332 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-1830 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-2019 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1 (-112) *8))) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8)))) (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))) (-3096 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1 (-112) *8))) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8)))) (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8)))) (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7)))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-652 *8))) (-5 *3 (-652 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8)))) (-2952 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7)))) (-3407 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-652 *7) (-652 *7))) (-5 *2 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *7)))) (-3407 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-3407 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *3)))) (-3220 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-2957 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-3407 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-3407 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3407 ((-652 |#4|) (-652 |#4|))) (-15 -3407 ((-652 |#4|) |#4| |#4|)) (-15 -2957 ((-652 |#4|) (-652 |#4|))) (-15 -3220 ((-652 |#4|) |#4| |#4|)) (-15 -3407 ((-652 |#4|) (-652 |#4|) |#4|)) (-15 -3407 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -3407 ((-652 |#4|) (-652 |#4|) (-652 |#4|) (-1 (-652 |#4|) (-652 |#4|)))) (-15 -2952 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -2542 ((-112) (-652 |#4|) (-652 (-652 |#4|)))) (-15 -3744 ((-112) (-652 |#4|))) (-15 -2617 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-1 (-112) |#4|) (-652 |#4|))) (-15 -3096 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|))) (-15 -2019 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|))) (-15 -3698 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -1830 ((-112) |#4|)) (-15 -3045 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -1332 ((-112) |#4|)) (-15 -3791 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -3446 ((-112) |#4|)) (-15 -1398 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -2573 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -2573 ((-652 |#4|) (-652 |#4|) (-652 |#4|) (-112))) (-15 -4346 (|#4| |#4| (-652 |#4|))) (-15 -4288 ((-652 |#4|) (-652 |#4|))) (-15 -3699 ((-3 (-2 (|:| |bas| (-484 |#1| |#2| |#3| |#4|)) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|))) (-15 -2653 ((-652 |#4|) (-652 |#4|))) (-15 -1937 ((-652 |#4|) (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3134 ((-652 |#4|) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-460)) (PROGN (-15 -3723 ((-652 |#4|) |#4|)) (-15 -1965 ((-652 |#4|) (-652 |#4|))) (-15 -1965 ((-652 |#4|) (-652 |#4|) (-112))) (-15 -2174 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -3714 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -4374 ((-652 |#4|) (-652 |#4|) (-652 |#4|)))) |%noBranch|) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-148)) (PROGN (-15 -3497 ((-652 |#4|) (-652 |#4|))) (-15 -3925 ((-652 |#4|) (-652 |#4|))) (-15 -2193 ((-652 |#4|) (-652 |#4|) (-652 |#4|)))) |%noBranch|) |%noBranch|))
-((-2040 (((-2 (|:| R (-697 |#1|)) (|:| A (-697 |#1|)) (|:| |Ainv| (-697 |#1|))) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2694 (((-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|)) 46)) (-3752 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-989 |#1|) (-10 -7 (-15 -2040 ((-2 (|:| R (-697 |#1|)) (|:| A (-697 |#1|)) (|:| |Ainv| (-697 |#1|))) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3752 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2694 ((-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|)))) (-370)) (T -989))
-((-2694 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-5 *2 (-652 (-2 (|:| C (-697 *5)) (|:| |g| (-1279 *5))))) (-5 *1 (-989 *5)) (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)))) (-3752 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-697 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370)) (-5 *1 (-989 *5)))) (-2040 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-370)) (-5 *2 (-2 (|:| R (-697 *6)) (|:| A (-697 *6)) (|:| |Ainv| (-697 *6)))) (-5 *1 (-989 *6)) (-5 *3 (-697 *6)))))
-(-10 -7 (-15 -2040 ((-2 (|:| R (-697 |#1|)) (|:| A (-697 |#1|)) (|:| |Ainv| (-697 |#1|))) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3752 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2694 ((-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|))))
-((-2287 (((-426 |#4|) |#4|) 56)))
-(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2287 ((-426 |#4|) |#4|))) (-858) (-801) (-460) (-958 |#3| |#2| |#1|)) (T -990))
-((-2287 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-460)) (-5 *2 (-426 *3)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4)))))
-(-10 -7 (-15 -2287 ((-426 |#4|) |#4|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2212 (($ (-779)) 115 (|has| |#1| (-23)))) (-3176 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) 8)) (-3140 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-3133 (($ $) 93 (|has| $ (-6 -4455)))) (-4421 (($ $) 103)) (-2086 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 52)) (-1439 (((-572) (-1 (-112) |#1|) $) 100) (((-572) |#1| $) 99 (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) 98 (|has| |#1| (-1111)))) (-3588 (($ (-652 |#1|)) 121)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3896 (((-697 |#1|) $ $) 108 (|has| |#1| (-1060)))) (-3787 (($ (-779) |#1|) 70)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 44 (|has| (-572) (-858)))) (-3654 (($ $ $) 90 (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 45 (|has| (-572) (-858)))) (-2427 (($ $ $) 89 (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3499 ((|#1| $) 105 (-12 (|has| |#1| (-1060)) (|has| |#1| (-1013))))) (-1985 (((-112) $ (-779)) 10)) (-4133 ((|#1| $) 106 (-12 (|has| |#1| (-1060)) (|has| |#1| (-1013))))) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1986 (((-652 (-572)) $) 47)) (-1370 (((-112) (-572) $) 48)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2912 ((|#1| $) 43 (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2476 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-2772 (($ $ (-652 |#1|)) 119)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-2264 ((|#1| $ $) 109 (|has| |#1| (-1060)))) (-4224 (((-930) $) 120)) (-2835 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-4025 (($ $ $) 107)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4095 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3164 (($ $) 13)) (-1835 (((-544) $) 81 (|has| |#1| (-622 (-544)))) (($ (-652 |#1|)) 122)) (-2953 (($ (-652 |#1|)) 72)) (-4155 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) 87 (|has| |#1| (-858)))) (-3014 (((-112) $ $) 86 (|has| |#1| (-858)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3026 (((-112) $ $) 88 (|has| |#1| (-858)))) (-3003 (((-112) $ $) 85 (|has| |#1| (-858)))) (-3089 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3075 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-572) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-734))) (($ $ |#1|) 110 (|has| |#1| (-734)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-991 |#1|) (-141) (-1060)) (T -991))
-((-3588 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1060)) (-4 *1 (-991 *3)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1060)) (-5 *2 (-930)))) (-4025 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1060)))) (-2772 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *1 (-991 *3)) (-4 *3 (-1060)))))
-(-13 (-1277 |t#1|) (-626 (-652 |t#1|)) (-10 -8 (-15 -3588 ($ (-652 |t#1|))) (-15 -4224 ((-930) $)) (-15 -4025 ($ $ $)) (-15 -2772 ($ $ (-652 |t#1|)))))
-(((-34) . T) ((-102) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-626 (-652 |#1|)) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-380 |#1|) . T) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-19 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1111) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1229) . T) ((-1277 |#1|) . T))
-((-1776 (((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)) 17)))
-(((-992 |#1| |#2|) (-10 -7 (-15 -1776 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) (-1060) (-1060)) (T -992))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-952 *6)) (-5 *1 (-992 *5 *6)))))
-(-10 -7 (-15 -1776 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|))))
-((-3411 ((|#1| (-952 |#1|)) 14)) (-2393 ((|#1| (-952 |#1|)) 13)) (-2322 ((|#1| (-952 |#1|)) 12)) (-2664 ((|#1| (-952 |#1|)) 16)) (-4192 ((|#1| (-952 |#1|)) 24)) (-1365 ((|#1| (-952 |#1|)) 15)) (-1596 ((|#1| (-952 |#1|)) 17)) (-2399 ((|#1| (-952 |#1|)) 23)) (-2650 ((|#1| (-952 |#1|)) 22)))
-(((-993 |#1|) (-10 -7 (-15 -2322 (|#1| (-952 |#1|))) (-15 -2393 (|#1| (-952 |#1|))) (-15 -3411 (|#1| (-952 |#1|))) (-15 -1365 (|#1| (-952 |#1|))) (-15 -2664 (|#1| (-952 |#1|))) (-15 -1596 (|#1| (-952 |#1|))) (-15 -2650 (|#1| (-952 |#1|))) (-15 -2399 (|#1| (-952 |#1|))) (-15 -4192 (|#1| (-952 |#1|)))) (-1060)) (T -993))
-((-4192 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
-(-10 -7 (-15 -2322 (|#1| (-952 |#1|))) (-15 -2393 (|#1| (-952 |#1|))) (-15 -3411 (|#1| (-952 |#1|))) (-15 -1365 (|#1| (-952 |#1|))) (-15 -2664 (|#1| (-952 |#1|))) (-15 -1596 (|#1| (-952 |#1|))) (-15 -2650 (|#1| (-952 |#1|))) (-15 -2399 (|#1| (-952 |#1|))) (-15 -4192 (|#1| (-952 |#1|))))
-((-3002 (((-3 |#1| "failed") |#1|) 18)) (-4031 (((-3 |#1| "failed") |#1|) 6)) (-2182 (((-3 |#1| "failed") |#1|) 16)) (-3248 (((-3 |#1| "failed") |#1|) 4)) (-1335 (((-3 |#1| "failed") |#1|) 20)) (-2965 (((-3 |#1| "failed") |#1|) 8)) (-1338 (((-3 |#1| "failed") |#1| (-779)) 1)) (-2829 (((-3 |#1| "failed") |#1|) 3)) (-4049 (((-3 |#1| "failed") |#1|) 2)) (-2139 (((-3 |#1| "failed") |#1|) 21)) (-3159 (((-3 |#1| "failed") |#1|) 9)) (-4013 (((-3 |#1| "failed") |#1|) 19)) (-4295 (((-3 |#1| "failed") |#1|) 7)) (-3183 (((-3 |#1| "failed") |#1|) 17)) (-4007 (((-3 |#1| "failed") |#1|) 5)) (-3573 (((-3 |#1| "failed") |#1|) 24)) (-3788 (((-3 |#1| "failed") |#1|) 12)) (-2986 (((-3 |#1| "failed") |#1|) 22)) (-3522 (((-3 |#1| "failed") |#1|) 10)) (-4135 (((-3 |#1| "failed") |#1|) 26)) (-3013 (((-3 |#1| "failed") |#1|) 14)) (-3339 (((-3 |#1| "failed") |#1|) 27)) (-1584 (((-3 |#1| "failed") |#1|) 15)) (-2747 (((-3 |#1| "failed") |#1|) 25)) (-1882 (((-3 |#1| "failed") |#1|) 13)) (-3475 (((-3 |#1| "failed") |#1|) 23)) (-1429 (((-3 |#1| "failed") |#1|) 11)))
-(((-994 |#1|) (-141) (-1214)) (T -994))
-((-3339 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-4135 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2747 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3573 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3475 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2986 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2139 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1335 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-4013 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3002 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3183 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2182 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1584 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3013 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1882 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3788 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1429 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3522 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3159 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-4295 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-4031 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-4007 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3248 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2829 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-4049 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1338 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-779)) (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(-13 (-10 -7 (-15 -1338 ((-3 |t#1| "failed") |t#1| (-779))) (-15 -4049 ((-3 |t#1| "failed") |t#1|)) (-15 -2829 ((-3 |t#1| "failed") |t#1|)) (-15 -3248 ((-3 |t#1| "failed") |t#1|)) (-15 -4007 ((-3 |t#1| "failed") |t#1|)) (-15 -4031 ((-3 |t#1| "failed") |t#1|)) (-15 -4295 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -3159 ((-3 |t#1| "failed") |t#1|)) (-15 -3522 ((-3 |t#1| "failed") |t#1|)) (-15 -1429 ((-3 |t#1| "failed") |t#1|)) (-15 -3788 ((-3 |t#1| "failed") |t#1|)) (-15 -1882 ((-3 |t#1| "failed") |t#1|)) (-15 -3013 ((-3 |t#1| "failed") |t#1|)) (-15 -1584 ((-3 |t#1| "failed") |t#1|)) (-15 -2182 ((-3 |t#1| "failed") |t#1|)) (-15 -3183 ((-3 |t#1| "failed") |t#1|)) (-15 -3002 ((-3 |t#1| "failed") |t#1|)) (-15 -4013 ((-3 |t#1| "failed") |t#1|)) (-15 -1335 ((-3 |t#1| "failed") |t#1|)) (-15 -2139 ((-3 |t#1| "failed") |t#1|)) (-15 -2986 ((-3 |t#1| "failed") |t#1|)) (-15 -3475 ((-3 |t#1| "failed") |t#1|)) (-15 -3573 ((-3 |t#1| "failed") |t#1|)) (-15 -2747 ((-3 |t#1| "failed") |t#1|)) (-15 -4135 ((-3 |t#1| "failed") |t#1|)) (-15 -3339 ((-3 |t#1| "failed") |t#1|))))
-((-1435 ((|#4| |#4| (-652 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-4299 ((|#4| |#4| (-652 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1776 ((|#4| (-1 |#4| (-961 |#1|)) |#4|) 31)))
-(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4299 (|#4| |#4| |#3|)) (-15 -4299 (|#4| |#4| (-652 |#3|))) (-15 -1435 (|#4| |#4| |#3|)) (-15 -1435 (|#4| |#4| (-652 |#3|))) (-15 -1776 (|#4| (-1 |#4| (-961 |#1|)) |#4|))) (-1060) (-801) (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188))))) (-958 (-961 |#1|) |#2| |#3|)) (T -995))
-((-1776 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-961 *4))) (-4 *4 (-1060)) (-4 *2 (-958 (-961 *4) *5 *6)) (-4 *5 (-801)) (-4 *6 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188)))))) (-5 *1 (-995 *4 *5 *6 *2)))) (-1435 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188)))))) (-4 *4 (-1060)) (-4 *5 (-801)) (-5 *1 (-995 *4 *5 *6 *2)) (-4 *2 (-958 (-961 *4) *5 *6)))) (-1435 (*1 *2 *2 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188)))))) (-5 *1 (-995 *4 *5 *3 *2)) (-4 *2 (-958 (-961 *4) *5 *3)))) (-4299 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188)))))) (-4 *4 (-1060)) (-4 *5 (-801)) (-5 *1 (-995 *4 *5 *6 *2)) (-4 *2 (-958 (-961 *4) *5 *6)))) (-4299 (*1 *2 *2 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)) (-15 -1487 ((-3 $ "failed") (-1188)))))) (-5 *1 (-995 *4 *5 *3 *2)) (-4 *2 (-958 (-961 *4) *5 *3)))))
-(-10 -7 (-15 -4299 (|#4| |#4| |#3|)) (-15 -4299 (|#4| |#4| (-652 |#3|))) (-15 -1435 (|#4| |#4| |#3|)) (-15 -1435 (|#4| |#4| (-652 |#3|))) (-15 -1776 (|#4| (-1 |#4| (-961 |#1|)) |#4|)))
-((-3323 ((|#2| |#3|) 35)) (-1702 (((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|) 79)) (-4219 (((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) 100)))
-(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4219 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))))) (-15 -1702 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|)) (-15 -3323 (|#2| |#3|))) (-356) (-1255 |#1|) (-1255 |#2|) (-732 |#2| |#3|)) (T -996))
-((-3323 (*1 *2 *3) (-12 (-4 *3 (-1255 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-996 *4 *2 *3 *5)) (-4 *4 (-356)) (-4 *5 (-732 *2 *3)))) (-1702 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 *3)) (-5 *2 (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-996 *4 *3 *5 *6)) (-4 *6 (-732 *3 *5)))) (-4219 (*1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -4362 (-697 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-697 *4)))) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-732 *4 *5)))))
-(-10 -7 (-15 -4219 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))))) (-15 -1702 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|)) (-15 -3323 (|#2| |#3|)))
-((-1426 (((-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572)))) (-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572))))) 82)))
-(((-997 |#1| |#2|) (-10 -7 (-15 -1426 ((-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572)))) (-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572))))))) (-652 (-1188)) (-779)) (T -997))
-((-1426 (*1 *2 *2) (-12 (-5 *2 (-998 (-415 (-572)) (-872 *3) (-244 *4 (-779)) (-251 *3 (-415 (-572))))) (-14 *3 (-652 (-1188))) (-14 *4 (-779)) (-5 *1 (-997 *3 *4)))))
-(-10 -7 (-15 -1426 ((-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572)))) (-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572)))))))
-((-2846 (((-112) $ $) NIL)) (-3850 (((-3 (-112) "failed") $) 71)) (-2049 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-313))))) (-1658 (($ $ (-3 (-112) "failed")) 72)) (-2881 (($ (-652 |#4|) |#4|) 25)) (-4347 (((-1170) $) NIL)) (-2777 (($ $) 69)) (-3964 (((-1131) $) NIL)) (-1841 (((-112) $) 70)) (-1613 (($) 30)) (-3774 ((|#4| $) 74)) (-1569 (((-652 |#4|) $) 73)) (-2940 (((-870) $) 68)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-998 |#1| |#2| |#3| |#4|) (-13 (-1111) (-621 (-870)) (-10 -8 (-15 -1613 ($)) (-15 -2881 ($ (-652 |#4|) |#4|)) (-15 -3850 ((-3 (-112) "failed") $)) (-15 -1658 ($ $ (-3 (-112) "failed"))) (-15 -1841 ((-112) $)) (-15 -1569 ((-652 |#4|) $)) (-15 -3774 (|#4| $)) (-15 -2777 ($ $)) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-148)) (-15 -2049 ($ $)) |%noBranch|) |%noBranch|))) (-460) (-858) (-801) (-958 |#1| |#3| |#2|)) (T -998))
-((-1613 (*1 *1) (-12 (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801)) (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3)))) (-2881 (*1 *1 *2 *3) (-12 (-5 *2 (-652 *3)) (-4 *3 (-958 *4 *6 *5)) (-4 *4 (-460)) (-4 *5 (-858)) (-4 *6 (-801)) (-5 *1 (-998 *4 *5 *6 *3)))) (-3850 (*1 *2 *1) (|partial| -12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))) (-1658 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))) (-1841 (*1 *2 *1) (-12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))) (-1569 (*1 *2 *1) (-12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-652 *6)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))) (-3774 (*1 *2 *1) (-12 (-4 *2 (-958 *3 *5 *4)) (-5 *1 (-998 *3 *4 *5 *2)) (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)))) (-2777 (*1 *1 *1) (-12 (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801)) (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3)))) (-2049 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-313)) (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801)) (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3)))))
-(-13 (-1111) (-621 (-870)) (-10 -8 (-15 -1613 ($)) (-15 -2881 ($ (-652 |#4|) |#4|)) (-15 -3850 ((-3 (-112) "failed") $)) (-15 -1658 ($ $ (-3 (-112) "failed"))) (-15 -1841 ((-112) $)) (-15 -1569 ((-652 |#4|) $)) (-15 -3774 (|#4| $)) (-15 -2777 ($ $)) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-148)) (-15 -2049 ($ $)) |%noBranch|) |%noBranch|)))
-((-1375 (((-112) |#5| |#5|) 44)) (-4066 (((-112) |#5| |#5|) 59)) (-1795 (((-112) |#5| (-652 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-4186 (((-112) (-652 |#4|) (-652 |#4|)) 65)) (-3817 (((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) 70)) (-3302 (((-1284)) 32)) (-1805 (((-1284) (-1170) (-1170) (-1170)) 28)) (-3266 (((-652 |#5|) (-652 |#5|)) 100)) (-4156 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) 92)) (-2944 (((-652 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112)) 122)) (-3256 (((-112) |#5| |#5|) 53)) (-3921 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1900 (((-112) (-652 |#4|) (-652 |#4|)) 64)) (-3852 (((-112) (-652 |#4|) (-652 |#4|)) 66)) (-2323 (((-112) (-652 |#4|) (-652 |#4|)) 67)) (-1647 (((-3 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-2831 (((-652 |#5|) (-652 |#5|)) 49)))
-(((-999 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1805 ((-1284) (-1170) (-1170) (-1170))) (-15 -3302 ((-1284))) (-15 -1375 ((-112) |#5| |#5|)) (-15 -2831 ((-652 |#5|) (-652 |#5|))) (-15 -3256 ((-112) |#5| |#5|)) (-15 -4066 ((-112) |#5| |#5|)) (-15 -4186 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -1900 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3852 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -2323 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3921 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1795 ((-112) |#5| |#5|)) (-15 -1795 ((-112) |#5| (-652 |#5|))) (-15 -3266 ((-652 |#5|) (-652 |#5|))) (-15 -3817 ((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) (-15 -4156 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-15 -2944 ((-652 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -1647 ((-3 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -999))
-((-1647 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| -4121 (-652 *9)) (|:| -4090 *4) (|:| |ineq| (-652 *9)))) (-5 *1 (-999 *6 *7 *8 *9 *4)) (-5 *3 (-652 *9)) (-4 *4 (-1082 *6 *7 *8 *9)))) (-2944 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-652 *10)) (-5 *5 (-112)) (-4 *10 (-1082 *6 *7 *8 *9)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8)) (-5 *2 (-652 (-2 (|:| -4121 (-652 *9)) (|:| -4090 *10) (|:| |ineq| (-652 *9))))) (-5 *1 (-999 *6 *7 *8 *9 *10)) (-5 *3 (-652 *9)))) (-4156 (*1 *2 *2) (-12 (-5 *2 (-652 (-2 (|:| |val| (-652 *6)) (|:| -4090 *7)))) (-4 *6 (-1076 *3 *4 *5)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-999 *3 *4 *5 *6 *7)))) (-3817 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -4090 *8))) (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-999 *3 *4 *5 *6 *7)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-999 *5 *6 *7 *8 *3)))) (-1795 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3921 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-3852 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-1900 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-4186 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-4066 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-999 *3 *4 *5 *6 *7)))) (-1375 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3302 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-999 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-1805 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1805 ((-1284) (-1170) (-1170) (-1170))) (-15 -3302 ((-1284))) (-15 -1375 ((-112) |#5| |#5|)) (-15 -2831 ((-652 |#5|) (-652 |#5|))) (-15 -3256 ((-112) |#5| |#5|)) (-15 -4066 ((-112) |#5| |#5|)) (-15 -4186 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -1900 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3852 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -2323 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3921 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1795 ((-112) |#5| |#5|)) (-15 -1795 ((-112) |#5| (-652 |#5|))) (-15 -3266 ((-652 |#5|) (-652 |#5|))) (-15 -3817 ((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) (-15 -4156 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-15 -2944 ((-652 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -1647 ((-3 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-1487 (((-1188) $) 15)) (-3080 (((-1170) $) 16)) (-2687 (($ (-1188) (-1170)) 14)) (-2940 (((-870) $) 13)))
-(((-1000) (-13 (-621 (-870)) (-10 -8 (-15 -2687 ($ (-1188) (-1170))) (-15 -1487 ((-1188) $)) (-15 -3080 ((-1170) $))))) (T -1000))
-((-2687 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1170)) (-5 *1 (-1000)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1000)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1000)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2687 ($ (-1188) (-1170))) (-15 -1487 ((-1188) $)) (-15 -3080 ((-1170) $))))
-((-1776 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-1001 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) (-564) (-564) (-1003 |#1|) (-1003 |#2|)) (T -1001))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-564)) (-4 *6 (-564)) (-4 *2 (-1003 *6)) (-5 *1 (-1001 *5 *6 *4 *2)) (-4 *4 (-1003 *5)))))
-(-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-1188) "failed") $) 66) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) 96)) (-2204 ((|#2| $) NIL) (((-1188) $) 61) (((-415 (-572)) $) NIL) (((-572) $) 93)) (-2993 (((-697 (-572)) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 115) (((-697 |#2|) (-697 $)) 28) (((-697 |#2|) (-1279 $)) NIL)) (-2815 (($) 99)) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 76) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 85)) (-2710 (($ $) 10)) (-2556 (((-3 $ "failed") $) 20)) (-1776 (($ (-1 |#2| |#2|) $) 22)) (-3815 (($) 16)) (-2340 (($ $) 55)) (-3902 (($ $) NIL) (($ $ (-779)) NIL) (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1520 (($ $) 12)) (-1835 (((-901 (-572)) $) 71) (((-901 (-386)) $) 80) (((-544) $) 40) (((-386) $) 44) (((-227) $) 48)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 91) (($ |#2|) NIL) (($ (-1188)) 58)) (-4249 (((-779)) 31)) (-3003 (((-112) $ $) 51)))
-(((-1002 |#1| |#2|) (-10 -8 (-15 -3003 ((-112) |#1| |#1|)) (-15 -3815 (|#1|)) (-15 -2556 ((-3 |#1| "failed") |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-386) |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -2940 (|#1| (-1188))) (-15 -1695 ((-3 (-1188) "failed") |#1|)) (-15 -2204 ((-1188) |#1|)) (-15 -2815 (|#1|)) (-15 -2340 (|#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -2710 (|#1| |#1|)) (-15 -1594 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -2993 ((-697 |#2|) (-1279 |#1|))) (-15 -2993 ((-697 |#2|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| |#1|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|))) (-1003 |#2|) (-564)) (T -1002))
-((-4249 (*1 *2) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-1002 *3 *4)) (-4 *3 (-1003 *4)))))
-(-10 -8 (-15 -3003 ((-112) |#1| |#1|)) (-15 -3815 (|#1|)) (-15 -2556 ((-3 |#1| "failed") |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-386) |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -2940 (|#1| (-1188))) (-15 -1695 ((-3 (-1188) "failed") |#1|)) (-15 -2204 ((-1188) |#1|)) (-15 -2815 (|#1|)) (-15 -2340 (|#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -2710 (|#1| |#1|)) (-15 -1594 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -1594 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -2993 ((-697 |#2|) (-1279 |#1|))) (-15 -2993 ((-697 |#2|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| |#1|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2689 ((|#1| $) 148 (|has| |#1| (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-2603 (((-426 (-1184 $)) (-1184 $)) 139 (|has| |#1| (-918)))) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 142 (|has| |#1| (-918)))) (-4217 (((-112) $ $) 65)) (-2840 (((-572) $) 129 (|has| |#1| (-828)))) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 188) (((-3 (-1188) "failed") $) 137 (|has| |#1| (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) 120 (|has| |#1| (-1049 (-572)))) (((-3 (-572) "failed") $) 118 (|has| |#1| (-1049 (-572))))) (-2204 ((|#1| $) 189) (((-1188) $) 138 (|has| |#1| (-1049 (-1188)))) (((-415 (-572)) $) 121 (|has| |#1| (-1049 (-572)))) (((-572) $) 119 (|has| |#1| (-1049 (-572))))) (-2780 (($ $ $) 61)) (-2993 (((-697 (-572)) (-1279 $)) 163 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 162 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 161 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 160) (((-697 |#1|) (-697 $)) 159) (((-697 |#1|) (-1279 $)) 158)) (-2062 (((-3 $ "failed") $) 37)) (-2815 (($) 146 (|has| |#1| (-553)))) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-3879 (((-112) $) 79)) (-3074 (((-112) $) 131 (|has| |#1| (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 155 (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 154 (|has| |#1| (-895 (-386))))) (-1886 (((-112) $) 35)) (-2710 (($ $) 150)) (-2963 ((|#1| $) 152)) (-2556 (((-3 $ "failed") $) 117 (|has| |#1| (-1163)))) (-1623 (((-112) $) 130 (|has| |#1| (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-3654 (($ $ $) 127 (|has| |#1| (-858)))) (-2427 (($ $ $) 126 (|has| |#1| (-858)))) (-1776 (($ (-1 |#1| |#1|) $) 180)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 78)) (-3815 (($) 116 (|has| |#1| (-1163)) CONST)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-2340 (($ $) 147 (|has| |#1| (-313)))) (-3462 ((|#1| $) 144 (|has| |#1| (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) 141 (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) 140 (|has| |#1| (-918)))) (-4218 (((-426 $) $) 82)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) 186 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 185 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 184 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 183 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 182 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) 181 (|has| |#1| (-522 (-1188) |#1|)))) (-3847 (((-779) $) 64)) (-2196 (($ $ |#1|) 187 (|has| |#1| (-292 |#1| |#1|)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-3902 (($ $) 178 (|has| |#1| (-237))) (($ $ (-779)) 177 (|has| |#1| (-237))) (($ $ (-1188)) 175 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 174 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 173 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 172 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 165) (($ $ (-1 |#1| |#1|)) 164)) (-1520 (($ $) 149)) (-2974 ((|#1| $) 151)) (-1835 (((-901 (-572)) $) 157 (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) 156 (|has| |#1| (-622 (-901 (-386))))) (((-544) $) 134 (|has| |#1| (-622 (-544)))) (((-386) $) 133 (|has| |#1| (-1033))) (((-227) $) 132 (|has| |#1| (-1033)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 143 (-2085 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ |#1|) 192) (($ (-1188)) 136 (|has| |#1| (-1049 (-1188))))) (-3849 (((-3 $ "failed") $) 135 (-2813 (|has| |#1| (-146)) (-2085 (|has| $ (-146)) (|has| |#1| (-918)))))) (-4249 (((-779)) 32 T CONST)) (-3614 ((|#1| $) 145 (|has| |#1| (-553)))) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2700 (($ $) 128 (|has| |#1| (-828)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $) 179 (|has| |#1| (-237))) (($ $ (-779)) 176 (|has| |#1| (-237))) (($ $ (-1188)) 171 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 170 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 169 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 168 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 167) (($ $ (-1 |#1| |#1|)) 166)) (-3039 (((-112) $ $) 124 (|has| |#1| (-858)))) (-3014 (((-112) $ $) 123 (|has| |#1| (-858)))) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 125 (|has| |#1| (-858)))) (-3003 (((-112) $ $) 122 (|has| |#1| (-858)))) (-3106 (($ $ $) 73) (($ |#1| |#1|) 153)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75) (($ |#1| $) 191) (($ $ |#1|) 190)))
-(((-1003 |#1|) (-141) (-564)) (T -1003))
-((-3106 (*1 *1 *2 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-2710 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-1520 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-313)))) (-2340 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-313)))) (-2815 (*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-553)) (-4 *2 (-564)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-553)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-553)))))
-(-13 (-370) (-38 |t#1|) (-1049 |t#1|) (-345 |t#1|) (-233 |t#1|) (-384 |t#1|) (-893 |t#1|) (-408 |t#1|) (-10 -8 (-15 -3106 ($ |t#1| |t#1|)) (-15 -2963 (|t#1| $)) (-15 -2974 (|t#1| $)) (-15 -2710 ($ $)) (-15 -1520 ($ $)) (IF (|has| |t#1| (-1163)) (-6 (-1163)) |%noBranch|) (IF (|has| |t#1| (-1049 (-572))) (PROGN (-6 (-1049 (-572))) (-6 (-1049 (-415 (-572))))) |%noBranch|) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |t#1| (-1033)) (-6 (-1033)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1049 (-1188))) (-6 (-1049 (-1188))) |%noBranch|) (IF (|has| |t#1| (-313)) (PROGN (-15 -2689 (|t#1| $)) (-15 -2340 ($ $))) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -2815 ($)) (-15 -3614 (|t#1| $)) (-15 -3462 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-918)) (-6 (-918)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 #1=(-1188)) |has| |#1| (-1049 (-1188))) ((-624 |#1|) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-622 (-227)) |has| |#1| (-1033)) ((-622 (-386)) |has| |#1| (-1033)) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))) ((-235 $) |has| |#1| (-237)) ((-233 |#1|) . T) ((-237) |has| |#1| (-237)) ((-247) . T) ((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-296) . T) ((-313) . T) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-370) . T) ((-345 |#1|) . T) ((-384 |#1|) . T) ((-408 |#1|) . T) ((-460) . T) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 #2=(-572)) |has| |#1| (-647 (-572))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-647 #2#) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) . T) ((-725 |#1|) . T) ((-725 $) . T) ((-734) . T) ((-799) |has| |#1| (-828)) ((-800) |has| |#1| (-828)) ((-802) |has| |#1| (-828)) ((-803) |has| |#1| (-828)) ((-828) |has| |#1| (-828)) ((-856) |has| |#1| (-828)) ((-858) -2813 (|has| |#1| (-858)) (|has| |#1| (-828))) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-893 |#1|) . T) ((-918) |has| |#1| (-918)) ((-929) . T) ((-1033) |has| |#1| (-1033)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-572))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 #1#) |has| |#1| (-1049 (-1188))) ((-1049 |#1|) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-1163)) ((-1229) . T) ((-1233) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-3191 (($ (-1153 |#1| |#2|)) 11)) (-2911 (((-1153 |#1| |#2|) $) 12)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2196 ((|#2| $ (-244 |#1| |#2|)) 16)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL)))
-(((-1004 |#1| |#2|) (-13 (-21) (-292 (-244 |#1| |#2|) |#2|) (-10 -8 (-15 -3191 ($ (-1153 |#1| |#2|))) (-15 -2911 ((-1153 |#1| |#2|) $)))) (-930) (-370)) (T -1004))
-((-3191 (*1 *1 *2) (-12 (-5 *2 (-1153 *3 *4)) (-14 *3 (-930)) (-4 *4 (-370)) (-5 *1 (-1004 *3 *4)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-1153 *3 *4)) (-5 *1 (-1004 *3 *4)) (-14 *3 (-930)) (-4 *4 (-370)))))
-(-13 (-21) (-292 (-244 |#1| |#2|) |#2|) (-10 -8 (-15 -3191 ($ (-1153 |#1| |#2|))) (-15 -2911 ((-1153 |#1| |#2|) $))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4014 (((-1146) $) 9)) (-2940 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1005) (-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $))))) (T -1005))
-((-4014 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1005)))))
-(-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $))))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) 8)) (-3281 (($) 7 T CONST)) (-3869 (($ $) 47)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4133 (((-779) $) 46)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2935 ((|#1| $) 45)) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3598 ((|#1| |#1| $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-3263 ((|#1| $) 48)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 43)) (-2334 ((|#1| $) 44)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-1006 |#1|) (-141) (-1229)) (T -1006))
-((-3598 (*1 *2 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))) (-3869 (*1 *1 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4454) (-15 -3598 (|t#1| |t#1| $)) (-15 -3263 (|t#1| $)) (-15 -3869 ($ $)) (-15 -4133 ((-779) $)) (-15 -2935 (|t#1| $)) (-15 -2334 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-2697 (((-112) $) 43)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2204 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#2| $) 44)) (-3196 (((-3 (-415 (-572)) "failed") $) 78)) (-1733 (((-112) $) 72)) (-2233 (((-415 (-572)) $) 76)) (-1886 (((-112) $) 42)) (-2028 ((|#2| $) 22)) (-1776 (($ (-1 |#2| |#2|) $) 19)) (-1322 (($ $) 58)) (-3902 (($ $) NIL) (($ $ (-779)) NIL) (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1835 (((-544) $) 67)) (-1516 (($ $) 17)) (-2940 (((-870) $) 53) (($ (-572)) 39) (($ |#2|) 37) (($ (-415 (-572))) NIL)) (-4249 (((-779)) 10)) (-2700 ((|#2| $) 71)) (-2978 (((-112) $ $) 26)) (-3003 (((-112) $ $) 69)) (-3089 (($ $) 30) (($ $ $) 29)) (-3075 (($ $ $) 27)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
-(((-1007 |#1| |#2|) (-10 -8 (-15 -2940 (|#1| (-415 (-572)))) (-15 -3003 ((-112) |#1| |#1|)) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 * (|#1| |#1| (-415 (-572)))) (-15 -1322 (|#1| |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -2700 (|#2| |#1|)) (-15 -2028 (|#2| |#1|)) (-15 -1516 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 -1886 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 -2697 ((-112) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|))) (-1008 |#2|) (-174)) (T -1007))
-((-4249 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-1007 *3 *4)) (-4 *3 (-1008 *4)))))
-(-10 -8 (-15 -2940 (|#1| (-415 (-572)))) (-15 -3003 ((-112) |#1| |#1|)) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 * (|#1| |#1| (-415 (-572)))) (-15 -1322 (|#1| |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -2700 (|#2| |#1|)) (-15 -2028 (|#2| |#1|)) (-15 -1516 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 -1886 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 -2697 ((-112) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1695 (((-3 (-572) "failed") $) 130 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 128 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 125)) (-2204 (((-572) $) 129 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 127 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 126)) (-2993 (((-697 (-572)) (-1279 $)) 100 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 99 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 98 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 97) (((-697 |#1|) (-697 $)) 96) (((-697 |#1|) (-1279 $)) 95)) (-2062 (((-3 $ "failed") $) 37)) (-4237 ((|#1| $) 88)) (-3196 (((-3 (-415 (-572)) "failed") $) 84 (|has| |#1| (-553)))) (-1733 (((-112) $) 86 (|has| |#1| (-553)))) (-2233 (((-415 (-572)) $) 85 (|has| |#1| (-553)))) (-2332 (($ |#1| |#1| |#1| |#1|) 89)) (-1886 (((-112) $) 35)) (-2028 ((|#1| $) 90)) (-3654 (($ $ $) 77 (|has| |#1| (-858)))) (-2427 (($ $ $) 76 (|has| |#1| (-858)))) (-1776 (($ (-1 |#1| |#1|) $) 101)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 81 (|has| |#1| (-370)))) (-1818 ((|#1| $) 91)) (-3304 ((|#1| $) 92)) (-3210 ((|#1| $) 93)) (-3964 (((-1131) $) 11)) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) 107 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 106 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 105 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 104 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 103 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) 102 (|has| |#1| (-522 (-1188) |#1|)))) (-2196 (($ $ |#1|) 108 (|has| |#1| (-292 |#1| |#1|)))) (-3902 (($ $) 123 (|has| |#1| (-237))) (($ $ (-779)) 122 (|has| |#1| (-237))) (($ $ (-1188)) 120 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 119 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 118 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 117 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 110) (($ $ (-1 |#1| |#1|)) 109)) (-1835 (((-544) $) 82 (|has| |#1| (-622 (-544))))) (-1516 (($ $) 94)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44) (($ (-415 (-572))) 71 (-2813 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))) (-3849 (((-3 $ "failed") $) 83 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2700 ((|#1| $) 87 (|has| |#1| (-1071)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $) 124 (|has| |#1| (-237))) (($ $ (-779)) 121 (|has| |#1| (-237))) (($ $ (-1188)) 116 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 115 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 114 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 113 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 112) (($ $ (-1 |#1| |#1|)) 111)) (-3039 (((-112) $ $) 74 (|has| |#1| (-858)))) (-3014 (((-112) $ $) 73 (|has| |#1| (-858)))) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 75 (|has| |#1| (-858)))) (-3003 (((-112) $ $) 72 (|has| |#1| (-858)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 80 (|has| |#1| (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-415 (-572))) 79 (|has| |#1| (-370))) (($ (-415 (-572)) $) 78 (|has| |#1| (-370)))))
-(((-1008 |#1|) (-141) (-174)) (T -1008))
-((-1516 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-2332 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))) (-3196 (*1 *2 *1) (|partial| -12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))))
-(-13 (-38 |t#1|) (-419 |t#1|) (-233 |t#1|) (-345 |t#1|) (-384 |t#1|) (-10 -8 (-15 -1516 ($ $)) (-15 -3210 (|t#1| $)) (-15 -3304 (|t#1| $)) (-15 -1818 (|t#1| $)) (-15 -2028 (|t#1| $)) (-15 -2332 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4237 (|t#1| $)) (IF (|has| |t#1| (-296)) (-6 (-296)) |%noBranch|) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-247)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1071)) (-15 -2700 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -1733 ((-112) $)) (-15 -2233 ((-415 (-572)) $)) (-15 -3196 ((-3 (-415 (-572)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-370)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-370)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-370)) (|has| |#1| (-296))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-370))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-235 $) |has| |#1| (-237)) ((-233 |#1|) . T) ((-237) |has| |#1| (-237)) ((-247) |has| |#1| (-370)) ((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-296) -2813 (|has| |#1| (-370)) (|has| |#1| (-296))) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-345 |#1|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-654 #0#) |has| |#1| (-370)) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-370)) ((-656 #1=(-572)) |has| |#1| (-647 (-572))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-370)) ((-648 |#1|) . T) ((-647 #1#) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) |has| |#1| (-370)) ((-725 |#1|) . T) ((-734) . T) ((-858) |has| |#1| (-858)) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 #0#) |has| |#1| (-370)) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-370)) (|has| |#1| (-296))) ((-1067 #0#) |has| |#1| (-370)) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-370)) (|has| |#1| (-296))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) -2813 (|has| |#1| (-292 |#1| |#1|)) (|has| |#1| (-237))))
-((-1776 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) (-1008 |#2|) (-174) (-1008 |#4|) (-174)) (T -1009))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1008 *6)) (-5 *1 (-1009 *4 *5 *2 *6)) (-4 *4 (-1008 *5)))))
-(-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-4237 ((|#1| $) 12)) (-3196 (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-553)))) (-1733 (((-112) $) NIL (|has| |#1| (-553)))) (-2233 (((-415 (-572)) $) NIL (|has| |#1| (-553)))) (-2332 (($ |#1| |#1| |#1| |#1|) 16)) (-1886 (((-112) $) NIL)) (-2028 ((|#1| $) NIL)) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-1818 ((|#1| $) 15)) (-3304 ((|#1| $) 14)) (-3210 ((|#1| $) 13)) (-3964 (((-1131) $) NIL)) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|)))) (-2196 (($ $ |#1|) NIL (|has| |#1| (-292 |#1| |#1|)))) (-3902 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-1516 (($ $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2700 ((|#1| $) NIL (|has| |#1| (-1071)))) (-2131 (($) 8 T CONST)) (-2143 (($) 10 T CONST)) (-3608 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-370))) (($ (-415 (-572)) $) NIL (|has| |#1| (-370)))))
-(((-1010 |#1|) (-1008 |#1|) (-174)) (T -1010))
-NIL
-(-1008 |#1|)
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1631 (((-112) $ (-779)) NIL)) (-3281 (($) NIL T CONST)) (-3869 (($ $) 23)) (-1537 (($ (-652 |#1|)) 33)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4133 (((-779) $) 26)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1651 ((|#1| $) 28)) (-2036 (($ |#1| $) 17)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2935 ((|#1| $) 27)) (-3378 ((|#1| $) 22)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3598 ((|#1| |#1| $) 16)) (-1841 (((-112) $) 18)) (-1613 (($) NIL)) (-3263 ((|#1| $) 21)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) NIL)) (-2334 ((|#1| $) 30)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1011 |#1|) (-13 (-1006 |#1|) (-10 -8 (-15 -1537 ($ (-652 |#1|))))) (-1111)) (T -1011))
-((-1537 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-1011 *3)))))
-(-13 (-1006 |#1|) (-10 -8 (-15 -1537 ($ (-652 |#1|)))))
-((-4227 (($ $) 12)) (-2932 (($ $ (-572)) 13)))
-(((-1012 |#1|) (-10 -8 (-15 -4227 (|#1| |#1|)) (-15 -2932 (|#1| |#1| (-572)))) (-1013)) (T -1012))
-NIL
-(-10 -8 (-15 -4227 (|#1| |#1|)) (-15 -2932 (|#1| |#1| (-572))))
-((-4227 (($ $) 6)) (-2932 (($ $ (-572)) 7)) (** (($ $ (-415 (-572))) 8)))
-(((-1013) (-141)) (T -1013))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-415 (-572))))) (-2932 (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-572)))) (-4227 (*1 *1 *1) (-4 *1 (-1013))))
-(-13 (-10 -8 (-15 -4227 ($ $)) (-15 -2932 ($ $ (-572))) (-15 ** ($ $ (-415 (-572))))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1824 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| (-415 |#2|) (-370)))) (-3009 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-4334 (((-112) $) NIL (|has| (-415 |#2|) (-370)))) (-3736 (((-697 (-415 |#2|)) (-1279 $)) NIL) (((-697 (-415 |#2|))) NIL)) (-1635 (((-415 |#2|) $) NIL)) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-415 |#2|) (-356)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-2287 (((-426 $) $) NIL (|has| (-415 |#2|) (-370)))) (-4217 (((-112) $ $) NIL (|has| (-415 |#2|) (-370)))) (-1486 (((-779)) NIL (|has| (-415 |#2|) (-375)))) (-1730 (((-112)) NIL)) (-3672 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| (-415 |#2|) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-3 (-415 |#2|) "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| (-415 |#2|) (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-415 |#2|) $) NIL)) (-1913 (($ (-1279 (-415 |#2|)) (-1279 $)) NIL) (($ (-1279 (-415 |#2|))) 79) (($ (-1279 |#2|) |#2|) NIL)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-415 |#2|) (-356)))) (-2780 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-3485 (((-697 (-415 |#2|)) $ (-1279 $)) NIL) (((-697 (-415 |#2|)) $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-415 |#2|))) (|:| |vec| (-1279 (-415 |#2|)))) (-697 $) (-1279 $)) NIL) (((-697 (-415 |#2|)) (-697 $)) NIL) (((-697 (-415 |#2|)) (-1279 $)) NIL)) (-4026 (((-1279 $) (-1279 $)) NIL)) (-2865 (($ |#3|) 73) (((-3 $ "failed") (-415 |#3|)) NIL (|has| (-415 |#2|) (-370)))) (-2062 (((-3 $ "failed") $) NIL)) (-3322 (((-652 (-652 |#1|))) NIL (|has| |#1| (-375)))) (-3806 (((-112) |#1| |#1|) NIL)) (-3581 (((-930)) NIL)) (-2815 (($) NIL (|has| (-415 |#2|) (-375)))) (-1418 (((-112)) NIL)) (-2709 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2792 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| (-415 |#2|) (-370)))) (-1876 (($ $) NIL)) (-1879 (($) NIL (|has| (-415 |#2|) (-356)))) (-3442 (((-112) $) NIL (|has| (-415 |#2|) (-356)))) (-2303 (($ $ (-779)) NIL (|has| (-415 |#2|) (-356))) (($ $) NIL (|has| (-415 |#2|) (-356)))) (-3879 (((-112) $) NIL (|has| (-415 |#2|) (-370)))) (-2956 (((-930) $) NIL (|has| (-415 |#2|) (-356))) (((-841 (-930)) $) NIL (|has| (-415 |#2|) (-356)))) (-1886 (((-112) $) NIL)) (-2720 (((-779)) NIL)) (-2508 (((-1279 $) (-1279 $)) NIL)) (-2028 (((-415 |#2|) $) NIL)) (-4392 (((-652 (-961 |#1|)) (-1188)) NIL (|has| |#1| (-370)))) (-2556 (((-3 $ "failed") $) NIL (|has| (-415 |#2|) (-356)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-415 |#2|) (-370)))) (-3053 ((|#3| $) NIL (|has| (-415 |#2|) (-370)))) (-3715 (((-930) $) NIL (|has| (-415 |#2|) (-375)))) (-2851 ((|#3| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| (-415 |#2|) (-370))) (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-4347 (((-1170) $) NIL)) (-3628 (((-697 (-415 |#2|))) 57)) (-1725 (((-697 (-415 |#2|))) 56)) (-1322 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-2544 (($ (-1279 |#2|) |#2|) 80)) (-2382 (((-697 (-415 |#2|))) 55)) (-2033 (((-697 (-415 |#2|))) 54)) (-1877 (((-2 (|:| |num| (-697 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-2885 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) 86)) (-1543 (((-1279 $)) 51)) (-4219 (((-1279 $)) 50)) (-3049 (((-112) $) NIL)) (-3267 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3815 (($) NIL (|has| (-415 |#2|) (-356)) CONST)) (-2571 (($ (-930)) NIL (|has| (-415 |#2|) (-375)))) (-2535 (((-3 |#2| "failed")) 70)) (-3964 (((-1131) $) NIL)) (-3455 (((-779)) NIL)) (-2967 (($) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| (-415 |#2|) (-370)))) (-2870 (($ (-652 $)) NIL (|has| (-415 |#2|) (-370))) (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| (-415 |#2|) (-356)))) (-4218 (((-426 $) $) NIL (|has| (-415 |#2|) (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-415 |#2|) (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| (-415 |#2|) (-370)))) (-2834 (((-3 $ "failed") $ $) NIL (|has| (-415 |#2|) (-370)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-415 |#2|) (-370)))) (-3847 (((-779) $) NIL (|has| (-415 |#2|) (-370)))) (-2196 ((|#1| $ |#1| |#1|) NIL)) (-1673 (((-3 |#2| "failed")) 68)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| (-415 |#2|) (-370)))) (-3537 (((-415 |#2|) (-1279 $)) NIL) (((-415 |#2|)) 47)) (-3354 (((-779) $) NIL (|has| (-415 |#2|) (-356))) (((-3 (-779) "failed") $ $) NIL (|has| (-415 |#2|) (-356)))) (-3902 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-779)) NIL (-2813 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) NIL (-2813 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-2144 (((-697 (-415 |#2|)) (-1279 $) (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370)))) (-3764 ((|#3|) 58)) (-4033 (($) NIL (|has| (-415 |#2|) (-356)))) (-4329 (((-1279 (-415 |#2|)) $ (-1279 $)) NIL) (((-697 (-415 |#2|)) (-1279 $) (-1279 $)) NIL) (((-1279 (-415 |#2|)) $) 81) (((-697 (-415 |#2|)) (-1279 $)) NIL)) (-1835 (((-1279 (-415 |#2|)) $) NIL) (($ (-1279 (-415 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-415 |#2|) (-356)))) (-2304 (((-1279 $) (-1279 $)) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 |#2|)) NIL) (($ (-415 (-572))) NIL (-2813 (|has| (-415 |#2|) (-1049 (-415 (-572)))) (|has| (-415 |#2|) (-370)))) (($ $) NIL (|has| (-415 |#2|) (-370)))) (-3849 (($ $) NIL (|has| (-415 |#2|) (-356))) (((-3 $ "failed") $) NIL (|has| (-415 |#2|) (-146)))) (-4251 ((|#3| $) NIL)) (-4249 (((-779)) NIL T CONST)) (-3456 (((-112)) 65)) (-3677 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) NIL)) (-2845 (((-112) $ $) NIL (|has| (-415 |#2|) (-370)))) (-1352 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2194 (((-112)) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-779)) NIL (-2813 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) NIL (-2813 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| (-415 |#2|) (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 |#2|)) NIL) (($ (-415 |#2|) $) NIL) (($ (-415 (-572)) $) NIL (|has| (-415 |#2|) (-370))) (($ $ (-415 (-572))) NIL (|has| (-415 |#2|) (-370)))))
-(((-1014 |#1| |#2| |#3| |#4| |#5|) (-349 |#1| |#2| |#3|) (-1233) (-1255 |#1|) (-1255 (-415 |#2|)) (-415 |#2|) (-779)) (T -1014))
-NIL
-(-349 |#1| |#2| |#3|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2341 (((-652 (-572)) $) 73)) (-3203 (($ (-652 (-572))) 81)) (-2689 (((-572) $) 48 (|has| (-572) (-313)))) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL (|has| (-572) (-828)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) 60) (((-3 (-1188) "failed") $) NIL (|has| (-572) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) 57 (|has| (-572) (-1049 (-572)))) (((-3 (-572) "failed") $) 60 (|has| (-572) (-1049 (-572))))) (-2204 (((-572) $) NIL) (((-1188) $) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-572) (-1049 (-572)))) (((-572) $) NIL (|has| (-572) (-1049 (-572))))) (-2780 (($ $ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-697 (-572)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2815 (($) NIL (|has| (-572) (-553)))) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3900 (((-652 (-572)) $) 79)) (-3074 (((-112) $) NIL (|has| (-572) (-828)))) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-572) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-572) (-895 (-386))))) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL)) (-2963 (((-572) $) 45)) (-2556 (((-3 $ "failed") $) NIL (|has| (-572) (-1163)))) (-1623 (((-112) $) NIL (|has| (-572) (-828)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| (-572) (-858)))) (-1776 (($ (-1 (-572) (-572)) $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL)) (-3815 (($) NIL (|has| (-572) (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2340 (($ $) NIL (|has| (-572) (-313))) (((-415 (-572)) $) 50)) (-3556 (((-1168 (-572)) $) 78)) (-3334 (($ (-652 (-572)) (-652 (-572))) 82)) (-3462 (((-572) $) 64 (|has| (-572) (-553)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4218 (((-426 $) $) NIL)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2641 (($ $ (-652 (-572)) (-652 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-572) (-572)) NIL (|has| (-572) (-315 (-572)))) (($ $ (-300 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-300 (-572)))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-1188)) (-652 (-572))) NIL (|has| (-572) (-522 (-1188) (-572)))) (($ $ (-1188) (-572)) NIL (|has| (-572) (-522 (-1188) (-572))))) (-3847 (((-779) $) NIL)) (-2196 (($ $ (-572)) NIL (|has| (-572) (-292 (-572) (-572))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $) 15 (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-1520 (($ $) NIL)) (-2974 (((-572) $) 47)) (-4328 (((-652 (-572)) $) 80)) (-1835 (((-901 (-572)) $) NIL (|has| (-572) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-572) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-572) (-622 (-544)))) (((-386) $) NIL (|has| (-572) (-1033))) (((-227) $) NIL (|has| (-572) (-1033)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-572) (-918))))) (-2940 (((-870) $) 107) (($ (-572)) 51) (($ $) NIL) (($ (-415 (-572))) 27) (($ (-572)) 51) (($ (-1188)) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) 25)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| (-572) (-918))) (|has| (-572) (-146))))) (-4249 (((-779)) 13 T CONST)) (-3614 (((-572) $) 62 (|has| (-572) (-553)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2700 (($ $) NIL (|has| (-572) (-828)))) (-2131 (($) 14 T CONST)) (-2143 (($) 17 T CONST)) (-3608 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3039 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-572) (-858)))) (-2978 (((-112) $ $) 21)) (-3026 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3003 (((-112) $ $) 40 (|has| (-572) (-858)))) (-3106 (($ $ $) 36) (($ (-572) (-572)) 38)) (-3089 (($ $) 23) (($ $ $) 30)) (-3075 (($ $ $) 28)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 32) (($ $ $) 34) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-572) $) 32) (($ $ (-572)) NIL)))
-(((-1015 |#1|) (-13 (-1003 (-572)) (-621 (-415 (-572))) (-10 -8 (-15 -2340 ((-415 (-572)) $)) (-15 -2341 ((-652 (-572)) $)) (-15 -3556 ((-1168 (-572)) $)) (-15 -3900 ((-652 (-572)) $)) (-15 -4328 ((-652 (-572)) $)) (-15 -3203 ($ (-652 (-572)))) (-15 -3334 ($ (-652 (-572)) (-652 (-572)))))) (-572)) (T -1015))
-((-2340 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-3203 (*1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-3334 (*1 *1 *2 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
-(-13 (-1003 (-572)) (-621 (-415 (-572))) (-10 -8 (-15 -2340 ((-415 (-572)) $)) (-15 -2341 ((-652 (-572)) $)) (-15 -3556 ((-1168 (-572)) $)) (-15 -3900 ((-652 (-572)) $)) (-15 -4328 ((-652 (-572)) $)) (-15 -3203 ($ (-652 (-572)))) (-15 -3334 ($ (-652 (-572)) (-652 (-572))))))
-((-1618 (((-52) (-415 (-572)) (-572)) 9)))
-(((-1016) (-10 -7 (-15 -1618 ((-52) (-415 (-572)) (-572))))) (T -1016))
-((-1618 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-572))) (-5 *4 (-572)) (-5 *2 (-52)) (-5 *1 (-1016)))))
-(-10 -7 (-15 -1618 ((-52) (-415 (-572)) (-572))))
-((-1486 (((-572)) 23)) (-1783 (((-572)) 28)) (-2302 (((-1284) (-572)) 26)) (-3380 (((-572) (-572)) 29) (((-572)) 22)))
-(((-1017) (-10 -7 (-15 -3380 ((-572))) (-15 -1486 ((-572))) (-15 -3380 ((-572) (-572))) (-15 -2302 ((-1284) (-572))) (-15 -1783 ((-572))))) (T -1017))
-((-1783 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1017)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))) (-1486 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))) (-3380 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))))
-(-10 -7 (-15 -3380 ((-572))) (-15 -1486 ((-572))) (-15 -3380 ((-572) (-572))) (-15 -2302 ((-1284) (-572))) (-15 -1783 ((-572))))
-((-3832 (((-426 |#1|) |#1|) 43)) (-4218 (((-426 |#1|) |#1|) 41)))
-(((-1018 |#1|) (-10 -7 (-15 -4218 ((-426 |#1|) |#1|)) (-15 -3832 ((-426 |#1|) |#1|))) (-1255 (-415 (-572)))) (T -1018))
-((-3832 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1018 *3)) (-4 *3 (-1255 (-415 (-572)))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1018 *3)) (-4 *3 (-1255 (-415 (-572)))))))
-(-10 -7 (-15 -4218 ((-426 |#1|) |#1|)) (-15 -3832 ((-426 |#1|) |#1|)))
-((-3196 (((-3 (-415 (-572)) "failed") |#1|) 15)) (-1733 (((-112) |#1|) 14)) (-2233 (((-415 (-572)) |#1|) 10)))
-(((-1019 |#1|) (-10 -7 (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|))) (-1049 (-415 (-572)))) (T -1019))
-((-3196 (*1 *2 *3) (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-1019 *3)) (-4 *3 (-1049 *2)))) (-1733 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1049 (-415 (-572)))))) (-2233 (*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1019 *3)) (-4 *3 (-1049 *2)))))
-(-10 -7 (-15 -2233 ((-415 (-572)) |#1|)) (-15 -1733 ((-112) |#1|)) (-15 -3196 ((-3 (-415 (-572)) "failed") |#1|)))
-((-3140 ((|#2| $ "value" |#2|) 12)) (-2196 ((|#2| $ "value") 10)) (-2804 (((-112) $ $) 18)))
-(((-1020 |#1| |#2|) (-10 -8 (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -2804 ((-112) |#1| |#1|)) (-15 -2196 (|#2| |#1| "value"))) (-1021 |#2|) (-1229)) (T -1020))
-NIL
-(-10 -8 (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -2804 ((-112) |#1| |#1|)) (-15 -2196 (|#2| |#1| "value")))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3080 ((|#1| $) 49)) (-1631 (((-112) $ (-779)) 8)) (-2506 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-3281 (($) 7 T CONST)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 51)) (-1463 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-3505 (((-652 |#1|) $) 46)) (-2087 (((-112) $) 50)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ "value") 48)) (-2157 (((-572) $ $) 45)) (-3315 (((-112) $) 47)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) 52)) (-2804 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-1021 |#1|) (-141) (-1229)) (T -1021))
-((-2065 (*1 *2 *1) (-12 (-4 *3 (-1229)) (-5 *2 (-652 *1)) (-4 *1 (-1021 *3)))) (-2089 (*1 *2 *1) (-12 (-4 *3 (-1229)) (-5 *2 (-652 *1)) (-4 *1 (-1021 *3)))) (-2087 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1229)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1021 *2)) (-4 *2 (-1229)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-652 *3)))) (-2157 (*1 *2 *1 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-572)))) (-2804 (*1 *2 *1 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-1463 (*1 *2 *1 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-3735 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *1)) (|has| *1 (-6 -4455)) (-4 *1 (-1021 *3)) (-4 *3 (-1229)))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4455)) (-4 *1 (-1021 *2)) (-4 *2 (-1229)))) (-2506 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1021 *2)) (-4 *2 (-1229)))))
-(-13 (-497 |t#1|) (-10 -8 (-15 -2065 ((-652 $) $)) (-15 -2089 ((-652 $) $)) (-15 -2087 ((-112) $)) (-15 -3080 (|t#1| $)) (-15 -2196 (|t#1| $ "value")) (-15 -3315 ((-112) $)) (-15 -3505 ((-652 |t#1|) $)) (-15 -2157 ((-572) $ $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -2804 ((-112) $ $)) (-15 -1463 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4455)) (PROGN (-15 -3735 ($ $ (-652 $))) (-15 -3140 (|t#1| $ "value" |t#1|)) (-15 -2506 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-4227 (($ $) 9) (($ $ (-930)) 49) (($ (-415 (-572))) 13) (($ (-572)) 15)) (-1821 (((-3 $ "failed") (-1184 $) (-930) (-870)) 24) (((-3 $ "failed") (-1184 $) (-930)) 32)) (-2932 (($ $ (-572)) 58)) (-4249 (((-779)) 18)) (-3381 (((-652 $) (-1184 $)) NIL) (((-652 $) (-1184 (-415 (-572)))) 63) (((-652 $) (-1184 (-572))) 68) (((-652 $) (-961 $)) 72) (((-652 $) (-961 (-415 (-572)))) 76) (((-652 $) (-961 (-572))) 80)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL) (($ $ (-415 (-572))) 53)))
-(((-1022 |#1|) (-10 -8 (-15 -4227 (|#1| (-572))) (-15 -4227 (|#1| (-415 (-572)))) (-15 -4227 (|#1| |#1| (-930))) (-15 -3381 ((-652 |#1|) (-961 (-572)))) (-15 -3381 ((-652 |#1|) (-961 (-415 (-572))))) (-15 -3381 ((-652 |#1|) (-961 |#1|))) (-15 -3381 ((-652 |#1|) (-1184 (-572)))) (-15 -3381 ((-652 |#1|) (-1184 (-415 (-572))))) (-15 -3381 ((-652 |#1|) (-1184 |#1|))) (-15 -1821 ((-3 |#1| "failed") (-1184 |#1|) (-930))) (-15 -1821 ((-3 |#1| "failed") (-1184 |#1|) (-930) (-870))) (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -2932 (|#1| |#1| (-572))) (-15 -4227 (|#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -4249 ((-779))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930)))) (-1023)) (T -1022))
-((-4249 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1022 *3)) (-4 *3 (-1023)))))
-(-10 -8 (-15 -4227 (|#1| (-572))) (-15 -4227 (|#1| (-415 (-572)))) (-15 -4227 (|#1| |#1| (-930))) (-15 -3381 ((-652 |#1|) (-961 (-572)))) (-15 -3381 ((-652 |#1|) (-961 (-415 (-572))))) (-15 -3381 ((-652 |#1|) (-961 |#1|))) (-15 -3381 ((-652 |#1|) (-1184 (-572)))) (-15 -3381 ((-652 |#1|) (-1184 (-415 (-572))))) (-15 -3381 ((-652 |#1|) (-1184 |#1|))) (-15 -1821 ((-3 |#1| "failed") (-1184 |#1|) (-930))) (-15 -1821 ((-3 |#1| "failed") (-1184 |#1|) (-930) (-870))) (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -2932 (|#1| |#1| (-572))) (-15 -4227 (|#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -4249 ((-779))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 102)) (-3009 (($ $) 103)) (-4334 (((-112) $) 105)) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 122)) (-2287 (((-426 $) $) 123)) (-4227 (($ $) 86) (($ $ (-930)) 72) (($ (-415 (-572))) 71) (($ (-572)) 70)) (-4217 (((-112) $ $) 113)) (-2840 (((-572) $) 139)) (-3281 (($) 18 T CONST)) (-1821 (((-3 $ "failed") (-1184 $) (-930) (-870)) 80) (((-3 $ "failed") (-1184 $) (-930)) 79)) (-1695 (((-3 (-572) "failed") $) 99 (|has| (-415 (-572)) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 97 (|has| (-415 (-572)) (-1049 (-415 (-572))))) (((-3 (-415 (-572)) "failed") $) 94)) (-2204 (((-572) $) 98 (|has| (-415 (-572)) (-1049 (-572)))) (((-415 (-572)) $) 96 (|has| (-415 (-572)) (-1049 (-415 (-572))))) (((-415 (-572)) $) 95)) (-3795 (($ $ (-870)) 69)) (-2268 (($ $ (-870)) 68)) (-2780 (($ $ $) 117)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 116)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 111)) (-3879 (((-112) $) 124)) (-3074 (((-112) $) 137)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 85)) (-1623 (((-112) $) 138)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 120)) (-3654 (($ $ $) 136)) (-2427 (($ $ $) 135)) (-2259 (((-3 (-1184 $) "failed") $) 81)) (-3349 (((-3 (-870) "failed") $) 83)) (-2920 (((-3 (-1184 $) "failed") $) 82)) (-2825 (($ (-652 $)) 109) (($ $ $) 108)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 125)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 110)) (-2870 (($ (-652 $)) 107) (($ $ $) 106)) (-4218 (((-426 $) $) 121)) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 118)) (-2834 (((-3 $ "failed") $ $) 101)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 112)) (-3847 (((-779) $) 114)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 115)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 129) (($ $) 100) (($ (-415 (-572))) 93) (($ (-572)) 92) (($ (-415 (-572))) 89)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 104)) (-3548 (((-415 (-572)) $ $) 67)) (-3381 (((-652 $) (-1184 $)) 78) (((-652 $) (-1184 (-415 (-572)))) 77) (((-652 $) (-1184 (-572))) 76) (((-652 $) (-961 $)) 75) (((-652 $) (-961 (-415 (-572)))) 74) (((-652 $) (-961 (-572))) 73)) (-2700 (($ $) 140)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3039 (((-112) $ $) 133)) (-3014 (((-112) $ $) 132)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 134)) (-3003 (((-112) $ $) 131)) (-3106 (($ $ $) 130)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 126) (($ $ (-415 (-572))) 84)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ (-415 (-572)) $) 128) (($ $ (-415 (-572))) 127) (($ (-572) $) 91) (($ $ (-572)) 90) (($ (-415 (-572)) $) 88) (($ $ (-415 (-572))) 87)))
-(((-1023) (-141)) (T -1023))
-((-4227 (*1 *1 *1) (-4 *1 (-1023))) (-3349 (*1 *2 *1) (|partial| -12 (-4 *1 (-1023)) (-5 *2 (-870)))) (-2920 (*1 *2 *1) (|partial| -12 (-5 *2 (-1184 *1)) (-4 *1 (-1023)))) (-2259 (*1 *2 *1) (|partial| -12 (-5 *2 (-1184 *1)) (-4 *1 (-1023)))) (-1821 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1184 *1)) (-5 *3 (-930)) (-5 *4 (-870)) (-4 *1 (-1023)))) (-1821 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1184 *1)) (-5 *3 (-930)) (-4 *1 (-1023)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-1023)) (-5 *2 (-652 *1)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-1184 (-415 (-572)))) (-5 *2 (-652 *1)) (-4 *1 (-1023)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-1184 (-572))) (-5 *2 (-652 *1)) (-4 *1 (-1023)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-1023)) (-5 *2 (-652 *1)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *2 (-652 *1)) (-4 *1 (-1023)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-961 (-572))) (-5 *2 (-652 *1)) (-4 *1 (-1023)))) (-4227 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-930)))) (-4227 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-4 *1 (-1023)))) (-4227 (*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1023)))) (-3795 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-870)))) (-2268 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-870)))) (-3548 (*1 *2 *1 *1) (-12 (-4 *1 (-1023)) (-5 *2 (-415 (-572))))))
-(-13 (-148) (-856) (-174) (-370) (-419 (-415 (-572))) (-38 (-572)) (-38 (-415 (-572))) (-1013) (-10 -8 (-15 -3349 ((-3 (-870) "failed") $)) (-15 -2920 ((-3 (-1184 $) "failed") $)) (-15 -2259 ((-3 (-1184 $) "failed") $)) (-15 -1821 ((-3 $ "failed") (-1184 $) (-930) (-870))) (-15 -1821 ((-3 $ "failed") (-1184 $) (-930))) (-15 -3381 ((-652 $) (-1184 $))) (-15 -3381 ((-652 $) (-1184 (-415 (-572))))) (-15 -3381 ((-652 $) (-1184 (-572)))) (-15 -3381 ((-652 $) (-961 $))) (-15 -3381 ((-652 $) (-961 (-415 (-572))))) (-15 -3381 ((-652 $) (-961 (-572)))) (-15 -4227 ($ $ (-930))) (-15 -4227 ($ $)) (-15 -4227 ($ (-415 (-572)))) (-15 -4227 ($ (-572))) (-15 -3795 ($ $ (-870))) (-15 -2268 ($ $ (-870))) (-15 -3548 ((-415 (-572)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 #1=(-572)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-419 (-415 (-572))) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 #1#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 #1#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 #1#) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-856) . T) ((-858) . T) ((-929) . T) ((-1013) . T) ((-1049 (-415 (-572))) . T) ((-1049 (-572)) |has| (-415 (-572)) (-1049 (-572))) ((-1062 #0#) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 #1#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
-((-3418 (((-2 (|:| |ans| |#2|) (|:| -3901 |#2|) (|:| |sol?| (-112))) (-572) |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1024 |#1| |#2|) (-10 -7 (-15 -3418 ((-2 (|:| |ans| |#2|) (|:| -3901 |#2|) (|:| |sol?| (-112))) (-572) |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-27) (-438 |#1|))) (T -1024))
-((-3418 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1188)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-652 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2114 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1214) (-27) (-438 *8))) (-4 *8 (-13 (-460) (-148) (-1049 *3) (-647 *3))) (-5 *3 (-572)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3901 *4) (|:| |sol?| (-112)))) (-5 *1 (-1024 *8 *4)))))
-(-10 -7 (-15 -3418 ((-2 (|:| |ans| |#2|) (|:| -3901 |#2|) (|:| |sol?| (-112))) (-572) |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3268 (((-3 (-652 |#2|) "failed") (-572) |#2| |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1025 |#1| |#2|) (-10 -7 (-15 -3268 ((-3 (-652 |#2|) "failed") (-572) |#2| |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-27) (-438 |#1|))) (T -1025))
-((-3268 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1188)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-652 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2114 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1214) (-27) (-438 *8))) (-4 *8 (-13 (-460) (-148) (-1049 *3) (-647 *3))) (-5 *3 (-572)) (-5 *2 (-652 *4)) (-5 *1 (-1025 *8 *4)))))
-(-10 -7 (-15 -3268 ((-3 (-652 |#2|) "failed") (-572) |#2| |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -2114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2565 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4121 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-572)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-572) (-1 |#2| |#2|)) 38)) (-2618 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |c| (-415 |#2|)) (|:| -2141 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|)) 69)) (-4306 (((-2 (|:| |ans| (-415 |#2|)) (|:| |nosol| (-112))) (-415 |#2|) (-415 |#2|)) 74)))
-(((-1026 |#1| |#2|) (-10 -7 (-15 -2618 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |c| (-415 |#2|)) (|:| -2141 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|))) (-15 -4306 ((-2 (|:| |ans| (-415 |#2|)) (|:| |nosol| (-112))) (-415 |#2|) (-415 |#2|))) (-15 -2565 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4121 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-572)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-572) (-1 |#2| |#2|)))) (-13 (-370) (-148) (-1049 (-572))) (-1255 |#1|)) (T -1026))
-((-2565 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1255 *6)) (-4 *6 (-13 (-370) (-148) (-1049 *4))) (-5 *4 (-572)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4121 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1026 *6 *3)))) (-4306 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| |ans| (-415 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-415 *5)))) (-2618 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-415 *6)) (|:| |c| (-415 *6)) (|:| -2141 *6))) (-5 *1 (-1026 *5 *6)) (-5 *3 (-415 *6)))))
-(-10 -7 (-15 -2618 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |c| (-415 |#2|)) (|:| -2141 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|))) (-15 -4306 ((-2 (|:| |ans| (-415 |#2|)) (|:| |nosol| (-112))) (-415 |#2|) (-415 |#2|))) (-15 -2565 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4121 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-572)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-572) (-1 |#2| |#2|))))
-((-2569 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |h| |#2|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| -2141 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|)) 22)) (-3180 (((-3 (-652 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|)) 34)))
-(((-1027 |#1| |#2|) (-10 -7 (-15 -2569 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |h| |#2|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| -2141 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|))) (-15 -3180 ((-3 (-652 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|)))) (-13 (-370) (-148) (-1049 (-572))) (-1255 |#1|)) (T -1027))
-((-3180 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-415 *5))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-415 *5)))) (-2569 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-415 *6)) (|:| |h| *6) (|:| |c1| (-415 *6)) (|:| |c2| (-415 *6)) (|:| -2141 *6))) (-5 *1 (-1027 *5 *6)) (-5 *3 (-415 *6)))))
-(-10 -7 (-15 -2569 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |h| |#2|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| -2141 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|))) (-15 -3180 ((-3 (-652 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|))))
-((-1756 (((-1 |#1|) (-652 (-2 (|:| -3080 |#1|) (|:| -3298 (-572))))) 34)) (-1603 (((-1 |#1|) (-1113 |#1|)) 42)) (-4183 (((-1 |#1|) (-1279 |#1|) (-1279 (-572)) (-572)) 31)))
-(((-1028 |#1|) (-10 -7 (-15 -1603 ((-1 |#1|) (-1113 |#1|))) (-15 -1756 ((-1 |#1|) (-652 (-2 (|:| -3080 |#1|) (|:| -3298 (-572)))))) (-15 -4183 ((-1 |#1|) (-1279 |#1|) (-1279 (-572)) (-572)))) (-1111)) (T -1028))
-((-4183 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1279 *6)) (-5 *4 (-1279 (-572))) (-5 *5 (-572)) (-4 *6 (-1111)) (-5 *2 (-1 *6)) (-5 *1 (-1028 *6)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -3080 *4) (|:| -3298 (-572))))) (-4 *4 (-1111)) (-5 *2 (-1 *4)) (-5 *1 (-1028 *4)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-1111)) (-5 *2 (-1 *4)) (-5 *1 (-1028 *4)))))
-(-10 -7 (-15 -1603 ((-1 |#1|) (-1113 |#1|))) (-15 -1756 ((-1 |#1|) (-652 (-2 (|:| -3080 |#1|) (|:| -3298 (-572)))))) (-15 -4183 ((-1 |#1|) (-1279 |#1|) (-1279 (-572)) (-572))))
-((-2956 (((-779) (-343 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1029 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2956 ((-779) (-343 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|) (-13 (-375) (-370))) (T -1029))
-((-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-343 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-4 *4 (-1255 (-415 *7))) (-4 *8 (-349 *6 *7 *4)) (-4 *9 (-13 (-375) (-370))) (-5 *2 (-779)) (-5 *1 (-1029 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -2956 ((-779) (-343 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2846 (((-112) $ $) NIL)) (-4171 (((-1146) $) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-1146) $) 11)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1030) (-13 (-1094) (-10 -8 (-15 -4171 ((-1146) $)) (-15 -2042 ((-1146) $))))) (T -1030))
-((-4171 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1030)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1030)))))
-(-13 (-1094) (-10 -8 (-15 -4171 ((-1146) $)) (-15 -2042 ((-1146) $))))
-((-3420 (((-3 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) "failed") |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) 32) (((-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572))) 29)) (-3848 (((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572))) 34) (((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-415 (-572))) 30) (((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) 33) (((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1|) 28)) (-2869 (((-652 (-415 (-572))) (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) 20)) (-3786 (((-415 (-572)) (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) 17)))
-(((-1031 |#1|) (-10 -7 (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1|)) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-415 (-572)))) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572)))) (-15 -3420 ((-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572)))) (-15 -3420 ((-3 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) "failed") |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-15 -3786 ((-415 (-572)) (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-15 -2869 ((-652 (-415 (-572))) (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))))) (-1255 (-572))) (T -1031))
-((-2869 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-5 *2 (-652 (-415 (-572)))) (-5 *1 (-1031 *4)) (-4 *4 (-1255 (-572))))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) (-5 *2 (-415 (-572))) (-5 *1 (-1031 *4)) (-4 *4 (-1255 (-572))))) (-3420 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))))) (-3420 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) (-5 *4 (-415 (-572))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-415 (-572))) (-5 *2 (-652 (-2 (|:| -3888 *5) (|:| -3901 *5)))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))) (-5 *4 (-2 (|:| -3888 *5) (|:| -3901 *5))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *2 (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))) (-5 *4 (-415 (-572))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *2 (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))) (-5 *4 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))))))
-(-10 -7 (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1|)) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-415 (-572)))) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572)))) (-15 -3420 ((-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572)))) (-15 -3420 ((-3 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) "failed") |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-15 -3786 ((-415 (-572)) (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-15 -2869 ((-652 (-415 (-572))) (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))))
-((-3420 (((-3 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) "failed") |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) 35) (((-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572))) 32)) (-3848 (((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572))) 30) (((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-415 (-572))) 26) (((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) 28) (((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1|) 24)))
-(((-1032 |#1|) (-10 -7 (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1|)) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-415 (-572)))) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572)))) (-15 -3420 ((-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572)))) (-15 -3420 ((-3 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) "failed") |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))) (-1255 (-415 (-572)))) (T -1032))
-((-3420 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572)))))) (-3420 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) (-5 *4 (-415 (-572))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 *4)))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-415 (-572))) (-5 *2 (-652 (-2 (|:| -3888 *5) (|:| -3901 *5)))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 *5)) (-5 *4 (-2 (|:| -3888 *5) (|:| -3901 *5))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-415 (-572))) (-5 *2 (-652 (-2 (|:| -3888 *4) (|:| -3901 *4)))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 *4)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *2 (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572)))) (-5 *4 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572)))))))
-(-10 -7 (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1|)) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-415 (-572)))) (-15 -3848 ((-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572)))) (-15 -3420 ((-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-415 (-572)))) (-15 -3420 ((-3 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) "failed") |#1| (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))) (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))))
-((-1835 (((-227) $) 6) (((-386) $) 9)))
-(((-1033) (-141)) (T -1033))
-NIL
-(-13 (-622 (-227)) (-622 (-386)))
-(((-622 (-227)) . T) ((-622 (-386)) . T))
-((-1724 (((-652 (-386)) (-961 (-572)) (-386)) 28) (((-652 (-386)) (-961 (-415 (-572))) (-386)) 27)) (-4129 (((-652 (-652 (-386))) (-652 (-961 (-572))) (-652 (-1188)) (-386)) 37)))
-(((-1034) (-10 -7 (-15 -1724 ((-652 (-386)) (-961 (-415 (-572))) (-386))) (-15 -1724 ((-652 (-386)) (-961 (-572)) (-386))) (-15 -4129 ((-652 (-652 (-386))) (-652 (-961 (-572))) (-652 (-1188)) (-386))))) (T -1034))
-((-4129 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-652 (-1188))) (-5 *2 (-652 (-652 (-386)))) (-5 *1 (-1034)) (-5 *5 (-386)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-961 (-572))) (-5 *2 (-652 (-386))) (-5 *1 (-1034)) (-5 *4 (-386)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *2 (-652 (-386))) (-5 *1 (-1034)) (-5 *4 (-386)))))
-(-10 -7 (-15 -1724 ((-652 (-386)) (-961 (-415 (-572))) (-386))) (-15 -1724 ((-652 (-386)) (-961 (-572)) (-386))) (-15 -4129 ((-652 (-652 (-386))) (-652 (-961 (-572))) (-652 (-1188)) (-386))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 75)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4227 (($ $) NIL) (($ $ (-930)) NIL) (($ (-415 (-572))) NIL) (($ (-572)) NIL)) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) 70)) (-3281 (($) NIL T CONST)) (-1821 (((-3 $ "failed") (-1184 $) (-930) (-870)) NIL) (((-3 $ "failed") (-1184 $) (-930)) 55)) (-1695 (((-3 (-415 (-572)) "failed") $) NIL (|has| (-415 (-572)) (-1049 (-415 (-572))))) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-572) "failed") $) NIL (-2813 (|has| (-415 (-572)) (-1049 (-572))) (|has| |#1| (-1049 (-572)))))) (-2204 (((-415 (-572)) $) 17 (|has| (-415 (-572)) (-1049 (-415 (-572))))) (((-415 (-572)) $) 17) ((|#1| $) 117) (((-572) $) NIL (-2813 (|has| (-415 (-572)) (-1049 (-572))) (|has| |#1| (-1049 (-572)))))) (-3795 (($ $ (-870)) 47)) (-2268 (($ $ (-870)) 48)) (-2780 (($ $ $) NIL)) (-3142 (((-415 (-572)) $ $) 21)) (-2062 (((-3 $ "failed") $) 88)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3074 (((-112) $) 66)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL)) (-1623 (((-112) $) 69)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-2259 (((-3 (-1184 $) "failed") $) 83)) (-3349 (((-3 (-870) "failed") $) 82)) (-2920 (((-3 (-1184 $) "failed") $) 80)) (-3898 (((-3 (-1072 $ (-1184 $)) "failed") $) 78)) (-2825 (($ (-652 $)) NIL) (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 89)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ (-652 $)) NIL) (($ $ $) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2940 (((-870) $) 87) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ $) 63) (($ (-415 (-572))) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 119)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-3548 (((-415 (-572)) $ $) 27)) (-3381 (((-652 $) (-1184 $)) 61) (((-652 $) (-1184 (-415 (-572)))) NIL) (((-652 $) (-1184 (-572))) NIL) (((-652 $) (-961 $)) NIL) (((-652 $) (-961 (-415 (-572)))) NIL) (((-652 $) (-961 (-572))) NIL)) (-1465 (($ (-1072 $ (-1184 $)) (-870)) 46)) (-2700 (($ $) 22)) (-2131 (($) 32 T CONST)) (-2143 (($) 39 T CONST)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 76)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 24)) (-3106 (($ $ $) 37)) (-3089 (($ $) 38) (($ $ $) 74)) (-3075 (($ $ $) 112)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL) (($ $ (-415 (-572))) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 98) (($ $ $) 104) (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ (-572) $) 98) (($ $ (-572)) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1035 |#1|) (-13 (-1023) (-419 |#1|) (-38 |#1|) (-10 -8 (-15 -1465 ($ (-1072 $ (-1184 $)) (-870))) (-15 -3898 ((-3 (-1072 $ (-1184 $)) "failed") $)) (-15 -3142 ((-415 (-572)) $ $)))) (-13 (-856) (-370) (-1033))) (T -1035))
-((-1465 (*1 *1 *2 *3) (-12 (-5 *2 (-1072 (-1035 *4) (-1184 (-1035 *4)))) (-5 *3 (-870)) (-5 *1 (-1035 *4)) (-4 *4 (-13 (-856) (-370) (-1033))))) (-3898 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072 (-1035 *3) (-1184 (-1035 *3)))) (-5 *1 (-1035 *3)) (-4 *3 (-13 (-856) (-370) (-1033))))) (-3142 (*1 *2 *1 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1035 *3)) (-4 *3 (-13 (-856) (-370) (-1033))))))
-(-13 (-1023) (-419 |#1|) (-38 |#1|) (-10 -8 (-15 -1465 ($ (-1072 $ (-1184 $)) (-870))) (-15 -3898 ((-3 (-1072 $ (-1184 $)) "failed") $)) (-15 -3142 ((-415 (-572)) $ $))))
-((-2271 (((-2 (|:| -4121 |#2|) (|:| -4294 (-652 |#1|))) |#2| (-652 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1036 |#1| |#2|) (-10 -7 (-15 -2271 (|#2| |#2| |#1|)) (-15 -2271 ((-2 (|:| -4121 |#2|) (|:| -4294 (-652 |#1|))) |#2| (-652 |#1|)))) (-370) (-664 |#1|)) (T -1036))
-((-2271 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-5 *2 (-2 (|:| -4121 *3) (|:| -4294 (-652 *5)))) (-5 *1 (-1036 *5 *3)) (-5 *4 (-652 *5)) (-4 *3 (-664 *5)))) (-2271 (*1 *2 *2 *3) (-12 (-4 *3 (-370)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-664 *3)))))
-(-10 -7 (-15 -2271 (|#2| |#2| |#1|)) (-15 -2271 ((-2 (|:| -4121 |#2|) (|:| -4294 (-652 |#1|))) |#2| (-652 |#1|))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3501 ((|#1| $ |#1|) 14)) (-3140 ((|#1| $ |#1|) 12)) (-1815 (($ |#1|) 10)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2196 ((|#1| $) 11)) (-2776 ((|#1| $) 13)) (-2940 (((-870) $) 21 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2978 (((-112) $ $) 9)))
-(((-1037 |#1|) (-13 (-1229) (-10 -8 (-15 -1815 ($ |#1|)) (-15 -2196 (|#1| $)) (-15 -3140 (|#1| $ |#1|)) (-15 -2776 (|#1| $)) (-15 -3501 (|#1| $ |#1|)) (-15 -2978 ((-112) $ $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|))) (-1229)) (T -1037))
-((-1815 (*1 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-2196 (*1 *2 *1) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-3140 (*1 *2 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-2776 (*1 *2 *1) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-3501 (*1 *2 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-2978 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1037 *3)) (-4 *3 (-1229)))))
-(-13 (-1229) (-10 -8 (-15 -1815 ($ |#1|)) (-15 -2196 (|#1| $)) (-15 -3140 (|#1| $ |#1|)) (-15 -2776 (|#1| $)) (-15 -3501 (|#1| $ |#1|)) (-15 -2978 ((-112) $ $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |#4|)))) (-652 |#4|)) NIL)) (-1740 (((-652 $) (-652 |#4|)) 118) (((-652 $) (-652 |#4|) (-112)) 119) (((-652 $) (-652 |#4|) (-112) (-112)) 117) (((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4353 (((-652 |#3|) $) NIL)) (-1544 (((-112) $) NIL)) (-2639 (((-112) $) NIL (|has| |#1| (-564)))) (-2621 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3558 ((|#4| |#4| $) NIL)) (-3517 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 112)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2162 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 66)) (-3281 (($) NIL T CONST)) (-2390 (((-112) $) 29 (|has| |#1| (-564)))) (-2783 (((-112) $ $) NIL (|has| |#1| (-564)))) (-3937 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1616 (((-112) $) NIL (|has| |#1| (-564)))) (-3713 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1566 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) NIL)) (-2204 (($ (-652 |#4|)) NIL)) (-2923 (((-3 $ "failed") $) 45)) (-2020 ((|#4| |#4| $) 69)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3332 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-564)))) (-2888 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1758 ((|#4| |#4| $) NIL)) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3433 (((-2 (|:| -1379 (-652 |#4|)) (|:| -1674 (-652 |#4|))) $) NIL)) (-1939 (((-112) |#4| $) NIL)) (-4131 (((-112) |#4| $) NIL)) (-1554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2344 (((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112)) 133)) (-1863 (((-652 |#4|) $) 18 (|has| $ (-6 -4454)))) (-4338 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2366 ((|#3| $) 38)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#4|) $) 19 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-2442 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 23)) (-3015 (((-652 |#3|) $) NIL)) (-1683 (((-112) |#3| $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-4431 (((-3 |#4| (-652 $)) |#4| |#4| $) NIL)) (-3487 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 110)) (-3357 (((-3 |#4| "failed") $) 42)) (-3326 (((-652 $) |#4| $) 93)) (-4399 (((-3 (-112) (-652 $)) |#4| $) NIL)) (-1892 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1346 (((-652 $) |#4| $) 115) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) 116) (((-652 $) |#4| (-652 $)) NIL)) (-3992 (((-652 $) (-652 |#4|) (-112) (-112) (-112)) 128)) (-3761 (($ |#4| $) 82) (($ (-652 |#4|) $) 83) (((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2234 (((-652 |#4|) $) NIL)) (-3005 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2755 ((|#4| |#4| $) NIL)) (-2323 (((-112) $ $) NIL)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-3536 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1825 ((|#4| |#4| $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 (((-3 |#4| "failed") $) 40)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3632 (((-3 $ "failed") $ |#4|) 59)) (-2772 (($ $ |#4|) NIL) (((-652 $) |#4| $) 95) (((-652 $) |#4| (-652 $)) NIL) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) 89)) (-1612 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 17)) (-1613 (($) 14)) (-4390 (((-779) $) NIL)) (-3973 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) 13)) (-1835 (((-544) $) NIL (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) 22)) (-2748 (($ $ |#3|) 52)) (-2365 (($ $ |#3|) 54)) (-3862 (($ $) NIL)) (-1670 (($ $ |#3|) NIL)) (-2940 (((-870) $) 35) (((-652 |#4|) $) 46)) (-3678 (((-779) $) NIL (|has| |#3| (-375)))) (-4379 (((-112) $ $) NIL)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3447 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) NIL)) (-3007 (((-652 $) |#4| $) 92) (((-652 $) |#4| (-652 $)) NIL) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) NIL)) (-4380 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-4041 (((-652 |#3|) $) NIL)) (-4377 (((-112) |#4| $) NIL)) (-1482 (((-112) |#3| $) 65)) (-2978 (((-112) $ $) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1038 |#1| |#2| |#3| |#4|) (-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3761 ((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1740 ((-652 $) (-652 |#4|) (-112) (-112))) (-15 -1740 ((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112))) (-15 -3992 ((-652 $) (-652 |#4|) (-112) (-112) (-112))) (-15 -2344 ((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112))))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -1038))
-((-3761 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1038 *5 *6 *7 *3))) (-5 *1 (-1038 *5 *6 *7 *3)) (-4 *3 (-1076 *5 *6 *7)))) (-1740 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8)))) (-1740 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8)))) (-3992 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8)))) (-2344 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-652 *8)) (|:| |towers| (-652 (-1038 *5 *6 *7 *8))))) (-5 *1 (-1038 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
-(-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3761 ((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1740 ((-652 $) (-652 |#4|) (-112) (-112))) (-15 -1740 ((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112))) (-15 -3992 ((-652 $) (-652 |#4|) (-112) (-112) (-112))) (-15 -2344 ((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112)))))
-((-2245 (((-652 (-697 |#1|)) (-652 (-697 |#1|))) 70) (((-697 |#1|) (-697 |#1|)) 69) (((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-652 (-697 |#1|))) 68) (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 65)) (-2257 (((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930)) 63) (((-697 |#1|) (-697 |#1|) (-930)) 62)) (-4313 (((-652 (-697 (-572))) (-652 (-652 (-572)))) 81) (((-652 (-697 (-572))) (-652 (-914 (-572))) (-572)) 80) (((-697 (-572)) (-652 (-572))) 77) (((-697 (-572)) (-914 (-572)) (-572)) 75)) (-3763 (((-697 (-961 |#1|)) (-779)) 95)) (-2178 (((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930)) 49 (|has| |#1| (-6 (-4456 "*")))) (((-697 |#1|) (-697 |#1|) (-930)) 47 (|has| |#1| (-6 (-4456 "*"))))))
-(((-1039 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4456 "*"))) (-15 -2178 ((-697 |#1|) (-697 |#1|) (-930))) |%noBranch|) (IF (|has| |#1| (-6 (-4456 "*"))) (-15 -2178 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930))) |%noBranch|) (-15 -3763 ((-697 (-961 |#1|)) (-779))) (-15 -2257 ((-697 |#1|) (-697 |#1|) (-930))) (-15 -2257 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930))) (-15 -2245 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -2245 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -2245 ((-697 |#1|) (-697 |#1|))) (-15 -2245 ((-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -4313 ((-697 (-572)) (-914 (-572)) (-572))) (-15 -4313 ((-697 (-572)) (-652 (-572)))) (-15 -4313 ((-652 (-697 (-572))) (-652 (-914 (-572))) (-572))) (-15 -4313 ((-652 (-697 (-572))) (-652 (-652 (-572)))))) (-1060)) (T -1039))
-((-4313 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-572)))) (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-1039 *4)) (-4 *4 (-1060)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-914 (-572)))) (-5 *4 (-572)) (-5 *2 (-652 (-697 *4))) (-5 *1 (-1039 *5)) (-4 *5 (-1060)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1039 *4)) (-4 *4 (-1060)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-914 (-572))) (-5 *4 (-572)) (-5 *2 (-697 *4)) (-5 *1 (-1039 *5)) (-4 *5 (-1060)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-652 (-697 *3))) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))) (-2245 (*1 *2 *2 *2) (-12 (-5 *2 (-652 (-697 *3))) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))) (-2245 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))) (-2257 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-697 *4))) (-5 *3 (-930)) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))) (-2257 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *4)) (-5 *3 (-930)) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-697 (-961 *4))) (-5 *1 (-1039 *4)) (-4 *4 (-1060)))) (-2178 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-697 *4))) (-5 *3 (-930)) (|has| *4 (-6 (-4456 "*"))) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))) (-2178 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *4)) (-5 *3 (-930)) (|has| *4 (-6 (-4456 "*"))) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4456 "*"))) (-15 -2178 ((-697 |#1|) (-697 |#1|) (-930))) |%noBranch|) (IF (|has| |#1| (-6 (-4456 "*"))) (-15 -2178 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930))) |%noBranch|) (-15 -3763 ((-697 (-961 |#1|)) (-779))) (-15 -2257 ((-697 |#1|) (-697 |#1|) (-930))) (-15 -2257 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930))) (-15 -2245 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -2245 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -2245 ((-697 |#1|) (-697 |#1|))) (-15 -2245 ((-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -4313 ((-697 (-572)) (-914 (-572)) (-572))) (-15 -4313 ((-697 (-572)) (-652 (-572)))) (-15 -4313 ((-652 (-697 (-572))) (-652 (-914 (-572))) (-572))) (-15 -4313 ((-652 (-697 (-572))) (-652 (-652 (-572))))))
-((-2342 (((-697 |#1|) (-652 (-697 |#1|)) (-1279 |#1|)) 70 (|has| |#1| (-313)))) (-3861 (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 (-1279 |#1|))) 110 (|has| |#1| (-370))) (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 |#1|)) 117 (|has| |#1| (-370)))) (-3552 (((-1279 |#1|) (-652 (-1279 |#1|)) (-572)) 135 (-12 (|has| |#1| (-370)) (|has| |#1| (-375))))) (-1972 (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-930)) 123 (-12 (|has| |#1| (-370)) (|has| |#1| (-375)))) (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112)) 122 (-12 (|has| |#1| (-370)) (|has| |#1| (-375)))) (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|))) 121 (-12 (|has| |#1| (-370)) (|has| |#1| (-375)))) (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112) (-572) (-572)) 120 (-12 (|has| |#1| (-370)) (|has| |#1| (-375))))) (-2190 (((-112) (-652 (-697 |#1|))) 103 (|has| |#1| (-370))) (((-112) (-652 (-697 |#1|)) (-572)) 106 (|has| |#1| (-370)))) (-2536 (((-1279 (-1279 |#1|)) (-652 (-697 |#1|)) (-1279 |#1|)) 67 (|has| |#1| (-313)))) (-2470 (((-697 |#1|) (-652 (-697 |#1|)) (-697 |#1|)) 47)) (-3936 (((-697 |#1|) (-1279 (-1279 |#1|))) 40)) (-1389 (((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-572)) 94 (|has| |#1| (-370))) (((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|))) 93 (|has| |#1| (-370))) (((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-112) (-572)) 101 (|has| |#1| (-370)))))
-(((-1040 |#1|) (-10 -7 (-15 -3936 ((-697 |#1|) (-1279 (-1279 |#1|)))) (-15 -2470 ((-697 |#1|) (-652 (-697 |#1|)) (-697 |#1|))) (IF (|has| |#1| (-313)) (PROGN (-15 -2536 ((-1279 (-1279 |#1|)) (-652 (-697 |#1|)) (-1279 |#1|))) (-15 -2342 ((-697 |#1|) (-652 (-697 |#1|)) (-1279 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -1389 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-112) (-572))) (-15 -1389 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -1389 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-572))) (-15 -2190 ((-112) (-652 (-697 |#1|)) (-572))) (-15 -2190 ((-112) (-652 (-697 |#1|)))) (-15 -3861 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 |#1|))) (-15 -3861 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 (-1279 |#1|))))) |%noBranch|) (IF (|has| |#1| (-375)) (IF (|has| |#1| (-370)) (PROGN (-15 -1972 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112) (-572) (-572))) (-15 -1972 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)))) (-15 -1972 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112))) (-15 -1972 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-930))) (-15 -3552 ((-1279 |#1|) (-652 (-1279 |#1|)) (-572)))) |%noBranch|) |%noBranch|)) (-1060)) (T -1040))
-((-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1279 *5))) (-5 *4 (-572)) (-5 *2 (-1279 *5)) (-5 *1 (-1040 *5)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060)))) (-1972 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060)) (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-652 (-697 *5))))) (-1972 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060)) (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-652 (-697 *5))))) (-1972 (*1 *2 *3) (-12 (-4 *4 (-370)) (-4 *4 (-375)) (-4 *4 (-1060)) (-5 *2 (-652 (-652 (-697 *4)))) (-5 *1 (-1040 *4)) (-5 *3 (-652 (-697 *4))))) (-1972 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-572)) (-4 *6 (-370)) (-4 *6 (-375)) (-4 *6 (-1060)) (-5 *2 (-652 (-652 (-697 *6)))) (-5 *1 (-1040 *6)) (-5 *3 (-652 (-697 *6))))) (-3861 (*1 *2 *3 *4) (-12 (-5 *4 (-1279 (-1279 *5))) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-652 (-697 *5))))) (-3861 (*1 *2 *3 *4) (-12 (-5 *4 (-1279 *5)) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-652 (-697 *5))))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-652 (-697 *4))) (-4 *4 (-370)) (-4 *4 (-1060)) (-5 *2 (-112)) (-5 *1 (-1040 *4)))) (-2190 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-572)) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-112)) (-5 *1 (-1040 *5)))) (-1389 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-572)) (-5 *2 (-697 *5)) (-5 *1 (-1040 *5)) (-4 *5 (-370)) (-4 *5 (-1060)))) (-1389 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-697 *4))) (-5 *2 (-697 *4)) (-5 *1 (-1040 *4)) (-4 *4 (-370)) (-4 *4 (-1060)))) (-1389 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-652 (-697 *6))) (-5 *4 (-112)) (-5 *5 (-572)) (-5 *2 (-697 *6)) (-5 *1 (-1040 *6)) (-4 *6 (-370)) (-4 *6 (-1060)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-1279 *5)) (-4 *5 (-313)) (-4 *5 (-1060)) (-5 *2 (-697 *5)) (-5 *1 (-1040 *5)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-697 *5))) (-4 *5 (-313)) (-4 *5 (-1060)) (-5 *2 (-1279 (-1279 *5))) (-5 *1 (-1040 *5)) (-5 *4 (-1279 *5)))) (-2470 (*1 *2 *3 *2) (-12 (-5 *3 (-652 (-697 *4))) (-5 *2 (-697 *4)) (-4 *4 (-1060)) (-5 *1 (-1040 *4)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-1279 (-1279 *4))) (-4 *4 (-1060)) (-5 *2 (-697 *4)) (-5 *1 (-1040 *4)))))
-(-10 -7 (-15 -3936 ((-697 |#1|) (-1279 (-1279 |#1|)))) (-15 -2470 ((-697 |#1|) (-652 (-697 |#1|)) (-697 |#1|))) (IF (|has| |#1| (-313)) (PROGN (-15 -2536 ((-1279 (-1279 |#1|)) (-652 (-697 |#1|)) (-1279 |#1|))) (-15 -2342 ((-697 |#1|) (-652 (-697 |#1|)) (-1279 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -1389 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-112) (-572))) (-15 -1389 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -1389 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-572))) (-15 -2190 ((-112) (-652 (-697 |#1|)) (-572))) (-15 -2190 ((-112) (-652 (-697 |#1|)))) (-15 -3861 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 |#1|))) (-15 -3861 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 (-1279 |#1|))))) |%noBranch|) (IF (|has| |#1| (-375)) (IF (|has| |#1| (-370)) (PROGN (-15 -1972 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112) (-572) (-572))) (-15 -1972 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)))) (-15 -1972 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112))) (-15 -1972 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-930))) (-15 -3552 ((-1279 |#1|) (-652 (-1279 |#1|)) (-572)))) |%noBranch|) |%noBranch|))
-((-1699 ((|#1| (-930) |#1|) 18)))
-(((-1041 |#1|) (-10 -7 (-15 -1699 (|#1| (-930) |#1|))) (-13 (-1111) (-10 -8 (-15 -3075 ($ $ $))))) (T -1041))
-((-1699 (*1 *2 *3 *2) (-12 (-5 *3 (-930)) (-5 *1 (-1041 *2)) (-4 *2 (-13 (-1111) (-10 -8 (-15 -3075 ($ $ $))))))))
-(-10 -7 (-15 -1699 (|#1| (-930) |#1|)))
-((-4093 (((-652 (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572)) (|:| |radvect| (-652 (-697 (-322 (-572))))))) (-697 (-415 (-961 (-572))))) 67)) (-2416 (((-652 (-697 (-322 (-572)))) (-322 (-572)) (-697 (-415 (-961 (-572))))) 52)) (-1999 (((-652 (-322 (-572))) (-697 (-415 (-961 (-572))))) 45)) (-1436 (((-652 (-697 (-322 (-572)))) (-697 (-415 (-961 (-572))))) 85)) (-1856 (((-697 (-322 (-572))) (-697 (-322 (-572)))) 38)) (-3091 (((-652 (-697 (-322 (-572)))) (-652 (-697 (-322 (-572))))) 74)) (-4417 (((-3 (-697 (-322 (-572))) "failed") (-697 (-415 (-961 (-572))))) 82)))
-(((-1042) (-10 -7 (-15 -4093 ((-652 (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572)) (|:| |radvect| (-652 (-697 (-322 (-572))))))) (-697 (-415 (-961 (-572)))))) (-15 -2416 ((-652 (-697 (-322 (-572)))) (-322 (-572)) (-697 (-415 (-961 (-572)))))) (-15 -1999 ((-652 (-322 (-572))) (-697 (-415 (-961 (-572)))))) (-15 -4417 ((-3 (-697 (-322 (-572))) "failed") (-697 (-415 (-961 (-572)))))) (-15 -1856 ((-697 (-322 (-572))) (-697 (-322 (-572))))) (-15 -3091 ((-652 (-697 (-322 (-572)))) (-652 (-697 (-322 (-572)))))) (-15 -1436 ((-652 (-697 (-322 (-572)))) (-697 (-415 (-961 (-572)))))))) (T -1042))
-((-1436 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)))) (-3091 (*1 *2 *2) (-12 (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-697 (-322 (-572)))) (-5 *1 (-1042)))) (-4417 (*1 *2 *3) (|partial| -12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-697 (-322 (-572)))) (-5 *1 (-1042)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-322 (-572)))) (-5 *1 (-1042)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)) (-5 *3 (-322 (-572))))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572)) (|:| |radvect| (-652 (-697 (-322 (-572)))))))) (-5 *1 (-1042)))))
-(-10 -7 (-15 -4093 ((-652 (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572)) (|:| |radvect| (-652 (-697 (-322 (-572))))))) (-697 (-415 (-961 (-572)))))) (-15 -2416 ((-652 (-697 (-322 (-572)))) (-322 (-572)) (-697 (-415 (-961 (-572)))))) (-15 -1999 ((-652 (-322 (-572))) (-697 (-415 (-961 (-572)))))) (-15 -4417 ((-3 (-697 (-322 (-572))) "failed") (-697 (-415 (-961 (-572)))))) (-15 -1856 ((-697 (-322 (-572))) (-697 (-322 (-572))))) (-15 -3091 ((-652 (-697 (-322 (-572)))) (-652 (-697 (-322 (-572)))))) (-15 -1436 ((-652 (-697 (-322 (-572)))) (-697 (-415 (-961 (-572)))))))
-((-2726 ((|#1| |#1| (-930)) 18)))
-(((-1043 |#1|) (-10 -7 (-15 -2726 (|#1| |#1| (-930)))) (-13 (-1111) (-10 -8 (-15 * ($ $ $))))) (T -1043))
-((-2726 (*1 *2 *2 *3) (-12 (-5 *3 (-930)) (-5 *1 (-1043 *2)) (-4 *2 (-13 (-1111) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -2726 (|#1| |#1| (-930))))
-((-2940 ((|#1| (-318)) 11) (((-1284) |#1|) 9)))
-(((-1044 |#1|) (-10 -7 (-15 -2940 ((-1284) |#1|)) (-15 -2940 (|#1| (-318)))) (-1229)) (T -1044))
-((-2940 (*1 *2 *3) (-12 (-5 *3 (-318)) (-5 *1 (-1044 *2)) (-4 *2 (-1229)))) (-2940 (*1 *2 *3) (-12 (-5 *2 (-1284)) (-5 *1 (-1044 *3)) (-4 *3 (-1229)))))
-(-10 -7 (-15 -2940 ((-1284) |#1|)) (-15 -2940 (|#1| (-318))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2865 (($ |#4|) 25)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-2851 ((|#4| $) 27)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 46) (($ (-572)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4249 (((-779)) 43 T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 21 T CONST)) (-2143 (($) 23 T CONST)) (-2978 (((-112) $ $) 40)) (-3089 (($ $) 31) (($ $ $) NIL)) (-3075 (($ $ $) 29)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1045 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2865 ($ |#4|)) (-15 -2940 ($ |#4|)) (-15 -2851 (|#4| $)))) (-370) (-801) (-858) (-958 |#1| |#2| |#3|) (-652 |#4|)) (T -1045))
-((-2865 (*1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *2 (-958 *3 *4 *5)) (-14 *6 (-652 *2)))) (-2940 (*1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *2 (-958 *3 *4 *5)) (-14 *6 (-652 *2)))) (-2851 (*1 *2 *1) (-12 (-4 *2 (-958 *3 *4 *5)) (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-14 *6 (-652 *2)))))
-(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2865 ($ |#4|)) (-15 -2940 ($ |#4|)) (-15 -2851 (|#4| $))))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL)) (-3176 (((-1284) $ (-1188) (-1188)) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-1354 (((-112) (-112)) 43)) (-2955 (((-112) (-112)) 42)) (-3140 (((-52) $ (-1188) (-52)) NIL)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 (-52) "failed") (-1188) $) NIL)) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-3554 (($ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-3 (-52) "failed") (-1188) $) NIL)) (-3332 (($ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2453 (((-52) $ (-1188) (-52)) NIL (|has| $ (-6 -4455)))) (-2380 (((-52) $ (-1188)) NIL)) (-1863 (((-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-1188) $) NIL (|has| (-1188) (-858)))) (-1344 (((-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-3374 (((-1188) $) NIL (|has| (-1188) (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-1761 (((-652 (-1188)) $) 37)) (-4198 (((-112) (-1188) $) NIL)) (-1651 (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL)) (-2036 (($ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL)) (-1986 (((-652 (-1188)) $) NIL)) (-1370 (((-112) (-1188) $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-2912 (((-52) $) NIL (|has| (-1188) (-858)))) (-3770 (((-3 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) "failed") (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL)) (-2476 (($ $ (-52)) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))))) NIL (-12 (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ $ (-300 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ $ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) NIL (-12 (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ $ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ $ (-652 (-52)) (-652 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-300 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-652 (-300 (-52)))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-4110 (((-652 (-52)) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 (((-52) $ (-1188)) 39) (((-52) $ (-1188) (-52)) NIL)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (((-779) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111)))) (((-779) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL)) (-2940 (((-870) $) 41 (-2813 (|has| (-52) (-621 (-870))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-621 (-870)))))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1046) (-13 (-1205 (-1188) (-52)) (-10 -7 (-15 -1354 ((-112) (-112))) (-15 -2955 ((-112) (-112))) (-6 -4454)))) (T -1046))
-((-1354 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1046)))) (-2955 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1046)))))
-(-13 (-1205 (-1188) (-52)) (-10 -7 (-15 -1354 ((-112) (-112))) (-15 -2955 ((-112) (-112))) (-6 -4454)))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4014 (((-1146) $) 9)) (-2940 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1047) (-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $))))) (T -1047))
-((-4014 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1047)))))
-(-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $))))
-((-2204 ((|#2| $) 10)))
-(((-1048 |#1| |#2|) (-10 -8 (-15 -2204 (|#2| |#1|))) (-1049 |#2|) (-1229)) (T -1048))
-NIL
-(-10 -8 (-15 -2204 (|#2| |#1|)))
-((-1695 (((-3 |#1| "failed") $) 9)) (-2204 ((|#1| $) 8)) (-2940 (($ |#1|) 6)))
-(((-1049 |#1|) (-141) (-1229)) (T -1049))
-((-1695 (*1 *2 *1) (|partial| -12 (-4 *1 (-1049 *2)) (-4 *2 (-1229)))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1229)))))
-(-13 (-624 |t#1|) (-10 -8 (-15 -1695 ((-3 |t#1| "failed") $)) (-15 -2204 (|t#1| $))))
-(((-624 |#1|) . T))
-((-3337 (((-652 (-652 (-300 (-415 (-961 |#2|))))) (-652 (-961 |#2|)) (-652 (-1188))) 38)))
-(((-1050 |#1| |#2|) (-10 -7 (-15 -3337 ((-652 (-652 (-300 (-415 (-961 |#2|))))) (-652 (-961 |#2|)) (-652 (-1188))))) (-564) (-13 (-564) (-1049 |#1|))) (T -1050))
-((-3337 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-4 *6 (-13 (-564) (-1049 *5))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *6)))))) (-5 *1 (-1050 *5 *6)))))
-(-10 -7 (-15 -3337 ((-652 (-652 (-300 (-415 (-961 |#2|))))) (-652 (-961 |#2|)) (-652 (-1188)))))
-((-1471 (((-386)) 17)) (-1603 (((-1 (-386)) (-386) (-386)) 22)) (-2141 (((-1 (-386)) (-779)) 48)) (-2347 (((-386)) 37)) (-1358 (((-1 (-386)) (-386) (-386)) 38)) (-3810 (((-386)) 29)) (-2076 (((-1 (-386)) (-386)) 30)) (-1866 (((-386) (-779)) 43)) (-3066 (((-1 (-386)) (-779)) 44)) (-1384 (((-1 (-386)) (-779) (-779)) 47)) (-3919 (((-1 (-386)) (-779) (-779)) 45)))
-(((-1051) (-10 -7 (-15 -1471 ((-386))) (-15 -2347 ((-386))) (-15 -3810 ((-386))) (-15 -1866 ((-386) (-779))) (-15 -1603 ((-1 (-386)) (-386) (-386))) (-15 -1358 ((-1 (-386)) (-386) (-386))) (-15 -2076 ((-1 (-386)) (-386))) (-15 -3066 ((-1 (-386)) (-779))) (-15 -3919 ((-1 (-386)) (-779) (-779))) (-15 -1384 ((-1 (-386)) (-779) (-779))) (-15 -2141 ((-1 (-386)) (-779))))) (T -1051))
-((-2141 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))) (-1384 (*1 *2 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))) (-3919 (*1 *2 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))) (-2076 (*1 *2 *3) (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))) (-1358 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))) (-1603 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-386)) (-5 *1 (-1051)))) (-3810 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))) (-2347 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))) (-1471 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))))
-(-10 -7 (-15 -1471 ((-386))) (-15 -2347 ((-386))) (-15 -3810 ((-386))) (-15 -1866 ((-386) (-779))) (-15 -1603 ((-1 (-386)) (-386) (-386))) (-15 -1358 ((-1 (-386)) (-386) (-386))) (-15 -2076 ((-1 (-386)) (-386))) (-15 -3066 ((-1 (-386)) (-779))) (-15 -3919 ((-1 (-386)) (-779) (-779))) (-15 -1384 ((-1 (-386)) (-779) (-779))) (-15 -2141 ((-1 (-386)) (-779))))
-((-4218 (((-426 |#1|) |#1|) 33)))
-(((-1052 |#1|) (-10 -7 (-15 -4218 ((-426 |#1|) |#1|))) (-1255 (-415 (-961 (-572))))) (T -1052))
-((-4218 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1052 *3)) (-4 *3 (-1255 (-415 (-961 (-572))))))))
-(-10 -7 (-15 -4218 ((-426 |#1|) |#1|)))
-((-3340 (((-415 (-426 (-961 |#1|))) (-415 (-961 |#1|))) 14)))
-(((-1053 |#1|) (-10 -7 (-15 -3340 ((-415 (-426 (-961 |#1|))) (-415 (-961 |#1|))))) (-313)) (T -1053))
-((-3340 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-313)) (-5 *2 (-415 (-426 (-961 *4)))) (-5 *1 (-1053 *4)))))
-(-10 -7 (-15 -3340 ((-415 (-426 (-961 |#1|))) (-415 (-961 |#1|)))))
-((-4353 (((-652 (-1188)) (-415 (-961 |#1|))) 17)) (-4191 (((-415 (-1184 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188)) 24)) (-4343 (((-415 (-961 |#1|)) (-415 (-1184 (-415 (-961 |#1|)))) (-1188)) 26)) (-3928 (((-3 (-1188) "failed") (-415 (-961 |#1|))) 20)) (-2641 (((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-300 (-415 (-961 |#1|))))) 32) (((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|)))) 33) (((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-1188)) (-652 (-415 (-961 |#1|)))) 28) (((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|))) 29)) (-2940 (((-415 (-961 |#1|)) |#1|) 11)))
-(((-1054 |#1|) (-10 -7 (-15 -4353 ((-652 (-1188)) (-415 (-961 |#1|)))) (-15 -3928 ((-3 (-1188) "failed") (-415 (-961 |#1|)))) (-15 -4191 ((-415 (-1184 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188))) (-15 -4343 ((-415 (-961 |#1|)) (-415 (-1184 (-415 (-961 |#1|)))) (-1188))) (-15 -2641 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)))) (-15 -2641 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-1188)) (-652 (-415 (-961 |#1|))))) (-15 -2641 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -2641 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -2940 ((-415 (-961 |#1|)) |#1|))) (-564)) (T -1054))
-((-2940 (*1 *2 *3) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-564)))) (-2641 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-300 (-415 (-961 *4))))) (-5 *2 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *1 (-1054 *4)))) (-2641 (*1 *2 *2 *3) (-12 (-5 *3 (-300 (-415 (-961 *4)))) (-5 *2 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *1 (-1054 *4)))) (-2641 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-652 (-1188))) (-5 *4 (-652 (-415 (-961 *5)))) (-5 *2 (-415 (-961 *5))) (-4 *5 (-564)) (-5 *1 (-1054 *5)))) (-2641 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-415 (-961 *4))) (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-1054 *4)))) (-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-1184 (-415 (-961 *5))))) (-5 *4 (-1188)) (-5 *2 (-415 (-961 *5))) (-5 *1 (-1054 *5)) (-4 *5 (-564)))) (-4191 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-564)) (-5 *2 (-415 (-1184 (-415 (-961 *5))))) (-5 *1 (-1054 *5)) (-5 *3 (-415 (-961 *5))))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-1188)) (-5 *1 (-1054 *4)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-652 (-1188))) (-5 *1 (-1054 *4)))))
-(-10 -7 (-15 -4353 ((-652 (-1188)) (-415 (-961 |#1|)))) (-15 -3928 ((-3 (-1188) "failed") (-415 (-961 |#1|)))) (-15 -4191 ((-415 (-1184 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188))) (-15 -4343 ((-415 (-961 |#1|)) (-415 (-1184 (-415 (-961 |#1|)))) (-1188))) (-15 -2641 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)))) (-15 -2641 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-1188)) (-652 (-415 (-961 |#1|))))) (-15 -2641 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -2641 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -2940 ((-415 (-961 |#1|)) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3281 (($) 18 T CONST)) (-3748 ((|#1| $) 23)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2633 ((|#1| $) 22)) (-2396 ((|#1|) 20 T CONST)) (-2940 (((-870) $) 12)) (-3538 ((|#1| $) 21)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16)))
-(((-1055 |#1|) (-141) (-23)) (T -1055))
-((-3748 (*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))) (-2396 (*1 *2) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -3748 (|t#1| $)) (-15 -2633 (|t#1| $)) (-15 -3538 (|t#1| $)) (-15 -2396 (|t#1|) -1705)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3305 (($) 25 T CONST)) (-3281 (($) 18 T CONST)) (-3748 ((|#1| $) 23)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2633 ((|#1| $) 22)) (-2396 ((|#1|) 20 T CONST)) (-2940 (((-870) $) 12)) (-3538 ((|#1| $) 21)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16)))
-(((-1056 |#1|) (-141) (-23)) (T -1056))
-((-3305 (*1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))))
-(-13 (-1055 |t#1|) (-10 -8 (-15 -3305 ($) -1705)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-1055 |#1|) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 (-788 |#1| (-872 |#2|)))))) (-652 (-788 |#1| (-872 |#2|)))) NIL)) (-1740 (((-652 $) (-652 (-788 |#1| (-872 |#2|)))) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-112)) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-112) (-112)) NIL)) (-4353 (((-652 (-872 |#2|)) $) NIL)) (-1544 (((-112) $) NIL)) (-2639 (((-112) $) NIL (|has| |#1| (-564)))) (-2621 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-3558 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-3517 (((-652 (-2 (|:| |val| (-788 |#1| (-872 |#2|))) (|:| -4090 $))) (-788 |#1| (-872 |#2|)) $) NIL)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ (-872 |#2|)) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2162 (($ (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 (-788 |#1| (-872 |#2|)) "failed") $ (-872 |#2|)) NIL)) (-3281 (($) NIL T CONST)) (-2390 (((-112) $) NIL (|has| |#1| (-564)))) (-2783 (((-112) $ $) NIL (|has| |#1| (-564)))) (-3937 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1616 (((-112) $) NIL (|has| |#1| (-564)))) (-3713 (((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))) $ (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL)) (-1566 (((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))) $) NIL (|has| |#1| (-564)))) (-2844 (((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))) $) NIL (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 (-788 |#1| (-872 |#2|)))) NIL)) (-2204 (($ (-652 (-788 |#1| (-872 |#2|)))) NIL)) (-2923 (((-3 $ "failed") $) NIL)) (-2020 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111))))) (-3332 (($ (-788 |#1| (-872 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (($ (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-788 |#1| (-872 |#2|))) (|:| |den| |#1|)) (-788 |#1| (-872 |#2|)) $) NIL (|has| |#1| (-564)))) (-2888 (((-112) (-788 |#1| (-872 |#2|)) $ (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL)) (-1758 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-2865 (((-788 |#1| (-872 |#2|)) (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $ (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (((-788 |#1| (-872 |#2|)) (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $ (-788 |#1| (-872 |#2|))) NIL (|has| $ (-6 -4454))) (((-788 |#1| (-872 |#2|)) (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $ (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL)) (-3433 (((-2 (|:| -1379 (-652 (-788 |#1| (-872 |#2|)))) (|:| -1674 (-652 (-788 |#1| (-872 |#2|))))) $) NIL)) (-1939 (((-112) (-788 |#1| (-872 |#2|)) $) NIL)) (-4131 (((-112) (-788 |#1| (-872 |#2|)) $) NIL)) (-1554 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-1863 (((-652 (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-4338 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-2366 (((-872 |#2|) $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-788 |#1| (-872 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111))))) (-2442 (($ (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $) NIL)) (-3015 (((-652 (-872 |#2|)) $) NIL)) (-1683 (((-112) (-872 |#2|) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-4431 (((-3 (-788 |#1| (-872 |#2|)) (-652 $)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-3487 (((-652 (-2 (|:| |val| (-788 |#1| (-872 |#2|))) (|:| -4090 $))) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-3357 (((-3 (-788 |#1| (-872 |#2|)) "failed") $) NIL)) (-3326 (((-652 $) (-788 |#1| (-872 |#2|)) $) NIL)) (-4399 (((-3 (-112) (-652 $)) (-788 |#1| (-872 |#2|)) $) NIL)) (-1892 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 $))) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) (-788 |#1| (-872 |#2|)) $) NIL)) (-1346 (((-652 $) (-788 |#1| (-872 |#2|)) $) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) $) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-652 $)) NIL) (((-652 $) (-788 |#1| (-872 |#2|)) (-652 $)) NIL)) (-3761 (($ (-788 |#1| (-872 |#2|)) $) NIL) (($ (-652 (-788 |#1| (-872 |#2|))) $) NIL)) (-2234 (((-652 (-788 |#1| (-872 |#2|))) $) NIL)) (-3005 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-2755 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-2323 (((-112) $ $) NIL)) (-1433 (((-2 (|:| |num| (-788 |#1| (-872 |#2|))) (|:| |den| |#1|)) (-788 |#1| (-872 |#2|)) $) NIL (|has| |#1| (-564)))) (-3536 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-1825 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 (((-3 (-788 |#1| (-872 |#2|)) "failed") $) NIL)) (-3770 (((-3 (-788 |#1| (-872 |#2|)) "failed") (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL)) (-3632 (((-3 $ "failed") $ (-788 |#1| (-872 |#2|))) NIL)) (-2772 (($ $ (-788 |#1| (-872 |#2|))) NIL) (((-652 $) (-788 |#1| (-872 |#2|)) $) NIL) (((-652 $) (-788 |#1| (-872 |#2|)) (-652 $)) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) $) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-652 $)) NIL)) (-1612 (((-112) (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|)))) NIL (-12 (|has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (($ $ (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) NIL (-12 (|has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (($ $ (-300 (-788 |#1| (-872 |#2|)))) NIL (-12 (|has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (($ $ (-652 (-300 (-788 |#1| (-872 |#2|))))) NIL (-12 (|has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))) (|has| (-788 |#1| (-872 |#2|)) (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-4390 (((-779) $) NIL)) (-3973 (((-779) (-788 |#1| (-872 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (((-779) (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-788 |#1| (-872 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-788 |#1| (-872 |#2|)))) NIL)) (-2748 (($ $ (-872 |#2|)) NIL)) (-2365 (($ $ (-872 |#2|)) NIL)) (-3862 (($ $) NIL)) (-1670 (($ $ (-872 |#2|)) NIL)) (-2940 (((-870) $) NIL) (((-652 (-788 |#1| (-872 |#2|))) $) NIL)) (-3678 (((-779) $) NIL (|has| (-872 |#2|) (-375)))) (-4379 (((-112) $ $) NIL)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 (-788 |#1| (-872 |#2|))))) "failed") (-652 (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 (-788 |#1| (-872 |#2|))))) "failed") (-652 (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL)) (-3447 (((-112) $ (-1 (-112) (-788 |#1| (-872 |#2|)) (-652 (-788 |#1| (-872 |#2|))))) NIL)) (-3007 (((-652 $) (-788 |#1| (-872 |#2|)) $) NIL) (((-652 $) (-788 |#1| (-872 |#2|)) (-652 $)) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) $) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-652 $)) NIL)) (-4380 (((-112) (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-4041 (((-652 (-872 |#2|)) $) NIL)) (-4377 (((-112) (-788 |#1| (-872 |#2|)) $) NIL)) (-1482 (((-112) (-872 |#2|) $) NIL)) (-2978 (((-112) $ $) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1057 |#1| |#2|) (-13 (-1082 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) (-10 -8 (-15 -1740 ((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-112) (-112))))) (-460) (-652 (-1188))) (T -1057))
-((-1740 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1057 *5 *6)))))
-(-13 (-1082 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) (-10 -8 (-15 -1740 ((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-112) (-112)))))
-((-1603 (((-1 (-572)) (-1105 (-572))) 32)) (-2452 (((-572) (-572) (-572) (-572) (-572)) 29)) (-4410 (((-1 (-572)) |RationalNumber|) NIL)) (-1470 (((-1 (-572)) |RationalNumber|) NIL)) (-3148 (((-1 (-572)) (-572) |RationalNumber|) NIL)))
-(((-1058) (-10 -7 (-15 -1603 ((-1 (-572)) (-1105 (-572)))) (-15 -3148 ((-1 (-572)) (-572) |RationalNumber|)) (-15 -4410 ((-1 (-572)) |RationalNumber|)) (-15 -1470 ((-1 (-572)) |RationalNumber|)) (-15 -2452 ((-572) (-572) (-572) (-572) (-572))))) (T -1058))
-((-2452 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1058)))) (-1470 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))) (-4410 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)) (-5 *3 (-572)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-1105 (-572))) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))))
-(-10 -7 (-15 -1603 ((-1 (-572)) (-1105 (-572)))) (-15 -3148 ((-1 (-572)) (-572) |RationalNumber|)) (-15 -4410 ((-1 (-572)) |RationalNumber|)) (-15 -1470 ((-1 (-572)) |RationalNumber|)) (-15 -2452 ((-572) (-572) (-572) (-572) (-572))))
-((-2940 (((-870) $) NIL) (($ (-572)) 10)))
-(((-1059 |#1|) (-10 -8 (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|))) (-1060)) (T -1059))
-NIL
-(-10 -8 (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 33)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-1060) (-141)) (T -1060))
-((-4249 (*1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-779)))))
-(-13 (-1069) (-734) (-656 $) (-624 (-572)) (-10 -7 (-15 -4249 ((-779)) -1705) (-6 -4451)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-3946 (((-415 (-961 |#2|)) (-652 |#2|) (-652 |#2|) (-779) (-779)) 54)))
-(((-1061 |#1| |#2|) (-10 -7 (-15 -3946 ((-415 (-961 |#2|)) (-652 |#2|) (-652 |#2|) (-779) (-779)))) (-1188) (-370)) (T -1061))
-((-3946 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-779)) (-4 *6 (-370)) (-5 *2 (-415 (-961 *6))) (-5 *1 (-1061 *5 *6)) (-14 *5 (-1188)))))
-(-10 -7 (-15 -3946 ((-415 (-961 |#2|)) (-652 |#2|) (-652 |#2|) (-779) (-779))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 15)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 16 T CONST)) (-2978 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
-(((-1062 |#1|) (-141) (-1069)) (T -1062))
-((-2131 (*1 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1069)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1069)))))
-(-13 (-1111) (-10 -8 (-15 (-2131) ($) -1705) (-15 -2697 ((-112) $)) (-15 * ($ $ |t#1|))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-4136 (((-112) $) 38)) (-4210 (((-112) $) 17)) (-2187 (((-779) $) 13)) (-2195 (((-779) $) 14)) (-2464 (((-112) $) 30)) (-4384 (((-112) $) 40)))
-(((-1063 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2195 ((-779) |#1|)) (-15 -2187 ((-779) |#1|)) (-15 -4384 ((-112) |#1|)) (-15 -4136 ((-112) |#1|)) (-15 -2464 ((-112) |#1|)) (-15 -4210 ((-112) |#1|))) (-1064 |#2| |#3| |#4| |#5| |#6|) (-779) (-779) (-1060) (-242 |#3| |#4|) (-242 |#2| |#4|)) (T -1063))
-NIL
-(-10 -8 (-15 -2195 ((-779) |#1|)) (-15 -2187 ((-779) |#1|)) (-15 -4384 ((-112) |#1|)) (-15 -4136 ((-112) |#1|)) (-15 -2464 ((-112) |#1|)) (-15 -4210 ((-112) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4136 (((-112) $) 56)) (-3330 (((-3 $ "failed") $ $) 20)) (-4210 (((-112) $) 58)) (-1631 (((-112) $ (-779)) 66)) (-3281 (($) 18 T CONST)) (-3076 (($ $) 39 (|has| |#3| (-313)))) (-4172 ((|#4| $ (-572)) 44)) (-3581 (((-779) $) 38 (|has| |#3| (-564)))) (-2380 ((|#3| $ (-572) (-572)) 46)) (-1863 (((-652 |#3|) $) 73 (|has| $ (-6 -4454)))) (-4430 (((-779) $) 37 (|has| |#3| (-564)))) (-2313 (((-652 |#5|) $) 36 (|has| |#3| (-564)))) (-2187 (((-779) $) 50)) (-2195 (((-779) $) 49)) (-1861 (((-112) $ (-779)) 65)) (-3822 (((-572) $) 54)) (-3533 (((-572) $) 52)) (-1344 (((-652 |#3|) $) 74 (|has| $ (-6 -4454)))) (-1864 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1111)) (|has| $ (-6 -4454))))) (-2795 (((-572) $) 53)) (-2857 (((-572) $) 51)) (-2911 (($ (-652 (-652 |#3|))) 59)) (-2442 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-4393 (((-652 (-652 |#3|)) $) 48)) (-1985 (((-112) $ (-779)) 64)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2834 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-564)))) (-1612 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#3|) (-652 |#3|)) 80 (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-300 |#3|)) 78 (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-652 (-300 |#3|))) 77 (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))) (-3776 (((-112) $ $) 60)) (-1841 (((-112) $) 63)) (-1613 (($) 62)) (-2196 ((|#3| $ (-572) (-572)) 47) ((|#3| $ (-572) (-572) |#3|) 45)) (-2464 (((-112) $) 57)) (-3973 (((-779) |#3| $) 75 (-12 (|has| |#3| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4454)))) (-3164 (($ $) 61)) (-1752 ((|#5| $ (-572)) 43)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-4380 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4454)))) (-4384 (((-112) $) 55)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#3|) 40 (|has| |#3| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2860 (((-779) $) 67 (|has| $ (-6 -4454)))))
-(((-1064 |#1| |#2| |#3| |#4| |#5|) (-141) (-779) (-779) (-1060) (-242 |t#2| |t#3|) (-242 |t#1| |t#3|)) (T -1064))
-((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)))) (-2911 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *5))) (-4 *5 (-1060)) (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-779)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-779)))) (-4393 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-652 (-652 *5))))) (-2196 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7)) (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)) (-4 *2 (-1060)))) (-2380 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7)) (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)) (-4 *2 (-1060)))) (-2196 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7)) (-4 *2 (-1060)) (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)))) (-4172 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *6 *2 *7)) (-4 *6 (-1060)) (-4 *7 (-242 *4 *6)) (-4 *2 (-242 *5 *6)))) (-1752 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *6 *7 *2)) (-4 *6 (-1060)) (-4 *7 (-242 *5 *6)) (-4 *2 (-242 *4 *6)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)))) (-2834 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1064 *3 *4 *2 *5 *6)) (-4 *2 (-1060)) (-4 *5 (-242 *4 *2)) (-4 *6 (-242 *3 *2)) (-4 *2 (-564)))) (-3106 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2 *5 *6)) (-4 *2 (-1060)) (-4 *5 (-242 *4 *2)) (-4 *6 (-242 *3 *2)) (-4 *2 (-370)))) (-3076 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *2 *4)) (-4 *4 (-313)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564)) (-5 *2 (-779)))) (-4430 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564)) (-5 *2 (-779)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564)) (-5 *2 (-652 *7)))))
-(-13 (-111 |t#3| |t#3|) (-497 |t#3|) (-10 -8 (-6 -4454) (IF (|has| |t#3| (-174)) (-6 (-725 |t#3|)) |%noBranch|) (-15 -2911 ($ (-652 (-652 |t#3|)))) (-15 -4210 ((-112) $)) (-15 -2464 ((-112) $)) (-15 -4136 ((-112) $)) (-15 -4384 ((-112) $)) (-15 -3822 ((-572) $)) (-15 -2795 ((-572) $)) (-15 -3533 ((-572) $)) (-15 -2857 ((-572) $)) (-15 -2187 ((-779) $)) (-15 -2195 ((-779) $)) (-15 -4393 ((-652 (-652 |t#3|)) $)) (-15 -2196 (|t#3| $ (-572) (-572))) (-15 -2380 (|t#3| $ (-572) (-572))) (-15 -2196 (|t#3| $ (-572) (-572) |t#3|)) (-15 -4172 (|t#4| $ (-572))) (-15 -1752 (|t#5| $ (-572))) (-15 -1776 ($ (-1 |t#3| |t#3|) $)) (-15 -1776 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-564)) (-15 -2834 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-370)) (-15 -3106 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-313)) (-15 -3076 ($ $)) |%noBranch|) (IF (|has| |t#3| (-564)) (PROGN (-15 -3581 ((-779) $)) (-15 -4430 ((-779) $)) (-15 -2313 ((-652 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-621 (-870)) . T) ((-315 |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))) ((-497 |#3|) . T) ((-522 |#3| |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))) ((-654 (-572)) . T) ((-654 |#3|) . T) ((-656 |#3|) . T) ((-648 |#3|) |has| |#3| (-174)) ((-725 |#3|) |has| |#3| (-174)) ((-1062 |#3|) . T) ((-1067 |#3|) . T) ((-1111) . T) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4136 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-4210 (((-112) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-3281 (($) NIL T CONST)) (-3076 (($ $) 47 (|has| |#3| (-313)))) (-4172 (((-244 |#2| |#3|) $ (-572)) 36)) (-2785 (($ (-697 |#3|)) 45)) (-3581 (((-779) $) 49 (|has| |#3| (-564)))) (-2380 ((|#3| $ (-572) (-572)) NIL)) (-1863 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-4430 (((-779) $) 51 (|has| |#3| (-564)))) (-2313 (((-652 (-244 |#1| |#3|)) $) 55 (|has| |#3| (-564)))) (-2187 (((-779) $) NIL)) (-2195 (((-779) $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3822 (((-572) $) NIL)) (-3533 (((-572) $) NIL)) (-1344 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-2795 (((-572) $) NIL)) (-2857 (((-572) $) NIL)) (-2911 (($ (-652 (-652 |#3|))) 31)) (-2442 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4393 (((-652 (-652 |#3|)) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2834 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-564)))) (-1612 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#3|) (-652 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-300 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-652 (-300 |#3|))) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#3| $ (-572) (-572)) NIL) ((|#3| $ (-572) (-572) |#3|) NIL)) (-4224 (((-135)) 59 (|has| |#3| (-370)))) (-2464 (((-112) $) NIL)) (-3973 (((-779) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111)))) (((-779) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) 65 (|has| |#3| (-622 (-544))))) (-1752 (((-244 |#1| |#3|) $ (-572)) 40)) (-2940 (((-870) $) 19) (((-697 |#3|) $) 42)) (-4379 (((-112) $ $) NIL)) (-4380 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-4384 (((-112) $) NIL)) (-2131 (($) 16 T CONST)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#3|) NIL (|has| |#3| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1065 |#1| |#2| |#3|) (-13 (-1064 |#1| |#2| |#3| (-244 |#2| |#3|) (-244 |#1| |#3|)) (-621 (-697 |#3|)) (-10 -8 (IF (|has| |#3| (-370)) (-6 (-1286 |#3|)) |%noBranch|) (IF (|has| |#3| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (-15 -2785 ($ (-697 |#3|))))) (-779) (-779) (-1060)) (T -1065))
-((-2785 (*1 *1 *2) (-12 (-5 *2 (-697 *5)) (-4 *5 (-1060)) (-5 *1 (-1065 *3 *4 *5)) (-14 *3 (-779)) (-14 *4 (-779)))))
-(-13 (-1064 |#1| |#2| |#3| (-244 |#2| |#3|) (-244 |#1| |#3|)) (-621 (-697 |#3|)) (-10 -8 (IF (|has| |#3| (-370)) (-6 (-1286 |#3|)) |%noBranch|) (IF (|has| |#3| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (-15 -2785 ($ (-697 |#3|)))))
-((-2865 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1776 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1066 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1776 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2865 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-779) (-779) (-1060) (-242 |#2| |#3|) (-242 |#1| |#3|) (-1064 |#1| |#2| |#3| |#4| |#5|) (-1060) (-242 |#2| |#7|) (-242 |#1| |#7|) (-1064 |#1| |#2| |#7| |#8| |#9|)) (T -1066))
-((-2865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1060)) (-4 *2 (-1060)) (-14 *5 (-779)) (-14 *6 (-779)) (-4 *8 (-242 *6 *7)) (-4 *9 (-242 *5 *7)) (-4 *10 (-242 *6 *2)) (-4 *11 (-242 *5 *2)) (-5 *1 (-1066 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1064 *5 *6 *7 *8 *9)) (-4 *12 (-1064 *5 *6 *2 *10 *11)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1060)) (-4 *10 (-1060)) (-14 *5 (-779)) (-14 *6 (-779)) (-4 *8 (-242 *6 *7)) (-4 *9 (-242 *5 *7)) (-4 *2 (-1064 *5 *6 *10 *11 *12)) (-5 *1 (-1066 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1064 *5 *6 *7 *8 *9)) (-4 *11 (-242 *6 *10)) (-4 *12 (-242 *5 *10)))))
-(-10 -7 (-15 -1776 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2865 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ |#1|) 27)))
-(((-1067 |#1|) (-141) (-1069)) (T -1067))
-NIL
-(-13 (-21) (-1062 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-1062 |#1|) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1487 (((-1188) $) 11)) (-3239 ((|#1| $) 12)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2687 (($ (-1188) |#1|) 10)) (-2940 (((-870) $) 22 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2978 (((-112) $ $) 17 (|has| |#1| (-1111)))))
-(((-1068 |#1| |#2|) (-13 (-1229) (-10 -8 (-15 -2687 ($ (-1188) |#1|)) (-15 -1487 ((-1188) $)) (-15 -3239 (|#1| $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|))) (-1104 |#2|) (-1229)) (T -1068))
-((-2687 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-4 *4 (-1229)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1104 *4)))) (-1487 (*1 *2 *1) (-12 (-4 *4 (-1229)) (-5 *2 (-1188)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1104 *4)))) (-3239 (*1 *2 *1) (-12 (-4 *2 (-1104 *3)) (-5 *1 (-1068 *2 *3)) (-4 *3 (-1229)))))
-(-13 (-1229) (-10 -8 (-15 -2687 ($ (-1188) |#1|)) (-15 -1487 ((-1188) $)) (-15 -3239 (|#1| $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-1069) (-141)) (T -1069))
-NIL
-(-13 (-21) (-1123))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-1123) . T) ((-1111) . T))
-((-3762 (($ $) 17)) (-1530 (($ $) 25)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 55)) (-2028 (($ $) 27)) (-2340 (($ $) 12)) (-3462 (($ $) 43)) (-1835 (((-386) $) NIL) (((-227) $) NIL) (((-901 (-386)) $) 36)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 31) (($ (-572)) NIL) (($ (-415 (-572))) 31)) (-4249 (((-779)) 9)) (-3614 (($ $) 45)))
-(((-1070 |#1|) (-10 -8 (-15 -1530 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -2028 (|#1| |#1|)) (-15 -1594 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| (-572))) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-386) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| |#1|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|))) (-1071)) (T -1070))
-((-4249 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1070 *3)) (-4 *3 (-1071)))))
-(-10 -8 (-15 -1530 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -2028 (|#1| |#1|)) (-15 -1594 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| (-572))) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-386) |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| |#1|)) (-15 -4249 ((-779))) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2689 (((-572) $) 97)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3762 (($ $) 95)) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-4227 (($ $) 105)) (-4217 (((-112) $ $) 65)) (-2840 (((-572) $) 122)) (-3281 (($) 18 T CONST)) (-1530 (($ $) 94)) (-1695 (((-3 (-572) "failed") $) 110) (((-3 (-415 (-572)) "failed") $) 107)) (-2204 (((-572) $) 111) (((-415 (-572)) $) 108)) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-3879 (((-112) $) 79)) (-3074 (((-112) $) 120)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 101)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 104)) (-2028 (($ $) 100)) (-1623 (((-112) $) 121)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-3654 (($ $ $) 119)) (-2427 (($ $ $) 118)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 78)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-2340 (($ $) 96)) (-3462 (($ $) 98)) (-4218 (((-426 $) $) 82)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-1835 (((-386) $) 113) (((-227) $) 112) (((-901 (-386)) $) 102)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ (-572)) 109) (($ (-415 (-572))) 106)) (-4249 (((-779)) 32 T CONST)) (-3614 (($ $) 99)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2700 (($ $) 123)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3039 (((-112) $ $) 116)) (-3014 (((-112) $ $) 115)) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 117)) (-3003 (((-112) $ $) 114)) (-3106 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77) (($ $ (-415 (-572))) 103)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
+((-4267 (($ $ (-1105 $)) 7) (($ $ (-1190)) 6)))
+(((-970) (-141)) (T -970))
+((-4267 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-970)))) (-4267 (*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-1190)))))
+(-13 (-10 -8 (-15 -4267 ($ $ (-1190))) (-15 -4267 ($ $ (-1105 $)))))
+((-3906 (((-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)) (-1190)) 26) (((-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190))) 27) (((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1186 |#1|))) (-963 |#1|) (-1190) (-963 |#1|) (-1190)) 49)))
+(((-971 |#1|) (-10 -7 (-15 -3906 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1186 |#1|))) (-963 |#1|) (-1190) (-963 |#1|) (-1190))) (-15 -3906 ((-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3906 ((-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)) (-1190)))) (-13 (-372) (-148))) (T -971))
+((-3906 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-5 *5 (-1190)) (-4 *6 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 *6))) (|:| |prim| (-1186 *6)))) (-5 *1 (-971 *6)))) (-3906 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 *5))) (|:| |prim| (-1186 *5)))) (-5 *1 (-971 *5)))) (-3906 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-963 *5)) (-5 *4 (-1190)) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1186 *5)))) (-5 *1 (-971 *5)))))
+(-10 -7 (-15 -3906 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1186 |#1|))) (-963 |#1|) (-1190) (-963 |#1|) (-1190))) (-15 -3906 ((-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3906 ((-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)) (-1190))))
+((-2266 (((-654 |#1|) |#1| |#1|) 47)) (-1654 (((-112) |#1|) 44)) (-2027 ((|#1| |#1|) 79)) (-3079 ((|#1| |#1|) 78)))
+(((-972 |#1|) (-10 -7 (-15 -1654 ((-112) |#1|)) (-15 -3079 (|#1| |#1|)) (-15 -2027 (|#1| |#1|)) (-15 -2266 ((-654 |#1|) |#1| |#1|))) (-555)) (T -972))
+((-2266 (*1 *2 *3 *3) (-12 (-5 *2 (-654 *3)) (-5 *1 (-972 *3)) (-4 *3 (-555)))) (-2027 (*1 *2 *2) (-12 (-5 *1 (-972 *2)) (-4 *2 (-555)))) (-3079 (*1 *2 *2) (-12 (-5 *1 (-972 *2)) (-4 *2 (-555)))) (-1654 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-972 *3)) (-4 *3 (-555)))))
+(-10 -7 (-15 -1654 ((-112) |#1|)) (-15 -3079 (|#1| |#1|)) (-15 -2027 (|#1| |#1|)) (-15 -2266 ((-654 |#1|) |#1| |#1|)))
+((-1794 (((-1286) (-872)) 9)))
+(((-973) (-10 -7 (-15 -1794 ((-1286) (-872))))) (T -973))
+((-1794 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-973)))))
+(-10 -7 (-15 -1794 ((-1286) (-872))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 78 (|has| |#1| (-566)))) (-2814 (($ $) 79 (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 34)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) 31)) (-1950 (((-3 $ "failed") $) 42)) (-3872 (($ $) NIL (|has| |#1| (-462)))) (-3157 (($ $ |#1| |#2| $) 62)) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) 17)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-2382 ((|#2| $) 24)) (-1541 (($ (-1 |#2| |#2|) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-1359 (($ $) 28)) (-1370 ((|#1| $) 26)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 51)) (-1349 ((|#1| $) NIL)) (-3393 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-566))))) (-2838 (((-3 $ "failed") $ $) 91 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-566)))) (-1784 ((|#2| $) 22)) (-1607 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) 46) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 41) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ |#2|) 37)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) 15 T CONST)) (-4207 (($ $ $ (-781)) 74 (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) 84 (|has| |#1| (-566)))) (-2134 (($) 27 T CONST)) (-2146 (($) 12 T CONST)) (-2982 (((-112) $ $) 83)) (-3107 (($ $ |#1|) 92 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) 69) (($ $ (-781)) 67)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-974 |#1| |#2|) (-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -3393 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|))) (-1062) (-802)) (T -974))
+((-3393 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-974 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *2 (-802)))))
+(-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -3393 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-1854 (($ $ $) 65 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (-2950 (((-3 $ "failed") $ $) 52 (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-1487 (((-781)) 36 (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-4121 ((|#2| $) 22)) (-4238 ((|#1| $) 21)) (-3670 (($) NIL (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-1950 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-2820 (($) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3965 (((-112) $) NIL (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-3658 (($ $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2106 (($ $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2942 (($ |#1| |#2|) 20)) (-2565 (((-932) $) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 39 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2576 (($ (-932)) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3966 (((-1133) $) NIL)) (-1514 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3647 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2943 (((-872) $) 14)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 42 (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-2146 (($) 25 (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) CONST)) (-3041 (((-112) $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3016 (((-112) $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2982 (((-112) $ $) 19)) (-3028 (((-112) $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3005 (((-112) $ $) 69 (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3107 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3094 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3078 (($ $ $) 45 (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (** (($ $ (-574)) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483)))) (($ $ (-781)) 32 (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))) (($ $ (-932)) NIL (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (* (($ (-574) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-781) $) 48 (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ (-932) $) NIL (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ $ $) 28 (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))))
+(((-975 |#1| |#2|) (-13 (-1113) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -2942 ($ |#1| |#2|)) (-15 -4238 (|#1| $)) (-15 -4121 (|#2| $)))) (-1113) (-1113)) (T -975))
+((-2942 (*1 *1 *2 *3) (-12 (-5 *1 (-975 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-4238 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1113)))) (-4121 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-975 *3 *2)) (-4 *3 (-1113)))))
+(-13 (-1113) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -2942 ($ |#1| |#2|)) (-15 -4238 (|#1| $)) (-15 -4121 (|#2| $))))
+((-3083 (((-1117) $) 12)) (-1923 (($ (-516) (-1117)) 14)) (-2032 (((-516) $) 9)) (-2943 (((-872) $) 24)))
+(((-976) (-13 (-623 (-872)) (-10 -8 (-15 -2032 ((-516) $)) (-15 -3083 ((-1117) $)) (-15 -1923 ($ (-516) (-1117)))))) (T -976))
+((-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-976)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-976)))) (-1923 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1117)) (-5 *1 (-976)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2032 ((-516) $)) (-15 -3083 ((-1117) $)) (-15 -1923 ($ (-516) (-1117)))))
+((-2849 (((-112) $ $) NIL)) (-1562 (($) NIL T CONST)) (-2099 (($ $ $) 30)) (-2077 (($ $) 24)) (-2568 (((-1172) $) NIL)) (-2713 (((-701 (-883 $ $)) $) 55)) (-4211 (((-701 $) $) 45)) (-3661 (((-701 (-883 $ $)) $) 56)) (-2351 (((-701 (-883 $ $)) $) 57)) (-3470 (((-701 |#1|) $) 36)) (-4367 (((-701 (-883 $ $)) $) 54)) (-1346 (($ $ $) 31)) (-3966 (((-1133) $) NIL)) (-2885 (($) NIL T CONST)) (-2866 (($ $ $) 32)) (-2507 (($ $ $) 29)) (-2178 (($ $ $) 27)) (-2943 (((-872) $) 59) (($ |#1|) 12)) (-2923 (((-112) $ $) NIL)) (-2088 (($ $ $) 28)) (-2982 (((-112) $ $) NIL)))
+(((-977 |#1|) (-13 (-980) (-626 |#1|) (-10 -8 (-15 -3470 ((-701 |#1|) $)) (-15 -4211 ((-701 $) $)) (-15 -4367 ((-701 (-883 $ $)) $)) (-15 -2713 ((-701 (-883 $ $)) $)) (-15 -3661 ((-701 (-883 $ $)) $)) (-15 -2351 ((-701 (-883 $ $)) $)) (-15 -2178 ($ $ $)) (-15 -2507 ($ $ $)))) (-1113)) (T -977))
+((-3470 (*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-701 (-977 *3))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-4367 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-2178 (*1 *1 *1 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1113)))) (-2507 (*1 *1 *1 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1113)))))
+(-13 (-980) (-626 |#1|) (-10 -8 (-15 -3470 ((-701 |#1|) $)) (-15 -4211 ((-701 $) $)) (-15 -4367 ((-701 (-883 $ $)) $)) (-15 -2713 ((-701 (-883 $ $)) $)) (-15 -3661 ((-701 (-883 $ $)) $)) (-15 -2351 ((-701 (-883 $ $)) $)) (-15 -2178 ($ $ $)) (-15 -2507 ($ $ $))))
+((-1816 (((-977 |#1|) (-977 |#1|)) 46)) (-2463 (((-977 |#1|) (-977 |#1|)) 22)) (-2299 (((-1115 |#1|) (-977 |#1|)) 41)))
+(((-978 |#1|) (-13 (-1231) (-10 -7 (-15 -2463 ((-977 |#1|) (-977 |#1|))) (-15 -2299 ((-1115 |#1|) (-977 |#1|))) (-15 -1816 ((-977 |#1|) (-977 |#1|))))) (-1113)) (T -978))
+((-2463 (*1 *2 *2) (-12 (-5 *2 (-977 *3)) (-4 *3 (-1113)) (-5 *1 (-978 *3)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-977 *4)) (-4 *4 (-1113)) (-5 *2 (-1115 *4)) (-5 *1 (-978 *4)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-977 *3)) (-4 *3 (-1113)) (-5 *1 (-978 *3)))))
+(-13 (-1231) (-10 -7 (-15 -2463 ((-977 |#1|) (-977 |#1|))) (-15 -2299 ((-1115 |#1|) (-977 |#1|))) (-15 -1816 ((-977 |#1|) (-977 |#1|)))))
+((-1778 (((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)) 29)))
+(((-979 |#1| |#2|) (-13 (-1231) (-10 -7 (-15 -1778 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|))))) (-1113) (-1113)) (T -979))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-977 *6)) (-5 *1 (-979 *5 *6)))))
+(-13 (-1231) (-10 -7 (-15 -1778 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))))
+((-2849 (((-112) $ $) 15)) (-1562 (($) 14 T CONST)) (-2099 (($ $ $) 6)) (-2077 (($ $) 8)) (-2568 (((-1172) $) 19)) (-1346 (($ $ $) 12)) (-3966 (((-1133) $) 18)) (-2885 (($) 13 T CONST)) (-2866 (($ $ $) 11)) (-2943 (((-872) $) 17)) (-2923 (((-112) $ $) 20)) (-2088 (($ $ $) 7)) (-2982 (((-112) $ $) 16)))
+(((-980) (-141)) (T -980))
+((-1562 (*1 *1) (-4 *1 (-980))) (-2885 (*1 *1) (-4 *1 (-980))) (-1346 (*1 *1 *1 *1) (-4 *1 (-980))) (-2866 (*1 *1 *1 *1) (-4 *1 (-980))))
+(-13 (-113) (-1113) (-10 -8 (-15 -1562 ($) -1707) (-15 -2885 ($) -1707) (-15 -1346 ($ $ $)) (-15 -2866 ($ $ $))))
+(((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-1113) . T) ((-1231) . T))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-3670 (($) 7 T CONST)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-3722 (($ $ $) 44)) (-2130 (($ $ $) 45)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2106 ((|#1| $) 46)) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 43)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-981 |#1|) (-141) (-860)) (T -981))
+((-2106 (*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860)))) (-2130 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860)))) (-3722 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4456) (-15 -2106 (|t#1| $)) (-15 -2130 ($ $ $)) (-15 -3722 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-3645 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2874 |#2|)) |#2| |#2|) 105)) (-1744 ((|#2| |#2| |#2|) 103)) (-1761 (((-2 (|:| |coef2| |#2|) (|:| -2874 |#2|)) |#2| |#2|) 107)) (-4350 (((-2 (|:| |coef1| |#2|) (|:| -2874 |#2|)) |#2| |#2|) 109)) (-3501 (((-2 (|:| |coef2| |#2|) (|:| -3709 |#1|)) |#2| |#2|) 131 (|has| |#1| (-462)))) (-2118 (((-2 (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|) 56)) (-2137 (((-2 (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|) 80)) (-1996 (((-2 (|:| |coef1| |#2|) (|:| -2800 |#1|)) |#2| |#2|) 82)) (-3951 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2320 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 89)) (-2742 (((-2 (|:| |coef2| |#2|) (|:| -1415 |#1|)) |#2|) 121)) (-3926 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 92)) (-2554 (((-654 (-781)) |#2| |#2|) 102)) (-2577 ((|#1| |#2| |#2|) 50)) (-2611 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3709 |#1|)) |#2| |#2|) 129 (|has| |#1| (-462)))) (-3709 ((|#1| |#2| |#2|) 127 (|has| |#1| (-462)))) (-3145 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|) 54)) (-3485 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|) 79)) (-2800 ((|#1| |#2| |#2|) 76)) (-3015 (((-2 (|:| -1859 |#1|) (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2|) 41)) (-2534 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1664 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2107 ((|#2| |#2| |#2|) 93)) (-2133 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 87)) (-2998 ((|#2| |#2| |#2| (-781)) 85)) (-2874 ((|#2| |#2| |#2|) 135 (|has| |#1| (-462)))) (-2838 (((-1281 |#2|) (-1281 |#2|) |#1|) 22)) (-2413 (((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2|) 46)) (-3292 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1415 |#1|)) |#2|) 119)) (-1415 ((|#1| |#2|) 116)) (-4351 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 91)) (-3995 ((|#2| |#2| |#2| (-781)) 90)) (-3356 (((-654 |#2|) |#2| |#2|) 99)) (-2704 ((|#2| |#2| |#1| |#1| (-781)) 62)) (-4132 ((|#1| |#1| |#1| (-781)) 61)) (* (((-1281 |#2|) |#1| (-1281 |#2|)) 17)))
+(((-982 |#1| |#2|) (-10 -7 (-15 -2800 (|#1| |#2| |#2|)) (-15 -3485 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|)) (-15 -2137 ((-2 (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|)) (-15 -1996 ((-2 (|:| |coef1| |#2|) (|:| -2800 |#1|)) |#2| |#2|)) (-15 -2998 (|#2| |#2| |#2| (-781))) (-15 -2133 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2320 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3995 (|#2| |#2| |#2| (-781))) (-15 -4351 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3926 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2107 (|#2| |#2| |#2|)) (-15 -1664 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3951 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1744 (|#2| |#2| |#2|)) (-15 -3645 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2874 |#2|)) |#2| |#2|)) (-15 -1761 ((-2 (|:| |coef2| |#2|) (|:| -2874 |#2|)) |#2| |#2|)) (-15 -4350 ((-2 (|:| |coef1| |#2|) (|:| -2874 |#2|)) |#2| |#2|)) (-15 -1415 (|#1| |#2|)) (-15 -3292 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1415 |#1|)) |#2|)) (-15 -2742 ((-2 (|:| |coef2| |#2|) (|:| -1415 |#1|)) |#2|)) (-15 -3356 ((-654 |#2|) |#2| |#2|)) (-15 -2554 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -3709 (|#1| |#2| |#2|)) (-15 -2611 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3709 |#1|)) |#2| |#2|)) (-15 -3501 ((-2 (|:| |coef2| |#2|) (|:| -3709 |#1|)) |#2| |#2|)) (-15 -2874 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1281 |#2|) |#1| (-1281 |#2|))) (-15 -2838 ((-1281 |#2|) (-1281 |#2|) |#1|)) (-15 -3015 ((-2 (|:| -1859 |#1|) (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2|)) (-15 -2413 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2|)) (-15 -4132 (|#1| |#1| |#1| (-781))) (-15 -2704 (|#2| |#2| |#1| |#1| (-781))) (-15 -2534 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2577 (|#1| |#2| |#2|)) (-15 -3145 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|)) (-15 -2118 ((-2 (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|))) (-566) (-1257 |#1|)) (T -982))
+((-2118 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2800 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3145 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2800 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2577 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))) (-2534 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-2704 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-4132 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-982 *2 *4)) (-4 *4 (-1257 *2)))) (-2413 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3015 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1859 *4) (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2838 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-566)) (-5 *1 (-982 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-566)) (-5 *1 (-982 *3 *4)))) (-2874 (*1 *2 *2 *2) (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-3501 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3709 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2611 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3709 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3709 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))) (-2554 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3356 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1415 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3292 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1415 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-1415 (*1 *2 *3) (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))) (-4350 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2874 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-1761 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2874 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3645 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2874 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-1744 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-3951 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-1664 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2107 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-3926 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))) (-4351 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))) (-3995 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-982 *4 *2)) (-4 *2 (-1257 *4)))) (-2320 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))) (-2133 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))) (-2998 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-982 *4 *2)) (-4 *2 (-1257 *4)))) (-1996 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2800 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2137 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2800 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3485 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2800 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2800 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))))
+(-10 -7 (-15 -2800 (|#1| |#2| |#2|)) (-15 -3485 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|)) (-15 -2137 ((-2 (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|)) (-15 -1996 ((-2 (|:| |coef1| |#2|) (|:| -2800 |#1|)) |#2| |#2|)) (-15 -2998 (|#2| |#2| |#2| (-781))) (-15 -2133 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2320 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3995 (|#2| |#2| |#2| (-781))) (-15 -4351 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3926 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2107 (|#2| |#2| |#2|)) (-15 -1664 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3951 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1744 (|#2| |#2| |#2|)) (-15 -3645 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2874 |#2|)) |#2| |#2|)) (-15 -1761 ((-2 (|:| |coef2| |#2|) (|:| -2874 |#2|)) |#2| |#2|)) (-15 -4350 ((-2 (|:| |coef1| |#2|) (|:| -2874 |#2|)) |#2| |#2|)) (-15 -1415 (|#1| |#2|)) (-15 -3292 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1415 |#1|)) |#2|)) (-15 -2742 ((-2 (|:| |coef2| |#2|) (|:| -1415 |#1|)) |#2|)) (-15 -3356 ((-654 |#2|) |#2| |#2|)) (-15 -2554 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -3709 (|#1| |#2| |#2|)) (-15 -2611 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3709 |#1|)) |#2| |#2|)) (-15 -3501 ((-2 (|:| |coef2| |#2|) (|:| -3709 |#1|)) |#2| |#2|)) (-15 -2874 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1281 |#2|) |#1| (-1281 |#2|))) (-15 -2838 ((-1281 |#2|) (-1281 |#2|) |#1|)) (-15 -3015 ((-2 (|:| -1859 |#1|) (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2|)) (-15 -2413 ((-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) |#2| |#2|)) (-15 -4132 (|#1| |#1| |#1| (-781))) (-15 -2704 (|#2| |#2| |#1| |#1| (-781))) (-15 -2534 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2577 (|#1| |#2| |#2|)) (-15 -3145 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|)) (-15 -2118 ((-2 (|:| |coef2| |#2|) (|:| -2800 |#1|)) |#2| |#2|)))
+((-2849 (((-112) $ $) NIL)) (-2335 (((-1230) $) 13)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 10)) (-2943 (((-872) $) 20) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-983) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $))))) (T -983))
+((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-983)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-983)))))
+(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 40)) (-2950 (((-3 $ "failed") $ $) 54)) (-3670 (($) NIL T CONST)) (-4208 (((-654 (-883 (-932) (-932))) $) 67)) (-3865 (((-932) $) 94)) (-1864 (((-654 (-932)) $) 17)) (-4104 (((-1170 $) (-781)) 39)) (-3196 (($ (-654 (-932))) 16)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1514 (($ $) 70)) (-2943 (((-872) $) 90) (((-654 (-932)) $) 11)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 8 T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 44)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 42)) (-3078 (($ $ $) 46)) (* (($ (-932) $) NIL) (($ (-781) $) 49)) (-2863 (((-781) $) 22)))
+(((-984) (-13 (-805) (-623 (-654 (-932))) (-10 -8 (-15 -3196 ($ (-654 (-932)))) (-15 -1864 ((-654 (-932)) $)) (-15 -2863 ((-781) $)) (-15 -4104 ((-1170 $) (-781))) (-15 -4208 ((-654 (-883 (-932) (-932))) $)) (-15 -3865 ((-932) $)) (-15 -1514 ($ $))))) (T -984))
+((-3196 (*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-984)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-984)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-984)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1170 (-984))) (-5 *1 (-984)))) (-4208 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-932) (-932)))) (-5 *1 (-984)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-984)))) (-1514 (*1 *1 *1) (-5 *1 (-984))))
+(-13 (-805) (-623 (-654 (-932))) (-10 -8 (-15 -3196 ($ (-654 (-932)))) (-15 -1864 ((-654 (-932)) $)) (-15 -2863 ((-781) $)) (-15 -4104 ((-1170 $) (-781))) (-15 -4208 ((-654 (-883 (-932) (-932))) $)) (-15 -3865 ((-932) $)) (-15 -1514 ($ $))))
+((-3107 (($ $ |#2|) 31)) (-3094 (($ $) 23) (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) 29)))
+(((-985 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3107 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-986 |#2| |#3| |#4|) (-1062) (-802) (-860)) (T -985))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3107 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4355 (((-654 |#3|) $) 86)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2814 (($ $) 64 (|has| |#1| (-566)))) (-2425 (((-112) $) 66 (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1392 (($ $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-3030 (((-112) $) 85)) (-3965 (((-112) $) 35)) (-2197 (((-112) $) 74)) (-4335 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-654 |#3|) (-654 |#2|)) 87)) (-1778 (($ (-1 |#1| |#1|) $) 75)) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1784 ((|#2| $) 76)) (-3156 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3344 ((|#1| $ |#2|) 71)) (-1369 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
+(((-986 |#1| |#2| |#3|) (-141) (-1062) (-802) (-860)) (T -986))
+((-1370 (*1 *2 *1) (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) (-4 *2 (-1062)))) (-1359 (*1 *1 *1) (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *4 (-860)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *2 *4)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *2 (-802)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-986 *4 *3 *2)) (-4 *4 (-1062)) (-4 *3 (-802)) (-4 *2 (-860)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-986 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-802)) (-4 *6 (-860)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *4 (-860)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4335 ($ $ |t#3| |t#2|)) (-15 -4335 ($ $ (-654 |t#3|) (-654 |t#2|))) (-15 -1359 ($ $)) (-15 -1370 (|t#1| $)) (-15 -1784 (|t#2| $)) (-15 -4355 ((-654 |t#3|) $)) (-15 -3030 ((-112) $)) (-15 -3156 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2437 (((-1107 (-227)) $) 8)) (-2424 (((-1107 (-227)) $) 9)) (-2411 (((-1107 (-227)) $) 10)) (-2719 (((-654 (-654 (-954 (-227)))) $) 11)) (-2943 (((-872) $) 6)))
+(((-987) (-141)) (T -987))
+((-2719 (*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-654 (-654 (-954 (-227))))))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227))))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227))))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227))))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2719 ((-654 (-654 (-954 (-227)))) $)) (-15 -2411 ((-1107 (-227)) $)) (-15 -2424 ((-1107 (-227)) $)) (-15 -2437 ((-1107 (-227)) $))))
+(((-623 (-872)) . T))
+((-4355 (((-654 |#4|) $) 23)) (-3753 (((-112) $) 55)) (-3609 (((-112) $) 54)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#4|) 42)) (-1800 (((-112) $) 56)) (-1322 (((-112) $ $) 62)) (-4133 (((-112) $ $) 65)) (-3172 (((-112) $) 60)) (-3949 (((-654 |#5|) (-654 |#5|) $) 98)) (-3788 (((-654 |#5|) (-654 |#5|) $) 95)) (-3435 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2867 (((-654 |#4|) $) 27)) (-2570 (((-112) |#4| $) 34)) (-3111 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2175 (($ $ |#4|) 39)) (-2840 (($ $ |#4|) 38)) (-2427 (($ $ |#4|) 40)) (-2982 (((-112) $ $) 46)))
+(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3609 ((-112) |#1|)) (-15 -3949 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -3788 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -3435 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3111 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1800 ((-112) |#1|)) (-15 -4133 ((-112) |#1| |#1|)) (-15 -1322 ((-112) |#1| |#1|)) (-15 -3172 ((-112) |#1|)) (-15 -3753 ((-112) |#1|)) (-15 -2771 ((-2 (|:| |under| |#1|) (|:| -1846 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2175 (|#1| |#1| |#4|)) (-15 -2427 (|#1| |#1| |#4|)) (-15 -2840 (|#1| |#1| |#4|)) (-15 -2570 ((-112) |#4| |#1|)) (-15 -2867 ((-654 |#4|) |#1|)) (-15 -4355 ((-654 |#4|) |#1|)) (-15 -2982 ((-112) |#1| |#1|))) (-989 |#2| |#3| |#4| |#5|) (-1062) (-803) (-860) (-1078 |#2| |#3| |#4|)) (T -988))
+NIL
+(-10 -8 (-15 -3609 ((-112) |#1|)) (-15 -3949 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -3788 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -3435 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3111 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1800 ((-112) |#1|)) (-15 -4133 ((-112) |#1| |#1|)) (-15 -1322 ((-112) |#1| |#1|)) (-15 -3172 ((-112) |#1|)) (-15 -3753 ((-112) |#1|)) (-15 -2771 ((-2 (|:| |under| |#1|) (|:| -1846 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2175 (|#1| |#1| |#4|)) (-15 -2427 (|#1| |#1| |#4|)) (-15 -2840 (|#1| |#1| |#4|)) (-15 -2570 ((-112) |#4| |#1|)) (-15 -2867 ((-654 |#4|) |#1|)) (-15 -4355 ((-654 |#4|) |#1|)) (-15 -2982 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-4355 (((-654 |#3|) $) 34)) (-3753 (((-112) $) 27)) (-3609 (((-112) $) 18 (|has| |#1| (-566)))) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) 28)) (-3340 (((-112) $ (-781)) 45)) (-2166 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456)))) (-3670 (($) 46 T CONST)) (-1800 (((-112) $) 23 (|has| |#1| (-566)))) (-1322 (((-112) $ $) 25 (|has| |#1| (-566)))) (-4133 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3172 (((-112) $) 26 (|has| |#1| (-566)))) (-3949 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) 37)) (-2209 (($ (-654 |#4|)) 36)) (-2158 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456)))) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-2851 ((|#3| $) 35)) (-3735 (((-112) $ (-781)) 44)) (-1712 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 48)) (-2867 (((-654 |#3|) $) 33)) (-2570 (((-112) |#3| $) 32)) (-2448 (((-112) $ (-781)) 43)) (-2568 (((-1172) $) 10)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-3966 (((-1133) $) 11)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3124 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) 39)) (-3556 (((-112) $) 42)) (-3135 (($) 41)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1837 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-2175 (($ $ |#3|) 29)) (-2840 (($ $ |#3|) 31)) (-2427 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2923 (((-112) $ $) 9)) (-2935 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456)))))
+(((-989 |#1| |#2| |#3| |#4|) (-141) (-1062) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -989))
+((-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-989 *3 *4 *5 *6)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-989 *3 *4 *5 *6)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-1078 *3 *4 *2)) (-4 *2 (-860)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5)))) (-2867 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5)))) (-2570 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *3 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-112)))) (-2840 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2)))) (-2427 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2)))) (-2175 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2)))) (-2771 (*1 *2 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1846 *1) (|:| |upper| *1))) (-4 *1 (-989 *4 *5 *3 *6)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-1322 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-4133 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3111 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3435 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3788 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)))) (-3949 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))))
+(-13 (-1113) (-152 |t#4|) (-623 (-654 |t#4|)) (-10 -8 (-6 -4456) (-15 -1697 ((-3 $ "failed") (-654 |t#4|))) (-15 -2209 ($ (-654 |t#4|))) (-15 -2851 (|t#3| $)) (-15 -4355 ((-654 |t#3|) $)) (-15 -2867 ((-654 |t#3|) $)) (-15 -2570 ((-112) |t#3| $)) (-15 -2840 ($ $ |t#3|)) (-15 -2427 ($ $ |t#3|)) (-15 -2175 ($ $ |t#3|)) (-15 -2771 ((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |t#3|)) (-15 -3753 ((-112) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -3172 ((-112) $)) (-15 -1322 ((-112) $ $)) (-15 -4133 ((-112) $ $)) (-15 -1800 ((-112) $)) (-15 -3111 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3435 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3788 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -3949 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -3609 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-1113) . T) ((-1231) . T))
+((-4236 (((-654 |#4|) |#4| |#4|) 136)) (-2262 (((-654 |#4|) (-654 |#4|) (-112)) 125 (|has| |#1| (-462))) (((-654 |#4|) (-654 |#4|)) 126 (|has| |#1| (-462)))) (-3093 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 44)) (-1498 (((-112) |#4|) 43)) (-2641 (((-654 |#4|) |#4|) 121 (|has| |#1| (-462)))) (-3426 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|)) 24)) (-2292 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 30)) (-2781 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 31)) (-2410 (((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|)) 90)) (-3300 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2685 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3606 (((-654 |#4|) (-654 |#4|)) 128)) (-4177 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112)) 59) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 61)) (-2556 ((|#4| |#4| (-654 |#4|)) 60)) (-3659 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 132 (|has| |#1| (-462)))) (-2861 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 135 (|has| |#1| (-462)))) (-2555 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 134 (|has| |#1| (-462)))) (-2467 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|))) 105) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 107) (((-654 |#4|) (-654 |#4|) |#4|) 140) (((-654 |#4|) |#4| |#4|) 137) (((-654 |#4|) (-654 |#4|)) 106)) (-3849 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-2397 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 52)) (-2835 (((-112) (-654 |#4|)) 79)) (-3907 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 67)) (-2018 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 37)) (-1616 (((-112) |#4|) 36)) (-4015 (((-654 |#4|) (-654 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-2218 (((-654 |#4|) (-654 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-3314 (((-654 |#4|) (-654 |#4|)) 83)) (-2434 (((-654 |#4|) (-654 |#4|)) 97)) (-3565 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-3404 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 50)) (-1675 (((-112) |#4|) 45)))
+(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2467 ((-654 |#4|) (-654 |#4|))) (-15 -2467 ((-654 |#4|) |#4| |#4|)) (-15 -3606 ((-654 |#4|) (-654 |#4|))) (-15 -4236 ((-654 |#4|) |#4| |#4|)) (-15 -2467 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -2467 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2467 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -3565 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3907 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -2835 ((-112) (-654 |#4|))) (-15 -3426 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -2292 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -2781 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -2397 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1498 ((-112) |#4|)) (-15 -3093 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1616 ((-112) |#4|)) (-15 -2018 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1675 ((-112) |#4|)) (-15 -3404 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -4177 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4177 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2556 (|#4| |#4| (-654 |#4|))) (-15 -3314 ((-654 |#4|) (-654 |#4|))) (-15 -2410 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -2434 ((-654 |#4|) (-654 |#4|))) (-15 -3300 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2685 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -2641 ((-654 |#4|) |#4|)) (-15 -2262 ((-654 |#4|) (-654 |#4|))) (-15 -2262 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -3659 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2555 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2861 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -2218 ((-654 |#4|) (-654 |#4|))) (-15 -4015 ((-654 |#4|) (-654 |#4|))) (-15 -3849 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) (-566) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -990))
+((-3849 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-4015 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2218 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2861 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2555 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-3659 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2262 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *7)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2641 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-2685 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-990 *5 *6 *7 *8)))) (-3300 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *1 (-990 *6 *7 *8 *9)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2410 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2003 (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2556 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *2)))) (-4177 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *7)))) (-4177 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-3404 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1675 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-2018 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1616 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1498 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-2397 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8)))) (-3565 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7)))) (-2467 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *7)))) (-2467 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2467 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *3)))) (-4236 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-3606 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2467 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2467 ((-654 |#4|) (-654 |#4|))) (-15 -2467 ((-654 |#4|) |#4| |#4|)) (-15 -3606 ((-654 |#4|) (-654 |#4|))) (-15 -4236 ((-654 |#4|) |#4| |#4|)) (-15 -2467 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -2467 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2467 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -3565 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3907 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -2835 ((-112) (-654 |#4|))) (-15 -3426 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -2292 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -2781 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -2397 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1498 ((-112) |#4|)) (-15 -3093 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1616 ((-112) |#4|)) (-15 -2018 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1675 ((-112) |#4|)) (-15 -3404 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -4177 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4177 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2556 (|#4| |#4| (-654 |#4|))) (-15 -3314 ((-654 |#4|) (-654 |#4|))) (-15 -2410 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -2434 ((-654 |#4|) (-654 |#4|))) (-15 -3300 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2685 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -2641 ((-654 |#4|) |#4|)) (-15 -2262 ((-654 |#4|) (-654 |#4|))) (-15 -2262 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -3659 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2555 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2861 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -2218 ((-654 |#4|) (-654 |#4|))) (-15 -4015 ((-654 |#4|) (-654 |#4|))) (-15 -3849 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|))
+((-1737 (((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2872 (((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|)) 46)) (-2921 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-991 |#1|) (-10 -7 (-15 -1737 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2921 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2872 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|)))) (-372)) (T -991))
+((-2872 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1281 *5))))) (-5 *1 (-991 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)))) (-2921 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-991 *5)))) (-1737 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) (-5 *2 (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) (-5 *1 (-991 *6)) (-5 *3 (-699 *6)))))
+(-10 -7 (-15 -1737 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2921 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2872 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|))))
+((-3440 (((-428 |#4|) |#4|) 56)))
+(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3440 ((-428 |#4|) |#4|))) (-860) (-803) (-462) (-960 |#3| |#2| |#1|)) (T -992))
+((-3440 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4)))))
+(-10 -7 (-15 -3440 ((-428 |#4|) |#4|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-2217 (($ (-781)) 115 (|has| |#1| (-23)))) (-1860 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2672 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-2158 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1441 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1113)))) (-3591 (($ (-654 |#1|)) 121)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) 108 (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) 70)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 44 (|has| (-574) (-860)))) (-3658 (($ $ $) 90 (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 45 (|has| (-574) (-860)))) (-2106 (($ $ $) 89 (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2239 ((|#1| $) 105 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1015))))) (-2448 (((-112) $ (-781)) 10)) (-4135 ((|#1| $) 106 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1015))))) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2459 (((-654 (-574)) $) 47)) (-2607 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1363 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-4344 (($ $ (-654 |#1|)) 119)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-3222 ((|#1| $ $) 109 (|has| |#1| (-1062)))) (-3939 (((-932) $) 120)) (-2837 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-2503 (($ $ $) 107)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1958 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1837 (((-546) $) 81 (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 122)) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3016 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3028 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3094 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3078 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-993 |#1|) (-141) (-1062)) (T -993))
+((-3591 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1062)) (-4 *1 (-993 *3)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-1062)) (-5 *2 (-932)))) (-2503 (*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1062)))) (-4344 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-993 *3)) (-4 *3 (-1062)))))
+(-13 (-1279 |t#1|) (-628 (-654 |t#1|)) (-10 -8 (-15 -3591 ($ (-654 |t#1|))) (-15 -3939 ((-932) $)) (-15 -2503 ($ $ $)) (-15 -4344 ($ $ (-654 |t#1|)))))
+(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-628 (-654 |#1|)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1231) . T) ((-1279 |#1|) . T))
+((-1778 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 17)))
+(((-994 |#1| |#2|) (-10 -7 (-15 -1778 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1062) (-1062)) (T -994))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-954 *6)) (-5 *1 (-994 *5 *6)))))
+(-10 -7 (-15 -1778 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|))))
+((-2511 ((|#1| (-954 |#1|)) 14)) (-1834 ((|#1| (-954 |#1|)) 13)) (-2415 ((|#1| (-954 |#1|)) 12)) (-2566 ((|#1| (-954 |#1|)) 16)) (-1667 ((|#1| (-954 |#1|)) 24)) (-3912 ((|#1| (-954 |#1|)) 15)) (-2985 ((|#1| (-954 |#1|)) 17)) (-1887 ((|#1| (-954 |#1|)) 23)) (-2398 ((|#1| (-954 |#1|)) 22)))
+(((-995 |#1|) (-10 -7 (-15 -2415 (|#1| (-954 |#1|))) (-15 -1834 (|#1| (-954 |#1|))) (-15 -2511 (|#1| (-954 |#1|))) (-15 -3912 (|#1| (-954 |#1|))) (-15 -2566 (|#1| (-954 |#1|))) (-15 -2985 (|#1| (-954 |#1|))) (-15 -2398 (|#1| (-954 |#1|))) (-15 -1887 (|#1| (-954 |#1|))) (-15 -1667 (|#1| (-954 |#1|)))) (-1062)) (T -995))
+((-1667 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
+(-10 -7 (-15 -2415 (|#1| (-954 |#1|))) (-15 -1834 (|#1| (-954 |#1|))) (-15 -2511 (|#1| (-954 |#1|))) (-15 -3912 (|#1| (-954 |#1|))) (-15 -2566 (|#1| (-954 |#1|))) (-15 -2985 (|#1| (-954 |#1|))) (-15 -2398 (|#1| (-954 |#1|))) (-15 -1887 (|#1| (-954 |#1|))) (-15 -1667 (|#1| (-954 |#1|))))
+((-2748 (((-3 |#1| "failed") |#1|) 18)) (-2574 (((-3 |#1| "failed") |#1|) 6)) (-3744 (((-3 |#1| "failed") |#1|) 16)) (-1376 (((-3 |#1| "failed") |#1|) 4)) (-1646 (((-3 |#1| "failed") |#1|) 20)) (-2368 (((-3 |#1| "failed") |#1|) 8)) (-1656 (((-3 |#1| "failed") |#1| (-781)) 1)) (-1690 (((-3 |#1| "failed") |#1|) 3)) (-2767 (((-3 |#1| "failed") |#1|) 2)) (-1410 (((-3 |#1| "failed") |#1|) 21)) (-1687 (((-3 |#1| "failed") |#1|) 9)) (-2379 (((-3 |#1| "failed") |#1|) 19)) (-3374 (((-3 |#1| "failed") |#1|) 7)) (-1929 (((-3 |#1| "failed") |#1|) 17)) (-3625 (((-3 |#1| "failed") |#1|) 5)) (-3716 (((-3 |#1| "failed") |#1|) 24)) (-1985 (((-3 |#1| "failed") |#1|) 12)) (-2586 (((-3 |#1| "failed") |#1|) 22)) (-4386 (((-3 |#1| "failed") |#1|) 10)) (-4274 (((-3 |#1| "failed") |#1|) 26)) (-2853 (((-3 |#1| "failed") |#1|) 14)) (-3048 (((-3 |#1| "failed") |#1|) 27)) (-2862 (((-3 |#1| "failed") |#1|) 15)) (-2162 (((-3 |#1| "failed") |#1|) 25)) (-3927 (((-3 |#1| "failed") |#1|) 13)) (-1978 (((-3 |#1| "failed") |#1|) 23)) (-3056 (((-3 |#1| "failed") |#1|) 11)))
+(((-996 |#1|) (-141) (-1216)) (T -996))
+((-3048 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-4274 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2162 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3716 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1978 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2586 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1410 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1646 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2379 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2748 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1929 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3744 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2862 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2853 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3927 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1985 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3056 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-4386 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1687 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2368 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3374 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2574 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3625 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1376 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1690 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2767 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1656 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(-13 (-10 -7 (-15 -1656 ((-3 |t#1| "failed") |t#1| (-781))) (-15 -2767 ((-3 |t#1| "failed") |t#1|)) (-15 -1690 ((-3 |t#1| "failed") |t#1|)) (-15 -1376 ((-3 |t#1| "failed") |t#1|)) (-15 -3625 ((-3 |t#1| "failed") |t#1|)) (-15 -2574 ((-3 |t#1| "failed") |t#1|)) (-15 -3374 ((-3 |t#1| "failed") |t#1|)) (-15 -2368 ((-3 |t#1| "failed") |t#1|)) (-15 -1687 ((-3 |t#1| "failed") |t#1|)) (-15 -4386 ((-3 |t#1| "failed") |t#1|)) (-15 -3056 ((-3 |t#1| "failed") |t#1|)) (-15 -1985 ((-3 |t#1| "failed") |t#1|)) (-15 -3927 ((-3 |t#1| "failed") |t#1|)) (-15 -2853 ((-3 |t#1| "failed") |t#1|)) (-15 -2862 ((-3 |t#1| "failed") |t#1|)) (-15 -3744 ((-3 |t#1| "failed") |t#1|)) (-15 -1929 ((-3 |t#1| "failed") |t#1|)) (-15 -2748 ((-3 |t#1| "failed") |t#1|)) (-15 -2379 ((-3 |t#1| "failed") |t#1|)) (-15 -1646 ((-3 |t#1| "failed") |t#1|)) (-15 -1410 ((-3 |t#1| "failed") |t#1|)) (-15 -2586 ((-3 |t#1| "failed") |t#1|)) (-15 -1978 ((-3 |t#1| "failed") |t#1|)) (-15 -3716 ((-3 |t#1| "failed") |t#1|)) (-15 -2162 ((-3 |t#1| "failed") |t#1|)) (-15 -4274 ((-3 |t#1| "failed") |t#1|)) (-15 -3048 ((-3 |t#1| "failed") |t#1|))))
+((-3134 ((|#4| |#4| (-654 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3407 ((|#4| |#4| (-654 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1778 ((|#4| (-1 |#4| (-963 |#1|)) |#4|) 31)))
+(((-997 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3407 (|#4| |#4| |#3|)) (-15 -3407 (|#4| |#4| (-654 |#3|))) (-15 -3134 (|#4| |#4| |#3|)) (-15 -3134 (|#4| |#4| (-654 |#3|))) (-15 -1778 (|#4| (-1 |#4| (-963 |#1|)) |#4|))) (-1062) (-803) (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190))))) (-960 (-963 |#1|) |#2| |#3|)) (T -997))
+((-1778 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-963 *4))) (-4 *4 (-1062)) (-4 *2 (-960 (-963 *4) *5 *6)) (-4 *5 (-803)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190)))))) (-5 *1 (-997 *4 *5 *6 *2)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190)))))) (-4 *4 (-1062)) (-4 *5 (-803)) (-5 *1 (-997 *4 *5 *6 *2)) (-4 *2 (-960 (-963 *4) *5 *6)))) (-3134 (*1 *2 *2 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190)))))) (-5 *1 (-997 *4 *5 *3 *2)) (-4 *2 (-960 (-963 *4) *5 *3)))) (-3407 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190)))))) (-4 *4 (-1062)) (-4 *5 (-803)) (-5 *1 (-997 *4 *5 *6 *2)) (-4 *2 (-960 (-963 *4) *5 *6)))) (-3407 (*1 *2 *2 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)) (-15 -1489 ((-3 $ "failed") (-1190)))))) (-5 *1 (-997 *4 *5 *3 *2)) (-4 *2 (-960 (-963 *4) *5 *3)))))
+(-10 -7 (-15 -3407 (|#4| |#4| |#3|)) (-15 -3407 (|#4| |#4| (-654 |#3|))) (-15 -3134 (|#4| |#4| |#3|)) (-15 -3134 (|#4| |#4| (-654 |#3|))) (-15 -1778 (|#4| (-1 |#4| (-963 |#1|)) |#4|)))
+((-4101 ((|#2| |#3|) 35)) (-2754 (((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 79)) (-3885 (((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 100)))
+(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3885 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2754 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -4101 (|#2| |#3|))) (-358) (-1257 |#1|) (-1257 |#2|) (-734 |#2| |#3|)) (T -998))
+((-4101 (*1 *2 *3) (-12 (-4 *3 (-1257 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-998 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3)))) (-2754 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 *3)) (-5 *2 (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-998 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) (-3885 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -2722 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5)))))
+(-10 -7 (-15 -3885 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2754 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -4101 (|#2| |#3|)))
+((-3019 (((-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))) 82)))
+(((-999 |#1| |#2|) (-10 -7 (-15 -3019 ((-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) (-654 (-1190)) (-781)) (T -999))
+((-3019 (*1 *2 *2) (-12 (-5 *2 (-1000 (-417 (-574)) (-874 *3) (-246 *4 (-781)) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1190))) (-14 *4 (-781)) (-5 *1 (-999 *3 *4)))))
+(-10 -7 (-15 -3019 ((-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))))))
+((-2849 (((-112) $ $) NIL)) (-1379 (((-3 (-112) "failed") $) 71)) (-1816 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-2296 (($ $ (-3 (-112) "failed")) 72)) (-4095 (($ (-654 |#4|) |#4|) 25)) (-2568 (((-1172) $) NIL)) (-4392 (($ $) 69)) (-3966 (((-1133) $) NIL)) (-3556 (((-112) $) 70)) (-3135 (($) 30)) (-1883 ((|#4| $) 74)) (-3981 (((-654 |#4|) $) 73)) (-2943 (((-872) $) 68)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1000 |#1| |#2| |#3| |#4|) (-13 (-1113) (-623 (-872)) (-10 -8 (-15 -3135 ($)) (-15 -4095 ($ (-654 |#4|) |#4|)) (-15 -1379 ((-3 (-112) "failed") $)) (-15 -2296 ($ $ (-3 (-112) "failed"))) (-15 -3556 ((-112) $)) (-15 -3981 ((-654 |#4|) $)) (-15 -1883 (|#4| $)) (-15 -4392 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -1816 ($ $)) |%noBranch|) |%noBranch|))) (-462) (-860) (-803) (-960 |#1| |#3| |#2|)) (T -1000))
+((-3135 (*1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3)))) (-4095 (*1 *1 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-960 *4 *6 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1000 *4 *5 *6 *3)))) (-1379 (*1 *2 *1) (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))) (-2296 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))) (-3556 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))) (-3981 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))) (-1883 (*1 *2 *1) (-12 (-4 *2 (-960 *3 *5 *4)) (-5 *1 (-1000 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)))) (-4392 (*1 *1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3)))) (-1816 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3)))))
+(-13 (-1113) (-623 (-872)) (-10 -8 (-15 -3135 ($)) (-15 -4095 ($ (-654 |#4|) |#4|)) (-15 -1379 ((-3 (-112) "failed") $)) (-15 -2296 ($ $ (-3 (-112) "failed"))) (-15 -3556 ((-112) $)) (-15 -3981 ((-654 |#4|) $)) (-15 -1883 (|#4| $)) (-15 -4392 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -1816 ($ $)) |%noBranch|) |%noBranch|)))
+((-1333 (((-112) |#5| |#5|) 44)) (-2966 (((-112) |#5| |#5|) 59)) (-4295 (((-112) |#5| (-654 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-1622 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-2243 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) 70)) (-3888 (((-1286)) 32)) (-4375 (((-1286) (-1172) (-1172) (-1172)) 28)) (-1568 (((-654 |#5|) (-654 |#5|)) 100)) (-1330 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) 92)) (-3481 (((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 122)) (-1461 (((-112) |#5| |#5|) 53)) (-3974 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4096 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-1402 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-2430 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-3500 (((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3672 (((-654 |#5|) (-654 |#5|)) 49)))
+(((-1001 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4375 ((-1286) (-1172) (-1172) (-1172))) (-15 -3888 ((-1286))) (-15 -1333 ((-112) |#5| |#5|)) (-15 -3672 ((-654 |#5|) (-654 |#5|))) (-15 -1461 ((-112) |#5| |#5|)) (-15 -2966 ((-112) |#5| |#5|)) (-15 -1622 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4096 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1402 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2430 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3974 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4295 ((-112) |#5| |#5|)) (-15 -4295 ((-112) |#5| (-654 |#5|))) (-15 -1568 ((-654 |#5|) (-654 |#5|))) (-15 -2243 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -1330 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-15 -3481 ((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3500 ((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1001))
+((-3500 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| -4122 (-654 *9)) (|:| -4091 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1001 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1084 *6 *7 *8 *9)))) (-3481 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1084 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4122 (-654 *9)) (|:| -4091 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1001 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-1330 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4091 *7)))) (-4 *6 (-1078 *3 *4 *5)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1001 *3 *4 *5 *6 *7)))) (-2243 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-1001 *3 *4 *5 *6 *7)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1001 *5 *6 *7 *8 *3)))) (-4295 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3974 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-2430 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-1402 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-4096 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-1622 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-2966 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-1461 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-1001 *3 *4 *5 *6 *7)))) (-1333 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3888 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-4375 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4375 ((-1286) (-1172) (-1172) (-1172))) (-15 -3888 ((-1286))) (-15 -1333 ((-112) |#5| |#5|)) (-15 -3672 ((-654 |#5|) (-654 |#5|))) (-15 -1461 ((-112) |#5| |#5|)) (-15 -2966 ((-112) |#5| |#5|)) (-15 -1622 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4096 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1402 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2430 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3974 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4295 ((-112) |#5| |#5|)) (-15 -4295 ((-112) |#5| (-654 |#5|))) (-15 -1568 ((-654 |#5|) (-654 |#5|))) (-15 -2243 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -1330 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-15 -3481 ((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3500 ((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-1489 (((-1190) $) 15)) (-3083 (((-1172) $) 16)) (-2692 (($ (-1190) (-1172)) 14)) (-2943 (((-872) $) 13)))
+(((-1002) (-13 (-623 (-872)) (-10 -8 (-15 -2692 ($ (-1190) (-1172))) (-15 -1489 ((-1190) $)) (-15 -3083 ((-1172) $))))) (T -1002))
+((-2692 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1172)) (-5 *1 (-1002)))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1002)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1002)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2692 ($ (-1190) (-1172))) (-15 -1489 ((-1190) $)) (-15 -3083 ((-1172) $))))
+((-1778 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-1003 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 (|#4| (-1 |#2| |#1|) |#3|))) (-566) (-566) (-1005 |#1|) (-1005 |#2|)) (T -1003))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-4 *2 (-1005 *6)) (-5 *1 (-1003 *5 *6 *4 *2)) (-4 *4 (-1005 *5)))))
+(-10 -7 (-15 -1778 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-1190) "failed") $) 66) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) 96)) (-2209 ((|#2| $) NIL) (((-1190) $) 61) (((-417 (-574)) $) NIL) (((-574) $) 93)) (-2668 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 115) (((-699 |#2|) (-699 $)) 28) (((-699 |#2|) (-1281 $)) NIL)) (-2820 (($) 99)) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 76) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 85)) (-1769 (($ $) 10)) (-4048 (((-3 $ "failed") $) 20)) (-1778 (($ (-1 |#2| |#2|) $) 22)) (-3818 (($) 16)) (-2595 (($ $) 55)) (-3905 (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3520 (($ $) 12)) (-1837 (((-903 (-574)) $) 71) (((-903 (-388)) $) 80) (((-546) $) 40) (((-388) $) 44) (((-227) $) 48)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 91) (($ |#2|) NIL) (($ (-1190)) 58)) (-4160 (((-781)) 31)) (-3005 (((-112) $ $) 51)))
+(((-1004 |#1| |#2|) (-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -3818 (|#1|)) (-15 -4048 ((-3 |#1| "failed") |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1837 ((-227) |#1|)) (-15 -1837 ((-388) |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -2943 (|#1| (-1190))) (-15 -1697 ((-3 (-1190) "failed") |#1|)) (-15 -2209 ((-1190) |#1|)) (-15 -2820 (|#1|)) (-15 -2595 (|#1| |#1|)) (-15 -3520 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -2961 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -2668 ((-699 |#2|) (-1281 |#1|))) (-15 -2668 ((-699 |#2|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| |#1|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1005 |#2|) (-566)) (T -1004))
+((-4160 (*1 *2) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1004 *3 *4)) (-4 *3 (-1005 *4)))))
+(-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -3818 (|#1|)) (-15 -4048 ((-3 |#1| "failed") |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1837 ((-227) |#1|)) (-15 -1837 ((-388) |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -2943 (|#1| (-1190))) (-15 -1697 ((-3 (-1190) "failed") |#1|)) (-15 -2209 ((-1190) |#1|)) (-15 -2820 (|#1|)) (-15 -2595 (|#1| |#1|)) (-15 -3520 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -2961 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -2961 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -2668 ((-699 |#2|) (-1281 |#1|))) (-15 -2668 ((-699 |#2|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| |#1|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2809 ((|#1| $) 148 (|has| |#1| (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-3312 (((-428 (-1186 $)) (-1186 $)) 139 (|has| |#1| (-920)))) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 142 (|has| |#1| (-920)))) (-3875 (((-112) $ $) 65)) (-3747 (((-574) $) 129 (|has| |#1| (-830)))) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#1| "failed") $) 188) (((-3 (-1190) "failed") $) 137 (|has| |#1| (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) 120 (|has| |#1| (-1051 (-574)))) (((-3 (-574) "failed") $) 118 (|has| |#1| (-1051 (-574))))) (-2209 ((|#1| $) 189) (((-1190) $) 138 (|has| |#1| (-1051 (-1190)))) (((-417 (-574)) $) 121 (|has| |#1| (-1051 (-574)))) (((-574) $) 119 (|has| |#1| (-1051 (-574))))) (-2785 (($ $ $) 61)) (-2668 (((-699 (-574)) (-1281 $)) 163 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 162 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 161 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 160) (((-699 |#1|) (-699 $)) 159) (((-699 |#1|) (-1281 $)) 158)) (-1950 (((-3 $ "failed") $) 37)) (-2820 (($) 146 (|has| |#1| (-555)))) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-1654 (((-112) $) 79)) (-3434 (((-112) $) 131 (|has| |#1| (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 155 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 154 (|has| |#1| (-897 (-388))))) (-3965 (((-112) $) 35)) (-1769 (($ $) 150)) (-2965 ((|#1| $) 152)) (-4048 (((-3 $ "failed") $) 117 (|has| |#1| (-1165)))) (-3244 (((-112) $) 130 (|has| |#1| (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3658 (($ $ $) 127 (|has| |#1| (-860)))) (-2106 (($ $ $) 126 (|has| |#1| (-860)))) (-1778 (($ (-1 |#1| |#1|) $) 180)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3818 (($) 116 (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-2595 (($ $) 147 (|has| |#1| (-315)))) (-1846 ((|#1| $) 144 (|has| |#1| (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) 141 (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) 140 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 82)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 186 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 185 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 184 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 183 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 182 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) 181 (|has| |#1| (-524 (-1190) |#1|)))) (-1347 (((-781) $) 64)) (-2200 (($ $ |#1|) 187 (|has| |#1| (-294 |#1| |#1|)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-3905 (($ $) 178 (|has| |#1| (-239))) (($ $ (-781)) 177 (|has| |#1| (-239))) (($ $ (-1190)) 175 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 174 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 173 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 172 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 165) (($ $ (-1 |#1| |#1|)) 164)) (-3520 (($ $) 149)) (-2977 ((|#1| $) 151)) (-1837 (((-903 (-574)) $) 157 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 156 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 134 (|has| |#1| (-624 (-546)))) (((-388) $) 133 (|has| |#1| (-1035))) (((-227) $) 132 (|has| |#1| (-1035)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 143 (-2088 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 192) (($ (-1190)) 136 (|has| |#1| (-1051 (-1190))))) (-1369 (((-3 $ "failed") $) 135 (-2818 (|has| |#1| (-146)) (-2088 (|has| $ (-146)) (|has| |#1| (-920)))))) (-4160 (((-781)) 32 T CONST)) (-4078 ((|#1| $) 145 (|has| |#1| (-555)))) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2946 (($ $) 128 (|has| |#1| (-830)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $) 179 (|has| |#1| (-239))) (($ $ (-781)) 176 (|has| |#1| (-239))) (($ $ (-1190)) 171 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 170 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 169 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 168 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 167) (($ $ (-1 |#1| |#1|)) 166)) (-3041 (((-112) $ $) 124 (|has| |#1| (-860)))) (-3016 (((-112) $ $) 123 (|has| |#1| (-860)))) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 125 (|has| |#1| (-860)))) (-3005 (((-112) $ $) 122 (|has| |#1| (-860)))) (-3107 (($ $ $) 73) (($ |#1| |#1|) 153)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ |#1| $) 191) (($ $ |#1|) 190)))
+(((-1005 |#1|) (-141) (-566)) (T -1005))
+((-3107 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-1769 (*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-3520 (*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2595 (*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2820 (*1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-555)) (-4 *2 (-566)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-555)))))
+(-13 (-372) (-38 |t#1|) (-1051 |t#1|) (-347 |t#1|) (-233 |t#1|) (-386 |t#1|) (-895 |t#1|) (-410 |t#1|) (-10 -8 (-15 -3107 ($ |t#1| |t#1|)) (-15 -2965 (|t#1| $)) (-15 -2977 (|t#1| $)) (-15 -1769 ($ $)) (-15 -3520 ($ $)) (IF (|has| |t#1| (-1165)) (-6 (-1165)) |%noBranch|) (IF (|has| |t#1| (-1051 (-574))) (PROGN (-6 (-1051 (-574))) (-6 (-1051 (-417 (-574))))) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-1035)) (-6 (-1035)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1051 (-1190))) (-6 (-1051 (-1190))) |%noBranch|) (IF (|has| |t#1| (-315)) (PROGN (-15 -2809 (|t#1| $)) (-15 -2595 ($ $))) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2820 ($)) (-15 -4078 (|t#1| $)) (-15 -1846 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-920)) (-6 (-920)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 #1=(-1190)) |has| |#1| (-1051 (-1190))) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) |has| |#1| (-1035)) ((-624 (-388)) |has| |#1| (-1035)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-249) . T) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) . T) ((-315) . T) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-462) . T) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-801) |has| |#1| (-830)) ((-802) |has| |#1| (-830)) ((-804) |has| |#1| (-830)) ((-805) |has| |#1| (-830)) ((-830) |has| |#1| (-830)) ((-858) |has| |#1| (-830)) ((-860) -2818 (|has| |#1| (-860)) (|has| |#1| (-830))) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-920) |has| |#1| (-920)) ((-931) . T) ((-1035) |has| |#1| (-1035)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-574))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 #1#) |has| |#1| (-1051 (-1190))) ((-1051 |#1|) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-1165)) ((-1231) . T) ((-1235) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-2005 (($ (-1155 |#1| |#2|)) 11)) (-2914 (((-1155 |#1| |#2|) $) 12)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2200 ((|#2| $ (-246 |#1| |#2|)) 16)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL)))
+(((-1006 |#1| |#2|) (-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2005 ($ (-1155 |#1| |#2|))) (-15 -2914 ((-1155 |#1| |#2|) $)))) (-932) (-372)) (T -1006))
+((-2005 (*1 *1 *2) (-12 (-5 *2 (-1155 *3 *4)) (-14 *3 (-932)) (-4 *4 (-372)) (-5 *1 (-1006 *3 *4)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-1155 *3 *4)) (-5 *1 (-1006 *3 *4)) (-14 *3 (-932)) (-4 *4 (-372)))))
+(-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2005 ($ (-1155 |#1| |#2|))) (-15 -2914 ((-1155 |#1| |#2|) $))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 9)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1007) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $))))) (T -1007))
+((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1007)))))
+(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $))))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) 8)) (-3670 (($) 7 T CONST)) (-1557 (($ $) 47)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-4135 (((-781) $) 46)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3412 ((|#1| $) 45)) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3929 ((|#1| |#1| $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-1537 ((|#1| $) 48)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 43)) (-2536 ((|#1| $) 44)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-1008 |#1|) (-141) (-1231)) (T -1008))
+((-3929 (*1 *2 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))) (-1557 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4456) (-15 -3929 (|t#1| |t#1| $)) (-15 -1537 (|t#1| $)) (-15 -1557 ($ $)) (-15 -4135 ((-781) $)) (-15 -3412 (|t#1| $)) (-15 -2536 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-2908 (((-112) $) 43)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2209 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 44)) (-2057 (((-3 (-417 (-574)) "failed") $) 78)) (-1811 (((-112) $) 72)) (-4142 (((-417 (-574)) $) 76)) (-3965 (((-112) $) 42)) (-1652 ((|#2| $) 22)) (-1778 (($ (-1 |#2| |#2|) $) 19)) (-1324 (($ $) 58)) (-3905 (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1837 (((-546) $) 67)) (-1514 (($ $) 17)) (-2943 (((-872) $) 53) (($ (-574)) 39) (($ |#2|) 37) (($ (-417 (-574))) NIL)) (-4160 (((-781)) 10)) (-2946 ((|#2| $) 71)) (-2982 (((-112) $ $) 26)) (-3005 (((-112) $ $) 69)) (-3094 (($ $) 30) (($ $ $) 29)) (-3078 (($ $ $) 27)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
+(((-1009 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| (-417 (-574)))) (-15 -3005 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1324 (|#1| |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -2946 (|#2| |#1|)) (-15 -1652 (|#2| |#1|)) (-15 -1514 (|#1| |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -3965 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -2908 ((-112) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|))) (-1010 |#2|) (-174)) (T -1009))
+((-4160 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1009 *3 *4)) (-4 *3 (-1010 *4)))))
+(-10 -8 (-15 -2943 (|#1| (-417 (-574)))) (-15 -3005 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1324 (|#1| |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -2946 (|#2| |#1|)) (-15 -1652 (|#2| |#1|)) (-15 -1514 (|#1| |#1|)) (-15 -1778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -3965 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -2908 ((-112) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1697 (((-3 (-574) "failed") $) 130 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 128 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 125)) (-2209 (((-574) $) 129 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 127 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 126)) (-2668 (((-699 (-574)) (-1281 $)) 100 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 99 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 98 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 97) (((-699 |#1|) (-699 $)) 96) (((-699 |#1|) (-1281 $)) 95)) (-1950 (((-3 $ "failed") $) 37)) (-4239 ((|#1| $) 88)) (-2057 (((-3 (-417 (-574)) "failed") $) 84 (|has| |#1| (-555)))) (-1811 (((-112) $) 86 (|has| |#1| (-555)))) (-4142 (((-417 (-574)) $) 85 (|has| |#1| (-555)))) (-2512 (($ |#1| |#1| |#1| |#1|) 89)) (-3965 (((-112) $) 35)) (-1652 ((|#1| $) 90)) (-3658 (($ $ $) 77 (|has| |#1| (-860)))) (-2106 (($ $ $) 76 (|has| |#1| (-860)))) (-1778 (($ (-1 |#1| |#1|) $) 101)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 81 (|has| |#1| (-372)))) (-1382 ((|#1| $) 91)) (-3913 ((|#1| $) 92)) (-2202 ((|#1| $) 93)) (-3966 (((-1133) $) 11)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 107 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 106 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 105 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 104 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 103 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) 102 (|has| |#1| (-524 (-1190) |#1|)))) (-2200 (($ $ |#1|) 108 (|has| |#1| (-294 |#1| |#1|)))) (-3905 (($ $) 123 (|has| |#1| (-239))) (($ $ (-781)) 122 (|has| |#1| (-239))) (($ $ (-1190)) 120 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 119 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 118 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 117 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 110) (($ $ (-1 |#1| |#1|)) 109)) (-1837 (((-546) $) 82 (|has| |#1| (-624 (-546))))) (-1514 (($ $) 94)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 71 (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574))))))) (-1369 (((-3 $ "failed") $) 83 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2946 ((|#1| $) 87 (|has| |#1| (-1073)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $) 124 (|has| |#1| (-239))) (($ $ (-781)) 121 (|has| |#1| (-239))) (($ $ (-1190)) 116 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 115 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 114 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 113 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 112) (($ $ (-1 |#1| |#1|)) 111)) (-3041 (((-112) $ $) 74 (|has| |#1| (-860)))) (-3016 (((-112) $ $) 73 (|has| |#1| (-860)))) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 75 (|has| |#1| (-860)))) (-3005 (((-112) $ $) 72 (|has| |#1| (-860)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 80 (|has| |#1| (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-417 (-574))) 79 (|has| |#1| (-372))) (($ (-417 (-574)) $) 78 (|has| |#1| (-372)))))
+(((-1010 |#1|) (-141) (-174)) (T -1010))
+((-1514 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-2512 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-2946 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)) (-4 *2 (-1073)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-2057 (*1 *2 *1) (|partial| -12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))))
+(-13 (-38 |t#1|) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-386 |t#1|) (-10 -8 (-15 -1514 ($ $)) (-15 -2202 (|t#1| $)) (-15 -3913 (|t#1| $)) (-15 -1382 (|t#1| $)) (-15 -1652 (|t#1| $)) (-15 -2512 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4239 (|t#1| $)) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1073)) (-15 -2946 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -1811 ((-112) $)) (-15 -4142 ((-417 (-574)) $)) (-15 -2057 ((-3 (-417 (-574)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-372)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-372)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-249) |has| |#1| (-372)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2818 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 #0#) |has| |#1| (-372)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-372)) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-372)) ((-650 |#1|) . T) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-372)) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 #0#) |has| |#1| (-372)) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1069 #0#) |has| |#1| (-372)) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) -2818 (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-239))))
+((-1778 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-1011 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 (|#3| (-1 |#4| |#2|) |#1|))) (-1010 |#2|) (-174) (-1010 |#4|) (-174)) (T -1011))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1010 *6)) (-5 *1 (-1011 *4 *5 *2 *6)) (-4 *4 (-1010 *5)))))
+(-10 -7 (-15 -1778 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-4239 ((|#1| $) 12)) (-2057 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-1811 (((-112) $) NIL (|has| |#1| (-555)))) (-4142 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-2512 (($ |#1| |#1| |#1| |#1|) 16)) (-3965 (((-112) $) NIL)) (-1652 ((|#1| $) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-1382 ((|#1| $) 15)) (-3913 ((|#1| $) 14)) (-2202 ((|#1| $) 13)) (-3966 (((-1133) $) NIL)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|)))) (-2200 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-3905 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-1514 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574))))))) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2946 ((|#1| $) NIL (|has| |#1| (-1073)))) (-2134 (($) 8 T CONST)) (-2146 (($) 10 T CONST)) (-3611 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-372)))))
+(((-1012 |#1|) (-1010 |#1|) (-174)) (T -1012))
+NIL
+(-1010 |#1|)
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3340 (((-112) $ (-781)) NIL)) (-3670 (($) NIL T CONST)) (-1557 (($ $) 23)) (-3677 (($ (-654 |#1|)) 33)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-4135 (((-781) $) 26)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2234 ((|#1| $) 28)) (-1709 (($ |#1| $) 17)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3412 ((|#1| $) 27)) (-3459 ((|#1| $) 22)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3929 ((|#1| |#1| $) 16)) (-3556 (((-112) $) 18)) (-3135 (($) NIL)) (-1537 ((|#1| $) 21)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) NIL)) (-2536 ((|#1| $) 30)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1013 |#1|) (-13 (-1008 |#1|) (-10 -8 (-15 -3677 ($ (-654 |#1|))))) (-1113)) (T -1013))
+((-3677 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-1013 *3)))))
+(-13 (-1008 |#1|) (-10 -8 (-15 -3677 ($ (-654 |#1|)))))
+((-4229 (($ $) 12)) (-3379 (($ $ (-574)) 13)))
+(((-1014 |#1|) (-10 -8 (-15 -4229 (|#1| |#1|)) (-15 -3379 (|#1| |#1| (-574)))) (-1015)) (T -1014))
+NIL
+(-10 -8 (-15 -4229 (|#1| |#1|)) (-15 -3379 (|#1| |#1| (-574))))
+((-4229 (($ $) 6)) (-3379 (($ $ (-574)) 7)) (** (($ $ (-417 (-574))) 8)))
+(((-1015) (-141)) (T -1015))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-417 (-574))))) (-3379 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-574)))) (-4229 (*1 *1 *1) (-4 *1 (-1015))))
+(-13 (-10 -8 (-15 -4229 ($ $)) (-15 -3379 ($ $ (-574))) (-15 ** ($ $ (-417 (-574))))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1432 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-2814 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2425 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-2762 (((-699 (-417 |#2|)) (-1281 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1637 (((-417 |#2|) $) NIL)) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3440 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3875 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1487 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-1785 (((-112)) NIL)) (-3465 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| (-417 |#2|) (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-3003 (($ (-1281 (-417 |#2|)) (-1281 $)) NIL) (($ (-1281 (-417 |#2|))) 79) (($ (-1281 |#2|) |#2|) NIL)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2785 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2085 (((-699 (-417 |#2|)) $ (-1281 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-417 |#2|))) (|:| |vec| (-1281 (-417 |#2|)))) (-699 $) (-1281 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1281 $)) NIL)) (-2514 (((-1281 $) (-1281 $)) NIL)) (-2868 (($ |#3|) 73) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-1950 (((-3 $ "failed") $) NIL)) (-4092 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-2150 (((-112) |#1| |#1|) NIL)) (-3584 (((-932)) NIL)) (-2820 (($) NIL (|has| (-417 |#2|) (-377)))) (-2920 (((-112)) NIL)) (-1759 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2798 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-3872 (($ $) NIL)) (-3906 (($) NIL (|has| (-417 |#2|) (-358)))) (-2878 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-3564 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-1654 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3593 (((-932) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-932)) $) NIL (|has| (-417 |#2|) (-358)))) (-3965 (((-112) $) NIL)) (-1884 (((-781)) NIL)) (-1648 (((-1281 $) (-1281 $)) NIL)) (-1652 (((-417 |#2|) $) NIL)) (-1804 (((-654 (-963 |#1|)) (-1190)) NIL (|has| |#1| (-372)))) (-4048 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3190 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-2565 (((-932) $) NIL (|has| (-417 |#2|) (-377)))) (-2854 ((|#3| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2568 (((-1172) $) NIL)) (-2992 (((-699 (-417 |#2|))) 57)) (-1732 (((-699 (-417 |#2|))) 56)) (-1324 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3928 (($ (-1281 |#2|) |#2|) 80)) (-1741 (((-699 (-417 |#2|))) 55)) (-1678 (((-699 (-417 |#2|))) 54)) (-3882 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-4119 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) 86)) (-3742 (((-1281 $)) 51)) (-3885 (((-1281 $)) 50)) (-3141 (((-112) $) NIL)) (-1577 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3818 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2576 (($ (-932)) NIL (|has| (-417 |#2|) (-377)))) (-3844 (((-3 |#2| "failed")) 70)) (-3966 (((-1133) $) NIL)) (-1762 (((-781)) NIL)) (-2970 (($) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| (-417 |#2|) (-372)))) (-2874 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4220 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1347 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2200 ((|#1| $ |#1| |#1|) NIL)) (-2464 (((-3 |#2| "failed")) 68)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1415 (((-417 |#2|) (-1281 $)) NIL) (((-417 |#2|)) 47)) (-3232 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3905 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-1437 (((-699 (-417 |#2|)) (-1281 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-1782 ((|#3|) 58)) (-2585 (($) NIL (|has| (-417 |#2|) (-358)))) (-3676 (((-1281 (-417 |#2|)) $ (-1281 $)) NIL) (((-699 (-417 |#2|)) (-1281 $) (-1281 $)) NIL) (((-1281 (-417 |#2|)) $) 81) (((-699 (-417 |#2|)) (-1281 $)) NIL)) (-1837 (((-1281 (-417 |#2|)) $) NIL) (($ (-1281 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-3573 (((-1281 $) (-1281 $)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| (-417 |#2|) (-1051 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1369 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-4169 ((|#3| $) NIL)) (-4160 (((-781)) NIL T CONST)) (-1773 (((-112)) 65)) (-3517 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) NIL)) (-3798 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1783 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3858 (((-112)) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372)))))
+(((-1016 |#1| |#2| |#3| |#4| |#5|) (-351 |#1| |#2| |#3|) (-1235) (-1257 |#1|) (-1257 (-417 |#2|)) (-417 |#2|) (-781)) (T -1016))
+NIL
+(-351 |#1| |#2| |#3|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2605 (((-654 (-574)) $) 73)) (-2136 (($ (-654 (-574))) 81)) (-2809 (((-574) $) 48 (|has| (-574) (-315)))) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL (|has| (-574) (-830)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) 60) (((-3 (-1190) "failed") $) NIL (|has| (-574) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) 57 (|has| (-574) (-1051 (-574)))) (((-3 (-574) "failed") $) 60 (|has| (-574) (-1051 (-574))))) (-2209 (((-574) $) NIL) (((-1190) $) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-574) (-1051 (-574)))) (((-574) $) NIL (|has| (-574) (-1051 (-574))))) (-2785 (($ $ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-574) (-555)))) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3789 (((-654 (-574)) $) 79)) (-3434 (((-112) $) NIL (|has| (-574) (-830)))) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL)) (-2965 (((-574) $) 45)) (-4048 (((-3 $ "failed") $) NIL (|has| (-574) (-1165)))) (-3244 (((-112) $) NIL (|has| (-574) (-830)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| (-574) (-860)))) (-1778 (($ (-1 (-574) (-574)) $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-574) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2595 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) 50)) (-1609 (((-1170 (-574)) $) 78)) (-2987 (($ (-654 (-574)) (-654 (-574))) 82)) (-1846 (((-574) $) 64 (|has| (-574) (-555)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4220 (((-428 $) $) NIL)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1190)) (-654 (-574))) NIL (|has| (-574) (-524 (-1190) (-574)))) (($ $ (-1190) (-574)) NIL (|has| (-574) (-524 (-1190) (-574))))) (-1347 (((-781) $) NIL)) (-2200 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $) 15 (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3520 (($ $) NIL)) (-2977 (((-574) $) 47)) (-3666 (((-654 (-574)) $) 80)) (-1837 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1035))) (((-227) $) NIL (|has| (-574) (-1035)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-920))))) (-2943 (((-872) $) 107) (($ (-574)) 51) (($ $) NIL) (($ (-417 (-574))) 27) (($ (-574)) 51) (($ (-1190)) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) 25)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-574) (-920))) (|has| (-574) (-146))))) (-4160 (((-781)) 13 T CONST)) (-4078 (((-574) $) 62 (|has| (-574) (-555)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2946 (($ $) NIL (|has| (-574) (-830)))) (-2134 (($) 14 T CONST)) (-2146 (($) 17 T CONST)) (-3611 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3041 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2982 (((-112) $ $) 21)) (-3028 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3005 (((-112) $ $) 40 (|has| (-574) (-860)))) (-3107 (($ $ $) 36) (($ (-574) (-574)) 38)) (-3094 (($ $) 23) (($ $ $) 30)) (-3078 (($ $ $) 28)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ $ $) 34) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) 32) (($ $ (-574)) NIL)))
+(((-1017 |#1|) (-13 (-1005 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -2595 ((-417 (-574)) $)) (-15 -2605 ((-654 (-574)) $)) (-15 -1609 ((-1170 (-574)) $)) (-15 -3789 ((-654 (-574)) $)) (-15 -3666 ((-654 (-574)) $)) (-15 -2136 ($ (-654 (-574)))) (-15 -2987 ($ (-654 (-574)) (-654 (-574)))))) (-574)) (T -1017))
+((-2595 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-2136 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-2987 (*1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))))
+(-13 (-1005 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -2595 ((-417 (-574)) $)) (-15 -2605 ((-654 (-574)) $)) (-15 -1609 ((-1170 (-574)) $)) (-15 -3789 ((-654 (-574)) $)) (-15 -3666 ((-654 (-574)) $)) (-15 -2136 ($ (-654 (-574)))) (-15 -2987 ($ (-654 (-574)) (-654 (-574))))))
+((-3183 (((-52) (-417 (-574)) (-574)) 9)))
+(((-1018) (-10 -7 (-15 -3183 ((-52) (-417 (-574)) (-574))))) (T -1018))
+((-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) (-5 *1 (-1018)))))
+(-10 -7 (-15 -3183 ((-52) (-417 (-574)) (-574))))
+((-1487 (((-574)) 23)) (-4202 (((-574)) 28)) (-3553 (((-1286) (-574)) 26)) (-3480 (((-574) (-574)) 29) (((-574)) 22)))
+(((-1019) (-10 -7 (-15 -3480 ((-574))) (-15 -1487 ((-574))) (-15 -3480 ((-574) (-574))) (-15 -3553 ((-1286) (-574))) (-15 -4202 ((-574))))) (T -1019))
+((-4202 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1019)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))) (-1487 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))) (-3480 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))))
+(-10 -7 (-15 -3480 ((-574))) (-15 -1487 ((-574))) (-15 -3480 ((-574) (-574))) (-15 -3553 ((-1286) (-574))) (-15 -4202 ((-574))))
+((-4325 (((-428 |#1|) |#1|) 43)) (-4220 (((-428 |#1|) |#1|) 41)))
+(((-1020 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4325 ((-428 |#1|) |#1|))) (-1257 (-417 (-574)))) (T -1020))
+((-4325 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1257 (-417 (-574)))))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1257 (-417 (-574)))))))
+(-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4325 ((-428 |#1|) |#1|)))
+((-2057 (((-3 (-417 (-574)) "failed") |#1|) 15)) (-1811 (((-112) |#1|) 14)) (-4142 (((-417 (-574)) |#1|) 10)))
+(((-1021 |#1|) (-10 -7 (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|))) (-1051 (-417 (-574)))) (T -1021))
+((-2057 (*1 *2 *3) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1021 *3)) (-4 *3 (-1051 *2)))) (-1811 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1021 *3)) (-4 *3 (-1051 (-417 (-574)))))) (-4142 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1021 *3)) (-4 *3 (-1051 *2)))))
+(-10 -7 (-15 -4142 ((-417 (-574)) |#1|)) (-15 -1811 ((-112) |#1|)) (-15 -2057 ((-3 (-417 (-574)) "failed") |#1|)))
+((-3143 ((|#2| $ "value" |#2|) 12)) (-2200 ((|#2| $ "value") 10)) (-1495 (((-112) $ $) 18)))
+(((-1022 |#1| |#2|) (-10 -8 (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -1495 ((-112) |#1| |#1|)) (-15 -2200 (|#2| |#1| "value"))) (-1023 |#2|) (-1231)) (T -1022))
+NIL
+(-10 -8 (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -1495 ((-112) |#1| |#1|)) (-15 -2200 (|#2| |#1| "value")))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-3340 (((-112) $ (-781)) 8)) (-1630 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3670 (($) 7 T CONST)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 51)) (-4127 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-3509 (((-654 |#1|) $) 46)) (-2173 (((-112) $) 50)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ "value") 48)) (-1556 (((-574) $ $) 45)) (-4023 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) 52)) (-1495 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-1023 |#1|) (-141) (-1231)) (T -1023))
+((-1973 (*1 *2 *1) (-12 (-4 *3 (-1231)) (-5 *2 (-654 *1)) (-4 *1 (-1023 *3)))) (-2192 (*1 *2 *1) (-12 (-4 *3 (-1231)) (-5 *2 (-654 *1)) (-4 *1 (-1023 *3)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1231)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1023 *2)) (-4 *2 (-1231)))) (-4023 (*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-654 *3)))) (-1556 (*1 *2 *1 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-574)))) (-1495 (*1 *2 *1 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-4127 (*1 *2 *1 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-2751 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4457)) (-4 *1 (-1023 *3)) (-4 *3 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4457)) (-4 *1 (-1023 *2)) (-4 *2 (-1231)))) (-1630 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1023 *2)) (-4 *2 (-1231)))))
+(-13 (-499 |t#1|) (-10 -8 (-15 -1973 ((-654 $) $)) (-15 -2192 ((-654 $) $)) (-15 -2173 ((-112) $)) (-15 -3083 (|t#1| $)) (-15 -2200 (|t#1| $ "value")) (-15 -4023 ((-112) $)) (-15 -3509 ((-654 |t#1|) $)) (-15 -1556 ((-574) $ $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -1495 ((-112) $ $)) (-15 -4127 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4457)) (PROGN (-15 -2751 ($ $ (-654 $))) (-15 -3143 (|t#1| $ "value" |t#1|)) (-15 -1630 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-4229 (($ $) 9) (($ $ (-932)) 49) (($ (-417 (-574))) 13) (($ (-574)) 15)) (-1413 (((-3 $ "failed") (-1186 $) (-932) (-872)) 24) (((-3 $ "failed") (-1186 $) (-932)) 32)) (-3379 (($ $ (-574)) 58)) (-4160 (((-781)) 18)) (-3491 (((-654 $) (-1186 $)) NIL) (((-654 $) (-1186 (-417 (-574)))) 63) (((-654 $) (-1186 (-574))) 68) (((-654 $) (-963 $)) 72) (((-654 $) (-963 (-417 (-574)))) 76) (((-654 $) (-963 (-574))) 80)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 53)))
+(((-1024 |#1|) (-10 -8 (-15 -4229 (|#1| (-574))) (-15 -4229 (|#1| (-417 (-574)))) (-15 -4229 (|#1| |#1| (-932))) (-15 -3491 ((-654 |#1|) (-963 (-574)))) (-15 -3491 ((-654 |#1|) (-963 (-417 (-574))))) (-15 -3491 ((-654 |#1|) (-963 |#1|))) (-15 -3491 ((-654 |#1|) (-1186 (-574)))) (-15 -3491 ((-654 |#1|) (-1186 (-417 (-574))))) (-15 -3491 ((-654 |#1|) (-1186 |#1|))) (-15 -1413 ((-3 |#1| "failed") (-1186 |#1|) (-932))) (-15 -1413 ((-3 |#1| "failed") (-1186 |#1|) (-932) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3379 (|#1| |#1| (-574))) (-15 -4229 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -4160 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932)))) (-1025)) (T -1024))
+((-4160 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1024 *3)) (-4 *3 (-1025)))))
+(-10 -8 (-15 -4229 (|#1| (-574))) (-15 -4229 (|#1| (-417 (-574)))) (-15 -4229 (|#1| |#1| (-932))) (-15 -3491 ((-654 |#1|) (-963 (-574)))) (-15 -3491 ((-654 |#1|) (-963 (-417 (-574))))) (-15 -3491 ((-654 |#1|) (-963 |#1|))) (-15 -3491 ((-654 |#1|) (-1186 (-574)))) (-15 -3491 ((-654 |#1|) (-1186 (-417 (-574))))) (-15 -3491 ((-654 |#1|) (-1186 |#1|))) (-15 -1413 ((-3 |#1| "failed") (-1186 |#1|) (-932))) (-15 -1413 ((-3 |#1| "failed") (-1186 |#1|) (-932) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3379 (|#1| |#1| (-574))) (-15 -4229 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -4160 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 102)) (-2814 (($ $) 103)) (-2425 (((-112) $) 105)) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 122)) (-3440 (((-428 $) $) 123)) (-4229 (($ $) 86) (($ $ (-932)) 72) (($ (-417 (-574))) 71) (($ (-574)) 70)) (-3875 (((-112) $ $) 113)) (-3747 (((-574) $) 139)) (-3670 (($) 18 T CONST)) (-1413 (((-3 $ "failed") (-1186 $) (-932) (-872)) 80) (((-3 $ "failed") (-1186 $) (-932)) 79)) (-1697 (((-3 (-574) "failed") $) 99 (|has| (-417 (-574)) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| (-417 (-574)) (-1051 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) 94)) (-2209 (((-574) $) 98 (|has| (-417 (-574)) (-1051 (-574)))) (((-417 (-574)) $) 96 (|has| (-417 (-574)) (-1051 (-417 (-574))))) (((-417 (-574)) $) 95)) (-2059 (($ $ (-872)) 69)) (-3269 (($ $ (-872)) 68)) (-2785 (($ $ $) 117)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 116)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 111)) (-1654 (((-112) $) 124)) (-3434 (((-112) $) 137)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 85)) (-3244 (((-112) $) 138)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 120)) (-3658 (($ $ $) 136)) (-2106 (($ $ $) 135)) (-3185 (((-3 (-1186 $) "failed") $) 81)) (-3174 (((-3 (-872) "failed") $) 83)) (-3271 (((-3 (-1186 $) "failed") $) 82)) (-2834 (($ (-654 $)) 109) (($ $ $) 108)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 125)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 110)) (-2874 (($ (-654 $)) 107) (($ $ $) 106)) (-4220 (((-428 $) $) 121)) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 118)) (-2838 (((-3 $ "failed") $ $) 101)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 112)) (-1347 (((-781) $) 114)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 115)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 129) (($ $) 100) (($ (-417 (-574))) 93) (($ (-574)) 92) (($ (-417 (-574))) 89)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 104)) (-3551 (((-417 (-574)) $ $) 67)) (-3491 (((-654 $) (-1186 $)) 78) (((-654 $) (-1186 (-417 (-574)))) 77) (((-654 $) (-1186 (-574))) 76) (((-654 $) (-963 $)) 75) (((-654 $) (-963 (-417 (-574)))) 74) (((-654 $) (-963 (-574))) 73)) (-2946 (($ $) 140)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3041 (((-112) $ $) 133)) (-3016 (((-112) $ $) 132)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 134)) (-3005 (((-112) $ $) 131)) (-3107 (($ $ $) 130)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 126) (($ $ (-417 (-574))) 84)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 128) (($ $ (-417 (-574))) 127) (($ (-574) $) 91) (($ $ (-574)) 90) (($ (-417 (-574)) $) 88) (($ $ (-417 (-574))) 87)))
+(((-1025) (-141)) (T -1025))
+((-4229 (*1 *1 *1) (-4 *1 (-1025))) (-3174 (*1 *2 *1) (|partial| -12 (-4 *1 (-1025)) (-5 *2 (-872)))) (-3271 (*1 *2 *1) (|partial| -12 (-5 *2 (-1186 *1)) (-4 *1 (-1025)))) (-3185 (*1 *2 *1) (|partial| -12 (-5 *2 (-1186 *1)) (-4 *1 (-1025)))) (-1413 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1186 *1)) (-5 *3 (-932)) (-5 *4 (-872)) (-4 *1 (-1025)))) (-1413 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1186 *1)) (-5 *3 (-932)) (-4 *1 (-1025)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-1025)) (-5 *2 (-654 *1)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-1186 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-1186 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-1025)) (-5 *2 (-654 *1)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-963 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) (-4229 (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-932)))) (-4229 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1025)))) (-4229 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1025)))) (-2059 (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-872)))) (-3269 (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-872)))) (-3551 (*1 *2 *1 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-417 (-574))))))
+(-13 (-148) (-858) (-174) (-372) (-421 (-417 (-574))) (-38 (-574)) (-38 (-417 (-574))) (-1015) (-10 -8 (-15 -3174 ((-3 (-872) "failed") $)) (-15 -3271 ((-3 (-1186 $) "failed") $)) (-15 -3185 ((-3 (-1186 $) "failed") $)) (-15 -1413 ((-3 $ "failed") (-1186 $) (-932) (-872))) (-15 -1413 ((-3 $ "failed") (-1186 $) (-932))) (-15 -3491 ((-654 $) (-1186 $))) (-15 -3491 ((-654 $) (-1186 (-417 (-574))))) (-15 -3491 ((-654 $) (-1186 (-574)))) (-15 -3491 ((-654 $) (-963 $))) (-15 -3491 ((-654 $) (-963 (-417 (-574))))) (-15 -3491 ((-654 $) (-963 (-574)))) (-15 -4229 ($ $ (-932))) (-15 -4229 ($ $)) (-15 -4229 ($ (-417 (-574)))) (-15 -4229 ($ (-574))) (-15 -2059 ($ $ (-872))) (-15 -3269 ($ $ (-872))) (-15 -3551 ((-417 (-574)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 #1=(-574)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-421 (-417 (-574))) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #1#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 #1#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-931) . T) ((-1015) . T) ((-1051 (-417 (-574))) . T) ((-1051 (-574)) |has| (-417 (-574)) (-1051 (-574))) ((-1064 #0#) . T) ((-1064 #1#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 #1#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T))
+((-2594 (((-2 (|:| |ans| |#2|) (|:| -3904 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1026 |#1| |#2|) (-10 -7 (-15 -2594 ((-2 (|:| |ans| |#2|) (|:| -3904 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-27) (-440 |#1|))) (T -1026))
+((-2594 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1190)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4332 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1216) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1051 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3904 *4) (|:| |sol?| (-112)))) (-5 *1 (-1026 *8 *4)))))
+(-10 -7 (-15 -2594 ((-2 (|:| |ans| |#2|) (|:| -3904 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1592 (((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1027 |#1| |#2|) (-10 -7 (-15 -1592 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-27) (-440 |#1|))) (T -1027))
+((-1592 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1190)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4332 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1216) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1051 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-654 *4)) (-5 *1 (-1027 *8 *4)))))
+(-10 -7 (-15 -1592 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -4332 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-4125 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)) 38)) (-3436 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2144 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 69)) (-3467 (((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|)) 74)))
+(((-1028 |#1| |#2|) (-10 -7 (-15 -3436 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2144 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3467 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -4125 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) (-13 (-372) (-148) (-1051 (-574))) (-1257 |#1|)) (T -1028))
+((-4125 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1257 *6)) (-4 *6 (-13 (-372) (-148) (-1051 *4))) (-5 *4 (-574)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1028 *6 *3)))) (-3467 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-417 *5)))) (-3436 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) (|:| -2144 *6))) (-5 *1 (-1028 *5 *6)) (-5 *3 (-417 *6)))))
+(-10 -7 (-15 -3436 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2144 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3467 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -4125 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|))))
+((-4159 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2144 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 22)) (-1901 (((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 34)))
+(((-1029 |#1| |#2|) (-10 -7 (-15 -4159 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2144 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1901 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) (-13 (-372) (-148) (-1051 (-574))) (-1257 |#1|)) (T -1029))
+((-1901 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-417 *5)))) (-4159 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6) (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2144 *6))) (-5 *1 (-1029 *5 *6)) (-5 *3 (-417 *6)))))
+(-10 -7 (-15 -4159 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2144 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1901 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))))
+((-2020 (((-1 |#1|) (-654 (-2 (|:| -3083 |#1|) (|:| -3848 (-574))))) 34)) (-3046 (((-1 |#1|) (-1115 |#1|)) 42)) (-1587 (((-1 |#1|) (-1281 |#1|) (-1281 (-574)) (-574)) 31)))
+(((-1030 |#1|) (-10 -7 (-15 -3046 ((-1 |#1|) (-1115 |#1|))) (-15 -2020 ((-1 |#1|) (-654 (-2 (|:| -3083 |#1|) (|:| -3848 (-574)))))) (-15 -1587 ((-1 |#1|) (-1281 |#1|) (-1281 (-574)) (-574)))) (-1113)) (T -1030))
+((-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1281 *6)) (-5 *4 (-1281 (-574))) (-5 *5 (-574)) (-4 *6 (-1113)) (-5 *2 (-1 *6)) (-5 *1 (-1030 *6)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3083 *4) (|:| -3848 (-574))))) (-4 *4 (-1113)) (-5 *2 (-1 *4)) (-5 *1 (-1030 *4)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-1115 *4)) (-4 *4 (-1113)) (-5 *2 (-1 *4)) (-5 *1 (-1030 *4)))))
+(-10 -7 (-15 -3046 ((-1 |#1|) (-1115 |#1|))) (-15 -2020 ((-1 |#1|) (-654 (-2 (|:| -3083 |#1|) (|:| -3848 (-574)))))) (-15 -1587 ((-1 |#1|) (-1281 |#1|) (-1281 (-574)) (-574))))
+((-3593 (((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1031 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3593 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-13 (-377) (-372))) (T -1031))
+((-3593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-4 *4 (-1257 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) (-5 *1 (-1031 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -3593 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2849 (((-112) $ $) NIL)) (-4173 (((-1148) $) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-1148) $) 11)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1032) (-13 (-1096) (-10 -8 (-15 -4173 ((-1148) $)) (-15 -2045 ((-1148) $))))) (T -1032))
+((-4173 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1032)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1032)))))
+(-13 (-1096) (-10 -8 (-15 -4173 ((-1148) $)) (-15 -2045 ((-1148) $))))
+((-2621 (((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 32) (((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574))) 29)) (-1358 (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574))) 34) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574))) 30) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 33) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|) 28)) (-3994 (((-654 (-417 (-574))) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) 20)) (-1975 (((-417 (-574)) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 17)))
+(((-1033 |#1|) (-10 -7 (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|)) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -2621 ((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -2621 ((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1975 ((-417 (-574)) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -3994 ((-654 (-417 (-574))) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))))) (-1257 (-574))) (T -1033))
+((-3994 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1033 *4)) (-4 *4 (-1257 (-574))))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *2 (-417 (-574))) (-5 *1 (-1033 *4)) (-4 *4 (-1257 (-574))))) (-2621 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))))) (-2621 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))))) (-1358 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3891 *5) (|:| -3904 *5)))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))) (-5 *4 (-2 (|:| -3891 *5) (|:| -3904 *5))))) (-1358 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))) (-5 *4 (-417 (-574))))) (-1358 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))) (-5 *4 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-1358 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))))))
+(-10 -7 (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|)) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -2621 ((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -2621 ((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1975 ((-417 (-574)) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -3994 ((-654 (-417 (-574))) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))))
+((-2621 (((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 35) (((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574))) 32)) (-1358 (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574))) 30) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574))) 26) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 28) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|) 24)))
+(((-1034 |#1|) (-10 -7 (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|)) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -2621 ((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -2621 ((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-1257 (-417 (-574)))) (T -1034))
+((-2621 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574)))))) (-2621 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 *4)))) (-1358 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3891 *5) (|:| -3904 *5)))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 *5)) (-5 *4 (-2 (|:| -3891 *5) (|:| -3904 *5))))) (-1358 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3891 *4) (|:| -3904 *4)))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 *4)))) (-1358 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574)))) (-5 *4 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-1358 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574)))))))
+(-10 -7 (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|)) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1358 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -2621 ((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -2621 ((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))))
+((-1837 (((-227) $) 6) (((-388) $) 9)))
+(((-1035) (-141)) (T -1035))
+NIL
+(-13 (-624 (-227)) (-624 (-388)))
+(((-624 (-227)) . T) ((-624 (-388)) . T))
+((-1723 (((-654 (-388)) (-963 (-574)) (-388)) 28) (((-654 (-388)) (-963 (-417 (-574))) (-388)) 27)) (-2290 (((-654 (-654 (-388))) (-654 (-963 (-574))) (-654 (-1190)) (-388)) 37)))
+(((-1036) (-10 -7 (-15 -1723 ((-654 (-388)) (-963 (-417 (-574))) (-388))) (-15 -1723 ((-654 (-388)) (-963 (-574)) (-388))) (-15 -2290 ((-654 (-654 (-388))) (-654 (-963 (-574))) (-654 (-1190)) (-388))))) (T -1036))
+((-2290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-654 (-1190))) (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1036)) (-5 *5 (-388)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-963 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1036)) (-5 *4 (-388)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *2 (-654 (-388))) (-5 *1 (-1036)) (-5 *4 (-388)))))
+(-10 -7 (-15 -1723 ((-654 (-388)) (-963 (-417 (-574))) (-388))) (-15 -1723 ((-654 (-388)) (-963 (-574)) (-388))) (-15 -2290 ((-654 (-654 (-388))) (-654 (-963 (-574))) (-654 (-1190)) (-388))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 75)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-4229 (($ $) NIL) (($ $ (-932)) NIL) (($ (-417 (-574))) NIL) (($ (-574)) NIL)) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) 70)) (-3670 (($) NIL T CONST)) (-1413 (((-3 $ "failed") (-1186 $) (-932) (-872)) NIL) (((-3 $ "failed") (-1186 $) (-932)) 55)) (-1697 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 (-574)) (-1051 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-574) "failed") $) NIL (-2818 (|has| (-417 (-574)) (-1051 (-574))) (|has| |#1| (-1051 (-574)))))) (-2209 (((-417 (-574)) $) 17 (|has| (-417 (-574)) (-1051 (-417 (-574))))) (((-417 (-574)) $) 17) ((|#1| $) 117) (((-574) $) NIL (-2818 (|has| (-417 (-574)) (-1051 (-574))) (|has| |#1| (-1051 (-574)))))) (-2059 (($ $ (-872)) 47)) (-3269 (($ $ (-872)) 48)) (-2785 (($ $ $) NIL)) (-2749 (((-417 (-574)) $ $) 21)) (-1950 (((-3 $ "failed") $) 88)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-3434 (((-112) $) 66)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL)) (-3244 (((-112) $) 69)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-3185 (((-3 (-1186 $) "failed") $) 83)) (-3174 (((-3 (-872) "failed") $) 82)) (-3271 (((-3 (-1186 $) "failed") $) 80)) (-3766 (((-3 (-1074 $ (-1186 $)) "failed") $) 78)) (-2834 (($ (-654 $)) NIL) (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 89)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-2943 (((-872) $) 87) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) 63) (($ (-417 (-574))) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 119)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-3551 (((-417 (-574)) $ $) 27)) (-3491 (((-654 $) (-1186 $)) 61) (((-654 $) (-1186 (-417 (-574)))) NIL) (((-654 $) (-1186 (-574))) NIL) (((-654 $) (-963 $)) NIL) (((-654 $) (-963 (-417 (-574)))) NIL) (((-654 $) (-963 (-574))) NIL)) (-4151 (($ (-1074 $ (-1186 $)) (-872)) 46)) (-2946 (($ $) 22)) (-2134 (($) 32 T CONST)) (-2146 (($) 39 T CONST)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 76)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 24)) (-3107 (($ $ $) 37)) (-3094 (($ $) 38) (($ $ $) 74)) (-3078 (($ $ $) 112)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 98) (($ $ $) 104) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ (-574) $) 98) (($ $ (-574)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1037 |#1|) (-13 (-1025) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -4151 ($ (-1074 $ (-1186 $)) (-872))) (-15 -3766 ((-3 (-1074 $ (-1186 $)) "failed") $)) (-15 -2749 ((-417 (-574)) $ $)))) (-13 (-858) (-372) (-1035))) (T -1037))
+((-4151 (*1 *1 *2 *3) (-12 (-5 *2 (-1074 (-1037 *4) (-1186 (-1037 *4)))) (-5 *3 (-872)) (-5 *1 (-1037 *4)) (-4 *4 (-13 (-858) (-372) (-1035))))) (-3766 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074 (-1037 *3) (-1186 (-1037 *3)))) (-5 *1 (-1037 *3)) (-4 *3 (-13 (-858) (-372) (-1035))))) (-2749 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1037 *3)) (-4 *3 (-13 (-858) (-372) (-1035))))))
+(-13 (-1025) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -4151 ($ (-1074 $ (-1186 $)) (-872))) (-15 -3766 ((-3 (-1074 $ (-1186 $)) "failed") $)) (-15 -2749 ((-417 (-574)) $ $))))
+((-3295 (((-2 (|:| -4122 |#2|) (|:| -4296 (-654 |#1|))) |#2| (-654 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1038 |#1| |#2|) (-10 -7 (-15 -3295 (|#2| |#2| |#1|)) (-15 -3295 ((-2 (|:| -4122 |#2|) (|:| -4296 (-654 |#1|))) |#2| (-654 |#1|)))) (-372) (-666 |#1|)) (T -1038))
+((-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4122 *3) (|:| -4296 (-654 *5)))) (-5 *1 (-1038 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5)))) (-3295 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-1038 *3 *2)) (-4 *2 (-666 *3)))))
+(-10 -7 (-15 -3295 (|#2| |#2| |#1|)) (-15 -3295 ((-2 (|:| -4122 |#2|) (|:| -4296 (-654 |#1|))) |#2| (-654 |#1|))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2258 ((|#1| $ |#1|) 14)) (-3143 ((|#1| $ |#1|) 12)) (-1350 (($ |#1|) 10)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2200 ((|#1| $) 11)) (-4383 ((|#1| $) 13)) (-2943 (((-872) $) 21 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2982 (((-112) $ $) 9)))
+(((-1039 |#1|) (-13 (-1231) (-10 -8 (-15 -1350 ($ |#1|)) (-15 -2200 (|#1| $)) (-15 -3143 (|#1| $ |#1|)) (-15 -4383 (|#1| $)) (-15 -2258 (|#1| $ |#1|)) (-15 -2982 ((-112) $ $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|))) (-1231)) (T -1039))
+((-1350 (*1 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-2200 (*1 *2 *1) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-3143 (*1 *2 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-4383 (*1 *2 *1) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-2258 (*1 *2 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-2982 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1039 *3)) (-4 *3 (-1231)))))
+(-13 (-1231) (-10 -8 (-15 -1350 ($ |#1|)) (-15 -2200 (|#1| $)) (-15 -3143 (|#1| $ |#1|)) (-15 -4383 (|#1| $)) (-15 -2258 (|#1| $ |#1|)) (-15 -2982 ((-112) $ $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1886 (((-654 $) (-654 |#4|)) 118) (((-654 $) (-654 |#4|) (-112)) 119) (((-654 $) (-654 |#4|) (-112) (-112)) 117) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4355 (((-654 |#3|) $) NIL)) (-3753 (((-112) $) NIL)) (-3609 (((-112) $) NIL (|has| |#1| (-566)))) (-3456 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1621 ((|#4| |#4| $) NIL)) (-4348 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 112)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-2166 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 66)) (-3670 (($) NIL T CONST)) (-1800 (((-112) $) 29 (|has| |#1| (-566)))) (-1322 (((-112) $ $) NIL (|has| |#1| (-566)))) (-4133 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3172 (((-112) $) NIL (|has| |#1| (-566)))) (-2543 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3949 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2209 (($ (-654 |#4|)) NIL)) (-2926 (((-3 $ "failed") $) 45)) (-2793 ((|#4| |#4| $) 69)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-566)))) (-4155 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2043 ((|#4| |#4| $) NIL)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2766 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1676 (-654 |#4|))) $) NIL)) (-3321 (((-112) |#4| $) NIL)) (-2308 (((-112) |#4| $) NIL)) (-3857 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2645 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 133)) (-1864 (((-654 |#4|) $) 18 (|has| $ (-6 -4456)))) (-2474 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2851 ((|#3| $) 38)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#4|) $) 19 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2446 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 23)) (-2867 (((-654 |#3|) $) NIL)) (-2570 (((-112) |#3| $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-2176 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-2107 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 110)) (-3360 (((-3 |#4| "failed") $) 42)) (-4130 (((-654 $) |#4| $) 93)) (-1885 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-4027 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1731 (((-654 $) |#4| $) 115) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 116) (((-654 $) |#4| (-654 $)) NIL)) (-3482 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 128)) (-1750 (($ |#4| $) 82) (($ (-654 |#4|) $) 83) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4153 (((-654 |#4|) $) NIL)) (-2768 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2244 ((|#4| |#4| $) NIL)) (-2430 (((-112) $ $) NIL)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1406 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1443 ((|#4| |#4| $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 |#4| "failed") $) 40)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3043 (((-3 $ "failed") $ |#4|) 59)) (-4344 (($ $ |#4|) NIL) (((-654 $) |#4| $) 95) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 89)) (-3124 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 17)) (-3135 (($) 14)) (-1784 (((-781) $) NIL)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) 13)) (-1837 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 22)) (-2175 (($ $ |#3|) 52)) (-2840 (($ $ |#3|) 54)) (-1496 (($ $) NIL)) (-2427 (($ $ |#3|) NIL)) (-2943 (((-872) $) 35) (((-654 |#4|) $) 46)) (-3530 (((-781) $) NIL (|has| |#3| (-377)))) (-2923 (((-112) $ $) NIL)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1685 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2790 (((-654 $) |#4| $) 92) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2935 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2681 (((-654 |#3|) $) NIL)) (-2897 (((-112) |#4| $) NIL)) (-4321 (((-112) |#3| $) 65)) (-2982 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1040 |#1| |#2| |#3| |#4|) (-13 (-1084 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1750 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1886 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1886 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -3482 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2645 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -1040))
+((-1750 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1040 *5 *6 *7 *3))) (-5 *1 (-1040 *5 *6 *7 *3)) (-4 *3 (-1078 *5 *6 *7)))) (-1886 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8)))) (-1886 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8)))) (-3482 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8)))) (-2645 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1040 *5 *6 *7 *8))))) (-5 *1 (-1040 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
+(-13 (-1084 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1750 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1886 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1886 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -3482 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2645 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)))))
+((-3035 (((-654 (-699 |#1|)) (-654 (-699 |#1|))) 70) (((-699 |#1|) (-699 |#1|)) 69) (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 68) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 65)) (-3161 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932)) 63) (((-699 |#1|) (-699 |#1|) (-932)) 62)) (-3531 (((-654 (-699 (-574))) (-654 (-654 (-574)))) 81) (((-654 (-699 (-574))) (-654 (-916 (-574))) (-574)) 80) (((-699 (-574)) (-654 (-574))) 77) (((-699 (-574)) (-916 (-574)) (-574)) 75)) (-1770 (((-699 (-963 |#1|)) (-781)) 95)) (-3699 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932)) 49 (|has| |#1| (-6 (-4458 "*")))) (((-699 |#1|) (-699 |#1|) (-932)) 47 (|has| |#1| (-6 (-4458 "*"))))))
+(((-1041 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4458 "*"))) (-15 -3699 ((-699 |#1|) (-699 |#1|) (-932))) |%noBranch|) (IF (|has| |#1| (-6 (-4458 "*"))) (-15 -3699 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932))) |%noBranch|) (-15 -1770 ((-699 (-963 |#1|)) (-781))) (-15 -3161 ((-699 |#1|) (-699 |#1|) (-932))) (-15 -3161 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932))) (-15 -3035 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3035 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3035 ((-699 |#1|) (-699 |#1|))) (-15 -3035 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3531 ((-699 (-574)) (-916 (-574)) (-574))) (-15 -3531 ((-699 (-574)) (-654 (-574)))) (-15 -3531 ((-654 (-699 (-574))) (-654 (-916 (-574))) (-574))) (-15 -3531 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) (-1062)) (T -1041))
+((-3531 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1041 *4)) (-4 *4 (-1062)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-916 (-574)))) (-5 *4 (-574)) (-5 *2 (-654 (-699 *4))) (-5 *1 (-1041 *5)) (-4 *5 (-1062)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1041 *4)) (-4 *4 (-1062)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-916 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) (-5 *1 (-1041 *5)) (-4 *5 (-1062)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) (-3035 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) (-3035 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) (-3161 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-932)) (-4 *4 (-1062)) (-5 *1 (-1041 *4)))) (-3161 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-932)) (-4 *4 (-1062)) (-5 *1 (-1041 *4)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-699 (-963 *4))) (-5 *1 (-1041 *4)) (-4 *4 (-1062)))) (-3699 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-932)) (|has| *4 (-6 (-4458 "*"))) (-4 *4 (-1062)) (-5 *1 (-1041 *4)))) (-3699 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-932)) (|has| *4 (-6 (-4458 "*"))) (-4 *4 (-1062)) (-5 *1 (-1041 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4458 "*"))) (-15 -3699 ((-699 |#1|) (-699 |#1|) (-932))) |%noBranch|) (IF (|has| |#1| (-6 (-4458 "*"))) (-15 -3699 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932))) |%noBranch|) (-15 -1770 ((-699 (-963 |#1|)) (-781))) (-15 -3161 ((-699 |#1|) (-699 |#1|) (-932))) (-15 -3161 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932))) (-15 -3035 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3035 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3035 ((-699 |#1|) (-699 |#1|))) (-15 -3035 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3531 ((-699 (-574)) (-916 (-574)) (-574))) (-15 -3531 ((-699 (-574)) (-654 (-574)))) (-15 -3531 ((-654 (-699 (-574))) (-654 (-916 (-574))) (-574))) (-15 -3531 ((-654 (-699 (-574))) (-654 (-654 (-574))))))
+((-2620 (((-699 |#1|) (-654 (-699 |#1|)) (-1281 |#1|)) 70 (|has| |#1| (-315)))) (-1483 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 (-1281 |#1|))) 110 (|has| |#1| (-372))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 |#1|)) 117 (|has| |#1| (-372)))) (-1563 (((-1281 |#1|) (-654 (-1281 |#1|)) (-574)) 135 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-2321 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-932)) 123 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112)) 122 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|))) 121 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574)) 120 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-3819 (((-112) (-654 (-699 |#1|))) 103 (|has| |#1| (-372))) (((-112) (-654 (-699 |#1|)) (-574)) 106 (|has| |#1| (-372)))) (-3854 (((-1281 (-1281 |#1|)) (-654 (-699 |#1|)) (-1281 |#1|)) 67 (|has| |#1| (-315)))) (-4416 (((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|)) 47)) (-4123 (((-699 |#1|) (-1281 (-1281 |#1|))) 40)) (-3200 (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574)) 94 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 93 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574)) 101 (|has| |#1| (-372)))))
+(((-1042 |#1|) (-10 -7 (-15 -4123 ((-699 |#1|) (-1281 (-1281 |#1|)))) (-15 -4416 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3854 ((-1281 (-1281 |#1|)) (-654 (-699 |#1|)) (-1281 |#1|))) (-15 -2620 ((-699 |#1|) (-654 (-699 |#1|)) (-1281 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -3200 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -3200 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3200 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -3819 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -3819 ((-112) (-654 (-699 |#1|)))) (-15 -1483 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 |#1|))) (-15 -1483 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 (-1281 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -2321 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -2321 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -2321 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -2321 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-932))) (-15 -1563 ((-1281 |#1|) (-654 (-1281 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) (-1062)) (T -1042))
+((-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1281 *5))) (-5 *4 (-574)) (-5 *2 (-1281 *5)) (-5 *1 (-1042 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-654 (-699 *5))))) (-2321 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-654 (-699 *5))))) (-2321 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1062)) (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1042 *4)) (-5 *3 (-654 (-699 *4))))) (-2321 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) (-4 *6 (-1062)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1042 *6)) (-5 *3 (-654 (-699 *6))))) (-1483 (*1 *2 *3 *4) (-12 (-5 *4 (-1281 (-1281 *5))) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-654 (-699 *5))))) (-1483 (*1 *2 *3 *4) (-12 (-5 *4 (-1281 *5)) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-654 (-699 *5))))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1062)) (-5 *2 (-112)) (-5 *1 (-1042 *4)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-112)) (-5 *1 (-1042 *5)))) (-3200 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) (-5 *1 (-1042 *5)) (-4 *5 (-372)) (-4 *5 (-1062)))) (-3200 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1042 *4)) (-4 *4 (-372)) (-4 *4 (-1062)))) (-3200 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) (-5 *2 (-699 *6)) (-5 *1 (-1042 *6)) (-4 *6 (-372)) (-4 *6 (-1062)))) (-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1281 *5)) (-4 *5 (-315)) (-4 *5 (-1062)) (-5 *2 (-699 *5)) (-5 *1 (-1042 *5)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1062)) (-5 *2 (-1281 (-1281 *5))) (-5 *1 (-1042 *5)) (-5 *4 (-1281 *5)))) (-4416 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1062)) (-5 *1 (-1042 *4)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-1281 (-1281 *4))) (-4 *4 (-1062)) (-5 *2 (-699 *4)) (-5 *1 (-1042 *4)))))
+(-10 -7 (-15 -4123 ((-699 |#1|) (-1281 (-1281 |#1|)))) (-15 -4416 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3854 ((-1281 (-1281 |#1|)) (-654 (-699 |#1|)) (-1281 |#1|))) (-15 -2620 ((-699 |#1|) (-654 (-699 |#1|)) (-1281 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -3200 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -3200 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3200 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -3819 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -3819 ((-112) (-654 (-699 |#1|)))) (-15 -1483 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 |#1|))) (-15 -1483 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 (-1281 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -2321 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -2321 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -2321 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -2321 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-932))) (-15 -1563 ((-1281 |#1|) (-654 (-1281 |#1|)) (-574)))) |%noBranch|) |%noBranch|))
+((-1701 ((|#1| (-932) |#1|) 18)))
+(((-1043 |#1|) (-10 -7 (-15 -1701 (|#1| (-932) |#1|))) (-13 (-1113) (-10 -8 (-15 -3078 ($ $ $))))) (T -1043))
+((-1701 (*1 *2 *3 *2) (-12 (-5 *3 (-932)) (-5 *1 (-1043 *2)) (-4 *2 (-13 (-1113) (-10 -8 (-15 -3078 ($ $ $))))))))
+(-10 -7 (-15 -1701 (|#1| (-932) |#1|)))
+((-1937 (((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-963 (-574))))) 67)) (-2021 (((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-963 (-574))))) 52)) (-2588 (((-654 (-324 (-574))) (-699 (-417 (-963 (-574))))) 45)) (-3147 (((-654 (-699 (-324 (-574)))) (-699 (-417 (-963 (-574))))) 85)) (-3692 (((-699 (-324 (-574))) (-699 (-324 (-574)))) 38)) (-2241 (((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574))))) 74)) (-2040 (((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-963 (-574))))) 82)))
+(((-1044) (-10 -7 (-15 -1937 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-963 (-574)))))) (-15 -2021 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-963 (-574)))))) (-15 -2588 ((-654 (-324 (-574))) (-699 (-417 (-963 (-574)))))) (-15 -2040 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-963 (-574)))))) (-15 -3692 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -2241 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -3147 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-963 (-574)))))))) (T -1044))
+((-3147 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1044)))) (-2040 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1044)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-324 (-574)))) (-5 *1 (-1044)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044)) (-5 *3 (-324 (-574))))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574)))))))) (-5 *1 (-1044)))))
+(-10 -7 (-15 -1937 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-963 (-574)))))) (-15 -2021 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-963 (-574)))))) (-15 -2588 ((-654 (-324 (-574))) (-699 (-417 (-963 (-574)))))) (-15 -2040 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-963 (-574)))))) (-15 -3692 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -2241 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -3147 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-963 (-574)))))))
+((-1941 ((|#1| |#1| (-932)) 18)))
+(((-1045 |#1|) (-10 -7 (-15 -1941 (|#1| |#1| (-932)))) (-13 (-1113) (-10 -8 (-15 * ($ $ $))))) (T -1045))
+((-1941 (*1 *2 *2 *3) (-12 (-5 *3 (-932)) (-5 *1 (-1045 *2)) (-4 *2 (-13 (-1113) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -1941 (|#1| |#1| (-932))))
+((-2943 ((|#1| (-320)) 11) (((-1286) |#1|) 9)))
+(((-1046 |#1|) (-10 -7 (-15 -2943 ((-1286) |#1|)) (-15 -2943 (|#1| (-320)))) (-1231)) (T -1046))
+((-2943 (*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1046 *2)) (-4 *2 (-1231)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-1286)) (-5 *1 (-1046 *3)) (-4 *3 (-1231)))))
+(-10 -7 (-15 -2943 ((-1286) |#1|)) (-15 -2943 (|#1| (-320))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-2868 (($ |#4|) 25)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-2854 ((|#4| $) 27)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 46) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4160 (((-781)) 43 T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 21 T CONST)) (-2146 (($) 23 T CONST)) (-2982 (((-112) $ $) 40)) (-3094 (($ $) 31) (($ $ $) NIL)) (-3078 (($ $ $) 29)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1047 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2868 ($ |#4|)) (-15 -2943 ($ |#4|)) (-15 -2854 (|#4| $)))) (-372) (-803) (-860) (-960 |#1| |#2| |#3|) (-654 |#4|)) (T -1047))
+((-2868 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *2 (-960 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2943 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *2 (-960 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2854 (*1 *2 *1) (-12 (-4 *2 (-960 *3 *4 *5)) (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2)))))
+(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2868 ($ |#4|)) (-15 -2943 ($ |#4|)) (-15 -2854 (|#4| $))))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL)) (-1860 (((-1286) $ (-1190) (-1190)) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-1810 (((-112) (-112)) 43)) (-3581 (((-112) (-112)) 42)) (-3143 (((-52) $ (-1190) (-52)) NIL)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 (-52) "failed") (-1190) $) NIL)) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-1586 (($ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-3 (-52) "failed") (-1190) $) NIL)) (-3335 (($ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2462 (((-52) $ (-1190) (-52)) NIL (|has| $ (-6 -4457)))) (-2385 (((-52) $ (-1190)) NIL)) (-1864 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-1190) $) NIL (|has| (-1190) (-860)))) (-1712 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-3429 (((-1190) $) NIL (|has| (-1190) (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-1765 (((-654 (-1190)) $) 37)) (-1726 (((-112) (-1190) $) NIL)) (-2234 (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL)) (-1709 (($ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL)) (-2459 (((-654 (-1190)) $) NIL)) (-2607 (((-112) (-1190) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-2915 (((-52) $) NIL (|has| (-1190) (-860)))) (-1836 (((-3 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) "failed") (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL)) (-1363 (($ $ (-52)) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ $ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-2121 (((-654 (-52)) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 (((-52) $ (-1190)) 39) (((-52) $ (-1190) (-52)) NIL)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL)) (-2943 (((-872) $) 41 (-2818 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-623 (-872)))))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1048) (-13 (-1207 (-1190) (-52)) (-10 -7 (-15 -1810 ((-112) (-112))) (-15 -3581 ((-112) (-112))) (-6 -4456)))) (T -1048))
+((-1810 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1048)))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1048)))))
+(-13 (-1207 (-1190) (-52)) (-10 -7 (-15 -1810 ((-112) (-112))) (-15 -3581 ((-112) (-112))) (-6 -4456)))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 9)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1049) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $))))) (T -1049))
+((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1049)))))
+(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $))))
+((-2209 ((|#2| $) 10)))
+(((-1050 |#1| |#2|) (-10 -8 (-15 -2209 (|#2| |#1|))) (-1051 |#2|) (-1231)) (T -1050))
+NIL
+(-10 -8 (-15 -2209 (|#2| |#1|)))
+((-1697 (((-3 |#1| "failed") $) 9)) (-2209 ((|#1| $) 8)) (-2943 (($ |#1|) 6)))
+(((-1051 |#1|) (-141) (-1231)) (T -1051))
+((-1697 (*1 *2 *1) (|partial| -12 (-4 *1 (-1051 *2)) (-4 *2 (-1231)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1231)))))
+(-13 (-626 |t#1|) (-10 -8 (-15 -1697 ((-3 |t#1| "failed") $)) (-15 -2209 (|t#1| $))))
+(((-626 |#1|) . T))
+((-3023 (((-654 (-654 (-302 (-417 (-963 |#2|))))) (-654 (-963 |#2|)) (-654 (-1190))) 38)))
+(((-1052 |#1| |#2|) (-10 -7 (-15 -3023 ((-654 (-654 (-302 (-417 (-963 |#2|))))) (-654 (-963 |#2|)) (-654 (-1190))))) (-566) (-13 (-566) (-1051 |#1|))) (T -1052))
+((-3023 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-4 *6 (-13 (-566) (-1051 *5))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *6)))))) (-5 *1 (-1052 *5 *6)))))
+(-10 -7 (-15 -3023 ((-654 (-654 (-302 (-417 (-963 |#2|))))) (-654 (-963 |#2|)) (-654 (-1190)))))
+((-4206 (((-388)) 17)) (-3046 (((-1 (-388)) (-388) (-388)) 22)) (-2144 (((-1 (-388)) (-781)) 48)) (-2679 (((-388)) 37)) (-1360 (((-1 (-388)) (-388) (-388)) 38)) (-2184 (((-388)) 29)) (-2058 (((-1 (-388)) (-388)) 30)) (-3779 (((-388) (-781)) 43)) (-3347 (((-1 (-388)) (-781)) 44)) (-1386 (((-1 (-388)) (-781) (-781)) 47)) (-3952 (((-1 (-388)) (-781) (-781)) 45)))
+(((-1053) (-10 -7 (-15 -4206 ((-388))) (-15 -2679 ((-388))) (-15 -2184 ((-388))) (-15 -3779 ((-388) (-781))) (-15 -3046 ((-1 (-388)) (-388) (-388))) (-15 -1360 ((-1 (-388)) (-388) (-388))) (-15 -2058 ((-1 (-388)) (-388))) (-15 -3347 ((-1 (-388)) (-781))) (-15 -3952 ((-1 (-388)) (-781) (-781))) (-15 -1386 ((-1 (-388)) (-781) (-781))) (-15 -2144 ((-1 (-388)) (-781))))) (T -1053))
+((-2144 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))) (-1386 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))) (-3952 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))) (-2058 (*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388)))) (-1360 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388)))) (-3046 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1053)))) (-2184 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053)))) (-2679 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053)))) (-4206 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053)))))
+(-10 -7 (-15 -4206 ((-388))) (-15 -2679 ((-388))) (-15 -2184 ((-388))) (-15 -3779 ((-388) (-781))) (-15 -3046 ((-1 (-388)) (-388) (-388))) (-15 -1360 ((-1 (-388)) (-388) (-388))) (-15 -2058 ((-1 (-388)) (-388))) (-15 -3347 ((-1 (-388)) (-781))) (-15 -3952 ((-1 (-388)) (-781) (-781))) (-15 -1386 ((-1 (-388)) (-781) (-781))) (-15 -2144 ((-1 (-388)) (-781))))
+((-4220 (((-428 |#1|) |#1|) 33)))
+(((-1054 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1|))) (-1257 (-417 (-963 (-574))))) (T -1054))
+((-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1054 *3)) (-4 *3 (-1257 (-417 (-963 (-574))))))))
+(-10 -7 (-15 -4220 ((-428 |#1|) |#1|)))
+((-3058 (((-417 (-428 (-963 |#1|))) (-417 (-963 |#1|))) 14)))
+(((-1055 |#1|) (-10 -7 (-15 -3058 ((-417 (-428 (-963 |#1|))) (-417 (-963 |#1|))))) (-315)) (T -1055))
+((-3058 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-315)) (-5 *2 (-417 (-428 (-963 *4)))) (-5 *1 (-1055 *4)))))
+(-10 -7 (-15 -3058 ((-417 (-428 (-963 |#1|))) (-417 (-963 |#1|)))))
+((-4355 (((-654 (-1190)) (-417 (-963 |#1|))) 17)) (-4194 (((-417 (-1186 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190)) 24)) (-4345 (((-417 (-963 |#1|)) (-417 (-1186 (-417 (-963 |#1|)))) (-1190)) 26)) (-4045 (((-3 (-1190) "failed") (-417 (-963 |#1|))) 20)) (-2646 (((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-302 (-417 (-963 |#1|))))) 32) (((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|)))) 33) (((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-1190)) (-654 (-417 (-963 |#1|)))) 28) (((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|))) 29)) (-2943 (((-417 (-963 |#1|)) |#1|) 11)))
+(((-1056 |#1|) (-10 -7 (-15 -4355 ((-654 (-1190)) (-417 (-963 |#1|)))) (-15 -4045 ((-3 (-1190) "failed") (-417 (-963 |#1|)))) (-15 -4194 ((-417 (-1186 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190))) (-15 -4345 ((-417 (-963 |#1|)) (-417 (-1186 (-417 (-963 |#1|)))) (-1190))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-1190)) (-654 (-417 (-963 |#1|))))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -2943 ((-417 (-963 |#1|)) |#1|))) (-566)) (T -1056))
+((-2943 (*1 *2 *3) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-1056 *3)) (-4 *3 (-566)))) (-2646 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-963 *4))))) (-5 *2 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *1 (-1056 *4)))) (-2646 (*1 *2 *2 *3) (-12 (-5 *3 (-302 (-417 (-963 *4)))) (-5 *2 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *1 (-1056 *4)))) (-2646 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-1190))) (-5 *4 (-654 (-417 (-963 *5)))) (-5 *2 (-417 (-963 *5))) (-4 *5 (-566)) (-5 *1 (-1056 *5)))) (-2646 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-417 (-963 *4))) (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-1056 *4)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1186 (-417 (-963 *5))))) (-5 *4 (-1190)) (-5 *2 (-417 (-963 *5))) (-5 *1 (-1056 *5)) (-4 *5 (-566)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-566)) (-5 *2 (-417 (-1186 (-417 (-963 *5))))) (-5 *1 (-1056 *5)) (-5 *3 (-417 (-963 *5))))) (-4045 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-1190)) (-5 *1 (-1056 *4)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1190))) (-5 *1 (-1056 *4)))))
+(-10 -7 (-15 -4355 ((-654 (-1190)) (-417 (-963 |#1|)))) (-15 -4045 ((-3 (-1190) "failed") (-417 (-963 |#1|)))) (-15 -4194 ((-417 (-1186 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190))) (-15 -4345 ((-417 (-963 |#1|)) (-417 (-1186 (-417 (-963 |#1|)))) (-1190))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-1190)) (-654 (-417 (-963 |#1|))))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -2943 ((-417 (-963 |#1|)) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-3670 (($) 18 T CONST)) (-2873 ((|#1| $) 23)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3548 ((|#1| $) 22)) (-1868 ((|#1|) 20 T CONST)) (-2943 (((-872) $) 12)) (-1424 ((|#1| $) 21)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16)))
+(((-1057 |#1|) (-141) (-23)) (T -1057))
+((-2873 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))) (-1868 (*1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -2873 (|t#1| $)) (-15 -3548 (|t#1| $)) (-15 -1424 (|t#1| $)) (-15 -1868 (|t#1|) -1707)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-3924 (($) 25 T CONST)) (-3670 (($) 18 T CONST)) (-2873 ((|#1| $) 23)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3548 ((|#1| $) 22)) (-1868 ((|#1|) 20 T CONST)) (-2943 (((-872) $) 12)) (-1424 ((|#1| $) 21)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16)))
+(((-1058 |#1|) (-141) (-23)) (T -1058))
+((-3924 (*1 *1) (-12 (-4 *1 (-1058 *2)) (-4 *2 (-23)))))
+(-13 (-1057 |t#1|) (-10 -8 (-15 -3924 ($) -1707)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1057 |#1|) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 (-790 |#1| (-874 |#2|)))))) (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-1886 (((-654 $) (-654 (-790 |#1| (-874 |#2|)))) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112)) NIL)) (-4355 (((-654 (-874 |#2|)) $) NIL)) (-3753 (((-112) $) NIL)) (-3609 (((-112) $) NIL (|has| |#1| (-566)))) (-3456 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1621 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-4348 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4091 $))) (-790 |#1| (-874 |#2|)) $) NIL)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ (-874 |#2|)) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-2166 (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 (-790 |#1| (-874 |#2|)) "failed") $ (-874 |#2|)) NIL)) (-3670 (($) NIL T CONST)) (-1800 (((-112) $) NIL (|has| |#1| (-566)))) (-1322 (((-112) $ $) NIL (|has| |#1| (-566)))) (-4133 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3172 (((-112) $) NIL (|has| |#1| (-566)))) (-2543 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-3949 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-3788 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2209 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2926 (((-3 $ "failed") $) NIL)) (-2793 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113))))) (-3335 (($ (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-4155 (((-112) (-790 |#1| (-874 |#2|)) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-2043 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2868 (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|))) NIL (|has| $ (-6 -4456))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-2766 (((-2 (|:| -1381 (-654 (-790 |#1| (-874 |#2|)))) (|:| -1676 (-654 (-790 |#1| (-874 |#2|))))) $) NIL)) (-3321 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-2308 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-3857 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1864 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2474 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-2851 (((-874 |#2|) $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113))))) (-2446 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL)) (-2867 (((-654 (-874 |#2|)) $) NIL)) (-2570 (((-112) (-874 |#2|) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-2176 (((-3 (-790 |#1| (-874 |#2|)) (-654 $)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2107 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4091 $))) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3360 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-4130 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL)) (-1885 (((-3 (-112) (-654 $)) (-790 |#1| (-874 |#2|)) $) NIL)) (-4027 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-1731 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL)) (-1750 (($ (-790 |#1| (-874 |#2|)) $) NIL) (($ (-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-4153 (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-2768 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-2244 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2430 (((-112) $ $) NIL)) (-3111 (((-2 (|:| |num| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-1406 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1443 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-1836 (((-3 (-790 |#1| (-874 |#2|)) "failed") (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL)) (-3043 (((-3 $ "failed") $ (-790 |#1| (-874 |#2|))) NIL)) (-4344 (($ $ (-790 |#1| (-874 |#2|))) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-3124 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (($ $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (($ $ (-302 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (($ $ (-654 (-302 (-790 |#1| (-874 |#2|))))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-1784 (((-781) $) NIL)) (-3975 (((-781) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (((-781) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-790 |#1| (-874 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2175 (($ $ (-874 |#2|)) NIL)) (-2840 (($ $ (-874 |#2|)) NIL)) (-1496 (($ $) NIL)) (-2427 (($ $ (-874 |#2|)) NIL)) (-2943 (((-872) $) NIL) (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-3530 (((-781) $) NIL (|has| (-874 |#2|) (-377)))) (-2923 (((-112) $ $) NIL)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-1685 (((-112) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-654 (-790 |#1| (-874 |#2|))))) NIL)) (-2790 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-2935 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2681 (((-654 (-874 |#2|)) $) NIL)) (-2897 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-4321 (((-112) (-874 |#2|) $) NIL)) (-2982 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1059 |#1| |#2|) (-13 (-1084 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -1886 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) (-462) (-654 (-1190))) (T -1059))
+((-1886 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1059 *5 *6)))))
+(-13 (-1084 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -1886 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112)))))
+((-3046 (((-1 (-574)) (-1107 (-574))) 32)) (-4253 (((-574) (-574) (-574) (-574) (-574)) 29)) (-1976 (((-1 (-574)) |RationalNumber|) NIL)) (-4197 (((-1 (-574)) |RationalNumber|) NIL)) (-2819 (((-1 (-574)) (-574) |RationalNumber|) NIL)))
+(((-1060) (-10 -7 (-15 -3046 ((-1 (-574)) (-1107 (-574)))) (-15 -2819 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -1976 ((-1 (-574)) |RationalNumber|)) (-15 -4197 ((-1 (-574)) |RationalNumber|)) (-15 -4253 ((-574) (-574) (-574) (-574) (-574))))) (T -1060))
+((-4253 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1060)))) (-4197 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060)))) (-1976 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060)) (-5 *3 (-574)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-1107 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1060)))))
+(-10 -7 (-15 -3046 ((-1 (-574)) (-1107 (-574)))) (-15 -2819 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -1976 ((-1 (-574)) |RationalNumber|)) (-15 -4197 ((-1 (-574)) |RationalNumber|)) (-15 -4253 ((-574) (-574) (-574) (-574) (-574))))
+((-2943 (((-872) $) NIL) (($ (-574)) 10)))
+(((-1061 |#1|) (-10 -8 (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1062)) (T -1061))
+NIL
+(-10 -8 (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-1062) (-141)) (T -1062))
+((-4160 (*1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-781)))))
+(-13 (-1071) (-736) (-658 $) (-626 (-574)) (-10 -7 (-15 -4160 ((-781)) -1707) (-6 -4453)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-4221 (((-417 (-963 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)) 54)))
+(((-1063 |#1| |#2|) (-10 -7 (-15 -4221 ((-417 (-963 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) (-1190) (-372)) (T -1063))
+((-4221 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) (-5 *2 (-417 (-963 *6))) (-5 *1 (-1063 *5 *6)) (-14 *5 (-1190)))))
+(-10 -7 (-15 -4221 ((-417 (-963 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 15)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 16 T CONST)) (-2982 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
+(((-1064 |#1|) (-141) (-1071)) (T -1064))
+((-2134 (*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1071)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1071)))))
+(-13 (-1113) (-10 -8 (-15 (-2134) ($) -1707) (-15 -2908 ((-112) $)) (-15 * ($ $ |t#1|))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-4286 (((-112) $) 38)) (-3816 (((-112) $) 17)) (-2190 (((-781) $) 13)) (-2199 (((-781) $) 14)) (-4358 (((-112) $) 30)) (-2984 (((-112) $) 40)))
+(((-1065 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2199 ((-781) |#1|)) (-15 -2190 ((-781) |#1|)) (-15 -2984 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -4358 ((-112) |#1|)) (-15 -3816 ((-112) |#1|))) (-1066 |#2| |#3| |#4| |#5| |#6|) (-781) (-781) (-1062) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1065))
+NIL
+(-10 -8 (-15 -2199 ((-781) |#1|)) (-15 -2190 ((-781) |#1|)) (-15 -2984 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -4358 ((-112) |#1|)) (-15 -3816 ((-112) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4286 (((-112) $) 56)) (-2950 (((-3 $ "failed") $ $) 20)) (-3816 (((-112) $) 58)) (-3340 (((-112) $ (-781)) 66)) (-3670 (($) 18 T CONST)) (-3444 (($ $) 39 (|has| |#3| (-315)))) (-1468 ((|#4| $ (-574)) 44)) (-3584 (((-781) $) 38 (|has| |#3| (-566)))) (-2385 ((|#3| $ (-574) (-574)) 46)) (-1864 (((-654 |#3|) $) 73 (|has| $ (-6 -4456)))) (-2164 (((-781) $) 37 (|has| |#3| (-566)))) (-2337 (((-654 |#5|) $) 36 (|has| |#3| (-566)))) (-2190 (((-781) $) 50)) (-2199 (((-781) $) 49)) (-3735 (((-112) $ (-781)) 65)) (-2294 (((-574) $) 54)) (-1373 (((-574) $) 52)) (-1712 (((-654 |#3|) $) 74 (|has| $ (-6 -4456)))) (-3759 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1113)) (|has| $ (-6 -4456))))) (-1431 (((-574) $) 53)) (-3889 (((-574) $) 51)) (-2914 (($ (-654 (-654 |#3|))) 59)) (-2446 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1820 (((-654 (-654 |#3|)) $) 48)) (-2448 (((-112) $ (-781)) 64)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-566)))) (-3124 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#3|) (-654 |#3|)) 80 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-302 |#3|)) 78 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-654 (-302 |#3|))) 77 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))) (-1892 (((-112) $ $) 60)) (-3556 (((-112) $) 63)) (-3135 (($) 62)) (-2200 ((|#3| $ (-574) (-574)) 47) ((|#3| $ (-574) (-574) |#3|) 45)) (-4358 (((-112) $) 57)) (-3975 (((-781) |#3| $) 75 (-12 (|has| |#3| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4456)))) (-3167 (($ $) 61)) (-1988 ((|#5| $ (-574)) 43)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2935 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4456)))) (-2984 (((-112) $) 55)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#3|) 40 (|has| |#3| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2863 (((-781) $) 67 (|has| $ (-6 -4456)))))
+(((-1066 |#1| |#2| |#3| |#4| |#5|) (-141) (-781) (-781) (-1062) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1066))
+((-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1062)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) (-2200 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1062)))) (-2385 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1062)))) (-2200 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) (-4 *2 (-1062)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-1468 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *6 *2 *7)) (-4 *6 (-1062)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-1988 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *6 *7 *2)) (-4 *6 (-1062)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-1778 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *2 (-1062)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566)))) (-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *2 (-1062)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372)))) (-3444 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-654 *7)))))
+(-13 (-111 |t#3| |t#3|) (-499 |t#3|) (-10 -8 (-6 -4456) (IF (|has| |t#3| (-174)) (-6 (-727 |t#3|)) |%noBranch|) (-15 -2914 ($ (-654 (-654 |t#3|)))) (-15 -3816 ((-112) $)) (-15 -4358 ((-112) $)) (-15 -4286 ((-112) $)) (-15 -2984 ((-112) $)) (-15 -2294 ((-574) $)) (-15 -1431 ((-574) $)) (-15 -1373 ((-574) $)) (-15 -3889 ((-574) $)) (-15 -2190 ((-781) $)) (-15 -2199 ((-781) $)) (-15 -1820 ((-654 (-654 |t#3|)) $)) (-15 -2200 (|t#3| $ (-574) (-574))) (-15 -2385 (|t#3| $ (-574) (-574))) (-15 -2200 (|t#3| $ (-574) (-574) |t#3|)) (-15 -1468 (|t#4| $ (-574))) (-15 -1988 (|t#5| $ (-574))) (-15 -1778 ($ (-1 |t#3| |t#3|) $)) (-15 -1778 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-566)) (-15 -2838 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-372)) (-15 -3107 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-315)) (-15 -3444 ($ $)) |%noBranch|) (IF (|has| |t#3| (-566)) (PROGN (-15 -3584 ((-781) $)) (-15 -2164 ((-781) $)) (-15 -2337 ((-654 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-623 (-872)) . T) ((-317 |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))) ((-499 |#3|) . T) ((-524 |#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))) ((-656 (-574)) . T) ((-656 |#3|) . T) ((-658 |#3|) . T) ((-650 |#3|) |has| |#3| (-174)) ((-727 |#3|) |has| |#3| (-174)) ((-1064 |#3|) . T) ((-1069 |#3|) . T) ((-1113) . T) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4286 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3816 (((-112) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-3670 (($) NIL T CONST)) (-3444 (($ $) 47 (|has| |#3| (-315)))) (-1468 (((-246 |#2| |#3|) $ (-574)) 36)) (-1348 (($ (-699 |#3|)) 45)) (-3584 (((-781) $) 49 (|has| |#3| (-566)))) (-2385 ((|#3| $ (-574) (-574)) NIL)) (-1864 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-2164 (((-781) $) 51 (|has| |#3| (-566)))) (-2337 (((-654 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-566)))) (-2190 (((-781) $) NIL)) (-2199 (((-781) $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-2294 (((-574) $) NIL)) (-1373 (((-574) $) NIL)) (-1712 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-1431 (((-574) $) NIL)) (-3889 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#3|))) 31)) (-2446 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1820 (((-654 (-654 |#3|)) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-566)))) (-3124 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#3| $ (-574) (-574)) NIL) ((|#3| $ (-574) (-574) |#3|) NIL)) (-3939 (((-135)) 59 (|has| |#3| (-372)))) (-4358 (((-112) $) NIL)) (-3975 (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113)))) (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) 65 (|has| |#3| (-624 (-546))))) (-1988 (((-246 |#1| |#3|) $ (-574)) 40)) (-2943 (((-872) $) 19) (((-699 |#3|) $) 42)) (-2923 (((-112) $ $) NIL)) (-2935 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2984 (((-112) $) NIL)) (-2134 (($) 16 T CONST)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1067 |#1| |#2| |#3|) (-13 (-1066 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1288 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -1348 ($ (-699 |#3|))))) (-781) (-781) (-1062)) (T -1067))
+((-1348 (*1 *1 *2) (-12 (-5 *2 (-699 *5)) (-4 *5 (-1062)) (-5 *1 (-1067 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)))))
+(-13 (-1066 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1288 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -1348 ($ (-699 |#3|)))))
+((-2868 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1778 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1068 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1778 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2868 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-781) (-781) (-1062) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1066 |#1| |#2| |#3| |#4| |#5|) (-1062) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1066 |#1| |#2| |#7| |#8| |#9|)) (T -1068))
+((-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1062)) (-4 *2 (-1062)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1068 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1066 *5 *6 *7 *8 *9)) (-4 *12 (-1066 *5 *6 *2 *10 *11)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1062)) (-4 *10 (-1062)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1066 *5 *6 *10 *11 *12)) (-5 *1 (-1068 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1066 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10)))))
+(-10 -7 (-15 -1778 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2868 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ |#1|) 27)))
+(((-1069 |#1|) (-141) (-1071)) (T -1069))
+NIL
+(-13 (-21) (-1064 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1064 |#1|) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1489 (((-1190) $) 11)) (-3242 ((|#1| $) 12)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2692 (($ (-1190) |#1|) 10)) (-2943 (((-872) $) 22 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2982 (((-112) $ $) 17 (|has| |#1| (-1113)))))
+(((-1070 |#1| |#2|) (-13 (-1231) (-10 -8 (-15 -2692 ($ (-1190) |#1|)) (-15 -1489 ((-1190) $)) (-15 -3242 (|#1| $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|))) (-1106 |#2|) (-1231)) (T -1070))
+((-2692 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-4 *4 (-1231)) (-5 *1 (-1070 *3 *4)) (-4 *3 (-1106 *4)))) (-1489 (*1 *2 *1) (-12 (-4 *4 (-1231)) (-5 *2 (-1190)) (-5 *1 (-1070 *3 *4)) (-4 *3 (-1106 *4)))) (-3242 (*1 *2 *1) (-12 (-4 *2 (-1106 *3)) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1231)))))
+(-13 (-1231) (-10 -8 (-15 -2692 ($ (-1190) |#1|)) (-15 -1489 ((-1190) $)) (-15 -3242 (|#1| $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
(((-1071) (-141)) (T -1071))
-((-2700 (*1 *1 *1) (-4 *1 (-1071))) (-2028 (*1 *1 *1) (-4 *1 (-1071))) (-3614 (*1 *1 *1) (-4 *1 (-1071))) (-3462 (*1 *1 *1) (-4 *1 (-1071))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-572)))) (-2340 (*1 *1 *1) (-4 *1 (-1071))) (-3762 (*1 *1 *1) (-4 *1 (-1071))) (-1530 (*1 *1 *1) (-4 *1 (-1071))))
-(-13 (-370) (-856) (-1033) (-1049 (-572)) (-1049 (-415 (-572))) (-1013) (-622 (-901 (-386))) (-895 (-386)) (-148) (-10 -8 (-15 -2028 ($ $)) (-15 -3614 ($ $)) (-15 -3462 ($ $)) (-15 -2689 ((-572) $)) (-15 -2340 ($ $)) (-15 -3762 ($ $)) (-15 -1530 ($ $)) (-15 -2700 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-622 (-227)) . T) ((-622 (-386)) . T) ((-622 (-901 (-386))) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-856) . T) ((-858) . T) ((-895 (-386)) . T) ((-929) . T) ((-1013) . T) ((-1033) . T) ((-1049 (-415 (-572))) . T) ((-1049 (-572)) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) |#2| $) 26)) (-1486 ((|#1| $) 10)) (-2840 (((-572) |#2| $) 116)) (-1821 (((-3 $ "failed") |#2| (-930)) 75)) (-3901 ((|#1| $) 31)) (-3142 ((|#1| |#2| $ |#1|) 40)) (-3420 (($ $) 28)) (-2062 (((-3 |#2| "failed") |#2| $) 111)) (-3074 (((-112) |#2| $) NIL)) (-1623 (((-112) |#2| $) NIL)) (-3592 (((-112) |#2| $) 27)) (-2855 ((|#1| $) 117)) (-3888 ((|#1| $) 30)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3764 ((|#2| $) 102)) (-2940 (((-870) $) 92)) (-4379 (((-112) $ $) NIL)) (-3548 ((|#1| |#2| $ |#1|) 41)) (-3381 (((-652 $) |#2|) 77)) (-2978 (((-112) $ $) 97)))
-(((-1072 |#1| |#2|) (-13 (-1079 |#1| |#2|) (-10 -8 (-15 -3888 (|#1| $)) (-15 -3901 (|#1| $)) (-15 -1486 (|#1| $)) (-15 -2855 (|#1| $)) (-15 -3420 ($ $)) (-15 -3592 ((-112) |#2| $)) (-15 -3142 (|#1| |#2| $ |#1|)))) (-13 (-856) (-370)) (-1255 |#1|)) (T -1072))
-((-3142 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-3888 (*1 *2 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-3901 (*1 *2 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-1486 (*1 *2 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-2855 (*1 *2 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-3420 (*1 *1 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-3592 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-856) (-370))) (-5 *2 (-112)) (-5 *1 (-1072 *4 *3)) (-4 *3 (-1255 *4)))))
-(-13 (-1079 |#1| |#2|) (-10 -8 (-15 -3888 (|#1| $)) (-15 -3901 (|#1| $)) (-15 -1486 (|#1| $)) (-15 -2855 (|#1| $)) (-15 -3420 ($ $)) (-15 -3592 ((-112) |#2| $)) (-15 -3142 (|#1| |#2| $ |#1|))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-1926 (($ $ $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2985 (($ $ $ $) NIL)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-2840 (((-572) $) NIL)) (-3957 (($ $ $) NIL)) (-3281 (($) NIL T CONST)) (-3254 (($ (-1188)) 10) (($ (-572)) 7)) (-1695 (((-3 (-572) "failed") $) NIL)) (-2204 (((-572) $) NIL)) (-2780 (($ $ $) NIL)) (-2993 (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-697 (-572)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-3196 (((-3 (-415 (-572)) "failed") $) NIL)) (-1733 (((-112) $) NIL)) (-2233 (((-415 (-572)) $) NIL)) (-2815 (($) NIL) (($ $) NIL)) (-2792 (($ $ $) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3768 (($ $ $ $) NIL)) (-4220 (($ $ $) NIL)) (-3074 (((-112) $) NIL)) (-2661 (($ $ $) NIL)) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL)) (-1886 (((-112) $) NIL)) (-2597 (((-112) $) NIL)) (-2556 (((-3 $ "failed") $) NIL)) (-1623 (((-112) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2546 (($ $ $ $) NIL)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-3808 (($ $) NIL)) (-4133 (($ $) NIL)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1656 (($ $ $) NIL)) (-3815 (($) NIL T CONST)) (-1604 (($ $) NIL)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2128 (($ $) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-3902 (($ $ (-779)) NIL) (($ $) NIL)) (-2290 (($ $) NIL)) (-3164 (($ $) NIL)) (-1835 (((-572) $) 16) (((-544) $) NIL) (((-901 (-572)) $) NIL) (((-386) $) NIL) (((-227) $) NIL) (($ (-1188)) 9)) (-2940 (((-870) $) 23) (($ (-572)) 6) (($ $) NIL) (($ (-572)) 6)) (-4249 (((-779)) NIL T CONST)) (-4023 (((-112) $ $) NIL)) (-3148 (($ $ $) NIL)) (-4379 (((-112) $ $) NIL)) (-2625 (($) NIL)) (-2845 (((-112) $ $) NIL)) (-4212 (($ $ $ $) NIL)) (-2700 (($ $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)) (-3089 (($ $) 22) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ (-572) $) NIL)))
-(((-1073) (-13 (-553) (-626 (-1188)) (-10 -8 (-6 -4441) (-6 -4446) (-6 -4442) (-15 -3254 ($ (-1188))) (-15 -3254 ($ (-572)))))) (T -1073))
-((-3254 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1073)))) (-3254 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1073)))))
-(-13 (-553) (-626 (-1188)) (-10 -8 (-6 -4441) (-6 -4446) (-6 -4442) (-15 -3254 ($ (-1188))) (-15 -3254 ($ (-572)))))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL)) (-3176 (((-1284) $ (-1188) (-1188)) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-1723 (($) 9)) (-3140 (((-52) $ (-1188) (-52)) NIL)) (-4230 (($ $) 32)) (-3129 (($ $) 30)) (-3535 (($ $) 29)) (-3950 (($ $) 31)) (-3572 (($ $) 35)) (-1981 (($ $) 36)) (-3385 (($ $) 28)) (-1772 (($ $) 33)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) 27 (|has| $ (-6 -4454)))) (-2160 (((-3 (-52) "failed") (-1188) $) 43)) (-3281 (($) NIL T CONST)) (-3218 (($) 7)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-3554 (($ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) 53 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-3 (-52) "failed") (-1188) $) NIL)) (-3332 (($ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-1671 (((-3 (-1170) "failed") $ (-1170) (-572)) 72)) (-2453 (((-52) $ (-1188) (-52)) NIL (|has| $ (-6 -4455)))) (-2380 (((-52) $ (-1188)) NIL)) (-1863 (((-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-1188) $) NIL (|has| (-1188) (-858)))) (-1344 (((-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) 38 (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-3374 (((-1188) $) NIL (|has| (-1188) (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-1761 (((-652 (-1188)) $) NIL)) (-4198 (((-112) (-1188) $) NIL)) (-1651 (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL)) (-2036 (($ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) 46)) (-1986 (((-652 (-1188)) $) NIL)) (-1370 (((-112) (-1188) $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-3271 (((-386) $ (-1188)) 52)) (-1751 (((-652 (-1170)) $ (-1170)) 74)) (-2912 (((-52) $) NIL (|has| (-1188) (-858)))) (-3770 (((-3 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) "failed") (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL)) (-2476 (($ $ (-52)) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))))) NIL (-12 (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ $ (-300 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ $ (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) NIL (-12 (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ $ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-315 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (($ $ (-652 (-52)) (-652 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-300 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-652 (-300 (-52)))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-4110 (((-652 (-52)) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 (((-52) $ (-1188)) NIL) (((-52) $ (-1188) (-52)) NIL)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL)) (-2533 (($ $ (-1188)) 54)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111)))) (((-779) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111)))) (((-779) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) 40)) (-4155 (($ $ $) 41)) (-2940 (((-870) $) NIL (-2813 (|has| (-52) (-621 (-870))) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-621 (-870)))))) (-2991 (($ $ (-1188) (-386)) 50)) (-2014 (($ $ (-1188) (-386)) 51)) (-4379 (((-112) $ $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 (-1188)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-52) (-1111)) (|has| (-2 (|:| -3690 (-1188)) (|:| -1907 (-52))) (-1111))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1074) (-13 (-1205 (-1188) (-52)) (-10 -8 (-15 -4155 ($ $ $)) (-15 -3218 ($)) (-15 -3385 ($ $)) (-15 -3535 ($ $)) (-15 -3129 ($ $)) (-15 -3950 ($ $)) (-15 -1772 ($ $)) (-15 -4230 ($ $)) (-15 -3572 ($ $)) (-15 -1981 ($ $)) (-15 -2991 ($ $ (-1188) (-386))) (-15 -2014 ($ $ (-1188) (-386))) (-15 -3271 ((-386) $ (-1188))) (-15 -1751 ((-652 (-1170)) $ (-1170))) (-15 -2533 ($ $ (-1188))) (-15 -1723 ($)) (-15 -1671 ((-3 (-1170) "failed") $ (-1170) (-572))) (-6 -4454)))) (T -1074))
-((-4155 (*1 *1 *1 *1) (-5 *1 (-1074))) (-3218 (*1 *1) (-5 *1 (-1074))) (-3385 (*1 *1 *1) (-5 *1 (-1074))) (-3535 (*1 *1 *1) (-5 *1 (-1074))) (-3129 (*1 *1 *1) (-5 *1 (-1074))) (-3950 (*1 *1 *1) (-5 *1 (-1074))) (-1772 (*1 *1 *1) (-5 *1 (-1074))) (-4230 (*1 *1 *1) (-5 *1 (-1074))) (-3572 (*1 *1 *1) (-5 *1 (-1074))) (-1981 (*1 *1 *1) (-5 *1 (-1074))) (-2991 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-386)) (-5 *1 (-1074)))) (-2014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-386)) (-5 *1 (-1074)))) (-3271 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-386)) (-5 *1 (-1074)))) (-1751 (*1 *2 *1 *3) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1074)) (-5 *3 (-1170)))) (-2533 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1074)))) (-1723 (*1 *1) (-5 *1 (-1074))) (-1671 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-1074)))))
-(-13 (-1205 (-1188) (-52)) (-10 -8 (-15 -4155 ($ $ $)) (-15 -3218 ($)) (-15 -3385 ($ $)) (-15 -3535 ($ $)) (-15 -3129 ($ $)) (-15 -3950 ($ $)) (-15 -1772 ($ $)) (-15 -4230 ($ $)) (-15 -3572 ($ $)) (-15 -1981 ($ $)) (-15 -2991 ($ $ (-1188) (-386))) (-15 -2014 ($ $ (-1188) (-386))) (-15 -3271 ((-386) $ (-1188))) (-15 -1751 ((-652 (-1170)) $ (-1170))) (-15 -2533 ($ $ (-1188))) (-15 -1723 ($)) (-15 -1671 ((-3 (-1170) "failed") $ (-1170) (-572))) (-6 -4454)))
-((-1969 (($ $) 46)) (-2148 (((-112) $ $) 82)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-961 (-415 (-572)))) 251) (((-3 $ "failed") (-961 (-572))) 250) (((-3 $ "failed") (-961 |#2|)) 253)) (-2204 ((|#2| $) NIL) (((-415 (-572)) $) NIL) (((-572) $) NIL) ((|#4| $) NIL) (($ (-961 (-415 (-572)))) 239) (($ (-961 (-572))) 235) (($ (-961 |#2|)) 255)) (-1390 (($ $) NIL) (($ $ |#4|) 44)) (-2888 (((-112) $ $) 131) (((-112) $ (-652 $)) 135)) (-2616 (((-112) $) 60)) (-3038 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 125)) (-2620 (($ $) 160)) (-2387 (($ $) 156)) (-3905 (($ $) 155)) (-2462 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2213 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4338 (((-112) $ $) 143) (((-112) $ (-652 $)) 144)) (-2366 ((|#4| $) 32)) (-1685 (($ $ $) 128)) (-3306 (((-112) $) 59)) (-3109 (((-779) $) 35)) (-1327 (($ $) 174)) (-4244 (($ $) 171)) (-3194 (((-652 $) $) 72)) (-3288 (($ $) 62)) (-2261 (($ $) 167)) (-2029 (((-652 $) $) 69)) (-1777 (($ $) 64)) (-1368 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3289 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3029 (-779))) $ $) 130)) (-4130 (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $) 126) (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $ |#4|) 127)) (-1867 (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -3669 $)) $ $) 121) (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -3669 $)) $ $ |#4|) 123)) (-2984 (($ $ $) 97) (($ $ $ |#4|) 106)) (-4303 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2738 (((-652 $) $) 54)) (-3005 (((-112) $ $) 140) (((-112) $ (-652 $)) 141)) (-2755 (($ $ $) 116)) (-3815 (($ $) 37)) (-2323 (((-112) $ $) 80)) (-3536 (((-112) $ $) 136) (((-112) $ (-652 $)) 138)) (-1825 (($ $ $) 112)) (-2502 (($ $) 41)) (-2870 ((|#2| |#2| $) 164) (($ (-652 $)) NIL) (($ $ $) NIL)) (-3259 (($ $ |#2|) NIL) (($ $ $) 153)) (-1605 (($ $ |#2|) 148) (($ $ $) 151)) (-1619 (($ $) 49)) (-2325 (($ $) 55)) (-1835 (((-901 (-386)) $) NIL) (((-901 (-572)) $) NIL) (((-544) $) NIL) (($ (-961 (-415 (-572)))) 241) (($ (-961 (-572))) 237) (($ (-961 |#2|)) 252) (((-1170) $) 279) (((-961 |#2|) $) 184)) (-2940 (((-870) $) 29) (($ (-572)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-961 |#2|) $) 185) (($ (-415 (-572))) NIL) (($ $) NIL)) (-1816 (((-3 (-112) "failed") $ $) 79)))
-(((-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2940 (|#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2870 (|#1| (-652 |#1|))) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 ((-961 |#2|) |#1|)) (-15 -1835 ((-961 |#2|) |#1|)) (-15 -1835 ((-1170) |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -2620 (|#1| |#1|)) (-15 -2870 (|#2| |#2| |#1|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -1605 (|#1| |#1| |#1|)) (-15 -3259 (|#1| |#1| |#2|)) (-15 -1605 (|#1| |#1| |#2|)) (-15 -2387 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -1835 (|#1| (-961 |#2|))) (-15 -2204 (|#1| (-961 |#2|))) (-15 -1695 ((-3 |#1| "failed") (-961 |#2|))) (-15 -1835 (|#1| (-961 (-572)))) (-15 -2204 (|#1| (-961 (-572)))) (-15 -1695 ((-3 |#1| "failed") (-961 (-572)))) (-15 -1835 (|#1| (-961 (-415 (-572))))) (-15 -2204 (|#1| (-961 (-415 (-572))))) (-15 -1695 ((-3 |#1| "failed") (-961 (-415 (-572))))) (-15 -2755 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -3289 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3029 (-779))) |#1| |#1|)) (-15 -1685 (|#1| |#1| |#1|)) (-15 -3038 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -4130 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1| |#4|)) (-15 -4130 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -1867 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -3669 |#1|)) |#1| |#1| |#4|)) (-15 -1867 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -4303 (|#1| |#1| |#1| |#4|)) (-15 -2984 (|#1| |#1| |#1| |#4|)) (-15 -4303 (|#1| |#1| |#1|)) (-15 -2984 (|#1| |#1| |#1|)) (-15 -2213 (|#1| |#1| |#1| |#4|)) (-15 -2462 (|#1| |#1| |#1| |#4|)) (-15 -2213 (|#1| |#1| |#1|)) (-15 -2462 (|#1| |#1| |#1|)) (-15 -4338 ((-112) |#1| (-652 |#1|))) (-15 -4338 ((-112) |#1| |#1|)) (-15 -3005 ((-112) |#1| (-652 |#1|))) (-15 -3005 ((-112) |#1| |#1|)) (-15 -3536 ((-112) |#1| (-652 |#1|))) (-15 -3536 ((-112) |#1| |#1|)) (-15 -2888 ((-112) |#1| (-652 |#1|))) (-15 -2888 ((-112) |#1| |#1|)) (-15 -2148 ((-112) |#1| |#1|)) (-15 -2323 ((-112) |#1| |#1|)) (-15 -1816 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3194 ((-652 |#1|) |#1|)) (-15 -2029 ((-652 |#1|) |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -3288 (|#1| |#1|)) (-15 -2616 ((-112) |#1|)) (-15 -3306 ((-112) |#1|)) (-15 -1390 (|#1| |#1| |#4|)) (-15 -1368 (|#1| |#1| |#4|)) (-15 -2325 (|#1| |#1|)) (-15 -2738 ((-652 |#1|) |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3109 ((-779) |#1|)) (-15 -2366 (|#4| |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -2940 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2204 (|#4| |#1|)) (-15 -1368 (|#2| |#1|)) (-15 -1390 (|#1| |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|))) (-1076 |#2| |#3| |#4|) (-1060) (-801) (-858)) (T -1075))
-NIL
-(-10 -8 (-15 -2940 (|#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2870 (|#1| (-652 |#1|))) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 ((-961 |#2|) |#1|)) (-15 -1835 ((-961 |#2|) |#1|)) (-15 -1835 ((-1170) |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -2620 (|#1| |#1|)) (-15 -2870 (|#2| |#2| |#1|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -1605 (|#1| |#1| |#1|)) (-15 -3259 (|#1| |#1| |#2|)) (-15 -1605 (|#1| |#1| |#2|)) (-15 -2387 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -1835 (|#1| (-961 |#2|))) (-15 -2204 (|#1| (-961 |#2|))) (-15 -1695 ((-3 |#1| "failed") (-961 |#2|))) (-15 -1835 (|#1| (-961 (-572)))) (-15 -2204 (|#1| (-961 (-572)))) (-15 -1695 ((-3 |#1| "failed") (-961 (-572)))) (-15 -1835 (|#1| (-961 (-415 (-572))))) (-15 -2204 (|#1| (-961 (-415 (-572))))) (-15 -1695 ((-3 |#1| "failed") (-961 (-415 (-572))))) (-15 -2755 (|#1| |#1| |#1|)) (-15 -1825 (|#1| |#1| |#1|)) (-15 -3289 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3029 (-779))) |#1| |#1|)) (-15 -1685 (|#1| |#1| |#1|)) (-15 -3038 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -4130 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1| |#4|)) (-15 -4130 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -1867 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -3669 |#1|)) |#1| |#1| |#4|)) (-15 -1867 ((-2 (|:| -1857 |#1|) (|:| |gap| (-779)) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -4303 (|#1| |#1| |#1| |#4|)) (-15 -2984 (|#1| |#1| |#1| |#4|)) (-15 -4303 (|#1| |#1| |#1|)) (-15 -2984 (|#1| |#1| |#1|)) (-15 -2213 (|#1| |#1| |#1| |#4|)) (-15 -2462 (|#1| |#1| |#1| |#4|)) (-15 -2213 (|#1| |#1| |#1|)) (-15 -2462 (|#1| |#1| |#1|)) (-15 -4338 ((-112) |#1| (-652 |#1|))) (-15 -4338 ((-112) |#1| |#1|)) (-15 -3005 ((-112) |#1| (-652 |#1|))) (-15 -3005 ((-112) |#1| |#1|)) (-15 -3536 ((-112) |#1| (-652 |#1|))) (-15 -3536 ((-112) |#1| |#1|)) (-15 -2888 ((-112) |#1| (-652 |#1|))) (-15 -2888 ((-112) |#1| |#1|)) (-15 -2148 ((-112) |#1| |#1|)) (-15 -2323 ((-112) |#1| |#1|)) (-15 -1816 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3194 ((-652 |#1|) |#1|)) (-15 -2029 ((-652 |#1|) |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -3288 (|#1| |#1|)) (-15 -2616 ((-112) |#1|)) (-15 -3306 ((-112) |#1|)) (-15 -1390 (|#1| |#1| |#4|)) (-15 -1368 (|#1| |#1| |#4|)) (-15 -2325 (|#1| |#1|)) (-15 -2738 ((-652 |#1|) |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3109 ((-779) |#1|)) (-15 -2366 (|#4| |#1|)) (-15 -1835 ((-544) |#1|)) (-15 -1835 ((-901 (-572)) |#1|)) (-15 -1835 ((-901 (-386)) |#1|)) (-15 -2940 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2204 (|#4| |#1|)) (-15 -1368 (|#2| |#1|)) (-15 -1390 (|#1| |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4353 (((-652 |#3|) $) 112)) (-4191 (((-1184 $) $ |#3|) 127) (((-1184 |#1|) $) 126)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 89 (|has| |#1| (-564)))) (-3009 (($ $) 90 (|has| |#1| (-564)))) (-4334 (((-112) $) 92 (|has| |#1| (-564)))) (-2418 (((-779) $) 114) (((-779) $ (-652 |#3|)) 113)) (-1969 (($ $) 275)) (-2148 (((-112) $ $) 261)) (-3330 (((-3 $ "failed") $ $) 20)) (-3453 (($ $ $) 220 (|has| |#1| (-564)))) (-2110 (((-652 $) $ $) 215 (|has| |#1| (-564)))) (-2603 (((-426 (-1184 $)) (-1184 $)) 102 (|has| |#1| (-918)))) (-3517 (($ $) 100 (|has| |#1| (-460)))) (-2287 (((-426 $) $) 99 (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 105 (|has| |#1| (-918)))) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-415 (-572)) "failed") $) 165 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 163 (|has| |#1| (-1049 (-572)))) (((-3 |#3| "failed") $) 140) (((-3 $ "failed") (-961 (-415 (-572)))) 235 (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))) (((-3 $ "failed") (-961 (-572))) 232 (-2813 (-12 (-2074 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188)))))) (((-3 $ "failed") (-961 |#1|)) 229 (-2813 (-12 (-2074 (|has| |#1| (-38 (-415 (-572))))) (-2074 (|has| |#1| (-38 (-572)))) (|has| |#3| (-622 (-1188)))) (-12 (-2074 (|has| |#1| (-553))) (-2074 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (-2074 (|has| |#1| (-1003 (-572)))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))))) (-2204 ((|#1| $) 167) (((-415 (-572)) $) 166 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 164 (|has| |#1| (-1049 (-572)))) ((|#3| $) 141) (($ (-961 (-415 (-572)))) 234 (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))) (($ (-961 (-572))) 231 (-2813 (-12 (-2074 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188)))))) (($ (-961 |#1|)) 228 (-2813 (-12 (-2074 (|has| |#1| (-38 (-415 (-572))))) (-2074 (|has| |#1| (-38 (-572)))) (|has| |#3| (-622 (-1188)))) (-12 (-2074 (|has| |#1| (-553))) (-2074 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (-2074 (|has| |#1| (-1003 (-572)))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))))) (-2361 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 216 (|has| |#1| (-564)))) (-1390 (($ $) 158) (($ $ |#3|) 270)) (-2993 (((-697 (-572)) (-1279 $)) 138 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 137 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 136 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 135) (((-697 |#1|) (-697 $)) 134) (((-697 |#1|) (-1279 $)) 133)) (-2888 (((-112) $ $) 260) (((-112) $ (-652 $)) 259)) (-2062 (((-3 $ "failed") $) 37)) (-2616 (((-112) $) 268)) (-3038 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 240)) (-2620 (($ $) 209 (|has| |#1| (-460)))) (-1876 (($ $) 180 (|has| |#1| (-460))) (($ $ |#3|) 107 (|has| |#1| (-460)))) (-1378 (((-652 $) $) 111)) (-3879 (((-112) $) 98 (|has| |#1| (-918)))) (-2387 (($ $) 225 (|has| |#1| (-564)))) (-3905 (($ $) 226 (|has| |#1| (-564)))) (-2462 (($ $ $) 252) (($ $ $ |#3|) 250)) (-2213 (($ $ $) 251) (($ $ $ |#3|) 249)) (-1437 (($ $ |#1| |#2| $) 176)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 86 (-12 (|has| |#3| (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 85 (-12 (|has| |#3| (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-1886 (((-112) $) 35)) (-4368 (((-779) $) 173)) (-4338 (((-112) $ $) 254) (((-112) $ (-652 $)) 253)) (-3423 (($ $ $ $ $) 211 (|has| |#1| (-564)))) (-2366 ((|#3| $) 279)) (-4343 (($ (-1184 |#1|) |#3|) 119) (($ (-1184 $) |#3|) 118)) (-1843 (((-652 $) $) 128)) (-2438 (((-112) $) 156)) (-4333 (($ |#1| |#2|) 157) (($ $ |#3| (-779)) 121) (($ $ (-652 |#3|) (-652 (-779))) 120)) (-1685 (($ $ $) 239)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ |#3|) 122)) (-3306 (((-112) $) 269)) (-2649 ((|#2| $) 174) (((-779) $ |#3|) 124) (((-652 (-779)) $ (-652 |#3|)) 123)) (-3109 (((-779) $) 278)) (-2497 (($ (-1 |#2| |#2|) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-3928 (((-3 |#3| "failed") $) 125)) (-1327 (($ $) 206 (|has| |#1| (-460)))) (-4244 (($ $) 207 (|has| |#1| (-460)))) (-3194 (((-652 $) $) 264)) (-3288 (($ $) 267)) (-2261 (($ $) 208 (|has| |#1| (-460)))) (-2029 (((-652 $) $) 265)) (-1777 (($ $) 266)) (-1357 (($ $) 153)) (-1368 ((|#1| $) 152) (($ $ |#3|) 271)) (-2825 (($ (-652 $)) 96 (|has| |#1| (-460))) (($ $ $) 95 (|has| |#1| (-460)))) (-3289 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3029 (-779))) $ $) 238)) (-4130 (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $) 242) (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $ |#3|) 241)) (-1867 (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -3669 $)) $ $) 244) (((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -3669 $)) $ $ |#3|) 243)) (-2984 (($ $ $) 248) (($ $ $ |#3|) 246)) (-4303 (($ $ $) 247) (($ $ $ |#3|) 245)) (-4347 (((-1170) $) 10)) (-3487 (($ $ $) 214 (|has| |#1| (-564)))) (-2738 (((-652 $) $) 273)) (-4011 (((-3 (-652 $) "failed") $) 116)) (-3665 (((-3 (-652 $) "failed") $) 117)) (-1920 (((-3 (-2 (|:| |var| |#3|) (|:| -1679 (-779))) "failed") $) 115)) (-3005 (((-112) $ $) 256) (((-112) $ (-652 $)) 255)) (-2755 (($ $ $) 236)) (-3815 (($ $) 277)) (-2323 (((-112) $ $) 262)) (-3536 (((-112) $ $) 258) (((-112) $ (-652 $)) 257)) (-1825 (($ $ $) 237)) (-2502 (($ $) 276)) (-3964 (((-1131) $) 11)) (-3431 (((-2 (|:| -2870 $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-564)))) (-1638 (((-2 (|:| -2870 $) (|:| |coef1| $)) $ $) 218 (|has| |#1| (-564)))) (-1336 (((-112) $) 170)) (-1347 ((|#1| $) 171)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 97 (|has| |#1| (-460)))) (-2870 ((|#1| |#1| $) 210 (|has| |#1| (-460))) (($ (-652 $)) 94 (|has| |#1| (-460))) (($ $ $) 93 (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) 104 (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) 103 (|has| |#1| (-918)))) (-4218 (((-426 $) $) 101 (|has| |#1| (-918)))) (-2045 (((-2 (|:| -2870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 219 (|has| |#1| (-564)))) (-2834 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-564)))) (-3259 (($ $ |#1|) 223 (|has| |#1| (-564))) (($ $ $) 221 (|has| |#1| (-564)))) (-1605 (($ $ |#1|) 224 (|has| |#1| (-564))) (($ $ $) 222 (|has| |#1| (-564)))) (-2641 (($ $ (-652 (-300 $))) 149) (($ $ (-300 $)) 148) (($ $ $ $) 147) (($ $ (-652 $) (-652 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-652 |#3|) (-652 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-652 |#3|) (-652 $)) 142)) (-3537 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3902 (($ $ |#3|) 46) (($ $ (-652 |#3|)) 45) (($ $ |#3| (-779)) 44) (($ $ (-652 |#3|) (-652 (-779))) 43)) (-4390 ((|#2| $) 154) (((-779) $ |#3|) 132) (((-652 (-779)) $ (-652 |#3|)) 131)) (-1619 (($ $) 274)) (-2325 (($ $) 272)) (-1835 (((-901 (-386)) $) 84 (-12 (|has| |#3| (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) 83 (-12 (|has| |#3| (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) 82 (-12 (|has| |#3| (-622 (-544))) (|has| |#1| (-622 (-544))))) (($ (-961 (-415 (-572)))) 233 (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))) (($ (-961 (-572))) 230 (-2813 (-12 (-2074 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188)))))) (($ (-961 |#1|)) 227 (|has| |#3| (-622 (-1188)))) (((-1170) $) 205 (-12 (|has| |#1| (-1049 (-572))) (|has| |#3| (-622 (-1188))))) (((-961 |#1|) $) 204 (|has| |#3| (-622 (-1188))))) (-1711 ((|#1| $) 179 (|has| |#1| (-460))) (($ $ |#3|) 108 (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 106 (-2085 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 169) (($ |#3|) 139) (((-961 |#1|) $) 203 (|has| |#3| (-622 (-1188)))) (($ (-415 (-572))) 80 (-2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572)))))) (($ $) 87 (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) 172)) (-3979 ((|#1| $ |#2|) 159) (($ $ |#3| (-779)) 130) (($ $ (-652 |#3|) (-652 (-779))) 129)) (-3849 (((-3 $ "failed") $) 81 (-2813 (-2085 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) 32 T CONST)) (-2099 (($ $ $ (-779)) 177 (|has| |#1| (-174)))) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 91 (|has| |#1| (-564)))) (-2131 (($) 19 T CONST)) (-1816 (((-3 (-112) "failed") $ $) 263)) (-2143 (($) 34 T CONST)) (-3092 (($ $ $ $ (-779)) 212 (|has| |#1| (-564)))) (-3301 (($ $ $ (-779)) 213 (|has| |#1| (-564)))) (-3608 (($ $ |#3|) 42) (($ $ (-652 |#3|)) 41) (($ $ |#3| (-779)) 40) (($ $ (-652 |#3|) (-652 (-779))) 39)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 160 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 162 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 161 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 151) (($ $ |#1|) 150)))
-(((-1076 |#1| |#2| |#3|) (-141) (-1060) (-801) (-858)) (T -1076))
-((-2366 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-779)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2502 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2738 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-1368 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-1390 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-3288 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-1777 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2029 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))) (-3194 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))) (-1816 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-2323 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-2148 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-2888 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-2888 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)))) (-3536 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-3536 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)))) (-3005 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-3005 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)))) (-4338 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-4338 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)))) (-2462 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2213 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2462 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-2213 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-2984 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-4303 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2984 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-4303 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-1867 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-779)) (|:| -3669 *1))) (-4 *1 (-1076 *3 *4 *5)))) (-1867 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-779)) (|:| -3669 *1))) (-4 *1 (-1076 *4 *5 *3)))) (-4130 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-779)) (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-1076 *3 *4 *5)))) (-4130 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-779)) (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-1076 *4 *5 *3)))) (-3038 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-1076 *3 *4 *5)))) (-1685 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-3289 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3029 (-779)))) (-4 *1 (-1076 *3 *4 *5)))) (-1825 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2755 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))) (-1695 (*1 *1 *2) (|partial| -2813 (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-2074 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))))) (-2204 (*1 *1 *2) (-2813 (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-2074 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))))) (-1835 (*1 *1 *2) (-2813 (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-2074 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))))) (-1695 (*1 *1 *2) (|partial| -2813 (-12 (-5 *2 (-961 *3)) (-12 (-2074 (-4 *3 (-38 (-415 (-572))))) (-2074 (-4 *3 (-38 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 *3)) (-12 (-2074 (-4 *3 (-553))) (-2074 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 *3)) (-12 (-2074 (-4 *3 (-1003 (-572)))) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))))) (-2204 (*1 *1 *2) (-2813 (-12 (-5 *2 (-961 *3)) (-12 (-2074 (-4 *3 (-38 (-415 (-572))))) (-2074 (-4 *3 (-38 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 *3)) (-12 (-2074 (-4 *3 (-553))) (-2074 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 *3)) (-12 (-2074 (-4 *3 (-1003 (-572)))) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *5 (-622 (-1188))) (-4 *4 (-801)) (-4 *5 (-858)))) (-3905 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-2387 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-1605 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-3259 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-1605 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-3259 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-3453 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-2045 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -2870 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1076 *3 *4 *5)))) (-1638 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -2870 *1) (|:| |coef1| *1))) (-4 *1 (-1076 *3 *4 *5)))) (-3431 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -2870 *1) (|:| |coef2| *1))) (-4 *1 (-1076 *3 *4 *5)))) (-2361 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-2110 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))) (-3487 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-3301 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *3 (-564)))) (-3092 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *3 (-564)))) (-3423 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-2870 (*1 *2 *2 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-2620 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-2261 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-1327 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))))
-(-13 (-958 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2366 (|t#3| $)) (-15 -3109 ((-779) $)) (-15 -3815 ($ $)) (-15 -2502 ($ $)) (-15 -1969 ($ $)) (-15 -1619 ($ $)) (-15 -2738 ((-652 $) $)) (-15 -2325 ($ $)) (-15 -1368 ($ $ |t#3|)) (-15 -1390 ($ $ |t#3|)) (-15 -3306 ((-112) $)) (-15 -2616 ((-112) $)) (-15 -3288 ($ $)) (-15 -1777 ($ $)) (-15 -2029 ((-652 $) $)) (-15 -3194 ((-652 $) $)) (-15 -1816 ((-3 (-112) "failed") $ $)) (-15 -2323 ((-112) $ $)) (-15 -2148 ((-112) $ $)) (-15 -2888 ((-112) $ $)) (-15 -2888 ((-112) $ (-652 $))) (-15 -3536 ((-112) $ $)) (-15 -3536 ((-112) $ (-652 $))) (-15 -3005 ((-112) $ $)) (-15 -3005 ((-112) $ (-652 $))) (-15 -4338 ((-112) $ $)) (-15 -4338 ((-112) $ (-652 $))) (-15 -2462 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -2462 ($ $ $ |t#3|)) (-15 -2213 ($ $ $ |t#3|)) (-15 -2984 ($ $ $)) (-15 -4303 ($ $ $)) (-15 -2984 ($ $ $ |t#3|)) (-15 -4303 ($ $ $ |t#3|)) (-15 -1867 ((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -3669 $)) $ $)) (-15 -1867 ((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -3669 $)) $ $ |t#3|)) (-15 -4130 ((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -4130 ((-2 (|:| -1857 $) (|:| |gap| (-779)) (|:| -4215 $) (|:| -3669 $)) $ $ |t#3|)) (-15 -3038 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -1685 ($ $ $)) (-15 -3289 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3029 (-779))) $ $)) (-15 -1825 ($ $ $)) (-15 -2755 ($ $ $)) (IF (|has| |t#3| (-622 (-1188))) (PROGN (-6 (-621 (-961 |t#1|))) (-6 (-622 (-961 |t#1|))) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -1695 ((-3 $ "failed") (-961 (-415 (-572))))) (-15 -2204 ($ (-961 (-415 (-572))))) (-15 -1835 ($ (-961 (-415 (-572))))) (-15 -1695 ((-3 $ "failed") (-961 (-572)))) (-15 -2204 ($ (-961 (-572)))) (-15 -1835 ($ (-961 (-572)))) (IF (|has| |t#1| (-1003 (-572))) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-961 |t#1|))) (-15 -2204 ($ (-961 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-572))) (IF (|has| |t#1| (-38 (-415 (-572)))) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-961 (-572)))) (-15 -2204 ($ (-961 (-572)))) (-15 -1835 ($ (-961 (-572)))) (IF (|has| |t#1| (-553)) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-961 |t#1|))) (-15 -2204 ($ (-961 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-572))) |%noBranch| (IF (|has| |t#1| (-38 (-415 (-572)))) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-961 |t#1|))) (-15 -2204 ($ (-961 |t#1|)))))) (-15 -1835 ($ (-961 |t#1|))) (IF (|has| |t#1| (-1049 (-572))) (-6 (-622 (-1170))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-15 -3905 ($ $)) (-15 -2387 ($ $)) (-15 -1605 ($ $ |t#1|)) (-15 -3259 ($ $ |t#1|)) (-15 -1605 ($ $ $)) (-15 -3259 ($ $ $)) (-15 -3453 ($ $ $)) (-15 -2045 ((-2 (|:| -2870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1638 ((-2 (|:| -2870 $) (|:| |coef1| $)) $ $)) (-15 -3431 ((-2 (|:| -2870 $) (|:| |coef2| $)) $ $)) (-15 -2361 ($ $ $)) (-15 -2110 ((-652 $) $ $)) (-15 -3487 ($ $ $)) (-15 -3301 ($ $ $ (-779))) (-15 -3092 ($ $ $ $ (-779))) (-15 -3423 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-460)) (PROGN (-15 -2870 (|t#1| |t#1| $)) (-15 -2620 ($ $)) (-15 -2261 ($ $)) (-15 -4244 ($ $)) (-15 -1327 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 |#3|) . T) ((-624 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-621 (-870)) . T) ((-621 (-961 |#1|)) |has| |#3| (-622 (-1188))) ((-174) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-622 (-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572))))) ((-622 (-961 |#1|)) |has| |#3| (-622 (-1188))) ((-622 (-1170)) -12 (|has| |#1| (-1049 (-572))) (|has| |#3| (-622 (-1188)))) ((-296) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-315 $) . T) ((-332 |#1| |#2|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -2813 (|has| |#1| (-918)) (|has| |#1| (-460))) ((-522 |#3| |#1|) . T) ((-522 |#3| $) . T) ((-522 $ $) . T) ((-564) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 #1=(-572)) |has| |#1| (-647 (-572))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-647 #1#) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-734) . T) ((-909 |#3|) . T) ((-895 (-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386)))) ((-895 (-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))) ((-958 |#1| |#2| |#3|) . T) ((-918) |has| |#1| (-918)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1049 |#3|) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) |has| |#1| (-918)))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-1498 (((-652 (-1146)) $) 18)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 27) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-1146) $) 20)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1077) (-13 (-1094) (-10 -8 (-15 -1498 ((-652 (-1146)) $)) (-15 -2042 ((-1146) $))))) (T -1077))
-((-1498 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1077)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1077)))))
-(-13 (-1094) (-10 -8 (-15 -1498 ((-652 (-1146)) $)) (-15 -2042 ((-1146) $))))
-((-2697 (((-112) |#3| $) 15)) (-1821 (((-3 $ "failed") |#3| (-930)) 29)) (-2062 (((-3 |#3| "failed") |#3| $) 45)) (-3074 (((-112) |#3| $) 19)) (-1623 (((-112) |#3| $) 17)))
-(((-1078 |#1| |#2| |#3|) (-10 -8 (-15 -1821 ((-3 |#1| "failed") |#3| (-930))) (-15 -2062 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3074 ((-112) |#3| |#1|)) (-15 -1623 ((-112) |#3| |#1|)) (-15 -2697 ((-112) |#3| |#1|))) (-1079 |#2| |#3|) (-13 (-856) (-370)) (-1255 |#2|)) (T -1078))
-NIL
-(-10 -8 (-15 -1821 ((-3 |#1| "failed") |#3| (-930))) (-15 -2062 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3074 ((-112) |#3| |#1|)) (-15 -1623 ((-112) |#3| |#1|)) (-15 -2697 ((-112) |#3| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) |#2| $) 22)) (-2840 (((-572) |#2| $) 23)) (-1821 (((-3 $ "failed") |#2| (-930)) 16)) (-3142 ((|#1| |#2| $ |#1|) 14)) (-2062 (((-3 |#2| "failed") |#2| $) 19)) (-3074 (((-112) |#2| $) 20)) (-1623 (((-112) |#2| $) 21)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3764 ((|#2| $) 18)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-3548 ((|#1| |#2| $ |#1|) 15)) (-3381 (((-652 $) |#2|) 17)) (-2978 (((-112) $ $) 6)))
-(((-1079 |#1| |#2|) (-141) (-13 (-856) (-370)) (-1255 |t#1|)) (T -1079))
-((-2840 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-572)))) (-2697 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-112)))) (-1623 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-112)))) (-3074 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-112)))) (-2062 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1079 *3 *2)) (-4 *3 (-13 (-856) (-370))) (-4 *2 (-1255 *3)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *2)) (-4 *3 (-13 (-856) (-370))) (-4 *2 (-1255 *3)))) (-3381 (*1 *2 *3) (-12 (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-652 *1)) (-4 *1 (-1079 *4 *3)))) (-1821 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-930)) (-4 *4 (-13 (-856) (-370))) (-4 *1 (-1079 *4 *2)) (-4 *2 (-1255 *4)))) (-3548 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1079 *2 *3)) (-4 *2 (-13 (-856) (-370))) (-4 *3 (-1255 *2)))) (-3142 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1079 *2 *3)) (-4 *2 (-13 (-856) (-370))) (-4 *3 (-1255 *2)))))
-(-13 (-1111) (-10 -8 (-15 -2840 ((-572) |t#2| $)) (-15 -2697 ((-112) |t#2| $)) (-15 -1623 ((-112) |t#2| $)) (-15 -3074 ((-112) |t#2| $)) (-15 -2062 ((-3 |t#2| "failed") |t#2| $)) (-15 -3764 (|t#2| $)) (-15 -3381 ((-652 $) |t#2|)) (-15 -1821 ((-3 $ "failed") |t#2| (-930))) (-15 -3548 (|t#1| |t#2| $ |t#1|)) (-15 -3142 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2841 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-779)) 114)) (-1948 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779)) 63)) (-3666 (((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-779)) 99)) (-3525 (((-779) (-652 |#4|) (-652 |#5|)) 30)) (-1592 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779)) 65) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779) (-112)) 67)) (-4189 (((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112)) 87)) (-1835 (((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) 92)) (-4234 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-112)) 62)) (-2478 (((-779) (-652 |#4|) (-652 |#5|)) 21)))
-(((-1080 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2478 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -3525 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -4234 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-112))) (-15 -1948 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779))) (-15 -1948 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779) (-112))) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779))) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -4189 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -4189 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2841 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-779))) (-15 -1835 ((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) (-15 -3666 ((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-779)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1080))
-((-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -4090 *9)))) (-5 *4 (-779)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-1284)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -4090 *8))) (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1170)) (-5 *1 (-1080 *4 *5 *6 *7 *8)))) (-2841 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-652 *11)) (|:| |todo| (-652 (-2 (|:| |val| *3) (|:| -4090 *11)))))) (-5 *6 (-779)) (-5 *2 (-652 (-2 (|:| |val| (-652 *10)) (|:| -4090 *11)))) (-5 *3 (-652 *10)) (-5 *4 (-652 *11)) (-4 *10 (-1076 *7 *8 *9)) (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-460)) (-4 *8 (-801)) (-4 *9 (-858)) (-5 *1 (-1080 *7 *8 *9 *10 *11)))) (-4189 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))) (-4189 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))) (-1592 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-1592 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-1592 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-779)) (-5 *6 (-112)) (-4 *7 (-460)) (-4 *8 (-801)) (-4 *9 (-858)) (-4 *3 (-1076 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1080 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3)))) (-1948 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-1948 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-4234 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2478 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -3525 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -4234 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-112))) (-15 -1948 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779))) (-15 -1948 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779) (-112))) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779))) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -4189 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -4189 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2841 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-779))) (-15 -1835 ((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) (-15 -3666 ((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-779))))
-((-1939 (((-112) |#5| $) 26)) (-4131 (((-112) |#5| $) 29)) (-1554 (((-112) |#5| $) 18) (((-112) $) 52)) (-1346 (((-652 $) |#5| $) NIL) (((-652 $) (-652 |#5|) $) 94) (((-652 $) (-652 |#5|) (-652 $)) 92) (((-652 $) |#5| (-652 $)) 95)) (-2772 (($ $ |#5|) NIL) (((-652 $) |#5| $) NIL) (((-652 $) |#5| (-652 $)) 73) (((-652 $) (-652 |#5|) $) 75) (((-652 $) (-652 |#5|) (-652 $)) 77)) (-3007 (((-652 $) |#5| $) NIL) (((-652 $) |#5| (-652 $)) 64) (((-652 $) (-652 |#5|) $) 69) (((-652 $) (-652 |#5|) (-652 $)) 71)) (-4377 (((-112) |#5| $) 32)))
-(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2772 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -2772 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -2772 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -2772 ((-652 |#1|) |#5| |#1|)) (-15 -3007 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -3007 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -3007 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -3007 ((-652 |#1|) |#5| |#1|)) (-15 -1346 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -1346 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -1346 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -1346 ((-652 |#1|) |#5| |#1|)) (-15 -4131 ((-112) |#5| |#1|)) (-15 -1554 ((-112) |#1|)) (-15 -4377 ((-112) |#5| |#1|)) (-15 -1939 ((-112) |#5| |#1|)) (-15 -1554 ((-112) |#5| |#1|)) (-15 -2772 (|#1| |#1| |#5|))) (-1082 |#2| |#3| |#4| |#5|) (-460) (-801) (-858) (-1076 |#2| |#3| |#4|)) (T -1081))
-NIL
-(-10 -8 (-15 -2772 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -2772 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -2772 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -2772 ((-652 |#1|) |#5| |#1|)) (-15 -3007 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -3007 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -3007 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -3007 ((-652 |#1|) |#5| |#1|)) (-15 -1346 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -1346 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -1346 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -1346 ((-652 |#1|) |#5| |#1|)) (-15 -4131 ((-112) |#5| |#1|)) (-15 -1554 ((-112) |#1|)) (-15 -4377 ((-112) |#5| |#1|)) (-15 -1939 ((-112) |#5| |#1|)) (-15 -1554 ((-112) |#5| |#1|)) (-15 -2772 (|#1| |#1| |#5|)))
-((-2846 (((-112) $ $) 7)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |#4|)))) (-652 |#4|)) 86)) (-1740 (((-652 $) (-652 |#4|)) 87) (((-652 $) (-652 |#4|) (-112)) 112)) (-4353 (((-652 |#3|) $) 34)) (-1544 (((-112) $) 27)) (-2639 (((-112) $) 18 (|has| |#1| (-564)))) (-2621 (((-112) |#4| $) 102) (((-112) $) 98)) (-3558 ((|#4| |#4| $) 93)) (-3517 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) 28)) (-1631 (((-112) $ (-779)) 45)) (-2162 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-3281 (($) 46 T CONST)) (-2390 (((-112) $) 23 (|has| |#1| (-564)))) (-2783 (((-112) $ $) 25 (|has| |#1| (-564)))) (-3937 (((-112) $ $) 24 (|has| |#1| (-564)))) (-1616 (((-112) $) 26 (|has| |#1| (-564)))) (-3713 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1566 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) 37)) (-2204 (($ (-652 |#4|)) 36)) (-2923 (((-3 $ "failed") $) 83)) (-2020 ((|#4| |#4| $) 90)) (-2086 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2888 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1758 ((|#4| |#4| $) 88)) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3433 (((-2 (|:| -1379 (-652 |#4|)) (|:| -1674 (-652 |#4|))) $) 106)) (-1939 (((-112) |#4| $) 137)) (-4131 (((-112) |#4| $) 134)) (-1554 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-4338 (((-112) |#4| $) 105) (((-112) $) 104)) (-2366 ((|#3| $) 35)) (-1861 (((-112) $ (-779)) 44)) (-1344 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-3015 (((-652 |#3|) $) 33)) (-1683 (((-112) |#3| $) 32)) (-1985 (((-112) $ (-779)) 43)) (-4347 (((-1170) $) 10)) (-4431 (((-3 |#4| (-652 $)) |#4| |#4| $) 129)) (-3487 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3357 (((-3 |#4| "failed") $) 84)) (-3326 (((-652 $) |#4| $) 130)) (-4399 (((-3 (-112) (-652 $)) |#4| $) 133)) (-1892 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1346 (((-652 $) |#4| $) 126) (((-652 $) (-652 |#4|) $) 125) (((-652 $) (-652 |#4|) (-652 $)) 124) (((-652 $) |#4| (-652 $)) 123)) (-3761 (($ |#4| $) 118) (($ (-652 |#4|) $) 117)) (-2234 (((-652 |#4|) $) 108)) (-3005 (((-112) |#4| $) 100) (((-112) $) 96)) (-2755 ((|#4| |#4| $) 91)) (-2323 (((-112) $ $) 111)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-3536 (((-112) |#4| $) 101) (((-112) $) 97)) (-1825 ((|#4| |#4| $) 92)) (-3964 (((-1131) $) 11)) (-2912 (((-3 |#4| "failed") $) 85)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3632 (((-3 $ "failed") $ |#4|) 79)) (-2772 (($ $ |#4|) 78) (((-652 $) |#4| $) 116) (((-652 $) |#4| (-652 $)) 115) (((-652 $) (-652 |#4|) $) 114) (((-652 $) (-652 |#4|) (-652 $)) 113)) (-1612 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) 39)) (-1841 (((-112) $) 42)) (-1613 (($) 41)) (-4390 (((-779) $) 107)) (-3973 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3164 (($ $) 40)) (-1835 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) 61)) (-2748 (($ $ |#3|) 29)) (-2365 (($ $ |#3|) 31)) (-3862 (($ $) 89)) (-1670 (($ $ |#3|) 30)) (-2940 (((-870) $) 12) (((-652 |#4|) $) 38)) (-3678 (((-779) $) 77 (|has| |#3| (-375)))) (-4379 (((-112) $ $) 9)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3447 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-3007 (((-652 $) |#4| $) 122) (((-652 $) |#4| (-652 $)) 121) (((-652 $) (-652 |#4|) $) 120) (((-652 $) (-652 |#4|) (-652 $)) 119)) (-4380 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-4041 (((-652 |#3|) $) 82)) (-4377 (((-112) |#4| $) 136)) (-1482 (((-112) |#3| $) 81)) (-2978 (((-112) $ $) 6)) (-2860 (((-779) $) 47 (|has| $ (-6 -4454)))))
-(((-1082 |#1| |#2| |#3| |#4|) (-141) (-460) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -1082))
-((-1554 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-1939 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-4377 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-1554 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-4131 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-4399 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-3 (-112) (-652 *1))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-1892 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *1)))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-1892 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-3326 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)))) (-4431 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-3 *3 (-652 *1))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-3487 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *1)))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-3517 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *1)))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-1346 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)))) (-1346 (*1 *2 *3 *1) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *7)))) (-1346 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)))) (-1346 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)))) (-3007 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)))) (-3007 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)))) (-3007 (*1 *2 *3 *1) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *7)))) (-3007 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)))) (-3761 (*1 *1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *2)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-3761 (*1 *1 *2 *1) (-12 (-5 *2 (-652 *6)) (-4 *1 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)))) (-2772 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)))) (-2772 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)))) (-2772 (*1 *2 *3 *1) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *7)))) (-2772 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *5 *6 *7 *8)))))
-(-13 (-1222 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1554 ((-112) |t#4| $)) (-15 -1939 ((-112) |t#4| $)) (-15 -4377 ((-112) |t#4| $)) (-15 -1554 ((-112) $)) (-15 -4131 ((-112) |t#4| $)) (-15 -4399 ((-3 (-112) (-652 $)) |t#4| $)) (-15 -1892 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 $))) |t#4| $)) (-15 -1892 ((-112) |t#4| $)) (-15 -3326 ((-652 $) |t#4| $)) (-15 -4431 ((-3 |t#4| (-652 $)) |t#4| |t#4| $)) (-15 -3487 ((-652 (-2 (|:| |val| |t#4|) (|:| -4090 $))) |t#4| |t#4| $)) (-15 -3517 ((-652 (-2 (|:| |val| |t#4|) (|:| -4090 $))) |t#4| $)) (-15 -1346 ((-652 $) |t#4| $)) (-15 -1346 ((-652 $) (-652 |t#4|) $)) (-15 -1346 ((-652 $) (-652 |t#4|) (-652 $))) (-15 -1346 ((-652 $) |t#4| (-652 $))) (-15 -3007 ((-652 $) |t#4| $)) (-15 -3007 ((-652 $) |t#4| (-652 $))) (-15 -3007 ((-652 $) (-652 |t#4|) $)) (-15 -3007 ((-652 $) (-652 |t#4|) (-652 $))) (-15 -3761 ($ |t#4| $)) (-15 -3761 ($ (-652 |t#4|) $)) (-15 -2772 ((-652 $) |t#4| $)) (-15 -2772 ((-652 $) |t#4| (-652 $))) (-15 -2772 ((-652 $) (-652 |t#4|) $)) (-15 -2772 ((-652 $) (-652 |t#4|) (-652 $))) (-15 -1740 ((-652 $) (-652 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1222 |#1| |#2| |#3| |#4|) . T) ((-1229) . T))
-((-4040 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|) 86)) (-1361 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 127)) (-3885 (((-652 |#5|) |#4| |#5|) 74)) (-3153 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1415 (((-1284)) 36)) (-3917 (((-1284)) 25)) (-1551 (((-1284) (-1170) (-1170) (-1170)) 32)) (-2312 (((-1284) (-1170) (-1170) (-1170)) 21)) (-2753 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|) 107)) (-2443 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#3| (-112)) 118) (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2450 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 113)))
-(((-1083 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2312 ((-1284) (-1170) (-1170) (-1170))) (-15 -3917 ((-1284))) (-15 -1551 ((-1284) (-1170) (-1170) (-1170))) (-15 -1415 ((-1284))) (-15 -2753 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2443 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2443 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -2450 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -1361 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -3153 ((-112) |#4| |#5|)) (-15 -3153 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -3885 ((-652 |#5|) |#4| |#5|)) (-15 -4040 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1083))
-((-4040 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3885 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4)) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3153 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3153 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-1361 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2450 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2443 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -4090 *9)))) (-5 *5 (-112)) (-4 *8 (-1076 *6 *7 *4)) (-4 *9 (-1082 *6 *7 *4 *8)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *4 (-858)) (-5 *2 (-652 (-2 (|:| |val| *8) (|:| -4090 *9)))) (-5 *1 (-1083 *6 *7 *4 *8 *9)))) (-2443 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1083 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-2753 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-1415 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-1551 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-3917 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-2312 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2312 ((-1284) (-1170) (-1170) (-1170))) (-15 -3917 ((-1284))) (-15 -1551 ((-1284) (-1170) (-1170) (-1170))) (-15 -1415 ((-1284))) (-15 -2753 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2443 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2443 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -2450 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -1361 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -3153 ((-112) |#4| |#5|)) (-15 -3153 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -3885 ((-652 |#5|) |#4| |#5|)) (-15 -4040 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|)))
-((-2846 (((-112) $ $) NIL)) (-2330 (((-1228) $) 13)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4014 (((-1146) $) 10)) (-2940 (((-870) $) 20) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1084) (-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $)) (-15 -2330 ((-1228) $))))) (T -1084))
-((-4014 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1084)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-1084)))))
-(-13 (-1094) (-10 -8 (-15 -4014 ((-1146) $)) (-15 -2330 ((-1228) $))))
-((-4121 (((-112) $ $) 7)))
-(((-1085) (-13 (-1229) (-10 -8 (-15 -4121 ((-112) $ $))))) (T -1085))
-((-4121 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1085)))))
-(-13 (-1229) (-10 -8 (-15 -4121 ((-112) $ $))))
-((-2846 (((-112) $ $) NIL)) (-2030 (((-1188) $) 8)) (-4347 (((-1170) $) 17)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 11)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 14)))
-(((-1086 |#1|) (-13 (-1111) (-10 -8 (-15 -2030 ((-1188) $)))) (-1188)) (T -1086))
-((-2030 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1086 *3)) (-14 *3 *2))))
-(-13 (-1111) (-10 -8 (-15 -2030 ((-1188) $))))
-((-2846 (((-112) $ $) NIL)) (-2566 (($ $ (-652 (-1188)) (-1 (-112) (-652 |#3|))) 34)) (-3839 (($ |#3| |#3|) 23) (($ |#3| |#3| (-652 (-1188))) 21)) (-1807 ((|#3| $) 13)) (-1695 (((-3 (-300 |#3|) "failed") $) 60)) (-2204 (((-300 |#3|) $) NIL)) (-3983 (((-652 (-1188)) $) 16)) (-2119 (((-901 |#1|) $) 11)) (-1794 ((|#3| $) 12)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2196 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-930)) 41)) (-2940 (((-870) $) 89) (($ (-300 |#3|)) 22)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 38)))
-(((-1087 |#1| |#2| |#3|) (-13 (-1111) (-292 |#3| |#3|) (-1049 (-300 |#3|)) (-10 -8 (-15 -3839 ($ |#3| |#3|)) (-15 -3839 ($ |#3| |#3| (-652 (-1188)))) (-15 -2566 ($ $ (-652 (-1188)) (-1 (-112) (-652 |#3|)))) (-15 -2119 ((-901 |#1|) $)) (-15 -1794 (|#3| $)) (-15 -1807 (|#3| $)) (-15 -2196 (|#3| $ |#3| (-930))) (-15 -3983 ((-652 (-1188)) $)))) (-1111) (-13 (-1060) (-895 |#1|) (-622 (-901 |#1|))) (-13 (-438 |#2|) (-895 |#1|) (-622 (-901 |#1|)))) (T -1087))
-((-3839 (*1 *1 *2 *2) (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))) (-5 *1 (-1087 *3 *4 *2)) (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))) (-3839 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-1087 *4 *5 *2)) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))) (-2566 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-1 (-112) (-652 *6))) (-4 *6 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-1087 *4 *5 *6)))) (-2119 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 *2))) (-5 *2 (-901 *3)) (-5 *1 (-1087 *3 *4 *5)) (-4 *5 (-13 (-438 *4) (-895 *3) (-622 *2))))) (-1794 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))) (-5 *1 (-1087 *3 *4 *2)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))))) (-1807 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))) (-5 *1 (-1087 *3 *4 *2)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))))) (-2196 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-930)) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-1087 *4 *5 *2)) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))) (-3983 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))) (-5 *2 (-652 (-1188))) (-5 *1 (-1087 *3 *4 *5)) (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))))
-(-13 (-1111) (-292 |#3| |#3|) (-1049 (-300 |#3|)) (-10 -8 (-15 -3839 ($ |#3| |#3|)) (-15 -3839 ($ |#3| |#3| (-652 (-1188)))) (-15 -2566 ($ $ (-652 (-1188)) (-1 (-112) (-652 |#3|)))) (-15 -2119 ((-901 |#1|) $)) (-15 -1794 (|#3| $)) (-15 -1807 (|#3| $)) (-15 -2196 (|#3| $ |#3| (-930))) (-15 -3983 ((-652 (-1188)) $))))
-((-2846 (((-112) $ $) NIL)) (-2530 (($ (-652 (-1087 |#1| |#2| |#3|))) 14)) (-1995 (((-652 (-1087 |#1| |#2| |#3|)) $) 21)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2196 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-930)) 27)) (-2940 (((-870) $) 17)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 20)))
-(((-1088 |#1| |#2| |#3|) (-13 (-1111) (-292 |#3| |#3|) (-10 -8 (-15 -2530 ($ (-652 (-1087 |#1| |#2| |#3|)))) (-15 -1995 ((-652 (-1087 |#1| |#2| |#3|)) $)) (-15 -2196 (|#3| $ |#3| (-930))))) (-1111) (-13 (-1060) (-895 |#1|) (-622 (-901 |#1|))) (-13 (-438 |#2|) (-895 |#1|) (-622 (-901 |#1|)))) (T -1088))
-((-2530 (*1 *1 *2) (-12 (-5 *2 (-652 (-1087 *3 *4 *5))) (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))) (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))) (-5 *1 (-1088 *3 *4 *5)))) (-1995 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))) (-5 *2 (-652 (-1087 *3 *4 *5))) (-5 *1 (-1088 *3 *4 *5)) (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))) (-2196 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-930)) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-1088 *4 *5 *2)) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))))
-(-13 (-1111) (-292 |#3| |#3|) (-10 -8 (-15 -2530 ($ (-652 (-1087 |#1| |#2| |#3|)))) (-15 -1995 ((-652 (-1087 |#1| |#2| |#3|)) $)) (-15 -2196 (|#3| $ |#3| (-930)))))
-((-3459 (((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112)) 88) (((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|))) 92) (((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112)) 90)))
-(((-1089 |#1| |#2|) (-10 -7 (-15 -3459 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112))) (-15 -3459 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -3459 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112)))) (-13 (-313) (-148)) (-652 (-1188))) (T -1089))
-((-3459 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5)))))) (-5 *1 (-1089 *5 *6)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-2 (|:| -2130 (-1184 *4)) (|:| -4329 (-652 (-961 *4)))))) (-5 *1 (-1089 *4 *5)) (-5 *3 (-652 (-961 *4))) (-14 *5 (-652 (-1188))))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5)))))) (-5 *1 (-1089 *5 *6)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))))))
-(-10 -7 (-15 -3459 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112))) (-15 -3459 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -3459 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112))))
-((-4218 (((-426 |#3|) |#3|) 18)))
-(((-1090 |#1| |#2| |#3|) (-10 -7 (-15 -4218 ((-426 |#3|) |#3|))) (-1255 (-415 (-572))) (-13 (-370) (-148) (-732 (-415 (-572)) |#1|)) (-1255 |#2|)) (T -1090))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-13 (-370) (-148) (-732 (-415 (-572)) *4))) (-5 *2 (-426 *3)) (-5 *1 (-1090 *4 *5 *3)) (-4 *3 (-1255 *5)))))
-(-10 -7 (-15 -4218 ((-426 |#3|) |#3|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 136)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-370)))) (-3009 (($ $) NIL (|has| |#1| (-370)))) (-4334 (((-112) $) NIL (|has| |#1| (-370)))) (-3736 (((-697 |#1|) (-1279 $)) NIL) (((-697 |#1|)) 121)) (-1635 ((|#1| $) 125)) (-1814 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-356)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-1486 (((-779)) 43 (|has| |#1| (-375)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1913 (($ (-1279 |#1|) (-1279 $)) NIL) (($ (-1279 |#1|)) 46)) (-2879 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-356)))) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-3485 (((-697 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 113) (((-697 |#1|) (-697 $)) 108) (((-697 |#1|) (-1279 $)) NIL)) (-2865 (($ |#2|) 65) (((-3 $ "failed") (-415 |#2|)) NIL (|has| |#1| (-370)))) (-2062 (((-3 $ "failed") $) NIL)) (-3581 (((-930)) 84)) (-2815 (($) 47 (|has| |#1| (-375)))) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-1879 (($) NIL (|has| |#1| (-356)))) (-3442 (((-112) $) NIL (|has| |#1| (-356)))) (-2303 (($ $ (-779)) NIL (|has| |#1| (-356))) (($ $) NIL (|has| |#1| (-356)))) (-3879 (((-112) $) NIL (|has| |#1| (-370)))) (-2956 (((-930) $) NIL (|has| |#1| (-356))) (((-841 (-930)) $) NIL (|has| |#1| (-356)))) (-1886 (((-112) $) NIL)) (-2028 ((|#1| $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-356)))) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3053 ((|#2| $) 91 (|has| |#1| (-370)))) (-3715 (((-930) $) 145 (|has| |#1| (-375)))) (-2851 ((|#2| $) 62)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-3815 (($) NIL (|has| |#1| (-356)) CONST)) (-2571 (($ (-930)) 135 (|has| |#1| (-375)))) (-3964 (((-1131) $) NIL)) (-2967 (($) 127)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-1317 (((-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))) NIL (|has| |#1| (-356)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3537 ((|#1| (-1279 $)) NIL) ((|#1|) 117)) (-3354 (((-779) $) NIL (|has| |#1| (-356))) (((-3 (-779) "failed") $ $) NIL (|has| |#1| (-356)))) (-3902 (($ $) NIL (-2813 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-779)) NIL (-2813 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-1 |#1| |#1|) (-779)) NIL (|has| |#1| (-370))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-370)))) (-2144 (((-697 |#1|) (-1279 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-370)))) (-3764 ((|#2|) 81)) (-4033 (($) NIL (|has| |#1| (-356)))) (-4329 (((-1279 |#1|) $ (-1279 $)) 96) (((-697 |#1|) (-1279 $) (-1279 $)) NIL) (((-1279 |#1|) $) 75) (((-697 |#1|) (-1279 $)) 92)) (-1835 (((-1279 |#1|) $) NIL) (($ (-1279 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-356)))) (-2940 (((-870) $) 61) (($ (-572)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-370))) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))) (-3849 (($ $) NIL (|has| |#1| (-356))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4251 ((|#2| $) 89)) (-4249 (((-779)) 83 T CONST)) (-4379 (((-112) $ $) NIL)) (-4362 (((-1279 $)) 88)) (-2845 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2131 (($) 32 T CONST)) (-2143 (($) 19 T CONST)) (-3608 (($ $) NIL (-2813 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-779)) NIL (-2813 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-1 |#1| |#1|) (-779)) NIL (|has| |#1| (-370))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-370)))) (-2978 (((-112) $ $) 67)) (-3106 (($ $ $) NIL (|has| |#1| (-370)))) (-3089 (($ $) 71) (($ $ $) NIL)) (-3075 (($ $ $) 69)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-415 (-572)) $) NIL (|has| |#1| (-370))) (($ $ (-415 (-572))) NIL (|has| |#1| (-370)))))
-(((-1091 |#1| |#2| |#3|) (-732 |#1| |#2|) (-174) (-1255 |#1|) |#2|) (T -1091))
-NIL
-(-732 |#1| |#2|)
-((-4218 (((-426 |#3|) |#3|) 19)))
-(((-1092 |#1| |#2| |#3|) (-10 -7 (-15 -4218 ((-426 |#3|) |#3|))) (-1255 (-415 (-961 (-572)))) (-13 (-370) (-148) (-732 (-415 (-961 (-572))) |#1|)) (-1255 |#2|)) (T -1092))
-((-4218 (*1 *2 *3) (-12 (-4 *4 (-1255 (-415 (-961 (-572))))) (-4 *5 (-13 (-370) (-148) (-732 (-415 (-961 (-572))) *4))) (-5 *2 (-426 *3)) (-5 *1 (-1092 *4 *5 *3)) (-4 *3 (-1255 *5)))))
-(-10 -7 (-15 -4218 ((-426 |#3|) |#3|)))
-((-2846 (((-112) $ $) NIL)) (-3654 (($ $ $) 16)) (-2427 (($ $ $) 17)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3132 (($) 6)) (-1835 (((-1188) $) 20)) (-2940 (((-870) $) 13)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 15)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 9)))
-(((-1093) (-13 (-858) (-622 (-1188)) (-10 -8 (-15 -3132 ($))))) (T -1093))
-((-3132 (*1 *1) (-5 *1 (-1093))))
-(-13 (-858) (-622 (-1188)) (-10 -8 (-15 -3132 ($))))
-((-2846 (((-112) $ $) 7)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-1193)) 17) (((-1193) $) 16)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-1094) (-141)) (T -1094))
+NIL
+(-13 (-21) (-1125))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1125) . T) ((-1113) . T))
+((-1760 (($ $) 17)) (-3612 (($ $) 25)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 55)) (-1652 (($ $) 27)) (-2595 (($ $) 12)) (-1846 (($ $) 43)) (-1837 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) 36)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 31) (($ (-574)) NIL) (($ (-417 (-574))) 31)) (-4160 (((-781)) 9)) (-4078 (($ $) 45)))
+(((-1072 |#1|) (-10 -8 (-15 -3612 (|#1| |#1|)) (-15 -1760 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -4078 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -2961 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 -1837 ((-227) |#1|)) (-15 -1837 ((-388) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| |#1|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1073)) (T -1072))
+((-4160 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1072 *3)) (-4 *3 (-1073)))))
+(-10 -8 (-15 -3612 (|#1| |#1|)) (-15 -1760 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -4078 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -2961 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 -1837 ((-227) |#1|)) (-15 -1837 ((-388) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| |#1|)) (-15 -4160 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2809 (((-574) $) 97)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-1760 (($ $) 95)) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-4229 (($ $) 105)) (-3875 (((-112) $ $) 65)) (-3747 (((-574) $) 122)) (-3670 (($) 18 T CONST)) (-3612 (($ $) 94)) (-1697 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2209 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-1654 (((-112) $) 79)) (-3434 (((-112) $) 120)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 104)) (-1652 (($ $) 100)) (-3244 (((-112) $) 121)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3658 (($ $ $) 119)) (-2106 (($ $ $) 118)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-2595 (($ $) 96)) (-1846 (($ $) 98)) (-4220 (((-428 $) $) 82)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-1837 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-4160 (((-781)) 32 T CONST)) (-4078 (($ $) 99)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2946 (($ $) 123)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3041 (((-112) $ $) 116)) (-3016 (((-112) $ $) 115)) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 117)) (-3005 (((-112) $ $) 114)) (-3107 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
+(((-1073) (-141)) (T -1073))
+((-2946 (*1 *1 *1) (-4 *1 (-1073))) (-1652 (*1 *1 *1) (-4 *1 (-1073))) (-4078 (*1 *1 *1) (-4 *1 (-1073))) (-1846 (*1 *1 *1) (-4 *1 (-1073))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-574)))) (-2595 (*1 *1 *1) (-4 *1 (-1073))) (-1760 (*1 *1 *1) (-4 *1 (-1073))) (-3612 (*1 *1 *1) (-4 *1 (-1073))))
+(-13 (-372) (-858) (-1035) (-1051 (-574)) (-1051 (-417 (-574))) (-1015) (-624 (-903 (-388))) (-897 (-388)) (-148) (-10 -8 (-15 -1652 ($ $)) (-15 -4078 ($ $)) (-15 -1846 ($ $)) (-15 -2809 ((-574) $)) (-15 -2595 ($ $)) (-15 -1760 ($ $)) (-15 -3612 ($ $)) (-15 -2946 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-931) . T) ((-1015) . T) ((-1035) . T) ((-1051 (-417 (-574))) . T) ((-1051 (-574)) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) |#2| $) 26)) (-1487 ((|#1| $) 10)) (-3747 (((-574) |#2| $) 116)) (-1413 (((-3 $ "failed") |#2| (-932)) 75)) (-3904 ((|#1| $) 31)) (-2749 ((|#1| |#2| $ |#1|) 40)) (-2621 (($ $) 28)) (-1950 (((-3 |#2| "failed") |#2| $) 111)) (-3434 (((-112) |#2| $) NIL)) (-3244 (((-112) |#2| $) NIL)) (-3884 (((-112) |#2| $) 27)) (-3870 ((|#1| $) 117)) (-3891 ((|#1| $) 30)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1782 ((|#2| $) 102)) (-2943 (((-872) $) 92)) (-2923 (((-112) $ $) NIL)) (-3551 ((|#1| |#2| $ |#1|) 41)) (-3491 (((-654 $) |#2|) 77)) (-2982 (((-112) $ $) 97)))
+(((-1074 |#1| |#2|) (-13 (-1081 |#1| |#2|) (-10 -8 (-15 -3891 (|#1| $)) (-15 -3904 (|#1| $)) (-15 -1487 (|#1| $)) (-15 -3870 (|#1| $)) (-15 -2621 ($ $)) (-15 -3884 ((-112) |#2| $)) (-15 -2749 (|#1| |#2| $ |#1|)))) (-13 (-858) (-372)) (-1257 |#1|)) (T -1074))
+((-2749 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-3891 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-3904 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-1487 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-3870 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-2621 (*1 *1 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-3884 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1074 *4 *3)) (-4 *3 (-1257 *4)))))
+(-13 (-1081 |#1| |#2|) (-10 -8 (-15 -3891 (|#1| $)) (-15 -3904 (|#1| $)) (-15 -1487 (|#1| $)) (-15 -3870 (|#1| $)) (-15 -2621 ($ $)) (-15 -3884 ((-112) |#2| $)) (-15 -2749 (|#1| |#2| $ |#1|))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3165 (($ $ $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2573 (($ $ $ $) NIL)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-3747 (((-574) $) NIL)) (-3958 (($ $ $) NIL)) (-3670 (($) NIL T CONST)) (-1438 (($ (-1190)) 10) (($ (-574)) 7)) (-1697 (((-3 (-574) "failed") $) NIL)) (-2209 (((-574) $) NIL)) (-2785 (($ $ $) NIL)) (-2668 (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2057 (((-3 (-417 (-574)) "failed") $) NIL)) (-1811 (((-112) $) NIL)) (-4142 (((-417 (-574)) $) NIL)) (-2820 (($) NIL) (($ $) NIL)) (-2798 (($ $ $) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-1817 (($ $ $ $) NIL)) (-3896 (($ $ $) NIL)) (-3434 (((-112) $) NIL)) (-2531 (($ $ $) NIL)) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3965 (((-112) $) NIL)) (-3239 (((-112) $) NIL)) (-4048 (((-3 $ "failed") $) NIL)) (-3244 (((-112) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3946 (($ $ $ $) NIL)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-3811 (($ $) NIL)) (-4135 (($ $) NIL)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-2274 (($ $ $) NIL)) (-3818 (($) NIL T CONST)) (-1606 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4430 (($ $) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2625 (((-112) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2295 (($ $) NIL)) (-3167 (($ $) NIL)) (-1837 (((-574) $) 16) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL) (($ (-1190)) 9)) (-2943 (((-872) $) 23) (($ (-574)) 6) (($ $) NIL) (($ (-574)) 6)) (-4160 (((-781)) NIL T CONST)) (-2490 (((-112) $ $) NIL)) (-2819 (($ $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2629 (($) NIL)) (-3798 (((-112) $ $) NIL)) (-3836 (($ $ $ $) NIL)) (-2946 (($ $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3094 (($ $) 22) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-574) $) NIL)))
+(((-1075) (-13 (-555) (-628 (-1190)) (-10 -8 (-6 -4443) (-6 -4448) (-6 -4444) (-15 -1438 ($ (-1190))) (-15 -1438 ($ (-574)))))) (T -1075))
+((-1438 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1075)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1075)))))
+(-13 (-555) (-628 (-1190)) (-10 -8 (-6 -4443) (-6 -4448) (-6 -4444) (-15 -1438 ($ (-1190))) (-15 -1438 ($ (-574)))))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL)) (-1860 (((-1286) $ (-1190) (-1190)) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-1713 (($) 9)) (-3143 (((-52) $ (-1190) (-52)) NIL)) (-3989 (($ $) 32)) (-2626 (($ $) 30)) (-1396 (($ $) 29)) (-3060 (($ $) 31)) (-3703 (($ $) 35)) (-2409 (($ $) 36)) (-3534 (($ $) 28)) (-2186 (($ $) 33)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) 27 (|has| $ (-6 -4456)))) (-2163 (((-3 (-52) "failed") (-1190) $) 43)) (-3670 (($) NIL T CONST)) (-4218 (($) 7)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-1586 (($ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) 53 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-3 (-52) "failed") (-1190) $) NIL)) (-3335 (($ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2440 (((-3 (-1172) "failed") $ (-1172) (-574)) 72)) (-2462 (((-52) $ (-1190) (-52)) NIL (|has| $ (-6 -4457)))) (-2385 (((-52) $ (-1190)) NIL)) (-1864 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-1190) $) NIL (|has| (-1190) (-860)))) (-1712 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) 38 (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-3429 (((-1190) $) NIL (|has| (-1190) (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-1765 (((-654 (-1190)) $) NIL)) (-1726 (((-112) (-1190) $) NIL)) (-2234 (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL)) (-1709 (($ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) 46)) (-2459 (((-654 (-1190)) $) NIL)) (-2607 (((-112) (-1190) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-1624 (((-388) $ (-1190)) 52)) (-1977 (((-654 (-1172)) $ (-1172)) 74)) (-2915 (((-52) $) NIL (|has| (-1190) (-860)))) (-1836 (((-3 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) "failed") (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL)) (-1363 (($ $ (-52)) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ $ (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-2121 (((-654 (-52)) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 (((-52) $ (-1190)) NIL) (((-52) $ (-1190) (-52)) NIL)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL)) (-3825 (($ $ (-1190)) 54)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) 40)) (-4157 (($ $ $) 41)) (-2943 (((-872) $) NIL (-2818 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-623 (-872)))))) (-2648 (($ $ (-1190) (-388)) 50)) (-2729 (($ $ (-1190) (-388)) 51)) (-2923 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1909 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1076) (-13 (-1207 (-1190) (-52)) (-10 -8 (-15 -4157 ($ $ $)) (-15 -4218 ($)) (-15 -3534 ($ $)) (-15 -1396 ($ $)) (-15 -2626 ($ $)) (-15 -3060 ($ $)) (-15 -2186 ($ $)) (-15 -3989 ($ $)) (-15 -3703 ($ $)) (-15 -2409 ($ $)) (-15 -2648 ($ $ (-1190) (-388))) (-15 -2729 ($ $ (-1190) (-388))) (-15 -1624 ((-388) $ (-1190))) (-15 -1977 ((-654 (-1172)) $ (-1172))) (-15 -3825 ($ $ (-1190))) (-15 -1713 ($)) (-15 -2440 ((-3 (-1172) "failed") $ (-1172) (-574))) (-6 -4456)))) (T -1076))
+((-4157 (*1 *1 *1 *1) (-5 *1 (-1076))) (-4218 (*1 *1) (-5 *1 (-1076))) (-3534 (*1 *1 *1) (-5 *1 (-1076))) (-1396 (*1 *1 *1) (-5 *1 (-1076))) (-2626 (*1 *1 *1) (-5 *1 (-1076))) (-3060 (*1 *1 *1) (-5 *1 (-1076))) (-2186 (*1 *1 *1) (-5 *1 (-1076))) (-3989 (*1 *1 *1) (-5 *1 (-1076))) (-3703 (*1 *1 *1) (-5 *1 (-1076))) (-2409 (*1 *1 *1) (-5 *1 (-1076))) (-2648 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-388)) (-5 *1 (-1076)))) (-2729 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-388)) (-5 *1 (-1076)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-388)) (-5 *1 (-1076)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1076)) (-5 *3 (-1172)))) (-3825 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1076)))) (-1713 (*1 *1) (-5 *1 (-1076))) (-2440 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-1076)))))
+(-13 (-1207 (-1190) (-52)) (-10 -8 (-15 -4157 ($ $ $)) (-15 -4218 ($)) (-15 -3534 ($ $)) (-15 -1396 ($ $)) (-15 -2626 ($ $)) (-15 -3060 ($ $)) (-15 -2186 ($ $)) (-15 -3989 ($ $)) (-15 -3703 ($ $)) (-15 -2409 ($ $)) (-15 -2648 ($ $ (-1190) (-388))) (-15 -2729 ($ $ (-1190) (-388))) (-15 -1624 ((-388) $ (-1190))) (-15 -1977 ((-654 (-1172)) $ (-1172))) (-15 -3825 ($ $ (-1190))) (-15 -1713 ($)) (-15 -2440 ((-3 (-1172) "failed") $ (-1172) (-574))) (-6 -4456)))
+((-1971 (($ $) 46)) (-1482 (((-112) $ $) 82)) (-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-963 (-417 (-574)))) 251) (((-3 $ "failed") (-963 (-574))) 250) (((-3 $ "failed") (-963 |#2|)) 253)) (-2209 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) NIL) (($ (-963 (-417 (-574)))) 239) (($ (-963 (-574))) 235) (($ (-963 |#2|)) 255)) (-1392 (($ $) NIL) (($ $ |#4|) 44)) (-4155 (((-112) $ $) 131) (((-112) $ (-654 $)) 135)) (-3415 (((-112) $) 60)) (-3015 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 125)) (-3446 (($ $) 160)) (-1787 (($ $) 156)) (-3821 (($ $) 155)) (-4338 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4001 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2474 (((-112) $ $) 143) (((-112) $ (-654 $)) 144)) (-2851 ((|#4| $) 32)) (-2593 (($ $ $) 128)) (-3933 (((-112) $) 59)) (-2396 (((-781) $) 35)) (-1570 (($ $) 174)) (-4117 (($ $) 171)) (-2037 (((-654 $) $) 72)) (-3745 (($ $) 62)) (-3197 (($ $) 167)) (-1662 (((-654 $) $) 69)) (-4156 (($ $) 64)) (-1370 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3755 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2905 (-781))) $ $) 130)) (-2300 (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $) 126) (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $ |#4|) 127)) (-3791 (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3435 $)) $ $) 121) (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3435 $)) $ $ |#4|) 123)) (-2561 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3437 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2060 (((-654 $) $) 54)) (-2768 (((-112) $ $) 140) (((-112) $ (-654 $)) 141)) (-2244 (($ $ $) 116)) (-3818 (($ $) 37)) (-2430 (((-112) $ $) 80)) (-1406 (((-112) $ $) 136) (((-112) $ (-654 $)) 138)) (-1443 (($ $ $) 112)) (-1596 (($ $) 41)) (-2874 ((|#2| |#2| $) 164) (($ (-654 $)) NIL) (($ $ $) NIL)) (-1494 (($ $ |#2|) NIL) (($ $ $) 153)) (-3057 (($ $ |#2|) 148) (($ $ $) 151)) (-3195 (($ $) 49)) (-2455 (($ $) 55)) (-1837 (((-903 (-388)) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (($ (-963 (-417 (-574)))) 241) (($ (-963 (-574))) 237) (($ (-963 |#2|)) 252) (((-1172) $) 279) (((-963 |#2|) $) 184)) (-2943 (((-872) $) 29) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-963 |#2|) $) 185) (($ (-417 (-574))) NIL) (($ $) NIL)) (-1361 (((-3 (-112) "failed") $ $) 79)))
+(((-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2874 (|#1| |#1| |#1|)) (-15 -2874 (|#1| (-654 |#1|))) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 ((-963 |#2|) |#1|)) (-15 -1837 ((-963 |#2|) |#1|)) (-15 -1837 ((-1172) |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2874 (|#2| |#2| |#1|)) (-15 -1494 (|#1| |#1| |#1|)) (-15 -3057 (|#1| |#1| |#1|)) (-15 -1494 (|#1| |#1| |#2|)) (-15 -3057 (|#1| |#1| |#2|)) (-15 -1787 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -1837 (|#1| (-963 |#2|))) (-15 -2209 (|#1| (-963 |#2|))) (-15 -1697 ((-3 |#1| "failed") (-963 |#2|))) (-15 -1837 (|#1| (-963 (-574)))) (-15 -2209 (|#1| (-963 (-574)))) (-15 -1697 ((-3 |#1| "failed") (-963 (-574)))) (-15 -1837 (|#1| (-963 (-417 (-574))))) (-15 -2209 (|#1| (-963 (-417 (-574))))) (-15 -1697 ((-3 |#1| "failed") (-963 (-417 (-574))))) (-15 -2244 (|#1| |#1| |#1|)) (-15 -1443 (|#1| |#1| |#1|)) (-15 -3755 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2905 (-781))) |#1| |#1|)) (-15 -2593 (|#1| |#1| |#1|)) (-15 -3015 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -2300 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1| |#4|)) (-15 -2300 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -3791 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3435 |#1|)) |#1| |#1| |#4|)) (-15 -3791 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -3437 (|#1| |#1| |#1| |#4|)) (-15 -2561 (|#1| |#1| |#1| |#4|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -4001 (|#1| |#1| |#1| |#4|)) (-15 -4338 (|#1| |#1| |#1| |#4|)) (-15 -4001 (|#1| |#1| |#1|)) (-15 -4338 (|#1| |#1| |#1|)) (-15 -2474 ((-112) |#1| (-654 |#1|))) (-15 -2474 ((-112) |#1| |#1|)) (-15 -2768 ((-112) |#1| (-654 |#1|))) (-15 -2768 ((-112) |#1| |#1|)) (-15 -1406 ((-112) |#1| (-654 |#1|))) (-15 -1406 ((-112) |#1| |#1|)) (-15 -4155 ((-112) |#1| (-654 |#1|))) (-15 -4155 ((-112) |#1| |#1|)) (-15 -1482 ((-112) |#1| |#1|)) (-15 -2430 ((-112) |#1| |#1|)) (-15 -1361 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2037 ((-654 |#1|) |#1|)) (-15 -1662 ((-654 |#1|) |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -3415 ((-112) |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -1392 (|#1| |#1| |#4|)) (-15 -1370 (|#1| |#1| |#4|)) (-15 -2455 (|#1| |#1|)) (-15 -2060 ((-654 |#1|) |#1|)) (-15 -3195 (|#1| |#1|)) (-15 -1971 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -2396 ((-781) |#1|)) (-15 -2851 (|#4| |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -2943 (|#1| |#4|)) (-15 -1697 ((-3 |#4| "failed") |#1|)) (-15 -2209 (|#4| |#1|)) (-15 -1370 (|#2| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1078 |#2| |#3| |#4|) (-1062) (-803) (-860)) (T -1077))
+NIL
+(-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2874 (|#1| |#1| |#1|)) (-15 -2874 (|#1| (-654 |#1|))) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 ((-963 |#2|) |#1|)) (-15 -1837 ((-963 |#2|) |#1|)) (-15 -1837 ((-1172) |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2874 (|#2| |#2| |#1|)) (-15 -1494 (|#1| |#1| |#1|)) (-15 -3057 (|#1| |#1| |#1|)) (-15 -1494 (|#1| |#1| |#2|)) (-15 -3057 (|#1| |#1| |#2|)) (-15 -1787 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -1837 (|#1| (-963 |#2|))) (-15 -2209 (|#1| (-963 |#2|))) (-15 -1697 ((-3 |#1| "failed") (-963 |#2|))) (-15 -1837 (|#1| (-963 (-574)))) (-15 -2209 (|#1| (-963 (-574)))) (-15 -1697 ((-3 |#1| "failed") (-963 (-574)))) (-15 -1837 (|#1| (-963 (-417 (-574))))) (-15 -2209 (|#1| (-963 (-417 (-574))))) (-15 -1697 ((-3 |#1| "failed") (-963 (-417 (-574))))) (-15 -2244 (|#1| |#1| |#1|)) (-15 -1443 (|#1| |#1| |#1|)) (-15 -3755 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2905 (-781))) |#1| |#1|)) (-15 -2593 (|#1| |#1| |#1|)) (-15 -3015 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -2300 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1| |#4|)) (-15 -2300 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -3791 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3435 |#1|)) |#1| |#1| |#4|)) (-15 -3791 ((-2 (|:| -1859 |#1|) (|:| |gap| (-781)) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -3437 (|#1| |#1| |#1| |#4|)) (-15 -2561 (|#1| |#1| |#1| |#4|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -4001 (|#1| |#1| |#1| |#4|)) (-15 -4338 (|#1| |#1| |#1| |#4|)) (-15 -4001 (|#1| |#1| |#1|)) (-15 -4338 (|#1| |#1| |#1|)) (-15 -2474 ((-112) |#1| (-654 |#1|))) (-15 -2474 ((-112) |#1| |#1|)) (-15 -2768 ((-112) |#1| (-654 |#1|))) (-15 -2768 ((-112) |#1| |#1|)) (-15 -1406 ((-112) |#1| (-654 |#1|))) (-15 -1406 ((-112) |#1| |#1|)) (-15 -4155 ((-112) |#1| (-654 |#1|))) (-15 -4155 ((-112) |#1| |#1|)) (-15 -1482 ((-112) |#1| |#1|)) (-15 -2430 ((-112) |#1| |#1|)) (-15 -1361 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2037 ((-654 |#1|) |#1|)) (-15 -1662 ((-654 |#1|) |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -3415 ((-112) |#1|)) (-15 -3933 ((-112) |#1|)) (-15 -1392 (|#1| |#1| |#4|)) (-15 -1370 (|#1| |#1| |#4|)) (-15 -2455 (|#1| |#1|)) (-15 -2060 ((-654 |#1|) |#1|)) (-15 -3195 (|#1| |#1|)) (-15 -1971 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -2396 ((-781) |#1|)) (-15 -2851 (|#4| |#1|)) (-15 -1837 ((-546) |#1|)) (-15 -1837 ((-903 (-574)) |#1|)) (-15 -1837 ((-903 (-388)) |#1|)) (-15 -2943 (|#1| |#4|)) (-15 -1697 ((-3 |#4| "failed") |#1|)) (-15 -2209 (|#4| |#1|)) (-15 -1370 (|#2| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4355 (((-654 |#3|) $) 112)) (-4194 (((-1186 $) $ |#3|) 127) (((-1186 |#1|) $) 126)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-2814 (($ $) 90 (|has| |#1| (-566)))) (-2425 (((-112) $) 92 (|has| |#1| (-566)))) (-2044 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-1971 (($ $) 275)) (-1482 (((-112) $ $) 261)) (-2950 (((-3 $ "failed") $ $) 20)) (-1744 (($ $ $) 220 (|has| |#1| (-566)))) (-4302 (((-654 $) $ $) 215 (|has| |#1| (-566)))) (-3312 (((-428 (-1186 $)) (-1186 $)) 102 (|has| |#1| (-920)))) (-4348 (($ $) 100 (|has| |#1| (-462)))) (-3440 (((-428 $) $) 99 (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 105 (|has| |#1| (-920)))) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1051 (-574)))) (((-3 |#3| "failed") $) 140) (((-3 $ "failed") (-963 (-417 (-574)))) 235 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))) (((-3 $ "failed") (-963 (-574))) 232 (-2818 (-12 (-2077 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190)))))) (((-3 $ "failed") (-963 |#1|)) 229 (-2818 (-12 (-2077 (|has| |#1| (-38 (-417 (-574))))) (-2077 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1190)))) (-12 (-2077 (|has| |#1| (-555))) (-2077 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (-2077 (|has| |#1| (-1005 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))))) (-2209 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1051 (-574)))) ((|#3| $) 141) (($ (-963 (-417 (-574)))) 234 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))) (($ (-963 (-574))) 231 (-2818 (-12 (-2077 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190)))))) (($ (-963 |#1|)) 228 (-2818 (-12 (-2077 (|has| |#1| (-38 (-417 (-574))))) (-2077 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1190)))) (-12 (-2077 (|has| |#1| (-555))) (-2077 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (-2077 (|has| |#1| (-1005 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))))) (-2800 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 216 (|has| |#1| (-566)))) (-1392 (($ $) 158) (($ $ |#3|) 270)) (-2668 (((-699 (-574)) (-1281 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1281 $)) 133)) (-4155 (((-112) $ $) 260) (((-112) $ (-654 $)) 259)) (-1950 (((-3 $ "failed") $) 37)) (-3415 (((-112) $) 268)) (-3015 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 240)) (-3446 (($ $) 209 (|has| |#1| (-462)))) (-3872 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1380 (((-654 $) $) 111)) (-1654 (((-112) $) 98 (|has| |#1| (-920)))) (-1787 (($ $) 225 (|has| |#1| (-566)))) (-3821 (($ $) 226 (|has| |#1| (-566)))) (-4338 (($ $ $) 252) (($ $ $ |#3|) 250)) (-4001 (($ $ $) 251) (($ $ $ |#3|) 249)) (-3157 (($ $ |#1| |#2| $) 176)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3965 (((-112) $) 35)) (-2784 (((-781) $) 173)) (-2474 (((-112) $ $) 254) (((-112) $ (-654 $)) 253)) (-2657 (($ $ $ $ $) 211 (|has| |#1| (-566)))) (-2851 ((|#3| $) 279)) (-4345 (($ (-1186 |#1|) |#3|) 119) (($ (-1186 $) |#3|) 118)) (-3576 (((-654 $) $) 128)) (-2197 (((-112) $) 156)) (-4335 (($ |#1| |#2|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-2593 (($ $ $) 239)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ |#3|) 122)) (-3933 (((-112) $) 269)) (-2382 ((|#2| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-2396 (((-781) $) 278)) (-1541 (($ (-1 |#2| |#2|) $) 175)) (-1778 (($ (-1 |#1| |#1|) $) 155)) (-4045 (((-3 |#3| "failed") $) 125)) (-1570 (($ $) 206 (|has| |#1| (-462)))) (-4117 (($ $) 207 (|has| |#1| (-462)))) (-2037 (((-654 $) $) 264)) (-3745 (($ $) 267)) (-3197 (($ $) 208 (|has| |#1| (-462)))) (-1662 (((-654 $) $) 265)) (-4156 (($ $) 266)) (-1359 (($ $) 153)) (-1370 ((|#1| $) 152) (($ $ |#3|) 271)) (-2834 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-3755 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2905 (-781))) $ $) 238)) (-2300 (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $) 242) (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $ |#3|) 241)) (-3791 (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3435 $)) $ $) 244) (((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3435 $)) $ $ |#3|) 243)) (-2561 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3437 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2568 (((-1172) $) 10)) (-2107 (($ $ $) 214 (|has| |#1| (-566)))) (-2060 (((-654 $) $) 273)) (-2357 (((-3 (-654 $) "failed") $) 116)) (-3405 (((-3 (-654 $) "failed") $) 117)) (-3092 (((-3 (-2 (|:| |var| |#3|) (|:| -2524 (-781))) "failed") $) 115)) (-2768 (((-112) $ $) 256) (((-112) $ (-654 $)) 255)) (-2244 (($ $ $) 236)) (-3818 (($ $) 277)) (-2430 (((-112) $ $) 262)) (-1406 (((-112) $ $) 258) (((-112) $ (-654 $)) 257)) (-1443 (($ $ $) 237)) (-1596 (($ $) 276)) (-3966 (((-1133) $) 11)) (-2746 (((-2 (|:| -2874 $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-566)))) (-3408 (((-2 (|:| -2874 $) (|:| |coef1| $)) $ $) 218 (|has| |#1| (-566)))) (-1338 (((-112) $) 170)) (-1349 ((|#1| $) 171)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 97 (|has| |#1| (-462)))) (-2874 ((|#1| |#1| $) 210 (|has| |#1| (-462))) (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) 104 (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) 103 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 101 (|has| |#1| (-920)))) (-1779 (((-2 (|:| -2874 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 219 (|has| |#1| (-566)))) (-2838 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-1494 (($ $ |#1|) 223 (|has| |#1| (-566))) (($ $ $) 221 (|has| |#1| (-566)))) (-3057 (($ $ |#1|) 224 (|has| |#1| (-566))) (($ $ $) 222 (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142)) (-1415 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3905 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43)) (-1784 ((|#2| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131)) (-3195 (($ $) 274)) (-2455 (($ $) 272)) (-1837 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546))))) (($ (-963 (-417 (-574)))) 233 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))) (($ (-963 (-574))) 230 (-2818 (-12 (-2077 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190)))))) (($ (-963 |#1|)) 227 (|has| |#3| (-624 (-1190)))) (((-1172) $) 205 (-12 (|has| |#1| (-1051 (-574))) (|has| |#3| (-624 (-1190))))) (((-963 |#1|) $) 204 (|has| |#3| (-624 (-1190))))) (-1607 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 106 (-2088 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (((-963 |#1|) $) 203 (|has| |#3| (-624 (-1190)))) (($ (-417 (-574))) 80 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) 172)) (-3344 ((|#1| $ |#2|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-1369 (((-3 $ "failed") $) 81 (-2818 (-2088 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) 32 T CONST)) (-4207 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2134 (($) 19 T CONST)) (-1361 (((-3 (-112) "failed") $ $) 263)) (-2146 (($) 34 T CONST)) (-2252 (($ $ $ $ (-781)) 212 (|has| |#1| (-566)))) (-3879 (($ $ $ (-781)) 213 (|has| |#1| (-566)))) (-3611 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150)))
+(((-1078 |#1| |#2| |#3|) (-141) (-1062) (-803) (-860)) (T -1078))
+((-2851 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1596 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1971 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3195 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2060 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5)))) (-2455 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1370 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1392 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3745 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1662 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5)))) (-2037 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5)))) (-1361 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2430 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1482 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4155 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4155 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1406 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2768 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2474 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2474 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-4338 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4001 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4338 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-4001 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2561 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3437 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2561 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3437 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3791 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1859 *1) (|:| |gap| (-781)) (|:| -3435 *1))) (-4 *1 (-1078 *3 *4 *5)))) (-3791 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1859 *1) (|:| |gap| (-781)) (|:| -3435 *1))) (-4 *1 (-1078 *4 *5 *3)))) (-2300 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1859 *1) (|:| |gap| (-781)) (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-1078 *3 *4 *5)))) (-2300 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1859 *1) (|:| |gap| (-781)) (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-1078 *4 *5 *3)))) (-3015 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-1078 *3 *4 *5)))) (-2593 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3755 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2905 (-781)))) (-4 *1 (-1078 *3 *4 *5)))) (-1443 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2244 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1697 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1697 (*1 *1 *2) (|partial| -2818 (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-2077 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2209 (*1 *1 *2) (-2818 (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-2077 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1837 (*1 *1 *2) (-2818 (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-2077 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1697 (*1 *1 *2) (|partial| -2818 (-12 (-5 *2 (-963 *3)) (-12 (-2077 (-4 *3 (-38 (-417 (-574))))) (-2077 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 *3)) (-12 (-2077 (-4 *3 (-555))) (-2077 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 *3)) (-12 (-2077 (-4 *3 (-1005 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2209 (*1 *1 *2) (-2818 (-12 (-5 *2 (-963 *3)) (-12 (-2077 (-4 *3 (-38 (-417 (-574))))) (-2077 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 *3)) (-12 (-2077 (-4 *3 (-555))) (-2077 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 *3)) (-12 (-2077 (-4 *3 (-1005 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *5 (-624 (-1190))) (-4 *4 (-803)) (-4 *5 (-860)))) (-3821 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1787 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3057 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1494 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3057 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1494 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1744 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1779 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2874 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1078 *3 *4 *5)))) (-3408 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2874 *1) (|:| |coef1| *1))) (-4 *1 (-1078 *3 *4 *5)))) (-2746 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2874 *1) (|:| |coef2| *1))) (-4 *1 (-1078 *3 *4 *5)))) (-2800 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-4302 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5)))) (-2107 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3879 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-2252 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-2657 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2874 (*1 *2 *2 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3197 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-4117 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-1570 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))))
+(-13 (-960 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2851 (|t#3| $)) (-15 -2396 ((-781) $)) (-15 -3818 ($ $)) (-15 -1596 ($ $)) (-15 -1971 ($ $)) (-15 -3195 ($ $)) (-15 -2060 ((-654 $) $)) (-15 -2455 ($ $)) (-15 -1370 ($ $ |t#3|)) (-15 -1392 ($ $ |t#3|)) (-15 -3933 ((-112) $)) (-15 -3415 ((-112) $)) (-15 -3745 ($ $)) (-15 -4156 ($ $)) (-15 -1662 ((-654 $) $)) (-15 -2037 ((-654 $) $)) (-15 -1361 ((-3 (-112) "failed") $ $)) (-15 -2430 ((-112) $ $)) (-15 -1482 ((-112) $ $)) (-15 -4155 ((-112) $ $)) (-15 -4155 ((-112) $ (-654 $))) (-15 -1406 ((-112) $ $)) (-15 -1406 ((-112) $ (-654 $))) (-15 -2768 ((-112) $ $)) (-15 -2768 ((-112) $ (-654 $))) (-15 -2474 ((-112) $ $)) (-15 -2474 ((-112) $ (-654 $))) (-15 -4338 ($ $ $)) (-15 -4001 ($ $ $)) (-15 -4338 ($ $ $ |t#3|)) (-15 -4001 ($ $ $ |t#3|)) (-15 -2561 ($ $ $)) (-15 -3437 ($ $ $)) (-15 -2561 ($ $ $ |t#3|)) (-15 -3437 ($ $ $ |t#3|)) (-15 -3791 ((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3435 $)) $ $)) (-15 -3791 ((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3435 $)) $ $ |t#3|)) (-15 -2300 ((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -2300 ((-2 (|:| -1859 $) (|:| |gap| (-781)) (|:| -3855 $) (|:| -3435 $)) $ $ |t#3|)) (-15 -3015 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -2593 ($ $ $)) (-15 -3755 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2905 (-781))) $ $)) (-15 -1443 ($ $ $)) (-15 -2244 ($ $ $)) (IF (|has| |t#3| (-624 (-1190))) (PROGN (-6 (-623 (-963 |t#1|))) (-6 (-624 (-963 |t#1|))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1697 ((-3 $ "failed") (-963 (-417 (-574))))) (-15 -2209 ($ (-963 (-417 (-574))))) (-15 -1837 ($ (-963 (-417 (-574))))) (-15 -1697 ((-3 $ "failed") (-963 (-574)))) (-15 -2209 ($ (-963 (-574)))) (-15 -1837 ($ (-963 (-574)))) (IF (|has| |t#1| (-1005 (-574))) |%noBranch| (PROGN (-15 -1697 ((-3 $ "failed") (-963 |t#1|))) (-15 -2209 ($ (-963 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1697 ((-3 $ "failed") (-963 (-574)))) (-15 -2209 ($ (-963 (-574)))) (-15 -1837 ($ (-963 (-574)))) (IF (|has| |t#1| (-555)) |%noBranch| (PROGN (-15 -1697 ((-3 $ "failed") (-963 |t#1|))) (-15 -2209 ($ (-963 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) |%noBranch| (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1697 ((-3 $ "failed") (-963 |t#1|))) (-15 -2209 ($ (-963 |t#1|)))))) (-15 -1837 ($ (-963 |t#1|))) (IF (|has| |t#1| (-1051 (-574))) (-6 (-624 (-1172))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -3821 ($ $)) (-15 -1787 ($ $)) (-15 -3057 ($ $ |t#1|)) (-15 -1494 ($ $ |t#1|)) (-15 -3057 ($ $ $)) (-15 -1494 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -1779 ((-2 (|:| -2874 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3408 ((-2 (|:| -2874 $) (|:| |coef1| $)) $ $)) (-15 -2746 ((-2 (|:| -2874 $) (|:| |coef2| $)) $ $)) (-15 -2800 ($ $ $)) (-15 -4302 ((-654 $) $ $)) (-15 -2107 ($ $ $)) (-15 -3879 ($ $ $ (-781))) (-15 -2252 ($ $ $ $ (-781))) (-15 -2657 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -2874 (|t#1| |t#1| $)) (-15 -3446 ($ $)) (-15 -3197 ($ $)) (-15 -4117 ($ $)) (-15 -1570 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-623 (-963 |#1|)) |has| |#3| (-624 (-1190))) ((-174) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-624 (-963 |#1|)) |has| |#3| (-624 (-1190))) ((-624 (-1172)) -12 (|has| |#1| (-1051 (-574))) (|has| |#3| (-624 (-1190)))) ((-298) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-920)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-911 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-960 |#1| |#2| |#3|) . T) ((-920) |has| |#1| (-920)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1051 |#3|) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) |has| |#1| (-920)))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-1500 (((-654 (-1148)) $) 18)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 27) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-1148) $) 20)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1079) (-13 (-1096) (-10 -8 (-15 -1500 ((-654 (-1148)) $)) (-15 -2045 ((-1148) $))))) (T -1079))
+((-1500 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1079)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1079)))))
+(-13 (-1096) (-10 -8 (-15 -1500 ((-654 (-1148)) $)) (-15 -2045 ((-1148) $))))
+((-2908 (((-112) |#3| $) 15)) (-1413 (((-3 $ "failed") |#3| (-932)) 29)) (-1950 (((-3 |#3| "failed") |#3| $) 45)) (-3434 (((-112) |#3| $) 19)) (-3244 (((-112) |#3| $) 17)))
+(((-1080 |#1| |#2| |#3|) (-10 -8 (-15 -1413 ((-3 |#1| "failed") |#3| (-932))) (-15 -1950 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3434 ((-112) |#3| |#1|)) (-15 -3244 ((-112) |#3| |#1|)) (-15 -2908 ((-112) |#3| |#1|))) (-1081 |#2| |#3|) (-13 (-858) (-372)) (-1257 |#2|)) (T -1080))
+NIL
+(-10 -8 (-15 -1413 ((-3 |#1| "failed") |#3| (-932))) (-15 -1950 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3434 ((-112) |#3| |#1|)) (-15 -3244 ((-112) |#3| |#1|)) (-15 -2908 ((-112) |#3| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) |#2| $) 22)) (-3747 (((-574) |#2| $) 23)) (-1413 (((-3 $ "failed") |#2| (-932)) 16)) (-2749 ((|#1| |#2| $ |#1|) 14)) (-1950 (((-3 |#2| "failed") |#2| $) 19)) (-3434 (((-112) |#2| $) 20)) (-3244 (((-112) |#2| $) 21)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1782 ((|#2| $) 18)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-3551 ((|#1| |#2| $ |#1|) 15)) (-3491 (((-654 $) |#2|) 17)) (-2982 (((-112) $ $) 6)))
+(((-1081 |#1| |#2|) (-141) (-13 (-858) (-372)) (-1257 |t#1|)) (T -1081))
+((-3747 (*1 *2 *3 *1) (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-574)))) (-2908 (*1 *2 *3 *1) (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-112)))) (-3244 (*1 *2 *3 *1) (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-112)))) (-3434 (*1 *2 *3 *1) (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-112)))) (-1950 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1257 *3)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1257 *3)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *4 *3)))) (-1413 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-932)) (-4 *4 (-13 (-858) (-372))) (-4 *1 (-1081 *4 *2)) (-4 *2 (-1257 *4)))) (-3551 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1257 *2)))) (-2749 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1257 *2)))))
+(-13 (-1113) (-10 -8 (-15 -3747 ((-574) |t#2| $)) (-15 -2908 ((-112) |t#2| $)) (-15 -3244 ((-112) |t#2| $)) (-15 -3434 ((-112) |t#2| $)) (-15 -1950 ((-3 |t#2| "failed") |t#2| $)) (-15 -1782 (|t#2| $)) (-15 -3491 ((-654 $) |t#2|)) (-15 -1413 ((-3 $ "failed") |t#2| (-932))) (-15 -3551 (|t#1| |t#2| $ |t#1|)) (-15 -2749 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-3757 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781)) 114)) (-3424 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781)) 63)) (-3669 (((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)) 99)) (-4406 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-2949 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781)) 65) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112)) 67)) (-1650 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 87)) (-1837 (((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) 92)) (-4030 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-112)) 62)) (-1384 (((-781) (-654 |#4|) (-654 |#5|)) 21)))
+(((-1082 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1384 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -4406 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -4030 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-112))) (-15 -3424 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -3424 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -1650 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1650 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3757 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781))) (-15 -1837 ((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -3669 ((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1082))
+((-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) (-5 *4 (-781)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1286)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1172)) (-5 *1 (-1082 *4 *5 *6 *7 *8)))) (-3757 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4091 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4091 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1078 *7 *8 *9)) (-4 *11 (-1084 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1082 *7 *8 *9 *10 *11)))) (-1650 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) (-1650 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) (-2949 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2949 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-2949 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1078 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *7 *8 *9 *3 *4)) (-4 *4 (-1084 *7 *8 *9 *3)))) (-3424 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3424 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-4030 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-4406 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) (-1384 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1384 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -4406 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -4030 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-112))) (-15 -3424 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -3424 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -1650 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1650 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3757 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781))) (-15 -1837 ((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -3669 ((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781))))
+((-3321 (((-112) |#5| $) 26)) (-2308 (((-112) |#5| $) 29)) (-3857 (((-112) |#5| $) 18) (((-112) $) 52)) (-1731 (((-654 $) |#5| $) NIL) (((-654 $) (-654 |#5|) $) 94) (((-654 $) (-654 |#5|) (-654 $)) 92) (((-654 $) |#5| (-654 $)) 95)) (-4344 (($ $ |#5|) NIL) (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 73) (((-654 $) (-654 |#5|) $) 75) (((-654 $) (-654 |#5|) (-654 $)) 77)) (-2790 (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 64) (((-654 $) (-654 |#5|) $) 69) (((-654 $) (-654 |#5|) (-654 $)) 71)) (-2897 (((-112) |#5| $) 32)))
+(((-1083 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4344 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -4344 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -4344 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -4344 ((-654 |#1|) |#5| |#1|)) (-15 -2790 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2790 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2790 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2790 ((-654 |#1|) |#5| |#1|)) (-15 -1731 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -1731 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -1731 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -1731 ((-654 |#1|) |#5| |#1|)) (-15 -2308 ((-112) |#5| |#1|)) (-15 -3857 ((-112) |#1|)) (-15 -2897 ((-112) |#5| |#1|)) (-15 -3321 ((-112) |#5| |#1|)) (-15 -3857 ((-112) |#5| |#1|)) (-15 -4344 (|#1| |#1| |#5|))) (-1084 |#2| |#3| |#4| |#5|) (-462) (-803) (-860) (-1078 |#2| |#3| |#4|)) (T -1083))
+NIL
+(-10 -8 (-15 -4344 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -4344 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -4344 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -4344 ((-654 |#1|) |#5| |#1|)) (-15 -2790 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2790 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2790 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2790 ((-654 |#1|) |#5| |#1|)) (-15 -1731 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -1731 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -1731 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -1731 ((-654 |#1|) |#5| |#1|)) (-15 -2308 ((-112) |#5| |#1|)) (-15 -3857 ((-112) |#1|)) (-15 -2897 ((-112) |#5| |#1|)) (-15 -3321 ((-112) |#5| |#1|)) (-15 -3857 ((-112) |#5| |#1|)) (-15 -4344 (|#1| |#1| |#5|)))
+((-2849 (((-112) $ $) 7)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |#4|)))) (-654 |#4|)) 86)) (-1886 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4355 (((-654 |#3|) $) 34)) (-3753 (((-112) $) 27)) (-3609 (((-112) $) 18 (|has| |#1| (-566)))) (-3456 (((-112) |#4| $) 102) (((-112) $) 98)) (-1621 ((|#4| |#4| $) 93)) (-4348 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 127)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) 28)) (-3340 (((-112) $ (-781)) 45)) (-2166 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3670 (($) 46 T CONST)) (-1800 (((-112) $) 23 (|has| |#1| (-566)))) (-1322 (((-112) $ $) 25 (|has| |#1| (-566)))) (-4133 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3172 (((-112) $) 26 (|has| |#1| (-566)))) (-2543 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3949 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) 37)) (-2209 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-2793 ((|#4| |#4| $) 90)) (-2158 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-4155 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2043 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2766 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1676 (-654 |#4|))) $) 106)) (-3321 (((-112) |#4| $) 137)) (-2308 (((-112) |#4| $) 134)) (-3857 (((-112) |#4| $) 138) (((-112) $) 135)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-2474 (((-112) |#4| $) 105) (((-112) $) 104)) (-2851 ((|#3| $) 35)) (-3735 (((-112) $ (-781)) 44)) (-1712 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 48)) (-2867 (((-654 |#3|) $) 33)) (-2570 (((-112) |#3| $) 32)) (-2448 (((-112) $ (-781)) 43)) (-2568 (((-1172) $) 10)) (-2176 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2107 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 128)) (-3360 (((-3 |#4| "failed") $) 84)) (-4130 (((-654 $) |#4| $) 130)) (-1885 (((-3 (-112) (-654 $)) |#4| $) 133)) (-4027 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1731 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1750 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4153 (((-654 |#4|) $) 108)) (-2768 (((-112) |#4| $) 100) (((-112) $) 96)) (-2244 ((|#4| |#4| $) 91)) (-2430 (((-112) $ $) 111)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1406 (((-112) |#4| $) 101) (((-112) $) 97)) (-1443 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3043 (((-3 $ "failed") $ |#4|) 79)) (-4344 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-3124 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) 39)) (-3556 (((-112) $) 42)) (-3135 (($) 41)) (-1784 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1837 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-2175 (($ $ |#3|) 29)) (-2840 (($ $ |#3|) 31)) (-1496 (($ $) 89)) (-2427 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3530 (((-781) $) 77 (|has| |#3| (-377)))) (-2923 (((-112) $ $) 9)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1685 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2790 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2935 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2681 (((-654 |#3|) $) 82)) (-2897 (((-112) |#4| $) 136)) (-4321 (((-112) |#3| $) 81)) (-2982 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456)))))
+(((-1084 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -1084))
+((-3857 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-3321 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-2897 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-2308 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-1885 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-4027 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *1)))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-4027 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-4130 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)))) (-2176 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-2107 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *1)))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-4348 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *1)))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-1731 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)))) (-1731 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *7)))) (-1731 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)))) (-1731 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)))) (-2790 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)))) (-2790 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)))) (-2790 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *7)))) (-2790 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)))) (-1750 (*1 *1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-1750 (*1 *1 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)))) (-4344 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)))) (-4344 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)))) (-4344 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *7)))) (-4344 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *5 *6 *7 *8)))))
+(-13 (-1224 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3857 ((-112) |t#4| $)) (-15 -3321 ((-112) |t#4| $)) (-15 -2897 ((-112) |t#4| $)) (-15 -3857 ((-112) $)) (-15 -2308 ((-112) |t#4| $)) (-15 -1885 ((-3 (-112) (-654 $)) |t#4| $)) (-15 -4027 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |t#4| $)) (-15 -4027 ((-112) |t#4| $)) (-15 -4130 ((-654 $) |t#4| $)) (-15 -2176 ((-3 |t#4| (-654 $)) |t#4| |t#4| $)) (-15 -2107 ((-654 (-2 (|:| |val| |t#4|) (|:| -4091 $))) |t#4| |t#4| $)) (-15 -4348 ((-654 (-2 (|:| |val| |t#4|) (|:| -4091 $))) |t#4| $)) (-15 -1731 ((-654 $) |t#4| $)) (-15 -1731 ((-654 $) (-654 |t#4|) $)) (-15 -1731 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -1731 ((-654 $) |t#4| (-654 $))) (-15 -2790 ((-654 $) |t#4| $)) (-15 -2790 ((-654 $) |t#4| (-654 $))) (-15 -2790 ((-654 $) (-654 |t#4|) $)) (-15 -2790 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -1750 ($ |t#4| $)) (-15 -1750 ($ (-654 |t#4|) $)) (-15 -4344 ((-654 $) |t#4| $)) (-15 -4344 ((-654 $) |t#4| (-654 $))) (-15 -4344 ((-654 $) (-654 |t#4|) $)) (-15 -4344 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -1886 ((-654 $) (-654 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1224 |#1| |#2| |#3| |#4|) . T) ((-1231) . T))
+((-2669 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|) 86)) (-1933 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|) 127)) (-3671 (((-654 |#5|) |#4| |#5|) 74)) (-1643 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2883 (((-1286)) 36)) (-3934 (((-1286)) 25)) (-3828 (((-1286) (-1172) (-1172) (-1172)) 32)) (-2327 (((-1286) (-1172) (-1172) (-1172)) 21)) (-2224 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|) 107)) (-2238 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112)) 118) (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4231 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|) 113)))
+(((-1085 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2327 ((-1286) (-1172) (-1172) (-1172))) (-15 -3934 ((-1286))) (-15 -3828 ((-1286) (-1172) (-1172) (-1172))) (-15 -2883 ((-1286))) (-15 -2224 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -2238 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2238 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112))) (-15 -4231 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -1933 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -1643 ((-112) |#4| |#5|)) (-15 -1643 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -3671 ((-654 |#5|) |#4| |#5|)) (-15 -2669 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1085))
+((-2669 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3671 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1643 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1643 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1933 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-4231 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) (-5 *5 (-112)) (-4 *8 (-1078 *6 *7 *4)) (-4 *9 (-1084 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4091 *9)))) (-5 *1 (-1085 *6 *7 *4 *8 *9)))) (-2238 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-2224 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2883 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-3828 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-3934 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-2327 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2327 ((-1286) (-1172) (-1172) (-1172))) (-15 -3934 ((-1286))) (-15 -3828 ((-1286) (-1172) (-1172) (-1172))) (-15 -2883 ((-1286))) (-15 -2224 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -2238 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2238 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112))) (-15 -4231 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -1933 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -1643 ((-112) |#4| |#5|)) (-15 -1643 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -3671 ((-654 |#5|) |#4| |#5|)) (-15 -2669 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|)))
+((-2849 (((-112) $ $) NIL)) (-2335 (((-1230) $) 13)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 10)) (-2943 (((-872) $) 20) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1086) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $))))) (T -1086))
+((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1086)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1086)))))
+(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $))))
+((-4122 (((-112) $ $) 7)))
+(((-1087) (-13 (-1231) (-10 -8 (-15 -4122 ((-112) $ $))))) (T -1087))
+((-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1087)))))
+(-13 (-1231) (-10 -8 (-15 -4122 ((-112) $ $))))
+((-2849 (((-112) $ $) NIL)) (-2032 (((-1190) $) 8)) (-2568 (((-1172) $) 17)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 11)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 14)))
+(((-1088 |#1|) (-13 (-1113) (-10 -8 (-15 -2032 ((-1190) $)))) (-1190)) (T -1088))
+((-2032 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1088 *3)) (-14 *3 *2))))
+(-13 (-1113) (-10 -8 (-15 -2032 ((-1190) $))))
+((-2849 (((-112) $ $) NIL)) (-2571 (($ $ (-654 (-1190)) (-1 (-112) (-654 |#3|))) 34)) (-3842 (($ |#3| |#3|) 23) (($ |#3| |#3| (-654 (-1190))) 21)) (-1809 ((|#3| $) 13)) (-1697 (((-3 (-302 |#3|) "failed") $) 60)) (-2209 (((-302 |#3|) $) NIL)) (-3390 (((-654 (-1190)) $) 16)) (-2122 (((-903 |#1|) $) 11)) (-1796 ((|#3| $) 12)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2200 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-932)) 41)) (-2943 (((-872) $) 89) (($ (-302 |#3|)) 22)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 38)))
+(((-1089 |#1| |#2| |#3|) (-13 (-1113) (-294 |#3| |#3|) (-1051 (-302 |#3|)) (-10 -8 (-15 -3842 ($ |#3| |#3|)) (-15 -3842 ($ |#3| |#3| (-654 (-1190)))) (-15 -2571 ($ $ (-654 (-1190)) (-1 (-112) (-654 |#3|)))) (-15 -2122 ((-903 |#1|) $)) (-15 -1796 (|#3| $)) (-15 -1809 (|#3| $)) (-15 -2200 (|#3| $ |#3| (-932))) (-15 -3390 ((-654 (-1190)) $)))) (-1113) (-13 (-1062) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1089))
+((-3842 (*1 *1 *2 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1089 *3 *4 *2)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-3842 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1089 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2571 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-1 (-112) (-654 *6))) (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1089 *4 *5 *6)))) (-2122 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 *2))) (-5 *2 (-903 *3)) (-5 *1 (-1089 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2))))) (-1796 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1089 *3 *4 *2)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))))) (-1809 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1089 *3 *4 *2)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))))) (-2200 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-932)) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1089 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-3390 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1190))) (-5 *1 (-1089 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))))
+(-13 (-1113) (-294 |#3| |#3|) (-1051 (-302 |#3|)) (-10 -8 (-15 -3842 ($ |#3| |#3|)) (-15 -3842 ($ |#3| |#3| (-654 (-1190)))) (-15 -2571 ($ $ (-654 (-1190)) (-1 (-112) (-654 |#3|)))) (-15 -2122 ((-903 |#1|) $)) (-15 -1796 (|#3| $)) (-15 -1809 (|#3| $)) (-15 -2200 (|#3| $ |#3| (-932))) (-15 -3390 ((-654 (-1190)) $))))
+((-2849 (((-112) $ $) NIL)) (-2535 (($ (-654 (-1089 |#1| |#2| |#3|))) 14)) (-1997 (((-654 (-1089 |#1| |#2| |#3|)) $) 21)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2200 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-932)) 27)) (-2943 (((-872) $) 17)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 20)))
+(((-1090 |#1| |#2| |#3|) (-13 (-1113) (-294 |#3| |#3|) (-10 -8 (-15 -2535 ($ (-654 (-1089 |#1| |#2| |#3|)))) (-15 -1997 ((-654 (-1089 |#1| |#2| |#3|)) $)) (-15 -2200 (|#3| $ |#3| (-932))))) (-1113) (-13 (-1062) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1090))
+((-2535 (*1 *1 *2) (-12 (-5 *2 (-654 (-1089 *3 *4 *5))) (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1090 *3 *4 *5)))) (-1997 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1089 *3 *4 *5))) (-5 *1 (-1090 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-2200 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-932)) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1090 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))))
+(-13 (-1113) (-294 |#3| |#3|) (-10 -8 (-15 -2535 ($ (-654 (-1089 |#1| |#2| |#3|)))) (-15 -1997 ((-654 (-1089 |#1| |#2| |#3|)) $)) (-15 -2200 (|#3| $ |#3| (-932)))))
+((-1812 (((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112)) 88) (((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|))) 92) (((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112)) 90)))
+(((-1091 |#1| |#2|) (-10 -7 (-15 -1812 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112))) (-15 -1812 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -1812 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112)))) (-13 (-315) (-148)) (-654 (-1190))) (T -1091))
+((-1812 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5)))))) (-5 *1 (-1091 *5 *6)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190))))) (-1812 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1334 (-1186 *4)) (|:| -3676 (-654 (-963 *4)))))) (-5 *1 (-1091 *4 *5)) (-5 *3 (-654 (-963 *4))) (-14 *5 (-654 (-1190))))) (-1812 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5)))))) (-5 *1 (-1091 *5 *6)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190))))))
+(-10 -7 (-15 -1812 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112))) (-15 -1812 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -1812 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112))))
+((-4220 (((-428 |#3|) |#3|) 18)))
+(((-1092 |#1| |#2| |#3|) (-10 -7 (-15 -4220 ((-428 |#3|) |#3|))) (-1257 (-417 (-574))) (-13 (-372) (-148) (-734 (-417 (-574)) |#1|)) (-1257 |#2|)) (T -1092))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1092 *4 *5 *3)) (-4 *3 (-1257 *5)))))
+(-10 -7 (-15 -4220 ((-428 |#3|) |#3|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 136)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-372)))) (-2814 (($ $) NIL (|has| |#1| (-372)))) (-2425 (((-112) $) NIL (|has| |#1| (-372)))) (-2762 (((-699 |#1|) (-1281 $)) NIL) (((-699 |#1|)) 121)) (-1637 ((|#1| $) 125)) (-1340 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1487 (((-781)) 43 (|has| |#1| (-377)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-3003 (($ (-1281 |#1|) (-1281 $)) NIL) (($ (-1281 |#1|)) 46)) (-4075 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-2085 (((-699 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 113) (((-699 |#1|) (-699 $)) 108) (((-699 |#1|) (-1281 $)) NIL)) (-2868 (($ |#2|) 65) (((-3 $ "failed") (-417 |#2|)) NIL (|has| |#1| (-372)))) (-1950 (((-3 $ "failed") $) NIL)) (-3584 (((-932)) 84)) (-2820 (($) 47 (|has| |#1| (-377)))) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3906 (($) NIL (|has| |#1| (-358)))) (-2878 (((-112) $) NIL (|has| |#1| (-358)))) (-3564 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-1654 (((-112) $) NIL (|has| |#1| (-372)))) (-3593 (((-932) $) NIL (|has| |#1| (-358))) (((-843 (-932)) $) NIL (|has| |#1| (-358)))) (-3965 (((-112) $) NIL)) (-1652 ((|#1| $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3190 ((|#2| $) 91 (|has| |#1| (-372)))) (-2565 (((-932) $) 145 (|has| |#1| (-377)))) (-2854 ((|#2| $) 62)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-3818 (($) NIL (|has| |#1| (-358)) CONST)) (-2576 (($ (-932)) 135 (|has| |#1| (-377)))) (-3966 (((-1133) $) NIL)) (-2970 (($) 127)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1507 (((-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))) NIL (|has| |#1| (-358)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-1415 ((|#1| (-1281 $)) NIL) ((|#1|) 117)) (-3232 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3905 (($ $) NIL (-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-781)) NIL (-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-1437 (((-699 |#1|) (-1281 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-1782 ((|#2|) 81)) (-2585 (($) NIL (|has| |#1| (-358)))) (-3676 (((-1281 |#1|) $ (-1281 $)) 96) (((-699 |#1|) (-1281 $) (-1281 $)) NIL) (((-1281 |#1|) $) 75) (((-699 |#1|) (-1281 $)) 92)) (-1837 (((-1281 |#1|) $) NIL) (($ (-1281 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-358)))) (-2943 (((-872) $) 61) (($ (-574)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-372))) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574))))))) (-1369 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4169 ((|#2| $) 89)) (-4160 (((-781)) 83 T CONST)) (-2923 (((-112) $ $) NIL)) (-2722 (((-1281 $)) 88)) (-3798 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2134 (($) 32 T CONST)) (-2146 (($) 19 T CONST)) (-3611 (($ $) NIL (-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-781)) NIL (-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2982 (((-112) $ $) 67)) (-3107 (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) 71) (($ $ $) NIL)) (-3078 (($ $ $) 69)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372)))))
+(((-1093 |#1| |#2| |#3|) (-734 |#1| |#2|) (-174) (-1257 |#1|) |#2|) (T -1093))
+NIL
+(-734 |#1| |#2|)
+((-4220 (((-428 |#3|) |#3|) 19)))
+(((-1094 |#1| |#2| |#3|) (-10 -7 (-15 -4220 ((-428 |#3|) |#3|))) (-1257 (-417 (-963 (-574)))) (-13 (-372) (-148) (-734 (-417 (-963 (-574))) |#1|)) (-1257 |#2|)) (T -1094))
+((-4220 (*1 *2 *3) (-12 (-4 *4 (-1257 (-417 (-963 (-574))))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-963 (-574))) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1094 *4 *5 *3)) (-4 *3 (-1257 *5)))))
+(-10 -7 (-15 -4220 ((-428 |#3|) |#3|)))
+((-2849 (((-112) $ $) NIL)) (-3658 (($ $ $) 16)) (-2106 (($ $ $) 17)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2661 (($) 6)) (-1837 (((-1190) $) 20)) (-2943 (((-872) $) 13)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 15)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 9)))
+(((-1095) (-13 (-860) (-624 (-1190)) (-10 -8 (-15 -2661 ($))))) (T -1095))
+((-2661 (*1 *1) (-5 *1 (-1095))))
+(-13 (-860) (-624 (-1190)) (-10 -8 (-15 -2661 ($))))
+((-2849 (((-112) $ $) 7)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-1195)) 17) (((-1195) $) 16)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-1096) (-141)) (T -1096))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-624 #0=(-1193)) . T) ((-621 (-870)) . T) ((-621 #0#) . T) ((-498 #0#) . T) ((-1111) . T))
-((-2778 ((|#1| |#1| (-1 (-572) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3082 (((-1284)) 21)) (-1704 (((-652 |#1|)) 13)))
-(((-1095 |#1|) (-10 -7 (-15 -3082 ((-1284))) (-15 -1704 ((-652 |#1|))) (-15 -2778 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2778 (|#1| |#1| (-1 (-572) |#1| |#1|)))) (-133)) (T -1095))
-((-2778 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-572) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1095 *2)))) (-2778 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1095 *2)))) (-1704 (*1 *2) (-12 (-5 *2 (-652 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-133)))) (-3082 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1095 *3)) (-4 *3 (-133)))))
-(-10 -7 (-15 -3082 ((-1284))) (-15 -1704 ((-652 |#1|))) (-15 -2778 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2778 (|#1| |#1| (-1 (-572) |#1| |#1|))))
-((-4260 (($ (-109) $) 20)) (-2455 (((-699 (-109)) (-514) $) 19)) (-1613 (($) 7)) (-2568 (($) 21)) (-2152 (($) 22)) (-2722 (((-652 (-177)) $) 10)) (-2940 (((-870) $) 25)))
-(((-1096) (-13 (-621 (-870)) (-10 -8 (-15 -1613 ($)) (-15 -2722 ((-652 (-177)) $)) (-15 -2455 ((-699 (-109)) (-514) $)) (-15 -4260 ($ (-109) $)) (-15 -2568 ($)) (-15 -2152 ($))))) (T -1096))
-((-1613 (*1 *1) (-5 *1 (-1096))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-652 (-177))) (-5 *1 (-1096)))) (-2455 (*1 *2 *3 *1) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-109))) (-5 *1 (-1096)))) (-4260 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1096)))) (-2568 (*1 *1) (-5 *1 (-1096))) (-2152 (*1 *1) (-5 *1 (-1096))))
-(-13 (-621 (-870)) (-10 -8 (-15 -1613 ($)) (-15 -2722 ((-652 (-177)) $)) (-15 -2455 ((-699 (-109)) (-514) $)) (-15 -4260 ($ (-109) $)) (-15 -2568 ($)) (-15 -2152 ($))))
-((-2016 (((-1279 (-697 |#1|)) (-652 (-697 |#1|))) 45) (((-1279 (-697 (-961 |#1|))) (-652 (-1188)) (-697 (-961 |#1|))) 75) (((-1279 (-697 (-415 (-961 |#1|)))) (-652 (-1188)) (-697 (-415 (-961 |#1|)))) 92)) (-4329 (((-1279 |#1|) (-697 |#1|) (-652 (-697 |#1|))) 39)))
-(((-1097 |#1|) (-10 -7 (-15 -2016 ((-1279 (-697 (-415 (-961 |#1|)))) (-652 (-1188)) (-697 (-415 (-961 |#1|))))) (-15 -2016 ((-1279 (-697 (-961 |#1|))) (-652 (-1188)) (-697 (-961 |#1|)))) (-15 -2016 ((-1279 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -4329 ((-1279 |#1|) (-697 |#1|) (-652 (-697 |#1|))))) (-370)) (T -1097))
-((-4329 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-697 *5))) (-5 *3 (-697 *5)) (-4 *5 (-370)) (-5 *2 (-1279 *5)) (-5 *1 (-1097 *5)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-652 (-697 *4))) (-4 *4 (-370)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-1097 *4)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1188))) (-4 *5 (-370)) (-5 *2 (-1279 (-697 (-961 *5)))) (-5 *1 (-1097 *5)) (-5 *4 (-697 (-961 *5))))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1188))) (-4 *5 (-370)) (-5 *2 (-1279 (-697 (-415 (-961 *5))))) (-5 *1 (-1097 *5)) (-5 *4 (-697 (-415 (-961 *5)))))))
-(-10 -7 (-15 -2016 ((-1279 (-697 (-415 (-961 |#1|)))) (-652 (-1188)) (-697 (-415 (-961 |#1|))))) (-15 -2016 ((-1279 (-697 (-961 |#1|))) (-652 (-1188)) (-697 (-961 |#1|)))) (-15 -2016 ((-1279 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -4329 ((-1279 |#1|) (-697 |#1|) (-652 (-697 |#1|)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3258 (((-652 (-779)) $) NIL) (((-652 (-779)) $ (-1188)) NIL)) (-3298 (((-779) $) NIL) (((-779) $ (-1188)) NIL)) (-4353 (((-652 (-1099 (-1188))) $) NIL)) (-4191 (((-1184 $) $ (-1099 (-1188))) NIL) (((-1184 |#1|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-1099 (-1188)))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3517 (($ $) NIL (|has| |#1| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2652 (($ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1099 (-1188)) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL) (((-3 (-1136 |#1| (-1188)) "failed") $) NIL)) (-2204 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1099 (-1188)) $) NIL) (((-1188) $) NIL) (((-1136 |#1| (-1188)) $) NIL)) (-2361 (($ $ $ (-1099 (-1188))) NIL (|has| |#1| (-174)))) (-1390 (($ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-460))) (($ $ (-1099 (-1188))) NIL (|has| |#1| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#1| (-918)))) (-1437 (($ $ |#1| (-539 (-1099 (-1188))) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1099 (-1188)) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1099 (-1188)) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2956 (((-779) $ (-1188)) NIL) (((-779) $) NIL)) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-4343 (($ (-1184 |#1|) (-1099 (-1188))) NIL) (($ (-1184 $) (-1099 (-1188))) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-539 (-1099 (-1188)))) NIL) (($ $ (-1099 (-1188)) (-779)) NIL) (($ $ (-652 (-1099 (-1188))) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-1099 (-1188))) NIL)) (-2649 (((-539 (-1099 (-1188))) $) NIL) (((-779) $ (-1099 (-1188))) NIL) (((-652 (-779)) $ (-652 (-1099 (-1188)))) NIL)) (-2497 (($ (-1 (-539 (-1099 (-1188))) (-539 (-1099 (-1188)))) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2564 (((-1 $ (-779)) (-1188)) NIL) (((-1 $ (-779)) $) NIL (|has| |#1| (-237)))) (-3928 (((-3 (-1099 (-1188)) "failed") $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-3703 (((-1099 (-1188)) $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4347 (((-1170) $) NIL)) (-1407 (((-112) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-1099 (-1188))) (|:| -1679 (-779))) "failed") $) NIL)) (-2586 (($ $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#1| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-918)))) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1099 (-1188)) |#1|) NIL) (($ $ (-652 (-1099 (-1188))) (-652 |#1|)) NIL) (($ $ (-1099 (-1188)) $) NIL) (($ $ (-652 (-1099 (-1188))) (-652 $)) NIL) (($ $ (-1188) $) NIL (|has| |#1| (-237))) (($ $ (-652 (-1188)) (-652 $)) NIL (|has| |#1| (-237))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-237))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-237)))) (-3537 (($ $ (-1099 (-1188))) NIL (|has| |#1| (-174)))) (-3902 (($ $ (-1099 (-1188))) NIL) (($ $ (-652 (-1099 (-1188)))) NIL) (($ $ (-1099 (-1188)) (-779)) NIL) (($ $ (-652 (-1099 (-1188))) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4048 (((-652 (-1188)) $) NIL)) (-4390 (((-539 (-1099 (-1188))) $) NIL) (((-779) $ (-1099 (-1188))) NIL) (((-652 (-779)) $ (-652 (-1099 (-1188)))) NIL) (((-779) $ (-1188)) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-1099 (-1188)) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1099 (-1188)) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1099 (-1188)) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-1711 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-1099 (-1188))) NIL (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-1099 (-1188))) NIL) (($ (-1188)) NIL) (($ (-1136 |#1| (-1188))) NIL) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-539 (-1099 (-1188)))) NIL) (($ $ (-1099 (-1188)) (-779)) NIL) (($ $ (-652 (-1099 (-1188))) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-1099 (-1188))) NIL) (($ $ (-652 (-1099 (-1188)))) NIL) (($ $ (-1099 (-1188)) (-779)) NIL) (($ $ (-652 (-1099 (-1188))) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1098 |#1|) (-13 (-258 |#1| (-1188) (-1099 (-1188)) (-539 (-1099 (-1188)))) (-1049 (-1136 |#1| (-1188)))) (-1060)) (T -1098))
-NIL
-(-13 (-258 |#1| (-1188) (-1099 (-1188)) (-539 (-1099 (-1188)))) (-1049 (-1136 |#1| (-1188))))
-((-2846 (((-112) $ $) NIL)) (-3298 (((-779) $) NIL)) (-1487 ((|#1| $) 10)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2204 ((|#1| $) NIL)) (-2956 (((-779) $) 11)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-2564 (($ |#1| (-779)) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3902 (($ $) NIL) (($ $ (-779)) NIL)) (-2940 (((-870) $) NIL) (($ |#1|) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 16)))
-(((-1099 |#1|) (-271 |#1|) (-858)) (T -1099))
-NIL
-(-271 |#1|)
-((-1776 (((-652 |#2|) (-1 |#2| |#1|) (-1105 |#1|)) 29 (|has| |#1| (-856))) (((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|)) 14)))
-(((-1100 |#1| |#2|) (-10 -7 (-15 -1776 ((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|))) (IF (|has| |#1| (-856)) (-15 -1776 ((-652 |#2|) (-1 |#2| |#1|) (-1105 |#1|))) |%noBranch|)) (-1229) (-1229)) (T -1100))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-856)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-652 *6)) (-5 *1 (-1100 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1105 *6)) (-5 *1 (-1100 *5 *6)))))
-(-10 -7 (-15 -1776 ((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|))) (IF (|has| |#1| (-856)) (-15 -1776 ((-652 |#2|) (-1 |#2| |#1|) (-1105 |#1|))) |%noBranch|))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 16) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3966 (((-652 (-1146)) $) 10)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1101) (-13 (-1094) (-10 -8 (-15 -3966 ((-652 (-1146)) $))))) (T -1101))
-((-3966 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1101)))))
-(-13 (-1094) (-10 -8 (-15 -3966 ((-652 (-1146)) $))))
-((-1776 (((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|)) 19)))
-(((-1102 |#1| |#2|) (-10 -7 (-15 -1776 ((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|)))) (-1229) (-1229)) (T -1102))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1103 *6)) (-5 *1 (-1102 *5 *6)))))
-(-10 -7 (-15 -1776 ((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|))))
-((-2846 (((-112) $ $) NIL (|has| (-1105 |#1|) (-1111)))) (-1487 (((-1188) $) NIL)) (-3239 (((-1105 |#1|) $) NIL)) (-4347 (((-1170) $) NIL (|has| (-1105 |#1|) (-1111)))) (-3964 (((-1131) $) NIL (|has| (-1105 |#1|) (-1111)))) (-2687 (($ (-1188) (-1105 |#1|)) NIL)) (-2940 (((-870) $) NIL (|has| (-1105 |#1|) (-1111)))) (-4379 (((-112) $ $) NIL (|has| (-1105 |#1|) (-1111)))) (-2978 (((-112) $ $) NIL (|has| (-1105 |#1|) (-1111)))))
-(((-1103 |#1|) (-13 (-1229) (-10 -8 (-15 -2687 ($ (-1188) (-1105 |#1|))) (-15 -1487 ((-1188) $)) (-15 -3239 ((-1105 |#1|) $)) (IF (|has| (-1105 |#1|) (-1111)) (-6 (-1111)) |%noBranch|))) (-1229)) (T -1103))
-((-2687 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1105 *4)) (-4 *4 (-1229)) (-5 *1 (-1103 *4)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1103 *3)) (-4 *3 (-1229)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1105 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-1229)))))
-(-13 (-1229) (-10 -8 (-15 -2687 ($ (-1188) (-1105 |#1|))) (-15 -1487 ((-1188) $)) (-15 -3239 ((-1105 |#1|) $)) (IF (|has| (-1105 |#1|) (-1111)) (-6 (-1111)) |%noBranch|)))
-((-3239 (($ |#1| |#1|) 8)) (-1945 ((|#1| $) 11)) (-2811 ((|#1| $) 13)) (-1953 (((-572) $) 9)) (-3157 ((|#1| $) 10)) (-1964 ((|#1| $) 12)) (-1835 (($ |#1|) 6)) (-4275 (($ |#1| |#1|) 15)) (-2728 (($ $ (-572)) 14)))
-(((-1104 |#1|) (-141) (-1229)) (T -1104))
-((-4275 (*1 *1 *2 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-2728 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1104 *3)) (-4 *3 (-1229)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1229)) (-5 *2 (-572)))) (-3239 (*1 *1 *2 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
-(-13 (-626 |t#1|) (-10 -8 (-15 -4275 ($ |t#1| |t#1|)) (-15 -2728 ($ $ (-572))) (-15 -2811 (|t#1| $)) (-15 -1964 (|t#1| $)) (-15 -1945 (|t#1| $)) (-15 -3157 (|t#1| $)) (-15 -1953 ((-572) $)) (-15 -3239 ($ |t#1| |t#1|))))
-(((-626 |#1|) . T))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3239 (($ |#1| |#1|) 16)) (-1776 (((-652 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-856)))) (-1945 ((|#1| $) 12)) (-2811 ((|#1| $) 11)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1953 (((-572) $) 15)) (-3157 ((|#1| $) 14)) (-1964 ((|#1| $) 13)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2127 (((-652 |#1|) $) 44 (|has| |#1| (-856))) (((-652 |#1|) (-652 $)) 43 (|has| |#1| (-856)))) (-1835 (($ |#1|) 29)) (-2940 (((-870) $) 28 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4275 (($ |#1| |#1|) 10)) (-2728 (($ $ (-572)) 17)) (-2978 (((-112) $ $) 22 (|has| |#1| (-1111)))))
-(((-1105 |#1|) (-13 (-1104 |#1|) (-10 -7 (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-1106 |#1| (-652 |#1|))) |%noBranch|))) (-1229)) (T -1105))
-NIL
-(-13 (-1104 |#1|) (-10 -7 (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-1106 |#1| (-652 |#1|))) |%noBranch|)))
-((-3239 (($ |#1| |#1|) 8)) (-1776 ((|#2| (-1 |#1| |#1|) $) 16)) (-1945 ((|#1| $) 11)) (-2811 ((|#1| $) 13)) (-1953 (((-572) $) 9)) (-3157 ((|#1| $) 10)) (-1964 ((|#1| $) 12)) (-2127 ((|#2| (-652 $)) 18) ((|#2| $) 17)) (-1835 (($ |#1|) 6)) (-4275 (($ |#1| |#1|) 15)) (-2728 (($ $ (-572)) 14)))
-(((-1106 |#1| |#2|) (-141) (-856) (-1160 |t#1|)) (T -1106))
-((-2127 (*1 *2 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1106 *4 *2)) (-4 *4 (-856)) (-4 *2 (-1160 *4)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1160 *3)))) (-1776 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1106 *4 *2)) (-4 *4 (-856)) (-4 *2 (-1160 *4)))))
-(-13 (-1104 |t#1|) (-10 -8 (-15 -2127 (|t#2| (-652 $))) (-15 -2127 (|t#2| $)) (-15 -1776 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-626 |#1|) . T) ((-1104 |#1|) . T))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3357 (((-1146) $) 12)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 18) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2042 (((-652 (-1146)) $) 10)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1107) (-13 (-1094) (-10 -8 (-15 -2042 ((-652 (-1146)) $)) (-15 -3357 ((-1146) $))))) (T -1107))
-((-2042 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1107)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1107)))))
-(-13 (-1094) (-10 -8 (-15 -2042 ((-652 (-1146)) $)) (-15 -3357 ((-1146) $))))
-((-4357 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2774 (($ $ $) 10)) (-4020 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1108 |#1| |#2|) (-10 -8 (-15 -4357 (|#1| |#2| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#2|)) (-15 -4020 (|#1| |#1| |#1|))) (-1109 |#2|) (-1111)) (T -1108))
-NIL
-(-10 -8 (-15 -4357 (|#1| |#2| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#2|)) (-15 -4020 (|#1| |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-4357 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2774 (($ $ $) 21)) (-1890 (((-112) $ $) 20)) (-1631 (((-112) $ (-779)) 36)) (-1506 (($) 26) (($ (-652 |#1|)) 25)) (-2162 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4454)))) (-3281 (($) 37 T CONST)) (-2086 (($ $) 60 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#1| $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4454)))) (-1863 (((-652 |#1|) $) 44 (|has| $ (-6 -4454)))) (-3310 (((-112) $ $) 29)) (-1861 (((-112) $ (-779)) 35)) (-1344 (((-652 |#1|) $) 45 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 39)) (-1985 (((-112) $ (-779)) 34)) (-4347 (((-1170) $) 10)) (-1346 (($ $ $) 24)) (-3964 (((-1131) $) 11)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1612 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#1|) (-652 |#1|)) 51 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 49 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 (-300 |#1|))) 48 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 30)) (-1841 (((-112) $) 33)) (-1613 (($) 32)) (-4020 (($ $ $) 23) (($ $ |#1|) 22)) (-3973 (((-779) |#1| $) 46 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4454)))) (-3164 (($ $) 31)) (-1835 (((-544) $) 61 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 52)) (-2940 (((-870) $) 12)) (-4279 (($) 28) (($ (-652 |#1|)) 27)) (-4379 (((-112) $ $) 9)) (-4380 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 6)) (-2860 (((-779) $) 38 (|has| $ (-6 -4454)))))
-(((-1109 |#1|) (-141) (-1111)) (T -1109))
-((-3310 (*1 *2 *1 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-4279 (*1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-4279 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-1109 *3)))) (-1506 (*1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-1109 *3)))) (-1346 (*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-4020 (*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-4020 (*1 *1 *1 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-2774 (*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-1890 (*1 *2 *1 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-4357 (*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-4357 (*1 *1 *1 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-4357 (*1 *1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
-(-13 (-1111) (-152 |t#1|) (-10 -8 (-6 -4444) (-15 -3310 ((-112) $ $)) (-15 -4279 ($)) (-15 -4279 ($ (-652 |t#1|))) (-15 -1506 ($)) (-15 -1506 ($ (-652 |t#1|))) (-15 -1346 ($ $ $)) (-15 -4020 ($ $ $)) (-15 -4020 ($ $ |t#1|)) (-15 -2774 ($ $ $)) (-15 -1890 ((-112) $ $)) (-15 -4357 ($ $ $)) (-15 -4357 ($ $ |t#1|)) (-15 -4357 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) . T) ((-1229) . T))
-((-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 8)) (-4379 (((-112) $ $) 12)))
-(((-1110 |#1|) (-10 -8 (-15 -4379 ((-112) |#1| |#1|)) (-15 -4347 ((-1170) |#1|)) (-15 -3964 ((-1131) |#1|))) (-1111)) (T -1110))
-NIL
-(-10 -8 (-15 -4379 ((-112) |#1| |#1|)) (-15 -4347 ((-1170) |#1|)) (-15 -3964 ((-1131) |#1|)))
-((-2846 (((-112) $ $) 7)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-1111) (-141)) (T -1111))
-((-3964 (*1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1131)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1170)))) (-4379 (*1 *2 *1 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-112)))))
-(-13 (-102) (-621 (-870)) (-10 -8 (-15 -3964 ((-1131) $)) (-15 -4347 ((-1170) $)) (-15 -4379 ((-112) $ $))))
-(((-102) . T) ((-621 (-870)) . T))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) 36)) (-2378 (($ (-652 (-930))) 70)) (-2098 (((-3 $ "failed") $ (-930) (-930)) 81)) (-2815 (($) 40)) (-1864 (((-112) (-930) $) 42)) (-3715 (((-930) $) 64)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) 39)) (-3150 (((-3 $ "failed") $ (-930)) 77)) (-3964 (((-1131) $) NIL)) (-3684 (((-1279 $)) 47)) (-3586 (((-652 (-930)) $) 27)) (-2073 (((-779) $ (-930) (-930)) 78)) (-2940 (((-870) $) 32)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 24)))
-(((-1112 |#1| |#2|) (-13 (-375) (-10 -8 (-15 -3150 ((-3 $ "failed") $ (-930))) (-15 -2098 ((-3 $ "failed") $ (-930) (-930))) (-15 -3586 ((-652 (-930)) $)) (-15 -2378 ($ (-652 (-930)))) (-15 -3684 ((-1279 $))) (-15 -1864 ((-112) (-930) $)) (-15 -2073 ((-779) $ (-930) (-930))))) (-930) (-930)) (T -1112))
-((-3150 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-930)) (-5 *1 (-1112 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2098 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-930)) (-5 *1 (-1112 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-3684 (*1 *2) (-12 (-5 *2 (-1279 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-1864 (*1 *2 *3 *1) (-12 (-5 *3 (-930)) (-5 *2 (-112)) (-5 *1 (-1112 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2073 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-779)) (-5 *1 (-1112 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-375) (-10 -8 (-15 -3150 ((-3 $ "failed") $ (-930))) (-15 -2098 ((-3 $ "failed") $ (-930) (-930))) (-15 -3586 ((-652 (-930)) $)) (-15 -2378 ($ (-652 (-930)))) (-15 -3684 ((-1279 $))) (-15 -1864 ((-112) (-930) $)) (-15 -2073 ((-779) $ (-930) (-930)))))
-((-2846 (((-112) $ $) NIL)) (-1645 (($) NIL (|has| |#1| (-375)))) (-4357 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2774 (($ $ $) 81)) (-1890 (((-112) $ $) 82)) (-1631 (((-112) $ (-779)) NIL)) (-1486 (((-779)) NIL (|has| |#1| (-375)))) (-1506 (($ (-652 |#1|)) NIL) (($) 13)) (-2613 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3554 (($ |#1| $) 74 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4454)))) (-2815 (($) NIL (|has| |#1| (-375)))) (-1863 (((-652 |#1|) $) 19 (|has| $ (-6 -4454)))) (-3310 (((-112) $ $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3654 ((|#1| $) 55 (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2427 ((|#1| $) 53 (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 34)) (-3715 (((-930) $) NIL (|has| |#1| (-375)))) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1346 (($ $ $) 79)) (-1651 ((|#1| $) 25)) (-2036 (($ |#1| $) 69)) (-2571 (($ (-930)) NIL (|has| |#1| (-375)))) (-3964 (((-1131) $) NIL)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3378 ((|#1| $) 27)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 21)) (-1613 (($) 11)) (-4020 (($ $ |#1|) NIL) (($ $ $) 80)) (-3438 (($) NIL) (($ (-652 |#1|)) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) 16)) (-1835 (((-544) $) 50 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 62)) (-2429 (($ $) NIL (|has| |#1| (-375)))) (-2940 (((-870) $) NIL)) (-4006 (((-779) $) NIL)) (-4279 (($ (-652 |#1|)) NIL) (($) 12)) (-4379 (((-112) $ $) NIL)) (-2022 (($ (-652 |#1|)) NIL)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 52)) (-2860 (((-779) $) 10 (|has| $ (-6 -4454)))))
-(((-1113 |#1|) (-433 |#1|) (-1111)) (T -1113))
-NIL
-(-433 |#1|)
-((-2846 (((-112) $ $) 7)) (-1475 (((-112) $) 33)) (-4003 ((|#2| $) 28)) (-3842 (((-112) $) 34)) (-3246 ((|#1| $) 29)) (-4412 (((-112) $) 36)) (-3893 (((-112) $) 38)) (-2201 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3347 (((-112) $) 32)) (-4024 ((|#3| $) 27)) (-3964 (((-1131) $) 11)) (-2465 (((-112) $) 31)) (-2379 ((|#4| $) 26)) (-1443 ((|#5| $) 25)) (-4121 (((-112) $ $) 39)) (-2196 (($ $ (-572)) 41) (($ $ (-652 (-572))) 40)) (-4291 (((-652 $) $) 30)) (-1835 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-652 $)) 42)) (-2940 (((-870) $) 12)) (-4278 (($ $) 23)) (-2878 (($ $) 24)) (-4379 (((-112) $ $) 9)) (-3967 (((-112) $) 37)) (-2978 (((-112) $ $) 6)) (-2860 (((-572) $) 22)))
-(((-1114 |#1| |#2| |#3| |#4| |#5|) (-141) (-1111) (-1111) (-1111) (-1111) (-1111)) (T -1114))
-((-4121 (*1 *2 *1 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-4291 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-1114 *3 *4 *5 *6 *7)))) (-3246 (*1 *2 *1) (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *2 *4 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *2 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-2379 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2 *6)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *2)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-2878 (*1 *1 *1) (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *2 (-1111)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)))) (-4278 (*1 *1 *1) (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *2 (-1111)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)))) (-2860 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-572)))))
-(-13 (-1111) (-626 |t#1|) (-626 |t#2|) (-626 |t#3|) (-626 |t#4|) (-626 |t#4|) (-626 |t#5|) (-626 (-652 $)) (-292 (-572) $) (-292 (-652 (-572)) $) (-10 -8 (-15 -4121 ((-112) $ $)) (-15 -3893 ((-112) $)) (-15 -3967 ((-112) $)) (-15 -4412 ((-112) $)) (-15 -2201 ((-112) $)) (-15 -3842 ((-112) $)) (-15 -1475 ((-112) $)) (-15 -3347 ((-112) $)) (-15 -2465 ((-112) $)) (-15 -4291 ((-652 $) $)) (-15 -3246 (|t#1| $)) (-15 -4003 (|t#2| $)) (-15 -4024 (|t#3| $)) (-15 -2379 (|t#4| $)) (-15 -1443 (|t#5| $)) (-15 -2878 ($ $)) (-15 -4278 ($ $)) (-15 -2860 ((-572) $))))
-(((-102) . T) ((-621 (-870)) . T) ((-626 (-652 $)) . T) ((-626 |#1|) . T) ((-626 |#2|) . T) ((-626 |#3|) . T) ((-626 |#4|) . T) ((-626 |#5|) . T) ((-292 (-572) $) . T) ((-292 (-652 (-572)) $) . T) ((-1111) . T) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-1475 (((-112) $) NIL)) (-4003 (((-1188) $) NIL)) (-3842 (((-112) $) NIL)) (-3246 (((-1170) $) NIL)) (-4412 (((-112) $) NIL)) (-3893 (((-112) $) NIL)) (-2201 (((-112) $) NIL)) (-4347 (((-1170) $) NIL)) (-3347 (((-112) $) NIL)) (-4024 (((-572) $) NIL)) (-3964 (((-1131) $) NIL)) (-2465 (((-112) $) NIL)) (-2379 (((-227) $) NIL)) (-1443 (((-870) $) NIL)) (-4121 (((-112) $ $) NIL)) (-2196 (($ $ (-572)) NIL) (($ $ (-652 (-572))) NIL)) (-4291 (((-652 $) $) NIL)) (-1835 (($ (-1170)) NIL) (($ (-1188)) NIL) (($ (-572)) NIL) (($ (-227)) NIL) (($ (-870)) NIL) (($ (-652 $)) NIL)) (-2940 (((-870) $) NIL)) (-4278 (($ $) NIL)) (-2878 (($ $) NIL)) (-4379 (((-112) $ $) NIL)) (-3967 (((-112) $) NIL)) (-2978 (((-112) $ $) NIL)) (-2860 (((-572) $) NIL)))
-(((-1115) (-1114 (-1170) (-1188) (-572) (-227) (-870))) (T -1115))
-NIL
-(-1114 (-1170) (-1188) (-572) (-227) (-870))
-((-2846 (((-112) $ $) NIL)) (-1475 (((-112) $) 45)) (-4003 ((|#2| $) 48)) (-3842 (((-112) $) 20)) (-3246 ((|#1| $) 21)) (-4412 (((-112) $) 42)) (-3893 (((-112) $) 14)) (-2201 (((-112) $) 44)) (-4347 (((-1170) $) NIL)) (-3347 (((-112) $) 46)) (-4024 ((|#3| $) 50)) (-3964 (((-1131) $) NIL)) (-2465 (((-112) $) 47)) (-2379 ((|#4| $) 49)) (-1443 ((|#5| $) 51)) (-4121 (((-112) $ $) 41)) (-2196 (($ $ (-572)) 62) (($ $ (-652 (-572))) 64)) (-4291 (((-652 $) $) 27)) (-1835 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-652 $)) 52)) (-2940 (((-870) $) 28)) (-4278 (($ $) 26)) (-2878 (($ $) 58)) (-4379 (((-112) $ $) NIL)) (-3967 (((-112) $) 23)) (-2978 (((-112) $ $) 40)) (-2860 (((-572) $) 60)))
-(((-1116 |#1| |#2| |#3| |#4| |#5|) (-1114 |#1| |#2| |#3| |#4| |#5|) (-1111) (-1111) (-1111) (-1111) (-1111)) (T -1116))
-NIL
-(-1114 |#1| |#2| |#3| |#4| |#5|)
-((-3765 (((-1284) $) 22)) (-3738 (($ (-1188) (-442) |#2|) 11)) (-2940 (((-870) $) 16)))
-(((-1117 |#1| |#2|) (-13 (-403) (-10 -8 (-15 -3738 ($ (-1188) (-442) |#2|)))) (-1111) (-438 |#1|)) (T -1117))
-((-3738 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-442)) (-4 *5 (-1111)) (-5 *1 (-1117 *5 *4)) (-4 *4 (-438 *5)))))
-(-13 (-403) (-10 -8 (-15 -3738 ($ (-1188) (-442) |#2|))))
-((-1375 (((-112) |#5| |#5|) 44)) (-4066 (((-112) |#5| |#5|) 59)) (-1795 (((-112) |#5| (-652 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-4186 (((-112) (-652 |#4|) (-652 |#4|)) 65)) (-3817 (((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) 70)) (-3302 (((-1284)) 32)) (-1805 (((-1284) (-1170) (-1170) (-1170)) 28)) (-3266 (((-652 |#5|) (-652 |#5|)) 101)) (-4156 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) 93)) (-2944 (((-652 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112)) 123)) (-3256 (((-112) |#5| |#5|) 53)) (-3921 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1900 (((-112) (-652 |#4|) (-652 |#4|)) 64)) (-3852 (((-112) (-652 |#4|) (-652 |#4|)) 66)) (-2323 (((-112) (-652 |#4|) (-652 |#4|)) 67)) (-1647 (((-3 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2831 (((-652 |#5|) (-652 |#5|)) 49)))
-(((-1118 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1805 ((-1284) (-1170) (-1170) (-1170))) (-15 -3302 ((-1284))) (-15 -1375 ((-112) |#5| |#5|)) (-15 -2831 ((-652 |#5|) (-652 |#5|))) (-15 -3256 ((-112) |#5| |#5|)) (-15 -4066 ((-112) |#5| |#5|)) (-15 -4186 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -1900 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3852 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -2323 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3921 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1795 ((-112) |#5| |#5|)) (-15 -1795 ((-112) |#5| (-652 |#5|))) (-15 -3266 ((-652 |#5|) (-652 |#5|))) (-15 -3817 ((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) (-15 -4156 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-15 -2944 ((-652 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -1647 ((-3 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1118))
-((-1647 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| -4121 (-652 *9)) (|:| -4090 *4) (|:| |ineq| (-652 *9)))) (-5 *1 (-1118 *6 *7 *8 *9 *4)) (-5 *3 (-652 *9)) (-4 *4 (-1082 *6 *7 *8 *9)))) (-2944 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-652 *10)) (-5 *5 (-112)) (-4 *10 (-1082 *6 *7 *8 *9)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8)) (-5 *2 (-652 (-2 (|:| -4121 (-652 *9)) (|:| -4090 *10) (|:| |ineq| (-652 *9))))) (-5 *1 (-1118 *6 *7 *8 *9 *10)) (-5 *3 (-652 *9)))) (-4156 (*1 *2 *2) (-12 (-5 *2 (-652 (-2 (|:| |val| (-652 *6)) (|:| -4090 *7)))) (-4 *6 (-1076 *3 *4 *5)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1118 *3 *4 *5 *6 *7)))) (-3817 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -4090 *8))) (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-1118 *3 *4 *5 *6 *7)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1118 *5 *6 *7 *8 *3)))) (-1795 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3921 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-3852 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-1900 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-4186 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-4066 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-1118 *3 *4 *5 *6 *7)))) (-1375 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3302 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-1805 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1805 ((-1284) (-1170) (-1170) (-1170))) (-15 -3302 ((-1284))) (-15 -1375 ((-112) |#5| |#5|)) (-15 -2831 ((-652 |#5|) (-652 |#5|))) (-15 -3256 ((-112) |#5| |#5|)) (-15 -4066 ((-112) |#5| |#5|)) (-15 -4186 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -1900 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3852 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -2323 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3921 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1795 ((-112) |#5| |#5|)) (-15 -1795 ((-112) |#5| (-652 |#5|))) (-15 -3266 ((-652 |#5|) (-652 |#5|))) (-15 -3817 ((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) (-15 -4156 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-15 -2944 ((-652 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -1647 ((-3 (-2 (|:| -4121 (-652 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-2789 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|) 108)) (-2011 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|) 80)) (-2111 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 102)) (-3167 (((-652 |#5|) |#4| |#5|) 124)) (-3531 (((-652 |#5|) |#4| |#5|) 131)) (-3856 (((-652 |#5|) |#4| |#5|) 132)) (-2656 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 109)) (-3463 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 130)) (-2842 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3068 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#3| (-112)) 92) (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4109 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 87)) (-1415 (((-1284)) 36)) (-3917 (((-1284)) 25)) (-1551 (((-1284) (-1170) (-1170) (-1170)) 32)) (-2312 (((-1284) (-1170) (-1170) (-1170)) 21)))
-(((-1119 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2312 ((-1284) (-1170) (-1170) (-1170))) (-15 -3917 ((-1284))) (-15 -1551 ((-1284) (-1170) (-1170) (-1170))) (-15 -1415 ((-1284))) (-15 -2011 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -3068 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3068 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -4109 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2111 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2842 ((-112) |#4| |#5|)) (-15 -2656 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -3167 ((-652 |#5|) |#4| |#5|)) (-15 -3463 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -3531 ((-652 |#5|) |#4| |#5|)) (-15 -2842 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -3856 ((-652 |#5|) |#4| |#5|)) (-15 -2789 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1119))
-((-2789 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3856 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4)) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2842 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3531 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4)) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3463 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3167 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4)) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2656 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2842 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2111 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-4109 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3068 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -4090 *9)))) (-5 *5 (-112)) (-4 *8 (-1076 *6 *7 *4)) (-4 *9 (-1082 *6 *7 *4 *8)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *4 (-858)) (-5 *2 (-652 (-2 (|:| |val| *8) (|:| -4090 *9)))) (-5 *1 (-1119 *6 *7 *4 *8 *9)))) (-3068 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1119 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-2011 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-1415 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-1551 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-3917 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-2312 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2312 ((-1284) (-1170) (-1170) (-1170))) (-15 -3917 ((-1284))) (-15 -1551 ((-1284) (-1170) (-1170) (-1170))) (-15 -1415 ((-1284))) (-15 -2011 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -3068 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3068 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -4109 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2111 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2842 ((-112) |#4| |#5|)) (-15 -2656 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -3167 ((-652 |#5|) |#4| |#5|)) (-15 -3463 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -3531 ((-652 |#5|) |#4| |#5|)) (-15 -2842 ((-652 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -3856 ((-652 |#5|) |#4| |#5|)) (-15 -2789 ((-652 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|)))
-((-2846 (((-112) $ $) 7)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |#4|)))) (-652 |#4|)) 86)) (-1740 (((-652 $) (-652 |#4|)) 87) (((-652 $) (-652 |#4|) (-112)) 112)) (-4353 (((-652 |#3|) $) 34)) (-1544 (((-112) $) 27)) (-2639 (((-112) $) 18 (|has| |#1| (-564)))) (-2621 (((-112) |#4| $) 102) (((-112) $) 98)) (-3558 ((|#4| |#4| $) 93)) (-3517 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) 28)) (-1631 (((-112) $ (-779)) 45)) (-2162 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-3281 (($) 46 T CONST)) (-2390 (((-112) $) 23 (|has| |#1| (-564)))) (-2783 (((-112) $ $) 25 (|has| |#1| (-564)))) (-3937 (((-112) $ $) 24 (|has| |#1| (-564)))) (-1616 (((-112) $) 26 (|has| |#1| (-564)))) (-3713 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1566 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) 37)) (-2204 (($ (-652 |#4|)) 36)) (-2923 (((-3 $ "failed") $) 83)) (-2020 ((|#4| |#4| $) 90)) (-2086 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2888 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1758 ((|#4| |#4| $) 88)) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3433 (((-2 (|:| -1379 (-652 |#4|)) (|:| -1674 (-652 |#4|))) $) 106)) (-1939 (((-112) |#4| $) 137)) (-4131 (((-112) |#4| $) 134)) (-1554 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-4338 (((-112) |#4| $) 105) (((-112) $) 104)) (-2366 ((|#3| $) 35)) (-1861 (((-112) $ (-779)) 44)) (-1344 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-3015 (((-652 |#3|) $) 33)) (-1683 (((-112) |#3| $) 32)) (-1985 (((-112) $ (-779)) 43)) (-4347 (((-1170) $) 10)) (-4431 (((-3 |#4| (-652 $)) |#4| |#4| $) 129)) (-3487 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3357 (((-3 |#4| "failed") $) 84)) (-3326 (((-652 $) |#4| $) 130)) (-4399 (((-3 (-112) (-652 $)) |#4| $) 133)) (-1892 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1346 (((-652 $) |#4| $) 126) (((-652 $) (-652 |#4|) $) 125) (((-652 $) (-652 |#4|) (-652 $)) 124) (((-652 $) |#4| (-652 $)) 123)) (-3761 (($ |#4| $) 118) (($ (-652 |#4|) $) 117)) (-2234 (((-652 |#4|) $) 108)) (-3005 (((-112) |#4| $) 100) (((-112) $) 96)) (-2755 ((|#4| |#4| $) 91)) (-2323 (((-112) $ $) 111)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-3536 (((-112) |#4| $) 101) (((-112) $) 97)) (-1825 ((|#4| |#4| $) 92)) (-3964 (((-1131) $) 11)) (-2912 (((-3 |#4| "failed") $) 85)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3632 (((-3 $ "failed") $ |#4|) 79)) (-2772 (($ $ |#4|) 78) (((-652 $) |#4| $) 116) (((-652 $) |#4| (-652 $)) 115) (((-652 $) (-652 |#4|) $) 114) (((-652 $) (-652 |#4|) (-652 $)) 113)) (-1612 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) 39)) (-1841 (((-112) $) 42)) (-1613 (($) 41)) (-4390 (((-779) $) 107)) (-3973 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3164 (($ $) 40)) (-1835 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) 61)) (-2748 (($ $ |#3|) 29)) (-2365 (($ $ |#3|) 31)) (-3862 (($ $) 89)) (-1670 (($ $ |#3|) 30)) (-2940 (((-870) $) 12) (((-652 |#4|) $) 38)) (-3678 (((-779) $) 77 (|has| |#3| (-375)))) (-4379 (((-112) $ $) 9)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3447 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-3007 (((-652 $) |#4| $) 122) (((-652 $) |#4| (-652 $)) 121) (((-652 $) (-652 |#4|) $) 120) (((-652 $) (-652 |#4|) (-652 $)) 119)) (-4380 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-4041 (((-652 |#3|) $) 82)) (-4377 (((-112) |#4| $) 136)) (-1482 (((-112) |#3| $) 81)) (-2978 (((-112) $ $) 6)) (-2860 (((-779) $) 47 (|has| $ (-6 -4454)))))
-(((-1120 |#1| |#2| |#3| |#4|) (-141) (-460) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -1120))
-NIL
-(-13 (-1082 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1222 |#1| |#2| |#3| |#4|) . T) ((-1229) . T))
-((-2640 (((-652 (-572)) (-572) (-572) (-572)) 38)) (-3444 (((-652 (-572)) (-572) (-572) (-572)) 28)) (-2101 (((-652 (-572)) (-572) (-572) (-572)) 33)) (-2505 (((-572) (-572) (-572)) 21)) (-2489 (((-1279 (-572)) (-652 (-572)) (-1279 (-572)) (-572)) 76) (((-1279 (-572)) (-1279 (-572)) (-1279 (-572)) (-572)) 71)) (-3279 (((-652 (-572)) (-652 (-930)) (-652 (-572)) (-112)) 54)) (-3413 (((-697 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572))) 75)) (-3050 (((-697 (-572)) (-652 (-930)) (-652 (-572))) 59)) (-1905 (((-652 (-697 (-572))) (-652 (-930))) 64)) (-1571 (((-652 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572))) 79)) (-1891 (((-697 (-572)) (-652 (-572)) (-652 (-572)) (-652 (-572))) 89)))
-(((-1121) (-10 -7 (-15 -1891 ((-697 (-572)) (-652 (-572)) (-652 (-572)) (-652 (-572)))) (-15 -1571 ((-652 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572)))) (-15 -1905 ((-652 (-697 (-572))) (-652 (-930)))) (-15 -3050 ((-697 (-572)) (-652 (-930)) (-652 (-572)))) (-15 -3413 ((-697 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572)))) (-15 -3279 ((-652 (-572)) (-652 (-930)) (-652 (-572)) (-112))) (-15 -2489 ((-1279 (-572)) (-1279 (-572)) (-1279 (-572)) (-572))) (-15 -2489 ((-1279 (-572)) (-652 (-572)) (-1279 (-572)) (-572))) (-15 -2505 ((-572) (-572) (-572))) (-15 -2101 ((-652 (-572)) (-572) (-572) (-572))) (-15 -3444 ((-652 (-572)) (-572) (-572) (-572))) (-15 -2640 ((-652 (-572)) (-572) (-572) (-572))))) (T -1121))
-((-2640 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))) (-3444 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))) (-2101 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))) (-2505 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1121)))) (-2489 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1279 (-572))) (-5 *3 (-652 (-572))) (-5 *4 (-572)) (-5 *1 (-1121)))) (-2489 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1279 (-572))) (-5 *3 (-572)) (-5 *1 (-1121)))) (-3279 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-652 (-572))) (-5 *3 (-652 (-930))) (-5 *4 (-112)) (-5 *1 (-1121)))) (-3413 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-697 (-572))) (-5 *3 (-652 (-572))) (-5 *1 (-1121)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-930))) (-5 *4 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1121)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-1121)))) (-1571 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *3 (-697 (-572))) (-5 *1 (-1121)))) (-1891 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1121)))))
-(-10 -7 (-15 -1891 ((-697 (-572)) (-652 (-572)) (-652 (-572)) (-652 (-572)))) (-15 -1571 ((-652 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572)))) (-15 -1905 ((-652 (-697 (-572))) (-652 (-930)))) (-15 -3050 ((-697 (-572)) (-652 (-930)) (-652 (-572)))) (-15 -3413 ((-697 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572)))) (-15 -3279 ((-652 (-572)) (-652 (-930)) (-652 (-572)) (-112))) (-15 -2489 ((-1279 (-572)) (-1279 (-572)) (-1279 (-572)) (-572))) (-15 -2489 ((-1279 (-572)) (-652 (-572)) (-1279 (-572)) (-572))) (-15 -2505 ((-572) (-572) (-572))) (-15 -2101 ((-652 (-572)) (-572) (-572) (-572))) (-15 -3444 ((-652 (-572)) (-572) (-572) (-572))) (-15 -2640 ((-652 (-572)) (-572) (-572) (-572))))
-((** (($ $ (-930)) 10)))
-(((-1122 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-930)))) (-1123)) (T -1122))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-930))))
-((-2846 (((-112) $ $) 7)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)) (** (($ $ (-930)) 14)) (* (($ $ $) 15)))
-(((-1123) (-141)) (T -1123))
-((* (*1 *1 *1 *1) (-4 *1 (-1123))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-930)))))
-(-13 (-1111) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-930)))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL (|has| |#3| (-1111)))) (-2697 (((-112) $) NIL (|has| |#3| (-132)))) (-2601 (($ (-930)) NIL (|has| |#3| (-1060)))) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-1360 (($ $ $) NIL (|has| |#3| (-801)))) (-3330 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-1631 (((-112) $ (-779)) NIL)) (-1486 (((-779)) NIL (|has| |#3| (-375)))) (-2840 (((-572) $) NIL (|has| |#3| (-856)))) (-3140 ((|#3| $ (-572) |#3|) NIL (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1111)))) (-2204 (((-572) $) NIL (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111)))) ((|#3| $) NIL (|has| |#3| (-1111)))) (-2993 (((-697 (-572)) (-1279 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060)))) (((-2 (|:| -3544 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 $) (-1279 $)) NIL (|has| |#3| (-1060))) (((-697 |#3|) (-697 $)) NIL (|has| |#3| (-1060))) (((-697 |#3|) (-1279 $)) NIL (|has| |#3| (-1060)))) (-2062 (((-3 $ "failed") $) NIL (|has| |#3| (-734)))) (-2815 (($) NIL (|has| |#3| (-375)))) (-2453 ((|#3| $ (-572) |#3|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#3| $ (-572)) 12)) (-3074 (((-112) $) NIL (|has| |#3| (-856)))) (-1863 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-1886 (((-112) $) NIL (|has| |#3| (-734)))) (-1623 (((-112) $) NIL (|has| |#3| (-856)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-1344 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-2442 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#3| |#3|) $) NIL)) (-3715 (((-930) $) NIL (|has| |#3| (-375)))) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#3| (-1111)))) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-2571 (($ (-930)) NIL (|has| |#3| (-375)))) (-3964 (((-1131) $) NIL (|has| |#3| (-1111)))) (-2912 ((|#3| $) NIL (|has| (-572) (-858)))) (-2476 (($ $ |#3|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#3|))) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-300 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-652 |#3|) (-652 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-4110 (((-652 |#3|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#3| $ (-572) |#3|) NIL) ((|#3| $ (-572)) NIL)) (-2264 ((|#3| $ $) NIL (|has| |#3| (-1060)))) (-4259 (($ (-1279 |#3|)) NIL)) (-4224 (((-135)) NIL (|has| |#3| (-370)))) (-3902 (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1 |#3| |#3|) (-779)) NIL (|has| |#3| (-1060))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1060)))) (-3973 (((-779) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454))) (((-779) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-3164 (($ $) NIL)) (-2940 (((-1279 |#3|) $) NIL) (($ (-572)) NIL (-2813 (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (|has| |#3| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111)))) (($ |#3|) NIL (|has| |#3| (-1111))) (((-870) $) NIL (|has| |#3| (-621 (-870))))) (-4249 (((-779)) NIL (|has| |#3| (-1060)) CONST)) (-4379 (((-112) $ $) NIL (|has| |#3| (-1111)))) (-4380 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-2700 (($ $) NIL (|has| |#3| (-856)))) (-2131 (($) NIL (|has| |#3| (-132)) CONST)) (-2143 (($) NIL (|has| |#3| (-734)) CONST)) (-3608 (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1 |#3| |#3|) (-779)) NIL (|has| |#3| (-1060))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1060)))) (-3039 (((-112) $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3014 (((-112) $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-2978 (((-112) $ $) NIL (|has| |#3| (-1111)))) (-3026 (((-112) $ $) NIL (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3003 (((-112) $ $) 24 (-2813 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3106 (($ $ |#3|) NIL (|has| |#3| (-370)))) (-3089 (($ $ $) NIL (|has| |#3| (-1060))) (($ $) NIL (|has| |#3| (-1060)))) (-3075 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-779)) NIL (|has| |#3| (-734))) (($ $ (-930)) NIL (|has| |#3| (-734)))) (* (($ (-572) $) NIL (|has| |#3| (-1060))) (($ $ $) NIL (|has| |#3| (-734))) (($ $ |#3|) NIL (|has| |#3| (-734))) (($ |#3| $) NIL (|has| |#3| (-734))) (($ (-779) $) NIL (|has| |#3| (-132))) (($ (-930) $) NIL (|has| |#3| (-25)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1124 |#1| |#2| |#3|) (-242 |#1| |#3|) (-779) (-779) (-801)) (T -1124))
-NIL
-(-242 |#1| |#3|)
-((-2900 (((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 50)) (-3990 (((-572) (-1252 |#2| |#1|)) 94 (|has| |#1| (-460)))) (-2145 (((-572) (-1252 |#2| |#1|)) 76)) (-2095 (((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 58)) (-2698 (((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 93 (|has| |#1| (-460)))) (-2372 (((-652 |#1|) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 61)) (-1476 (((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 75)))
-(((-1125 |#1| |#2|) (-10 -7 (-15 -2900 ((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -2095 ((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -2372 ((-652 |#1|) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -1476 ((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -2145 ((-572) (-1252 |#2| |#1|))) (IF (|has| |#1| (-460)) (PROGN (-15 -2698 ((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -3990 ((-572) (-1252 |#2| |#1|)))) |%noBranch|)) (-828) (-1188)) (T -1125))
-((-3990 (*1 *2 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-460)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))) (-2698 (*1 *2 *3 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-460)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))) (-1476 (*1 *2 *3 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))) (-2372 (*1 *2 *3 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 *4)) (-5 *1 (-1125 *4 *5)))) (-2095 (*1 *2 *3 *3) (-12 (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 (-1252 *5 *4))) (-5 *1 (-1125 *4 *5)) (-5 *3 (-1252 *5 *4)))) (-2900 (*1 *2 *3 *3) (-12 (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 (-1252 *5 *4))) (-5 *1 (-1125 *4 *5)) (-5 *3 (-1252 *5 *4)))))
-(-10 -7 (-15 -2900 ((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -2095 ((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -2372 ((-652 |#1|) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -1476 ((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -2145 ((-572) (-1252 |#2| |#1|))) (IF (|has| |#1| (-460)) (PROGN (-15 -2698 ((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -3990 ((-572) (-1252 |#2| |#1|)))) |%noBranch|))
-((-2846 (((-112) $ $) NIL)) (-2349 (($ (-514) (-1129)) 13)) (-3137 (((-1129) $) 19)) (-2030 (((-514) $) 16)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 26) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1126) (-13 (-1094) (-10 -8 (-15 -2349 ($ (-514) (-1129))) (-15 -2030 ((-514) $)) (-15 -3137 ((-1129) $))))) (T -1126))
-((-2349 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1129)) (-5 *1 (-1126)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1126)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1126)))))
-(-13 (-1094) (-10 -8 (-15 -2349 ($ (-514) (-1129))) (-15 -2030 ((-514) $)) (-15 -3137 ((-1129) $))))
-((-2840 (((-3 (-572) "failed") |#2| (-1188) |#2| (-1170)) 19) (((-3 (-572) "failed") |#2| (-1188) (-851 |#2|)) 17) (((-3 (-572) "failed") |#2|) 60)))
-(((-1127 |#1| |#2|) (-10 -7 (-15 -2840 ((-3 (-572) "failed") |#2|)) (-15 -2840 ((-3 (-572) "failed") |#2| (-1188) (-851 |#2|))) (-15 -2840 ((-3 (-572) "failed") |#2| (-1188) |#2| (-1170)))) (-13 (-564) (-1049 (-572)) (-647 (-572)) (-460)) (-13 (-27) (-1214) (-438 |#1|))) (T -1127))
-((-2840 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-1170)) (-4 *6 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572)) (-5 *1 (-1127 *6 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))))) (-2840 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-851 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572)) (-5 *1 (-1127 *6 *3)))) (-2840 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572)) (-5 *1 (-1127 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))))
-(-10 -7 (-15 -2840 ((-3 (-572) "failed") |#2|)) (-15 -2840 ((-3 (-572) "failed") |#2| (-1188) (-851 |#2|))) (-15 -2840 ((-3 (-572) "failed") |#2| (-1188) |#2| (-1170))))
-((-2840 (((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)) (-1170)) 38) (((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-851 (-415 (-961 |#1|)))) 33) (((-3 (-572) "failed") (-415 (-961 |#1|))) 14)))
-(((-1128 |#1|) (-10 -7 (-15 -2840 ((-3 (-572) "failed") (-415 (-961 |#1|)))) (-15 -2840 ((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-851 (-415 (-961 |#1|))))) (-15 -2840 ((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)) (-1170)))) (-460)) (T -1128))
-((-2840 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-415 (-961 *6))) (-5 *4 (-1188)) (-5 *5 (-1170)) (-4 *6 (-460)) (-5 *2 (-572)) (-5 *1 (-1128 *6)))) (-2840 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-851 (-415 (-961 *6)))) (-5 *3 (-415 (-961 *6))) (-4 *6 (-460)) (-5 *2 (-572)) (-5 *1 (-1128 *6)))) (-2840 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-460)) (-5 *2 (-572)) (-5 *1 (-1128 *4)))))
-(-10 -7 (-15 -2840 ((-3 (-572) "failed") (-415 (-961 |#1|)))) (-15 -2840 ((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-851 (-415 (-961 |#1|))))) (-15 -2840 ((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)) (-1170))))
-((-2846 (((-112) $ $) NIL)) (-2330 (((-1193) $) 12)) (-2281 (((-652 (-1193)) $) 14)) (-3137 (($ (-652 (-1193)) (-1193)) 10)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 29)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 17)))
-(((-1129) (-13 (-1111) (-10 -8 (-15 -3137 ($ (-652 (-1193)) (-1193))) (-15 -2330 ((-1193) $)) (-15 -2281 ((-652 (-1193)) $))))) (T -1129))
-((-3137 (*1 *1 *2 *3) (-12 (-5 *2 (-652 (-1193))) (-5 *3 (-1193)) (-5 *1 (-1129)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1129)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1129)))))
-(-13 (-1111) (-10 -8 (-15 -3137 ($ (-652 (-1193)) (-1193))) (-15 -2330 ((-1193) $)) (-15 -2281 ((-652 (-1193)) $))))
-((-2049 (((-322 (-572)) (-48)) 12)))
-(((-1130) (-10 -7 (-15 -2049 ((-322 (-572)) (-48))))) (T -1130))
-((-2049 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-322 (-572))) (-5 *1 (-1130)))))
-(-10 -7 (-15 -2049 ((-322 (-572)) (-48))))
-((-2846 (((-112) $ $) NIL)) (-2874 (($ $) 44)) (-2697 (((-112) $) 70)) (-2107 (($ $ $) 53)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 98)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-1926 (($ $ $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2985 (($ $ $ $) 81)) (-3517 (($ $) NIL)) (-2287 (((-426 $) $) NIL)) (-4217 (((-112) $ $) NIL)) (-1486 (((-779)) 83)) (-2840 (((-572) $) NIL)) (-3957 (($ $ $) 78)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL)) (-2204 (((-572) $) NIL)) (-2780 (($ $ $) 64)) (-2993 (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 92) (((-697 (-572)) (-697 $)) 32) (((-697 (-572)) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-3196 (((-3 (-415 (-572)) "failed") $) NIL)) (-1733 (((-112) $) NIL)) (-2233 (((-415 (-572)) $) NIL)) (-2815 (($) 95) (($ $) 96)) (-2792 (($ $ $) 63)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL)) (-3879 (((-112) $) NIL)) (-3768 (($ $ $ $) NIL)) (-4220 (($ $ $) 93)) (-3074 (((-112) $) NIL)) (-2661 (($ $ $) NIL)) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL)) (-2096 (($ $ $) 52)) (-1886 (((-112) $) 72)) (-2597 (((-112) $) 69)) (-2074 (($ $) 45)) (-2556 (((-3 $ "failed") $) NIL)) (-1623 (((-112) $) 82)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2546 (($ $ $ $) 79)) (-3654 (($ $ $) 74) (($) 42 T CONST)) (-2427 (($ $ $) 73) (($) 41 T CONST)) (-3808 (($ $) NIL)) (-3715 (((-930) $) 88)) (-4133 (($ $) 77)) (-2825 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4347 (((-1170) $) NIL)) (-1656 (($ $ $) NIL)) (-3815 (($) NIL T CONST)) (-2571 (($ (-930)) 87)) (-1604 (($ $) 57)) (-3964 (((-1131) $) 76)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-2870 (($ $ $) 67) (($ (-652 $)) NIL)) (-2128 (($ $) NIL)) (-4218 (((-426 $) $) NIL)) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2003 (((-112) $) NIL)) (-3847 (((-779) $) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 66)) (-3902 (($ $ (-779)) NIL) (($ $) NIL)) (-2290 (($ $) 58)) (-3164 (($ $) NIL)) (-1835 (((-572) $) 17) (((-544) $) NIL) (((-901 (-572)) $) NIL) (((-386) $) NIL) (((-227) $) NIL)) (-2940 (((-870) $) 35) (($ (-572)) 94) (($ $) NIL) (($ (-572)) 94)) (-4249 (((-779)) NIL T CONST)) (-4023 (((-112) $ $) NIL)) (-3148 (($ $ $) NIL)) (-4379 (((-112) $ $) NIL)) (-2625 (($) 40)) (-2845 (((-112) $ $) NIL)) (-2085 (($ $ $) 50)) (-4212 (($ $ $ $) 80)) (-2700 (($ $) 68)) (-2922 (($ $ $) 47)) (-2131 (($) 7 T CONST)) (-2240 (($ $ $) 51)) (-2143 (($) 39 T CONST)) (-3547 (((-1170) $) 26) (((-1170) $ (-112)) 27) (((-1284) (-830) $) 28) (((-1284) (-830) $ (-112)) 29)) (-2251 (($ $) 48)) (-3608 (($ $ (-779)) NIL) (($ $) NIL)) (-2230 (($ $ $) 49)) (-3039 (((-112) $ $) 56)) (-3014 (((-112) $ $) 54)) (-2978 (((-112) $ $) 43)) (-3026 (((-112) $ $) 55)) (-3003 (((-112) $ $) 10)) (-2909 (($ $ $) 46)) (-3089 (($ $) 16) (($ $ $) 60)) (-3075 (($ $ $) 59)) (** (($ $ (-930)) NIL) (($ $ (-779)) 62)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 38) (($ $ $) 37) (($ (-572) $) 38)))
-(((-1131) (-13 (-553) (-852) (-113) (-669) (-836) (-10 -8 (-6 -4441) (-6 -4446) (-6 -4442) (-15 -2107 ($ $ $)) (-15 -2251 ($ $)) (-15 -2230 ($ $ $)) (-15 -2240 ($ $ $))))) (T -1131))
-((-2107 (*1 *1 *1 *1) (-5 *1 (-1131))) (-2251 (*1 *1 *1) (-5 *1 (-1131))) (-2230 (*1 *1 *1 *1) (-5 *1 (-1131))) (-2240 (*1 *1 *1 *1) (-5 *1 (-1131))))
-(-13 (-553) (-852) (-113) (-669) (-836) (-10 -8 (-6 -4441) (-6 -4446) (-6 -4442) (-15 -2107 ($ $ $)) (-15 -2251 ($ $)) (-15 -2230 ($ $ $)) (-15 -2240 ($ $ $))))
+(((-93) . T) ((-102) . T) ((-626 #0=(-1195)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1113) . T))
+((-4401 ((|#1| |#1| (-1 (-574) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3085 (((-1286)) 21)) (-1706 (((-654 |#1|)) 13)))
+(((-1097 |#1|) (-10 -7 (-15 -3085 ((-1286))) (-15 -1706 ((-654 |#1|))) (-15 -4401 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4401 (|#1| |#1| (-1 (-574) |#1| |#1|)))) (-133)) (T -1097))
+((-4401 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1097 *2)))) (-4401 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1097 *2)))) (-1706 (*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1097 *3)) (-4 *3 (-133)))) (-3085 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1097 *3)) (-4 *3 (-133)))))
+(-10 -7 (-15 -3085 ((-1286))) (-15 -1706 ((-654 |#1|))) (-15 -4401 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4401 (|#1| |#1| (-1 (-574) |#1| |#1|))))
+((-4233 (($ (-109) $) 20)) (-4273 (((-701 (-109)) (-516) $) 19)) (-3135 (($) 7)) (-4149 (($) 21)) (-1516 (($) 22)) (-1903 (((-654 (-177)) $) 10)) (-2943 (((-872) $) 25)))
+(((-1098) (-13 (-623 (-872)) (-10 -8 (-15 -3135 ($)) (-15 -1903 ((-654 (-177)) $)) (-15 -4273 ((-701 (-109)) (-516) $)) (-15 -4233 ($ (-109) $)) (-15 -4149 ($)) (-15 -1516 ($))))) (T -1098))
+((-3135 (*1 *1) (-5 *1 (-1098))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1098)))) (-4273 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1098)))) (-4233 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1098)))) (-4149 (*1 *1) (-5 *1 (-1098))) (-1516 (*1 *1) (-5 *1 (-1098))))
+(-13 (-623 (-872)) (-10 -8 (-15 -3135 ($)) (-15 -1903 ((-654 (-177)) $)) (-15 -4273 ((-701 (-109)) (-516) $)) (-15 -4233 ($ (-109) $)) (-15 -4149 ($)) (-15 -1516 ($))))
+((-2750 (((-1281 (-699 |#1|)) (-654 (-699 |#1|))) 45) (((-1281 (-699 (-963 |#1|))) (-654 (-1190)) (-699 (-963 |#1|))) 75) (((-1281 (-699 (-417 (-963 |#1|)))) (-654 (-1190)) (-699 (-417 (-963 |#1|)))) 92)) (-3676 (((-1281 |#1|) (-699 |#1|) (-654 (-699 |#1|))) 39)))
+(((-1099 |#1|) (-10 -7 (-15 -2750 ((-1281 (-699 (-417 (-963 |#1|)))) (-654 (-1190)) (-699 (-417 (-963 |#1|))))) (-15 -2750 ((-1281 (-699 (-963 |#1|))) (-654 (-1190)) (-699 (-963 |#1|)))) (-15 -2750 ((-1281 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3676 ((-1281 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) (-372)) (T -1099))
+((-3676 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-1281 *5)) (-5 *1 (-1099 *5)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-1099 *4)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1190))) (-4 *5 (-372)) (-5 *2 (-1281 (-699 (-963 *5)))) (-5 *1 (-1099 *5)) (-5 *4 (-699 (-963 *5))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1190))) (-4 *5 (-372)) (-5 *2 (-1281 (-699 (-417 (-963 *5))))) (-5 *1 (-1099 *5)) (-5 *4 (-699 (-417 (-963 *5)))))))
+(-10 -7 (-15 -2750 ((-1281 (-699 (-417 (-963 |#1|)))) (-654 (-1190)) (-699 (-417 (-963 |#1|))))) (-15 -2750 ((-1281 (-699 (-963 |#1|))) (-654 (-1190)) (-699 (-963 |#1|)))) (-15 -2750 ((-1281 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3676 ((-1281 |#1|) (-699 |#1|) (-654 (-699 |#1|)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1481 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1190)) NIL)) (-3848 (((-781) $) NIL) (((-781) $ (-1190)) NIL)) (-4355 (((-654 (-1101 (-1190))) $) NIL)) (-4194 (((-1186 $) $ (-1101 (-1190))) NIL) (((-1186 |#1|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-1101 (-1190)))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4348 (($ $) NIL (|has| |#1| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2419 (($ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1101 (-1190)) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL) (((-3 (-1138 |#1| (-1190)) "failed") $) NIL)) (-2209 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1101 (-1190)) $) NIL) (((-1190) $) NIL) (((-1138 |#1| (-1190)) $) NIL)) (-2800 (($ $ $ (-1101 (-1190))) NIL (|has| |#1| (-174)))) (-1392 (($ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1101 (-1190))) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#1| (-920)))) (-3157 (($ $ |#1| (-541 (-1101 (-1190))) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1101 (-1190)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1101 (-1190)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3593 (((-781) $ (-1190)) NIL) (((-781) $) NIL)) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4345 (($ (-1186 |#1|) (-1101 (-1190))) NIL) (($ (-1186 $) (-1101 (-1190))) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-541 (-1101 (-1190)))) NIL) (($ $ (-1101 (-1190)) (-781)) NIL) (($ $ (-654 (-1101 (-1190))) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-1101 (-1190))) NIL)) (-2382 (((-541 (-1101 (-1190))) $) NIL) (((-781) $ (-1101 (-1190))) NIL) (((-654 (-781)) $ (-654 (-1101 (-1190)))) NIL)) (-1541 (($ (-1 (-541 (-1101 (-1190))) (-541 (-1101 (-1190)))) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-4115 (((-1 $ (-781)) (-1190)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-4045 (((-3 (-1101 (-1190)) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-3706 (((-1101 (-1190)) $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2568 (((-1172) $) NIL)) (-3740 (((-112) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-1101 (-1190))) (|:| -2524 (-781))) "failed") $) NIL)) (-2591 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1101 (-1190)) |#1|) NIL) (($ $ (-654 (-1101 (-1190))) (-654 |#1|)) NIL) (($ $ (-1101 (-1190)) $) NIL) (($ $ (-654 (-1101 (-1190))) (-654 $)) NIL) (($ $ (-1190) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1190)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-1415 (($ $ (-1101 (-1190))) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-1101 (-1190))) NIL) (($ $ (-654 (-1101 (-1190)))) NIL) (($ $ (-1101 (-1190)) (-781)) NIL) (($ $ (-654 (-1101 (-1190))) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2757 (((-654 (-1190)) $) NIL)) (-1784 (((-541 (-1101 (-1190))) $) NIL) (((-781) $ (-1101 (-1190))) NIL) (((-654 (-781)) $ (-654 (-1101 (-1190)))) NIL) (((-781) $ (-1190)) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-1101 (-1190)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1101 (-1190)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1101 (-1190)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1607 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1101 (-1190))) NIL (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1101 (-1190))) NIL) (($ (-1190)) NIL) (($ (-1138 |#1| (-1190))) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-541 (-1101 (-1190)))) NIL) (($ $ (-1101 (-1190)) (-781)) NIL) (($ $ (-654 (-1101 (-1190))) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-1101 (-1190))) NIL) (($ $ (-654 (-1101 (-1190)))) NIL) (($ $ (-1101 (-1190)) (-781)) NIL) (($ $ (-654 (-1101 (-1190))) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1100 |#1|) (-13 (-260 |#1| (-1190) (-1101 (-1190)) (-541 (-1101 (-1190)))) (-1051 (-1138 |#1| (-1190)))) (-1062)) (T -1100))
+NIL
+(-13 (-260 |#1| (-1190) (-1101 (-1190)) (-541 (-1101 (-1190)))) (-1051 (-1138 |#1| (-1190))))
+((-2849 (((-112) $ $) NIL)) (-3848 (((-781) $) NIL)) (-1489 ((|#1| $) 10)) (-1697 (((-3 |#1| "failed") $) NIL)) (-2209 ((|#1| $) NIL)) (-3593 (((-781) $) 11)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-4115 (($ |#1| (-781)) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3905 (($ $) NIL) (($ $ (-781)) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 16)))
+(((-1101 |#1|) (-273 |#1|) (-860)) (T -1101))
+NIL
+(-273 |#1|)
+((-1778 (((-654 |#2|) (-1 |#2| |#1|) (-1107 |#1|)) 29 (|has| |#1| (-858))) (((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|)) 14)))
+(((-1102 |#1| |#2|) (-10 -7 (-15 -1778 ((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|))) (IF (|has| |#1| (-858)) (-15 -1778 ((-654 |#2|) (-1 |#2| |#1|) (-1107 |#1|))) |%noBranch|)) (-1231) (-1231)) (T -1102))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-858)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-654 *6)) (-5 *1 (-1102 *5 *6)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1107 *6)) (-5 *1 (-1102 *5 *6)))))
+(-10 -7 (-15 -1778 ((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|))) (IF (|has| |#1| (-858)) (-15 -1778 ((-654 |#2|) (-1 |#2| |#1|) (-1107 |#1|))) |%noBranch|))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 16) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3211 (((-654 (-1148)) $) 10)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1103) (-13 (-1096) (-10 -8 (-15 -3211 ((-654 (-1148)) $))))) (T -1103))
+((-3211 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1103)))))
+(-13 (-1096) (-10 -8 (-15 -3211 ((-654 (-1148)) $))))
+((-1778 (((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|)) 19)))
+(((-1104 |#1| |#2|) (-10 -7 (-15 -1778 ((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|)))) (-1231) (-1231)) (T -1104))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1105 *6)) (-5 *1 (-1104 *5 *6)))))
+(-10 -7 (-15 -1778 ((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|))))
+((-2849 (((-112) $ $) NIL (|has| (-1107 |#1|) (-1113)))) (-1489 (((-1190) $) NIL)) (-3242 (((-1107 |#1|) $) NIL)) (-2568 (((-1172) $) NIL (|has| (-1107 |#1|) (-1113)))) (-3966 (((-1133) $) NIL (|has| (-1107 |#1|) (-1113)))) (-2692 (($ (-1190) (-1107 |#1|)) NIL)) (-2943 (((-872) $) NIL (|has| (-1107 |#1|) (-1113)))) (-2923 (((-112) $ $) NIL (|has| (-1107 |#1|) (-1113)))) (-2982 (((-112) $ $) NIL (|has| (-1107 |#1|) (-1113)))))
+(((-1105 |#1|) (-13 (-1231) (-10 -8 (-15 -2692 ($ (-1190) (-1107 |#1|))) (-15 -1489 ((-1190) $)) (-15 -3242 ((-1107 |#1|) $)) (IF (|has| (-1107 |#1|) (-1113)) (-6 (-1113)) |%noBranch|))) (-1231)) (T -1105))
+((-2692 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1107 *4)) (-4 *4 (-1231)) (-5 *1 (-1105 *4)))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1105 *3)) (-4 *3 (-1231)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-1107 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-1231)))))
+(-13 (-1231) (-10 -8 (-15 -2692 ($ (-1190) (-1107 |#1|))) (-15 -1489 ((-1190) $)) (-15 -3242 ((-1107 |#1|) $)) (IF (|has| (-1107 |#1|) (-1113)) (-6 (-1113)) |%noBranch|)))
+((-3242 (($ |#1| |#1|) 8)) (-3392 ((|#1| $) 11)) (-2816 ((|#1| $) 13)) (-1955 (((-574) $) 9)) (-1669 ((|#1| $) 10)) (-1967 ((|#1| $) 12)) (-1837 (($ |#1|) 6)) (-4278 (($ |#1| |#1|) 15)) (-2733 (($ $ (-574)) 14)))
+(((-1106 |#1|) (-141) (-1231)) (T -1106))
+((-4278 (*1 *1 *2 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-2733 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1106 *3)) (-4 *3 (-1231)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1231)) (-5 *2 (-574)))) (-3242 (*1 *1 *2 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))))
+(-13 (-628 |t#1|) (-10 -8 (-15 -4278 ($ |t#1| |t#1|)) (-15 -2733 ($ $ (-574))) (-15 -2816 (|t#1| $)) (-15 -1967 (|t#1| $)) (-15 -3392 (|t#1| $)) (-15 -1669 (|t#1| $)) (-15 -1955 ((-574) $)) (-15 -3242 ($ |t#1| |t#1|))))
+(((-628 |#1|) . T))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3242 (($ |#1| |#1|) 16)) (-1778 (((-654 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-858)))) (-3392 ((|#1| $) 12)) (-2816 ((|#1| $) 11)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1955 (((-574) $) 15)) (-1669 ((|#1| $) 14)) (-1967 ((|#1| $) 13)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2129 (((-654 |#1|) $) 44 (|has| |#1| (-858))) (((-654 |#1|) (-654 $)) 43 (|has| |#1| (-858)))) (-1837 (($ |#1|) 29)) (-2943 (((-872) $) 28 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-4278 (($ |#1| |#1|) 10)) (-2733 (($ $ (-574)) 17)) (-2982 (((-112) $ $) 22 (|has| |#1| (-1113)))))
+(((-1107 |#1|) (-13 (-1106 |#1|) (-10 -7 (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1108 |#1| (-654 |#1|))) |%noBranch|))) (-1231)) (T -1107))
+NIL
+(-13 (-1106 |#1|) (-10 -7 (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1108 |#1| (-654 |#1|))) |%noBranch|)))
+((-3242 (($ |#1| |#1|) 8)) (-1778 ((|#2| (-1 |#1| |#1|) $) 16)) (-3392 ((|#1| $) 11)) (-2816 ((|#1| $) 13)) (-1955 (((-574) $) 9)) (-1669 ((|#1| $) 10)) (-1967 ((|#1| $) 12)) (-2129 ((|#2| (-654 $)) 18) ((|#2| $) 17)) (-1837 (($ |#1|) 6)) (-4278 (($ |#1| |#1|) 15)) (-2733 (($ $ (-574)) 14)))
+(((-1108 |#1| |#2|) (-141) (-858) (-1162 |t#1|)) (T -1108))
+((-2129 (*1 *2 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1108 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1162 *4)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1162 *3)))) (-1778 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1108 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1162 *4)))))
+(-13 (-1106 |t#1|) (-10 -8 (-15 -2129 (|t#2| (-654 $))) (-15 -2129 (|t#2| $)) (-15 -1778 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-628 |#1|) . T) ((-1106 |#1|) . T))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3360 (((-1148) $) 12)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 18) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2045 (((-654 (-1148)) $) 10)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1109) (-13 (-1096) (-10 -8 (-15 -2045 ((-654 (-1148)) $)) (-15 -3360 ((-1148) $))))) (T -1109))
+((-2045 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1109)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1109)))))
+(-13 (-1096) (-10 -8 (-15 -2045 ((-654 (-1148)) $)) (-15 -3360 ((-1148) $))))
+((-4359 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4365 (($ $ $) 10)) (-2457 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1110 |#1| |#2|) (-10 -8 (-15 -4359 (|#1| |#2| |#1|)) (-15 -4359 (|#1| |#1| |#2|)) (-15 -4359 (|#1| |#1| |#1|)) (-15 -4365 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| |#2|)) (-15 -2457 (|#1| |#1| |#1|))) (-1111 |#2|) (-1113)) (T -1110))
+NIL
+(-10 -8 (-15 -4359 (|#1| |#2| |#1|)) (-15 -4359 (|#1| |#1| |#2|)) (-15 -4359 (|#1| |#1| |#1|)) (-15 -4365 (|#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| |#2|)) (-15 -2457 (|#1| |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-4359 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-4365 (($ $ $) 21)) (-4006 (((-112) $ $) 20)) (-3340 (((-112) $ (-781)) 36)) (-1508 (($) 26) (($ (-654 |#1|)) 25)) (-2166 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4456)))) (-3670 (($) 37 T CONST)) (-2158 (($ $) 60 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 44 (|has| $ (-6 -4456)))) (-3972 (((-112) $ $) 29)) (-3735 (((-112) $ (-781)) 35)) (-1712 (((-654 |#1|) $) 45 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 39)) (-2448 (((-112) $ (-781)) 34)) (-2568 (((-1172) $) 10)) (-1731 (($ $ $) 24)) (-3966 (((-1133) $) 11)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3124 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 51 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 49 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 (-302 |#1|))) 48 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 30)) (-3556 (((-112) $) 33)) (-3135 (($) 32)) (-2457 (($ $ $) 23) (($ $ |#1|) 22)) (-3975 (((-781) |#1| $) 46 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4456)))) (-3167 (($ $) 31)) (-1837 (((-546) $) 61 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 52)) (-2943 (((-872) $) 12)) (-4281 (($) 28) (($ (-654 |#1|)) 27)) (-2923 (((-112) $ $) 9)) (-2935 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 6)) (-2863 (((-781) $) 38 (|has| $ (-6 -4456)))))
+(((-1111 |#1|) (-141) (-1113)) (T -1111))
+((-3972 (*1 *2 *1 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-4281 (*1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-1111 *3)))) (-1508 (*1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-1111 *3)))) (-1731 (*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-2457 (*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-2457 (*1 *1 *1 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4365 (*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4006 (*1 *2 *1 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-4359 (*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4359 (*1 *1 *1 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4359 (*1 *1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))))
+(-13 (-1113) (-152 |t#1|) (-10 -8 (-6 -4446) (-15 -3972 ((-112) $ $)) (-15 -4281 ($)) (-15 -4281 ($ (-654 |t#1|))) (-15 -1508 ($)) (-15 -1508 ($ (-654 |t#1|))) (-15 -1731 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -2457 ($ $ |t#1|)) (-15 -4365 ($ $ $)) (-15 -4006 ((-112) $ $)) (-15 -4359 ($ $ $)) (-15 -4359 ($ $ |t#1|)) (-15 -4359 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) . T) ((-1231) . T))
+((-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 8)) (-2923 (((-112) $ $) 12)))
+(((-1112 |#1|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -2568 ((-1172) |#1|)) (-15 -3966 ((-1133) |#1|))) (-1113)) (T -1112))
+NIL
+(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -2568 ((-1172) |#1|)) (-15 -3966 ((-1133) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-1113) (-141)) (T -1113))
+((-3966 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1133)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1172)))) (-2923 (*1 *2 *1 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-112)))))
+(-13 (-102) (-623 (-872)) (-10 -8 (-15 -3966 ((-1133) $)) (-15 -2568 ((-1172) $)) (-15 -2923 ((-112) $ $))))
+(((-102) . T) ((-623 (-872)) . T))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) 36)) (-1725 (($ (-654 (-932))) 70)) (-4199 (((-3 $ "failed") $ (-932) (-932)) 81)) (-2820 (($) 40)) (-3759 (((-112) (-932) $) 42)) (-2565 (((-932) $) 64)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) 39)) (-2844 (((-3 $ "failed") $ (-932)) 77)) (-3966 (((-1133) $) NIL)) (-3577 (((-1281 $)) 47)) (-3845 (((-654 (-932)) $) 27)) (-2076 (((-781) $ (-932) (-932)) 78)) (-2943 (((-872) $) 32)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 24)))
+(((-1114 |#1| |#2|) (-13 (-377) (-10 -8 (-15 -2844 ((-3 $ "failed") $ (-932))) (-15 -4199 ((-3 $ "failed") $ (-932) (-932))) (-15 -3845 ((-654 (-932)) $)) (-15 -1725 ($ (-654 (-932)))) (-15 -3577 ((-1281 $))) (-15 -3759 ((-112) (-932) $)) (-15 -2076 ((-781) $ (-932) (-932))))) (-932) (-932)) (T -1114))
+((-2844 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-932)) (-5 *1 (-1114 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4199 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-932)) (-5 *1 (-1114 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-1725 (*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-3577 (*1 *2) (-12 (-5 *2 (-1281 (-1114 *3 *4))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-3759 (*1 *2 *3 *1) (-12 (-5 *3 (-932)) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2076 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-781)) (-5 *1 (-1114 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-377) (-10 -8 (-15 -2844 ((-3 $ "failed") $ (-932))) (-15 -4199 ((-3 $ "failed") $ (-932) (-932))) (-15 -3845 ((-654 (-932)) $)) (-15 -1725 ($ (-654 (-932)))) (-15 -3577 ((-1281 $))) (-15 -3759 ((-112) (-932) $)) (-15 -2076 ((-781) $ (-932) (-932)))))
+((-2849 (((-112) $ $) NIL)) (-3478 (($) NIL (|has| |#1| (-377)))) (-4359 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-4365 (($ $ $) 81)) (-4006 (((-112) $ $) 82)) (-3340 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-1508 (($ (-654 |#1|)) NIL) (($) 13)) (-3391 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1586 (($ |#1| $) 74 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4456)))) (-2820 (($) NIL (|has| |#1| (-377)))) (-1864 (((-654 |#1|) $) 19 (|has| $ (-6 -4456)))) (-3972 (((-112) $ $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-3658 ((|#1| $) 55 (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2106 ((|#1| $) 53 (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 34)) (-2565 (((-932) $) NIL (|has| |#1| (-377)))) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-1731 (($ $ $) 79)) (-2234 ((|#1| $) 25)) (-1709 (($ |#1| $) 69)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-3966 (((-1133) $) NIL)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3459 ((|#1| $) 27)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 21)) (-3135 (($) 11)) (-2457 (($ $ |#1|) NIL) (($ $ $) 80)) (-2826 (($) NIL) (($ (-654 |#1|)) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 16)) (-1837 (((-546) $) 50 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 62)) (-2132 (($ $) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) NIL)) (-3615 (((-781) $) NIL)) (-4281 (($ (-654 |#1|)) NIL) (($) 12)) (-2923 (((-112) $ $) NIL)) (-2817 (($ (-654 |#1|)) NIL)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 52)) (-2863 (((-781) $) 10 (|has| $ (-6 -4456)))))
+(((-1115 |#1|) (-435 |#1|) (-1113)) (T -1115))
+NIL
+(-435 |#1|)
+((-2849 (((-112) $ $) 7)) (-4244 (((-112) $) 33)) (-4005 ((|#2| $) 28)) (-4412 (((-112) $) 34)) (-3249 ((|#1| $) 29)) (-1987 (((-112) $) 36)) (-3734 (((-112) $) 38)) (-3914 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3150 (((-112) $) 32)) (-4026 ((|#3| $) 27)) (-3966 (((-1133) $) 11)) (-4368 (((-112) $) 31)) (-2384 ((|#4| $) 26)) (-1444 ((|#5| $) 25)) (-4122 (((-112) $ $) 39)) (-2200 (($ $ (-574)) 41) (($ $ (-654 (-574))) 40)) (-4293 (((-654 $) $) 30)) (-1837 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-654 $)) 42)) (-2943 (((-872) $) 12)) (-3229 (($ $) 23)) (-4064 (($ $) 24)) (-2923 (((-112) $ $) 9)) (-3223 (((-112) $) 37)) (-2982 (((-112) $ $) 6)) (-2863 (((-574) $) 22)))
+(((-1116 |#1| |#2| |#3| |#4| |#5|) (-141) (-1113) (-1113) (-1113) (-1113) (-1113)) (T -1116))
+((-4122 (*1 *2 *1 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-4368 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-4293 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-1116 *3 *4 *5 *6 *7)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *2)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-4064 (*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *2 (-1113)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)))) (-3229 (*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *2 (-1113)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-574)))))
+(-13 (-1113) (-628 |t#1|) (-628 |t#2|) (-628 |t#3|) (-628 |t#4|) (-628 |t#4|) (-628 |t#5|) (-628 (-654 $)) (-294 (-574) $) (-294 (-654 (-574)) $) (-10 -8 (-15 -4122 ((-112) $ $)) (-15 -3734 ((-112) $)) (-15 -3223 ((-112) $)) (-15 -1987 ((-112) $)) (-15 -3914 ((-112) $)) (-15 -4412 ((-112) $)) (-15 -4244 ((-112) $)) (-15 -3150 ((-112) $)) (-15 -4368 ((-112) $)) (-15 -4293 ((-654 $) $)) (-15 -3249 (|t#1| $)) (-15 -4005 (|t#2| $)) (-15 -4026 (|t#3| $)) (-15 -2384 (|t#4| $)) (-15 -1444 (|t#5| $)) (-15 -4064 ($ $)) (-15 -3229 ($ $)) (-15 -2863 ((-574) $))))
+(((-102) . T) ((-623 (-872)) . T) ((-628 (-654 $)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 |#4|) . T) ((-628 |#5|) . T) ((-294 (-574) $) . T) ((-294 (-654 (-574)) $) . T) ((-1113) . T) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-4244 (((-112) $) NIL)) (-4005 (((-1190) $) NIL)) (-4412 (((-112) $) NIL)) (-3249 (((-1172) $) NIL)) (-1987 (((-112) $) NIL)) (-3734 (((-112) $) NIL)) (-3914 (((-112) $) NIL)) (-2568 (((-1172) $) NIL)) (-3150 (((-112) $) NIL)) (-4026 (((-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-4368 (((-112) $) NIL)) (-2384 (((-227) $) NIL)) (-1444 (((-872) $) NIL)) (-4122 (((-112) $ $) NIL)) (-2200 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4293 (((-654 $) $) NIL)) (-1837 (($ (-1172)) NIL) (($ (-1190)) NIL) (($ (-574)) NIL) (($ (-227)) NIL) (($ (-872)) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL)) (-3229 (($ $) NIL)) (-4064 (($ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3223 (((-112) $) NIL)) (-2982 (((-112) $ $) NIL)) (-2863 (((-574) $) NIL)))
+(((-1117) (-1116 (-1172) (-1190) (-574) (-227) (-872))) (T -1117))
+NIL
+(-1116 (-1172) (-1190) (-574) (-227) (-872))
+((-2849 (((-112) $ $) NIL)) (-4244 (((-112) $) 45)) (-4005 ((|#2| $) 48)) (-4412 (((-112) $) 20)) (-3249 ((|#1| $) 21)) (-1987 (((-112) $) 42)) (-3734 (((-112) $) 14)) (-3914 (((-112) $) 44)) (-2568 (((-1172) $) NIL)) (-3150 (((-112) $) 46)) (-4026 ((|#3| $) 50)) (-3966 (((-1133) $) NIL)) (-4368 (((-112) $) 47)) (-2384 ((|#4| $) 49)) (-1444 ((|#5| $) 51)) (-4122 (((-112) $ $) 41)) (-2200 (($ $ (-574)) 62) (($ $ (-654 (-574))) 64)) (-4293 (((-654 $) $) 27)) (-1837 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-654 $)) 52)) (-2943 (((-872) $) 28)) (-3229 (($ $) 26)) (-4064 (($ $) 58)) (-2923 (((-112) $ $) NIL)) (-3223 (((-112) $) 23)) (-2982 (((-112) $ $) 40)) (-2863 (((-574) $) 60)))
+(((-1118 |#1| |#2| |#3| |#4| |#5|) (-1116 |#1| |#2| |#3| |#4| |#5|) (-1113) (-1113) (-1113) (-1113) (-1113)) (T -1118))
+NIL
+(-1116 |#1| |#2| |#3| |#4| |#5|)
+((-3768 (((-1286) $) 22)) (-3741 (($ (-1190) (-444) |#2|) 11)) (-2943 (((-872) $) 16)))
+(((-1119 |#1| |#2|) (-13 (-405) (-10 -8 (-15 -3741 ($ (-1190) (-444) |#2|)))) (-1113) (-440 |#1|)) (T -1119))
+((-3741 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-444)) (-4 *5 (-1113)) (-5 *1 (-1119 *5 *4)) (-4 *4 (-440 *5)))))
+(-13 (-405) (-10 -8 (-15 -3741 ($ (-1190) (-444) |#2|))))
+((-1333 (((-112) |#5| |#5|) 44)) (-2966 (((-112) |#5| |#5|) 59)) (-4295 (((-112) |#5| (-654 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-1622 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-2243 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) 70)) (-3888 (((-1286)) 32)) (-4375 (((-1286) (-1172) (-1172) (-1172)) 28)) (-1568 (((-654 |#5|) (-654 |#5|)) 101)) (-1330 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) 93)) (-3481 (((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 123)) (-1461 (((-112) |#5| |#5|) 53)) (-3974 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4096 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-1402 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-2430 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-3500 (((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3672 (((-654 |#5|) (-654 |#5|)) 49)))
+(((-1120 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4375 ((-1286) (-1172) (-1172) (-1172))) (-15 -3888 ((-1286))) (-15 -1333 ((-112) |#5| |#5|)) (-15 -3672 ((-654 |#5|) (-654 |#5|))) (-15 -1461 ((-112) |#5| |#5|)) (-15 -2966 ((-112) |#5| |#5|)) (-15 -1622 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4096 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1402 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2430 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3974 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4295 ((-112) |#5| |#5|)) (-15 -4295 ((-112) |#5| (-654 |#5|))) (-15 -1568 ((-654 |#5|) (-654 |#5|))) (-15 -2243 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -1330 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-15 -3481 ((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3500 ((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1120))
+((-3500 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| -4122 (-654 *9)) (|:| -4091 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1120 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1084 *6 *7 *8 *9)))) (-3481 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1084 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4122 (-654 *9)) (|:| -4091 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1120 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-1330 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4091 *7)))) (-4 *6 (-1078 *3 *4 *5)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1120 *3 *4 *5 *6 *7)))) (-2243 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-1120 *3 *4 *5 *6 *7)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1120 *5 *6 *7 *8 *3)))) (-4295 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3974 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-2430 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-1402 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-4096 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-1622 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-2966 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-1461 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-1120 *3 *4 *5 *6 *7)))) (-1333 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3888 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-4375 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4375 ((-1286) (-1172) (-1172) (-1172))) (-15 -3888 ((-1286))) (-15 -1333 ((-112) |#5| |#5|)) (-15 -3672 ((-654 |#5|) (-654 |#5|))) (-15 -1461 ((-112) |#5| |#5|)) (-15 -2966 ((-112) |#5| |#5|)) (-15 -1622 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4096 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1402 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2430 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3974 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4295 ((-112) |#5| |#5|)) (-15 -4295 ((-112) |#5| (-654 |#5|))) (-15 -1568 ((-654 |#5|) (-654 |#5|))) (-15 -2243 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -1330 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-15 -3481 ((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3500 ((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-1378 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|) 108)) (-2707 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|) 80)) (-4313 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|) 102)) (-1757 (((-654 |#5|) |#4| |#5|) 124)) (-1352 (((-654 |#5|) |#4| |#5|) 131)) (-1440 (((-654 |#5|) |#4| |#5|) 132)) (-2473 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 109)) (-1857 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 130)) (-3767 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3371 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112)) 92) (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2108 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|) 87)) (-2883 (((-1286)) 36)) (-3934 (((-1286)) 25)) (-3828 (((-1286) (-1172) (-1172) (-1172)) 32)) (-2327 (((-1286) (-1172) (-1172) (-1172)) 21)))
+(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2327 ((-1286) (-1172) (-1172) (-1172))) (-15 -3934 ((-1286))) (-15 -3828 ((-1286) (-1172) (-1172) (-1172))) (-15 -2883 ((-1286))) (-15 -2707 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3371 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3371 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112))) (-15 -2108 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -4313 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3767 ((-112) |#4| |#5|)) (-15 -2473 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -1757 ((-654 |#5|) |#4| |#5|)) (-15 -1857 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -1352 ((-654 |#5|) |#4| |#5|)) (-15 -3767 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -1440 ((-654 |#5|) |#4| |#5|)) (-15 -1378 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1121))
+((-1378 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1440 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3767 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1352 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1857 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1757 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2473 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3767 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-4313 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2108 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) (-5 *5 (-112)) (-4 *8 (-1078 *6 *7 *4)) (-4 *9 (-1084 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4091 *9)))) (-5 *1 (-1121 *6 *7 *4 *8 *9)))) (-3371 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-2707 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2883 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-3828 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1121 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-3934 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-2327 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1121 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2327 ((-1286) (-1172) (-1172) (-1172))) (-15 -3934 ((-1286))) (-15 -3828 ((-1286) (-1172) (-1172) (-1172))) (-15 -2883 ((-1286))) (-15 -2707 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3371 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3371 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112))) (-15 -2108 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -4313 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3767 ((-112) |#4| |#5|)) (-15 -2473 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -1757 ((-654 |#5|) |#4| |#5|)) (-15 -1857 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -1352 ((-654 |#5|) |#4| |#5|)) (-15 -3767 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -1440 ((-654 |#5|) |#4| |#5|)) (-15 -1378 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|)))
+((-2849 (((-112) $ $) 7)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |#4|)))) (-654 |#4|)) 86)) (-1886 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4355 (((-654 |#3|) $) 34)) (-3753 (((-112) $) 27)) (-3609 (((-112) $) 18 (|has| |#1| (-566)))) (-3456 (((-112) |#4| $) 102) (((-112) $) 98)) (-1621 ((|#4| |#4| $) 93)) (-4348 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 127)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) 28)) (-3340 (((-112) $ (-781)) 45)) (-2166 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3670 (($) 46 T CONST)) (-1800 (((-112) $) 23 (|has| |#1| (-566)))) (-1322 (((-112) $ $) 25 (|has| |#1| (-566)))) (-4133 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3172 (((-112) $) 26 (|has| |#1| (-566)))) (-2543 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3949 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) 37)) (-2209 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-2793 ((|#4| |#4| $) 90)) (-2158 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-4155 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2043 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2766 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1676 (-654 |#4|))) $) 106)) (-3321 (((-112) |#4| $) 137)) (-2308 (((-112) |#4| $) 134)) (-3857 (((-112) |#4| $) 138) (((-112) $) 135)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-2474 (((-112) |#4| $) 105) (((-112) $) 104)) (-2851 ((|#3| $) 35)) (-3735 (((-112) $ (-781)) 44)) (-1712 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 48)) (-2867 (((-654 |#3|) $) 33)) (-2570 (((-112) |#3| $) 32)) (-2448 (((-112) $ (-781)) 43)) (-2568 (((-1172) $) 10)) (-2176 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2107 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 128)) (-3360 (((-3 |#4| "failed") $) 84)) (-4130 (((-654 $) |#4| $) 130)) (-1885 (((-3 (-112) (-654 $)) |#4| $) 133)) (-4027 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1731 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1750 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4153 (((-654 |#4|) $) 108)) (-2768 (((-112) |#4| $) 100) (((-112) $) 96)) (-2244 ((|#4| |#4| $) 91)) (-2430 (((-112) $ $) 111)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1406 (((-112) |#4| $) 101) (((-112) $) 97)) (-1443 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3043 (((-3 $ "failed") $ |#4|) 79)) (-4344 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-3124 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) 39)) (-3556 (((-112) $) 42)) (-3135 (($) 41)) (-1784 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1837 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-2175 (($ $ |#3|) 29)) (-2840 (($ $ |#3|) 31)) (-1496 (($ $) 89)) (-2427 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3530 (((-781) $) 77 (|has| |#3| (-377)))) (-2923 (((-112) $ $) 9)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1685 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2790 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2935 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2681 (((-654 |#3|) $) 82)) (-2897 (((-112) |#4| $) 136)) (-4321 (((-112) |#3| $) 81)) (-2982 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456)))))
+(((-1122 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -1122))
+NIL
+(-13 (-1084 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1084 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1224 |#1| |#2| |#3| |#4|) . T) ((-1231) . T))
+((-2312 (((-654 (-574)) (-574) (-574) (-574)) 38)) (-2900 (((-654 (-574)) (-574) (-574) (-574)) 28)) (-4227 (((-654 (-574)) (-574) (-574) (-574)) 33)) (-1620 (((-574) (-574) (-574)) 21)) (-1476 (((-1281 (-574)) (-654 (-574)) (-1281 (-574)) (-574)) 76) (((-1281 (-574)) (-1281 (-574)) (-1281 (-574)) (-574)) 71)) (-3660 (((-654 (-574)) (-654 (-932)) (-654 (-574)) (-112)) 54)) (-2537 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 75)) (-3154 (((-699 (-574)) (-654 (-932)) (-654 (-574))) 59)) (-2918 (((-654 (-699 (-574))) (-654 (-932))) 64)) (-4000 (((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 79)) (-4017 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574))) 89)))
+(((-1123) (-10 -7 (-15 -4017 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -4000 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -2918 ((-654 (-699 (-574))) (-654 (-932)))) (-15 -3154 ((-699 (-574)) (-654 (-932)) (-654 (-574)))) (-15 -2537 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3660 ((-654 (-574)) (-654 (-932)) (-654 (-574)) (-112))) (-15 -1476 ((-1281 (-574)) (-1281 (-574)) (-1281 (-574)) (-574))) (-15 -1476 ((-1281 (-574)) (-654 (-574)) (-1281 (-574)) (-574))) (-15 -1620 ((-574) (-574) (-574))) (-15 -4227 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2900 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2312 ((-654 (-574)) (-574) (-574) (-574))))) (T -1123))
+((-2312 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574)))) (-2900 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574)))) (-4227 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574)))) (-1620 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1123)))) (-1476 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1281 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) (-5 *1 (-1123)))) (-1476 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1281 (-574))) (-5 *3 (-574)) (-5 *1 (-1123)))) (-3660 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-932))) (-5 *4 (-112)) (-5 *1 (-1123)))) (-2537 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1123)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-932))) (-5 *4 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1123)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1123)))) (-4000 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1123)))) (-4017 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1123)))))
+(-10 -7 (-15 -4017 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -4000 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -2918 ((-654 (-699 (-574))) (-654 (-932)))) (-15 -3154 ((-699 (-574)) (-654 (-932)) (-654 (-574)))) (-15 -2537 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3660 ((-654 (-574)) (-654 (-932)) (-654 (-574)) (-112))) (-15 -1476 ((-1281 (-574)) (-1281 (-574)) (-1281 (-574)) (-574))) (-15 -1476 ((-1281 (-574)) (-654 (-574)) (-1281 (-574)) (-574))) (-15 -1620 ((-574) (-574) (-574))) (-15 -4227 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2900 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2312 ((-654 (-574)) (-574) (-574) (-574))))
+((** (($ $ (-932)) 10)))
+(((-1124 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-932)))) (-1125)) (T -1124))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-932))))
+((-2849 (((-112) $ $) 7)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)) (** (($ $ (-932)) 14)) (* (($ $ $) 15)))
+(((-1125) (-141)) (T -1125))
+((* (*1 *1 *1 *1) (-4 *1 (-1125))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1125)) (-5 *2 (-932)))))
+(-13 (-1113) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-932)))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL (|has| |#3| (-1113)))) (-2908 (((-112) $) NIL (|has| |#3| (-132)))) (-3290 (($ (-932)) NIL (|has| |#3| (-1062)))) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1854 (($ $ $) NIL (|has| |#3| (-803)))) (-2950 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3340 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#3| (-377)))) (-3747 (((-574) $) NIL (|has| |#3| (-858)))) (-3143 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1113)))) (-2209 (((-574) $) NIL (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) ((|#3| $) NIL (|has| |#3| (-1113)))) (-2668 (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-2 (|:| -1485 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 $) (-1281 $)) NIL (|has| |#3| (-1062))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1062))) (((-699 |#3|) (-1281 $)) NIL (|has| |#3| (-1062)))) (-1950 (((-3 $ "failed") $) NIL (|has| |#3| (-736)))) (-2820 (($) NIL (|has| |#3| (-377)))) (-2462 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#3| $ (-574)) 12)) (-3434 (((-112) $) NIL (|has| |#3| (-858)))) (-1864 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-3965 (((-112) $) NIL (|has| |#3| (-736)))) (-3244 (((-112) $) NIL (|has| |#3| (-858)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-1712 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2446 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#3| |#3|) $) NIL)) (-2565 (((-932) $) NIL (|has| |#3| (-377)))) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#3| (-1113)))) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#3| (-377)))) (-3966 (((-1133) $) NIL (|has| |#3| (-1113)))) (-2915 ((|#3| $) NIL (|has| (-574) (-860)))) (-1363 (($ $ |#3|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-2121 (((-654 |#3|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) NIL)) (-3222 ((|#3| $ $) NIL (|has| |#3| (-1062)))) (-4261 (($ (-1281 |#3|)) NIL)) (-3939 (((-135)) NIL (|has| |#3| (-372)))) (-3905 (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1062))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1062)))) (-3975 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#3|) $) NIL) (($ (-574)) NIL (-2818 (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (|has| |#3| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) (($ |#3|) NIL (|has| |#3| (-1113))) (((-872) $) NIL (|has| |#3| (-623 (-872))))) (-4160 (((-781)) NIL (|has| |#3| (-1062)) CONST)) (-2923 (((-112) $ $) NIL (|has| |#3| (-1113)))) (-2935 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2946 (($ $) NIL (|has| |#3| (-858)))) (-2134 (($) NIL (|has| |#3| (-132)) CONST)) (-2146 (($) NIL (|has| |#3| (-736)) CONST)) (-3611 (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1062))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1062)))) (-3041 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3016 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2982 (((-112) $ $) NIL (|has| |#3| (-1113)))) (-3028 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3005 (((-112) $ $) 24 (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3107 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3094 (($ $ $) NIL (|has| |#3| (-1062))) (($ $) NIL (|has| |#3| (-1062)))) (-3078 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-781)) NIL (|has| |#3| (-736))) (($ $ (-932)) NIL (|has| |#3| (-736)))) (* (($ (-574) $) NIL (|has| |#3| (-1062))) (($ $ $) NIL (|has| |#3| (-736))) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ (-781) $) NIL (|has| |#3| (-132))) (($ (-932) $) NIL (|has| |#3| (-25)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1126 |#1| |#2| |#3|) (-244 |#1| |#3|) (-781) (-781) (-803)) (T -1126))
+NIL
+(-244 |#1| |#3|)
+((-3061 (((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 50)) (-3462 (((-574) (-1254 |#2| |#1|)) 94 (|has| |#1| (-462)))) (-1448 (((-574) (-1254 |#2| |#1|)) 76)) (-4181 (((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 58)) (-2922 (((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 93 (|has| |#1| (-462)))) (-2912 (((-654 |#1|) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 61)) (-4256 (((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 75)))
+(((-1127 |#1| |#2|) (-10 -7 (-15 -3061 ((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -4181 ((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -2912 ((-654 |#1|) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -4256 ((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -1448 ((-574) (-1254 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -2922 ((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -3462 ((-574) (-1254 |#2| |#1|)))) |%noBranch|)) (-830) (-1190)) (T -1127))
+((-3462 (*1 *2 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))) (-2922 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))) (-4256 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))) (-2912 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 *4)) (-5 *1 (-1127 *4 *5)))) (-4181 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 (-1254 *5 *4))) (-5 *1 (-1127 *4 *5)) (-5 *3 (-1254 *5 *4)))) (-3061 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 (-1254 *5 *4))) (-5 *1 (-1127 *4 *5)) (-5 *3 (-1254 *5 *4)))))
+(-10 -7 (-15 -3061 ((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -4181 ((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -2912 ((-654 |#1|) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -4256 ((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -1448 ((-574) (-1254 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -2922 ((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -3462 ((-574) (-1254 |#2| |#1|)))) |%noBranch|))
+((-2849 (((-112) $ $) NIL)) (-2691 (($ (-516) (-1131)) 13)) (-3140 (((-1131) $) 19)) (-2032 (((-516) $) 16)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 26) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1128) (-13 (-1096) (-10 -8 (-15 -2691 ($ (-516) (-1131))) (-15 -2032 ((-516) $)) (-15 -3140 ((-1131) $))))) (T -1128))
+((-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1131)) (-5 *1 (-1128)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1128)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1128)))))
+(-13 (-1096) (-10 -8 (-15 -2691 ($ (-516) (-1131))) (-15 -2032 ((-516) $)) (-15 -3140 ((-1131) $))))
+((-3747 (((-3 (-574) "failed") |#2| (-1190) |#2| (-1172)) 19) (((-3 (-574) "failed") |#2| (-1190) (-853 |#2|)) 17) (((-3 (-574) "failed") |#2|) 60)))
+(((-1129 |#1| |#2|) (-10 -7 (-15 -3747 ((-3 (-574) "failed") |#2|)) (-15 -3747 ((-3 (-574) "failed") |#2| (-1190) (-853 |#2|))) (-15 -3747 ((-3 (-574) "failed") |#2| (-1190) |#2| (-1172)))) (-13 (-566) (-1051 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1216) (-440 |#1|))) (T -1129))
+((-3747 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-1172)) (-4 *6 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1129 *6 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))))) (-3747 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-853 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1129 *6 *3)))) (-3747 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1129 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))))
+(-10 -7 (-15 -3747 ((-3 (-574) "failed") |#2|)) (-15 -3747 ((-3 (-574) "failed") |#2| (-1190) (-853 |#2|))) (-15 -3747 ((-3 (-574) "failed") |#2| (-1190) |#2| (-1172))))
+((-3747 (((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)) (-1172)) 38) (((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-853 (-417 (-963 |#1|)))) 33) (((-3 (-574) "failed") (-417 (-963 |#1|))) 14)))
+(((-1130 |#1|) (-10 -7 (-15 -3747 ((-3 (-574) "failed") (-417 (-963 |#1|)))) (-15 -3747 ((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-853 (-417 (-963 |#1|))))) (-15 -3747 ((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)) (-1172)))) (-462)) (T -1130))
+((-3747 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-417 (-963 *6))) (-5 *4 (-1190)) (-5 *5 (-1172)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1130 *6)))) (-3747 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-853 (-417 (-963 *6)))) (-5 *3 (-417 (-963 *6))) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1130 *6)))) (-3747 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-462)) (-5 *2 (-574)) (-5 *1 (-1130 *4)))))
+(-10 -7 (-15 -3747 ((-3 (-574) "failed") (-417 (-963 |#1|)))) (-15 -3747 ((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-853 (-417 (-963 |#1|))))) (-15 -3747 ((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)) (-1172))))
+((-2849 (((-112) $ $) NIL)) (-2335 (((-1195) $) 12)) (-2286 (((-654 (-1195)) $) 14)) (-3140 (($ (-654 (-1195)) (-1195)) 10)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 29)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 17)))
+(((-1131) (-13 (-1113) (-10 -8 (-15 -3140 ($ (-654 (-1195)) (-1195))) (-15 -2335 ((-1195) $)) (-15 -2286 ((-654 (-1195)) $))))) (T -1131))
+((-3140 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1195))) (-5 *3 (-1195)) (-5 *1 (-1131)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1131)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1131)))))
+(-13 (-1113) (-10 -8 (-15 -3140 ($ (-654 (-1195)) (-1195))) (-15 -2335 ((-1195) $)) (-15 -2286 ((-654 (-1195)) $))))
+((-1816 (((-324 (-574)) (-48)) 12)))
+(((-1132) (-10 -7 (-15 -1816 ((-324 (-574)) (-48))))) (T -1132))
+((-1816 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1132)))))
+(-10 -7 (-15 -1816 ((-324 (-574)) (-48))))
+((-2849 (((-112) $ $) NIL)) (-2877 (($ $) 44)) (-2908 (((-112) $) 70)) (-2110 (($ $ $) 53)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 98)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-3165 (($ $ $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-2573 (($ $ $ $) 81)) (-4348 (($ $) NIL)) (-3440 (((-428 $) $) NIL)) (-3875 (((-112) $ $) NIL)) (-1487 (((-781)) 83)) (-3747 (((-574) $) NIL)) (-3958 (($ $ $) 78)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL)) (-2209 (((-574) $) NIL)) (-2785 (($ $ $) 64)) (-2668 (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 92) (((-699 (-574)) (-699 $)) 32) (((-699 (-574)) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2057 (((-3 (-417 (-574)) "failed") $) NIL)) (-1811 (((-112) $) NIL)) (-4142 (((-417 (-574)) $) NIL)) (-2820 (($) 95) (($ $) 96)) (-2798 (($ $ $) 63)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-1654 (((-112) $) NIL)) (-1817 (($ $ $ $) NIL)) (-3896 (($ $ $) 93)) (-3434 (((-112) $) NIL)) (-2531 (($ $ $) NIL)) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-2099 (($ $ $) 52)) (-3965 (((-112) $) 72)) (-3239 (((-112) $) 69)) (-2077 (($ $) 45)) (-4048 (((-3 $ "failed") $) NIL)) (-3244 (((-112) $) 82)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3946 (($ $ $ $) 79)) (-3658 (($ $ $) 74) (($) 42 T CONST)) (-2106 (($ $ $) 73) (($) 41 T CONST)) (-3811 (($ $) NIL)) (-2565 (((-932) $) 88)) (-4135 (($ $) 77)) (-2834 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2568 (((-1172) $) NIL)) (-2274 (($ $ $) NIL)) (-3818 (($) NIL T CONST)) (-2576 (($ (-932)) 87)) (-1606 (($ $) 57)) (-3966 (((-1133) $) 76)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2874 (($ $ $) 67) (($ (-654 $)) NIL)) (-4430 (($ $) NIL)) (-4220 (((-428 $) $) NIL)) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2625 (((-112) $) NIL)) (-1347 (((-781) $) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 66)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2295 (($ $) 58)) (-3167 (($ $) NIL)) (-1837 (((-574) $) 17) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL)) (-2943 (((-872) $) 35) (($ (-574)) 94) (($ $) NIL) (($ (-574)) 94)) (-4160 (((-781)) NIL T CONST)) (-2490 (((-112) $ $) NIL)) (-2819 (($ $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2629 (($) 40)) (-3798 (((-112) $ $) NIL)) (-2088 (($ $ $) 50)) (-3836 (($ $ $ $) 80)) (-2946 (($ $) 68)) (-2925 (($ $ $) 47)) (-2134 (($) 7 T CONST)) (-2245 (($ $ $) 51)) (-2146 (($) 39 T CONST)) (-1520 (((-1172) $) 26) (((-1172) $ (-112)) 27) (((-1286) (-832) $) 28) (((-1286) (-832) $ (-112)) 29)) (-2255 (($ $) 48)) (-3611 (($ $ (-781)) NIL) (($ $) NIL)) (-2236 (($ $ $) 49)) (-3041 (((-112) $ $) 56)) (-3016 (((-112) $ $) 54)) (-2982 (((-112) $ $) 43)) (-3028 (((-112) $ $) 55)) (-3005 (((-112) $ $) 10)) (-2911 (($ $ $) 46)) (-3094 (($ $) 16) (($ $ $) 60)) (-3078 (($ $ $) 59)) (** (($ $ (-932)) NIL) (($ $ (-781)) 62)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 38) (($ $ $) 37) (($ (-574) $) 38)))
+(((-1133) (-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4443) (-6 -4448) (-6 -4444) (-15 -2110 ($ $ $)) (-15 -2255 ($ $)) (-15 -2236 ($ $ $)) (-15 -2245 ($ $ $))))) (T -1133))
+((-2110 (*1 *1 *1 *1) (-5 *1 (-1133))) (-2255 (*1 *1 *1) (-5 *1 (-1133))) (-2236 (*1 *1 *1 *1) (-5 *1 (-1133))) (-2245 (*1 *1 *1 *1) (-5 *1 (-1133))))
+(-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4443) (-6 -4448) (-6 -4444) (-15 -2110 ($ $ $)) (-15 -2255 ($ $)) (-15 -2236 ($ $ $)) (-15 -2245 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2001 ((|#1| $) 45)) (-1631 (((-112) $ (-779)) 8)) (-3281 (($) 7 T CONST)) (-4004 ((|#1| |#1| $) 47)) (-1491 ((|#1| $) 46)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1651 ((|#1| $) 40)) (-2036 (($ |#1| $) 41)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3378 ((|#1| $) 42)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-4301 (((-779) $) 44)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) 43)) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-1132 |#1|) (-141) (-1229)) (T -1132))
-((-4004 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1132 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4454) (-15 -4004 (|t#1| |t#1| $)) (-15 -1491 (|t#1| $)) (-15 -2001 (|t#1| $)) (-15 -4301 ((-779) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-1635 ((|#3| $) 87)) (-1695 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2204 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#3| $) 47)) (-2993 (((-697 (-572)) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -3544 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 $) (-1279 $)) 84) (((-697 |#3|) (-697 $)) 76) (((-697 |#3|) (-1279 $)) NIL)) (-3902 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-4107 ((|#3| $) 89)) (-1746 ((|#4| $) 43)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ |#3|) 25)) (** (($ $ (-930)) NIL) (($ $ (-779)) 24) (($ $ (-572)) 95)))
-(((-1133 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-572))) (-15 -4107 (|#3| |#1|)) (-15 -1635 (|#3| |#1|)) (-15 -1746 (|#4| |#1|)) (-15 -2993 ((-697 |#3|) (-1279 |#1|))) (-15 -2993 ((-697 |#3|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -2940 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2204 (|#3| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|) (-779))) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2940 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))) (-15 -2940 ((-870) |#1|))) (-1134 |#2| |#3| |#4| |#5|) (-779) (-1060) (-242 |#2| |#3|) (-242 |#2| |#3|)) (T -1133))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-572))) (-15 -4107 (|#3| |#1|)) (-15 -1635 (|#3| |#1|)) (-15 -1746 (|#4| |#1|)) (-15 -2993 ((-697 |#3|) (-1279 |#1|))) (-15 -2993 ((-697 |#3|) (-697 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2993 ((-697 (-572)) (-697 |#1|))) (-15 -2993 ((-697 (-572)) (-1279 |#1|))) (-15 -2940 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2204 (|#3| |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|) (-779))) (-15 -3902 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2940 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-1635 ((|#2| $) 78)) (-4136 (((-112) $) 120)) (-3330 (((-3 $ "failed") $ $) 20)) (-4210 (((-112) $) 118)) (-1631 (((-112) $ (-779)) 110)) (-3355 (($ |#2|) 81)) (-3281 (($) 18 T CONST)) (-3076 (($ $) 137 (|has| |#2| (-313)))) (-4172 ((|#3| $ (-572)) 132)) (-1695 (((-3 (-572) "failed") $) 95 (|has| |#2| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 92 (|has| |#2| (-1049 (-415 (-572))))) (((-3 |#2| "failed") $) 89)) (-2204 (((-572) $) 94 (|has| |#2| (-1049 (-572)))) (((-415 (-572)) $) 91 (|has| |#2| (-1049 (-415 (-572))))) ((|#2| $) 90)) (-2993 (((-697 (-572)) (-1279 $)) 87 (|has| |#2| (-647 (-572)))) (((-697 (-572)) (-697 $)) 86 (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 85 (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 84) (((-697 |#2|) (-697 $)) 83) (((-697 |#2|) (-1279 $)) 82)) (-2062 (((-3 $ "failed") $) 37)) (-3581 (((-779) $) 138 (|has| |#2| (-564)))) (-2380 ((|#2| $ (-572) (-572)) 130)) (-1863 (((-652 |#2|) $) 103 (|has| $ (-6 -4454)))) (-1886 (((-112) $) 35)) (-4430 (((-779) $) 139 (|has| |#2| (-564)))) (-2313 (((-652 |#4|) $) 140 (|has| |#2| (-564)))) (-2187 (((-779) $) 126)) (-2195 (((-779) $) 127)) (-1861 (((-112) $ (-779)) 111)) (-3283 ((|#2| $) 73 (|has| |#2| (-6 (-4456 "*"))))) (-3822 (((-572) $) 122)) (-3533 (((-572) $) 124)) (-1344 (((-652 |#2|) $) 102 (|has| $ (-6 -4454)))) (-1864 (((-112) |#2| $) 100 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-2795 (((-572) $) 123)) (-2857 (((-572) $) 125)) (-2911 (($ (-652 (-652 |#2|))) 117)) (-2442 (($ (-1 |#2| |#2|) $) 107 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#2| |#2| |#2|) $ $) 134) (($ (-1 |#2| |#2|) $) 108)) (-4393 (((-652 (-652 |#2|)) $) 128)) (-1985 (((-112) $ (-779)) 112)) (-4347 (((-1170) $) 10)) (-1982 (((-3 $ "failed") $) 72 (|has| |#2| (-370)))) (-3964 (((-1131) $) 11)) (-2834 (((-3 $ "failed") $ |#2|) 135 (|has| |#2| (-564)))) (-1612 (((-112) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#2|))) 99 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 98 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 97 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 96 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) 116)) (-1841 (((-112) $) 113)) (-1613 (($) 114)) (-2196 ((|#2| $ (-572) (-572) |#2|) 131) ((|#2| $ (-572) (-572)) 129)) (-3902 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-779)) 56) (($ $ (-652 (-1188)) (-652 (-779))) 49 (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) 48 (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) 47 (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) 46 (|has| |#2| (-909 (-1188)))) (($ $ (-779)) 44 (|has| |#2| (-237))) (($ $) 43 (|has| |#2| (-237)))) (-4107 ((|#2| $) 77)) (-1640 (($ (-652 |#2|)) 80)) (-2464 (((-112) $) 119)) (-1746 ((|#3| $) 79)) (-2513 ((|#2| $) 74 (|has| |#2| (-6 (-4456 "*"))))) (-3973 (((-779) (-1 (-112) |#2|) $) 104 (|has| $ (-6 -4454))) (((-779) |#2| $) 101 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 115)) (-1752 ((|#4| $ (-572)) 133)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 93 (|has| |#2| (-1049 (-415 (-572))))) (($ |#2|) 88)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-4380 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4454)))) (-4384 (((-112) $) 121)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-1 |#2| |#2|)) 55) (($ $ (-1 |#2| |#2|) (-779)) 54) (($ $ (-652 (-1188)) (-652 (-779))) 53 (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) 52 (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) 51 (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) 50 (|has| |#2| (-909 (-1188)))) (($ $ (-779)) 45 (|has| |#2| (-237))) (($ $) 42 (|has| |#2| (-237)))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#2|) 136 (|has| |#2| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 71 (|has| |#2| (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#2|) 142) (($ |#2| $) 141) ((|#4| $ |#4|) 76) ((|#3| |#3| $) 75)) (-2860 (((-779) $) 109 (|has| $ (-6 -4454)))))
-(((-1134 |#1| |#2| |#3| |#4|) (-141) (-779) (-1060) (-242 |t#1| |t#2|) (-242 |t#1| |t#2|)) (T -1134))
-((-3355 (*1 *1 *2) (-12 (-4 *2 (-1060)) (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-652 *4)) (-4 *4 (-1060)) (-4 *1 (-1134 *3 *4 *5 *6)) (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *3 *4)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *2 *5)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4)) (-4 *2 (-242 *3 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)) (-4 *2 (-1060)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)) (-4 *2 (-1060)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1134 *3 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4)) (-4 *2 (-242 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *2 *5)) (-4 *4 (-1060)) (-4 *2 (-242 *3 *4)) (-4 *5 (-242 *3 *4)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))) (-1982 (*1 *1 *1) (|partial| -12 (-4 *1 (-1134 *2 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-242 *2 *3)) (-4 *5 (-242 *2 *3)) (-4 *3 (-370)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1134 *3 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *3 *4)) (-4 *4 (-370)))))
-(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1064 |t#1| |t#1| |t#2| |t#3| |t#4|) (-419 |t#2|) (-384 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-725 |t#2|)) |%noBranch|) (-15 -3355 ($ |t#2|)) (-15 -1640 ($ (-652 |t#2|))) (-15 -1746 (|t#3| $)) (-15 -1635 (|t#2| $)) (-15 -4107 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4456 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2513 (|t#2| $)) (-15 -3283 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-370)) (PROGN (-15 -1982 ((-3 $ "failed") $)) (-15 ** ($ $ (-572)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4456 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-624 #0=(-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#2|) . T) ((-621 (-870)) . T) ((-235 $) |has| |#2| (-237)) ((-233 |#2|) . T) ((-237) |has| |#2| (-237)) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-384 |#2|) . T) ((-419 |#2|) . T) ((-497 |#2|) . T) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-654 (-572)) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-656 #1=(-572)) |has| |#2| (-647 (-572))) ((-656 |#2|) . T) ((-656 $) . T) ((-648 |#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-6 (-4456 "*")))) ((-647 #1#) |has| |#2| (-647 (-572))) ((-647 |#2|) . T) ((-725 |#2|) -2813 (|has| |#2| (-174)) (|has| |#2| (-6 (-4456 "*")))) ((-734) . T) ((-909 (-1188)) |has| |#2| (-909 (-1188))) ((-1064 |#1| |#1| |#2| |#3| |#4|) . T) ((-1049 #0#) |has| |#2| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#2| (-1049 (-572))) ((-1049 |#2|) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) . T))
-((-2703 ((|#4| |#4|) 81)) (-1641 ((|#4| |#4|) 76)) (-2830 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4362 (-652 |#3|))) |#4| |#3|) 91)) (-3625 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2719 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
-(((-1135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1641 (|#4| |#4|)) (-15 -2719 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2703 (|#4| |#4|)) (-15 -3625 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2830 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4362 (-652 |#3|))) |#4| |#3|))) (-313) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|)) (T -1135))
-((-2830 (*1 *2 *3 *4) (-12 (-4 *5 (-313)) (-4 *6 (-380 *5)) (-4 *4 (-380 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4)))) (-5 *1 (-1135 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))) (-3625 (*1 *2 *3) (-12 (-4 *4 (-313)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1135 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-313)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-1135 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-2719 (*1 *2 *3) (-12 (-4 *4 (-313)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1135 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-313)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-1135 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
-(-10 -7 (-15 -1641 (|#4| |#4|)) (-15 -2719 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2703 (|#4| |#4|)) (-15 -3625 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2830 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4362 (-652 |#3|))) |#4| |#3|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 18)) (-4353 (((-652 |#2|) $) 174)) (-4191 (((-1184 $) $ |#2|) 60) (((-1184 |#1|) $) 49)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 116 (|has| |#1| (-564)))) (-3009 (($ $) 118 (|has| |#1| (-564)))) (-4334 (((-112) $) 120 (|has| |#1| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 |#2|)) 213)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3517 (($ $) NIL (|has| |#1| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 167) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 |#2| "failed") $) NIL)) (-2204 ((|#1| $) 165) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) ((|#2| $) NIL)) (-2361 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1390 (($ $) 217)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) 90)) (-1876 (($ $) NIL (|has| |#1| (-460))) (($ $ |#2|) NIL (|has| |#1| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#1| (-918)))) (-1437 (($ $ |#1| (-539 |#2|) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| |#1| (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| |#1| (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-1886 (((-112) $) 20)) (-4368 (((-779) $) 30)) (-4343 (($ (-1184 |#1|) |#2|) 54) (($ (-1184 $) |#2|) 71)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) 38)) (-4333 (($ |#1| (-539 |#2|)) 78) (($ $ |#2| (-779)) 58) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ |#2|) NIL)) (-2649 (((-539 |#2|) $) 205) (((-779) $ |#2|) 206) (((-652 (-779)) $ (-652 |#2|)) 207)) (-2497 (($ (-1 (-539 |#2|) (-539 |#2|)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 128)) (-3928 (((-3 |#2| "failed") $) 177)) (-1357 (($ $) 216)) (-1368 ((|#1| $) 43)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4347 (((-1170) $) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| |#2|) (|:| -1679 (-779))) "failed") $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) 39)) (-1347 ((|#1| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 148 (|has| |#1| (-460)))) (-2870 (($ (-652 $)) 153 (|has| |#1| (-460))) (($ $ $) 138 (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-918)))) (-2834 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-564)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-652 |#2|) (-652 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-652 |#2|) (-652 $)) 194)) (-3537 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3902 (($ $ |#2|) 215) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-4390 (((-539 |#2|) $) 201) (((-779) $ |#2|) 196) (((-652 (-779)) $ (-652 |#2|)) 199)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| |#1| (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-1711 ((|#1| $) 134 (|has| |#1| (-460))) (($ $ |#2|) 137 (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2940 (((-870) $) 159) (($ (-572)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-564))) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-4268 (((-652 |#1|) $) 162)) (-3979 ((|#1| $ (-539 |#2|)) 80) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) 87 T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) 123 (|has| |#1| (-564)))) (-2131 (($) 12 T CONST)) (-2143 (($) 14 T CONST)) (-3608 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-2978 (((-112) $ $) 106)) (-3106 (($ $ |#1|) 132 (|has| |#1| (-370)))) (-3089 (($ $) 93) (($ $ $) 104)) (-3075 (($ $ $) 55)) (** (($ $ (-930)) 110) (($ $ (-779)) 109)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 96) (($ $ $) 72) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
-(((-1136 |#1| |#2|) (-958 |#1| (-539 |#2|) |#2|) (-1060) (-858)) (T -1136))
-NIL
-(-958 |#1| (-539 |#2|) |#2|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 |#2|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2358 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 128 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2338 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 124 (|has| |#1| (-38 (-415 (-572)))))) (-2384 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-4051 (((-961 |#1|) $ (-779)) NIL) (((-961 |#1|) $ (-779) (-779)) NIL)) (-2579 (((-112) $) NIL)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-779) $ |#2|) NIL) (((-779) $ |#2| (-779)) NIL)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2438 (((-112) $) NIL)) (-4333 (($ $ (-652 |#2|) (-652 (-539 |#2|))) NIL) (($ $ |#2| (-539 |#2|)) NIL) (($ |#1| (-539 |#2|)) NIL) (($ $ |#2| (-779)) 63) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3116 (($ $) 122 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3034 (($ $ |#2|) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-415 (-572)))))) (-3964 (((-1131) $) NIL)) (-1333 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-415 (-572)))))) (-2772 (($ $ (-779)) 16)) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1608 (($ $) 120 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (($ $ |#2| $) 106) (($ $ (-652 |#2|) (-652 $)) 99) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL)) (-3902 (($ $ |#2|) 109) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-4390 (((-539 |#2|) $) NIL)) (-2717 (((-1 (-1168 |#3|) |#3|) (-652 |#2|) (-652 (-1168 |#3|))) 87)) (-2397 (($ $) 158 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 130 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 126 (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) 18)) (-2940 (((-870) $) 198) (($ (-572)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-564))) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#2|) 70) (($ |#3|) 68)) (-3979 ((|#1| $ (-539 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL) ((|#3| $ (-779)) 43)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) 164 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) 160 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 168 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-2516 (($ $) 170 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 166 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 162 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 52 T CONST)) (-2143 (($) 62 T CONST)) (-3608 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) 200 (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 66)) (** (($ $ (-930)) NIL) (($ $ (-779)) 77) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 112 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 65) (($ $ (-415 (-572))) 117 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 115 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1137 |#1| |#2| |#3|) (-13 (-748 |#1| |#2|) (-10 -8 (-15 -3979 (|#3| $ (-779))) (-15 -2940 ($ |#2|)) (-15 -2940 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2717 ((-1 (-1168 |#3|) |#3|) (-652 |#2|) (-652 (-1168 |#3|)))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $ |#2| |#1|)) (-15 -1333 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1060) (-858) (-958 |#1| (-539 |#2|) |#2|)) (T -1137))
-((-3979 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *2 (-958 *4 (-539 *5) *5)) (-5 *1 (-1137 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-858)))) (-2940 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-4 *2 (-858)) (-5 *1 (-1137 *3 *2 *4)) (-4 *4 (-958 *3 (-539 *2) *2)))) (-2940 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-4 *4 (-858)) (-5 *1 (-1137 *3 *4 *2)) (-4 *2 (-958 *3 (-539 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-858)) (-5 *1 (-1137 *3 *4 *2)) (-4 *2 (-958 *3 (-539 *4) *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-1168 *7))) (-4 *6 (-858)) (-4 *7 (-958 *5 (-539 *6) *6)) (-4 *5 (-1060)) (-5 *2 (-1 (-1168 *7) *7)) (-5 *1 (-1137 *5 *6 *7)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-4 *2 (-858)) (-5 *1 (-1137 *3 *2 *4)) (-4 *4 (-958 *3 (-539 *2) *2)))) (-1333 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1137 *4 *3 *5))) (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)) (-4 *3 (-858)) (-5 *1 (-1137 *4 *3 *5)) (-4 *5 (-958 *4 (-539 *3) *3)))))
-(-13 (-748 |#1| |#2|) (-10 -8 (-15 -3979 (|#3| $ (-779))) (-15 -2940 ($ |#2|)) (-15 -2940 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2717 ((-1 (-1168 |#3|) |#3|) (-652 |#2|) (-652 (-1168 |#3|)))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $ |#2| |#1|)) (-15 -1333 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2846 (((-112) $ $) 7)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |#4|)))) (-652 |#4|)) 86)) (-1740 (((-652 $) (-652 |#4|)) 87) (((-652 $) (-652 |#4|) (-112)) 112)) (-4353 (((-652 |#3|) $) 34)) (-1544 (((-112) $) 27)) (-2639 (((-112) $) 18 (|has| |#1| (-564)))) (-2621 (((-112) |#4| $) 102) (((-112) $) 98)) (-3558 ((|#4| |#4| $) 93)) (-3517 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) 28)) (-1631 (((-112) $ (-779)) 45)) (-2162 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-3281 (($) 46 T CONST)) (-2390 (((-112) $) 23 (|has| |#1| (-564)))) (-2783 (((-112) $ $) 25 (|has| |#1| (-564)))) (-3937 (((-112) $ $) 24 (|has| |#1| (-564)))) (-1616 (((-112) $) 26 (|has| |#1| (-564)))) (-3713 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1566 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) 37)) (-2204 (($ (-652 |#4|)) 36)) (-2923 (((-3 $ "failed") $) 83)) (-2020 ((|#4| |#4| $) 90)) (-2086 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2888 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1758 ((|#4| |#4| $) 88)) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3433 (((-2 (|:| -1379 (-652 |#4|)) (|:| -1674 (-652 |#4|))) $) 106)) (-1939 (((-112) |#4| $) 137)) (-4131 (((-112) |#4| $) 134)) (-1554 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-4338 (((-112) |#4| $) 105) (((-112) $) 104)) (-2366 ((|#3| $) 35)) (-1861 (((-112) $ (-779)) 44)) (-1344 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-3015 (((-652 |#3|) $) 33)) (-1683 (((-112) |#3| $) 32)) (-1985 (((-112) $ (-779)) 43)) (-4347 (((-1170) $) 10)) (-4431 (((-3 |#4| (-652 $)) |#4| |#4| $) 129)) (-3487 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3357 (((-3 |#4| "failed") $) 84)) (-3326 (((-652 $) |#4| $) 130)) (-4399 (((-3 (-112) (-652 $)) |#4| $) 133)) (-1892 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1346 (((-652 $) |#4| $) 126) (((-652 $) (-652 |#4|) $) 125) (((-652 $) (-652 |#4|) (-652 $)) 124) (((-652 $) |#4| (-652 $)) 123)) (-3761 (($ |#4| $) 118) (($ (-652 |#4|) $) 117)) (-2234 (((-652 |#4|) $) 108)) (-3005 (((-112) |#4| $) 100) (((-112) $) 96)) (-2755 ((|#4| |#4| $) 91)) (-2323 (((-112) $ $) 111)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-3536 (((-112) |#4| $) 101) (((-112) $) 97)) (-1825 ((|#4| |#4| $) 92)) (-3964 (((-1131) $) 11)) (-2912 (((-3 |#4| "failed") $) 85)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3632 (((-3 $ "failed") $ |#4|) 79)) (-2772 (($ $ |#4|) 78) (((-652 $) |#4| $) 116) (((-652 $) |#4| (-652 $)) 115) (((-652 $) (-652 |#4|) $) 114) (((-652 $) (-652 |#4|) (-652 $)) 113)) (-1612 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) 39)) (-1841 (((-112) $) 42)) (-1613 (($) 41)) (-4390 (((-779) $) 107)) (-3973 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3164 (($ $) 40)) (-1835 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) 61)) (-2748 (($ $ |#3|) 29)) (-2365 (($ $ |#3|) 31)) (-3862 (($ $) 89)) (-1670 (($ $ |#3|) 30)) (-2940 (((-870) $) 12) (((-652 |#4|) $) 38)) (-3678 (((-779) $) 77 (|has| |#3| (-375)))) (-4379 (((-112) $ $) 9)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3447 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-3007 (((-652 $) |#4| $) 122) (((-652 $) |#4| (-652 $)) 121) (((-652 $) (-652 |#4|) $) 120) (((-652 $) (-652 |#4|) (-652 $)) 119)) (-4380 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-4041 (((-652 |#3|) $) 82)) (-4377 (((-112) |#4| $) 136)) (-1482 (((-112) |#3| $) 81)) (-2978 (((-112) $ $) 6)) (-2860 (((-779) $) 47 (|has| $ (-6 -4454)))))
-(((-1138 |#1| |#2| |#3| |#4|) (-141) (-460) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -1138))
-NIL
-(-13 (-1120 |t#1| |t#2| |t#3| |t#4|) (-792 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-792 |#1| |#2| |#3| |#4|) . T) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1222 |#1| |#2| |#3| |#4|) . T) ((-1229) . T))
-((-1724 (((-652 |#2|) |#1|) 15)) (-1578 (((-652 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-652 |#2|) |#1|) 61)) (-4426 (((-652 |#2|) |#2| |#2| |#2|) 45) (((-652 |#2|) |#1|) 59)) (-1362 ((|#2| |#1|) 54)) (-1817 (((-2 (|:| |solns| (-652 |#2|)) (|:| |maps| (-652 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4032 (((-652 |#2|) |#2| |#2|) 42) (((-652 |#2|) |#1|) 58)) (-3061 (((-652 |#2|) |#2| |#2| |#2| |#2|) 46) (((-652 |#2|) |#1|) 60)) (-3681 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-1960 ((|#2| |#2| |#2| |#2|) 51)) (-3691 ((|#2| |#2| |#2|) 50)) (-3881 ((|#2| |#2| |#2| |#2| |#2|) 52)))
-(((-1139 |#1| |#2|) (-10 -7 (-15 -1724 ((-652 |#2|) |#1|)) (-15 -1362 (|#2| |#1|)) (-15 -1817 ((-2 (|:| |solns| (-652 |#2|)) (|:| |maps| (-652 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4032 ((-652 |#2|) |#1|)) (-15 -4426 ((-652 |#2|) |#1|)) (-15 -3061 ((-652 |#2|) |#1|)) (-15 -1578 ((-652 |#2|) |#1|)) (-15 -4032 ((-652 |#2|) |#2| |#2|)) (-15 -4426 ((-652 |#2|) |#2| |#2| |#2|)) (-15 -3061 ((-652 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1578 ((-652 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3691 (|#2| |#2| |#2|)) (-15 -1960 (|#2| |#2| |#2| |#2|)) (-15 -3881 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3681 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1255 |#2|) (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (T -1139))
-((-3681 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-3881 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-1960 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-3691 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-1578 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))) (-3061 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))) (-4426 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))) (-4032 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))) (-3061 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))) (-4426 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))) (-4032 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))) (-1817 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-2 (|:| |solns| (-652 *5)) (|:| |maps| (-652 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1139 *3 *5)) (-4 *3 (-1255 *5)))) (-1362 (*1 *2 *3) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -1724 ((-652 |#2|) |#1|)) (-15 -1362 (|#2| |#1|)) (-15 -1817 ((-2 (|:| |solns| (-652 |#2|)) (|:| |maps| (-652 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4032 ((-652 |#2|) |#1|)) (-15 -4426 ((-652 |#2|) |#1|)) (-15 -3061 ((-652 |#2|) |#1|)) (-15 -1578 ((-652 |#2|) |#1|)) (-15 -4032 ((-652 |#2|) |#2| |#2|)) (-15 -4426 ((-652 |#2|) |#2| |#2| |#2|)) (-15 -3061 ((-652 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1578 ((-652 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3691 (|#2| |#2| |#2|)) (-15 -1960 (|#2| |#2| |#2| |#2|)) (-15 -3881 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3681 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-1654 (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|))))) 118) (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188))) 117) (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|)))) 115) (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))) (-652 (-1188))) 113) (((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|)))) 97) (((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))) (-1188)) 98) (((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|))) 92) (((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)) (-1188)) 82)) (-1870 (((-652 (-652 (-322 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188))) 111) (((-652 (-322 |#1|)) (-415 (-961 |#1|)) (-1188)) 54)) (-3506 (((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-415 (-961 |#1|)) (-1188)) 122) (((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188)) 121)))
-(((-1140 |#1|) (-10 -7 (-15 -1654 ((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -1654 ((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)))) (-15 -1654 ((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -1654 ((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))))) (-15 -1654 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -1654 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))))) (-15 -1654 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188)))) (-15 -1654 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -1870 ((-652 (-322 |#1|)) (-415 (-961 |#1|)) (-1188))) (-15 -1870 ((-652 (-652 (-322 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -3506 ((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -3506 ((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-415 (-961 |#1|)) (-1188)))) (-13 (-313) (-148))) (T -1140))
-((-3506 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-1177 (-652 (-322 *5)) (-652 (-300 (-322 *5))))) (-5 *1 (-1140 *5)))) (-3506 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-415 (-961 *5)))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-1177 (-652 (-322 *5)) (-652 (-300 (-322 *5))))) (-5 *1 (-1140 *5)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-322 *5)))) (-5 *1 (-1140 *5)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-322 *5))) (-5 *1 (-1140 *5)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-652 (-300 (-415 (-961 *4))))) (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *4))))) (-5 *1 (-1140 *4)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-300 (-415 (-961 *5))))) (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5))))) (-5 *1 (-1140 *5)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-652 (-415 (-961 *4)))) (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *4))))) (-5 *1 (-1140 *4)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5))))) (-5 *1 (-1140 *5)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-300 (-415 (-961 *4)))) (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1140 *4)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-415 (-961 *5)))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1140 *5)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1140 *4)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1140 *5)))))
-(-10 -7 (-15 -1654 ((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -1654 ((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)))) (-15 -1654 ((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -1654 ((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))))) (-15 -1654 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -1654 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))))) (-15 -1654 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188)))) (-15 -1654 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -1870 ((-652 (-322 |#1|)) (-415 (-961 |#1|)) (-1188))) (-15 -1870 ((-652 (-652 (-322 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -3506 ((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -3506 ((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-415 (-961 |#1|)) (-1188))))
-((-3507 (((-415 (-1184 (-322 |#1|))) (-1279 (-322 |#1|)) (-415 (-1184 (-322 |#1|))) (-572)) 36)) (-3484 (((-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|)))) 48)))
-(((-1141 |#1|) (-10 -7 (-15 -3484 ((-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))))) (-15 -3507 ((-415 (-1184 (-322 |#1|))) (-1279 (-322 |#1|)) (-415 (-1184 (-322 |#1|))) (-572)))) (-564)) (T -1141))
-((-3507 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-415 (-1184 (-322 *5)))) (-5 *3 (-1279 (-322 *5))) (-5 *4 (-572)) (-4 *5 (-564)) (-5 *1 (-1141 *5)))) (-3484 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-415 (-1184 (-322 *3)))) (-4 *3 (-564)) (-5 *1 (-1141 *3)))))
-(-10 -7 (-15 -3484 ((-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))))) (-15 -3507 ((-415 (-1184 (-322 |#1|))) (-1279 (-322 |#1|)) (-415 (-1184 (-322 |#1|))) (-572))))
-((-1724 (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-322 |#1|))) (-652 (-1188))) 244) (((-652 (-300 (-322 |#1|))) (-322 |#1|) (-1188)) 23) (((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)) (-1188)) 29) (((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|))) 28) (((-652 (-300 (-322 |#1|))) (-322 |#1|)) 24)))
-(((-1142 |#1|) (-10 -7 (-15 -1724 ((-652 (-300 (-322 |#1|))) (-322 |#1|))) (-15 -1724 ((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)))) (-15 -1724 ((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)) (-1188))) (-15 -1724 ((-652 (-300 (-322 |#1|))) (-322 |#1|) (-1188))) (-15 -1724 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-322 |#1|))) (-652 (-1188))))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (T -1142))
-((-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5))))) (-5 *1 (-1142 *5)) (-5 *3 (-652 (-300 (-322 *5)))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1142 *5)) (-5 *3 (-322 *5)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1142 *5)) (-5 *3 (-300 (-322 *5))))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1142 *4)) (-5 *3 (-300 (-322 *4))))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1142 *4)) (-5 *3 (-322 *4)))))
-(-10 -7 (-15 -1724 ((-652 (-300 (-322 |#1|))) (-322 |#1|))) (-15 -1724 ((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)))) (-15 -1724 ((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)) (-1188))) (-15 -1724 ((-652 (-300 (-322 |#1|))) (-322 |#1|) (-1188))) (-15 -1724 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-322 |#1|))) (-652 (-1188)))))
-((-4339 ((|#2| |#2|) 28 (|has| |#1| (-858))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-3257 ((|#2| |#2|) 27 (|has| |#1| (-858))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1143 |#1| |#2|) (-10 -7 (-15 -3257 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4339 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-858)) (PROGN (-15 -3257 (|#2| |#2|)) (-15 -4339 (|#2| |#2|))) |%noBranch|)) (-1229) (-13 (-612 (-572) |#1|) (-10 -7 (-6 -4454) (-6 -4455)))) (T -1143))
-((-4339 (*1 *2 *2) (-12 (-4 *3 (-858)) (-4 *3 (-1229)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-612 (-572) *3) (-10 -7 (-6 -4454) (-6 -4455)))))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-858)) (-4 *3 (-1229)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-612 (-572) *3) (-10 -7 (-6 -4454) (-6 -4455)))))) (-4339 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-612 (-572) *4) (-10 -7 (-6 -4454) (-6 -4455)))))) (-3257 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-612 (-572) *4) (-10 -7 (-6 -4454) (-6 -4455)))))))
-(-10 -7 (-15 -3257 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4339 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-858)) (PROGN (-15 -3257 (|#2| |#2|)) (-15 -4339 (|#2| |#2|))) |%noBranch|))
-((-2846 (((-112) $ $) NIL)) (-1735 (((-1176 3 |#1|) $) 141)) (-2117 (((-112) $) 101)) (-3065 (($ $ (-652 (-952 |#1|))) 44) (($ $ (-652 (-652 |#1|))) 104) (($ (-652 (-952 |#1|))) 103) (((-652 (-952 |#1|)) $) 102)) (-2440 (((-112) $) 72)) (-3588 (($ $ (-952 |#1|)) 76) (($ $ (-652 |#1|)) 81) (($ $ (-779)) 83) (($ (-952 |#1|)) 77) (((-952 |#1|) $) 75)) (-2610 (((-2 (|:| -4065 (-779)) (|:| |curves| (-779)) (|:| |polygons| (-779)) (|:| |constructs| (-779))) $) 139)) (-3468 (((-779) $) 53)) (-2720 (((-779) $) 52)) (-3202 (($ $ (-779) (-952 |#1|)) 67)) (-2801 (((-112) $) 111)) (-4158 (($ $ (-652 (-652 (-952 |#1|))) (-652 (-173)) (-173)) 118) (($ $ (-652 (-652 (-652 |#1|))) (-652 (-173)) (-173)) 120) (($ $ (-652 (-652 (-952 |#1|))) (-112) (-112)) 115) (($ $ (-652 (-652 (-652 |#1|))) (-112) (-112)) 127) (($ (-652 (-652 (-952 |#1|)))) 116) (($ (-652 (-652 (-952 |#1|))) (-112) (-112)) 117) (((-652 (-652 (-952 |#1|))) $) 114)) (-1767 (($ (-652 $)) 56) (($ $ $) 57)) (-2225 (((-652 (-173)) $) 133)) (-2927 (((-652 (-952 |#1|)) $) 130)) (-1793 (((-652 (-652 (-173))) $) 132)) (-2637 (((-652 (-652 (-652 (-952 |#1|)))) $) NIL)) (-1846 (((-652 (-652 (-652 (-779)))) $) 131)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3693 (((-779) $ (-652 (-952 |#1|))) 65)) (-2368 (((-112) $) 84)) (-1320 (($ $ (-652 (-952 |#1|))) 86) (($ $ (-652 (-652 |#1|))) 92) (($ (-652 (-952 |#1|))) 87) (((-652 (-952 |#1|)) $) 85)) (-4123 (($) 48) (($ (-1176 3 |#1|)) 49)) (-3164 (($ $) 63)) (-3219 (((-652 $) $) 62)) (-4039 (($ (-652 $)) 59)) (-2496 (((-652 $) $) 61)) (-2940 (((-870) $) 146)) (-3911 (((-112) $) 94)) (-3513 (($ $ (-652 (-952 |#1|))) 96) (($ $ (-652 (-652 |#1|))) 99) (($ (-652 (-952 |#1|))) 97) (((-652 (-952 |#1|)) $) 95)) (-1693 (($ $) 140)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1144 |#1|) (-1145 |#1|) (-1060)) (T -1144))
-NIL
-(-1145 |#1|)
-((-2846 (((-112) $ $) 7)) (-1735 (((-1176 3 |#1|) $) 14)) (-2117 (((-112) $) 30)) (-3065 (($ $ (-652 (-952 |#1|))) 34) (($ $ (-652 (-652 |#1|))) 33) (($ (-652 (-952 |#1|))) 32) (((-652 (-952 |#1|)) $) 31)) (-2440 (((-112) $) 45)) (-3588 (($ $ (-952 |#1|)) 50) (($ $ (-652 |#1|)) 49) (($ $ (-779)) 48) (($ (-952 |#1|)) 47) (((-952 |#1|) $) 46)) (-2610 (((-2 (|:| -4065 (-779)) (|:| |curves| (-779)) (|:| |polygons| (-779)) (|:| |constructs| (-779))) $) 16)) (-3468 (((-779) $) 59)) (-2720 (((-779) $) 60)) (-3202 (($ $ (-779) (-952 |#1|)) 51)) (-2801 (((-112) $) 22)) (-4158 (($ $ (-652 (-652 (-952 |#1|))) (-652 (-173)) (-173)) 29) (($ $ (-652 (-652 (-652 |#1|))) (-652 (-173)) (-173)) 28) (($ $ (-652 (-652 (-952 |#1|))) (-112) (-112)) 27) (($ $ (-652 (-652 (-652 |#1|))) (-112) (-112)) 26) (($ (-652 (-652 (-952 |#1|)))) 25) (($ (-652 (-652 (-952 |#1|))) (-112) (-112)) 24) (((-652 (-652 (-952 |#1|))) $) 23)) (-1767 (($ (-652 $)) 58) (($ $ $) 57)) (-2225 (((-652 (-173)) $) 17)) (-2927 (((-652 (-952 |#1|)) $) 21)) (-1793 (((-652 (-652 (-173))) $) 18)) (-2637 (((-652 (-652 (-652 (-952 |#1|)))) $) 19)) (-1846 (((-652 (-652 (-652 (-779)))) $) 20)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3693 (((-779) $ (-652 (-952 |#1|))) 52)) (-2368 (((-112) $) 40)) (-1320 (($ $ (-652 (-952 |#1|))) 44) (($ $ (-652 (-652 |#1|))) 43) (($ (-652 (-952 |#1|))) 42) (((-652 (-952 |#1|)) $) 41)) (-4123 (($) 62) (($ (-1176 3 |#1|)) 61)) (-3164 (($ $) 53)) (-3219 (((-652 $) $) 54)) (-4039 (($ (-652 $)) 56)) (-2496 (((-652 $) $) 55)) (-2940 (((-870) $) 12)) (-3911 (((-112) $) 35)) (-3513 (($ $ (-652 (-952 |#1|))) 39) (($ $ (-652 (-652 |#1|))) 38) (($ (-652 (-952 |#1|))) 37) (((-652 (-952 |#1|)) $) 36)) (-1693 (($ $) 15)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-1145 |#1|) (-141) (-1060)) (T -1145))
-((-2940 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-870)))) (-4123 (*1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-1176 3 *3)) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-1767 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-1767 (*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-2496 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)))) (-3219 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)))) (-3164 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-652 (-952 *4))) (-4 *1 (-1145 *4)) (-4 *4 (-1060)) (-5 *2 (-779)))) (-3202 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-952 *4)) (-4 *1 (-1145 *4)) (-4 *4 (-1060)))) (-3588 (*1 *1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-3588 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-3588 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-3588 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-952 *3)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-1320 (*1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-1320 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-3513 (*1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))) (-3911 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-3065 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-3065 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-3065 (*1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))) (-2117 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-4158 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-652 (-952 *5)))) (-5 *3 (-652 (-173))) (-5 *4 (-173)) (-4 *1 (-1145 *5)) (-4 *5 (-1060)))) (-4158 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-652 (-652 *5)))) (-5 *3 (-652 (-173))) (-5 *4 (-173)) (-4 *1 (-1145 *5)) (-4 *5 (-1060)))) (-4158 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-652 (-652 (-952 *4)))) (-5 *3 (-112)) (-4 *1 (-1145 *4)) (-4 *4 (-1060)))) (-4158 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-652 (-652 (-652 *4)))) (-5 *3 (-112)) (-4 *1 (-1145 *4)) (-4 *4 (-1060)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 *3)))) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-4158 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-652 (-652 (-952 *4)))) (-5 *3 (-112)) (-4 *4 (-1060)) (-4 *1 (-1145 *4)))) (-4158 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-952 *3)))))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-652 (-779))))))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-652 (-952 *3))))))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-173)))))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-173))))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -4065 (-779)) (|:| |curves| (-779)) (|:| |polygons| (-779)) (|:| |constructs| (-779)))))) (-1693 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-1176 3 *3)))))
-(-13 (-1111) (-10 -8 (-15 -4123 ($)) (-15 -4123 ($ (-1176 3 |t#1|))) (-15 -2720 ((-779) $)) (-15 -3468 ((-779) $)) (-15 -1767 ($ (-652 $))) (-15 -1767 ($ $ $)) (-15 -4039 ($ (-652 $))) (-15 -2496 ((-652 $) $)) (-15 -3219 ((-652 $) $)) (-15 -3164 ($ $)) (-15 -3693 ((-779) $ (-652 (-952 |t#1|)))) (-15 -3202 ($ $ (-779) (-952 |t#1|))) (-15 -3588 ($ $ (-952 |t#1|))) (-15 -3588 ($ $ (-652 |t#1|))) (-15 -3588 ($ $ (-779))) (-15 -3588 ($ (-952 |t#1|))) (-15 -3588 ((-952 |t#1|) $)) (-15 -2440 ((-112) $)) (-15 -1320 ($ $ (-652 (-952 |t#1|)))) (-15 -1320 ($ $ (-652 (-652 |t#1|)))) (-15 -1320 ($ (-652 (-952 |t#1|)))) (-15 -1320 ((-652 (-952 |t#1|)) $)) (-15 -2368 ((-112) $)) (-15 -3513 ($ $ (-652 (-952 |t#1|)))) (-15 -3513 ($ $ (-652 (-652 |t#1|)))) (-15 -3513 ($ (-652 (-952 |t#1|)))) (-15 -3513 ((-652 (-952 |t#1|)) $)) (-15 -3911 ((-112) $)) (-15 -3065 ($ $ (-652 (-952 |t#1|)))) (-15 -3065 ($ $ (-652 (-652 |t#1|)))) (-15 -3065 ($ (-652 (-952 |t#1|)))) (-15 -3065 ((-652 (-952 |t#1|)) $)) (-15 -2117 ((-112) $)) (-15 -4158 ($ $ (-652 (-652 (-952 |t#1|))) (-652 (-173)) (-173))) (-15 -4158 ($ $ (-652 (-652 (-652 |t#1|))) (-652 (-173)) (-173))) (-15 -4158 ($ $ (-652 (-652 (-952 |t#1|))) (-112) (-112))) (-15 -4158 ($ $ (-652 (-652 (-652 |t#1|))) (-112) (-112))) (-15 -4158 ($ (-652 (-652 (-952 |t#1|))))) (-15 -4158 ($ (-652 (-652 (-952 |t#1|))) (-112) (-112))) (-15 -4158 ((-652 (-652 (-952 |t#1|))) $)) (-15 -2801 ((-112) $)) (-15 -2927 ((-652 (-952 |t#1|)) $)) (-15 -1846 ((-652 (-652 (-652 (-779)))) $)) (-15 -2637 ((-652 (-652 (-652 (-952 |t#1|)))) $)) (-15 -1793 ((-652 (-652 (-173))) $)) (-15 -2225 ((-652 (-173)) $)) (-15 -2610 ((-2 (|:| -4065 (-779)) (|:| |curves| (-779)) (|:| |polygons| (-779)) (|:| |constructs| (-779))) $)) (-15 -1693 ($ $)) (-15 -1735 ((-1176 3 |t#1|) $)) (-15 -2940 ((-870) $))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 184) (($ (-1193)) NIL) (((-1193) $) 7)) (-2120 (((-112) $ (|[\|\|]| (-532))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-684))) 27) (((-112) $ (|[\|\|]| (-1289))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-614))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1126))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-689))) 55) (((-112) $ (|[\|\|]| (-525))) 59) (((-112) $ (|[\|\|]| (-1077))) 63) (((-112) $ (|[\|\|]| (-1290))) 67) (((-112) $ (|[\|\|]| (-533))) 71) (((-112) $ (|[\|\|]| (-1162))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-679))) 83) (((-112) $ (|[\|\|]| (-317))) 87) (((-112) $ (|[\|\|]| (-1047))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-981))) 99) (((-112) $ (|[\|\|]| (-1084))) 103) (((-112) $ (|[\|\|]| (-1101))) 107) (((-112) $ (|[\|\|]| (-1107))) 111) (((-112) $ (|[\|\|]| (-634))) 115) (((-112) $ (|[\|\|]| (-1178))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-486))) 131) (((-112) $ (|[\|\|]| (-600))) 135) (((-112) $ (|[\|\|]| (-514))) 139) (((-112) $ (|[\|\|]| (-1170))) 143) (((-112) $ (|[\|\|]| (-572))) 147)) (-4379 (((-112) $ $) NIL)) (-1330 (((-532) $) 20) (((-220) $) 24) (((-684) $) 28) (((-1289) $) 32) (((-139) $) 36) (((-614) $) 40) (((-134) $) 44) (((-1126) $) 48) (((-96) $) 52) (((-689) $) 56) (((-525) $) 60) (((-1077) $) 64) (((-1290) $) 68) (((-533) $) 72) (((-1162) $) 76) (((-155) $) 80) (((-679) $) 84) (((-317) $) 88) (((-1047) $) 92) (((-182) $) 96) (((-981) $) 100) (((-1084) $) 104) (((-1101) $) 108) (((-1107) $) 112) (((-634) $) 116) (((-1178) $) 120) (((-157) $) 124) (((-138) $) 128) (((-486) $) 132) (((-600) $) 136) (((-514) $) 140) (((-1170) $) 144) (((-572) $) 148)) (-2978 (((-112) $ $) NIL)))
-(((-1146) (-1148)) (T -1146))
-NIL
-(-1148)
-((-3733 (((-652 (-1193)) (-1170)) 9)))
-(((-1147) (-10 -7 (-15 -3733 ((-652 (-1193)) (-1170))))) (T -1147))
-((-3733 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-1193))) (-5 *1 (-1147)))))
-(-10 -7 (-15 -3733 ((-652 (-1193)) (-1170))))
-((-2846 (((-112) $ $) 7)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-1193)) 17) (((-1193) $) 16)) (-2120 (((-112) $ (|[\|\|]| (-532))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-684))) 81) (((-112) $ (|[\|\|]| (-1289))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-614))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1126))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-689))) 67) (((-112) $ (|[\|\|]| (-525))) 65) (((-112) $ (|[\|\|]| (-1077))) 63) (((-112) $ (|[\|\|]| (-1290))) 61) (((-112) $ (|[\|\|]| (-533))) 59) (((-112) $ (|[\|\|]| (-1162))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-679))) 53) (((-112) $ (|[\|\|]| (-317))) 51) (((-112) $ (|[\|\|]| (-1047))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-981))) 45) (((-112) $ (|[\|\|]| (-1084))) 43) (((-112) $ (|[\|\|]| (-1101))) 41) (((-112) $ (|[\|\|]| (-1107))) 39) (((-112) $ (|[\|\|]| (-634))) 37) (((-112) $ (|[\|\|]| (-1178))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-486))) 29) (((-112) $ (|[\|\|]| (-600))) 27) (((-112) $ (|[\|\|]| (-514))) 25) (((-112) $ (|[\|\|]| (-1170))) 23) (((-112) $ (|[\|\|]| (-572))) 21)) (-4379 (((-112) $ $) 9)) (-1330 (((-532) $) 84) (((-220) $) 82) (((-684) $) 80) (((-1289) $) 78) (((-139) $) 76) (((-614) $) 74) (((-134) $) 72) (((-1126) $) 70) (((-96) $) 68) (((-689) $) 66) (((-525) $) 64) (((-1077) $) 62) (((-1290) $) 60) (((-533) $) 58) (((-1162) $) 56) (((-155) $) 54) (((-679) $) 52) (((-317) $) 50) (((-1047) $) 48) (((-182) $) 46) (((-981) $) 44) (((-1084) $) 42) (((-1101) $) 40) (((-1107) $) 38) (((-634) $) 36) (((-1178) $) 34) (((-157) $) 32) (((-138) $) 30) (((-486) $) 28) (((-600) $) 26) (((-514) $) 24) (((-1170) $) 22) (((-572) $) 20)) (-2978 (((-112) $ $) 6)))
-(((-1148) (-141)) (T -1148))
-((-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-532))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-532)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-220)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-684)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1289))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1289)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-139)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-614)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-134)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1126)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-96)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-689)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-525)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1077)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1290))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1290)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-533))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-533)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1162)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-155)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-679)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-317))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-317)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1047)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-182)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-981))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-981)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1084)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1101))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1101)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1107)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-634))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-634)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1178)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-157)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-138)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-486)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-600))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-600)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-514)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1170)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-572))) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-572)))))
-(-13 (-1094) (-1274) (-10 -8 (-15 -2120 ((-112) $ (|[\|\|]| (-532)))) (-15 -1330 ((-532) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-220)))) (-15 -1330 ((-220) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-684)))) (-15 -1330 ((-684) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1289)))) (-15 -1330 ((-1289) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-139)))) (-15 -1330 ((-139) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-614)))) (-15 -1330 ((-614) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-134)))) (-15 -1330 ((-134) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1126)))) (-15 -1330 ((-1126) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-96)))) (-15 -1330 ((-96) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-689)))) (-15 -1330 ((-689) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-525)))) (-15 -1330 ((-525) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1077)))) (-15 -1330 ((-1077) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1290)))) (-15 -1330 ((-1290) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-533)))) (-15 -1330 ((-533) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1162)))) (-15 -1330 ((-1162) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-155)))) (-15 -1330 ((-155) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-679)))) (-15 -1330 ((-679) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-317)))) (-15 -1330 ((-317) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1047)))) (-15 -1330 ((-1047) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-182)))) (-15 -1330 ((-182) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-981)))) (-15 -1330 ((-981) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1084)))) (-15 -1330 ((-1084) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1101)))) (-15 -1330 ((-1101) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1107)))) (-15 -1330 ((-1107) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-634)))) (-15 -1330 ((-634) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1178)))) (-15 -1330 ((-1178) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-157)))) (-15 -1330 ((-157) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-138)))) (-15 -1330 ((-138) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-486)))) (-15 -1330 ((-486) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-600)))) (-15 -1330 ((-600) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-514)))) (-15 -1330 ((-514) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1170)))) (-15 -1330 ((-1170) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-572)))) (-15 -1330 ((-572) $))))
-(((-93) . T) ((-102) . T) ((-624 #0=(-1193)) . T) ((-621 (-870)) . T) ((-621 #0#) . T) ((-498 #0#) . T) ((-1111) . T) ((-1094) . T) ((-1274) . T))
-((-4231 (((-1284) (-652 (-870))) 22) (((-1284) (-870)) 21)) (-3466 (((-1284) (-652 (-870))) 20) (((-1284) (-870)) 19)) (-3765 (((-1284) (-652 (-870))) 18) (((-1284) (-870)) 10) (((-1284) (-1170) (-870)) 16)))
-(((-1149) (-10 -7 (-15 -3765 ((-1284) (-1170) (-870))) (-15 -3765 ((-1284) (-870))) (-15 -3466 ((-1284) (-870))) (-15 -4231 ((-1284) (-870))) (-15 -3765 ((-1284) (-652 (-870)))) (-15 -3466 ((-1284) (-652 (-870)))) (-15 -4231 ((-1284) (-652 (-870)))))) (T -1149))
-((-4231 (*1 *2 *3) (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-3765 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149)))))
-(-10 -7 (-15 -3765 ((-1284) (-1170) (-870))) (-15 -3765 ((-1284) (-870))) (-15 -3466 ((-1284) (-870))) (-15 -4231 ((-1284) (-870))) (-15 -3765 ((-1284) (-652 (-870)))) (-15 -3466 ((-1284) (-652 (-870)))) (-15 -4231 ((-1284) (-652 (-870)))))
-((-1460 (($ $ $) 10)) (-1973 (($ $) 9)) (-3149 (($ $ $) 13)) (-1538 (($ $ $) 15)) (-2577 (($ $ $) 12)) (-2729 (($ $ $) 14)) (-1643 (($ $) 17)) (-2627 (($ $) 16)) (-2700 (($ $) 6)) (-4276 (($ $ $) 11) (($ $) 7)) (-3919 (($ $ $) 8)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-2003 ((|#1| $) 45)) (-3340 (((-112) $ (-781)) 8)) (-3670 (($) 7 T CONST)) (-3592 ((|#1| |#1| $) 47)) (-4388 ((|#1| $) 46)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2234 ((|#1| $) 40)) (-1709 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3459 ((|#1| $) 42)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-4303 (((-781) $) 44)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) 43)) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-1134 |#1|) (-141) (-1231)) (T -1134))
+((-3592 (*1 *2 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231)))) (-4388 (*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231)))) (-4303 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4456) (-15 -3592 (|t#1| |t#1| $)) (-15 -4388 (|t#1| $)) (-15 -2003 (|t#1| $)) (-15 -4303 ((-781) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-1637 ((|#3| $) 87)) (-1697 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2209 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#3| $) 47)) (-2668 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -1485 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 $) (-1281 $)) 84) (((-699 |#3|) (-699 $)) 76) (((-699 |#3|) (-1281 $)) NIL)) (-3905 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-2087 ((|#3| $) 89)) (-1924 ((|#4| $) 43)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#3|) 25)) (** (($ $ (-932)) NIL) (($ $ (-781)) 24) (($ $ (-574)) 95)))
+(((-1135 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -2087 (|#3| |#1|)) (-15 -1637 (|#3| |#1|)) (-15 -1924 (|#4| |#1|)) (-15 -2668 ((-699 |#3|) (-1281 |#1|))) (-15 -2668 ((-699 |#3|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -2943 (|#1| |#3|)) (-15 -1697 ((-3 |#3| "failed") |#1|)) (-15 -2209 (|#3| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))) (-15 -2943 ((-872) |#1|))) (-1136 |#2| |#3| |#4| |#5|) (-781) (-1062) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1135))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -2087 (|#3| |#1|)) (-15 -1637 (|#3| |#1|)) (-15 -1924 (|#4| |#1|)) (-15 -2668 ((-699 |#3|) (-1281 |#1|))) (-15 -2668 ((-699 |#3|) (-699 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2668 ((-699 (-574)) (-699 |#1|))) (-15 -2668 ((-699 (-574)) (-1281 |#1|))) (-15 -2943 (|#1| |#3|)) (-15 -1697 ((-3 |#3| "failed") |#1|)) (-15 -2209 (|#3| |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1637 ((|#2| $) 78)) (-4286 (((-112) $) 120)) (-2950 (((-3 $ "failed") $ $) 20)) (-3816 (((-112) $) 118)) (-3340 (((-112) $ (-781)) 110)) (-3245 (($ |#2|) 81)) (-3670 (($) 18 T CONST)) (-3444 (($ $) 137 (|has| |#2| (-315)))) (-1468 ((|#3| $ (-574)) 132)) (-1697 (((-3 (-574) "failed") $) 95 (|has| |#2| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 92 (|has| |#2| (-1051 (-417 (-574))))) (((-3 |#2| "failed") $) 89)) (-2209 (((-574) $) 94 (|has| |#2| (-1051 (-574)))) (((-417 (-574)) $) 91 (|has| |#2| (-1051 (-417 (-574))))) ((|#2| $) 90)) (-2668 (((-699 (-574)) (-1281 $)) 87 (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) 86 (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 85 (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 84) (((-699 |#2|) (-699 $)) 83) (((-699 |#2|) (-1281 $)) 82)) (-1950 (((-3 $ "failed") $) 37)) (-3584 (((-781) $) 138 (|has| |#2| (-566)))) (-2385 ((|#2| $ (-574) (-574)) 130)) (-1864 (((-654 |#2|) $) 103 (|has| $ (-6 -4456)))) (-3965 (((-112) $) 35)) (-2164 (((-781) $) 139 (|has| |#2| (-566)))) (-2337 (((-654 |#4|) $) 140 (|has| |#2| (-566)))) (-2190 (((-781) $) 126)) (-2199 (((-781) $) 127)) (-3735 (((-112) $ (-781)) 111)) (-3689 ((|#2| $) 73 (|has| |#2| (-6 (-4458 "*"))))) (-2294 (((-574) $) 122)) (-1373 (((-574) $) 124)) (-1712 (((-654 |#2|) $) 102 (|has| $ (-6 -4456)))) (-3759 (((-112) |#2| $) 100 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-1431 (((-574) $) 123)) (-3889 (((-574) $) 125)) (-2914 (($ (-654 (-654 |#2|))) 117)) (-2446 (($ (-1 |#2| |#2|) $) 107 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#2| |#2| |#2|) $ $) 134) (($ (-1 |#2| |#2|) $) 108)) (-1820 (((-654 (-654 |#2|)) $) 128)) (-2448 (((-112) $ (-781)) 112)) (-2568 (((-1172) $) 10)) (-2422 (((-3 $ "failed") $) 72 (|has| |#2| (-372)))) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ |#2|) 135 (|has| |#2| (-566)))) (-3124 (((-112) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) 99 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 98 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 97 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 96 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) 116)) (-3556 (((-112) $) 113)) (-3135 (($) 114)) (-2200 ((|#2| $ (-574) (-574) |#2|) 131) ((|#2| $ (-574) (-574)) 129)) (-3905 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-781)) 56) (($ $ (-654 (-1190)) (-654 (-781))) 49 (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) 48 (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) 47 (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) 46 (|has| |#2| (-911 (-1190)))) (($ $ (-781)) 44 (|has| |#2| (-239))) (($ $) 43 (|has| |#2| (-239)))) (-2087 ((|#2| $) 77)) (-3428 (($ (-654 |#2|)) 80)) (-4358 (((-112) $) 119)) (-1924 ((|#3| $) 79)) (-3646 ((|#2| $) 74 (|has| |#2| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#2|) $) 104 (|has| $ (-6 -4456))) (((-781) |#2| $) 101 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 115)) (-1988 ((|#4| $ (-574)) 133)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 93 (|has| |#2| (-1051 (-417 (-574))))) (($ |#2|) 88)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2935 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4456)))) (-2984 (((-112) $) 121)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-1 |#2| |#2|)) 55) (($ $ (-1 |#2| |#2|) (-781)) 54) (($ $ (-654 (-1190)) (-654 (-781))) 53 (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) 52 (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) 51 (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) 50 (|has| |#2| (-911 (-1190)))) (($ $ (-781)) 45 (|has| |#2| (-239))) (($ $) 42 (|has| |#2| (-239)))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#2|) 136 (|has| |#2| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 71 (|has| |#2| (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#2|) 142) (($ |#2| $) 141) ((|#4| $ |#4|) 76) ((|#3| |#3| $) 75)) (-2863 (((-781) $) 109 (|has| $ (-6 -4456)))))
+(((-1136 |#1| |#2| |#3| |#4|) (-141) (-781) (-1062) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1136))
+((-3245 (*1 *1 *2) (-12 (-4 *2 (-1062)) (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-654 *4)) (-4 *4 (-1062)) (-4 *1 (-1136 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *2 *5)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1062)))) (-2087 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1062)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1136 *3 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *2 *5)) (-4 *4 (-1062)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) (-2422 (*1 *1 *1) (|partial| -12 (-4 *1 (-1136 *2 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372)))))
+(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1066 |t#1| |t#1| |t#2| |t#3| |t#4|) (-421 |t#2|) (-386 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-727 |t#2|)) |%noBranch|) (-15 -3245 ($ |t#2|)) (-15 -3428 ($ (-654 |t#2|))) (-15 -1924 (|t#3| $)) (-15 -1637 (|t#2| $)) (-15 -2087 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4458 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3646 (|t#2| $)) (-15 -3689 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-372)) (PROGN (-15 -2422 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4458 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-235 $) |has| |#2| (-239)) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-386 |#2|) . T) ((-421 |#2|) . T) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 #1=(-574)) |has| |#2| (-649 (-574))) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-6 (-4458 "*")))) ((-649 #1#) |has| |#2| (-649 (-574))) ((-649 |#2|) . T) ((-727 |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-6 (-4458 "*")))) ((-736) . T) ((-911 (-1190)) |has| |#2| (-911 (-1190))) ((-1066 |#1| |#1| |#2| |#3| |#4|) . T) ((-1051 #0#) |has| |#2| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#2| (-1051 (-574))) ((-1051 |#2|) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T))
+((-1720 ((|#4| |#4|) 81)) (-3438 ((|#4| |#4|) 76)) (-3662 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2722 (-654 |#3|))) |#4| |#3|) 91)) (-4178 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1874 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
+(((-1137 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3438 (|#4| |#4|)) (-15 -1874 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1720 (|#4| |#4|)) (-15 -4178 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3662 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2722 (-654 |#3|))) |#4| |#3|))) (-315) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1137))
+((-3662 (*1 *2 *3 *4) (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4)))) (-5 *1 (-1137 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-4178 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1137 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1720 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1137 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1874 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1137 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3438 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1137 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
+(-10 -7 (-15 -3438 (|#4| |#4|)) (-15 -1874 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1720 (|#4| |#4|)) (-15 -4178 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3662 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2722 (-654 |#3|))) |#4| |#3|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 18)) (-4355 (((-654 |#2|) $) 174)) (-4194 (((-1186 $) $ |#2|) 60) (((-1186 |#1|) $) 49)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 116 (|has| |#1| (-566)))) (-2814 (($ $) 118 (|has| |#1| (-566)))) (-2425 (((-112) $) 120 (|has| |#1| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 |#2|)) 213)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4348 (($ $) NIL (|has| |#1| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) 167) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 |#2| "failed") $) NIL)) (-2209 ((|#1| $) 165) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) ((|#2| $) NIL)) (-2800 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1392 (($ $) 217)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) 90)) (-3872 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#1| (-920)))) (-3157 (($ $ |#1| (-541 |#2|) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3965 (((-112) $) 20)) (-2784 (((-781) $) 30)) (-4345 (($ (-1186 |#1|) |#2|) 54) (($ (-1186 $) |#2|) 71)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) 38)) (-4335 (($ |#1| (-541 |#2|)) 78) (($ $ |#2| (-781)) 58) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ |#2|) NIL)) (-2382 (((-541 |#2|) $) 205) (((-781) $ |#2|) 206) (((-654 (-781)) $ (-654 |#2|)) 207)) (-1541 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) 128)) (-4045 (((-3 |#2| "failed") $) 177)) (-1359 (($ $) 216)) (-1370 ((|#1| $) 43)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2568 (((-1172) $) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| |#2|) (|:| -2524 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 39)) (-1349 ((|#1| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 148 (|has| |#1| (-462)))) (-2874 (($ (-654 $)) 153 (|has| |#1| (-462))) (($ $ $) 138 (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-654 |#2|) (-654 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-654 |#2|) (-654 $)) 194)) (-1415 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3905 (($ $ |#2|) 215) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1784 (((-541 |#2|) $) 201) (((-781) $ |#2|) 196) (((-654 (-781)) $ (-654 |#2|)) 199)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1607 ((|#1| $) 134 (|has| |#1| (-462))) (($ $ |#2|) 137 (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 159) (($ (-574)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-3123 (((-654 |#1|) $) 162)) (-3344 ((|#1| $ (-541 |#2|)) 80) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) 87 T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) 123 (|has| |#1| (-566)))) (-2134 (($) 12 T CONST)) (-2146 (($) 14 T CONST)) (-3611 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2982 (((-112) $ $) 106)) (-3107 (($ $ |#1|) 132 (|has| |#1| (-372)))) (-3094 (($ $) 93) (($ $ $) 104)) (-3078 (($ $ $) 55)) (** (($ $ (-932)) 110) (($ $ (-781)) 109)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 96) (($ $ $) 72) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
+(((-1138 |#1| |#2|) (-960 |#1| (-541 |#2|) |#2|) (-1062) (-860)) (T -1138))
+NIL
+(-960 |#1| (-541 |#2|) |#2|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 |#2|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2364 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-4053 (((-963 |#1|) $ (-781)) NIL) (((-963 |#1|) $ (-781) (-781)) NIL)) (-3030 (((-112) $) NIL)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-781) $ |#2|) NIL) (((-781) $ |#2| (-781)) NIL)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2197 (((-112) $) NIL)) (-4335 (($ $ (-654 |#2|) (-654 (-541 |#2|))) NIL) (($ $ |#2| (-541 |#2|)) NIL) (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 63) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-2968 (($ $ |#2|) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-1627 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-417 (-574)))))) (-4344 (($ $ (-781)) 16)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1610 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (($ $ |#2| $) 106) (($ $ (-654 |#2|) (-654 $)) 99) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3905 (($ $ |#2|) 109) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1784 (((-541 |#2|) $) NIL)) (-1852 (((-1 (-1170 |#3|) |#3|) (-654 |#2|) (-654 (-1170 |#3|))) 87)) (-2402 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) 18)) (-2943 (((-872) $) 198) (($ (-574)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#2|) 70) (($ |#3|) 68)) (-3344 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL) ((|#3| $ (-781)) 43)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2521 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 52 T CONST)) (-2146 (($) 62 T CONST)) (-3611 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) 200 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 66)) (** (($ $ (-932)) NIL) (($ $ (-781)) 77) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 112 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ $ (-417 (-574))) 117 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 115 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1139 |#1| |#2| |#3|) (-13 (-750 |#1| |#2|) (-10 -8 (-15 -3344 (|#3| $ (-781))) (-15 -2943 ($ |#2|)) (-15 -2943 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1852 ((-1 (-1170 |#3|) |#3|) (-654 |#2|) (-654 (-1170 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $ |#2| |#1|)) (-15 -1627 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1062) (-860) (-960 |#1| (-541 |#2|) |#2|)) (T -1139))
+((-3344 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-960 *4 (-541 *5) *5)) (-5 *1 (-1139 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-860)))) (-2943 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-4 *2 (-860)) (-5 *1 (-1139 *3 *2 *4)) (-4 *4 (-960 *3 (-541 *2) *2)))) (-2943 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-4 *4 (-860)) (-5 *1 (-1139 *3 *4 *2)) (-4 *2 (-960 *3 (-541 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-860)) (-5 *1 (-1139 *3 *4 *2)) (-4 *2 (-960 *3 (-541 *4) *4)))) (-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1170 *7))) (-4 *6 (-860)) (-4 *7 (-960 *5 (-541 *6) *6)) (-4 *5 (-1062)) (-5 *2 (-1 (-1170 *7) *7)) (-5 *1 (-1139 *5 *6 *7)))) (-2968 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-4 *2 (-860)) (-5 *1 (-1139 *3 *2 *4)) (-4 *4 (-960 *3 (-541 *2) *2)))) (-1627 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1139 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062)) (-4 *3 (-860)) (-5 *1 (-1139 *4 *3 *5)) (-4 *5 (-960 *4 (-541 *3) *3)))))
+(-13 (-750 |#1| |#2|) (-10 -8 (-15 -3344 (|#3| $ (-781))) (-15 -2943 ($ |#2|)) (-15 -2943 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1852 ((-1 (-1170 |#3|) |#3|) (-654 |#2|) (-654 (-1170 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $ |#2| |#1|)) (-15 -1627 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2849 (((-112) $ $) 7)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |#4|)))) (-654 |#4|)) 86)) (-1886 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4355 (((-654 |#3|) $) 34)) (-3753 (((-112) $) 27)) (-3609 (((-112) $) 18 (|has| |#1| (-566)))) (-3456 (((-112) |#4| $) 102) (((-112) $) 98)) (-1621 ((|#4| |#4| $) 93)) (-4348 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 127)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) 28)) (-3340 (((-112) $ (-781)) 45)) (-2166 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3670 (($) 46 T CONST)) (-1800 (((-112) $) 23 (|has| |#1| (-566)))) (-1322 (((-112) $ $) 25 (|has| |#1| (-566)))) (-4133 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3172 (((-112) $) 26 (|has| |#1| (-566)))) (-2543 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3949 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) 37)) (-2209 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-2793 ((|#4| |#4| $) 90)) (-2158 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-4155 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2043 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2766 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1676 (-654 |#4|))) $) 106)) (-3321 (((-112) |#4| $) 137)) (-2308 (((-112) |#4| $) 134)) (-3857 (((-112) |#4| $) 138) (((-112) $) 135)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-2474 (((-112) |#4| $) 105) (((-112) $) 104)) (-2851 ((|#3| $) 35)) (-3735 (((-112) $ (-781)) 44)) (-1712 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 48)) (-2867 (((-654 |#3|) $) 33)) (-2570 (((-112) |#3| $) 32)) (-2448 (((-112) $ (-781)) 43)) (-2568 (((-1172) $) 10)) (-2176 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-2107 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 128)) (-3360 (((-3 |#4| "failed") $) 84)) (-4130 (((-654 $) |#4| $) 130)) (-1885 (((-3 (-112) (-654 $)) |#4| $) 133)) (-4027 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1731 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1750 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4153 (((-654 |#4|) $) 108)) (-2768 (((-112) |#4| $) 100) (((-112) $) 96)) (-2244 ((|#4| |#4| $) 91)) (-2430 (((-112) $ $) 111)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1406 (((-112) |#4| $) 101) (((-112) $) 97)) (-1443 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3043 (((-3 $ "failed") $ |#4|) 79)) (-4344 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-3124 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) 39)) (-3556 (((-112) $) 42)) (-3135 (($) 41)) (-1784 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1837 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-2175 (($ $ |#3|) 29)) (-2840 (($ $ |#3|) 31)) (-1496 (($ $) 89)) (-2427 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3530 (((-781) $) 77 (|has| |#3| (-377)))) (-2923 (((-112) $ $) 9)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1685 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2790 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2935 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2681 (((-654 |#3|) $) 82)) (-2897 (((-112) |#4| $) 136)) (-4321 (((-112) |#3| $) 81)) (-2982 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456)))))
+(((-1140 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -1140))
+NIL
+(-13 (-1122 |t#1| |t#2| |t#3| |t#4|) (-794 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-794 |#1| |#2| |#3| |#4|) . T) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1084 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1224 |#1| |#2| |#3| |#4|) . T) ((-1231) . T))
+((-1723 (((-654 |#2|) |#1|) 15)) (-4060 (((-654 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-654 |#2|) |#1|) 61)) (-2115 (((-654 |#2|) |#2| |#2| |#2|) 45) (((-654 |#2|) |#1|) 59)) (-1943 ((|#2| |#1|) 54)) (-1371 (((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4034 (((-654 |#2|) |#2| |#2|) 42) (((-654 |#2|) |#1|) 58)) (-3288 (((-654 |#2|) |#2| |#2| |#2| |#2|) 46) (((-654 |#2|) |#1|) 60)) (-3557 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-3537 ((|#2| |#2| |#2| |#2|) 51)) (-2323 ((|#2| |#2| |#2|) 50)) (-1671 ((|#2| |#2| |#2| |#2| |#2|) 52)))
+(((-1141 |#1| |#2|) (-10 -7 (-15 -1723 ((-654 |#2|) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1371 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4034 ((-654 |#2|) |#1|)) (-15 -2115 ((-654 |#2|) |#1|)) (-15 -3288 ((-654 |#2|) |#1|)) (-15 -4060 ((-654 |#2|) |#1|)) (-15 -4034 ((-654 |#2|) |#2| |#2|)) (-15 -2115 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -3288 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4060 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -3537 (|#2| |#2| |#2| |#2|)) (-15 -1671 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3557 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1257 |#2|) (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (T -1141))
+((-3557 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-1671 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-3537 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-2323 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-4060 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))) (-3288 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))) (-2115 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))) (-4034 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))) (-4060 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) (-3288 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-2 (|:| |solns| (-654 *5)) (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1141 *3 *5)) (-4 *3 (-1257 *5)))) (-1943 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-1723 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -1723 ((-654 |#2|) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1371 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4034 ((-654 |#2|) |#1|)) (-15 -2115 ((-654 |#2|) |#1|)) (-15 -3288 ((-654 |#2|) |#1|)) (-15 -4060 ((-654 |#2|) |#1|)) (-15 -4034 ((-654 |#2|) |#2| |#2|)) (-15 -2115 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -3288 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4060 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -3537 (|#2| |#2| |#2| |#2|)) (-15 -1671 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3557 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-2256 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|))))) 118) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190))) 117) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|)))) 115) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))) (-654 (-1190))) 113) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|)))) 97) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))) (-1190)) 98) (((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|))) 92) (((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)) (-1190)) 82)) (-3813 (((-654 (-654 (-324 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190))) 111) (((-654 (-324 |#1|)) (-417 (-963 |#1|)) (-1190)) 54)) (-4232 (((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-963 |#1|)) (-1190)) 122) (((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190)) 121)))
+(((-1142 |#1|) (-10 -7 (-15 -2256 ((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -2256 ((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)))) (-15 -2256 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -2256 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))))) (-15 -2256 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -2256 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))))) (-15 -2256 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190)))) (-15 -2256 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -3813 ((-654 (-324 |#1|)) (-417 (-963 |#1|)) (-1190))) (-15 -3813 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -4232 ((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -4232 ((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-963 |#1|)) (-1190)))) (-13 (-315) (-148))) (T -1142))
+((-4232 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1179 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1142 *5)))) (-4232 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-963 *5)))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1179 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1142 *5)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) (-5 *1 (-1142 *5)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) (-5 *1 (-1142 *5)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-963 *4))))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1142 *4)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-963 *5))))) (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1142 *5)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-963 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1142 *4)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1142 *5)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-302 (-417 (-963 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1142 *4)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-963 *5)))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1142 *5)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1142 *4)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1142 *5)))))
+(-10 -7 (-15 -2256 ((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -2256 ((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)))) (-15 -2256 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -2256 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))))) (-15 -2256 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -2256 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))))) (-15 -2256 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190)))) (-15 -2256 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -3813 ((-654 (-324 |#1|)) (-417 (-963 |#1|)) (-1190))) (-15 -3813 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -4232 ((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -4232 ((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-963 |#1|)) (-1190))))
+((-4242 (((-417 (-1186 (-324 |#1|))) (-1281 (-324 |#1|)) (-417 (-1186 (-324 |#1|))) (-574)) 36)) (-2074 (((-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|)))) 48)))
+(((-1143 |#1|) (-10 -7 (-15 -2074 ((-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))))) (-15 -4242 ((-417 (-1186 (-324 |#1|))) (-1281 (-324 |#1|)) (-417 (-1186 (-324 |#1|))) (-574)))) (-566)) (T -1143))
+((-4242 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-417 (-1186 (-324 *5)))) (-5 *3 (-1281 (-324 *5))) (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1143 *5)))) (-2074 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-417 (-1186 (-324 *3)))) (-4 *3 (-566)) (-5 *1 (-1143 *3)))))
+(-10 -7 (-15 -2074 ((-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))))) (-15 -4242 ((-417 (-1186 (-324 |#1|))) (-1281 (-324 |#1|)) (-417 (-1186 (-324 |#1|))) (-574))))
+((-1723 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1190))) 244) (((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1190)) 23) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1190)) 29) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|))) 28) (((-654 (-302 (-324 |#1|))) (-324 |#1|)) 24)))
+(((-1144 |#1|) (-10 -7 (-15 -1723 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -1723 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -1723 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1190))) (-15 -1723 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1190))) (-15 -1723 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1190))))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (T -1144))
+((-1723 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)) (-5 *3 (-654 (-302 (-324 *5)))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5)) (-5 *3 (-324 *5)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5)) (-5 *3 (-302 (-324 *5))))) (-1723 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)) (-5 *3 (-302 (-324 *4))))) (-1723 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)) (-5 *3 (-324 *4)))))
+(-10 -7 (-15 -1723 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -1723 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -1723 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1190))) (-15 -1723 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1190))) (-15 -1723 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1190)))))
+((-2485 ((|#2| |#2|) 28 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-1471 ((|#2| |#2|) 27 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1145 |#1| |#2|) (-10 -7 (-15 -1471 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2485 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -1471 (|#2| |#2|)) (-15 -2485 (|#2| |#2|))) |%noBranch|)) (-1231) (-13 (-614 (-574) |#1|) (-10 -7 (-6 -4456) (-6 -4457)))) (T -1145))
+((-2485 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1231)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4456) (-6 -4457)))))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1231)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4456) (-6 -4457)))))) (-2485 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-1145 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4456) (-6 -4457)))))) (-1471 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-1145 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4456) (-6 -4457)))))))
+(-10 -7 (-15 -1471 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2485 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -1471 (|#2| |#2|)) (-15 -2485 (|#2| |#2|))) |%noBranch|))
+((-2849 (((-112) $ $) NIL)) (-1832 (((-1178 3 |#1|) $) 141)) (-4352 (((-112) $) 101)) (-3334 (($ $ (-654 (-954 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 104) (($ (-654 (-954 |#1|))) 103) (((-654 (-954 |#1|)) $) 102)) (-2219 (((-112) $) 72)) (-3591 (($ $ (-954 |#1|)) 76) (($ $ (-654 |#1|)) 81) (($ $ (-781)) 83) (($ (-954 |#1|)) 77) (((-954 |#1|) $) 75)) (-2615 (((-2 (|:| -2953 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 139)) (-1907 (((-781) $) 53)) (-1884 (((-781) $) 52)) (-2125 (($ $ (-781) (-954 |#1|)) 67)) (-1474 (((-112) $) 111)) (-1353 (($ $ (-654 (-654 (-954 |#1|))) (-654 (-173)) (-173)) 118) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 120) (($ $ (-654 (-654 (-954 |#1|))) (-112) (-112)) 115) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 127) (($ (-654 (-654 (-954 |#1|)))) 116) (($ (-654 (-654 (-954 |#1|))) (-112) (-112)) 117) (((-654 (-654 (-954 |#1|))) $) 114)) (-2130 (($ (-654 $)) 56) (($ $ $) 57)) (-4093 (((-654 (-173)) $) 133)) (-2931 (((-654 (-954 |#1|)) $) 130)) (-4283 (((-654 (-654 (-173))) $) 132)) (-3586 (((-654 (-654 (-654 (-954 |#1|)))) $) NIL)) (-3595 (((-654 (-654 (-654 (-781)))) $) 131)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2341 (((-781) $ (-654 (-954 |#1|))) 65)) (-2879 (((-112) $) 84)) (-1538 (($ $ (-654 (-954 |#1|))) 86) (($ $ (-654 (-654 |#1|))) 92) (($ (-654 (-954 |#1|))) 87) (((-654 (-954 |#1|)) $) 85)) (-2250 (($) 48) (($ (-1178 3 |#1|)) 49)) (-3167 (($ $) 63)) (-4228 (((-654 $) $) 62)) (-2659 (($ (-654 $)) 59)) (-1532 (((-654 $) $) 61)) (-2943 (((-872) $) 146)) (-3871 (((-112) $) 94)) (-4308 (($ $ (-654 (-954 |#1|))) 96) (($ $ (-654 (-654 |#1|))) 99) (($ (-654 (-954 |#1|))) 97) (((-654 (-954 |#1|)) $) 95)) (-2690 (($ $) 140)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1146 |#1|) (-1147 |#1|) (-1062)) (T -1146))
+NIL
+(-1147 |#1|)
+((-2849 (((-112) $ $) 7)) (-1832 (((-1178 3 |#1|) $) 14)) (-4352 (((-112) $) 30)) (-3334 (($ $ (-654 (-954 |#1|))) 34) (($ $ (-654 (-654 |#1|))) 33) (($ (-654 (-954 |#1|))) 32) (((-654 (-954 |#1|)) $) 31)) (-2219 (((-112) $) 45)) (-3591 (($ $ (-954 |#1|)) 50) (($ $ (-654 |#1|)) 49) (($ $ (-781)) 48) (($ (-954 |#1|)) 47) (((-954 |#1|) $) 46)) (-2615 (((-2 (|:| -2953 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 16)) (-1907 (((-781) $) 59)) (-1884 (((-781) $) 60)) (-2125 (($ $ (-781) (-954 |#1|)) 51)) (-1474 (((-112) $) 22)) (-1353 (($ $ (-654 (-654 (-954 |#1|))) (-654 (-173)) (-173)) 29) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 28) (($ $ (-654 (-654 (-954 |#1|))) (-112) (-112)) 27) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 26) (($ (-654 (-654 (-954 |#1|)))) 25) (($ (-654 (-654 (-954 |#1|))) (-112) (-112)) 24) (((-654 (-654 (-954 |#1|))) $) 23)) (-2130 (($ (-654 $)) 58) (($ $ $) 57)) (-4093 (((-654 (-173)) $) 17)) (-2931 (((-654 (-954 |#1|)) $) 21)) (-4283 (((-654 (-654 (-173))) $) 18)) (-3586 (((-654 (-654 (-654 (-954 |#1|)))) $) 19)) (-3595 (((-654 (-654 (-654 (-781)))) $) 20)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2341 (((-781) $ (-654 (-954 |#1|))) 52)) (-2879 (((-112) $) 40)) (-1538 (($ $ (-654 (-954 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 43) (($ (-654 (-954 |#1|))) 42) (((-654 (-954 |#1|)) $) 41)) (-2250 (($) 62) (($ (-1178 3 |#1|)) 61)) (-3167 (($ $) 53)) (-4228 (((-654 $) $) 54)) (-2659 (($ (-654 $)) 56)) (-1532 (((-654 $) $) 55)) (-2943 (((-872) $) 12)) (-3871 (((-112) $) 35)) (-4308 (($ $ (-654 (-954 |#1|))) 39) (($ $ (-654 (-654 |#1|))) 38) (($ (-654 (-954 |#1|))) 37) (((-654 (-954 |#1|)) $) 36)) (-2690 (($ $) 15)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-1147 |#1|) (-141) (-1062)) (T -1147))
+((-2943 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-872)))) (-2250 (*1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) (-2250 (*1 *1 *2) (-12 (-5 *2 (-1178 3 *3)) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-2130 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-1532 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)))) (-4228 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)))) (-3167 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) (-2341 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-954 *4))) (-4 *1 (-1147 *4)) (-4 *4 (-1062)) (-5 *2 (-781)))) (-2125 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-954 *4)) (-4 *1 (-1147 *4)) (-4 *4 (-1062)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-954 *3)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-1538 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-1538 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-4308 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-4308 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-4308 (*1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-4308 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-1353 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-954 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1147 *5)) (-4 *5 (-1062)))) (-1353 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1147 *5)) (-4 *5 (-1062)))) (-1353 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-954 *4)))) (-5 *3 (-112)) (-4 *1 (-1147 *4)) (-4 *4 (-1062)))) (-1353 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) (-4 *1 (-1147 *4)) (-4 *4 (-1062)))) (-1353 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 *3)))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-1353 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-954 *4)))) (-5 *3 (-112)) (-4 *4 (-1062)) (-4 *1 (-1147 *4)))) (-1353 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-954 *3)))))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-654 (-781))))))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-654 (-954 *3))))))) (-4283 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-173)))))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-173))))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -2953 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781)))))) (-2690 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-1178 3 *3)))))
+(-13 (-1113) (-10 -8 (-15 -2250 ($)) (-15 -2250 ($ (-1178 3 |t#1|))) (-15 -1884 ((-781) $)) (-15 -1907 ((-781) $)) (-15 -2130 ($ (-654 $))) (-15 -2130 ($ $ $)) (-15 -2659 ($ (-654 $))) (-15 -1532 ((-654 $) $)) (-15 -4228 ((-654 $) $)) (-15 -3167 ($ $)) (-15 -2341 ((-781) $ (-654 (-954 |t#1|)))) (-15 -2125 ($ $ (-781) (-954 |t#1|))) (-15 -3591 ($ $ (-954 |t#1|))) (-15 -3591 ($ $ (-654 |t#1|))) (-15 -3591 ($ $ (-781))) (-15 -3591 ($ (-954 |t#1|))) (-15 -3591 ((-954 |t#1|) $)) (-15 -2219 ((-112) $)) (-15 -1538 ($ $ (-654 (-954 |t#1|)))) (-15 -1538 ($ $ (-654 (-654 |t#1|)))) (-15 -1538 ($ (-654 (-954 |t#1|)))) (-15 -1538 ((-654 (-954 |t#1|)) $)) (-15 -2879 ((-112) $)) (-15 -4308 ($ $ (-654 (-954 |t#1|)))) (-15 -4308 ($ $ (-654 (-654 |t#1|)))) (-15 -4308 ($ (-654 (-954 |t#1|)))) (-15 -4308 ((-654 (-954 |t#1|)) $)) (-15 -3871 ((-112) $)) (-15 -3334 ($ $ (-654 (-954 |t#1|)))) (-15 -3334 ($ $ (-654 (-654 |t#1|)))) (-15 -3334 ($ (-654 (-954 |t#1|)))) (-15 -3334 ((-654 (-954 |t#1|)) $)) (-15 -4352 ((-112) $)) (-15 -1353 ($ $ (-654 (-654 (-954 |t#1|))) (-654 (-173)) (-173))) (-15 -1353 ($ $ (-654 (-654 (-654 |t#1|))) (-654 (-173)) (-173))) (-15 -1353 ($ $ (-654 (-654 (-954 |t#1|))) (-112) (-112))) (-15 -1353 ($ $ (-654 (-654 (-654 |t#1|))) (-112) (-112))) (-15 -1353 ($ (-654 (-654 (-954 |t#1|))))) (-15 -1353 ($ (-654 (-654 (-954 |t#1|))) (-112) (-112))) (-15 -1353 ((-654 (-654 (-954 |t#1|))) $)) (-15 -1474 ((-112) $)) (-15 -2931 ((-654 (-954 |t#1|)) $)) (-15 -3595 ((-654 (-654 (-654 (-781)))) $)) (-15 -3586 ((-654 (-654 (-654 (-954 |t#1|)))) $)) (-15 -4283 ((-654 (-654 (-173))) $)) (-15 -4093 ((-654 (-173)) $)) (-15 -2615 ((-2 (|:| -2953 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $)) (-15 -2690 ($ $)) (-15 -1832 ((-1178 3 |t#1|) $)) (-15 -2943 ((-872) $))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 184) (($ (-1195)) NIL) (((-1195) $) 7)) (-2123 (((-112) $ (|[\|\|]| (-534))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-686))) 27) (((-112) $ (|[\|\|]| (-1291))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-616))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1128))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-691))) 55) (((-112) $ (|[\|\|]| (-527))) 59) (((-112) $ (|[\|\|]| (-1079))) 63) (((-112) $ (|[\|\|]| (-1292))) 67) (((-112) $ (|[\|\|]| (-535))) 71) (((-112) $ (|[\|\|]| (-1164))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-681))) 83) (((-112) $ (|[\|\|]| (-319))) 87) (((-112) $ (|[\|\|]| (-1049))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-983))) 99) (((-112) $ (|[\|\|]| (-1086))) 103) (((-112) $ (|[\|\|]| (-1103))) 107) (((-112) $ (|[\|\|]| (-1109))) 111) (((-112) $ (|[\|\|]| (-636))) 115) (((-112) $ (|[\|\|]| (-1180))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-488))) 131) (((-112) $ (|[\|\|]| (-602))) 135) (((-112) $ (|[\|\|]| (-516))) 139) (((-112) $ (|[\|\|]| (-1172))) 143) (((-112) $ (|[\|\|]| (-574))) 147)) (-2923 (((-112) $ $) NIL)) (-1331 (((-534) $) 20) (((-220) $) 24) (((-686) $) 28) (((-1291) $) 32) (((-139) $) 36) (((-616) $) 40) (((-134) $) 44) (((-1128) $) 48) (((-96) $) 52) (((-691) $) 56) (((-527) $) 60) (((-1079) $) 64) (((-1292) $) 68) (((-535) $) 72) (((-1164) $) 76) (((-155) $) 80) (((-681) $) 84) (((-319) $) 88) (((-1049) $) 92) (((-182) $) 96) (((-983) $) 100) (((-1086) $) 104) (((-1103) $) 108) (((-1109) $) 112) (((-636) $) 116) (((-1180) $) 120) (((-157) $) 124) (((-138) $) 128) (((-488) $) 132) (((-602) $) 136) (((-516) $) 140) (((-1172) $) 144) (((-574) $) 148)) (-2982 (((-112) $ $) NIL)))
+(((-1148) (-1150)) (T -1148))
+NIL
+(-1150)
+((-3736 (((-654 (-1195)) (-1172)) 9)))
+(((-1149) (-10 -7 (-15 -3736 ((-654 (-1195)) (-1172))))) (T -1149))
+((-3736 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-1195))) (-5 *1 (-1149)))))
+(-10 -7 (-15 -3736 ((-654 (-1195)) (-1172))))
+((-2849 (((-112) $ $) 7)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-1195)) 17) (((-1195) $) 16)) (-2123 (((-112) $ (|[\|\|]| (-534))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-686))) 81) (((-112) $ (|[\|\|]| (-1291))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-616))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1128))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-691))) 67) (((-112) $ (|[\|\|]| (-527))) 65) (((-112) $ (|[\|\|]| (-1079))) 63) (((-112) $ (|[\|\|]| (-1292))) 61) (((-112) $ (|[\|\|]| (-535))) 59) (((-112) $ (|[\|\|]| (-1164))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-681))) 53) (((-112) $ (|[\|\|]| (-319))) 51) (((-112) $ (|[\|\|]| (-1049))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-983))) 45) (((-112) $ (|[\|\|]| (-1086))) 43) (((-112) $ (|[\|\|]| (-1103))) 41) (((-112) $ (|[\|\|]| (-1109))) 39) (((-112) $ (|[\|\|]| (-636))) 37) (((-112) $ (|[\|\|]| (-1180))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-488))) 29) (((-112) $ (|[\|\|]| (-602))) 27) (((-112) $ (|[\|\|]| (-516))) 25) (((-112) $ (|[\|\|]| (-1172))) 23) (((-112) $ (|[\|\|]| (-574))) 21)) (-2923 (((-112) $ $) 9)) (-1331 (((-534) $) 84) (((-220) $) 82) (((-686) $) 80) (((-1291) $) 78) (((-139) $) 76) (((-616) $) 74) (((-134) $) 72) (((-1128) $) 70) (((-96) $) 68) (((-691) $) 66) (((-527) $) 64) (((-1079) $) 62) (((-1292) $) 60) (((-535) $) 58) (((-1164) $) 56) (((-155) $) 54) (((-681) $) 52) (((-319) $) 50) (((-1049) $) 48) (((-182) $) 46) (((-983) $) 44) (((-1086) $) 42) (((-1103) $) 40) (((-1109) $) 38) (((-636) $) 36) (((-1180) $) 34) (((-157) $) 32) (((-138) $) 30) (((-488) $) 28) (((-602) $) 26) (((-516) $) 24) (((-1172) $) 22) (((-574) $) 20)) (-2982 (((-112) $ $) 6)))
(((-1150) (-141)) (T -1150))
-((-1643 (*1 *1 *1) (-4 *1 (-1150))) (-2627 (*1 *1 *1) (-4 *1 (-1150))) (-1538 (*1 *1 *1 *1) (-4 *1 (-1150))) (-2729 (*1 *1 *1 *1) (-4 *1 (-1150))) (-3149 (*1 *1 *1 *1) (-4 *1 (-1150))) (-2577 (*1 *1 *1 *1) (-4 *1 (-1150))) (-4276 (*1 *1 *1 *1) (-4 *1 (-1150))) (-1460 (*1 *1 *1 *1) (-4 *1 (-1150))) (-1973 (*1 *1 *1) (-4 *1 (-1150))) (-3919 (*1 *1 *1 *1) (-4 *1 (-1150))) (-4276 (*1 *1 *1) (-4 *1 (-1150))) (-2700 (*1 *1 *1) (-4 *1 (-1150))))
-(-13 (-10 -8 (-15 -2700 ($ $)) (-15 -4276 ($ $)) (-15 -3919 ($ $ $)) (-15 -1973 ($ $)) (-15 -1460 ($ $ $)) (-15 -4276 ($ $ $)) (-15 -2577 ($ $ $)) (-15 -3149 ($ $ $)) (-15 -2729 ($ $ $)) (-15 -1538 ($ $ $)) (-15 -2627 ($ $)) (-15 -1643 ($ $))))
-((-2846 (((-112) $ $) 44)) (-3080 ((|#1| $) 17)) (-2363 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3850 (((-112) $) 19)) (-2581 (($ $ |#1|) 30)) (-2061 (($ $ (-112)) 32)) (-3151 (($ $) 33)) (-1545 (($ $ |#2|) 31)) (-4347 (((-1170) $) NIL)) (-3383 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3964 (((-1131) $) NIL)) (-1841 (((-112) $) 16)) (-1613 (($) 13)) (-3164 (($ $) 29)) (-2953 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) 23) (((-652 $) (-652 (-2 (|:| |val| |#1|) (|:| -4090 |#2|)))) 26) (((-652 $) |#1| (-652 |#2|)) 28)) (-2260 ((|#2| $) 18)) (-2940 (((-870) $) 53)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 42)))
-(((-1151 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -1613 ($)) (-15 -1841 ((-112) $)) (-15 -3080 (|#1| $)) (-15 -2260 (|#2| $)) (-15 -3850 ((-112) $)) (-15 -2953 ($ |#1| |#2| (-112))) (-15 -2953 ($ |#1| |#2|)) (-15 -2953 ($ (-2 (|:| |val| |#1|) (|:| -4090 |#2|)))) (-15 -2953 ((-652 $) (-652 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))))) (-15 -2953 ((-652 $) |#1| (-652 |#2|))) (-15 -3164 ($ $)) (-15 -2581 ($ $ |#1|)) (-15 -1545 ($ $ |#2|)) (-15 -2061 ($ $ (-112))) (-15 -3151 ($ $)) (-15 -3383 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2363 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1111) (-34)) (-13 (-1111) (-34))) (T -1151))
-((-1613 (*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-3080 (*1 *2 *1) (-12 (-4 *2 (-13 (-1111) (-34))) (-5 *1 (-1151 *2 *3)) (-4 *3 (-13 (-1111) (-34))))) (-2260 (*1 *2 *1) (-12 (-4 *2 (-13 (-1111) (-34))) (-5 *1 (-1151 *3 *2)) (-4 *3 (-13 (-1111) (-34))))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-2953 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-2953 (*1 *1 *2 *3) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4090 *4))) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1151 *3 *4)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| |val| *4) (|:| -4090 *5)))) (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-652 (-1151 *4 *5))) (-5 *1 (-1151 *4 *5)))) (-2953 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *5)) (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-652 (-1151 *3 *5))) (-5 *1 (-1151 *3 *5)) (-4 *3 (-13 (-1111) (-34))))) (-3164 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-2581 (*1 *1 *1 *2) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-1545 (*1 *1 *1 *2) (-12 (-5 *1 (-1151 *3 *2)) (-4 *3 (-13 (-1111) (-34))) (-4 *2 (-13 (-1111) (-34))))) (-2061 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-3151 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-3383 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1111) (-34))) (-4 *6 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1151 *5 *6)))) (-2363 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1151 *4 *5)) (-4 *4 (-13 (-1111) (-34))))))
-(-13 (-1111) (-10 -8 (-15 -1613 ($)) (-15 -1841 ((-112) $)) (-15 -3080 (|#1| $)) (-15 -2260 (|#2| $)) (-15 -3850 ((-112) $)) (-15 -2953 ($ |#1| |#2| (-112))) (-15 -2953 ($ |#1| |#2|)) (-15 -2953 ($ (-2 (|:| |val| |#1|) (|:| -4090 |#2|)))) (-15 -2953 ((-652 $) (-652 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))))) (-15 -2953 ((-652 $) |#1| (-652 |#2|))) (-15 -3164 ($ $)) (-15 -2581 ($ $ |#1|)) (-15 -1545 ($ $ |#2|)) (-15 -2061 ($ $ (-112))) (-15 -3151 ($ $)) (-15 -3383 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2363 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-2846 (((-112) $ $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-3080 (((-1151 |#1| |#2|) $) 27)) (-1331 (($ $) 91)) (-2350 (((-112) (-1151 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3754 (($ $ $ (-652 (-1151 |#1| |#2|))) 108) (($ $ $ (-652 (-1151 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1631 (((-112) $ (-779)) NIL)) (-2506 (((-1151 |#1| |#2|) $ (-1151 |#1| |#2|)) 46 (|has| $ (-6 -4455)))) (-3140 (((-1151 |#1| |#2|) $ "value" (-1151 |#1| |#2|)) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 44 (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-4071 (((-652 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) $) 95)) (-3554 (($ (-1151 |#1| |#2|) $) 42)) (-3332 (($ (-1151 |#1| |#2|) $) 34)) (-1863 (((-652 (-1151 |#1| |#2|)) $) NIL (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 54)) (-2254 (((-112) (-1151 |#1| |#2|) $) 97)) (-1463 (((-112) $ $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 (-1151 |#1| |#2|)) $) 58 (|has| $ (-6 -4454)))) (-1864 (((-112) (-1151 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-1151 |#1| |#2|) (-1111))))) (-2442 (($ (-1 (-1151 |#1| |#2|) (-1151 |#1| |#2|)) $) 50 (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-1151 |#1| |#2|) (-1151 |#1| |#2|)) $) 49)) (-1985 (((-112) $ (-779)) NIL)) (-3505 (((-652 (-1151 |#1| |#2|)) $) 56)) (-2087 (((-112) $) 45)) (-4347 (((-1170) $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-3964 (((-1131) $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-4173 (((-3 $ "failed") $) 89)) (-1612 (((-112) (-1 (-112) (-1151 |#1| |#2|)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-1151 |#1| |#2|)))) NIL (-12 (|has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))) (|has| (-1151 |#1| |#2|) (-1111)))) (($ $ (-300 (-1151 |#1| |#2|))) NIL (-12 (|has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))) (|has| (-1151 |#1| |#2|) (-1111)))) (($ $ (-1151 |#1| |#2|) (-1151 |#1| |#2|)) NIL (-12 (|has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))) (|has| (-1151 |#1| |#2|) (-1111)))) (($ $ (-652 (-1151 |#1| |#2|)) (-652 (-1151 |#1| |#2|))) NIL (-12 (|has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))) (|has| (-1151 |#1| |#2|) (-1111))))) (-3776 (((-112) $ $) 53)) (-1841 (((-112) $) 24)) (-1613 (($) 26)) (-2196 (((-1151 |#1| |#2|) $ "value") NIL)) (-2157 (((-572) $ $) NIL)) (-3315 (((-112) $) 47)) (-3973 (((-779) (-1 (-112) (-1151 |#1| |#2|)) $) NIL (|has| $ (-6 -4454))) (((-779) (-1151 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-1151 |#1| |#2|) (-1111))))) (-3164 (($ $) 52)) (-2953 (($ (-1151 |#1| |#2|)) 10) (($ |#1| |#2| (-652 $)) 13) (($ |#1| |#2| (-652 (-1151 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-652 |#2|)) 18)) (-2665 (((-652 |#2|) $) 96)) (-2940 (((-870) $) 87 (|has| (-1151 |#1| |#2|) (-621 (-870))))) (-2065 (((-652 $) $) 31)) (-2804 (((-112) $ $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-4379 (((-112) $ $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-4380 (((-112) (-1 (-112) (-1151 |#1| |#2|)) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 70 (|has| (-1151 |#1| |#2|) (-1111)))) (-2860 (((-779) $) 64 (|has| $ (-6 -4454)))))
-(((-1152 |#1| |#2|) (-13 (-1021 (-1151 |#1| |#2|)) (-10 -8 (-6 -4455) (-6 -4454) (-15 -4173 ((-3 $ "failed") $)) (-15 -1331 ($ $)) (-15 -2953 ($ (-1151 |#1| |#2|))) (-15 -2953 ($ |#1| |#2| (-652 $))) (-15 -2953 ($ |#1| |#2| (-652 (-1151 |#1| |#2|)))) (-15 -2953 ($ |#1| |#2| |#1| (-652 |#2|))) (-15 -2665 ((-652 |#2|) $)) (-15 -4071 ((-652 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) $)) (-15 -2254 ((-112) (-1151 |#1| |#2|) $)) (-15 -2350 ((-112) (-1151 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3332 ($ (-1151 |#1| |#2|) $)) (-15 -3554 ($ (-1151 |#1| |#2|) $)) (-15 -3754 ($ $ $ (-652 (-1151 |#1| |#2|)))) (-15 -3754 ($ $ $ (-652 (-1151 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1111) (-34)) (-13 (-1111) (-34))) (T -1152))
-((-4173 (*1 *1 *1) (|partial| -12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-1331 (*1 *1 *1) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))) (-2953 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-652 (-1152 *2 *3))) (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-2953 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-652 (-1151 *2 *3))) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))) (-5 *1 (-1152 *2 *3)))) (-2953 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-13 (-1111) (-34))) (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34))))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-652 *4)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-2254 (*1 *2 *3 *1) (-12 (-5 *3 (-1151 *4 *5)) (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *4 *5)))) (-2350 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1151 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1111) (-34))) (-4 *6 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *5 *6)))) (-3332 (*1 *1 *2 *1) (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))) (-3554 (*1 *1 *2 *1) (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))) (-3754 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-652 (-1151 *3 *4))) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))) (-3754 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1151 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34))) (-5 *1 (-1152 *4 *5)))))
-(-13 (-1021 (-1151 |#1| |#2|)) (-10 -8 (-6 -4455) (-6 -4454) (-15 -4173 ((-3 $ "failed") $)) (-15 -1331 ($ $)) (-15 -2953 ($ (-1151 |#1| |#2|))) (-15 -2953 ($ |#1| |#2| (-652 $))) (-15 -2953 ($ |#1| |#2| (-652 (-1151 |#1| |#2|)))) (-15 -2953 ($ |#1| |#2| |#1| (-652 |#2|))) (-15 -2665 ((-652 |#2|) $)) (-15 -4071 ((-652 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) $)) (-15 -2254 ((-112) (-1151 |#1| |#2|) $)) (-15 -2350 ((-112) (-1151 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3332 ($ (-1151 |#1| |#2|) $)) (-15 -3554 ($ (-1151 |#1| |#2|) $)) (-15 -3754 ($ $ $ (-652 (-1151 |#1| |#2|)))) (-15 -3754 ($ $ $ (-652 (-1151 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3054 (($ $) NIL)) (-1635 ((|#2| $) NIL)) (-4136 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2818 (($ (-697 |#2|)) 56)) (-4210 (((-112) $) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-3355 (($ |#2|) 14)) (-3281 (($) NIL T CONST)) (-3076 (($ $) 69 (|has| |#2| (-313)))) (-4172 (((-244 |#1| |#2|) $ (-572)) 42)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 |#2| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) ((|#2| $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) 83)) (-3581 (((-779) $) 71 (|has| |#2| (-564)))) (-2380 ((|#2| $ (-572) (-572)) NIL)) (-1863 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1886 (((-112) $) NIL)) (-4430 (((-779) $) 73 (|has| |#2| (-564)))) (-2313 (((-652 (-244 |#1| |#2|)) $) 77 (|has| |#2| (-564)))) (-2187 (((-779) $) NIL)) (-3787 (($ |#2|) 25)) (-2195 (((-779) $) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3283 ((|#2| $) 67 (|has| |#2| (-6 (-4456 "*"))))) (-3822 (((-572) $) NIL)) (-3533 (((-572) $) NIL)) (-1344 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2795 (((-572) $) NIL)) (-2857 (((-572) $) NIL)) (-2911 (($ (-652 (-652 |#2|))) 37)) (-2442 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4393 (((-652 (-652 |#2|)) $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-1982 (((-3 $ "failed") $) 80 (|has| |#2| (-370)))) (-3964 (((-1131) $) NIL)) (-2834 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564)))) (-1612 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ (-572) (-572) |#2|) NIL) ((|#2| $ (-572) (-572)) NIL)) (-3902 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-4107 ((|#2| $) NIL)) (-1640 (($ (-652 |#2|)) 50)) (-2464 (((-112) $) NIL)) (-1746 (((-244 |#1| |#2|) $) NIL)) (-2513 ((|#2| $) 65 (|has| |#2| (-6 (-4456 "*"))))) (-3973 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3164 (($ $) NIL)) (-1835 (((-544) $) 89 (|has| |#2| (-622 (-544))))) (-1752 (((-244 |#1| |#2|) $ (-572)) 44)) (-2940 (((-870) $) 47) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#2| (-1049 (-415 (-572))))) (($ |#2|) NIL) (((-697 |#2|) $) 52)) (-4249 (((-779)) 23 T CONST)) (-4379 (((-112) $ $) NIL)) (-4380 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-4384 (((-112) $) NIL)) (-2131 (($) 16 T CONST)) (-2143 (($) 21 T CONST)) (-3608 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) 63) (($ $ (-572)) 82 (|has| |#2| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-244 |#1| |#2|) $ (-244 |#1| |#2|)) 59) (((-244 |#1| |#2|) (-244 |#1| |#2|) $) 61)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1153 |#1| |#2|) (-13 (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-621 (-697 |#2|)) (-10 -8 (-15 -3787 ($ |#2|)) (-15 -3054 ($ $)) (-15 -2818 ($ (-697 |#2|))) (IF (|has| |#2| (-6 (-4456 "*"))) (-6 -4443) |%noBranch|) (IF (|has| |#2| (-6 (-4456 "*"))) (IF (|has| |#2| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|))) (-779) (-1060)) (T -1153))
-((-3787 (*1 *1 *2) (-12 (-5 *1 (-1153 *3 *2)) (-14 *3 (-779)) (-4 *2 (-1060)))) (-3054 (*1 *1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-14 *2 (-779)) (-4 *3 (-1060)))) (-2818 (*1 *1 *2) (-12 (-5 *2 (-697 *4)) (-4 *4 (-1060)) (-5 *1 (-1153 *3 *4)) (-14 *3 (-779)))))
-(-13 (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-621 (-697 |#2|)) (-10 -8 (-15 -3787 ($ |#2|)) (-15 -3054 ($ $)) (-15 -2818 ($ (-697 |#2|))) (IF (|has| |#2| (-6 (-4456 "*"))) (-6 -4443) |%noBranch|) (IF (|has| |#2| (-6 (-4456 "*"))) (IF (|has| |#2| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|)))
-((-2525 (($ $) 19)) (-3214 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3730 (((-112) $ $) 24)) (-1811 (($ $) 17)) (-2196 (((-145) $ (-572) (-145)) NIL) (((-145) $ (-572)) NIL) (($ $ (-1246 (-572))) NIL) (($ $ $) 31)) (-2940 (($ (-145)) 29) (((-870) $) NIL)))
-(((-1154 |#1|) (-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -2196 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| (-142))) (-15 -3214 (|#1| |#1| (-145))) (-15 -2940 (|#1| (-145))) (-15 -3730 ((-112) |#1| |#1|)) (-15 -2525 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 -2196 (|#1| |#1| (-1246 (-572)))) (-15 -2196 ((-145) |#1| (-572))) (-15 -2196 ((-145) |#1| (-572) (-145)))) (-1155)) (T -1154))
-NIL
-(-10 -8 (-15 -2940 ((-870) |#1|)) (-15 -2196 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| (-142))) (-15 -3214 (|#1| |#1| (-145))) (-15 -2940 (|#1| (-145))) (-15 -3730 ((-112) |#1| |#1|)) (-15 -2525 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 -2196 (|#1| |#1| (-1246 (-572)))) (-15 -2196 ((-145) |#1| (-572))) (-15 -2196 ((-145) |#1| (-572) (-145))))
-((-2846 (((-112) $ $) 19 (|has| (-145) (-1111)))) (-2179 (($ $) 123)) (-2525 (($ $) 124)) (-3214 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3176 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-3708 (((-112) $ $) 121)) (-3688 (((-112) $ $ (-572)) 120)) (-3861 (((-652 $) $ (-145)) 113) (((-652 $) $ (-142)) 112)) (-2852 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-858)))) (-3314 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| (-145) (-858)) (|has| $ (-6 -4455))))) (-2766 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-858)))) (-1631 (((-112) $ (-779)) 8)) (-3140 (((-145) $ (-572) (-145)) 53 (|has| $ (-6 -4455))) (((-145) $ (-1246 (-572)) (-145)) 60 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2612 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3133 (($ $) 93 (|has| $ (-6 -4455)))) (-4421 (($ $) 103)) (-2219 (($ $ (-1246 (-572)) $) 117)) (-2086 (($ $) 80 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ (-145) $) 79 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4454)))) (-2865 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4454)))) (-2453 (((-145) $ (-572) (-145)) 54 (|has| $ (-6 -4455)))) (-2380 (((-145) $ (-572)) 52)) (-3730 (((-112) $ $) 122)) (-1439 (((-572) (-1 (-112) (-145)) $) 100) (((-572) (-145) $) 99 (|has| (-145) (-1111))) (((-572) (-145) $ (-572)) 98 (|has| (-145) (-1111))) (((-572) $ $ (-572)) 116) (((-572) (-142) $ (-572)) 115)) (-1863 (((-652 (-145)) $) 31 (|has| $ (-6 -4454)))) (-3787 (($ (-779) (-145)) 70)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 44 (|has| (-572) (-858)))) (-3654 (($ $ $) 90 (|has| (-145) (-858)))) (-1767 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-858)))) (-1344 (((-652 (-145)) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 45 (|has| (-572) (-858)))) (-2427 (($ $ $) 89 (|has| (-145) (-858)))) (-1324 (((-112) $ $ (-145)) 118)) (-2678 (((-779) $ $ (-145)) 119)) (-2442 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3052 (($ $) 125)) (-1811 (($ $) 126)) (-1985 (((-112) $ (-779)) 10)) (-2626 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-4347 (((-1170) $) 22 (|has| (-145) (-1111)))) (-1593 (($ (-145) $ (-572)) 62) (($ $ $ (-572)) 61)) (-1986 (((-652 (-572)) $) 47)) (-1370 (((-112) (-572) $) 48)) (-3964 (((-1131) $) 21 (|has| (-145) (-1111)))) (-2912 (((-145) $) 43 (|has| (-572) (-858)))) (-3770 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2476 (($ $ (-145)) 42 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-145)))) 27 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) 26 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-145)) (-652 (-145))) 24 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-4110 (((-652 (-145)) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 (((-145) $ (-572) (-145)) 51) (((-145) $ (-572)) 50) (($ $ (-1246 (-572))) 71) (($ $ $) 105)) (-2835 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-3973 (((-779) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4454))) (((-779) (-145) $) 29 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-4095 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3164 (($ $) 13)) (-1835 (((-544) $) 81 (|has| (-145) (-622 (-544))))) (-2953 (($ (-652 (-145))) 72)) (-4155 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-2940 (($ (-145)) 114) (((-870) $) 18 (|has| (-145) (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| (-145) (-1111)))) (-4380 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) 87 (|has| (-145) (-858)))) (-3014 (((-112) $ $) 86 (|has| (-145) (-858)))) (-2978 (((-112) $ $) 20 (|has| (-145) (-1111)))) (-3026 (((-112) $ $) 88 (|has| (-145) (-858)))) (-3003 (((-112) $ $) 85 (|has| (-145) (-858)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-1155) (-141)) (T -1155))
-((-1811 (*1 *1 *1) (-4 *1 (-1155))) (-3052 (*1 *1 *1) (-4 *1 (-1155))) (-2525 (*1 *1 *1) (-4 *1 (-1155))) (-2179 (*1 *1 *1) (-4 *1 (-1155))) (-3730 (*1 *2 *1 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-112)))) (-3708 (*1 *2 *1 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-112)))) (-3688 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-572)) (-5 *2 (-112)))) (-2678 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-145)) (-5 *2 (-779)))) (-1324 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2219 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1246 (-572))))) (-1439 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-572)))) (-1439 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-572)) (-5 *3 (-142)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1155)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-652 *1)) (-4 *1 (-1155)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-652 *1)) (-4 *1 (-1155)))) (-3214 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))) (-3214 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142)))) (-2626 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))) (-2626 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142)))) (-2612 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))) (-2612 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142)))) (-2196 (*1 *1 *1 *1) (-4 *1 (-1155))))
-(-13 (-19 (-145)) (-10 -8 (-15 -1811 ($ $)) (-15 -3052 ($ $)) (-15 -2525 ($ $)) (-15 -2179 ($ $)) (-15 -3730 ((-112) $ $)) (-15 -3708 ((-112) $ $)) (-15 -3688 ((-112) $ $ (-572))) (-15 -2678 ((-779) $ $ (-145))) (-15 -1324 ((-112) $ $ (-145))) (-15 -2219 ($ $ (-1246 (-572)) $)) (-15 -1439 ((-572) $ $ (-572))) (-15 -1439 ((-572) (-142) $ (-572))) (-15 -2940 ($ (-145))) (-15 -3861 ((-652 $) $ (-145))) (-15 -3861 ((-652 $) $ (-142))) (-15 -3214 ($ $ (-145))) (-15 -3214 ($ $ (-142))) (-15 -2626 ($ $ (-145))) (-15 -2626 ($ $ (-142))) (-15 -2612 ($ $ (-145))) (-15 -2612 ($ $ (-142))) (-15 -2196 ($ $ $))))
-(((-34) . T) ((-102) -2813 (|has| (-145) (-1111)) (|has| (-145) (-858))) ((-621 (-870)) -2813 (|has| (-145) (-1111)) (|has| (-145) (-858)) (|has| (-145) (-621 (-870)))) ((-152 #0=(-145)) . T) ((-622 (-544)) |has| (-145) (-622 (-544))) ((-292 #1=(-572) #0#) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #1# #0#) . T) ((-315 #0#) -12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))) ((-380 #0#) . T) ((-497 #0#) . T) ((-612 #1# #0#) . T) ((-522 #0# #0#) -12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))) ((-659 #0#) . T) ((-19 #0#) . T) ((-858) |has| (-145) (-858)) ((-1111) -2813 (|has| (-145) (-1111)) (|has| (-145) (-858))) ((-1229) . T))
-((-2841 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-779)) 112)) (-1948 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779)) 61)) (-3666 (((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-779)) 97)) (-3525 (((-779) (-652 |#4|) (-652 |#5|)) 30)) (-1592 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779)) 63) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779) (-112)) 65)) (-4189 (((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112)) 85)) (-1835 (((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) 90)) (-4234 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 60)) (-2478 (((-779) (-652 |#4|) (-652 |#5|)) 21)))
-(((-1156 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2478 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -3525 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -4234 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -1948 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779))) (-15 -1948 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779) (-112))) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779))) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -4189 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -4189 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2841 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-779))) (-15 -1835 ((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) (-15 -3666 ((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-779)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1120 |#1| |#2| |#3| |#4|)) (T -1156))
-((-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -4090 *9)))) (-5 *4 (-779)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-1284)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -4090 *8))) (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1120 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1170)) (-5 *1 (-1156 *4 *5 *6 *7 *8)))) (-2841 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-652 *11)) (|:| |todo| (-652 (-2 (|:| |val| *3) (|:| -4090 *11)))))) (-5 *6 (-779)) (-5 *2 (-652 (-2 (|:| |val| (-652 *10)) (|:| -4090 *11)))) (-5 *3 (-652 *10)) (-5 *4 (-652 *11)) (-4 *10 (-1076 *7 *8 *9)) (-4 *11 (-1120 *7 *8 *9 *10)) (-4 *7 (-460)) (-4 *8 (-801)) (-4 *9 (-858)) (-5 *1 (-1156 *7 *8 *9 *10 *11)))) (-4189 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))) (-4189 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))) (-1592 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))) (-1592 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1156 *6 *7 *8 *3 *4)) (-4 *4 (-1120 *6 *7 *8 *3)))) (-1592 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-779)) (-5 *6 (-112)) (-4 *7 (-460)) (-4 *8 (-801)) (-4 *9 (-858)) (-4 *3 (-1076 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1156 *7 *8 *9 *3 *4)) (-4 *4 (-1120 *7 *8 *9 *3)))) (-1948 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))) (-1948 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1156 *6 *7 *8 *3 *4)) (-4 *4 (-1120 *6 *7 *8 *3)))) (-4234 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4)))))) (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2478 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -3525 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -4234 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -1948 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779))) (-15 -1948 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779) (-112))) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-779))) (-15 -1592 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -4189 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -4189 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2841 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))))) (-779))) (-15 -1835 ((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|)))) (-15 -3666 ((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -4090 |#5|))) (-779))))
-((-2846 (((-112) $ $) NIL)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |#4|)))) (-652 |#4|)) NIL)) (-1740 (((-652 $) (-652 |#4|)) 124) (((-652 $) (-652 |#4|) (-112)) 125) (((-652 $) (-652 |#4|) (-112) (-112)) 123) (((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4353 (((-652 |#3|) $) NIL)) (-1544 (((-112) $) NIL)) (-2639 (((-112) $) NIL (|has| |#1| (-564)))) (-2621 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3558 ((|#4| |#4| $) NIL)) (-3517 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 97)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2162 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 75)) (-3281 (($) NIL T CONST)) (-2390 (((-112) $) 29 (|has| |#1| (-564)))) (-2783 (((-112) $ $) NIL (|has| |#1| (-564)))) (-3937 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1616 (((-112) $) NIL (|has| |#1| (-564)))) (-3713 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1566 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) NIL)) (-2204 (($ (-652 |#4|)) NIL)) (-2923 (((-3 $ "failed") $) 45)) (-2020 ((|#4| |#4| $) 78)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3332 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-564)))) (-2888 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1758 ((|#4| |#4| $) NIL)) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3433 (((-2 (|:| -1379 (-652 |#4|)) (|:| -1674 (-652 |#4|))) $) NIL)) (-1939 (((-112) |#4| $) NIL)) (-4131 (((-112) |#4| $) NIL)) (-1554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2344 (((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112)) 139)) (-1863 (((-652 |#4|) $) 18 (|has| $ (-6 -4454)))) (-4338 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2366 ((|#3| $) 38)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#4|) $) 19 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-2442 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 23)) (-3015 (((-652 |#3|) $) NIL)) (-1683 (((-112) |#3| $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-4431 (((-3 |#4| (-652 $)) |#4| |#4| $) NIL)) (-3487 (((-652 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 117)) (-3357 (((-3 |#4| "failed") $) 42)) (-3326 (((-652 $) |#4| $) 102)) (-4399 (((-3 (-112) (-652 $)) |#4| $) NIL)) (-1892 (((-652 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1346 (((-652 $) |#4| $) 121) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) 122) (((-652 $) |#4| (-652 $)) NIL)) (-3992 (((-652 $) (-652 |#4|) (-112) (-112) (-112)) 134)) (-3761 (($ |#4| $) 88) (($ (-652 |#4|) $) 89) (((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2234 (((-652 |#4|) $) NIL)) (-3005 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2755 ((|#4| |#4| $) NIL)) (-2323 (((-112) $ $) NIL)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-3536 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1825 ((|#4| |#4| $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 (((-3 |#4| "failed") $) 40)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3632 (((-3 $ "failed") $ |#4|) 59)) (-2772 (($ $ |#4|) NIL) (((-652 $) |#4| $) 104) (((-652 $) |#4| (-652 $)) NIL) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) 99)) (-1612 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 17)) (-1613 (($) 14)) (-4390 (((-779) $) NIL)) (-3973 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) 13)) (-1835 (((-544) $) NIL (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) 22)) (-2748 (($ $ |#3|) 52)) (-2365 (($ $ |#3|) 54)) (-3862 (($ $) NIL)) (-1670 (($ $ |#3|) NIL)) (-2940 (((-870) $) 35) (((-652 |#4|) $) 46)) (-3678 (((-779) $) NIL (|has| |#3| (-375)))) (-4379 (((-112) $ $) NIL)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3447 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) NIL)) (-3007 (((-652 $) |#4| $) 66) (((-652 $) |#4| (-652 $)) NIL) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) NIL)) (-4380 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-4041 (((-652 |#3|) $) NIL)) (-4377 (((-112) |#4| $) NIL)) (-1482 (((-112) |#3| $) 74)) (-2978 (((-112) $ $) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1157 |#1| |#2| |#3| |#4|) (-13 (-1120 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3761 ((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1740 ((-652 $) (-652 |#4|) (-112) (-112))) (-15 -1740 ((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112))) (-15 -3992 ((-652 $) (-652 |#4|) (-112) (-112) (-112))) (-15 -2344 ((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112))))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -1157))
-((-3761 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1157 *5 *6 *7 *3))) (-5 *1 (-1157 *5 *6 *7 *3)) (-4 *3 (-1076 *5 *6 *7)))) (-1740 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8)))) (-1740 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8)))) (-3992 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8)))) (-2344 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-652 *8)) (|:| |towers| (-652 (-1157 *5 *6 *7 *8))))) (-5 *1 (-1157 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
-(-13 (-1120 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3761 ((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1740 ((-652 $) (-652 |#4|) (-112) (-112))) (-15 -1740 ((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112))) (-15 -3992 ((-652 $) (-652 |#4|) (-112) (-112) (-112))) (-15 -2344 ((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112)))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2001 ((|#1| $) 37)) (-4088 (($ (-652 |#1|)) 45)) (-1631 (((-112) $ (-779)) NIL)) (-3281 (($) NIL T CONST)) (-4004 ((|#1| |#1| $) 40)) (-1491 ((|#1| $) 35)) (-1863 (((-652 |#1|) $) 18 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 22)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1651 ((|#1| $) 38)) (-2036 (($ |#1| $) 41)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3378 ((|#1| $) 36)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 32)) (-1613 (($) 43)) (-4301 (((-779) $) 30)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) 27)) (-2940 (((-870) $) 14 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2022 (($ (-652 |#1|)) NIL)) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 17 (|has| |#1| (-1111)))) (-2860 (((-779) $) 31 (|has| $ (-6 -4454)))))
-(((-1158 |#1|) (-13 (-1132 |#1|) (-10 -8 (-15 -4088 ($ (-652 |#1|))))) (-1229)) (T -1158))
-((-4088 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1158 *3)))))
-(-13 (-1132 |#1|) (-10 -8 (-15 -4088 ($ (-652 |#1|)))))
-((-3140 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1246 (-572)) |#2|) 53) ((|#2| $ (-572) |#2|) 50)) (-4055 (((-112) $) 12)) (-2442 (($ (-1 |#2| |#2|) $) 48)) (-2912 ((|#2| $) NIL) (($ $ (-779)) 17)) (-2476 (($ $ |#2|) 49)) (-3064 (((-112) $) 11)) (-2196 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1246 (-572))) 36) ((|#2| $ (-572)) 26) ((|#2| $ (-572) |#2|) NIL)) (-1700 (($ $ $) 56) (($ $ |#2|) NIL)) (-4155 (($ $ $) 38) (($ |#2| $) NIL) (($ (-652 $)) 45) (($ $ |#2|) NIL)))
-(((-1159 |#1| |#2|) (-10 -8 (-15 -4055 ((-112) |#1|)) (-15 -3064 ((-112) |#1|)) (-15 -3140 (|#2| |#1| (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572))) (-15 -2476 (|#1| |#1| |#2|)) (-15 -2196 (|#1| |#1| (-1246 (-572)))) (-15 -4155 (|#1| |#1| |#2|)) (-15 -4155 (|#1| (-652 |#1|))) (-15 -3140 (|#2| |#1| (-1246 (-572)) |#2|)) (-15 -3140 (|#2| |#1| "last" |#2|)) (-15 -3140 (|#1| |#1| "rest" |#1|)) (-15 -3140 (|#2| |#1| "first" |#2|)) (-15 -1700 (|#1| |#1| |#2|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -2196 (|#2| |#1| "last")) (-15 -2196 (|#1| |#1| "rest")) (-15 -2912 (|#1| |#1| (-779))) (-15 -2196 (|#2| |#1| "first")) (-15 -2912 (|#2| |#1|)) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#1|)) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -2196 (|#2| |#1| "value")) (-15 -2442 (|#1| (-1 |#2| |#2|) |#1|))) (-1160 |#2|) (-1229)) (T -1159))
-NIL
-(-10 -8 (-15 -4055 ((-112) |#1|)) (-15 -3064 ((-112) |#1|)) (-15 -3140 (|#2| |#1| (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572) |#2|)) (-15 -2196 (|#2| |#1| (-572))) (-15 -2476 (|#1| |#1| |#2|)) (-15 -2196 (|#1| |#1| (-1246 (-572)))) (-15 -4155 (|#1| |#1| |#2|)) (-15 -4155 (|#1| (-652 |#1|))) (-15 -3140 (|#2| |#1| (-1246 (-572)) |#2|)) (-15 -3140 (|#2| |#1| "last" |#2|)) (-15 -3140 (|#1| |#1| "rest" |#1|)) (-15 -3140 (|#2| |#1| "first" |#2|)) (-15 -1700 (|#1| |#1| |#2|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -2196 (|#2| |#1| "last")) (-15 -2196 (|#1| |#1| "rest")) (-15 -2912 (|#1| |#1| (-779))) (-15 -2196 (|#2| |#1| "first")) (-15 -2912 (|#2| |#1|)) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#1|)) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -2196 (|#2| |#1| "value")) (-15 -2442 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3080 ((|#1| $) 49)) (-2401 ((|#1| $) 66)) (-1969 (($ $) 68)) (-3176 (((-1284) $ (-572) (-572)) 99 (|has| $ (-6 -4455)))) (-4382 (($ $ (-572)) 53 (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) 8)) (-2506 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-1385 (($ $ $) 57 (|has| $ (-6 -4455)))) (-2871 ((|#1| $ |#1|) 55 (|has| $ (-6 -4455)))) (-4178 ((|#1| $ |#1|) 59 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4455))) (($ $ "rest" $) 56 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 119 (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) 88 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4454)))) (-2388 ((|#1| $) 67)) (-3281 (($) 7 T CONST)) (-2923 (($ $) 74) (($ $ (-779)) 72)) (-2086 (($ $) 101 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4454))) (($ |#1| $) 102 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2453 ((|#1| $ (-572) |#1|) 87 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 89)) (-4055 (((-112) $) 85)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 51)) (-1463 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-3787 (($ (-779) |#1|) 111)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 97 (|has| (-572) (-858)))) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 96 (|has| (-572) (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1985 (((-112) $ (-779)) 10)) (-3505 (((-652 |#1|) $) 46)) (-2087 (((-112) $) 50)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3357 ((|#1| $) 71) (($ $ (-779)) 69)) (-1593 (($ $ $ (-572)) 118) (($ |#1| $ (-572)) 117)) (-1986 (((-652 (-572)) $) 94)) (-1370 (((-112) (-572) $) 93)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2912 ((|#1| $) 77) (($ $ (-779)) 75)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2476 (($ $ |#1|) 98 (|has| $ (-6 -4455)))) (-3064 (((-112) $) 86)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) 92)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1246 (-572))) 110) ((|#1| $ (-572)) 91) ((|#1| $ (-572) |#1|) 90)) (-2157 (((-572) $ $) 45)) (-2835 (($ $ (-1246 (-572))) 116) (($ $ (-572)) 115)) (-3315 (((-112) $) 47)) (-2285 (($ $) 63)) (-2391 (($ $) 60 (|has| $ (-6 -4455)))) (-3417 (((-779) $) 64)) (-3479 (($ $) 65)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1835 (((-544) $) 100 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 109)) (-1700 (($ $ $) 62 (|has| $ (-6 -4455))) (($ $ |#1|) 61 (|has| $ (-6 -4455)))) (-4155 (($ $ $) 79) (($ |#1| $) 78) (($ (-652 $)) 113) (($ $ |#1|) 112)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) 52)) (-2804 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-1160 |#1|) (-141) (-1229)) (T -1160))
-((-3064 (*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
-(-13 (-1267 |t#1|) (-659 |t#1|) (-10 -8 (-15 -3064 ((-112) $)) (-15 -4055 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T) ((-1267 |#1|) . T))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3176 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#2| $ |#1| |#2|) NIL)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 |#2| "failed") |#1| $) NIL)) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) NIL)) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) NIL)) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 ((|#1| $) NIL (|has| |#1| (-858)))) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3374 ((|#1| $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-1761 (((-652 |#1|) $) NIL)) (-4198 (((-112) |#1| $) NIL)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1986 (((-652 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 ((|#2| $) NIL (|has| |#1| (-858)))) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-2940 (((-870) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1161 |#1| |#2| |#3|) (-1205 |#1| |#2|) (-1111) (-1111) |#2|) (T -1161))
-NIL
-(-1205 |#1| |#2|)
-((-2846 (((-112) $ $) NIL)) (-3686 (((-699 (-1146)) $) 27)) (-4144 (((-1146) $) 15)) (-2635 (((-1146) $) 17)) (-4347 (((-1170) $) NIL)) (-1808 (((-514) $) 13)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 37) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1162) (-13 (-1094) (-10 -8 (-15 -1808 ((-514) $)) (-15 -2635 ((-1146) $)) (-15 -3686 ((-699 (-1146)) $)) (-15 -4144 ((-1146) $))))) (T -1162))
-((-1808 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1162)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1162)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-699 (-1146))) (-5 *1 (-1162)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1162)))))
-(-13 (-1094) (-10 -8 (-15 -1808 ((-514) $)) (-15 -2635 ((-1146) $)) (-15 -3686 ((-699 (-1146)) $)) (-15 -4144 ((-1146) $))))
-((-2846 (((-112) $ $) 7)) (-2556 (((-3 $ "failed") $) 14)) (-4347 (((-1170) $) 10)) (-3815 (($) 15 T CONST)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2978 (((-112) $ $) 6)))
-(((-1163) (-141)) (T -1163))
-((-3815 (*1 *1) (-4 *1 (-1163))) (-2556 (*1 *1 *1) (|partial| -4 *1 (-1163))))
-(-13 (-1111) (-10 -8 (-15 -3815 ($) -1705) (-15 -2556 ((-3 $ "failed") $))))
-(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
-((-3017 (((-1168 |#1|) (-1168 |#1|)) 17)) (-1961 (((-1168 |#1|) (-1168 |#1|)) 13)) (-2351 (((-1168 |#1|) (-1168 |#1|) (-572) (-572)) 20)) (-3025 (((-1168 |#1|) (-1168 |#1|)) 15)))
-(((-1164 |#1|) (-10 -7 (-15 -1961 ((-1168 |#1|) (-1168 |#1|))) (-15 -3025 ((-1168 |#1|) (-1168 |#1|))) (-15 -3017 ((-1168 |#1|) (-1168 |#1|))) (-15 -2351 ((-1168 |#1|) (-1168 |#1|) (-572) (-572)))) (-13 (-564) (-148))) (T -1164))
-((-2351 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-1164 *4)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1164 *3)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1164 *3)))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1164 *3)))))
-(-10 -7 (-15 -1961 ((-1168 |#1|) (-1168 |#1|))) (-15 -3025 ((-1168 |#1|) (-1168 |#1|))) (-15 -3017 ((-1168 |#1|) (-1168 |#1|))) (-15 -2351 ((-1168 |#1|) (-1168 |#1|) (-572) (-572))))
-((-4155 (((-1168 |#1|) (-1168 (-1168 |#1|))) 15)))
-(((-1165 |#1|) (-10 -7 (-15 -4155 ((-1168 |#1|) (-1168 (-1168 |#1|))))) (-1229)) (T -1165))
-((-4155 (*1 *2 *3) (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1165 *4)) (-4 *4 (-1229)))))
-(-10 -7 (-15 -4155 ((-1168 |#1|) (-1168 (-1168 |#1|)))))
-((-2273 (((-1168 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|)) 25)) (-2865 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|)) 26)) (-1776 (((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|)) 16)))
-(((-1166 |#1| |#2|) (-10 -7 (-15 -1776 ((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|))) (-15 -2273 ((-1168 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|))) (-15 -2865 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|)))) (-1229) (-1229)) (T -1166))
-((-2865 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-1166 *5 *2)))) (-2273 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1168 *6)) (-4 *6 (-1229)) (-4 *3 (-1229)) (-5 *2 (-1168 *3)) (-5 *1 (-1166 *6 *3)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1168 *6)) (-5 *1 (-1166 *5 *6)))))
-(-10 -7 (-15 -1776 ((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|))) (-15 -2273 ((-1168 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|))) (-15 -2865 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|))))
-((-1776 (((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-1168 |#2|)) 21)))
-(((-1167 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-1168 |#2|)))) (-1229) (-1229) (-1229)) (T -1167))
-((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1168 *6)) (-5 *5 (-1168 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8)) (-5 *1 (-1167 *6 *7 *8)))))
-(-10 -7 (-15 -1776 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-1168 |#2|))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) NIL)) (-2401 ((|#1| $) NIL)) (-1969 (($ $) 67)) (-3176 (((-1284) $ (-572) (-572)) 99 (|has| $ (-6 -4455)))) (-4382 (($ $ (-572)) 128 (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-2249 (((-870) $) 56 (|has| |#1| (-1111)))) (-3020 (((-112)) 55 (|has| |#1| (-1111)))) (-2506 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-1385 (($ $ $) 115 (|has| $ (-6 -4455))) (($ $ (-572) $) 141)) (-2871 ((|#1| $ |#1|) 125 (|has| $ (-6 -4455)))) (-4178 ((|#1| $ |#1|) 120 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4455))) (($ $ "rest" $) 124 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 112 (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) 77 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) 80)) (-2388 ((|#1| $) NIL)) (-3281 (($) NIL T CONST)) (-2353 (($ $) 14)) (-2923 (($ $) 40) (($ $ (-779)) 111)) (-2205 (((-112) (-652 |#1|) $) 134 (|has| |#1| (-1111)))) (-3563 (($ (-652 |#1|)) 130)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) 79)) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-4055 (((-112) $) NIL)) (-1863 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-3245 (((-1284) (-572) $) 140 (|has| |#1| (-1111)))) (-3261 (((-779) $) 137)) (-2089 (((-652 $) $) NIL)) (-1463 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3787 (($ (-779) |#1|) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1985 (((-112) $ (-779)) NIL)) (-3505 (((-652 |#1|) $) NIL)) (-2087 (((-112) $) NIL)) (-2628 (($ $) 113)) (-3237 (((-112) $) 13)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3357 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-1593 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) 96)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2092 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-1591 ((|#1| $) 10)) (-2912 ((|#1| $) 39) (($ $ (-779)) 65)) (-3084 (((-2 (|:| |cycle?| (-112)) (|:| -4213 (-779)) (|:| |period| (-779))) (-779) $) 34)) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2138 (($ (-1 (-112) |#1|) $) 145)) (-2150 (($ (-1 (-112) |#1|) $) 146)) (-2476 (($ $ |#1|) 90 (|has| $ (-6 -4455)))) (-2772 (($ $ (-572)) 45)) (-3064 (((-112) $) 94)) (-1468 (((-112) $) 12)) (-4075 (((-112) $) 136)) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 30)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) 20)) (-1613 (($) 60)) (-2196 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1246 (-572))) NIL) ((|#1| $ (-572)) 75) ((|#1| $ (-572) |#1|) NIL)) (-2157 (((-572) $ $) 64)) (-2835 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-2954 (($ (-1 $)) 63)) (-3315 (((-112) $) 91)) (-2285 (($ $) 92)) (-2391 (($ $) 116 (|has| $ (-6 -4455)))) (-3417 (((-779) $) NIL)) (-3479 (($ $) NIL)) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) 59)) (-1835 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 73)) (-2220 (($ |#1| $) 114)) (-1700 (($ $ $) 118 (|has| $ (-6 -4455))) (($ $ |#1|) 119 (|has| $ (-6 -4455)))) (-4155 (($ $ $) 101) (($ |#1| $) 61) (($ (-652 $)) 106) (($ $ |#1|) 100)) (-2590 (($ $) 66)) (-2940 (($ (-652 |#1|)) 129) (((-870) $) 57 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) NIL)) (-2804 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 132 (|has| |#1| (-1111)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1168 |#1|) (-13 (-682 |#1|) (-624 (-652 |#1|)) (-10 -8 (-6 -4455) (-15 -3563 ($ (-652 |#1|))) (IF (|has| |#1| (-1111)) (-15 -2205 ((-112) (-652 |#1|) $)) |%noBranch|) (-15 -3084 ((-2 (|:| |cycle?| (-112)) (|:| -4213 (-779)) (|:| |period| (-779))) (-779) $)) (-15 -2954 ($ (-1 $))) (-15 -2220 ($ |#1| $)) (IF (|has| |#1| (-1111)) (PROGN (-15 -3245 ((-1284) (-572) $)) (-15 -2249 ((-870) $)) (-15 -3020 ((-112)))) |%noBranch|) (-15 -1385 ($ $ (-572) $)) (-15 -2092 ($ (-1 |#1|))) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2138 ($ (-1 (-112) |#1|) $)) (-15 -2150 ($ (-1 (-112) |#1|) $)))) (-1229)) (T -1168))
-((-3563 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))) (-2205 (*1 *2 *3 *1) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-4 *4 (-1229)) (-5 *2 (-112)) (-5 *1 (-1168 *4)))) (-3084 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4213 (-779)) (|:| |period| (-779)))) (-5 *1 (-1168 *4)) (-4 *4 (-1229)) (-5 *3 (-779)))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-1 (-1168 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1229)))) (-2220 (*1 *1 *2 *1) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-1229)))) (-3245 (*1 *2 *3 *1) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1168 *4)) (-4 *4 (-1111)) (-4 *4 (-1229)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1168 *3)) (-4 *3 (-1111)) (-4 *3 (-1229)))) (-3020 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-1111)) (-4 *3 (-1229)))) (-1385 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1168 *3)) (-4 *3 (-1229)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))) (-2092 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))) (-2138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))) (-2150 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
-(-13 (-682 |#1|) (-624 (-652 |#1|)) (-10 -8 (-6 -4455) (-15 -3563 ($ (-652 |#1|))) (IF (|has| |#1| (-1111)) (-15 -2205 ((-112) (-652 |#1|) $)) |%noBranch|) (-15 -3084 ((-2 (|:| |cycle?| (-112)) (|:| -4213 (-779)) (|:| |period| (-779))) (-779) $)) (-15 -2954 ($ (-1 $))) (-15 -2220 ($ |#1| $)) (IF (|has| |#1| (-1111)) (PROGN (-15 -3245 ((-1284) (-572) $)) (-15 -2249 ((-870) $)) (-15 -3020 ((-112)))) |%noBranch|) (-15 -1385 ($ $ (-572) $)) (-15 -2092 ($ (-1 |#1|))) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2138 ($ (-1 (-112) |#1|) $)) (-15 -2150 ($ (-1 (-112) |#1|) $))))
-((-2846 (((-112) $ $) 19)) (-2179 (($ $) 123)) (-2525 (($ $) 124)) (-3214 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3176 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-3708 (((-112) $ $) 121)) (-3688 (((-112) $ $ (-572)) 120)) (-3246 (($ (-572)) 130)) (-3861 (((-652 $) $ (-145)) 113) (((-652 $) $ (-142)) 112)) (-2852 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-858)))) (-3314 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| (-145) (-858)) (|has| $ (-6 -4455))))) (-2766 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-858)))) (-1631 (((-112) $ (-779)) 8)) (-3140 (((-145) $ (-572) (-145)) 53 (|has| $ (-6 -4455))) (((-145) $ (-1246 (-572)) (-145)) 60 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-2612 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3133 (($ $) 93 (|has| $ (-6 -4455)))) (-4421 (($ $) 103)) (-2219 (($ $ (-1246 (-572)) $) 117)) (-2086 (($ $) 80 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ (-145) $) 79 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4454)))) (-2865 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4454)))) (-2453 (((-145) $ (-572) (-145)) 54 (|has| $ (-6 -4455)))) (-2380 (((-145) $ (-572)) 52)) (-3730 (((-112) $ $) 122)) (-1439 (((-572) (-1 (-112) (-145)) $) 100) (((-572) (-145) $) 99 (|has| (-145) (-1111))) (((-572) (-145) $ (-572)) 98 (|has| (-145) (-1111))) (((-572) $ $ (-572)) 116) (((-572) (-142) $ (-572)) 115)) (-1863 (((-652 (-145)) $) 31 (|has| $ (-6 -4454)))) (-3787 (($ (-779) (-145)) 70)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 44 (|has| (-572) (-858)))) (-3654 (($ $ $) 90 (|has| (-145) (-858)))) (-1767 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-858)))) (-1344 (((-652 (-145)) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 45 (|has| (-572) (-858)))) (-2427 (($ $ $) 89 (|has| (-145) (-858)))) (-1324 (((-112) $ $ (-145)) 118)) (-2678 (((-779) $ $ (-145)) 119)) (-2442 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3052 (($ $) 125)) (-1811 (($ $) 126)) (-1985 (((-112) $ (-779)) 10)) (-2626 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-4347 (((-1170) $) 22)) (-1593 (($ (-145) $ (-572)) 62) (($ $ $ (-572)) 61)) (-1986 (((-652 (-572)) $) 47)) (-1370 (((-112) (-572) $) 48)) (-3964 (((-1131) $) 21)) (-2912 (((-145) $) 43 (|has| (-572) (-858)))) (-3770 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2476 (($ $ (-145)) 42 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-145)))) 27 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) 26 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-145)) (-652 (-145))) 24 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-4110 (((-652 (-145)) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 (((-145) $ (-572) (-145)) 51) (((-145) $ (-572)) 50) (($ $ (-1246 (-572))) 71) (($ $ $) 105)) (-2835 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-3973 (((-779) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4454))) (((-779) (-145) $) 29 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-4095 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3164 (($ $) 13)) (-1835 (((-544) $) 81 (|has| (-145) (-622 (-544))))) (-2953 (($ (-652 (-145))) 72)) (-4155 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-2940 (($ (-145)) 114) (((-870) $) 18)) (-4379 (((-112) $ $) 23)) (-4380 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4454)))) (-3547 (((-1170) $) 134) (((-1170) $ (-112)) 133) (((-1284) (-830) $) 132) (((-1284) (-830) $ (-112)) 131)) (-3039 (((-112) $ $) 87 (|has| (-145) (-858)))) (-3014 (((-112) $ $) 86 (|has| (-145) (-858)))) (-2978 (((-112) $ $) 20)) (-3026 (((-112) $ $) 88 (|has| (-145) (-858)))) (-3003 (((-112) $ $) 85 (|has| (-145) (-858)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-1169) (-141)) (T -1169))
-((-3246 (*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1169)))))
-(-13 (-1155) (-1111) (-836) (-10 -8 (-15 -3246 ($ (-572)))))
-(((-34) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 #0=(-145)) . T) ((-622 (-544)) |has| (-145) (-622 (-544))) ((-292 #1=(-572) #0#) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #1# #0#) . T) ((-315 #0#) -12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))) ((-380 #0#) . T) ((-497 #0#) . T) ((-612 #1# #0#) . T) ((-522 #0# #0#) -12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))) ((-659 #0#) . T) ((-19 #0#) . T) ((-836) . T) ((-858) |has| (-145) (-858)) ((-1111) . T) ((-1155) . T) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-2179 (($ $) NIL)) (-2525 (($ $) NIL)) (-3214 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3708 (((-112) $ $) NIL)) (-3688 (((-112) $ $ (-572)) NIL)) (-3246 (($ (-572)) 8)) (-3861 (((-652 $) $ (-145)) NIL) (((-652 $) $ (-142)) NIL)) (-2852 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-858)))) (-3314 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-858))))) (-2766 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 (((-145) $ (-572) (-145)) NIL (|has| $ (-6 -4455))) (((-145) $ (-1246 (-572)) (-145)) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-2612 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2219 (($ $ (-1246 (-572)) $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-3332 (($ (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2453 (((-145) $ (-572) (-145)) NIL (|has| $ (-6 -4455)))) (-2380 (((-145) $ (-572)) NIL)) (-3730 (((-112) $ $) NIL)) (-1439 (((-572) (-1 (-112) (-145)) $) NIL) (((-572) (-145) $) NIL (|has| (-145) (-1111))) (((-572) (-145) $ (-572)) NIL (|has| (-145) (-1111))) (((-572) $ $ (-572)) NIL) (((-572) (-142) $ (-572)) NIL)) (-1863 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-3787 (($ (-779) (-145)) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| (-145) (-858)))) (-1767 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-858)))) (-1344 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-3374 (((-572) $) NIL (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| (-145) (-858)))) (-1324 (((-112) $ $ (-145)) NIL)) (-2678 (((-779) $ $ (-145)) NIL)) (-2442 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3052 (($ $) NIL)) (-1811 (($ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-2626 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4347 (((-1170) $) NIL)) (-1593 (($ (-145) $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 (((-145) $) NIL (|has| (-572) (-858)))) (-3770 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2476 (($ $ (-145)) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-145)))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-145)) (-652 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-4110 (((-652 (-145)) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 (((-145) $ (-572) (-145)) NIL) (((-145) $ (-572)) NIL) (($ $ (-1246 (-572))) NIL) (($ $ $) NIL)) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3973 (((-779) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454))) (((-779) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-145) (-622 (-544))))) (-2953 (($ (-652 (-145))) NIL)) (-4155 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-2940 (($ (-145)) NIL) (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-4380 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3547 (((-1170) $) 19) (((-1170) $ (-112)) 21) (((-1284) (-830) $) 22) (((-1284) (-830) $ (-112)) 23)) (-3039 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3014 (((-112) $ $) NIL (|has| (-145) (-858)))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3003 (((-112) $ $) NIL (|has| (-145) (-858)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1170) (-1169)) (T -1170))
-NIL
-(-1169)
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL)) (-3176 (((-1284) $ (-1170) (-1170)) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-1170) |#1|) NIL)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 |#1| "failed") (-1170) $) NIL)) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111))))) (-3554 (($ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#1| "failed") (-1170) $) NIL)) (-3332 (($ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-1170) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-1170)) NIL)) (-1863 (((-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-1170) $) NIL (|has| (-1170) (-858)))) (-1344 (((-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-1170) $) NIL (|has| (-1170) (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-1761 (((-652 (-1170)) $) NIL)) (-4198 (((-112) (-1170) $) NIL)) (-1651 (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL)) (-2036 (($ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL)) (-1986 (((-652 (-1170)) $) NIL)) (-1370 (((-112) (-1170) $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-2912 ((|#1| $) NIL (|has| (-1170) (-858)))) (-3770 (((-3 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) "failed") (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (($ $ (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-315 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-1170)) NIL) ((|#1| $ (-1170) |#1|) NIL)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL)) (-2940 (((-870) $) NIL (-2813 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-621 (-870))) (|has| |#1| (-621 (-870)))))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 (-1170)) (|:| -1907 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1171 |#1|) (-13 (-1205 (-1170) |#1|) (-10 -7 (-6 -4454))) (-1111)) (T -1171))
-NIL
-(-13 (-1205 (-1170) |#1|) (-10 -7 (-6 -4454)))
-((-1413 (((-1168 |#1|) (-1168 |#1|)) 83)) (-2062 (((-3 (-1168 |#1|) "failed") (-1168 |#1|)) 39)) (-3692 (((-1168 |#1|) (-415 (-572)) (-1168 |#1|)) 133 (|has| |#1| (-38 (-415 (-572)))))) (-3029 (((-1168 |#1|) |#1| (-1168 |#1|)) 139 (|has| |#1| (-370)))) (-4316 (((-1168 |#1|) (-1168 |#1|)) 97)) (-4084 (((-1168 (-572)) (-572)) 63)) (-1686 (((-1168 |#1|) (-1168 (-1168 |#1|))) 116 (|has| |#1| (-38 (-415 (-572)))))) (-1367 (((-1168 |#1|) (-572) (-572) (-1168 |#1|)) 102)) (-3829 (((-1168 |#1|) |#1| (-572)) 51)) (-2843 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 66)) (-1417 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 136 (|has| |#1| (-370)))) (-2411 (((-1168 |#1|) |#1| (-1 (-1168 |#1|))) 115 (|has| |#1| (-38 (-415 (-572)))))) (-3405 (((-1168 |#1|) (-1 |#1| (-572)) |#1| (-1 (-1168 |#1|))) 137 (|has| |#1| (-370)))) (-2105 (((-1168 |#1|) (-1168 |#1|)) 96)) (-2622 (((-1168 |#1|) (-1168 |#1|)) 82)) (-4330 (((-1168 |#1|) (-572) (-572) (-1168 |#1|)) 103)) (-3034 (((-1168 |#1|) |#1| (-1168 |#1|)) 112 (|has| |#1| (-38 (-415 (-572)))))) (-2165 (((-1168 (-572)) (-572)) 62)) (-3088 (((-1168 |#1|) |#1|) 65)) (-3729 (((-1168 |#1|) (-1168 |#1|) (-572) (-572)) 99)) (-2759 (((-1168 |#1|) (-1 |#1| (-572)) (-1168 |#1|)) 72)) (-2834 (((-3 (-1168 |#1|) "failed") (-1168 |#1|) (-1168 |#1|)) 37)) (-3297 (((-1168 |#1|) (-1168 |#1|)) 98)) (-2641 (((-1168 |#1|) (-1168 |#1|) |#1|) 77)) (-1600 (((-1168 |#1|) (-1168 |#1|)) 68)) (-3851 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 78)) (-2940 (((-1168 |#1|) |#1|) 73)) (-3488 (((-1168 |#1|) (-1168 (-1168 |#1|))) 88)) (-3106 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 38)) (-3089 (((-1168 |#1|) (-1168 |#1|)) 21) (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 23)) (-3075 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 17)) (* (((-1168 |#1|) (-1168 |#1|) |#1|) 29) (((-1168 |#1|) |#1| (-1168 |#1|)) 26) (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 27)))
-(((-1172 |#1|) (-10 -7 (-15 -3075 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3089 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3089 ((-1168 |#1|) (-1168 |#1|))) (-15 * ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 * ((-1168 |#1|) |#1| (-1168 |#1|))) (-15 * ((-1168 |#1|) (-1168 |#1|) |#1|)) (-15 -2834 ((-3 (-1168 |#1|) "failed") (-1168 |#1|) (-1168 |#1|))) (-15 -3106 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -2062 ((-3 (-1168 |#1|) "failed") (-1168 |#1|))) (-15 -3829 ((-1168 |#1|) |#1| (-572))) (-15 -2165 ((-1168 (-572)) (-572))) (-15 -4084 ((-1168 (-572)) (-572))) (-15 -3088 ((-1168 |#1|) |#1|)) (-15 -2843 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -1600 ((-1168 |#1|) (-1168 |#1|))) (-15 -2759 ((-1168 |#1|) (-1 |#1| (-572)) (-1168 |#1|))) (-15 -2940 ((-1168 |#1|) |#1|)) (-15 -2641 ((-1168 |#1|) (-1168 |#1|) |#1|)) (-15 -3851 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -2622 ((-1168 |#1|) (-1168 |#1|))) (-15 -1413 ((-1168 |#1|) (-1168 |#1|))) (-15 -3488 ((-1168 |#1|) (-1168 (-1168 |#1|)))) (-15 -2105 ((-1168 |#1|) (-1168 |#1|))) (-15 -4316 ((-1168 |#1|) (-1168 |#1|))) (-15 -3297 ((-1168 |#1|) (-1168 |#1|))) (-15 -3729 ((-1168 |#1|) (-1168 |#1|) (-572) (-572))) (-15 -1367 ((-1168 |#1|) (-572) (-572) (-1168 |#1|))) (-15 -4330 ((-1168 |#1|) (-572) (-572) (-1168 |#1|))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ((-1168 |#1|) |#1| (-1168 |#1|))) (-15 -2411 ((-1168 |#1|) |#1| (-1 (-1168 |#1|)))) (-15 -1686 ((-1168 |#1|) (-1168 (-1168 |#1|)))) (-15 -3692 ((-1168 |#1|) (-415 (-572)) (-1168 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -1417 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3405 ((-1168 |#1|) (-1 |#1| (-572)) |#1| (-1 (-1168 |#1|)))) (-15 -3029 ((-1168 |#1|) |#1| (-1168 |#1|)))) |%noBranch|)) (-1060)) (T -1172))
-((-3029 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-572))) (-5 *5 (-1 (-1168 *4))) (-4 *4 (-370)) (-4 *4 (-1060)) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4)))) (-1417 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3692 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1060)) (-5 *3 (-415 (-572))) (-5 *1 (-1172 *4)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1168 *3))) (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)))) (-3034 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-4330 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060)) (-5 *1 (-1172 *4)))) (-1367 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060)) (-5 *1 (-1172 *4)))) (-3729 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060)) (-5 *1 (-1172 *4)))) (-3297 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-4316 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-2105 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-1060)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3851 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-2641 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-2940 (*1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060)))) (-2759 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1 *4 (-572))) (-4 *4 (-1060)) (-5 *1 (-1172 *4)))) (-1600 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-2843 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060)))) (-4084 (*1 *2 *3) (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1172 *4)) (-4 *4 (-1060)) (-5 *3 (-572)))) (-2165 (*1 *2 *3) (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1172 *4)) (-4 *4 (-1060)) (-5 *3 (-572)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060)))) (-2062 (*1 *2 *2) (|partial| -12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3106 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-2834 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3089 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3089 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3075 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
-(-10 -7 (-15 -3075 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3089 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3089 ((-1168 |#1|) (-1168 |#1|))) (-15 * ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 * ((-1168 |#1|) |#1| (-1168 |#1|))) (-15 * ((-1168 |#1|) (-1168 |#1|) |#1|)) (-15 -2834 ((-3 (-1168 |#1|) "failed") (-1168 |#1|) (-1168 |#1|))) (-15 -3106 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -2062 ((-3 (-1168 |#1|) "failed") (-1168 |#1|))) (-15 -3829 ((-1168 |#1|) |#1| (-572))) (-15 -2165 ((-1168 (-572)) (-572))) (-15 -4084 ((-1168 (-572)) (-572))) (-15 -3088 ((-1168 |#1|) |#1|)) (-15 -2843 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -1600 ((-1168 |#1|) (-1168 |#1|))) (-15 -2759 ((-1168 |#1|) (-1 |#1| (-572)) (-1168 |#1|))) (-15 -2940 ((-1168 |#1|) |#1|)) (-15 -2641 ((-1168 |#1|) (-1168 |#1|) |#1|)) (-15 -3851 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -2622 ((-1168 |#1|) (-1168 |#1|))) (-15 -1413 ((-1168 |#1|) (-1168 |#1|))) (-15 -3488 ((-1168 |#1|) (-1168 (-1168 |#1|)))) (-15 -2105 ((-1168 |#1|) (-1168 |#1|))) (-15 -4316 ((-1168 |#1|) (-1168 |#1|))) (-15 -3297 ((-1168 |#1|) (-1168 |#1|))) (-15 -3729 ((-1168 |#1|) (-1168 |#1|) (-572) (-572))) (-15 -1367 ((-1168 |#1|) (-572) (-572) (-1168 |#1|))) (-15 -4330 ((-1168 |#1|) (-572) (-572) (-1168 |#1|))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ((-1168 |#1|) |#1| (-1168 |#1|))) (-15 -2411 ((-1168 |#1|) |#1| (-1 (-1168 |#1|)))) (-15 -1686 ((-1168 |#1|) (-1168 (-1168 |#1|)))) (-15 -3692 ((-1168 |#1|) (-415 (-572)) (-1168 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -1417 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3405 ((-1168 |#1|) (-1 |#1| (-572)) |#1| (-1 (-1168 |#1|)))) (-15 -3029 ((-1168 |#1|) |#1| (-1168 |#1|)))) |%noBranch|))
-((-2358 (((-1168 |#1|) (-1168 |#1|)) 60)) (-2242 (((-1168 |#1|) (-1168 |#1|)) 42)) (-2338 (((-1168 |#1|) (-1168 |#1|)) 56)) (-2222 (((-1168 |#1|) (-1168 |#1|)) 38)) (-2384 (((-1168 |#1|) (-1168 |#1|)) 63)) (-2262 (((-1168 |#1|) (-1168 |#1|)) 45)) (-3116 (((-1168 |#1|) (-1168 |#1|)) 34)) (-1608 (((-1168 |#1|) (-1168 |#1|)) 29)) (-2397 (((-1168 |#1|) (-1168 |#1|)) 64)) (-2270 (((-1168 |#1|) (-1168 |#1|)) 46)) (-2370 (((-1168 |#1|) (-1168 |#1|)) 61)) (-2252 (((-1168 |#1|) (-1168 |#1|)) 43)) (-2348 (((-1168 |#1|) (-1168 |#1|)) 58)) (-2231 (((-1168 |#1|) (-1168 |#1|)) 40)) (-2436 (((-1168 |#1|) (-1168 |#1|)) 68)) (-2300 (((-1168 |#1|) (-1168 |#1|)) 50)) (-2409 (((-1168 |#1|) (-1168 |#1|)) 66)) (-2282 (((-1168 |#1|) (-1168 |#1|)) 48)) (-2460 (((-1168 |#1|) (-1168 |#1|)) 71)) (-2320 (((-1168 |#1|) (-1168 |#1|)) 53)) (-2516 (((-1168 |#1|) (-1168 |#1|)) 72)) (-2329 (((-1168 |#1|) (-1168 |#1|)) 54)) (-2448 (((-1168 |#1|) (-1168 |#1|)) 70)) (-2310 (((-1168 |#1|) (-1168 |#1|)) 52)) (-2423 (((-1168 |#1|) (-1168 |#1|)) 69)) (-2292 (((-1168 |#1|) (-1168 |#1|)) 51)) (** (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 36)))
-(((-1173 |#1|) (-10 -7 (-15 -1608 ((-1168 |#1|) (-1168 |#1|))) (-15 -3116 ((-1168 |#1|) (-1168 |#1|))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -2222 ((-1168 |#1|) (-1168 |#1|))) (-15 -2231 ((-1168 |#1|) (-1168 |#1|))) (-15 -2242 ((-1168 |#1|) (-1168 |#1|))) (-15 -2252 ((-1168 |#1|) (-1168 |#1|))) (-15 -2262 ((-1168 |#1|) (-1168 |#1|))) (-15 -2270 ((-1168 |#1|) (-1168 |#1|))) (-15 -2282 ((-1168 |#1|) (-1168 |#1|))) (-15 -2292 ((-1168 |#1|) (-1168 |#1|))) (-15 -2300 ((-1168 |#1|) (-1168 |#1|))) (-15 -2310 ((-1168 |#1|) (-1168 |#1|))) (-15 -2320 ((-1168 |#1|) (-1168 |#1|))) (-15 -2329 ((-1168 |#1|) (-1168 |#1|))) (-15 -2338 ((-1168 |#1|) (-1168 |#1|))) (-15 -2348 ((-1168 |#1|) (-1168 |#1|))) (-15 -2358 ((-1168 |#1|) (-1168 |#1|))) (-15 -2370 ((-1168 |#1|) (-1168 |#1|))) (-15 -2384 ((-1168 |#1|) (-1168 |#1|))) (-15 -2397 ((-1168 |#1|) (-1168 |#1|))) (-15 -2409 ((-1168 |#1|) (-1168 |#1|))) (-15 -2423 ((-1168 |#1|) (-1168 |#1|))) (-15 -2436 ((-1168 |#1|) (-1168 |#1|))) (-15 -2448 ((-1168 |#1|) (-1168 |#1|))) (-15 -2460 ((-1168 |#1|) (-1168 |#1|))) (-15 -2516 ((-1168 |#1|) (-1168 |#1|)))) (-38 (-415 (-572)))) (T -1173))
-((-2516 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2460 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2448 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2436 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2423 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2397 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2310 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2282 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3116 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))))
-(-10 -7 (-15 -1608 ((-1168 |#1|) (-1168 |#1|))) (-15 -3116 ((-1168 |#1|) (-1168 |#1|))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -2222 ((-1168 |#1|) (-1168 |#1|))) (-15 -2231 ((-1168 |#1|) (-1168 |#1|))) (-15 -2242 ((-1168 |#1|) (-1168 |#1|))) (-15 -2252 ((-1168 |#1|) (-1168 |#1|))) (-15 -2262 ((-1168 |#1|) (-1168 |#1|))) (-15 -2270 ((-1168 |#1|) (-1168 |#1|))) (-15 -2282 ((-1168 |#1|) (-1168 |#1|))) (-15 -2292 ((-1168 |#1|) (-1168 |#1|))) (-15 -2300 ((-1168 |#1|) (-1168 |#1|))) (-15 -2310 ((-1168 |#1|) (-1168 |#1|))) (-15 -2320 ((-1168 |#1|) (-1168 |#1|))) (-15 -2329 ((-1168 |#1|) (-1168 |#1|))) (-15 -2338 ((-1168 |#1|) (-1168 |#1|))) (-15 -2348 ((-1168 |#1|) (-1168 |#1|))) (-15 -2358 ((-1168 |#1|) (-1168 |#1|))) (-15 -2370 ((-1168 |#1|) (-1168 |#1|))) (-15 -2384 ((-1168 |#1|) (-1168 |#1|))) (-15 -2397 ((-1168 |#1|) (-1168 |#1|))) (-15 -2409 ((-1168 |#1|) (-1168 |#1|))) (-15 -2423 ((-1168 |#1|) (-1168 |#1|))) (-15 -2436 ((-1168 |#1|) (-1168 |#1|))) (-15 -2448 ((-1168 |#1|) (-1168 |#1|))) (-15 -2460 ((-1168 |#1|) (-1168 |#1|))) (-15 -2516 ((-1168 |#1|) (-1168 |#1|))))
-((-2358 (((-1168 |#1|) (-1168 |#1|)) 102)) (-2242 (((-1168 |#1|) (-1168 |#1|)) 61)) (-2928 (((-2 (|:| -2338 (-1168 |#1|)) (|:| -2348 (-1168 |#1|))) (-1168 |#1|)) 98)) (-2338 (((-1168 |#1|) (-1168 |#1|)) 99)) (-1488 (((-2 (|:| -2222 (-1168 |#1|)) (|:| -2231 (-1168 |#1|))) (-1168 |#1|)) 54)) (-2222 (((-1168 |#1|) (-1168 |#1|)) 55)) (-2384 (((-1168 |#1|) (-1168 |#1|)) 104)) (-2262 (((-1168 |#1|) (-1168 |#1|)) 68)) (-3116 (((-1168 |#1|) (-1168 |#1|)) 40)) (-1608 (((-1168 |#1|) (-1168 |#1|)) 37)) (-2397 (((-1168 |#1|) (-1168 |#1|)) 105)) (-2270 (((-1168 |#1|) (-1168 |#1|)) 69)) (-2370 (((-1168 |#1|) (-1168 |#1|)) 103)) (-2252 (((-1168 |#1|) (-1168 |#1|)) 64)) (-2348 (((-1168 |#1|) (-1168 |#1|)) 100)) (-2231 (((-1168 |#1|) (-1168 |#1|)) 56)) (-2436 (((-1168 |#1|) (-1168 |#1|)) 113)) (-2300 (((-1168 |#1|) (-1168 |#1|)) 88)) (-2409 (((-1168 |#1|) (-1168 |#1|)) 107)) (-2282 (((-1168 |#1|) (-1168 |#1|)) 84)) (-2460 (((-1168 |#1|) (-1168 |#1|)) 117)) (-2320 (((-1168 |#1|) (-1168 |#1|)) 92)) (-2516 (((-1168 |#1|) (-1168 |#1|)) 119)) (-2329 (((-1168 |#1|) (-1168 |#1|)) 94)) (-2448 (((-1168 |#1|) (-1168 |#1|)) 115)) (-2310 (((-1168 |#1|) (-1168 |#1|)) 90)) (-2423 (((-1168 |#1|) (-1168 |#1|)) 109)) (-2292 (((-1168 |#1|) (-1168 |#1|)) 86)) (** (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 41)))
-(((-1174 |#1|) (-10 -7 (-15 -1608 ((-1168 |#1|) (-1168 |#1|))) (-15 -3116 ((-1168 |#1|) (-1168 |#1|))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -1488 ((-2 (|:| -2222 (-1168 |#1|)) (|:| -2231 (-1168 |#1|))) (-1168 |#1|))) (-15 -2222 ((-1168 |#1|) (-1168 |#1|))) (-15 -2231 ((-1168 |#1|) (-1168 |#1|))) (-15 -2242 ((-1168 |#1|) (-1168 |#1|))) (-15 -2252 ((-1168 |#1|) (-1168 |#1|))) (-15 -2262 ((-1168 |#1|) (-1168 |#1|))) (-15 -2270 ((-1168 |#1|) (-1168 |#1|))) (-15 -2282 ((-1168 |#1|) (-1168 |#1|))) (-15 -2292 ((-1168 |#1|) (-1168 |#1|))) (-15 -2300 ((-1168 |#1|) (-1168 |#1|))) (-15 -2310 ((-1168 |#1|) (-1168 |#1|))) (-15 -2320 ((-1168 |#1|) (-1168 |#1|))) (-15 -2329 ((-1168 |#1|) (-1168 |#1|))) (-15 -2928 ((-2 (|:| -2338 (-1168 |#1|)) (|:| -2348 (-1168 |#1|))) (-1168 |#1|))) (-15 -2338 ((-1168 |#1|) (-1168 |#1|))) (-15 -2348 ((-1168 |#1|) (-1168 |#1|))) (-15 -2358 ((-1168 |#1|) (-1168 |#1|))) (-15 -2370 ((-1168 |#1|) (-1168 |#1|))) (-15 -2384 ((-1168 |#1|) (-1168 |#1|))) (-15 -2397 ((-1168 |#1|) (-1168 |#1|))) (-15 -2409 ((-1168 |#1|) (-1168 |#1|))) (-15 -2423 ((-1168 |#1|) (-1168 |#1|))) (-15 -2436 ((-1168 |#1|) (-1168 |#1|))) (-15 -2448 ((-1168 |#1|) (-1168 |#1|))) (-15 -2460 ((-1168 |#1|) (-1168 |#1|))) (-15 -2516 ((-1168 |#1|) (-1168 |#1|)))) (-38 (-415 (-572)))) (T -1174))
-((-2516 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2460 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2448 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2436 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2423 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2397 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-2 (|:| -2338 (-1168 *4)) (|:| -2348 (-1168 *4)))) (-5 *1 (-1174 *4)) (-5 *3 (-1168 *4)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2310 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2282 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-1488 (*1 *2 *3) (-12 (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-2 (|:| -2222 (-1168 *4)) (|:| -2231 (-1168 *4)))) (-5 *1 (-1174 *4)) (-5 *3 (-1168 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3116 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))))
-(-10 -7 (-15 -1608 ((-1168 |#1|) (-1168 |#1|))) (-15 -3116 ((-1168 |#1|) (-1168 |#1|))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -1488 ((-2 (|:| -2222 (-1168 |#1|)) (|:| -2231 (-1168 |#1|))) (-1168 |#1|))) (-15 -2222 ((-1168 |#1|) (-1168 |#1|))) (-15 -2231 ((-1168 |#1|) (-1168 |#1|))) (-15 -2242 ((-1168 |#1|) (-1168 |#1|))) (-15 -2252 ((-1168 |#1|) (-1168 |#1|))) (-15 -2262 ((-1168 |#1|) (-1168 |#1|))) (-15 -2270 ((-1168 |#1|) (-1168 |#1|))) (-15 -2282 ((-1168 |#1|) (-1168 |#1|))) (-15 -2292 ((-1168 |#1|) (-1168 |#1|))) (-15 -2300 ((-1168 |#1|) (-1168 |#1|))) (-15 -2310 ((-1168 |#1|) (-1168 |#1|))) (-15 -2320 ((-1168 |#1|) (-1168 |#1|))) (-15 -2329 ((-1168 |#1|) (-1168 |#1|))) (-15 -2928 ((-2 (|:| -2338 (-1168 |#1|)) (|:| -2348 (-1168 |#1|))) (-1168 |#1|))) (-15 -2338 ((-1168 |#1|) (-1168 |#1|))) (-15 -2348 ((-1168 |#1|) (-1168 |#1|))) (-15 -2358 ((-1168 |#1|) (-1168 |#1|))) (-15 -2370 ((-1168 |#1|) (-1168 |#1|))) (-15 -2384 ((-1168 |#1|) (-1168 |#1|))) (-15 -2397 ((-1168 |#1|) (-1168 |#1|))) (-15 -2409 ((-1168 |#1|) (-1168 |#1|))) (-15 -2423 ((-1168 |#1|) (-1168 |#1|))) (-15 -2436 ((-1168 |#1|) (-1168 |#1|))) (-15 -2448 ((-1168 |#1|) (-1168 |#1|))) (-15 -2460 ((-1168 |#1|) (-1168 |#1|))) (-15 -2516 ((-1168 |#1|) (-1168 |#1|))))
-((-4208 (((-967 |#2|) |#2| |#2|) 50)) (-1876 ((|#2| |#2| |#1|) 19 (|has| |#1| (-313)))))
-(((-1175 |#1| |#2|) (-10 -7 (-15 -4208 ((-967 |#2|) |#2| |#2|)) (IF (|has| |#1| (-313)) (-15 -1876 (|#2| |#2| |#1|)) |%noBranch|)) (-564) (-1255 |#1|)) (T -1175))
-((-1876 (*1 *2 *2 *3) (-12 (-4 *3 (-313)) (-4 *3 (-564)) (-5 *1 (-1175 *3 *2)) (-4 *2 (-1255 *3)))) (-4208 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-967 *3)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -4208 ((-967 |#2|) |#2| |#2|)) (IF (|has| |#1| (-313)) (-15 -1876 (|#2| |#2| |#1|)) |%noBranch|))
-((-2846 (((-112) $ $) NIL)) (-3542 (($ $ (-652 (-779))) 79)) (-1735 (($) 33)) (-2514 (($ $) 51)) (-2200 (((-652 $) $) 60)) (-2534 (((-112) $) 19)) (-2276 (((-652 (-952 |#2|)) $) 86)) (-2634 (($ $) 80)) (-3471 (((-779) $) 47)) (-3787 (($) 32)) (-2170 (($ $ (-652 (-779)) (-952 |#2|)) 72) (($ $ (-652 (-779)) (-779)) 73) (($ $ (-779) (-952 |#2|)) 75)) (-1767 (($ $ $) 57) (($ (-652 $)) 59)) (-4319 (((-779) $) 87)) (-2087 (((-112) $) 15)) (-4347 (((-1170) $) NIL)) (-1568 (((-112) $) 22)) (-3964 (((-1131) $) NIL)) (-4315 (((-173) $) 85)) (-2716 (((-952 |#2|) $) 81)) (-2047 (((-779) $) 82)) (-1737 (((-112) $) 84)) (-3629 (($ $ (-652 (-779)) (-173)) 78)) (-1445 (($ $) 52)) (-2940 (((-870) $) 99)) (-1466 (($ $ (-652 (-779)) (-112)) 77)) (-2065 (((-652 $) $) 11)) (-3006 (($ $ (-779)) 46)) (-4046 (($ $) 43)) (-4379 (((-112) $ $) NIL)) (-4304 (($ $ $ (-952 |#2|) (-779)) 68)) (-2677 (($ $ (-952 |#2|)) 67)) (-4336 (($ $ (-652 (-779)) (-952 |#2|)) 66) (($ $ (-652 (-779)) (-779)) 70) (((-779) $ (-952 |#2|)) 71)) (-2978 (((-112) $ $) 92)))
-(((-1176 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -2087 ((-112) $)) (-15 -2534 ((-112) $)) (-15 -1568 ((-112) $)) (-15 -3787 ($)) (-15 -1735 ($)) (-15 -4046 ($ $)) (-15 -3006 ($ $ (-779))) (-15 -2065 ((-652 $) $)) (-15 -3471 ((-779) $)) (-15 -2514 ($ $)) (-15 -1445 ($ $)) (-15 -1767 ($ $ $)) (-15 -1767 ($ (-652 $))) (-15 -2200 ((-652 $) $)) (-15 -4336 ($ $ (-652 (-779)) (-952 |#2|))) (-15 -2677 ($ $ (-952 |#2|))) (-15 -4304 ($ $ $ (-952 |#2|) (-779))) (-15 -2170 ($ $ (-652 (-779)) (-952 |#2|))) (-15 -4336 ($ $ (-652 (-779)) (-779))) (-15 -2170 ($ $ (-652 (-779)) (-779))) (-15 -4336 ((-779) $ (-952 |#2|))) (-15 -2170 ($ $ (-779) (-952 |#2|))) (-15 -1466 ($ $ (-652 (-779)) (-112))) (-15 -3629 ($ $ (-652 (-779)) (-173))) (-15 -3542 ($ $ (-652 (-779)))) (-15 -2716 ((-952 |#2|) $)) (-15 -2047 ((-779) $)) (-15 -1737 ((-112) $)) (-15 -4315 ((-173) $)) (-15 -4319 ((-779) $)) (-15 -2634 ($ $)) (-15 -2276 ((-652 (-952 |#2|)) $)))) (-930) (-1060)) (T -1176))
-((-2087 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-3787 (*1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-1735 (*1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-4046 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-3006 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2514 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-1767 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-1767 (*1 *1 *2) (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-4336 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-2677 (*1 *1 *1 *2) (-12 (-5 *2 (-952 *4)) (-4 *4 (-1060)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)))) (-4304 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-952 *5)) (-5 *3 (-779)) (-4 *5 (-1060)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-2170 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-4336 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-779)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)) (-4 *5 (-1060)))) (-2170 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-779)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)) (-4 *5 (-1060)))) (-4336 (*1 *2 *1 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *2 (-779)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-2170 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-1466 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-112)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)) (-4 *5 (-1060)))) (-3629 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-173)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)) (-4 *5 (-1060)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2716 (*1 *2 *1) (-12 (-5 *2 (-952 *4)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2634 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-652 (-952 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))))
-(-13 (-1111) (-10 -8 (-15 -2087 ((-112) $)) (-15 -2534 ((-112) $)) (-15 -1568 ((-112) $)) (-15 -3787 ($)) (-15 -1735 ($)) (-15 -4046 ($ $)) (-15 -3006 ($ $ (-779))) (-15 -2065 ((-652 $) $)) (-15 -3471 ((-779) $)) (-15 -2514 ($ $)) (-15 -1445 ($ $)) (-15 -1767 ($ $ $)) (-15 -1767 ($ (-652 $))) (-15 -2200 ((-652 $) $)) (-15 -4336 ($ $ (-652 (-779)) (-952 |#2|))) (-15 -2677 ($ $ (-952 |#2|))) (-15 -4304 ($ $ $ (-952 |#2|) (-779))) (-15 -2170 ($ $ (-652 (-779)) (-952 |#2|))) (-15 -4336 ($ $ (-652 (-779)) (-779))) (-15 -2170 ($ $ (-652 (-779)) (-779))) (-15 -4336 ((-779) $ (-952 |#2|))) (-15 -2170 ($ $ (-779) (-952 |#2|))) (-15 -1466 ($ $ (-652 (-779)) (-112))) (-15 -3629 ($ $ (-652 (-779)) (-173))) (-15 -3542 ($ $ (-652 (-779)))) (-15 -2716 ((-952 |#2|) $)) (-15 -2047 ((-779) $)) (-15 -1737 ((-112) $)) (-15 -4315 ((-173) $)) (-15 -4319 ((-779) $)) (-15 -2634 ($ $)) (-15 -2276 ((-652 (-952 |#2|)) $))))
-((-2846 (((-112) $ $) NIL)) (-1807 ((|#2| $) 11)) (-1794 ((|#1| $) 10)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2953 (($ |#1| |#2|) 9)) (-2940 (((-870) $) 16)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1177 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -2953 ($ |#1| |#2|)) (-15 -1794 (|#1| $)) (-15 -1807 (|#2| $)))) (-1111) (-1111)) (T -1177))
-((-2953 (*1 *1 *2 *3) (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-1794 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-1177 *2 *3)) (-4 *3 (-1111)))) (-1807 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-1111)))))
-(-13 (-1111) (-10 -8 (-15 -2953 ($ |#1| |#2|)) (-15 -1794 (|#1| $)) (-15 -1807 (|#2| $))))
-((-2846 (((-112) $ $) NIL)) (-2510 (((-1146) $) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1178) (-13 (-1094) (-10 -8 (-15 -2510 ((-1146) $))))) (T -1178))
-((-2510 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1178)))))
-(-13 (-1094) (-10 -8 (-15 -2510 ((-1146) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 (((-1186 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-313)) (|has| |#1| (-370))))) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) 11)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-3009 (($ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-4334 (((-112) $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-3762 (($ $ (-572)) NIL) (($ $ (-572) (-572)) 75)) (-1899 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) NIL)) (-2295 (((-1186 |#1| |#2| |#3|) $) 42)) (-3348 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) 32)) (-4400 (((-1186 |#1| |#2| |#3|) $) 33)) (-2358 (($ $) 116 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 92 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-3517 (($ $) NIL (|has| |#1| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2338 (($ $) 112 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 88 (|has| |#1| (-38 (-415 (-572)))))) (-2840 (((-572) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-3620 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) NIL)) (-2384 (($ $) 120 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 96 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1188) "failed") $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-572) "failed") $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))))) (-2204 (((-1186 |#1| |#2| |#3|) $) 140) (((-1188) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (((-415 (-572)) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370)))) (((-572) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))))) (-3560 (($ $) 37) (($ (-572) $) 38)) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) NIL)) (-2993 (((-697 (-1186 |#1| |#2| |#3|)) (-1279 $)) NIL (|has| |#1| (-370))) (((-697 (-1186 |#1| |#2| |#3|)) (-697 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -3544 (-697 (-1186 |#1| |#2| |#3|))) (|:| |vec| (-1279 (-1186 |#1| |#2| |#3|)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-1279 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370))))) (-2062 (((-3 $ "failed") $) 54)) (-3282 (((-415 (-961 |#1|)) $ (-572)) 74 (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) 76 (|has| |#1| (-564)))) (-2815 (($) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3879 (((-112) $) NIL (|has| |#1| (-370)))) (-3074 (((-112) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2579 (((-112) $) 28)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-895 (-386))) (|has| |#1| (-370)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-895 (-572))) (|has| |#1| (-370))))) (-2956 (((-572) $) NIL) (((-572) $ (-572)) 26)) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL (|has| |#1| (-370)))) (-2963 (((-1186 |#1| |#2| |#3|) $) 44 (|has| |#1| (-370)))) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2556 (((-3 $ "failed") $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1163)) (|has| |#1| (-370))))) (-1623 (((-112) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-4076 (($ $ (-930)) NIL)) (-3926 (($ (-1 |#1| (-572)) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-572)) 19) (($ $ (-1093) (-572)) NIL) (($ $ (-652 (-1093)) (-652 (-572))) NIL)) (-3654 (($ $ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-2427 (($ $ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-370)))) (-3116 (($ $) 81 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4411 (($ (-572) (-1186 |#1| |#2| |#3|)) 36)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-3034 (($ $) 79 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 80 (|has| |#1| (-38 (-415 (-572)))))) (-3815 (($) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1163)) (|has| |#1| (-370))) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2340 (($ $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-313)) (|has| |#1| (-370))))) (-3462 (((-1186 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-4218 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2772 (($ $ (-572)) 158)) (-2834 (((-3 $ "failed") $ $) 55 (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1608 (($ $) 82 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-572))))) (($ $ (-1188) (-1186 |#1| |#2| |#3|)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-522 (-1188) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 (-1186 |#1| |#2| |#3|))) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-522 (-1188) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-300 (-1186 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-300 (-1186 |#1| |#2| |#3|))) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-1186 |#1| |#2| |#3|)) (-652 (-1186 |#1| |#2| |#3|))) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))))) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ (-572)) NIL) (($ $ $) 61 (|has| (-572) (-1123))) (($ $ (-1186 |#1| |#2| |#3|)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-292 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3902 (($ $ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|))) NIL (|has| |#1| (-370))) (($ $ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) (-779)) NIL (|has| |#1| (-370))) (($ $ (-1275 |#2|)) 57) (($ $ (-779)) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 56 (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-1520 (($ $) NIL (|has| |#1| (-370)))) (-2974 (((-1186 |#1| |#2| |#3|) $) 46 (|has| |#1| (-370)))) (-4390 (((-572) $) 43)) (-2397 (($ $) 122 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 98 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 118 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 94 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 114 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 90 (|has| |#1| (-38 (-415 (-572)))))) (-1835 (((-544) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-622 (-544))) (|has| |#1| (-370)))) (((-386) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1033)) (|has| |#1| (-370)))) (((-227) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1033)) (|has| |#1| (-370)))) (((-901 (-386)) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-622 (-901 (-386)))) (|has| |#1| (-370)))) (((-901 (-572)) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-622 (-901 (-572)))) (|has| |#1| (-370))))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-2590 (($ $) NIL)) (-2940 (((-870) $) 162) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1186 |#1| |#2| |#3|)) 30) (($ (-1275 |#2|)) 25) (($ (-1188)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (($ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564)))) (($ (-415 (-572))) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))) (|has| |#1| (-38 (-415 (-572))))))) (-3979 ((|#1| $ (-572)) 77)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-146)) (|has| |#1| (-370))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-3356 ((|#1| $) 12)) (-3614 (((-1186 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) 128 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 104 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-2409 (($ $) 124 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 100 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 108 (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-572)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 110 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 130 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 106 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 126 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 102 (|has| |#1| (-38 (-415 (-572)))))) (-2700 (($ $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2131 (($) 21 T CONST)) (-2143 (($) 16 T CONST)) (-3608 (($ $ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|))) NIL (|has| |#1| (-370))) (($ $ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) (-779)) NIL (|has| |#1| (-370))) (($ $ (-779)) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-3039 (((-112) $ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3014 (((-112) $ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3003 (((-112) $ $) NIL (-2813 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) 49 (|has| |#1| (-370))) (($ (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) 50 (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 23)) (** (($ $ (-930)) NIL) (($ $ (-779)) 60) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) 83 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 137 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1186 |#1| |#2| |#3|)) 48 (|has| |#1| (-370))) (($ (-1186 |#1| |#2| |#3|) $) 47 (|has| |#1| (-370))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-1179 |#1| |#2| |#3|) (-13 (-1241 |#1| (-1186 |#1| |#2| |#3|)) (-10 -8 (-15 -2940 ($ (-1275 |#2|))) (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1179))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
-(-13 (-1241 |#1| (-1186 |#1| |#2| |#3|)) (-10 -8 (-15 -2940 ($ (-1275 |#2|))) (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|)))
-((-3557 ((|#2| |#2| (-1103 |#2|)) 26) ((|#2| |#2| (-1188)) 28)))
-(((-1180 |#1| |#2|) (-10 -7 (-15 -3557 (|#2| |#2| (-1188))) (-15 -3557 (|#2| |#2| (-1103 |#2|)))) (-13 (-564) (-1049 (-572)) (-647 (-572))) (-13 (-438 |#1|) (-161) (-27) (-1214))) (T -1180))
-((-3557 (*1 *2 *2 *3) (-12 (-5 *3 (-1103 *2)) (-4 *2 (-13 (-438 *4) (-161) (-27) (-1214))) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1180 *4 *2)))) (-3557 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1180 *4 *2)) (-4 *2 (-13 (-438 *4) (-161) (-27) (-1214))))))
-(-10 -7 (-15 -3557 (|#2| |#2| (-1188))) (-15 -3557 (|#2| |#2| (-1103 |#2|))))
-((-3557 (((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1103 (-415 (-961 |#1|)))) 31) (((-415 (-961 |#1|)) (-961 |#1|) (-1103 (-961 |#1|))) 44) (((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1188)) 33) (((-415 (-961 |#1|)) (-961 |#1|) (-1188)) 36)))
-(((-1181 |#1|) (-10 -7 (-15 -3557 ((-415 (-961 |#1|)) (-961 |#1|) (-1188))) (-15 -3557 ((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1188))) (-15 -3557 ((-415 (-961 |#1|)) (-961 |#1|) (-1103 (-961 |#1|)))) (-15 -3557 ((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1103 (-415 (-961 |#1|)))))) (-13 (-564) (-1049 (-572)))) (T -1181))
-((-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5))) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-3 *3 (-322 *5))) (-5 *1 (-1181 *5)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-961 *5))) (-5 *3 (-961 *5)) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 *3)) (-5 *1 (-1181 *5)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-3 (-415 (-961 *5)) (-322 *5))) (-5 *1 (-1181 *5)) (-5 *3 (-415 (-961 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 (-961 *5))) (-5 *1 (-1181 *5)) (-5 *3 (-961 *5)))))
-(-10 -7 (-15 -3557 ((-415 (-961 |#1|)) (-961 |#1|) (-1188))) (-15 -3557 ((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1188))) (-15 -3557 ((-415 (-961 |#1|)) (-961 |#1|) (-1103 (-961 |#1|)))) (-15 -3557 ((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1103 (-415 (-961 |#1|))))))
-((-1776 (((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|)) 13)))
-(((-1182 |#1| |#2|) (-10 -7 (-15 -1776 ((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|)))) (-1060) (-1060)) (T -1182))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-1184 *6)) (-5 *1 (-1182 *5 *6)))))
-(-10 -7 (-15 -1776 ((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|))))
-((-2287 (((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|))) 51)) (-4218 (((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|))) 52)))
-(((-1183 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|)))) (-15 -2287 ((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|))))) (-801) (-858) (-460) (-958 |#3| |#1| |#2|)) (T -1183))
-((-2287 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-460)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 (-415 *7)))) (-5 *1 (-1183 *4 *5 *6 *7)) (-5 *3 (-1184 (-415 *7))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-460)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 (-415 *7)))) (-5 *1 (-1183 *4 *5 *6 *7)) (-5 *3 (-1184 (-415 *7))))))
-(-10 -7 (-15 -4218 ((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|)))) (-15 -2287 ((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|)))))
-((-2846 (((-112) $ $) 171)) (-2697 (((-112) $) 43)) (-4166 (((-1279 |#1|) $ (-779)) NIL)) (-4353 (((-652 (-1093)) $) NIL)) (-3169 (($ (-1184 |#1|)) NIL)) (-4191 (((-1184 $) $ (-1093)) 82) (((-1184 |#1|) $) 71)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) 164 (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-1093))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $ $) 158 (|has| |#1| (-564)))) (-2603 (((-426 (-1184 $)) (-1184 $)) 95 (|has| |#1| (-918)))) (-3517 (($ $) NIL (|has| |#1| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 115 (|has| |#1| (-918)))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-1492 (($ $ (-779)) 61)) (-4157 (($ $ (-779)) 63)) (-2200 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-460)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1093) "failed") $) NIL)) (-2204 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1093) $) NIL)) (-2361 (($ $ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) 80)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2457 (($ $ $) 131)) (-1809 (($ $ $) NIL (|has| |#1| (-564)))) (-3038 (((-2 (|:| -1857 |#1|) (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-564)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-1876 (($ $) 165 (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#1| (-918)))) (-1437 (($ $ |#1| (-779) $) 69)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2532 (((-870) $ (-870)) 148)) (-2956 (((-779) $ $) NIL (|has| |#1| (-564)))) (-1886 (((-112) $) 48)) (-4368 (((-779) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| |#1| (-1163)))) (-4343 (($ (-1184 |#1|) (-1093)) 73) (($ (-1184 $) (-1093)) 89)) (-4076 (($ $ (-779)) 51)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-779)) 87) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-1093)) NIL) (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 153)) (-2649 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-2497 (($ (-1 (-779) (-779)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2297 (((-1184 |#1|) $) NIL)) (-3928 (((-3 (-1093) "failed") $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) 76)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-4347 (((-1170) $) NIL)) (-2507 (((-2 (|:| -4215 $) (|:| -3669 $)) $ (-779)) 60)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-1093)) (|:| -1679 (-779))) "failed") $) NIL)) (-3034 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3815 (($) NIL (|has| |#1| (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) 50)) (-1347 ((|#1| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 103 (|has| |#1| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) 167 (|has| |#1| (-460)))) (-3070 (($ $ (-779) |#1| $) 123)) (-4300 (((-426 (-1184 $)) (-1184 $)) 101 (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) 100 (|has| |#1| (-918)))) (-4218 (((-426 $) $) 108 (|has| |#1| (-918)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2834 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#1|) NIL) (($ $ (-652 (-1093)) (-652 |#1|)) NIL) (($ $ (-1093) $) NIL) (($ $ (-652 (-1093)) (-652 $)) NIL)) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-415 $) (-415 $) (-415 $)) NIL (|has| |#1| (-564))) ((|#1| (-415 $) |#1|) NIL (|has| |#1| (-370))) (((-415 $) $ (-415 $)) NIL (|has| |#1| (-564)))) (-1580 (((-3 $ "failed") $ (-779)) 54)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 172 (|has| |#1| (-370)))) (-3537 (($ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3902 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4390 (((-779) $) 78) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-1711 ((|#1| $) 162 (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-4039 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564))) (((-3 (-415 $) "failed") (-415 $) $) NIL (|has| |#1| (-564)))) (-2940 (((-870) $) 149) (($ (-572)) NIL) (($ |#1|) 77) (($ (-1093)) NIL) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-779)) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) 41 (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) 17 T CONST)) (-2143 (($) 19 T CONST)) (-3608 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) 120)) (-3106 (($ $ |#1|) 173 (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 90)) (** (($ $ (-930)) 14) (($ $ (-779)) 12)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 39) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
-(((-1184 |#1|) (-13 (-1255 |#1|) (-10 -8 (-15 -2532 ((-870) $ (-870))) (-15 -3070 ($ $ (-779) |#1| $)))) (-1060)) (T -1184))
-((-2532 (*1 *2 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1184 *3)) (-4 *3 (-1060)))) (-3070 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1184 *3)) (-4 *3 (-1060)))))
-(-13 (-1255 |#1|) (-10 -8 (-15 -2532 ((-870) $ (-870))) (-15 -3070 ($ $ (-779) |#1| $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) 11)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3762 (($ $ (-415 (-572))) NIL) (($ $ (-415 (-572)) (-415 (-572))) NIL)) (-1899 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) NIL)) (-2358 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-1179 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1186 |#1| |#2| |#3|) "failed") $) 36)) (-2204 (((-1179 |#1| |#2| |#3|) $) NIL) (((-1186 |#1| |#2| |#3|) $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2069 (((-415 (-572)) $) 59)) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-4422 (($ (-415 (-572)) (-1179 |#1| |#2| |#3|)) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3879 (((-112) $) NIL (|has| |#1| (-370)))) (-2579 (((-112) $) NIL)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-415 (-572)) $) NIL) (((-415 (-572)) $ (-415 (-572))) NIL)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) NIL) (($ $ (-415 (-572))) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-415 (-572))) 20) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3116 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4226 (((-1179 |#1| |#2| |#3|) $) 41)) (-1404 (((-3 (-1179 |#1| |#2| |#3|) "failed") $) NIL)) (-4411 (((-1179 |#1| |#2| |#3|) $) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-3034 (($ $) 39 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 40 (|has| |#1| (-38 (-415 (-572)))))) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2772 (($ $ (-415 (-572))) NIL)) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ (-415 (-572))) NIL) (($ $ $) NIL (|has| (-415 (-572)) (-1123)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $ (-1275 |#2|)) 38)) (-4390 (((-415 (-572)) $) NIL)) (-2397 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) NIL)) (-2940 (((-870) $) 62) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1179 |#1| |#2| |#3|)) 30) (($ (-1186 |#1| |#2| |#3|)) 31) (($ (-1275 |#2|)) 26) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-3979 ((|#1| $ (-415 (-572))) NIL)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-3356 ((|#1| $) 12)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-415 (-572))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 22 T CONST)) (-2143 (($) 16 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 24)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-1185 |#1| |#2| |#3|) (-13 (-1262 |#1| (-1179 |#1| |#2| |#3|)) (-1049 (-1186 |#1| |#2| |#3|)) (-624 (-1275 |#2|)) (-10 -8 (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1185))
-((-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
-(-13 (-1262 |#1| (-1179 |#1| |#2| |#3|)) (-1049 (-1186 |#1| |#2| |#3|)) (-624 (-1275 |#2|)) (-10 -8 (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 129)) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) 119)) (-4366 (((-1252 |#2| |#1|) $ (-779)) 69)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3762 (($ $ (-779)) 85) (($ $ (-779) (-779)) 82)) (-1899 (((-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|))) $) 105)) (-2358 (($ $) 173 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2338 (($ $) 169 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|)))) 118) (($ (-1168 |#1|)) 113)) (-2384 (($ $) 177 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) 25)) (-2824 (($ $) 28)) (-4051 (((-961 |#1|) $ (-779)) 81) (((-961 |#1|) $ (-779) (-779)) 83)) (-2579 (((-112) $) 124)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-779) $) 126) (((-779) $ (-779)) 128)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) NIL)) (-3926 (($ (-1 |#1| (-572)) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-779)) 13) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3116 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3034 (($ $) 133 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3964 (((-1131) $) NIL)) (-2772 (($ $ (-779)) 15)) (-2834 (((-3 $ "failed") $ $) 26 (|has| |#1| (-564)))) (-1608 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-779)))))) (-2196 ((|#1| $ (-779)) 122) (($ $ $) 132 (|has| (-779) (-1123)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $ (-1275 |#2|)) 31)) (-4390 (((-779) $) NIL)) (-2397 (($ $) 179 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 175 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 171 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) NIL)) (-2940 (((-870) $) 206) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1252 |#2| |#1|)) 55) (($ (-1275 |#2|)) 36)) (-4268 (((-1168 |#1|) $) 101)) (-3979 ((|#1| $ (-779)) 121)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-3356 ((|#1| $) 58)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) 185 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 161 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) 181 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 157 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 189 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 165 (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-779)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-779)))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) 191 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 167 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 187 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 163 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 183 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 159 (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 17 T CONST)) (-2143 (($) 20 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) 198)) (-3075 (($ $ $) 35)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ |#1|) 203 (|has| |#1| (-370))) (($ $ $) 138 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 141 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-1186 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-10 -8 (-15 -2940 ($ (-1252 |#2| |#1|))) (-15 -4366 ((-1252 |#2| |#1|) $ (-779))) (-15 -2940 ($ (-1275 |#2|))) (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1186))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1252 *4 *3)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3) (-5 *1 (-1186 *3 *4 *5)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1252 *5 *4)) (-5 *1 (-1186 *4 *5 *6)) (-4 *4 (-1060)) (-14 *5 (-1188)) (-14 *6 *4))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
-(-13 (-1270 |#1|) (-10 -8 (-15 -2940 ($ (-1252 |#2| |#1|))) (-15 -4366 ((-1252 |#2| |#1|) $ (-779))) (-15 -2940 ($ (-1275 |#2|))) (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|)))
-((-2940 (((-870) $) 33) (($ (-1188)) 35)) (-2813 (($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 46)) (-2800 (($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 39) (($ $) 40)) (-2515 (($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 41)) (-2503 (($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 43)) (-2490 (($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 42)) (-2479 (($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 44)) (-2075 (($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 45)))
-(((-1187) (-13 (-621 (-870)) (-10 -8 (-15 -2940 ($ (-1188))) (-15 -2515 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2490 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2503 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2479 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2813 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2075 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2800 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2800 ($ $))))) (T -1187))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1187)))) (-2515 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-2490 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-2503 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-2479 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-2813 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-2075 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-2800 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-2800 (*1 *1 *1) (-5 *1 (-1187))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2940 ($ (-1188))) (-15 -2515 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2490 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2503 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2479 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2813 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2075 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2800 ($ (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -2800 ($ $))))
-((-2846 (((-112) $ $) NIL)) (-4050 (($ $ (-652 (-870))) 62)) (-3812 (($ $ (-652 (-870))) 60)) (-3246 (((-1170) $) 101)) (-4145 (((-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870))) (|:| |args| (-652 (-870)))) $) 108)) (-4193 (((-112) $) 23)) (-3863 (($ $ (-652 (-652 (-870)))) 59) (($ $ (-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870))) (|:| |args| (-652 (-870))))) 99)) (-3281 (($) 163 T CONST)) (-1548 (((-1284)) 135)) (-1594 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 69) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 76)) (-3787 (($) 122) (($ $) 131)) (-2030 (($ $) 100)) (-3654 (($ $ $) NIL)) (-2427 (($ $ $) NIL)) (-1787 (((-652 $) $) 136)) (-4347 (((-1170) $) 114)) (-3964 (((-1131) $) NIL)) (-2196 (($ $ (-652 (-870))) 61)) (-1835 (((-544) $) 48) (((-1188) $) 49) (((-901 (-572)) $) 80) (((-901 (-386)) $) 78)) (-2940 (((-870) $) 55) (($ (-1170)) 50)) (-4379 (((-112) $ $) NIL)) (-1454 (($ $ (-652 (-870))) 63)) (-3547 (((-1170) $) 34) (((-1170) $ (-112)) 35) (((-1284) (-830) $) 36) (((-1284) (-830) $ (-112)) 37)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 51)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) 52)))
-(((-1188) (-13 (-858) (-622 (-544)) (-836) (-622 (-1188)) (-624 (-1170)) (-622 (-901 (-572))) (-622 (-901 (-386))) (-895 (-572)) (-895 (-386)) (-10 -8 (-15 -3787 ($)) (-15 -3787 ($ $)) (-15 -1548 ((-1284))) (-15 -2030 ($ $)) (-15 -4193 ((-112) $)) (-15 -4145 ((-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870))) (|:| |args| (-652 (-870)))) $)) (-15 -3863 ($ $ (-652 (-652 (-870))))) (-15 -3863 ($ $ (-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870))) (|:| |args| (-652 (-870)))))) (-15 -3812 ($ $ (-652 (-870)))) (-15 -4050 ($ $ (-652 (-870)))) (-15 -1454 ($ $ (-652 (-870)))) (-15 -2196 ($ $ (-652 (-870)))) (-15 -3246 ((-1170) $)) (-15 -1787 ((-652 $) $)) (-15 -3281 ($) -1705)))) (T -1188))
-((-3787 (*1 *1) (-5 *1 (-1188))) (-3787 (*1 *1 *1) (-5 *1 (-1188))) (-1548 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1188)))) (-2030 (*1 *1 *1) (-5 *1 (-1188))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870))) (|:| |args| (-652 (-870))))) (-5 *1 (-1188)))) (-3863 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 (-870)))) (-5 *1 (-1188)))) (-3863 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870))) (|:| |args| (-652 (-870))))) (-5 *1 (-1188)))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))) (-1454 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))) (-2196 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1188)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1188)))) (-3281 (*1 *1) (-5 *1 (-1188))))
-(-13 (-858) (-622 (-544)) (-836) (-622 (-1188)) (-624 (-1170)) (-622 (-901 (-572))) (-622 (-901 (-386))) (-895 (-572)) (-895 (-386)) (-10 -8 (-15 -3787 ($)) (-15 -3787 ($ $)) (-15 -1548 ((-1284))) (-15 -2030 ($ $)) (-15 -4193 ((-112) $)) (-15 -4145 ((-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870))) (|:| |args| (-652 (-870)))) $)) (-15 -3863 ($ $ (-652 (-652 (-870))))) (-15 -3863 ($ $ (-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870))) (|:| |args| (-652 (-870)))))) (-15 -3812 ($ $ (-652 (-870)))) (-15 -4050 ($ $ (-652 (-870)))) (-15 -1454 ($ $ (-652 (-870)))) (-15 -2196 ($ $ (-652 (-870)))) (-15 -3246 ((-1170) $)) (-15 -1787 ((-652 $) $)) (-15 -3281 ($) -1705)))
-((-3662 (((-1279 |#1|) |#1| (-930)) 18) (((-1279 |#1|) (-652 |#1|)) 25)))
-(((-1189 |#1|) (-10 -7 (-15 -3662 ((-1279 |#1|) (-652 |#1|))) (-15 -3662 ((-1279 |#1|) |#1| (-930)))) (-1060)) (T -1189))
-((-3662 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-5 *2 (-1279 *3)) (-5 *1 (-1189 *3)) (-4 *3 (-1060)))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1060)) (-5 *2 (-1279 *4)) (-5 *1 (-1189 *4)))))
-(-10 -7 (-15 -3662 ((-1279 |#1|) (-652 |#1|))) (-15 -3662 ((-1279 |#1|) |#1| (-930))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-2204 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-460)))) (-1437 (($ $ |#1| (-982) $) NIL)) (-1886 (((-112) $) 17)) (-4368 (((-779) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-982)) NIL)) (-2649 (((-982) $) NIL)) (-2497 (($ (-1 (-982) (-982)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#1| $) NIL)) (-3070 (($ $ (-982) |#1| $) NIL (-12 (|has| (-982) (-132)) (|has| |#1| (-564))))) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-4390 (((-982) $) NIL)) (-1711 ((|#1| $) NIL (|has| |#1| (-460)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) NIL) (($ (-415 (-572))) NIL (-2813 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ (-982)) NIL)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2131 (($) 10 T CONST)) (-2143 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 21)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-1190 |#1|) (-13 (-332 |#1| (-982)) (-10 -8 (IF (|has| |#1| (-564)) (IF (|has| (-982) (-132)) (-15 -3070 ($ $ (-982) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|))) (-1060)) (T -1190))
-((-3070 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-982)) (-4 *2 (-132)) (-5 *1 (-1190 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
-(-13 (-332 |#1| (-982)) (-10 -8 (IF (|has| |#1| (-564)) (IF (|has| (-982) (-132)) (-15 -3070 ($ $ (-982) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|)))
-((-1785 (((-1192) (-1188) $) 25)) (-2790 (($) 29)) (-3232 (((-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-1188) $) 22)) (-2596 (((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2420 "void")) $) 41) (((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) 42) (((-1284) (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) 43)) (-1748 (((-1284) (-1188)) 58)) (-2466 (((-1284) (-1188) $) 55) (((-1284) (-1188)) 56) (((-1284)) 57)) (-3273 (((-1284) (-1188)) 37)) (-2654 (((-1188)) 36)) (-1613 (($) 34)) (-3156 (((-445) (-1188) (-445) (-1188) $) 45) (((-445) (-652 (-1188)) (-445) (-1188) $) 49) (((-445) (-1188) (-445)) 46) (((-445) (-1188) (-445) (-1188)) 50)) (-2706 (((-1188)) 35)) (-2940 (((-870) $) 28)) (-1503 (((-1284)) 30) (((-1284) (-1188)) 33)) (-2125 (((-652 (-1188)) (-1188) $) 24)) (-2802 (((-1284) (-1188) (-652 (-1188)) $) 38) (((-1284) (-1188) (-652 (-1188))) 39) (((-1284) (-652 (-1188))) 40)))
-(((-1191) (-13 (-621 (-870)) (-10 -8 (-15 -2790 ($)) (-15 -1503 ((-1284))) (-15 -1503 ((-1284) (-1188))) (-15 -3156 ((-445) (-1188) (-445) (-1188) $)) (-15 -3156 ((-445) (-652 (-1188)) (-445) (-1188) $)) (-15 -3156 ((-445) (-1188) (-445))) (-15 -3156 ((-445) (-1188) (-445) (-1188))) (-15 -3273 ((-1284) (-1188))) (-15 -2706 ((-1188))) (-15 -2654 ((-1188))) (-15 -2802 ((-1284) (-1188) (-652 (-1188)) $)) (-15 -2802 ((-1284) (-1188) (-652 (-1188)))) (-15 -2802 ((-1284) (-652 (-1188)))) (-15 -2596 ((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2420 "void")) $)) (-15 -2596 ((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2420 "void")))) (-15 -2596 ((-1284) (-3 (|:| |fst| (-442)) (|:| -2420 "void")))) (-15 -2466 ((-1284) (-1188) $)) (-15 -2466 ((-1284) (-1188))) (-15 -2466 ((-1284))) (-15 -1748 ((-1284) (-1188))) (-15 -1613 ($)) (-15 -3232 ((-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-1188) $)) (-15 -2125 ((-652 (-1188)) (-1188) $)) (-15 -1785 ((-1192) (-1188) $))))) (T -1191))
-((-2790 (*1 *1) (-5 *1 (-1191))) (-1503 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1191)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-3156 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191)))) (-3156 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-445)) (-5 *3 (-652 (-1188))) (-5 *4 (-1188)) (-5 *1 (-1191)))) (-3156 (*1 *2 *3 *2) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191)))) (-3156 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2706 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1191)))) (-2654 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1191)))) (-2802 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2596 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1188)) (-5 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2596 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2466 (*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2466 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1191)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-1613 (*1 *1) (-5 *1 (-1191))) (-3232 (*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *1 (-1191)))) (-2125 (*1 *2 *3 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1191)) (-5 *3 (-1188)))) (-1785 (*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-1192)) (-5 *1 (-1191)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2790 ($)) (-15 -1503 ((-1284))) (-15 -1503 ((-1284) (-1188))) (-15 -3156 ((-445) (-1188) (-445) (-1188) $)) (-15 -3156 ((-445) (-652 (-1188)) (-445) (-1188) $)) (-15 -3156 ((-445) (-1188) (-445))) (-15 -3156 ((-445) (-1188) (-445) (-1188))) (-15 -3273 ((-1284) (-1188))) (-15 -2706 ((-1188))) (-15 -2654 ((-1188))) (-15 -2802 ((-1284) (-1188) (-652 (-1188)) $)) (-15 -2802 ((-1284) (-1188) (-652 (-1188)))) (-15 -2802 ((-1284) (-652 (-1188)))) (-15 -2596 ((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2420 "void")) $)) (-15 -2596 ((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2420 "void")))) (-15 -2596 ((-1284) (-3 (|:| |fst| (-442)) (|:| -2420 "void")))) (-15 -2466 ((-1284) (-1188) $)) (-15 -2466 ((-1284) (-1188))) (-15 -2466 ((-1284))) (-15 -1748 ((-1284) (-1188))) (-15 -1613 ($)) (-15 -3232 ((-3 (|:| |fst| (-442)) (|:| -2420 "void")) (-1188) $)) (-15 -2125 ((-652 (-1188)) (-1188) $)) (-15 -1785 ((-1192) (-1188) $))))
-((-3796 (((-652 (-652 (-3 (|:| -2030 (-1188)) (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))) $) 66)) (-2352 (((-652 (-3 (|:| -2030 (-1188)) (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))) (-442) $) 47)) (-3720 (($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-445))))) 17)) (-1748 (((-1284) $) 73)) (-2683 (((-652 (-1188)) $) 22)) (-2214 (((-1115) $) 60)) (-3634 (((-445) (-1188) $) 27)) (-2660 (((-652 (-1188)) $) 30)) (-1613 (($) 19)) (-3156 (((-445) (-652 (-1188)) (-445) $) 25) (((-445) (-1188) (-445) $) 24)) (-2940 (((-870) $) 9) (((-1201 (-1188) (-445)) $) 13)))
-(((-1192) (-13 (-621 (-870)) (-10 -8 (-15 -2940 ((-1201 (-1188) (-445)) $)) (-15 -1613 ($)) (-15 -3156 ((-445) (-652 (-1188)) (-445) $)) (-15 -3156 ((-445) (-1188) (-445) $)) (-15 -3634 ((-445) (-1188) $)) (-15 -2683 ((-652 (-1188)) $)) (-15 -2352 ((-652 (-3 (|:| -2030 (-1188)) (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))) (-442) $)) (-15 -2660 ((-652 (-1188)) $)) (-15 -3796 ((-652 (-652 (-3 (|:| -2030 (-1188)) (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))) $)) (-15 -2214 ((-1115) $)) (-15 -1748 ((-1284) $)) (-15 -3720 ($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-445))))))))) (T -1192))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-1201 (-1188) (-445))) (-5 *1 (-1192)))) (-1613 (*1 *1) (-5 *1 (-1192))) (-3156 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-445)) (-5 *3 (-652 (-1188))) (-5 *1 (-1192)))) (-3156 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1192)))) (-3634 (*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-445)) (-5 *1 (-1192)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1192)))) (-2352 (*1 *2 *3 *1) (-12 (-5 *3 (-442)) (-5 *2 (-652 (-3 (|:| -2030 (-1188)) (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))) (-5 *1 (-1192)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1192)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-3 (|:| -2030 (-1188)) (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))))) (-5 *1 (-1192)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1192)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1192)))) (-3720 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-445))))) (-5 *1 (-1192)))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2940 ((-1201 (-1188) (-445)) $)) (-15 -1613 ($)) (-15 -3156 ((-445) (-652 (-1188)) (-445) $)) (-15 -3156 ((-445) (-1188) (-445) $)) (-15 -3634 ((-445) (-1188) $)) (-15 -2683 ((-652 (-1188)) $)) (-15 -2352 ((-652 (-3 (|:| -2030 (-1188)) (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))) (-442) $)) (-15 -2660 ((-652 (-1188)) $)) (-15 -3796 ((-652 (-652 (-3 (|:| -2030 (-1188)) (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))) $)) (-15 -2214 ((-1115) $)) (-15 -1748 ((-1284) $)) (-15 -3720 ($ (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-445))))))))
-((-2846 (((-112) $ $) NIL)) (-1695 (((-3 (-572) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-514) "failed") $) 43) (((-3 (-1170) "failed") $) 47)) (-2204 (((-572) $) 30) (((-227) $) 36) (((-514) $) 40) (((-1170) $) 48)) (-1459 (((-112) $) 53)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2836 (((-3 (-572) (-227) (-514) (-1170) $) $) 55)) (-3290 (((-652 $) $) 57)) (-1835 (((-1115) $) 24) (($ (-1115)) 25)) (-1883 (((-112) $) 56)) (-2940 (((-870) $) 23) (($ (-572)) 26) (($ (-227)) 32) (($ (-514)) 38) (($ (-1170)) 44) (((-544) $) 59) (((-572) $) 31) (((-227) $) 37) (((-514) $) 41) (((-1170) $) 49)) (-2120 (((-112) $ (|[\|\|]| (-572))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-514))) 19) (((-112) $ (|[\|\|]| (-1170))) 16)) (-1667 (($ (-514) (-652 $)) 51) (($ $ (-652 $)) 52)) (-4379 (((-112) $ $) NIL)) (-1330 (((-572) $) 27) (((-227) $) 33) (((-514) $) 39) (((-1170) $) 45)) (-2978 (((-112) $ $) 7)))
-(((-1193) (-13 (-1274) (-1111) (-1049 (-572)) (-1049 (-227)) (-1049 (-514)) (-1049 (-1170)) (-621 (-544)) (-10 -8 (-15 -1835 ((-1115) $)) (-15 -1835 ($ (-1115))) (-15 -2940 ((-572) $)) (-15 -1330 ((-572) $)) (-15 -2940 ((-227) $)) (-15 -1330 ((-227) $)) (-15 -2940 ((-514) $)) (-15 -1330 ((-514) $)) (-15 -2940 ((-1170) $)) (-15 -1330 ((-1170) $)) (-15 -1667 ($ (-514) (-652 $))) (-15 -1667 ($ $ (-652 $))) (-15 -1459 ((-112) $)) (-15 -2836 ((-3 (-572) (-227) (-514) (-1170) $) $)) (-15 -3290 ((-652 $) $)) (-15 -1883 ((-112) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-572)))) (-15 -2120 ((-112) $ (|[\|\|]| (-227)))) (-15 -2120 ((-112) $ (|[\|\|]| (-514)))) (-15 -2120 ((-112) $ (|[\|\|]| (-1170))))))) (T -1193))
-((-1835 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1193)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-1193)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1193)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1193)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1193)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1193)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1193)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1193)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1193)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1193)))) (-1667 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-652 (-1193))) (-5 *1 (-1193)))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1193)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-3 (-572) (-227) (-514) (-1170) (-1193))) (-5 *1 (-1193)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1193)))) (-1883 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-572))) (-5 *2 (-112)) (-5 *1 (-1193)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1193)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)) (-5 *1 (-1193)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-1193)))))
-(-13 (-1274) (-1111) (-1049 (-572)) (-1049 (-227)) (-1049 (-514)) (-1049 (-1170)) (-621 (-544)) (-10 -8 (-15 -1835 ((-1115) $)) (-15 -1835 ($ (-1115))) (-15 -2940 ((-572) $)) (-15 -1330 ((-572) $)) (-15 -2940 ((-227) $)) (-15 -1330 ((-227) $)) (-15 -2940 ((-514) $)) (-15 -1330 ((-514) $)) (-15 -2940 ((-1170) $)) (-15 -1330 ((-1170) $)) (-15 -1667 ($ (-514) (-652 $))) (-15 -1667 ($ $ (-652 $))) (-15 -1459 ((-112) $)) (-15 -2836 ((-3 (-572) (-227) (-514) (-1170) $) $)) (-15 -3290 ((-652 $) $)) (-15 -1883 ((-112) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-572)))) (-15 -2120 ((-112) $ (|[\|\|]| (-227)))) (-15 -2120 ((-112) $ (|[\|\|]| (-514)))) (-15 -2120 ((-112) $ (|[\|\|]| (-1170))))))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) 22)) (-3281 (($) 12 T CONST)) (-2815 (($) 26)) (-3654 (($ $ $) NIL) (($) 19 T CONST)) (-2427 (($ $ $) NIL) (($) 20 T CONST)) (-3715 (((-930) $) 24)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) 23)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-1194 |#1|) (-13 (-852) (-10 -8 (-15 -3281 ($) -1705))) (-930)) (T -1194))
-((-3281 (*1 *1) (-12 (-5 *1 (-1194 *2)) (-14 *2 (-930)))))
-(-13 (-852) (-10 -8 (-15 -3281 ($) -1705)))
+((-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-534)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-220)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-686)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1291))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1291)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-139)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-616)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-134)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1128))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1128)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-96)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-691)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-527)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1079)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1292))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1292)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-535)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1164))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1164)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-155)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-681)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-319)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1049))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1049)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-182)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-983))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-983)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1086)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1103)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1109)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-636)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1180)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-157)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-138)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-488)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-602)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-516)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1172)))) (-2123 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-574)))))
+(-13 (-1096) (-1276) (-10 -8 (-15 -2123 ((-112) $ (|[\|\|]| (-534)))) (-15 -1331 ((-534) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-220)))) (-15 -1331 ((-220) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-686)))) (-15 -1331 ((-686) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1291)))) (-15 -1331 ((-1291) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-139)))) (-15 -1331 ((-139) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-616)))) (-15 -1331 ((-616) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-134)))) (-15 -1331 ((-134) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1128)))) (-15 -1331 ((-1128) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-96)))) (-15 -1331 ((-96) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-691)))) (-15 -1331 ((-691) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-527)))) (-15 -1331 ((-527) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1079)))) (-15 -1331 ((-1079) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1292)))) (-15 -1331 ((-1292) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-535)))) (-15 -1331 ((-535) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1164)))) (-15 -1331 ((-1164) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-155)))) (-15 -1331 ((-155) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-681)))) (-15 -1331 ((-681) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-319)))) (-15 -1331 ((-319) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1049)))) (-15 -1331 ((-1049) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-182)))) (-15 -1331 ((-182) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-983)))) (-15 -1331 ((-983) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1086)))) (-15 -1331 ((-1086) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1103)))) (-15 -1331 ((-1103) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1109)))) (-15 -1331 ((-1109) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-636)))) (-15 -1331 ((-636) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1180)))) (-15 -1331 ((-1180) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-157)))) (-15 -1331 ((-157) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-138)))) (-15 -1331 ((-138) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-488)))) (-15 -1331 ((-488) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-602)))) (-15 -1331 ((-602) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-516)))) (-15 -1331 ((-516) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-1172)))) (-15 -1331 ((-1172) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-574)))) (-15 -1331 ((-574) $))))
+(((-93) . T) ((-102) . T) ((-626 #0=(-1195)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1113) . T) ((-1096) . T) ((-1276) . T))
+((-3998 (((-1286) (-654 (-872))) 22) (((-1286) (-872)) 21)) (-1888 (((-1286) (-654 (-872))) 20) (((-1286) (-872)) 19)) (-3768 (((-1286) (-654 (-872))) 18) (((-1286) (-872)) 10) (((-1286) (-1172) (-872)) 16)))
+(((-1151) (-10 -7 (-15 -3768 ((-1286) (-1172) (-872))) (-15 -3768 ((-1286) (-872))) (-15 -1888 ((-1286) (-872))) (-15 -3998 ((-1286) (-872))) (-15 -3768 ((-1286) (-654 (-872)))) (-15 -1888 ((-1286) (-654 (-872)))) (-15 -3998 ((-1286) (-654 (-872)))))) (T -1151))
+((-3998 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))))
+(-10 -7 (-15 -3768 ((-1286) (-1172) (-872))) (-15 -3768 ((-1286) (-872))) (-15 -1888 ((-1286) (-872))) (-15 -3998 ((-1286) (-872))) (-15 -3768 ((-1286) (-654 (-872)))) (-15 -1888 ((-1286) (-654 (-872)))) (-15 -3998 ((-1286) (-654 (-872)))))
+((-4109 (($ $ $) 10)) (-2330 (($ $) 9)) (-2833 (($ $ $) 13)) (-3687 (($ $ $) 15)) (-3006 (($ $ $) 12)) (-1962 (($ $ $) 14)) (-3458 (($ $) 17)) (-3497 (($ $) 16)) (-2946 (($ $) 6)) (-3205 (($ $ $) 11) (($ $) 7)) (-3952 (($ $ $) 8)))
+(((-1152) (-141)) (T -1152))
+((-3458 (*1 *1 *1) (-4 *1 (-1152))) (-3497 (*1 *1 *1) (-4 *1 (-1152))) (-3687 (*1 *1 *1 *1) (-4 *1 (-1152))) (-1962 (*1 *1 *1 *1) (-4 *1 (-1152))) (-2833 (*1 *1 *1 *1) (-4 *1 (-1152))) (-3006 (*1 *1 *1 *1) (-4 *1 (-1152))) (-3205 (*1 *1 *1 *1) (-4 *1 (-1152))) (-4109 (*1 *1 *1 *1) (-4 *1 (-1152))) (-2330 (*1 *1 *1) (-4 *1 (-1152))) (-3952 (*1 *1 *1 *1) (-4 *1 (-1152))) (-3205 (*1 *1 *1) (-4 *1 (-1152))) (-2946 (*1 *1 *1) (-4 *1 (-1152))))
+(-13 (-10 -8 (-15 -2946 ($ $)) (-15 -3205 ($ $)) (-15 -3952 ($ $ $)) (-15 -2330 ($ $)) (-15 -4109 ($ $ $)) (-15 -3205 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -2833 ($ $ $)) (-15 -1962 ($ $ $)) (-15 -3687 ($ $ $)) (-15 -3497 ($ $)) (-15 -3458 ($ $))))
+((-2849 (((-112) $ $) 44)) (-3083 ((|#1| $) 17)) (-2827 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1379 (((-112) $) 19)) (-3055 (($ $ |#1|) 30)) (-1938 (($ $ (-112)) 32)) (-2858 (($ $) 33)) (-3763 (($ $ |#2|) 31)) (-2568 (((-1172) $) NIL)) (-3512 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3966 (((-1133) $) NIL)) (-3556 (((-112) $) 16)) (-3135 (($) 13)) (-3167 (($ $) 29)) (-2956 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4091 |#2|))) 23) (((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|)))) 26) (((-654 $) |#1| (-654 |#2|)) 28)) (-2265 ((|#2| $) 18)) (-2943 (((-872) $) 53)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 42)))
+(((-1153 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -3135 ($)) (-15 -3556 ((-112) $)) (-15 -3083 (|#1| $)) (-15 -2265 (|#2| $)) (-15 -1379 ((-112) $)) (-15 -2956 ($ |#1| |#2| (-112))) (-15 -2956 ($ |#1| |#2|)) (-15 -2956 ($ (-2 (|:| |val| |#1|) (|:| -4091 |#2|)))) (-15 -2956 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))))) (-15 -2956 ((-654 $) |#1| (-654 |#2|))) (-15 -3167 ($ $)) (-15 -3055 ($ $ |#1|)) (-15 -3763 ($ $ |#2|)) (-15 -1938 ($ $ (-112))) (-15 -2858 ($ $)) (-15 -3512 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2827 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1113) (-34)) (-13 (-1113) (-34))) (T -1153))
+((-3135 (*1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-3083 (*1 *2 *1) (-12 (-4 *2 (-13 (-1113) (-34))) (-5 *1 (-1153 *2 *3)) (-4 *3 (-13 (-1113) (-34))))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-13 (-1113) (-34))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-13 (-1113) (-34))))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2 *3) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4091 *4))) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1153 *3 *4)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4091 *5)))) (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-654 (-1153 *4 *5))) (-5 *1 (-1153 *4 *5)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-654 (-1153 *3 *5))) (-5 *1 (-1153 *3 *5)) (-4 *3 (-13 (-1113) (-34))))) (-3167 (*1 *1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-3055 (*1 *1 *1 *2) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-3763 (*1 *1 *1 *2) (-12 (-5 *1 (-1153 *3 *2)) (-4 *3 (-13 (-1113) (-34))) (-4 *2 (-13 (-1113) (-34))))) (-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-2858 (*1 *1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-3512 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1113) (-34))) (-4 *6 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *5 *6)))) (-2827 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *4 *5)) (-4 *4 (-13 (-1113) (-34))))))
+(-13 (-1113) (-10 -8 (-15 -3135 ($)) (-15 -3556 ((-112) $)) (-15 -3083 (|#1| $)) (-15 -2265 (|#2| $)) (-15 -1379 ((-112) $)) (-15 -2956 ($ |#1| |#2| (-112))) (-15 -2956 ($ |#1| |#2|)) (-15 -2956 ($ (-2 (|:| |val| |#1|) (|:| -4091 |#2|)))) (-15 -2956 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))))) (-15 -2956 ((-654 $) |#1| (-654 |#2|))) (-15 -3167 ($ $)) (-15 -3055 ($ $ |#1|)) (-15 -3763 ($ $ |#2|)) (-15 -1938 ($ $ (-112))) (-15 -2858 ($ $)) (-15 -3512 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2827 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2849 (((-112) $ $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-3083 (((-1153 |#1| |#2|) $) 27)) (-1603 (($ $) 91)) (-2703 (((-112) (-1153 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2947 (($ $ $ (-654 (-1153 |#1| |#2|))) 108) (($ $ $ (-654 (-1153 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3340 (((-112) $ (-781)) NIL)) (-1630 (((-1153 |#1| |#2|) $ (-1153 |#1| |#2|)) 46 (|has| $ (-6 -4457)))) (-3143 (((-1153 |#1| |#2|) $ "value" (-1153 |#1| |#2|)) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 44 (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-4072 (((-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))) $) 95)) (-1586 (($ (-1153 |#1| |#2|) $) 42)) (-3335 (($ (-1153 |#1| |#2|) $) 34)) (-1864 (((-654 (-1153 |#1| |#2|)) $) NIL (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 54)) (-3126 (((-112) (-1153 |#1| |#2|) $) 97)) (-4127 (((-112) $ $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 (-1153 |#1| |#2|)) $) 58 (|has| $ (-6 -4456)))) (-3759 (((-112) (-1153 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-1153 |#1| |#2|) (-1113))))) (-2446 (($ (-1 (-1153 |#1| |#2|) (-1153 |#1| |#2|)) $) 50 (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-1153 |#1| |#2|) (-1153 |#1| |#2|)) $) 49)) (-2448 (((-112) $ (-781)) NIL)) (-3509 (((-654 (-1153 |#1| |#2|)) $) 56)) (-2173 (((-112) $) 45)) (-2568 (((-1172) $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-3966 (((-1133) $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-1478 (((-3 $ "failed") $) 89)) (-3124 (((-112) (-1 (-112) (-1153 |#1| |#2|)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-1153 |#1| |#2|)))) NIL (-12 (|has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))) (|has| (-1153 |#1| |#2|) (-1113)))) (($ $ (-302 (-1153 |#1| |#2|))) NIL (-12 (|has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))) (|has| (-1153 |#1| |#2|) (-1113)))) (($ $ (-1153 |#1| |#2|) (-1153 |#1| |#2|)) NIL (-12 (|has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))) (|has| (-1153 |#1| |#2|) (-1113)))) (($ $ (-654 (-1153 |#1| |#2|)) (-654 (-1153 |#1| |#2|))) NIL (-12 (|has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))) (|has| (-1153 |#1| |#2|) (-1113))))) (-1892 (((-112) $ $) 53)) (-3556 (((-112) $) 24)) (-3135 (($) 26)) (-2200 (((-1153 |#1| |#2|) $ "value") NIL)) (-1556 (((-574) $ $) NIL)) (-4023 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) (-1153 |#1| |#2|)) $) NIL (|has| $ (-6 -4456))) (((-781) (-1153 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-1153 |#1| |#2|) (-1113))))) (-3167 (($ $) 52)) (-2956 (($ (-1153 |#1| |#2|)) 10) (($ |#1| |#2| (-654 $)) 13) (($ |#1| |#2| (-654 (-1153 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-654 |#2|)) 18)) (-2670 (((-654 |#2|) $) 96)) (-2943 (((-872) $) 87 (|has| (-1153 |#1| |#2|) (-623 (-872))))) (-1973 (((-654 $) $) 31)) (-1495 (((-112) $ $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-2923 (((-112) $ $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-2935 (((-112) (-1 (-112) (-1153 |#1| |#2|)) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 70 (|has| (-1153 |#1| |#2|) (-1113)))) (-2863 (((-781) $) 64 (|has| $ (-6 -4456)))))
+(((-1154 |#1| |#2|) (-13 (-1023 (-1153 |#1| |#2|)) (-10 -8 (-6 -4457) (-6 -4456) (-15 -1478 ((-3 $ "failed") $)) (-15 -1603 ($ $)) (-15 -2956 ($ (-1153 |#1| |#2|))) (-15 -2956 ($ |#1| |#2| (-654 $))) (-15 -2956 ($ |#1| |#2| (-654 (-1153 |#1| |#2|)))) (-15 -2956 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2670 ((-654 |#2|) $)) (-15 -4072 ((-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))) $)) (-15 -3126 ((-112) (-1153 |#1| |#2|) $)) (-15 -2703 ((-112) (-1153 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3335 ($ (-1153 |#1| |#2|) $)) (-15 -1586 ($ (-1153 |#1| |#2|) $)) (-15 -2947 ($ $ $ (-654 (-1153 |#1| |#2|)))) (-15 -2947 ($ $ $ (-654 (-1153 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1113) (-34)) (-13 (-1113) (-34))) (T -1154))
+((-1478 (*1 *1 *1) (|partial| -12 (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-1603 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1154 *2 *3))) (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1153 *2 *3))) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))) (-5 *1 (-1154 *2 *3)))) (-2956 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1113) (-34))) (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-654 *4)) (-5 *1 (-1154 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1154 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-3126 (*1 *2 *3 *1) (-12 (-5 *3 (-1153 *4 *5)) (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1154 *4 *5)))) (-2703 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1153 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1113) (-34))) (-4 *6 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1154 *5 *6)))) (-3335 (*1 *1 *2 *1) (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))) (-1586 (*1 *1 *2 *1) (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))) (-2947 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-654 (-1153 *3 *4))) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))) (-2947 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1153 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34))) (-5 *1 (-1154 *4 *5)))))
+(-13 (-1023 (-1153 |#1| |#2|)) (-10 -8 (-6 -4457) (-6 -4456) (-15 -1478 ((-3 $ "failed") $)) (-15 -1603 ($ $)) (-15 -2956 ($ (-1153 |#1| |#2|))) (-15 -2956 ($ |#1| |#2| (-654 $))) (-15 -2956 ($ |#1| |#2| (-654 (-1153 |#1| |#2|)))) (-15 -2956 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2670 ((-654 |#2|) $)) (-15 -4072 ((-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))) $)) (-15 -3126 ((-112) (-1153 |#1| |#2|) $)) (-15 -2703 ((-112) (-1153 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3335 ($ (-1153 |#1| |#2|) $)) (-15 -1586 ($ (-1153 |#1| |#2|) $)) (-15 -2947 ($ $ $ (-654 (-1153 |#1| |#2|)))) (-15 -2947 ($ $ $ (-654 (-1153 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-3202 (($ $) NIL)) (-1637 ((|#2| $) NIL)) (-4286 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1617 (($ (-699 |#2|)) 56)) (-3816 (((-112) $) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-3245 (($ |#2|) 14)) (-3670 (($) NIL T CONST)) (-3444 (($ $) 69 (|has| |#2| (-315)))) (-1468 (((-246 |#1| |#2|) $ (-574)) 42)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) ((|#2| $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) 83)) (-3584 (((-781) $) 71 (|has| |#2| (-566)))) (-2385 ((|#2| $ (-574) (-574)) NIL)) (-1864 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3965 (((-112) $) NIL)) (-2164 (((-781) $) 73 (|has| |#2| (-566)))) (-2337 (((-654 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-566)))) (-2190 (((-781) $) NIL)) (-3790 (($ |#2|) 25)) (-2199 (((-781) $) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-3689 ((|#2| $) 67 (|has| |#2| (-6 (-4458 "*"))))) (-2294 (((-574) $) NIL)) (-1373 (((-574) $) NIL)) (-1712 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-1431 (((-574) $) NIL)) (-3889 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#2|))) 37)) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1820 (((-654 (-654 |#2|)) $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-2422 (((-3 $ "failed") $) 80 (|has| |#2| (-372)))) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-3124 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) NIL)) (-3905 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2087 ((|#2| $) NIL)) (-3428 (($ (-654 |#2|)) 50)) (-4358 (((-112) $) NIL)) (-1924 (((-246 |#1| |#2|) $) NIL)) (-3646 ((|#2| $) 65 (|has| |#2| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-1837 (((-546) $) 89 (|has| |#2| (-624 (-546))))) (-1988 (((-246 |#1| |#2|) $ (-574)) 44)) (-2943 (((-872) $) 47) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1051 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) 52)) (-4160 (((-781)) 23 T CONST)) (-2923 (((-112) $ $) NIL)) (-2935 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2984 (((-112) $) NIL)) (-2134 (($) 16 T CONST)) (-2146 (($) 21 T CONST)) (-3611 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) 63) (($ $ (-574)) 82 (|has| |#2| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1155 |#1| |#2|) (-13 (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3790 ($ |#2|)) (-15 -3202 ($ $)) (-15 -1617 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4458 "*"))) (-6 -4445) |%noBranch|) (IF (|has| |#2| (-6 (-4458 "*"))) (IF (|has| |#2| (-6 -4453)) (-6 -4453) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-781) (-1062)) (T -1155))
+((-3790 (*1 *1 *2) (-12 (-5 *1 (-1155 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1062)))) (-3202 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1062)))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-699 *4)) (-4 *4 (-1062)) (-5 *1 (-1155 *3 *4)) (-14 *3 (-781)))))
+(-13 (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3790 ($ |#2|)) (-15 -3202 ($ $)) (-15 -1617 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4458 "*"))) (-6 -4445) |%noBranch|) (IF (|has| |#2| (-6 (-4458 "*"))) (IF (|has| |#2| (-6 -4453)) (-6 -4453) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|)))
+((-3750 (($ $) 19)) (-4182 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3733 (((-112) $ $) 24)) (-4425 (($ $) 17)) (-2200 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1248 (-574))) NIL) (($ $ $) 31)) (-2943 (($ (-145)) 29) (((-872) $) NIL)))
+(((-1156 |#1|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2200 (|#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-142))) (-15 -4182 (|#1| |#1| (-145))) (-15 -2943 (|#1| (-145))) (-15 -3733 ((-112) |#1| |#1|)) (-15 -3750 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -2200 (|#1| |#1| (-1248 (-574)))) (-15 -2200 ((-145) |#1| (-574))) (-15 -2200 ((-145) |#1| (-574) (-145)))) (-1157)) (T -1156))
+NIL
+(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2200 (|#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| (-142))) (-15 -4182 (|#1| |#1| (-145))) (-15 -2943 (|#1| (-145))) (-15 -3733 ((-112) |#1| |#1|)) (-15 -3750 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -2200 (|#1| |#1| (-1248 (-574)))) (-15 -2200 ((-145) |#1| (-574))) (-15 -2200 ((-145) |#1| (-574) (-145))))
+((-2849 (((-112) $ $) 19 (|has| (-145) (-1113)))) (-3710 (($ $) 123)) (-3750 (($ $) 124)) (-4182 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-1860 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3712 (((-112) $ $) 121)) (-3691 (((-112) $ $ (-574)) 120)) (-1483 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-3850 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-4010 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-3340 (((-112) $ (-781)) 8)) (-3143 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4457))) (((-145) $ (-1248 (-574)) (-145)) 60 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2617 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2672 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-4062 (($ $ (-1248 (-574)) $) 117)) (-2158 (($ $) 80 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-145) $) 79 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4456)))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4456)))) (-2462 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4457)))) (-2385 (((-145) $ (-574)) 52)) (-3733 (((-112) $ $) 122)) (-1441 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1113))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1113))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1864 (((-654 (-145)) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-145)) 70)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 44 (|has| (-574) (-860)))) (-3658 (($ $ $) 90 (|has| (-145) (-860)))) (-2130 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-1712 (((-654 (-145)) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 45 (|has| (-574) (-860)))) (-2106 (($ $ $) 89 (|has| (-145) (-860)))) (-1326 (((-112) $ $ (-145)) 118)) (-2683 (((-781) $ $ (-145)) 119)) (-2446 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3178 (($ $) 125)) (-4425 (($ $) 126)) (-2448 (((-112) $ (-781)) 10)) (-2631 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2568 (((-1172) $) 22 (|has| (-145) (-1113)))) (-1595 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-2459 (((-654 (-574)) $) 47)) (-2607 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| (-145) (-1113)))) (-2915 (((-145) $) 43 (|has| (-574) (-860)))) (-1836 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1363 (($ $ (-145)) 42 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2121 (((-654 (-145)) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1248 (-574))) 71) (($ $ $) 105)) (-2837 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4456))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-1958 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1837 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2956 (($ (-654 (-145))) 72)) (-4157 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (($ (-145)) 114) (((-872) $) 18 (|has| (-145) (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| (-145) (-1113)))) (-2935 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3016 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2982 (((-112) $ $) 20 (|has| (-145) (-1113)))) (-3028 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3005 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-1157) (-141)) (T -1157))
+((-4425 (*1 *1 *1) (-4 *1 (-1157))) (-3178 (*1 *1 *1) (-4 *1 (-1157))) (-3750 (*1 *1 *1) (-4 *1 (-1157))) (-3710 (*1 *1 *1) (-4 *1 (-1157))) (-3733 (*1 *2 *1 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-112)))) (-3712 (*1 *2 *1 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-112)))) (-3691 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-574)) (-5 *2 (-112)))) (-2683 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-145)) (-5 *2 (-781)))) (-1326 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-145)) (-5 *2 (-112)))) (-4062 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1248 (-574))))) (-1441 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-574)))) (-1441 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-574)) (-5 *3 (-142)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1157)))) (-1483 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1157)))) (-1483 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1157)))) (-4182 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145)))) (-4182 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142)))) (-2631 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145)))) (-2631 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142)))) (-2617 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145)))) (-2617 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142)))) (-2200 (*1 *1 *1 *1) (-4 *1 (-1157))))
+(-13 (-19 (-145)) (-10 -8 (-15 -4425 ($ $)) (-15 -3178 ($ $)) (-15 -3750 ($ $)) (-15 -3710 ($ $)) (-15 -3733 ((-112) $ $)) (-15 -3712 ((-112) $ $)) (-15 -3691 ((-112) $ $ (-574))) (-15 -2683 ((-781) $ $ (-145))) (-15 -1326 ((-112) $ $ (-145))) (-15 -4062 ($ $ (-1248 (-574)) $)) (-15 -1441 ((-574) $ $ (-574))) (-15 -1441 ((-574) (-142) $ (-574))) (-15 -2943 ($ (-145))) (-15 -1483 ((-654 $) $ (-145))) (-15 -1483 ((-654 $) $ (-142))) (-15 -4182 ($ $ (-145))) (-15 -4182 ($ $ (-142))) (-15 -2631 ($ $ (-145))) (-15 -2631 ($ $ (-142))) (-15 -2617 ($ $ (-145))) (-15 -2617 ($ $ (-142))) (-15 -2200 ($ $ $))))
+(((-34) . T) ((-102) -2818 (|has| (-145) (-1113)) (|has| (-145) (-860))) ((-623 (-872)) -2818 (|has| (-145) (-1113)) (|has| (-145) (-860)) (|has| (-145) (-623 (-872)))) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))) ((-661 #0#) . T) ((-19 #0#) . T) ((-860) |has| (-145) (-860)) ((-1113) -2818 (|has| (-145) (-1113)) (|has| (-145) (-860))) ((-1231) . T))
+((-3757 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781)) 112)) (-3424 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781)) 61)) (-3669 (((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)) 97)) (-4406 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-2949 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781)) 63) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112)) 65)) (-1650 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 85)) (-1837 (((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) 90)) (-4030 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 60)) (-1384 (((-781) (-654 |#4|) (-654 |#5|)) 21)))
+(((-1158 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1384 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -4406 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -4030 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -3424 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -3424 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -1650 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1650 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3757 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781))) (-15 -1837 ((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -3669 ((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1122 |#1| |#2| |#3| |#4|)) (T -1158))
+((-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) (-5 *4 (-781)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1286)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1122 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1172)) (-5 *1 (-1158 *4 *5 *6 *7 *8)))) (-3757 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4091 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4091 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1078 *7 *8 *9)) (-4 *11 (-1122 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1158 *7 *8 *9 *10 *11)))) (-1650 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))) (-1650 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))) (-2949 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3)))) (-2949 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *6 *7 *8 *3 *4)) (-4 *4 (-1122 *6 *7 *8 *3)))) (-2949 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1078 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *7 *8 *9 *3 *4)) (-4 *4 (-1122 *7 *8 *9 *3)))) (-3424 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3)))) (-3424 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *6 *7 *8 *3 *4)) (-4 *4 (-1122 *6 *7 *8 *3)))) (-4030 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3)))) (-4406 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))) (-1384 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1384 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -4406 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -4030 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -3424 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -3424 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -2949 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -1650 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1650 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3757 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781))) (-15 -1837 ((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -3669 ((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781))))
+((-2849 (((-112) $ $) NIL)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1886 (((-654 $) (-654 |#4|)) 124) (((-654 $) (-654 |#4|) (-112)) 125) (((-654 $) (-654 |#4|) (-112) (-112)) 123) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4355 (((-654 |#3|) $) NIL)) (-3753 (((-112) $) NIL)) (-3609 (((-112) $) NIL (|has| |#1| (-566)))) (-3456 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1621 ((|#4| |#4| $) NIL)) (-4348 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 97)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-2166 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 75)) (-3670 (($) NIL T CONST)) (-1800 (((-112) $) 29 (|has| |#1| (-566)))) (-1322 (((-112) $ $) NIL (|has| |#1| (-566)))) (-4133 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3172 (((-112) $) NIL (|has| |#1| (-566)))) (-2543 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3949 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2209 (($ (-654 |#4|)) NIL)) (-2926 (((-3 $ "failed") $) 45)) (-2793 ((|#4| |#4| $) 78)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-566)))) (-4155 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2043 ((|#4| |#4| $) NIL)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2766 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1676 (-654 |#4|))) $) NIL)) (-3321 (((-112) |#4| $) NIL)) (-2308 (((-112) |#4| $) NIL)) (-3857 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2645 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 139)) (-1864 (((-654 |#4|) $) 18 (|has| $ (-6 -4456)))) (-2474 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2851 ((|#3| $) 38)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#4|) $) 19 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2446 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 23)) (-2867 (((-654 |#3|) $) NIL)) (-2570 (((-112) |#3| $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-2176 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-2107 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 117)) (-3360 (((-3 |#4| "failed") $) 42)) (-4130 (((-654 $) |#4| $) 102)) (-1885 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-4027 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1731 (((-654 $) |#4| $) 121) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 122) (((-654 $) |#4| (-654 $)) NIL)) (-3482 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 134)) (-1750 (($ |#4| $) 88) (($ (-654 |#4|) $) 89) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4153 (((-654 |#4|) $) NIL)) (-2768 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2244 ((|#4| |#4| $) NIL)) (-2430 (((-112) $ $) NIL)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1406 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1443 ((|#4| |#4| $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 |#4| "failed") $) 40)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3043 (((-3 $ "failed") $ |#4|) 59)) (-4344 (($ $ |#4|) NIL) (((-654 $) |#4| $) 104) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 99)) (-3124 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 17)) (-3135 (($) 14)) (-1784 (((-781) $) NIL)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) 13)) (-1837 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 22)) (-2175 (($ $ |#3|) 52)) (-2840 (($ $ |#3|) 54)) (-1496 (($ $) NIL)) (-2427 (($ $ |#3|) NIL)) (-2943 (((-872) $) 35) (((-654 |#4|) $) 46)) (-3530 (((-781) $) NIL (|has| |#3| (-377)))) (-2923 (((-112) $ $) NIL)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1685 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2790 (((-654 $) |#4| $) 66) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2935 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2681 (((-654 |#3|) $) NIL)) (-2897 (((-112) |#4| $) NIL)) (-4321 (((-112) |#3| $) 74)) (-2982 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1159 |#1| |#2| |#3| |#4|) (-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1750 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1886 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1886 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -3482 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2645 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -1159))
+((-1750 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1159 *5 *6 *7 *3))) (-5 *1 (-1159 *5 *6 *7 *3)) (-4 *3 (-1078 *5 *6 *7)))) (-1886 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8)))) (-1886 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8)))) (-3482 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8)))) (-2645 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1159 *5 *6 *7 *8))))) (-5 *1 (-1159 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
+(-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1750 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1886 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1886 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -3482 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2645 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2003 ((|#1| $) 37)) (-4089 (($ (-654 |#1|)) 45)) (-3340 (((-112) $ (-781)) NIL)) (-3670 (($) NIL T CONST)) (-3592 ((|#1| |#1| $) 40)) (-4388 ((|#1| $) 35)) (-1864 (((-654 |#1|) $) 18 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 22)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2234 ((|#1| $) 38)) (-1709 (($ |#1| $) 41)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3459 ((|#1| $) 36)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 32)) (-3135 (($) 43)) (-4303 (((-781) $) 30)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 27)) (-2943 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2817 (($ (-654 |#1|)) NIL)) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 17 (|has| |#1| (-1113)))) (-2863 (((-781) $) 31 (|has| $ (-6 -4456)))))
+(((-1160 |#1|) (-13 (-1134 |#1|) (-10 -8 (-15 -4089 ($ (-654 |#1|))))) (-1231)) (T -1160))
+((-4089 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1160 *3)))))
+(-13 (-1134 |#1|) (-10 -8 (-15 -4089 ($ (-654 |#1|)))))
+((-3143 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1248 (-574)) |#2|) 53) ((|#2| $ (-574) |#2|) 50)) (-2829 (((-112) $) 12)) (-2446 (($ (-1 |#2| |#2|) $) 48)) (-2915 ((|#2| $) NIL) (($ $ (-781)) 17)) (-1363 (($ $ |#2|) 49)) (-3322 (((-112) $) 11)) (-2200 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1248 (-574))) 36) ((|#2| $ (-574)) 26) ((|#2| $ (-574) |#2|) NIL)) (-2734 (($ $ $) 56) (($ $ |#2|) NIL)) (-4157 (($ $ $) 38) (($ |#2| $) NIL) (($ (-654 $)) 45) (($ $ |#2|) NIL)))
+(((-1161 |#1| |#2|) (-10 -8 (-15 -2829 ((-112) |#1|)) (-15 -3322 ((-112) |#1|)) (-15 -3143 (|#2| |#1| (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574))) (-15 -1363 (|#1| |#1| |#2|)) (-15 -2200 (|#1| |#1| (-1248 (-574)))) (-15 -4157 (|#1| |#1| |#2|)) (-15 -4157 (|#1| (-654 |#1|))) (-15 -3143 (|#2| |#1| (-1248 (-574)) |#2|)) (-15 -3143 (|#2| |#1| "last" |#2|)) (-15 -3143 (|#1| |#1| "rest" |#1|)) (-15 -3143 (|#2| |#1| "first" |#2|)) (-15 -2734 (|#1| |#1| |#2|)) (-15 -2734 (|#1| |#1| |#1|)) (-15 -2200 (|#2| |#1| "last")) (-15 -2200 (|#1| |#1| "rest")) (-15 -2915 (|#1| |#1| (-781))) (-15 -2200 (|#2| |#1| "first")) (-15 -2915 (|#2| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2200 (|#2| |#1| "value")) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|))) (-1162 |#2|) (-1231)) (T -1161))
+NIL
+(-10 -8 (-15 -2829 ((-112) |#1|)) (-15 -3322 ((-112) |#1|)) (-15 -3143 (|#2| |#1| (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574) |#2|)) (-15 -2200 (|#2| |#1| (-574))) (-15 -1363 (|#1| |#1| |#2|)) (-15 -2200 (|#1| |#1| (-1248 (-574)))) (-15 -4157 (|#1| |#1| |#2|)) (-15 -4157 (|#1| (-654 |#1|))) (-15 -3143 (|#2| |#1| (-1248 (-574)) |#2|)) (-15 -3143 (|#2| |#1| "last" |#2|)) (-15 -3143 (|#1| |#1| "rest" |#1|)) (-15 -3143 (|#2| |#1| "first" |#2|)) (-15 -2734 (|#1| |#1| |#2|)) (-15 -2734 (|#1| |#1| |#1|)) (-15 -2200 (|#2| |#1| "last")) (-15 -2200 (|#1| |#1| "rest")) (-15 -2915 (|#1| |#1| (-781))) (-15 -2200 (|#2| |#1| "first")) (-15 -2915 (|#2| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2200 (|#2| |#1| "value")) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-2406 ((|#1| $) 66)) (-1971 (($ $) 68)) (-1860 (((-1286) $ (-574) (-574)) 99 (|has| $ (-6 -4457)))) (-2960 (($ $ (-574)) 53 (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) 8)) (-1630 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-4002 (($ $ $) 57 (|has| $ (-6 -4457)))) (-4003 ((|#1| $ |#1|) 55 (|has| $ (-6 -4457)))) (-1533 ((|#1| $ |#1|) 59 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4457))) (($ $ "rest" $) 56 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 119 (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4456)))) (-2393 ((|#1| $) 67)) (-3670 (($) 7 T CONST)) (-2926 (($ $) 74) (($ $ (-781)) 72)) (-2158 (($ $) 101 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4456))) (($ |#1| $) 102 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2462 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 89)) (-2829 (((-112) $) 85)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 51)) (-4127 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) 111)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 97 (|has| (-574) (-860)))) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 96 (|has| (-574) (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2448 (((-112) $ (-781)) 10)) (-3509 (((-654 |#1|) $) 46)) (-2173 (((-112) $) 50)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 71) (($ $ (-781)) 69)) (-1595 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-2459 (((-654 (-574)) $) 94)) (-2607 (((-112) (-574) $) 93)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 77) (($ $ (-781)) 75)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1363 (($ $ |#1|) 98 (|has| $ (-6 -4457)))) (-3322 (((-112) $) 86)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) 92)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1248 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-1556 (((-574) $ $) 45)) (-2837 (($ $ (-1248 (-574))) 116) (($ $ (-574)) 115)) (-4023 (((-112) $) 47)) (-3420 (($ $) 63)) (-1813 (($ $) 60 (|has| $ (-6 -4457)))) (-2584 (((-781) $) 64)) (-2022 (($ $) 65)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1837 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 109)) (-2734 (($ $ $) 62 (|has| $ (-6 -4457))) (($ $ |#1|) 61 (|has| $ (-6 -4457)))) (-4157 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) 52)) (-1495 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-1162 |#1|) (-141) (-1231)) (T -1162))
+((-3322 (*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))))
+(-13 (-1269 |t#1|) (-661 |t#1|) (-10 -8 (-15 -3322 ((-112) $)) (-15 -2829 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T) ((-1269 |#1|) . T))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-1860 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) NIL)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) NIL)) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) NIL)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-860)))) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1765 (((-654 |#1|) $) NIL)) (-1726 (((-112) |#1| $) NIL)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-2459 (((-654 |#1|) $) NIL)) (-2607 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1163 |#1| |#2| |#3|) (-1207 |#1| |#2|) (-1113) (-1113) |#2|) (T -1163))
+NIL
+(-1207 |#1| |#2|)
+((-2849 (((-112) $ $) NIL)) (-3597 (((-701 (-1148)) $) 27)) (-4146 (((-1148) $) 15)) (-3569 (((-1148) $) 17)) (-2568 (((-1172) $) NIL)) (-4393 (((-516) $) 13)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 37) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1164) (-13 (-1096) (-10 -8 (-15 -4393 ((-516) $)) (-15 -3569 ((-1148) $)) (-15 -3597 ((-701 (-1148)) $)) (-15 -4146 ((-1148) $))))) (T -1164))
+((-4393 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1164)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1164)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-701 (-1148))) (-5 *1 (-1164)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1164)))))
+(-13 (-1096) (-10 -8 (-15 -4393 ((-516) $)) (-15 -3569 ((-1148) $)) (-15 -3597 ((-701 (-1148)) $)) (-15 -4146 ((-1148) $))))
+((-2849 (((-112) $ $) 7)) (-4048 (((-3 $ "failed") $) 14)) (-2568 (((-1172) $) 10)) (-3818 (($) 15 T CONST)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2982 (((-112) $ $) 6)))
+(((-1165) (-141)) (T -1165))
+((-3818 (*1 *1) (-4 *1 (-1165))) (-4048 (*1 *1 *1) (|partial| -4 *1 (-1165))))
+(-13 (-1113) (-10 -8 (-15 -3818 ($) -1707) (-15 -4048 ((-3 $ "failed") $))))
+(((-102) . T) ((-623 (-872)) . T) ((-1113) . T))
+((-2891 (((-1170 |#1|) (-1170 |#1|)) 17)) (-2242 (((-1170 |#1|) (-1170 |#1|)) 13)) (-2715 (((-1170 |#1|) (-1170 |#1|) (-574) (-574)) 20)) (-2989 (((-1170 |#1|) (-1170 |#1|)) 15)))
+(((-1166 |#1|) (-10 -7 (-15 -2242 ((-1170 |#1|) (-1170 |#1|))) (-15 -2989 ((-1170 |#1|) (-1170 |#1|))) (-15 -2891 ((-1170 |#1|) (-1170 |#1|))) (-15 -2715 ((-1170 |#1|) (-1170 |#1|) (-574) (-574)))) (-13 (-566) (-148))) (T -1166))
+((-2715 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1166 *4)))) (-2891 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1166 *3)))) (-2989 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1166 *3)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1166 *3)))))
+(-10 -7 (-15 -2242 ((-1170 |#1|) (-1170 |#1|))) (-15 -2989 ((-1170 |#1|) (-1170 |#1|))) (-15 -2891 ((-1170 |#1|) (-1170 |#1|))) (-15 -2715 ((-1170 |#1|) (-1170 |#1|) (-574) (-574))))
+((-4157 (((-1170 |#1|) (-1170 (-1170 |#1|))) 15)))
+(((-1167 |#1|) (-10 -7 (-15 -4157 ((-1170 |#1|) (-1170 (-1170 |#1|))))) (-1231)) (T -1167))
+((-4157 (*1 *2 *3) (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1167 *4)) (-4 *4 (-1231)))))
+(-10 -7 (-15 -4157 ((-1170 |#1|) (-1170 (-1170 |#1|)))))
+((-3318 (((-1170 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|)) 25)) (-2868 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|)) 26)) (-1778 (((-1170 |#2|) (-1 |#2| |#1|) (-1170 |#1|)) 16)))
+(((-1168 |#1| |#2|) (-10 -7 (-15 -1778 ((-1170 |#2|) (-1 |#2| |#1|) (-1170 |#1|))) (-15 -3318 ((-1170 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|))) (-15 -2868 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|)))) (-1231) (-1231)) (T -1168))
+((-2868 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1170 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-1168 *5 *2)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1170 *6)) (-4 *6 (-1231)) (-4 *3 (-1231)) (-5 *2 (-1170 *3)) (-5 *1 (-1168 *6 *3)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1170 *6)) (-5 *1 (-1168 *5 *6)))))
+(-10 -7 (-15 -1778 ((-1170 |#2|) (-1 |#2| |#1|) (-1170 |#1|))) (-15 -3318 ((-1170 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|))) (-15 -2868 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|))))
+((-1778 (((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-1170 |#2|)) 21)))
+(((-1169 |#1| |#2| |#3|) (-10 -7 (-15 -1778 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-1170 |#2|)))) (-1231) (-1231) (-1231)) (T -1169))
+((-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1170 *6)) (-5 *5 (-1170 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8)) (-5 *1 (-1169 *6 *7 *8)))))
+(-10 -7 (-15 -1778 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-1170 |#2|))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-2406 ((|#1| $) NIL)) (-1971 (($ $) 67)) (-1860 (((-1286) $ (-574) (-574)) 99 (|has| $ (-6 -4457)))) (-2960 (($ $ (-574)) 128 (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3087 (((-872) $) 56 (|has| |#1| (-1113)))) (-2927 (((-112)) 55 (|has| |#1| (-1113)))) (-1630 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-4002 (($ $ $) 115 (|has| $ (-6 -4457))) (($ $ (-574) $) 141)) (-4003 ((|#1| $ |#1|) 125 (|has| $ (-6 -4457)))) (-1533 ((|#1| $ |#1|) 120 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4457))) (($ $ "rest" $) 124 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 112 (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) 77 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) 80)) (-2393 ((|#1| $) NIL)) (-3670 (($) NIL T CONST)) (-2736 (($ $) 14)) (-2926 (($ $) 40) (($ $ (-781)) 111)) (-3942 (((-112) (-654 |#1|) $) 134 (|has| |#1| (-1113)))) (-1659 (($ (-654 |#1|)) 130)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) 79)) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-2829 (((-112) $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3248 (((-1286) (-574) $) 140 (|has| |#1| (-1113)))) (-1515 (((-781) $) 137)) (-2192 (((-654 $) $) NIL)) (-4127 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2448 (((-112) $ (-781)) NIL)) (-3509 (((-654 |#1|) $) NIL)) (-2173 (((-112) $) NIL)) (-3506 (($ $) 113)) (-4409 (((-112) $) 13)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3360 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1595 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) 96)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2095 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-2936 ((|#1| $) 10)) (-2915 ((|#1| $) 39) (($ $ (-781)) 65)) (-3507 (((-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781))) (-781) $) 34)) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2141 (($ (-1 (-112) |#1|) $) 145)) (-2153 (($ (-1 (-112) |#1|) $) 146)) (-1363 (($ $ |#1|) 90 (|has| $ (-6 -4457)))) (-4344 (($ $ (-574)) 45)) (-3322 (((-112) $) 94)) (-4180 (((-112) $) 12)) (-1776 (((-112) $) 136)) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 30)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) 20)) (-3135 (($) 60)) (-2200 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1248 (-574))) NIL) ((|#1| $ (-574)) 75) ((|#1| $ (-574) |#1|) NIL)) (-1556 (((-574) $ $) 64)) (-2837 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-3575 (($ (-1 $)) 63)) (-4023 (((-112) $) 91)) (-3420 (($ $) 92)) (-1813 (($ $) 116 (|has| $ (-6 -4457)))) (-2584 (((-781) $) NIL)) (-2022 (($ $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 59)) (-1837 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 73)) (-2225 (($ |#1| $) 114)) (-2734 (($ $ $) 118 (|has| $ (-6 -4457))) (($ $ |#1|) 119 (|has| $ (-6 -4457)))) (-4157 (($ $ $) 101) (($ |#1| $) 61) (($ (-654 $)) 106) (($ $ |#1|) 100)) (-3156 (($ $) 66)) (-2943 (($ (-654 |#1|)) 129) (((-872) $) 57 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) NIL)) (-1495 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 132 (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1170 |#1|) (-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4457) (-15 -1659 ($ (-654 |#1|))) (IF (|has| |#1| (-1113)) (-15 -3942 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -3507 ((-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -3575 ($ (-1 $))) (-15 -2225 ($ |#1| $)) (IF (|has| |#1| (-1113)) (PROGN (-15 -3248 ((-1286) (-574) $)) (-15 -3087 ((-872) $)) (-15 -2927 ((-112)))) |%noBranch|) (-15 -4002 ($ $ (-574) $)) (-15 -2095 ($ (-1 |#1|))) (-15 -2095 ($ (-1 |#1| |#1|) |#1|)) (-15 -2141 ($ (-1 (-112) |#1|) $)) (-15 -2153 ($ (-1 (-112) |#1|) $)))) (-1231)) (T -1170))
+((-1659 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))) (-3942 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-4 *4 (-1231)) (-5 *2 (-112)) (-5 *1 (-1170 *4)))) (-3507 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781)))) (-5 *1 (-1170 *4)) (-4 *4 (-1231)) (-5 *3 (-781)))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-1 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1231)))) (-2225 (*1 *1 *2 *1) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1231)))) (-3248 (*1 *2 *3 *1) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1170 *4)) (-4 *4 (-1113)) (-4 *4 (-1231)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1170 *3)) (-4 *3 (-1113)) (-4 *3 (-1231)))) (-2927 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1113)) (-4 *3 (-1231)))) (-4002 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1170 *3)) (-4 *3 (-1231)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))) (-2095 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))) (-2141 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))) (-2153 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))))
+(-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4457) (-15 -1659 ($ (-654 |#1|))) (IF (|has| |#1| (-1113)) (-15 -3942 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -3507 ((-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -3575 ($ (-1 $))) (-15 -2225 ($ |#1| $)) (IF (|has| |#1| (-1113)) (PROGN (-15 -3248 ((-1286) (-574) $)) (-15 -3087 ((-872) $)) (-15 -2927 ((-112)))) |%noBranch|) (-15 -4002 ($ $ (-574) $)) (-15 -2095 ($ (-1 |#1|))) (-15 -2095 ($ (-1 |#1| |#1|) |#1|)) (-15 -2141 ($ (-1 (-112) |#1|) $)) (-15 -2153 ($ (-1 (-112) |#1|) $))))
+((-2849 (((-112) $ $) 19)) (-3710 (($ $) 123)) (-3750 (($ $) 124)) (-4182 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-1860 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3712 (((-112) $ $) 121)) (-3691 (((-112) $ $ (-574)) 120)) (-3249 (($ (-574)) 130)) (-1483 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-3850 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-4010 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-3340 (((-112) $ (-781)) 8)) (-3143 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4457))) (((-145) $ (-1248 (-574)) (-145)) 60 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2617 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2672 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-4062 (($ $ (-1248 (-574)) $) 117)) (-2158 (($ $) 80 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-145) $) 79 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4456)))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4456)))) (-2462 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4457)))) (-2385 (((-145) $ (-574)) 52)) (-3733 (((-112) $ $) 122)) (-1441 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1113))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1113))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1864 (((-654 (-145)) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-145)) 70)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 44 (|has| (-574) (-860)))) (-3658 (($ $ $) 90 (|has| (-145) (-860)))) (-2130 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-1712 (((-654 (-145)) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 45 (|has| (-574) (-860)))) (-2106 (($ $ $) 89 (|has| (-145) (-860)))) (-1326 (((-112) $ $ (-145)) 118)) (-2683 (((-781) $ $ (-145)) 119)) (-2446 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3178 (($ $) 125)) (-4425 (($ $) 126)) (-2448 (((-112) $ (-781)) 10)) (-2631 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2568 (((-1172) $) 22)) (-1595 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-2459 (((-654 (-574)) $) 47)) (-2607 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21)) (-2915 (((-145) $) 43 (|has| (-574) (-860)))) (-1836 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1363 (($ $ (-145)) 42 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2121 (((-654 (-145)) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1248 (-574))) 71) (($ $ $) 105)) (-2837 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4456))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-1958 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1837 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2956 (($ (-654 (-145))) 72)) (-4157 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (($ (-145)) 114) (((-872) $) 18)) (-2923 (((-112) $ $) 23)) (-2935 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4456)))) (-1520 (((-1172) $) 134) (((-1172) $ (-112)) 133) (((-1286) (-832) $) 132) (((-1286) (-832) $ (-112)) 131)) (-3041 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3016 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2982 (((-112) $ $) 20)) (-3028 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3005 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-1171) (-141)) (T -1171))
+((-3249 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1171)))))
+(-13 (-1157) (-1113) (-838) (-10 -8 (-15 -3249 ($ (-574)))))
+(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))) ((-661 #0#) . T) ((-19 #0#) . T) ((-838) . T) ((-860) |has| (-145) (-860)) ((-1113) . T) ((-1157) . T) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-3710 (($ $) NIL)) (-3750 (($ $) NIL)) (-4182 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3712 (((-112) $ $) NIL)) (-3691 (((-112) $ $ (-574)) NIL)) (-3249 (($ (-574)) 8)) (-1483 (((-654 $) $ (-145)) NIL) (((-654 $) $ (-142)) NIL)) (-3850 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-4010 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-145) (-860))))) (-2771 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4457))) (((-145) $ (-1248 (-574)) (-145)) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2617 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-4062 (($ $ (-1248 (-574)) $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-3335 (($ (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2462 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4457)))) (-2385 (((-145) $ (-574)) NIL)) (-3733 (((-112) $ $) NIL)) (-1441 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1113))) (((-574) (-145) $ (-574)) NIL (|has| (-145) (-1113))) (((-574) $ $ (-574)) NIL) (((-574) (-142) $ (-574)) NIL)) (-1864 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-145)) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| (-145) (-860)))) (-2130 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-1712 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-3429 (((-574) $) NIL (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| (-145) (-860)))) (-1326 (((-112) $ $ (-145)) NIL)) (-2683 (((-781) $ $ (-145)) NIL)) (-2446 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3178 (($ $) NIL)) (-4425 (($ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2631 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2568 (((-1172) $) NIL)) (-1595 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-145) $) NIL (|has| (-574) (-860)))) (-1836 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1363 (($ $ (-145)) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2121 (((-654 (-145)) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1248 (-574))) NIL) (($ $ $) NIL)) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2956 (($ (-654 (-145))) NIL)) (-4157 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (($ (-145)) NIL) (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2935 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-1520 (((-1172) $) 19) (((-1172) $ (-112)) 21) (((-1286) (-832) $) 22) (((-1286) (-832) $ (-112)) 23)) (-3041 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3016 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3005 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1172) (-1171)) (T -1172))
+NIL
+(-1171)
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL)) (-1860 (((-1286) $ (-1172) (-1172)) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-1172) |#1|) NIL)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#1| "failed") (-1172) $) NIL)) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113))))) (-1586 (($ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#1| "failed") (-1172) $) NIL)) (-3335 (($ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-1172) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-1172)) NIL)) (-1864 (((-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-1172) $) NIL (|has| (-1172) (-860)))) (-1712 (((-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-1172) $) NIL (|has| (-1172) (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-1765 (((-654 (-1172)) $) NIL)) (-1726 (((-112) (-1172) $) NIL)) (-2234 (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL)) (-1709 (($ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL)) (-2459 (((-654 (-1172)) $) NIL)) (-2607 (((-112) (-1172) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-2915 ((|#1| $) NIL (|has| (-1172) (-860)))) (-1836 (((-3 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) "failed") (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (($ $ (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-1172)) NIL) ((|#1| $ (-1172) |#1|) NIL)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-623 (-872))) (|has| |#1| (-623 (-872)))))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1173 |#1|) (-13 (-1207 (-1172) |#1|) (-10 -7 (-6 -4456))) (-1113)) (T -1173))
+NIL
+(-13 (-1207 (-1172) |#1|) (-10 -7 (-6 -4456)))
+((-2860 (((-1170 |#1|) (-1170 |#1|)) 83)) (-1950 (((-3 (-1170 |#1|) "failed") (-1170 |#1|)) 39)) (-2332 (((-1170 |#1|) (-417 (-574)) (-1170 |#1|)) 133 (|has| |#1| (-38 (-417 (-574)))))) (-2905 (((-1170 |#1|) |#1| (-1170 |#1|)) 139 (|has| |#1| (-372)))) (-3559 (((-1170 |#1|) (-1170 |#1|)) 97)) (-1869 (((-1170 (-574)) (-574)) 63)) (-2604 (((-1170 |#1|) (-1170 (-1170 |#1|))) 116 (|has| |#1| (-38 (-417 (-574)))))) (-3285 (((-1170 |#1|) (-574) (-574) (-1170 |#1|)) 102)) (-3832 (((-1170 |#1|) |#1| (-574)) 51)) (-3777 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 66)) (-2907 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 136 (|has| |#1| (-372)))) (-1979 (((-1170 |#1|) |#1| (-1 (-1170 |#1|))) 115 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (((-1170 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1170 |#1|))) 137 (|has| |#1| (-372)))) (-4268 (((-1170 |#1|) (-1170 |#1|)) 96)) (-3466 (((-1170 |#1|) (-1170 |#1|)) 82)) (-2386 (((-1170 |#1|) (-574) (-574) (-1170 |#1|)) 103)) (-2968 (((-1170 |#1|) |#1| (-1170 |#1|)) 112 (|has| |#1| (-38 (-417 (-574)))))) (-1625 (((-1170 (-574)) (-574)) 62)) (-3091 (((-1170 |#1|) |#1|) 65)) (-2710 (((-1170 |#1|) (-1170 |#1|) (-574) (-574)) 99)) (-2283 (((-1170 |#1|) (-1 |#1| (-574)) (-1170 |#1|)) 72)) (-2838 (((-3 (-1170 |#1|) "failed") (-1170 |#1|) (-1170 |#1|)) 37)) (-3840 (((-1170 |#1|) (-1170 |#1|)) 98)) (-2646 (((-1170 |#1|) (-1170 |#1|) |#1|) 77)) (-3021 (((-1170 |#1|) (-1170 |#1|)) 68)) (-1390 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 78)) (-2943 (((-1170 |#1|) |#1|) 73)) (-2120 (((-1170 |#1|) (-1170 (-1170 |#1|))) 88)) (-3107 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 38)) (-3094 (((-1170 |#1|) (-1170 |#1|)) 21) (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 23)) (-3078 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 17)) (* (((-1170 |#1|) (-1170 |#1|) |#1|) 29) (((-1170 |#1|) |#1| (-1170 |#1|)) 26) (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 27)))
+(((-1174 |#1|) (-10 -7 (-15 -3078 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3094 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3094 ((-1170 |#1|) (-1170 |#1|))) (-15 * ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 * ((-1170 |#1|) |#1| (-1170 |#1|))) (-15 * ((-1170 |#1|) (-1170 |#1|) |#1|)) (-15 -2838 ((-3 (-1170 |#1|) "failed") (-1170 |#1|) (-1170 |#1|))) (-15 -3107 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -1950 ((-3 (-1170 |#1|) "failed") (-1170 |#1|))) (-15 -3832 ((-1170 |#1|) |#1| (-574))) (-15 -1625 ((-1170 (-574)) (-574))) (-15 -1869 ((-1170 (-574)) (-574))) (-15 -3091 ((-1170 |#1|) |#1|)) (-15 -3777 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3021 ((-1170 |#1|) (-1170 |#1|))) (-15 -2283 ((-1170 |#1|) (-1 |#1| (-574)) (-1170 |#1|))) (-15 -2943 ((-1170 |#1|) |#1|)) (-15 -2646 ((-1170 |#1|) (-1170 |#1|) |#1|)) (-15 -1390 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3466 ((-1170 |#1|) (-1170 |#1|))) (-15 -2860 ((-1170 |#1|) (-1170 |#1|))) (-15 -2120 ((-1170 |#1|) (-1170 (-1170 |#1|)))) (-15 -4268 ((-1170 |#1|) (-1170 |#1|))) (-15 -3559 ((-1170 |#1|) (-1170 |#1|))) (-15 -3840 ((-1170 |#1|) (-1170 |#1|))) (-15 -2710 ((-1170 |#1|) (-1170 |#1|) (-574) (-574))) (-15 -3285 ((-1170 |#1|) (-574) (-574) (-1170 |#1|))) (-15 -2386 ((-1170 |#1|) (-574) (-574) (-1170 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ((-1170 |#1|) |#1| (-1170 |#1|))) (-15 -1979 ((-1170 |#1|) |#1| (-1 (-1170 |#1|)))) (-15 -2604 ((-1170 |#1|) (-1170 (-1170 |#1|)))) (-15 -2332 ((-1170 |#1|) (-417 (-574)) (-1170 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2907 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2443 ((-1170 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1170 |#1|)))) (-15 -2905 ((-1170 |#1|) |#1| (-1170 |#1|)))) |%noBranch|)) (-1062)) (T -1174))
+((-2905 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2443 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1170 *4))) (-4 *4 (-372)) (-4 *4 (-1062)) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4)))) (-2907 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2332 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1062)) (-5 *3 (-417 (-574))) (-5 *1 (-1174 *4)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062)))) (-1979 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1170 *3))) (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)))) (-2968 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2386 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062)) (-5 *1 (-1174 *4)))) (-3285 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062)) (-5 *1 (-1174 *4)))) (-2710 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062)) (-5 *1 (-1174 *4)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3559 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-4268 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4)) (-4 *4 (-1062)))) (-2860 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-1390 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2646 (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062)))) (-2283 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1062)) (-5 *1 (-1174 *4)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3777 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3091 (*1 *2 *3) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062)))) (-1869 (*1 *2 *3) (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1174 *4)) (-4 *4 (-1062)) (-5 *3 (-574)))) (-1625 (*1 *2 *3) (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1174 *4)) (-4 *4 (-1062)) (-5 *3 (-574)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062)))) (-1950 (*1 *2 *2) (|partial| -12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3107 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2838 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3094 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3078 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))))
+(-10 -7 (-15 -3078 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3094 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3094 ((-1170 |#1|) (-1170 |#1|))) (-15 * ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 * ((-1170 |#1|) |#1| (-1170 |#1|))) (-15 * ((-1170 |#1|) (-1170 |#1|) |#1|)) (-15 -2838 ((-3 (-1170 |#1|) "failed") (-1170 |#1|) (-1170 |#1|))) (-15 -3107 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -1950 ((-3 (-1170 |#1|) "failed") (-1170 |#1|))) (-15 -3832 ((-1170 |#1|) |#1| (-574))) (-15 -1625 ((-1170 (-574)) (-574))) (-15 -1869 ((-1170 (-574)) (-574))) (-15 -3091 ((-1170 |#1|) |#1|)) (-15 -3777 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3021 ((-1170 |#1|) (-1170 |#1|))) (-15 -2283 ((-1170 |#1|) (-1 |#1| (-574)) (-1170 |#1|))) (-15 -2943 ((-1170 |#1|) |#1|)) (-15 -2646 ((-1170 |#1|) (-1170 |#1|) |#1|)) (-15 -1390 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3466 ((-1170 |#1|) (-1170 |#1|))) (-15 -2860 ((-1170 |#1|) (-1170 |#1|))) (-15 -2120 ((-1170 |#1|) (-1170 (-1170 |#1|)))) (-15 -4268 ((-1170 |#1|) (-1170 |#1|))) (-15 -3559 ((-1170 |#1|) (-1170 |#1|))) (-15 -3840 ((-1170 |#1|) (-1170 |#1|))) (-15 -2710 ((-1170 |#1|) (-1170 |#1|) (-574) (-574))) (-15 -3285 ((-1170 |#1|) (-574) (-574) (-1170 |#1|))) (-15 -2386 ((-1170 |#1|) (-574) (-574) (-1170 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ((-1170 |#1|) |#1| (-1170 |#1|))) (-15 -1979 ((-1170 |#1|) |#1| (-1 (-1170 |#1|)))) (-15 -2604 ((-1170 |#1|) (-1170 (-1170 |#1|)))) (-15 -2332 ((-1170 |#1|) (-417 (-574)) (-1170 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2907 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2443 ((-1170 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1170 |#1|)))) (-15 -2905 ((-1170 |#1|) |#1| (-1170 |#1|)))) |%noBranch|))
+((-2364 (((-1170 |#1|) (-1170 |#1|)) 60)) (-2246 (((-1170 |#1|) (-1170 |#1|)) 42)) (-2343 (((-1170 |#1|) (-1170 |#1|)) 56)) (-2227 (((-1170 |#1|) (-1170 |#1|)) 38)) (-2388 (((-1170 |#1|) (-1170 |#1|)) 63)) (-2267 (((-1170 |#1|) (-1170 |#1|)) 45)) (-3119 (((-1170 |#1|) (-1170 |#1|)) 34)) (-1610 (((-1170 |#1|) (-1170 |#1|)) 29)) (-2402 (((-1170 |#1|) (-1170 |#1|)) 64)) (-2275 (((-1170 |#1|) (-1170 |#1|)) 46)) (-2375 (((-1170 |#1|) (-1170 |#1|)) 61)) (-2257 (((-1170 |#1|) (-1170 |#1|)) 43)) (-2353 (((-1170 |#1|) (-1170 |#1|)) 58)) (-2237 (((-1170 |#1|) (-1170 |#1|)) 40)) (-2441 (((-1170 |#1|) (-1170 |#1|)) 68)) (-2305 (((-1170 |#1|) (-1170 |#1|)) 50)) (-2414 (((-1170 |#1|) (-1170 |#1|)) 66)) (-2287 (((-1170 |#1|) (-1170 |#1|)) 48)) (-2465 (((-1170 |#1|) (-1170 |#1|)) 71)) (-2325 (((-1170 |#1|) (-1170 |#1|)) 53)) (-2521 (((-1170 |#1|) (-1170 |#1|)) 72)) (-2334 (((-1170 |#1|) (-1170 |#1|)) 54)) (-2453 (((-1170 |#1|) (-1170 |#1|)) 70)) (-2315 (((-1170 |#1|) (-1170 |#1|)) 52)) (-2428 (((-1170 |#1|) (-1170 |#1|)) 69)) (-2297 (((-1170 |#1|) (-1170 |#1|)) 51)) (** (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 36)))
+(((-1175 |#1|) (-10 -7 (-15 -1610 ((-1170 |#1|) (-1170 |#1|))) (-15 -3119 ((-1170 |#1|) (-1170 |#1|))) (-15 ** ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2227 ((-1170 |#1|) (-1170 |#1|))) (-15 -2237 ((-1170 |#1|) (-1170 |#1|))) (-15 -2246 ((-1170 |#1|) (-1170 |#1|))) (-15 -2257 ((-1170 |#1|) (-1170 |#1|))) (-15 -2267 ((-1170 |#1|) (-1170 |#1|))) (-15 -2275 ((-1170 |#1|) (-1170 |#1|))) (-15 -2287 ((-1170 |#1|) (-1170 |#1|))) (-15 -2297 ((-1170 |#1|) (-1170 |#1|))) (-15 -2305 ((-1170 |#1|) (-1170 |#1|))) (-15 -2315 ((-1170 |#1|) (-1170 |#1|))) (-15 -2325 ((-1170 |#1|) (-1170 |#1|))) (-15 -2334 ((-1170 |#1|) (-1170 |#1|))) (-15 -2343 ((-1170 |#1|) (-1170 |#1|))) (-15 -2353 ((-1170 |#1|) (-1170 |#1|))) (-15 -2364 ((-1170 |#1|) (-1170 |#1|))) (-15 -2375 ((-1170 |#1|) (-1170 |#1|))) (-15 -2388 ((-1170 |#1|) (-1170 |#1|))) (-15 -2402 ((-1170 |#1|) (-1170 |#1|))) (-15 -2414 ((-1170 |#1|) (-1170 |#1|))) (-15 -2428 ((-1170 |#1|) (-1170 |#1|))) (-15 -2441 ((-1170 |#1|) (-1170 |#1|))) (-15 -2453 ((-1170 |#1|) (-1170 |#1|))) (-15 -2465 ((-1170 |#1|) (-1170 |#1|))) (-15 -2521 ((-1170 |#1|) (-1170 |#1|)))) (-38 (-417 (-574)))) (T -1175))
+((-2521 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2453 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2441 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2375 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2353 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2257 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2227 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-1610 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))))
+(-10 -7 (-15 -1610 ((-1170 |#1|) (-1170 |#1|))) (-15 -3119 ((-1170 |#1|) (-1170 |#1|))) (-15 ** ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2227 ((-1170 |#1|) (-1170 |#1|))) (-15 -2237 ((-1170 |#1|) (-1170 |#1|))) (-15 -2246 ((-1170 |#1|) (-1170 |#1|))) (-15 -2257 ((-1170 |#1|) (-1170 |#1|))) (-15 -2267 ((-1170 |#1|) (-1170 |#1|))) (-15 -2275 ((-1170 |#1|) (-1170 |#1|))) (-15 -2287 ((-1170 |#1|) (-1170 |#1|))) (-15 -2297 ((-1170 |#1|) (-1170 |#1|))) (-15 -2305 ((-1170 |#1|) (-1170 |#1|))) (-15 -2315 ((-1170 |#1|) (-1170 |#1|))) (-15 -2325 ((-1170 |#1|) (-1170 |#1|))) (-15 -2334 ((-1170 |#1|) (-1170 |#1|))) (-15 -2343 ((-1170 |#1|) (-1170 |#1|))) (-15 -2353 ((-1170 |#1|) (-1170 |#1|))) (-15 -2364 ((-1170 |#1|) (-1170 |#1|))) (-15 -2375 ((-1170 |#1|) (-1170 |#1|))) (-15 -2388 ((-1170 |#1|) (-1170 |#1|))) (-15 -2402 ((-1170 |#1|) (-1170 |#1|))) (-15 -2414 ((-1170 |#1|) (-1170 |#1|))) (-15 -2428 ((-1170 |#1|) (-1170 |#1|))) (-15 -2441 ((-1170 |#1|) (-1170 |#1|))) (-15 -2453 ((-1170 |#1|) (-1170 |#1|))) (-15 -2465 ((-1170 |#1|) (-1170 |#1|))) (-15 -2521 ((-1170 |#1|) (-1170 |#1|))))
+((-2364 (((-1170 |#1|) (-1170 |#1|)) 102)) (-2246 (((-1170 |#1|) (-1170 |#1|)) 61)) (-3331 (((-2 (|:| -2343 (-1170 |#1|)) (|:| -2353 (-1170 |#1|))) (-1170 |#1|)) 98)) (-2343 (((-1170 |#1|) (-1170 |#1|)) 99)) (-4361 (((-2 (|:| -2227 (-1170 |#1|)) (|:| -2237 (-1170 |#1|))) (-1170 |#1|)) 54)) (-2227 (((-1170 |#1|) (-1170 |#1|)) 55)) (-2388 (((-1170 |#1|) (-1170 |#1|)) 104)) (-2267 (((-1170 |#1|) (-1170 |#1|)) 68)) (-3119 (((-1170 |#1|) (-1170 |#1|)) 40)) (-1610 (((-1170 |#1|) (-1170 |#1|)) 37)) (-2402 (((-1170 |#1|) (-1170 |#1|)) 105)) (-2275 (((-1170 |#1|) (-1170 |#1|)) 69)) (-2375 (((-1170 |#1|) (-1170 |#1|)) 103)) (-2257 (((-1170 |#1|) (-1170 |#1|)) 64)) (-2353 (((-1170 |#1|) (-1170 |#1|)) 100)) (-2237 (((-1170 |#1|) (-1170 |#1|)) 56)) (-2441 (((-1170 |#1|) (-1170 |#1|)) 113)) (-2305 (((-1170 |#1|) (-1170 |#1|)) 88)) (-2414 (((-1170 |#1|) (-1170 |#1|)) 107)) (-2287 (((-1170 |#1|) (-1170 |#1|)) 84)) (-2465 (((-1170 |#1|) (-1170 |#1|)) 117)) (-2325 (((-1170 |#1|) (-1170 |#1|)) 92)) (-2521 (((-1170 |#1|) (-1170 |#1|)) 119)) (-2334 (((-1170 |#1|) (-1170 |#1|)) 94)) (-2453 (((-1170 |#1|) (-1170 |#1|)) 115)) (-2315 (((-1170 |#1|) (-1170 |#1|)) 90)) (-2428 (((-1170 |#1|) (-1170 |#1|)) 109)) (-2297 (((-1170 |#1|) (-1170 |#1|)) 86)) (** (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 41)))
+(((-1176 |#1|) (-10 -7 (-15 -1610 ((-1170 |#1|) (-1170 |#1|))) (-15 -3119 ((-1170 |#1|) (-1170 |#1|))) (-15 ** ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -4361 ((-2 (|:| -2227 (-1170 |#1|)) (|:| -2237 (-1170 |#1|))) (-1170 |#1|))) (-15 -2227 ((-1170 |#1|) (-1170 |#1|))) (-15 -2237 ((-1170 |#1|) (-1170 |#1|))) (-15 -2246 ((-1170 |#1|) (-1170 |#1|))) (-15 -2257 ((-1170 |#1|) (-1170 |#1|))) (-15 -2267 ((-1170 |#1|) (-1170 |#1|))) (-15 -2275 ((-1170 |#1|) (-1170 |#1|))) (-15 -2287 ((-1170 |#1|) (-1170 |#1|))) (-15 -2297 ((-1170 |#1|) (-1170 |#1|))) (-15 -2305 ((-1170 |#1|) (-1170 |#1|))) (-15 -2315 ((-1170 |#1|) (-1170 |#1|))) (-15 -2325 ((-1170 |#1|) (-1170 |#1|))) (-15 -2334 ((-1170 |#1|) (-1170 |#1|))) (-15 -3331 ((-2 (|:| -2343 (-1170 |#1|)) (|:| -2353 (-1170 |#1|))) (-1170 |#1|))) (-15 -2343 ((-1170 |#1|) (-1170 |#1|))) (-15 -2353 ((-1170 |#1|) (-1170 |#1|))) (-15 -2364 ((-1170 |#1|) (-1170 |#1|))) (-15 -2375 ((-1170 |#1|) (-1170 |#1|))) (-15 -2388 ((-1170 |#1|) (-1170 |#1|))) (-15 -2402 ((-1170 |#1|) (-1170 |#1|))) (-15 -2414 ((-1170 |#1|) (-1170 |#1|))) (-15 -2428 ((-1170 |#1|) (-1170 |#1|))) (-15 -2441 ((-1170 |#1|) (-1170 |#1|))) (-15 -2453 ((-1170 |#1|) (-1170 |#1|))) (-15 -2465 ((-1170 |#1|) (-1170 |#1|))) (-15 -2521 ((-1170 |#1|) (-1170 |#1|)))) (-38 (-417 (-574)))) (T -1176))
+((-2521 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2453 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2441 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2375 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2353 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2343 (-1170 *4)) (|:| -2353 (-1170 *4)))) (-5 *1 (-1176 *4)) (-5 *3 (-1170 *4)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2257 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2227 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-4361 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2227 (-1170 *4)) (|:| -2237 (-1170 *4)))) (-5 *1 (-1176 *4)) (-5 *3 (-1170 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-1610 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))))
+(-10 -7 (-15 -1610 ((-1170 |#1|) (-1170 |#1|))) (-15 -3119 ((-1170 |#1|) (-1170 |#1|))) (-15 ** ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -4361 ((-2 (|:| -2227 (-1170 |#1|)) (|:| -2237 (-1170 |#1|))) (-1170 |#1|))) (-15 -2227 ((-1170 |#1|) (-1170 |#1|))) (-15 -2237 ((-1170 |#1|) (-1170 |#1|))) (-15 -2246 ((-1170 |#1|) (-1170 |#1|))) (-15 -2257 ((-1170 |#1|) (-1170 |#1|))) (-15 -2267 ((-1170 |#1|) (-1170 |#1|))) (-15 -2275 ((-1170 |#1|) (-1170 |#1|))) (-15 -2287 ((-1170 |#1|) (-1170 |#1|))) (-15 -2297 ((-1170 |#1|) (-1170 |#1|))) (-15 -2305 ((-1170 |#1|) (-1170 |#1|))) (-15 -2315 ((-1170 |#1|) (-1170 |#1|))) (-15 -2325 ((-1170 |#1|) (-1170 |#1|))) (-15 -2334 ((-1170 |#1|) (-1170 |#1|))) (-15 -3331 ((-2 (|:| -2343 (-1170 |#1|)) (|:| -2353 (-1170 |#1|))) (-1170 |#1|))) (-15 -2343 ((-1170 |#1|) (-1170 |#1|))) (-15 -2353 ((-1170 |#1|) (-1170 |#1|))) (-15 -2364 ((-1170 |#1|) (-1170 |#1|))) (-15 -2375 ((-1170 |#1|) (-1170 |#1|))) (-15 -2388 ((-1170 |#1|) (-1170 |#1|))) (-15 -2402 ((-1170 |#1|) (-1170 |#1|))) (-15 -2414 ((-1170 |#1|) (-1170 |#1|))) (-15 -2428 ((-1170 |#1|) (-1170 |#1|))) (-15 -2441 ((-1170 |#1|) (-1170 |#1|))) (-15 -2453 ((-1170 |#1|) (-1170 |#1|))) (-15 -2465 ((-1170 |#1|) (-1170 |#1|))) (-15 -2521 ((-1170 |#1|) (-1170 |#1|))))
+((-3794 (((-969 |#2|) |#2| |#2|) 50)) (-3872 ((|#2| |#2| |#1|) 19 (|has| |#1| (-315)))))
+(((-1177 |#1| |#2|) (-10 -7 (-15 -3794 ((-969 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -3872 (|#2| |#2| |#1|)) |%noBranch|)) (-566) (-1257 |#1|)) (T -1177))
+((-3872 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1177 *3 *2)) (-4 *2 (-1257 *3)))) (-3794 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-969 *3)) (-5 *1 (-1177 *4 *3)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -3794 ((-969 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -3872 (|#2| |#2| |#1|)) |%noBranch|))
+((-2849 (((-112) $ $) NIL)) (-1467 (($ $ (-654 (-781))) 79)) (-1832 (($) 33)) (-3655 (($ $) 51)) (-3901 (((-654 $) $) 60)) (-3835 (((-112) $) 19)) (-3354 (((-654 (-954 |#2|)) $) 86)) (-3558 (($ $) 80)) (-1936 (((-781) $) 47)) (-3790 (($) 32)) (-3622 (($ $ (-654 (-781)) (-954 |#2|)) 72) (($ $ (-654 (-781)) (-781)) 73) (($ $ (-781) (-954 |#2|)) 75)) (-2130 (($ $ $) 57) (($ (-654 $)) 59)) (-4320 (((-781) $) 87)) (-2173 (((-112) $) 15)) (-2568 (((-1172) $) NIL)) (-3970 (((-112) $) 22)) (-3966 (((-1133) $) NIL)) (-3549 (((-173) $) 85)) (-1841 (((-954 |#2|) $) 81)) (-1805 (((-781) $) 82)) (-1855 (((-112) $) 84)) (-3007 (($ $ (-654 (-781)) (-173)) 78)) (-3230 (($ $) 52)) (-2943 (((-872) $) 99)) (-4161 (($ $ (-654 (-781)) (-112)) 77)) (-1973 (((-654 $) $) 11)) (-2778 (($ $ (-781)) 46)) (-2738 (($ $) 43)) (-2923 (((-112) $ $) NIL)) (-3447 (($ $ $ (-954 |#2|) (-781)) 68)) (-2699 (($ $ (-954 |#2|)) 67)) (-2451 (($ $ (-654 (-781)) (-954 |#2|)) 66) (($ $ (-654 (-781)) (-781)) 70) (((-781) $ (-954 |#2|)) 71)) (-2982 (((-112) $ $) 92)))
+(((-1178 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -2173 ((-112) $)) (-15 -3835 ((-112) $)) (-15 -3970 ((-112) $)) (-15 -3790 ($)) (-15 -1832 ($)) (-15 -2738 ($ $)) (-15 -2778 ($ $ (-781))) (-15 -1973 ((-654 $) $)) (-15 -1936 ((-781) $)) (-15 -3655 ($ $)) (-15 -3230 ($ $)) (-15 -2130 ($ $ $)) (-15 -2130 ($ (-654 $))) (-15 -3901 ((-654 $) $)) (-15 -2451 ($ $ (-654 (-781)) (-954 |#2|))) (-15 -2699 ($ $ (-954 |#2|))) (-15 -3447 ($ $ $ (-954 |#2|) (-781))) (-15 -3622 ($ $ (-654 (-781)) (-954 |#2|))) (-15 -2451 ($ $ (-654 (-781)) (-781))) (-15 -3622 ($ $ (-654 (-781)) (-781))) (-15 -2451 ((-781) $ (-954 |#2|))) (-15 -3622 ($ $ (-781) (-954 |#2|))) (-15 -4161 ($ $ (-654 (-781)) (-112))) (-15 -3007 ($ $ (-654 (-781)) (-173))) (-15 -1467 ($ $ (-654 (-781)))) (-15 -1841 ((-954 |#2|) $)) (-15 -1805 ((-781) $)) (-15 -1855 ((-112) $)) (-15 -3549 ((-173) $)) (-15 -4320 ((-781) $)) (-15 -3558 ($ $)) (-15 -3354 ((-654 (-954 |#2|)) $)))) (-932) (-1062)) (T -1178))
+((-2173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3790 (*1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-1832 (*1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-2738 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-3230 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-2130 (*1 *1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-2451 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-2699 (*1 *1 *1 *2) (-12 (-5 *2 (-954 *4)) (-4 *4 (-1062)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)))) (-3447 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-954 *5)) (-5 *3 (-781)) (-4 *5 (-1062)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-3622 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-2451 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)) (-4 *5 (-1062)))) (-3622 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)) (-4 *5 (-1062)))) (-2451 (*1 *2 *1 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *2 (-781)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-3622 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-4161 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)) (-4 *5 (-1062)))) (-3007 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)) (-4 *5 (-1062)))) (-1467 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-954 *4)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-1805 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3558 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-654 (-954 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))))
+(-13 (-1113) (-10 -8 (-15 -2173 ((-112) $)) (-15 -3835 ((-112) $)) (-15 -3970 ((-112) $)) (-15 -3790 ($)) (-15 -1832 ($)) (-15 -2738 ($ $)) (-15 -2778 ($ $ (-781))) (-15 -1973 ((-654 $) $)) (-15 -1936 ((-781) $)) (-15 -3655 ($ $)) (-15 -3230 ($ $)) (-15 -2130 ($ $ $)) (-15 -2130 ($ (-654 $))) (-15 -3901 ((-654 $) $)) (-15 -2451 ($ $ (-654 (-781)) (-954 |#2|))) (-15 -2699 ($ $ (-954 |#2|))) (-15 -3447 ($ $ $ (-954 |#2|) (-781))) (-15 -3622 ($ $ (-654 (-781)) (-954 |#2|))) (-15 -2451 ($ $ (-654 (-781)) (-781))) (-15 -3622 ($ $ (-654 (-781)) (-781))) (-15 -2451 ((-781) $ (-954 |#2|))) (-15 -3622 ($ $ (-781) (-954 |#2|))) (-15 -4161 ($ $ (-654 (-781)) (-112))) (-15 -3007 ($ $ (-654 (-781)) (-173))) (-15 -1467 ($ $ (-654 (-781)))) (-15 -1841 ((-954 |#2|) $)) (-15 -1805 ((-781) $)) (-15 -1855 ((-112) $)) (-15 -3549 ((-173) $)) (-15 -4320 ((-781) $)) (-15 -3558 ($ $)) (-15 -3354 ((-654 (-954 |#2|)) $))))
+((-2849 (((-112) $ $) NIL)) (-1809 ((|#2| $) 11)) (-1796 ((|#1| $) 10)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2956 (($ |#1| |#2|) 9)) (-2943 (((-872) $) 16)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1179 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -2956 ($ |#1| |#2|)) (-15 -1796 (|#1| $)) (-15 -1809 (|#2| $)))) (-1113) (-1113)) (T -1179))
+((-2956 (*1 *1 *2 *3) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-1796 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-1113)))) (-1809 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-1113)))))
+(-13 (-1113) (-10 -8 (-15 -2956 ($ |#1| |#2|)) (-15 -1796 (|#1| $)) (-15 -1809 (|#2| $))))
+((-2849 (((-112) $ $) NIL)) (-2515 (((-1148) $) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1180) (-13 (-1096) (-10 -8 (-15 -2515 ((-1148) $))))) (T -1180))
+((-2515 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1180)))))
+(-13 (-1096) (-10 -8 (-15 -2515 ((-1148) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 (((-1188 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) 11)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2814 (($ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2425 (((-112) $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1760 (($ $ (-574)) NIL) (($ $ (-574) (-574)) 75)) (-4086 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-3502 (((-1188 |#1| |#2| |#3|) $) 42)) (-3162 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 32)) (-4402 (((-1188 |#1| |#2| |#3|) $) 33)) (-2364 (($ $) 116 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-4348 (($ $) NIL (|has| |#1| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) 112 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-3747 (((-574) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1190) "failed") $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))))) (-2209 (((-1188 |#1| |#2| |#3|) $) 140) (((-1190) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))))) (-1631 (($ $) 37) (($ (-574) $) 38)) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-2668 (((-699 (-1188 |#1| |#2| |#3|)) (-1281 $)) NIL (|has| |#1| (-372))) (((-699 (-1188 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -1485 (-699 (-1188 |#1| |#2| |#3|))) (|:| |vec| (-1281 (-1188 |#1| |#2| |#3|)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-1950 (((-3 $ "failed") $) 54)) (-3678 (((-417 (-963 |#1|)) $ (-574)) 74 (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) 76 (|has| |#1| (-566)))) (-2820 (($) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1654 (((-112) $) NIL (|has| |#1| (-372)))) (-3434 (((-112) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3030 (((-112) $) 28)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-3593 (((-574) $) NIL) (((-574) $ (-574)) 26)) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-372)))) (-2965 (((-1188 |#1| |#2| |#3|) $) 44 (|has| |#1| (-372)))) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4048 (((-3 $ "failed") $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1165)) (|has| |#1| (-372))))) (-3244 (((-112) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-1789 (($ $ (-932)) NIL)) (-4025 (($ (-1 |#1| (-574)) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-574)) 19) (($ $ (-1095) (-574)) NIL) (($ $ (-654 (-1095)) (-654 (-574))) NIL)) (-3658 (($ $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2106 (($ $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3119 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) (-1188 |#1| |#2| |#3|)) 36)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2968 (($ $) 79 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 80 (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1165)) (|has| |#1| (-372))) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2595 (($ $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-1846 (((-1188 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-4344 (($ $ (-574)) 158)) (-2838 (((-3 $ "failed") $ $) 55 (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1610 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1190) (-1188 |#1| |#2| |#3|)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-524 (-1190) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 (-1188 |#1| |#2| |#3|))) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-524 (-1190) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1188 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1188 |#1| |#2| |#3|))) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1188 |#1| |#2| |#3|)) (-654 (-1188 |#1| |#2| |#3|))) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ (-574)) NIL) (($ $ $) 61 (|has| (-574) (-1125))) (($ $ (-1188 |#1| |#2| |#3|)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-294 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1277 |#2|)) 57) (($ $ (-781)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 56 (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-3520 (($ $) NIL (|has| |#1| (-372)))) (-2977 (((-1188 |#1| |#2| |#3|) $) 46 (|has| |#1| (-372)))) (-1784 (((-574) $) 43)) (-2402 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 118 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 114 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-1837 (((-546) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1035)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1035)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-3156 (($ $) NIL)) (-2943 (((-872) $) 162) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1188 |#1| |#2| |#3|)) 30) (($ (-1277 |#2|)) 25) (($ (-1190)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (($ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-3344 ((|#1| $ (-574)) 77)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 12)) (-4078 (((-1188 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2414 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 110 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 106 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-2946 (($ $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2134 (($) 21 T CONST)) (-2146 (($) 16 T CONST)) (-3611 (($ $ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-3041 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3016 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3005 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 49 (|has| |#1| (-372))) (($ (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) 50 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 23)) (** (($ $ (-932)) NIL) (($ $ (-781)) 60) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) 83 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1188 |#1| |#2| |#3|)) 48 (|has| |#1| (-372))) (($ (-1188 |#1| |#2| |#3|) $) 47 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-1181 |#1| |#2| |#3|) (-13 (-1243 |#1| (-1188 |#1| |#2| |#3|)) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1181))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))))
+(-13 (-1243 |#1| (-1188 |#1| |#2| |#3|)) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|)))
+((-3561 ((|#2| |#2| (-1105 |#2|)) 26) ((|#2| |#2| (-1190)) 28)))
+(((-1182 |#1| |#2|) (-10 -7 (-15 -3561 (|#2| |#2| (-1190))) (-15 -3561 (|#2| |#2| (-1105 |#2|)))) (-13 (-566) (-1051 (-574)) (-649 (-574))) (-13 (-440 |#1|) (-161) (-27) (-1216))) (T -1182))
+((-3561 (*1 *2 *2 *3) (-12 (-5 *3 (-1105 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1216))) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1182 *4 *2)))) (-3561 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1182 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1216))))))
+(-10 -7 (-15 -3561 (|#2| |#2| (-1190))) (-15 -3561 (|#2| |#2| (-1105 |#2|))))
+((-3561 (((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1105 (-417 (-963 |#1|)))) 31) (((-417 (-963 |#1|)) (-963 |#1|) (-1105 (-963 |#1|))) 44) (((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1190)) 33) (((-417 (-963 |#1|)) (-963 |#1|) (-1190)) 36)))
+(((-1183 |#1|) (-10 -7 (-15 -3561 ((-417 (-963 |#1|)) (-963 |#1|) (-1190))) (-15 -3561 ((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1190))) (-15 -3561 ((-417 (-963 |#1|)) (-963 |#1|) (-1105 (-963 |#1|)))) (-15 -3561 ((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1105 (-417 (-963 |#1|)))))) (-13 (-566) (-1051 (-574)))) (T -1183))
+((-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5))) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-3 *3 (-324 *5))) (-5 *1 (-1183 *5)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-963 *5))) (-5 *3 (-963 *5)) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 *3)) (-5 *1 (-1183 *5)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-3 (-417 (-963 *5)) (-324 *5))) (-5 *1 (-1183 *5)) (-5 *3 (-417 (-963 *5))))) (-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 (-963 *5))) (-5 *1 (-1183 *5)) (-5 *3 (-963 *5)))))
+(-10 -7 (-15 -3561 ((-417 (-963 |#1|)) (-963 |#1|) (-1190))) (-15 -3561 ((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1190))) (-15 -3561 ((-417 (-963 |#1|)) (-963 |#1|) (-1105 (-963 |#1|)))) (-15 -3561 ((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1105 (-417 (-963 |#1|))))))
+((-1778 (((-1186 |#2|) (-1 |#2| |#1|) (-1186 |#1|)) 13)))
+(((-1184 |#1| |#2|) (-10 -7 (-15 -1778 ((-1186 |#2|) (-1 |#2| |#1|) (-1186 |#1|)))) (-1062) (-1062)) (T -1184))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-1186 *6)) (-5 *1 (-1184 *5 *6)))))
+(-10 -7 (-15 -1778 ((-1186 |#2|) (-1 |#2| |#1|) (-1186 |#1|))))
+((-3440 (((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|))) 51)) (-4220 (((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|))) 52)))
+(((-1185 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|)))) (-15 -3440 ((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|))))) (-803) (-860) (-462) (-960 |#3| |#1| |#2|)) (T -1185))
+((-3440 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 (-417 *7)))) (-5 *1 (-1185 *4 *5 *6 *7)) (-5 *3 (-1186 (-417 *7))))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 (-417 *7)))) (-5 *1 (-1185 *4 *5 *6 *7)) (-5 *3 (-1186 (-417 *7))))))
+(-10 -7 (-15 -4220 ((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|)))) (-15 -3440 ((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|)))))
+((-2849 (((-112) $ $) 171)) (-2908 (((-112) $) 43)) (-1416 (((-1281 |#1|) $ (-781)) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1780 (($ (-1186 |#1|)) NIL)) (-4194 (((-1186 $) $ (-1095)) 82) (((-1186 |#1|) $) 71)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) 164 (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-1095))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1744 (($ $ $) 158 (|has| |#1| (-566)))) (-3312 (((-428 (-1186 $)) (-1186 $)) 95 (|has| |#1| (-920)))) (-4348 (($ $) NIL (|has| |#1| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 115 (|has| |#1| (-920)))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-4397 (($ $ (-781)) 61)) (-1343 (($ $ (-781)) 63)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1095) "failed") $) NIL)) (-2209 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1095) $) NIL)) (-2800 (($ $ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) 80)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-4297 (($ $ $) 131)) (-4404 (($ $ $) NIL (|has| |#1| (-566)))) (-3015 (((-2 (|:| -1859 |#1|) (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-566)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3872 (($ $) 165 (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#1| (-920)))) (-3157 (($ $ |#1| (-781) $) 69)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3815 (((-872) $ (-872)) 148)) (-3593 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3965 (((-112) $) 48)) (-2784 (((-781) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| |#1| (-1165)))) (-4345 (($ (-1186 |#1|) (-1095)) 73) (($ (-1186 $) (-1095)) 89)) (-1789 (($ $ (-781)) 51)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) 87) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-1095)) NIL) (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 153)) (-2382 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1541 (($ (-1 (-781) (-781)) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-3523 (((-1186 |#1|) $) NIL)) (-4045 (((-3 (-1095) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) 76)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2568 (((-1172) $) NIL)) (-1639 (((-2 (|:| -3855 $) (|:| -3435 $)) $ (-781)) 60)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-1095)) (|:| -2524 (-781))) "failed") $) NIL)) (-2968 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 50)) (-1349 ((|#1| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 103 (|has| |#1| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 167 (|has| |#1| (-462)))) (-3393 (($ $ (-781) |#1| $) 123)) (-3417 (((-428 (-1186 $)) (-1186 $)) 101 (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) 100 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 108 (|has| |#1| (-920)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#1|) NIL) (($ $ (-654 (-1095)) (-654 |#1|)) NIL) (($ $ (-1095) $) NIL) (($ $ (-654 (-1095)) (-654 $)) NIL)) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-4071 (((-3 $ "failed") $ (-781)) 54)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 172 (|has| |#1| (-372)))) (-1415 (($ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3905 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1784 (((-781) $) 78) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1607 ((|#1| $) 162 (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2659 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2943 (((-872) $) 149) (($ (-574)) NIL) (($ |#1|) 77) (($ (-1095)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-781)) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) 41 (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) 17 T CONST)) (-2146 (($) 19 T CONST)) (-3611 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2982 (((-112) $ $) 120)) (-3107 (($ $ |#1|) 173 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 90)) (** (($ $ (-932)) 14) (($ $ (-781)) 12)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
+(((-1186 |#1|) (-13 (-1257 |#1|) (-10 -8 (-15 -3815 ((-872) $ (-872))) (-15 -3393 ($ $ (-781) |#1| $)))) (-1062)) (T -1186))
+((-3815 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1186 *3)) (-4 *3 (-1062)))) (-3393 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1186 *3)) (-4 *3 (-1062)))))
+(-13 (-1257 |#1|) (-10 -8 (-15 -3815 ((-872) $ (-872))) (-15 -3393 ($ $ (-781) |#1| $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) 11)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-1760 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-4086 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-1181 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 36)) (-2209 (((-1181 |#1| |#2| |#3|) $) NIL) (((-1188 |#1| |#2| |#3|) $) NIL)) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2016 (((-417 (-574)) $) 59)) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-4424 (($ (-417 (-574)) (-1181 |#1| |#2| |#3|)) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1654 (((-112) $) NIL (|has| |#1| (-372)))) (-3030 (((-112) $) NIL)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) NIL) (($ $ (-417 (-574))) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) 20) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3957 (((-1181 |#1| |#2| |#3|) $) 41)) (-2562 (((-3 (-1181 |#1| |#2| |#3|) "failed") $) NIL)) (-4413 (((-1181 |#1| |#2| |#3|) $) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2968 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-4344 (($ $ (-417 (-574))) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1610 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1125)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1277 |#2|)) 38)) (-1784 (((-417 (-574)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) NIL)) (-2943 (((-872) $) 62) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1181 |#1| |#2| |#3|)) 30) (($ (-1188 |#1| |#2| |#3|)) 31) (($ (-1277 |#2|)) 26) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3344 ((|#1| $ (-417 (-574))) NIL)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 12)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 22 T CONST)) (-2146 (($) 16 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 24)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-1187 |#1| |#2| |#3|) (-13 (-1264 |#1| (-1181 |#1| |#2| |#3|)) (-1051 (-1188 |#1| |#2| |#3|)) (-626 (-1277 |#2|)) (-10 -8 (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1187))
+((-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))))
+(-13 (-1264 |#1| (-1181 |#1| |#2| |#3|)) (-1051 (-1188 |#1| |#2| |#3|)) (-626 (-1277 |#2|)) (-10 -8 (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 129)) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) 119)) (-2763 (((-1254 |#2| |#1|) $ (-781)) 69)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-1760 (($ $ (-781)) 85) (($ $ (-781) (-781)) 82)) (-4086 (((-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 105)) (-2364 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 118) (($ (-1170 |#1|)) 113)) (-2388 (($ $) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) 25)) (-1665 (($ $) 28)) (-4053 (((-963 |#1|) $ (-781)) 81) (((-963 |#1|) $ (-781) (-781)) 83)) (-3030 (((-112) $) 124)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-781) $) 126) (((-781) $ (-781)) 128)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) NIL)) (-4025 (($ (-1 |#1| (-574)) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) 13) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-2968 (($ $) 133 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-4344 (($ $ (-781)) 15)) (-2838 (((-3 $ "failed") $ $) 26 (|has| |#1| (-566)))) (-1610 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2200 ((|#1| $ (-781)) 122) (($ $ $) 132 (|has| (-781) (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1277 |#2|)) 31)) (-1784 (((-781) $) NIL)) (-2402 (($ $) 179 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) NIL)) (-2943 (((-872) $) 206) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1254 |#2| |#1|)) 55) (($ (-1277 |#2|)) 36)) (-3123 (((-1170 |#1|) $) 101)) (-3344 ((|#1| $ (-781)) 121)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 58)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 165 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-781)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 167 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 163 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 17 T CONST)) (-2146 (($) 20 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) 198)) (-3078 (($ $ $) 35)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 203 (|has| |#1| (-372))) (($ $ $) 138 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 141 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-1188 |#1| |#2| |#3|) (-13 (-1272 |#1|) (-10 -8 (-15 -2943 ($ (-1254 |#2| |#1|))) (-15 -2763 ((-1254 |#2| |#1|) $ (-781))) (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1188))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1254 *4 *3)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3) (-5 *1 (-1188 *3 *4 *5)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1254 *5 *4)) (-5 *1 (-1188 *4 *5 *6)) (-4 *4 (-1062)) (-14 *5 (-1190)) (-14 *6 *4))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))))
+(-13 (-1272 |#1|) (-10 -8 (-15 -2943 ($ (-1254 |#2| |#1|))) (-15 -2763 ((-1254 |#2| |#1|) $ (-781))) (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|)))
+((-2943 (((-872) $) 33) (($ (-1190)) 35)) (-2818 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 46)) (-2805 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 39) (($ $) 40)) (-2518 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 41)) (-2508 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 43)) (-2492 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 42)) (-2484 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 44)) (-2078 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 45)))
+(((-1189) (-13 (-623 (-872)) (-10 -8 (-15 -2943 ($ (-1190))) (-15 -2518 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2492 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2508 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2484 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2818 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2078 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2805 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2805 ($ $))))) (T -1189))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1189)))) (-2518 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2492 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2508 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2484 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2818 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2078 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2805 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2805 (*1 *1 *1) (-5 *1 (-1189))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2943 ($ (-1190))) (-15 -2518 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2492 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2508 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2484 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2818 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2078 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2805 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2805 ($ $))))
+((-2849 (((-112) $ $) NIL)) (-2779 (($ $ (-654 (-872))) 62)) (-2204 (($ $ (-654 (-872))) 60)) (-3249 (((-1172) $) 101)) (-4147 (((-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872))) (|:| |args| (-654 (-872)))) $) 108)) (-1677 (((-112) $) 23)) (-3866 (($ $ (-654 (-654 (-872)))) 59) (($ $ (-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872))) (|:| |args| (-654 (-872))))) 99)) (-3670 (($) 163 T CONST)) (-3796 (((-1286)) 135)) (-2961 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 69) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 76)) (-3790 (($) 122) (($ $) 131)) (-2032 (($ $) 100)) (-3658 (($ $ $) NIL)) (-2106 (($ $ $) NIL)) (-1788 (((-654 $) $) 136)) (-2568 (((-1172) $) 114)) (-3966 (((-1133) $) NIL)) (-2200 (($ $ (-654 (-872))) 61)) (-1837 (((-546) $) 48) (((-1190) $) 49) (((-903 (-574)) $) 80) (((-903 (-388)) $) 78)) (-2943 (((-872) $) 55) (($ (-1172)) 50)) (-2923 (((-112) $ $) NIL)) (-3315 (($ $ (-654 (-872))) 63)) (-1520 (((-1172) $) 34) (((-1172) $ (-112)) 35) (((-1286) (-832) $) 36) (((-1286) (-832) $ (-112)) 37)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 51)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 52)))
+(((-1190) (-13 (-860) (-624 (-546)) (-838) (-624 (-1190)) (-626 (-1172)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3790 ($)) (-15 -3790 ($ $)) (-15 -3796 ((-1286))) (-15 -2032 ($ $)) (-15 -1677 ((-112) $)) (-15 -4147 ((-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3866 ($ $ (-654 (-654 (-872))))) (-15 -3866 ($ $ (-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -2204 ($ $ (-654 (-872)))) (-15 -2779 ($ $ (-654 (-872)))) (-15 -3315 ($ $ (-654 (-872)))) (-15 -2200 ($ $ (-654 (-872)))) (-15 -3249 ((-1172) $)) (-15 -1788 ((-654 $) $)) (-15 -3670 ($) -1707)))) (T -1190))
+((-3790 (*1 *1) (-5 *1 (-1190))) (-3790 (*1 *1 *1) (-5 *1 (-1190))) (-3796 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1190)))) (-2032 (*1 *1 *1) (-5 *1 (-1190))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1190)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1190)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1190)))) (-2204 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))) (-3315 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))) (-2200 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1190)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1190)))) (-3670 (*1 *1) (-5 *1 (-1190))))
+(-13 (-860) (-624 (-546)) (-838) (-624 (-1190)) (-626 (-1172)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3790 ($)) (-15 -3790 ($ $)) (-15 -3796 ((-1286))) (-15 -2032 ($ $)) (-15 -1677 ((-112) $)) (-15 -4147 ((-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3866 ($ $ (-654 (-654 (-872))))) (-15 -3866 ($ $ (-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -2204 ($ $ (-654 (-872)))) (-15 -2779 ($ $ (-654 (-872)))) (-15 -3315 ($ $ (-654 (-872)))) (-15 -2200 ($ $ (-654 (-872)))) (-15 -3249 ((-1172) $)) (-15 -1788 ((-654 $) $)) (-15 -3670 ($) -1707)))
+((-3373 (((-1281 |#1|) |#1| (-932)) 18) (((-1281 |#1|) (-654 |#1|)) 25)))
+(((-1191 |#1|) (-10 -7 (-15 -3373 ((-1281 |#1|) (-654 |#1|))) (-15 -3373 ((-1281 |#1|) |#1| (-932)))) (-1062)) (T -1191))
+((-3373 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-5 *2 (-1281 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1062)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1062)) (-5 *2 (-1281 *4)) (-5 *1 (-1191 *4)))))
+(-10 -7 (-15 -3373 ((-1281 |#1|) (-654 |#1|))) (-15 -3373 ((-1281 |#1|) |#1| (-932))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2209 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-3872 (($ $) NIL (|has| |#1| (-462)))) (-3157 (($ $ |#1| (-984) $) NIL)) (-3965 (((-112) $) 17)) (-2784 (((-781) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-984)) NIL)) (-2382 (((-984) $) NIL)) (-1541 (($ (-1 (-984) (-984)) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-3393 (($ $ (-984) |#1| $) NIL (-12 (|has| (-984) (-132)) (|has| |#1| (-566))))) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-1784 (((-984) $) NIL)) (-1607 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ (-984)) NIL)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2134 (($) 10 T CONST)) (-2146 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 21)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-1192 |#1|) (-13 (-334 |#1| (-984)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-984) (-132)) (-15 -3393 ($ $ (-984) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|))) (-1062)) (T -1192))
+((-3393 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-984)) (-4 *2 (-132)) (-5 *1 (-1192 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))))
+(-13 (-334 |#1| (-984)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-984) (-132)) (-15 -3393 ($ $ (-984) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|)))
+((-4222 (((-1194) (-1190) $) 25)) (-1391 (($) 29)) (-4363 (((-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-1190) $) 22)) (-3228 (((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")) $) 41) (((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) 42) (((-1286) (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) 43)) (-1944 (((-1286) (-1190)) 58)) (-4377 (((-1286) (-1190) $) 55) (((-1286) (-1190)) 56) (((-1286)) 57)) (-3603 (((-1286) (-1190)) 37)) (-2449 (((-1190)) 36)) (-3135 (($) 34)) (-3159 (((-447) (-1190) (-447) (-1190) $) 45) (((-447) (-654 (-1190)) (-447) (-1190) $) 49) (((-447) (-1190) (-447)) 46) (((-447) (-1190) (-447) (-1190)) 50)) (-1739 (((-1190)) 35)) (-2943 (((-872) $) 28)) (-1387 (((-1286)) 30) (((-1286) (-1190)) 33)) (-4410 (((-654 (-1190)) (-1190) $) 24)) (-1484 (((-1286) (-1190) (-654 (-1190)) $) 38) (((-1286) (-1190) (-654 (-1190))) 39) (((-1286) (-654 (-1190))) 40)))
+(((-1193) (-13 (-623 (-872)) (-10 -8 (-15 -1391 ($)) (-15 -1387 ((-1286))) (-15 -1387 ((-1286) (-1190))) (-15 -3159 ((-447) (-1190) (-447) (-1190) $)) (-15 -3159 ((-447) (-654 (-1190)) (-447) (-1190) $)) (-15 -3159 ((-447) (-1190) (-447))) (-15 -3159 ((-447) (-1190) (-447) (-1190))) (-15 -3603 ((-1286) (-1190))) (-15 -1739 ((-1190))) (-15 -2449 ((-1190))) (-15 -1484 ((-1286) (-1190) (-654 (-1190)) $)) (-15 -1484 ((-1286) (-1190) (-654 (-1190)))) (-15 -1484 ((-1286) (-654 (-1190)))) (-15 -3228 ((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")) $)) (-15 -3228 ((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")))) (-15 -3228 ((-1286) (-3 (|:| |fst| (-444)) (|:| -2426 "void")))) (-15 -4377 ((-1286) (-1190) $)) (-15 -4377 ((-1286) (-1190))) (-15 -4377 ((-1286))) (-15 -1944 ((-1286) (-1190))) (-15 -3135 ($)) (-15 -4363 ((-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-1190) $)) (-15 -4410 ((-654 (-1190)) (-1190) $)) (-15 -4222 ((-1194) (-1190) $))))) (T -1193))
+((-1391 (*1 *1) (-5 *1 (-1193))) (-1387 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1193)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-3159 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193)))) (-3159 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1190))) (-5 *4 (-1190)) (-5 *1 (-1193)))) (-3159 (*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193)))) (-3159 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-1739 (*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1193)))) (-2449 (*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1193)))) (-1484 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-3228 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1190)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-3228 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-4377 (*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-4377 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1193)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-3135 (*1 *1) (-5 *1 (-1193))) (-4363 (*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *1 (-1193)))) (-4410 (*1 *2 *3 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1193)) (-5 *3 (-1190)))) (-4222 (*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-1194)) (-5 *1 (-1193)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -1391 ($)) (-15 -1387 ((-1286))) (-15 -1387 ((-1286) (-1190))) (-15 -3159 ((-447) (-1190) (-447) (-1190) $)) (-15 -3159 ((-447) (-654 (-1190)) (-447) (-1190) $)) (-15 -3159 ((-447) (-1190) (-447))) (-15 -3159 ((-447) (-1190) (-447) (-1190))) (-15 -3603 ((-1286) (-1190))) (-15 -1739 ((-1190))) (-15 -2449 ((-1190))) (-15 -1484 ((-1286) (-1190) (-654 (-1190)) $)) (-15 -1484 ((-1286) (-1190) (-654 (-1190)))) (-15 -1484 ((-1286) (-654 (-1190)))) (-15 -3228 ((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")) $)) (-15 -3228 ((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")))) (-15 -3228 ((-1286) (-3 (|:| |fst| (-444)) (|:| -2426 "void")))) (-15 -4377 ((-1286) (-1190) $)) (-15 -4377 ((-1286) (-1190))) (-15 -4377 ((-1286))) (-15 -1944 ((-1286) (-1190))) (-15 -3135 ($)) (-15 -4363 ((-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-1190) $)) (-15 -4410 ((-654 (-1190)) (-1190) $)) (-15 -4222 ((-1194) (-1190) $))))
+((-2070 (((-654 (-654 (-3 (|:| -2032 (-1190)) (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))) $) 66)) (-2724 (((-654 (-3 (|:| -2032 (-1190)) (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))) (-444) $) 47)) (-3723 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-447))))) 17)) (-1944 (((-1286) $) 73)) (-2752 (((-654 (-1190)) $) 22)) (-4013 (((-1117) $) 60)) (-3066 (((-447) (-1190) $) 27)) (-2519 (((-654 (-1190)) $) 30)) (-3135 (($) 19)) (-3159 (((-447) (-654 (-1190)) (-447) $) 25) (((-447) (-1190) (-447) $) 24)) (-2943 (((-872) $) 9) (((-1203 (-1190) (-447)) $) 13)))
+(((-1194) (-13 (-623 (-872)) (-10 -8 (-15 -2943 ((-1203 (-1190) (-447)) $)) (-15 -3135 ($)) (-15 -3159 ((-447) (-654 (-1190)) (-447) $)) (-15 -3159 ((-447) (-1190) (-447) $)) (-15 -3066 ((-447) (-1190) $)) (-15 -2752 ((-654 (-1190)) $)) (-15 -2724 ((-654 (-3 (|:| -2032 (-1190)) (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))) (-444) $)) (-15 -2519 ((-654 (-1190)) $)) (-15 -2070 ((-654 (-654 (-3 (|:| -2032 (-1190)) (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))) $)) (-15 -4013 ((-1117) $)) (-15 -1944 ((-1286) $)) (-15 -3723 ($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-447))))))))) (T -1194))
+((-2943 (*1 *2 *1) (-12 (-5 *2 (-1203 (-1190) (-447))) (-5 *1 (-1194)))) (-3135 (*1 *1) (-5 *1 (-1194))) (-3159 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1190))) (-5 *1 (-1194)))) (-3159 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1194)))) (-3066 (*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-447)) (-5 *1 (-1194)))) (-2752 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1194)))) (-2724 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-654 (-3 (|:| -2032 (-1190)) (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))) (-5 *1 (-1194)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1194)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-3 (|:| -2032 (-1190)) (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))))) (-5 *1 (-1194)))) (-4013 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1194)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1194)))) (-3723 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-447))))) (-5 *1 (-1194)))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2943 ((-1203 (-1190) (-447)) $)) (-15 -3135 ($)) (-15 -3159 ((-447) (-654 (-1190)) (-447) $)) (-15 -3159 ((-447) (-1190) (-447) $)) (-15 -3066 ((-447) (-1190) $)) (-15 -2752 ((-654 (-1190)) $)) (-15 -2724 ((-654 (-3 (|:| -2032 (-1190)) (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))) (-444) $)) (-15 -2519 ((-654 (-1190)) $)) (-15 -2070 ((-654 (-654 (-3 (|:| -2032 (-1190)) (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))) $)) (-15 -4013 ((-1117) $)) (-15 -1944 ((-1286) $)) (-15 -3723 ($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-447))))))))
+((-2849 (((-112) $ $) NIL)) (-1697 (((-3 (-574) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-516) "failed") $) 43) (((-3 (-1172) "failed") $) 47)) (-2209 (((-574) $) 30) (((-227) $) 36) (((-516) $) 40) (((-1172) $) 48)) (-4100 (((-112) $) 53)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3701 (((-3 (-574) (-227) (-516) (-1172) $) $) 55)) (-3765 (((-654 $) $) 57)) (-1837 (((-1117) $) 24) (($ (-1117)) 25)) (-3936 (((-112) $) 56)) (-2943 (((-872) $) 23) (($ (-574)) 26) (($ (-227)) 32) (($ (-516)) 38) (($ (-1172)) 44) (((-546) $) 59) (((-574) $) 31) (((-227) $) 37) (((-516) $) 41) (((-1172) $) 49)) (-2123 (((-112) $ (|[\|\|]| (-574))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-516))) 19) (((-112) $ (|[\|\|]| (-1172))) 16)) (-2389 (($ (-516) (-654 $)) 51) (($ $ (-654 $)) 52)) (-2923 (((-112) $ $) NIL)) (-1331 (((-574) $) 27) (((-227) $) 33) (((-516) $) 39) (((-1172) $) 45)) (-2982 (((-112) $ $) 7)))
+(((-1195) (-13 (-1276) (-1113) (-1051 (-574)) (-1051 (-227)) (-1051 (-516)) (-1051 (-1172)) (-623 (-546)) (-10 -8 (-15 -1837 ((-1117) $)) (-15 -1837 ($ (-1117))) (-15 -2943 ((-574) $)) (-15 -1331 ((-574) $)) (-15 -2943 ((-227) $)) (-15 -1331 ((-227) $)) (-15 -2943 ((-516) $)) (-15 -1331 ((-516) $)) (-15 -2943 ((-1172) $)) (-15 -1331 ((-1172) $)) (-15 -2389 ($ (-516) (-654 $))) (-15 -2389 ($ $ (-654 $))) (-15 -4100 ((-112) $)) (-15 -3701 ((-3 (-574) (-227) (-516) (-1172) $) $)) (-15 -3765 ((-654 $) $)) (-15 -3936 ((-112) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-574)))) (-15 -2123 ((-112) $ (|[\|\|]| (-227)))) (-15 -2123 ((-112) $ (|[\|\|]| (-516)))) (-15 -2123 ((-112) $ (|[\|\|]| (-1172))))))) (T -1195))
+((-1837 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1195)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1195)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1195)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1195)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1195)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1195)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1195)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1195)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1195)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1195)))) (-2389 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1195))) (-5 *1 (-1195)))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1195)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1172) (-1195))) (-5 *1 (-1195)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1195)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1195)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1195)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1195)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)) (-5 *1 (-1195)))))
+(-13 (-1276) (-1113) (-1051 (-574)) (-1051 (-227)) (-1051 (-516)) (-1051 (-1172)) (-623 (-546)) (-10 -8 (-15 -1837 ((-1117) $)) (-15 -1837 ($ (-1117))) (-15 -2943 ((-574) $)) (-15 -1331 ((-574) $)) (-15 -2943 ((-227) $)) (-15 -1331 ((-227) $)) (-15 -2943 ((-516) $)) (-15 -1331 ((-516) $)) (-15 -2943 ((-1172) $)) (-15 -1331 ((-1172) $)) (-15 -2389 ($ (-516) (-654 $))) (-15 -2389 ($ $ (-654 $))) (-15 -4100 ((-112) $)) (-15 -3701 ((-3 (-574) (-227) (-516) (-1172) $) $)) (-15 -3765 ((-654 $) $)) (-15 -3936 ((-112) $)) (-15 -2123 ((-112) $ (|[\|\|]| (-574)))) (-15 -2123 ((-112) $ (|[\|\|]| (-227)))) (-15 -2123 ((-112) $ (|[\|\|]| (-516)))) (-15 -2123 ((-112) $ (|[\|\|]| (-1172))))))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) 22)) (-3670 (($) 12 T CONST)) (-2820 (($) 26)) (-3658 (($ $ $) NIL) (($) 19 T CONST)) (-2106 (($ $ $) NIL) (($) 20 T CONST)) (-2565 (((-932) $) 24)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) 23)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-1196 |#1|) (-13 (-854) (-10 -8 (-15 -3670 ($) -1707))) (-932)) (T -1196))
+((-3670 (*1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-932)))))
+(-13 (-854) (-10 -8 (-15 -3670 ($) -1707)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1)))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) 19 T CONST)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) 12 T CONST)) (-2427 (($ $ $) NIL) (($) 18 T CONST)) (-3715 (((-930) $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-1753 (($ $ $) 21)) (-1742 (($ $ $) 20)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-1195 |#1|) (-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705))) (-930)) (T -1195))
-((-1742 (*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930)))) (-1753 (*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930)))) (-3281 (*1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930)))))
-(-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) 19 T CONST)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) 12 T CONST)) (-2106 (($ $ $) NIL) (($) 18 T CONST)) (-2565 (((-932) $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1755 (($ $ $) 21)) (-1743 (($ $ $) 20)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-1197 |#1|) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707))) (-932)) (T -1197))
+((-1743 (*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932)))) (-1755 (*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932)))) (-3670 (*1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932)))))
+(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1)))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 9)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 7)))
-(((-1196) (-1111)) (T -1196))
-NIL
-(-1111)
-((-3341 (((-652 (-652 (-961 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188))) 69)) (-1724 (((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|)))) 80) (((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|))) 76) (((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188)) 81) (((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188)) 75) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|))))) 106) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|)))) 105) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188))) 107) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))) (-652 (-1188))) 104)))
-(((-1197 |#1|) (-10 -7 (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188)))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -1724 ((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188))) (-15 -1724 ((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -1724 ((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)))) (-15 -1724 ((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))))) (-15 -3341 ((-652 (-652 (-961 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188))))) (-564)) (T -1197))
-((-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-961 *5)))) (-5 *1 (-1197 *5)))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *4))))) (-5 *1 (-1197 *4)) (-5 *3 (-300 (-415 (-961 *4)))))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *4))))) (-5 *1 (-1197 *4)) (-5 *3 (-415 (-961 *4))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *5))))) (-5 *1 (-1197 *5)) (-5 *3 (-300 (-415 (-961 *5)))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *5))))) (-5 *1 (-1197 *5)) (-5 *3 (-415 (-961 *5))))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-1197 *4)) (-5 *3 (-652 (-300 (-415 (-961 *4))))))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-652 (-415 (-961 *4)))) (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-1197 *4)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-1197 *5)) (-5 *3 (-652 (-300 (-415 (-961 *5))))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-1197 *5)))))
-(-10 -7 (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188)))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))))) (-15 -1724 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -1724 ((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188))) (-15 -1724 ((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -1724 ((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)))) (-15 -1724 ((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))))) (-15 -3341 ((-652 (-652 (-961 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))))
-((-1895 (((-1170)) 7)) (-1971 (((-1170)) 11 T CONST)) (-3721 (((-1284) (-1170)) 13)) (-2712 (((-1170)) 8 T CONST)) (-4056 (((-131)) 10 T CONST)))
-(((-1198) (-13 (-1229) (-10 -7 (-15 -1895 ((-1170))) (-15 -2712 ((-1170)) -1705) (-15 -4056 ((-131)) -1705) (-15 -1971 ((-1170)) -1705) (-15 -3721 ((-1284) (-1170)))))) (T -1198))
-((-1895 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))) (-2712 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))) (-4056 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1198)))) (-1971 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1198)))))
-(-13 (-1229) (-10 -7 (-15 -1895 ((-1170))) (-15 -2712 ((-1170)) -1705) (-15 -4056 ((-131)) -1705) (-15 -1971 ((-1170)) -1705) (-15 -3721 ((-1284) (-1170)))))
-((-3403 (((-652 (-652 |#1|)) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|)))) 56)) (-1527 (((-652 (-652 (-652 |#1|))) (-652 (-652 |#1|))) 38)) (-2484 (((-1200 (-652 |#1|)) (-652 |#1|)) 49)) (-3758 (((-652 (-652 |#1|)) (-652 |#1|)) 45)) (-4264 (((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 (-652 (-652 |#1|)))) 53)) (-4361 (((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 |#1|) (-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|)))) 52)) (-2077 (((-652 (-652 |#1|)) (-652 (-652 |#1|))) 43)) (-1982 (((-652 |#1|) (-652 |#1|)) 46)) (-4002 (((-652 (-652 (-652 |#1|))) (-652 |#1|) (-652 (-652 (-652 |#1|)))) 32)) (-1763 (((-652 (-652 (-652 |#1|))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 (-652 |#1|)))) 29)) (-3579 (((-2 (|:| |fs| (-112)) (|:| |sd| (-652 |#1|)) (|:| |td| (-652 (-652 |#1|)))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 |#1|))) 24)) (-1806 (((-652 (-652 |#1|)) (-652 (-652 (-652 |#1|)))) 58)) (-2939 (((-652 (-652 |#1|)) (-1200 (-652 |#1|))) 60)))
-(((-1199 |#1|) (-10 -7 (-15 -3579 ((-2 (|:| |fs| (-112)) (|:| |sd| (-652 |#1|)) (|:| |td| (-652 (-652 |#1|)))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 |#1|)))) (-15 -1763 ((-652 (-652 (-652 |#1|))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 (-652 |#1|))))) (-15 -4002 ((-652 (-652 (-652 |#1|))) (-652 |#1|) (-652 (-652 (-652 |#1|))))) (-15 -3403 ((-652 (-652 |#1|)) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))))) (-15 -1806 ((-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))))) (-15 -2939 ((-652 (-652 |#1|)) (-1200 (-652 |#1|)))) (-15 -1527 ((-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)))) (-15 -2484 ((-1200 (-652 |#1|)) (-652 |#1|))) (-15 -2077 ((-652 (-652 |#1|)) (-652 (-652 |#1|)))) (-15 -3758 ((-652 (-652 |#1|)) (-652 |#1|))) (-15 -1982 ((-652 |#1|) (-652 |#1|))) (-15 -4361 ((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 |#1|) (-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))))) (-15 -4264 ((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 (-652 (-652 |#1|)))))) (-858)) (T -1199))
-((-4264 (*1 *2 *3) (-12 (-4 *4 (-858)) (-5 *2 (-2 (|:| |f1| (-652 *4)) (|:| |f2| (-652 (-652 (-652 *4)))) (|:| |f3| (-652 (-652 *4))) (|:| |f4| (-652 (-652 (-652 *4)))))) (-5 *1 (-1199 *4)) (-5 *3 (-652 (-652 (-652 *4)))))) (-4361 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-858)) (-5 *3 (-652 *6)) (-5 *5 (-652 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-652 *5)) (|:| |f3| *5) (|:| |f4| (-652 *5)))) (-5 *1 (-1199 *6)) (-5 *4 (-652 *5)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-1199 *3)))) (-3758 (*1 *2 *3) (-12 (-4 *4 (-858)) (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4)) (-5 *3 (-652 *4)))) (-2077 (*1 *2 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-858)) (-5 *1 (-1199 *3)))) (-2484 (*1 *2 *3) (-12 (-4 *4 (-858)) (-5 *2 (-1200 (-652 *4))) (-5 *1 (-1199 *4)) (-5 *3 (-652 *4)))) (-1527 (*1 *2 *3) (-12 (-4 *4 (-858)) (-5 *2 (-652 (-652 (-652 *4)))) (-5 *1 (-1199 *4)) (-5 *3 (-652 (-652 *4))))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-1200 (-652 *4))) (-4 *4 (-858)) (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-652 *4)))) (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4)) (-4 *4 (-858)))) (-3403 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-652 (-652 *4)))) (-5 *2 (-652 (-652 *4))) (-4 *4 (-858)) (-5 *1 (-1199 *4)))) (-4002 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-652 (-652 *4)))) (-5 *3 (-652 *4)) (-4 *4 (-858)) (-5 *1 (-1199 *4)))) (-1763 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-652 (-652 (-652 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-652 *5)) (-4 *5 (-858)) (-5 *1 (-1199 *5)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-858)) (-5 *4 (-652 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-652 *4)))) (-5 *1 (-1199 *6)) (-5 *5 (-652 *4)))))
-(-10 -7 (-15 -3579 ((-2 (|:| |fs| (-112)) (|:| |sd| (-652 |#1|)) (|:| |td| (-652 (-652 |#1|)))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 |#1|)))) (-15 -1763 ((-652 (-652 (-652 |#1|))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 (-652 |#1|))))) (-15 -4002 ((-652 (-652 (-652 |#1|))) (-652 |#1|) (-652 (-652 (-652 |#1|))))) (-15 -3403 ((-652 (-652 |#1|)) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))))) (-15 -1806 ((-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))))) (-15 -2939 ((-652 (-652 |#1|)) (-1200 (-652 |#1|)))) (-15 -1527 ((-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)))) (-15 -2484 ((-1200 (-652 |#1|)) (-652 |#1|))) (-15 -2077 ((-652 (-652 |#1|)) (-652 (-652 |#1|)))) (-15 -3758 ((-652 (-652 |#1|)) (-652 |#1|))) (-15 -1982 ((-652 |#1|) (-652 |#1|))) (-15 -4361 ((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 |#1|) (-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))))) (-15 -4264 ((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 (-652 (-652 |#1|))))))
-((-4381 (($ (-652 (-652 |#1|))) 10)) (-4393 (((-652 (-652 |#1|)) $) 11)) (-2940 (((-870) $) 33)))
-(((-1200 |#1|) (-10 -8 (-15 -4381 ($ (-652 (-652 |#1|)))) (-15 -4393 ((-652 (-652 |#1|)) $)) (-15 -2940 ((-870) $))) (-1111)) (T -1200))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1200 *3)) (-4 *3 (-1111)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1111)))) (-4381 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-1200 *3)))))
-(-10 -8 (-15 -4381 ($ (-652 (-652 |#1|)))) (-15 -4393 ((-652 (-652 |#1|)) $)) (-15 -2940 ((-870) $)))
-((-2846 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3775 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3176 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#2| $ |#1| |#2|) NIL)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2160 (((-3 |#2| "failed") |#1| $) NIL)) (-3281 (($) NIL T CONST)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) NIL)) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) NIL)) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) NIL)) (-3175 ((|#1| $) NIL (|has| |#1| (-858)))) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3374 ((|#1| $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-1761 (((-652 |#1|) $) NIL)) (-4198 (((-112) |#1| $) NIL)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1986 (((-652 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-3964 (((-1131) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 ((|#2| $) NIL (|has| |#1| (-858)))) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2476 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3438 (($) NIL) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-2940 (((-870) $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-4379 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) NIL)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) NIL (-2813 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1201 |#1| |#2|) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454))) (-1111) (-1111)) (T -1201))
-NIL
-(-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))
-((-2846 (((-112) $ $) NIL)) (-4171 (($ |#1| (-55)) 10)) (-2030 ((|#1| $) 12)) (-4347 (((-1170) $) NIL)) (-2695 (((-112) $ |#1|) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2863 (((-55) $) 14)) (-2978 (((-112) $ $) NIL)))
-(((-1202 |#1|) (-13 (-843 |#1|) (-10 -8 (-15 -4171 ($ |#1| (-55))))) (-1111)) (T -1202))
-((-4171 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1202 *2)) (-4 *2 (-1111)))))
-(-13 (-843 |#1|) (-10 -8 (-15 -4171 ($ |#1| (-55)))))
-((-1829 ((|#1| (-652 |#1|)) 46)) (-3843 ((|#1| |#1| (-572)) 24)) (-3858 (((-1184 |#1|) |#1| (-930)) 20)))
-(((-1203 |#1|) (-10 -7 (-15 -1829 (|#1| (-652 |#1|))) (-15 -3858 ((-1184 |#1|) |#1| (-930))) (-15 -3843 (|#1| |#1| (-572)))) (-370)) (T -1203))
-((-3843 (*1 *2 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-1203 *2)) (-4 *2 (-370)))) (-3858 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-5 *2 (-1184 *3)) (-5 *1 (-1203 *3)) (-4 *3 (-370)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-1203 *2)) (-4 *2 (-370)))))
-(-10 -7 (-15 -1829 (|#1| (-652 |#1|))) (-15 -3858 ((-1184 |#1|) |#1| (-930))) (-15 -3843 (|#1| |#1| (-572))))
-((-3775 (($) 10) (($ (-652 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)))) 14)) (-3554 (($ (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1863 (((-652 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) $) 39) (((-652 |#3|) $) 41)) (-2442 (($ (-1 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1776 (($ (-1 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1651 (((-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) $) 60)) (-2036 (($ (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) $) 16)) (-1986 (((-652 |#2|) $) 19)) (-1370 (((-112) |#2| $) 65)) (-3770 (((-3 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) "failed") (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) $) 64)) (-3378 (((-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) $) 69)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-4110 (((-652 |#3|) $) 43)) (-2196 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) $) NIL) (((-779) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) $) NIL) (((-779) |#3| $) NIL) (((-779) (-1 (-112) |#3|) $) 79)) (-2940 (((-870) $) 27)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2978 (((-112) $ $) 51)))
-(((-1204 |#1| |#2| |#3|) (-10 -8 (-15 -2978 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3775 (|#1| (-652 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))))) (-15 -3775 (|#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2442 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3973 ((-779) (-1 (-112) |#3|) |#1|)) (-15 -1863 ((-652 |#3|) |#1|)) (-15 -3973 ((-779) |#3| |#1|)) (-15 -2196 (|#3| |#1| |#2| |#3|)) (-15 -2196 (|#3| |#1| |#2|)) (-15 -4110 ((-652 |#3|) |#1|)) (-15 -1370 ((-112) |#2| |#1|)) (-15 -1986 ((-652 |#2|) |#1|)) (-15 -3554 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3554 (|#1| (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -3554 (|#1| (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3770 ((-3 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) "failed") (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1651 ((-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -2036 (|#1| (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3378 ((-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3973 ((-779) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -1863 ((-652 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -3973 ((-779) (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1612 ((-112) (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -4380 ((-112) (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2442 (|#1| (-1 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1776 (|#1| (-1 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|))) (-1205 |#2| |#3|) (-1111) (-1111)) (T -1204))
-NIL
-(-10 -8 (-15 -2978 ((-112) |#1| |#1|)) (-15 -2940 ((-870) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3775 (|#1| (-652 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))))) (-15 -3775 (|#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2442 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4380 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1612 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3973 ((-779) (-1 (-112) |#3|) |#1|)) (-15 -1863 ((-652 |#3|) |#1|)) (-15 -3973 ((-779) |#3| |#1|)) (-15 -2196 (|#3| |#1| |#2| |#3|)) (-15 -2196 (|#3| |#1| |#2|)) (-15 -4110 ((-652 |#3|) |#1|)) (-15 -1370 ((-112) |#2| |#1|)) (-15 -1986 ((-652 |#2|) |#1|)) (-15 -3554 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3554 (|#1| (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -3554 (|#1| (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3770 ((-3 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) "failed") (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1651 ((-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -2036 (|#1| (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3378 ((-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3973 ((-779) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -1863 ((-652 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -3973 ((-779) (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1612 ((-112) (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -4380 ((-112) (-1 (-112) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2442 (|#1| (-1 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1776 (|#1| (-1 (-2 (|:| -3690 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3690 |#2|) (|:| -1907 |#3|))) |#1|)))
-((-2846 (((-112) $ $) 19 (-2813 (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-3775 (($) 73) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 72)) (-3176 (((-1284) $ |#1| |#1|) 100 (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) 8)) (-3140 ((|#2| $ |#1| |#2|) 74)) (-2613 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 46 (|has| $ (-6 -4454)))) (-2162 (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 56 (|has| $ (-6 -4454)))) (-2160 (((-3 |#2| "failed") |#1| $) 62)) (-3281 (($) 7 T CONST)) (-2086 (($ $) 59 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-3554 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 47 (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 63)) (-3332 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 55 (|has| $ (-6 -4454)))) (-2865 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 57 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 54 (|has| $ (-6 -4454))) (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 53 (|has| $ (-6 -4454)))) (-2453 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4455)))) (-2380 ((|#2| $ |#1|) 89)) (-1863 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 31 (|has| $ (-6 -4454))) (((-652 |#2|) $) 80 (|has| $ (-6 -4454)))) (-1861 (((-112) $ (-779)) 9)) (-3175 ((|#1| $) 97 (|has| |#1| (-858)))) (-1344 (((-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 30 (|has| $ (-6 -4454))) (((-652 |#2|) $) 81 (|has| $ (-6 -4454)))) (-1864 (((-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3374 ((|#1| $) 96 (|has| |#1| (-858)))) (-2442 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 35 (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4455)))) (-1776 (($ (-1 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1985 (((-112) $ (-779)) 10)) (-4347 (((-1170) $) 22 (-2813 (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-1761 (((-652 |#1|) $) 64)) (-4198 (((-112) |#1| $) 65)) (-1651 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 40)) (-2036 (($ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 41)) (-1986 (((-652 |#1|) $) 94)) (-1370 (((-112) |#1| $) 93)) (-3964 (((-1131) $) 21 (-2813 (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-2912 ((|#2| $) 98 (|has| |#1| (-858)))) (-3770 (((-3 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 52)) (-2476 (($ $ |#2|) 99 (|has| $ (-6 -4455)))) (-3378 (((-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 42)) (-1612 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 33 (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))))) 27 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 26 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) 25 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 24 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 87 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 85 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) 84 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-4110 (((-652 |#2|) $) 92)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3438 (($) 50) (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 49)) (-3973 (((-779) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 32 (|has| $ (-6 -4454))) (((-779) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-779) |#2| $) 82 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4454)))) (-3164 (($ $) 13)) (-1835 (((-544) $) 60 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))))) (-2953 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 51)) (-2940 (((-870) $) 18 (-2813 (|has| |#2| (-621 (-870))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870)))))) (-4379 (((-112) $ $) 23 (-2813 (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-2022 (($ (-652 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) 43)) (-4380 (((-112) (-1 (-112) (-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) $) 34 (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (-2813 (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-1205 |#1| |#2|) (-141) (-1111) (-1111)) (T -1205))
-((-3140 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-3775 (*1 *1) (-12 (-4 *1 (-1205 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -3690 *3) (|:| -1907 *4)))) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *1 (-1205 *3 *4)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1205 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))))
-(-13 (-618 |t#1| |t#2|) (-612 |t#1| |t#2|) (-10 -8 (-15 -3140 (|t#2| $ |t#1| |t#2|)) (-15 -3775 ($)) (-15 -3775 ($ (-652 (-2 (|:| -3690 |t#1|) (|:| -1907 |t#2|))))) (-15 -1776 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -3690 |#1|) (|:| -1907 |#2|))) . T) ((-102) -2813 (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) ((-621 (-870)) -2813 (|has| |#2| (-1111)) (|has| |#2| (-621 (-870))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-621 (-870)))) ((-152 #0#) . T) ((-622 (-544)) |has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-622 (-544))) ((-231 #0#) . T) ((-239 #0#) . T) ((-292 |#1| |#2|) . T) ((-294 |#1| |#2|) . T) ((-315 #0#) -12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-497 #0#) . T) ((-497 |#2|) . T) ((-612 |#1| |#2|) . T) ((-522 #0# #0#) -12 (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-315 (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-618 |#1| |#2|) . T) ((-1111) -2813 (|has| |#2| (-1111)) (|has| (-2 (|:| -3690 |#1|) (|:| -1907 |#2|)) (-1111))) ((-1229) . T))
-((-2491 (((-112)) 29)) (-1328 (((-1284) (-1170)) 31)) (-2897 (((-112)) 41)) (-4042 (((-1284)) 39)) (-3078 (((-1284) (-1170) (-1170)) 30)) (-1719 (((-112)) 42)) (-2036 (((-1284) |#1| |#2|) 53)) (-3365 (((-1284)) 26)) (-1410 (((-3 |#2| "failed") |#1|) 51)) (-2768 (((-1284)) 40)))
-(((-1206 |#1| |#2|) (-10 -7 (-15 -3365 ((-1284))) (-15 -3078 ((-1284) (-1170) (-1170))) (-15 -1328 ((-1284) (-1170))) (-15 -4042 ((-1284))) (-15 -2768 ((-1284))) (-15 -2491 ((-112))) (-15 -2897 ((-112))) (-15 -1719 ((-112))) (-15 -1410 ((-3 |#2| "failed") |#1|)) (-15 -2036 ((-1284) |#1| |#2|))) (-1111) (-1111)) (T -1206))
-((-2036 (*1 *2 *3 *4) (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-1410 (*1 *2 *3) (|partial| -12 (-4 *2 (-1111)) (-5 *1 (-1206 *3 *2)) (-4 *3 (-1111)))) (-1719 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-2897 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-2491 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-2768 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-4042 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-1328 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1206 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111)))) (-3078 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1206 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111)))) (-3365 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))))
-(-10 -7 (-15 -3365 ((-1284))) (-15 -3078 ((-1284) (-1170) (-1170))) (-15 -1328 ((-1284) (-1170))) (-15 -4042 ((-1284))) (-15 -2768 ((-1284))) (-15 -2491 ((-112))) (-15 -2897 ((-112))) (-15 -1719 ((-112))) (-15 -1410 ((-3 |#2| "failed") |#1|)) (-15 -2036 ((-1284) |#1| |#2|)))
-((-3784 (((-1170) (-1170)) 22)) (-2386 (((-52) (-1170)) 25)))
-(((-1207) (-10 -7 (-15 -2386 ((-52) (-1170))) (-15 -3784 ((-1170) (-1170))))) (T -1207))
-((-3784 (*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1207)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-1207)))))
-(-10 -7 (-15 -2386 ((-52) (-1170))) (-15 -3784 ((-1170) (-1170))))
-((-2940 (((-1209) |#1|) 11)))
-(((-1208 |#1|) (-10 -7 (-15 -2940 ((-1209) |#1|))) (-1111)) (T -1208))
-((-2940 (*1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *1 (-1208 *3)) (-4 *3 (-1111)))))
-(-10 -7 (-15 -2940 ((-1209) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-3894 (((-652 (-1170)) $) 39)) (-1989 (((-652 (-1170)) $ (-652 (-1170))) 42)) (-2916 (((-652 (-1170)) $ (-652 (-1170))) 41)) (-4365 (((-652 (-1170)) $ (-652 (-1170))) 43)) (-4062 (((-652 (-1170)) $) 38)) (-3787 (($) 28)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1975 (((-652 (-1170)) $) 40)) (-1401 (((-1284) $ (-572)) 35) (((-1284) $) 36)) (-1835 (($ (-870) (-572)) 33) (($ (-870) (-572) (-870)) NIL)) (-2940 (((-870) $) 49) (($ (-870)) 32)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1209) (-13 (-1111) (-624 (-870)) (-10 -8 (-15 -1835 ($ (-870) (-572))) (-15 -1835 ($ (-870) (-572) (-870))) (-15 -1401 ((-1284) $ (-572))) (-15 -1401 ((-1284) $)) (-15 -1975 ((-652 (-1170)) $)) (-15 -3894 ((-652 (-1170)) $)) (-15 -3787 ($)) (-15 -4062 ((-652 (-1170)) $)) (-15 -4365 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -1989 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -2916 ((-652 (-1170)) $ (-652 (-1170))))))) (T -1209))
-((-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-1209)))) (-1835 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-1209)))) (-1401 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1209)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1209)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-3787 (*1 *1) (-5 *1 (-1209))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-4365 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-1989 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-2916 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
-(-13 (-1111) (-624 (-870)) (-10 -8 (-15 -1835 ($ (-870) (-572))) (-15 -1835 ($ (-870) (-572) (-870))) (-15 -1401 ((-1284) $ (-572))) (-15 -1401 ((-1284) $)) (-15 -1975 ((-652 (-1170)) $)) (-15 -3894 ((-652 (-1170)) $)) (-15 -3787 ($)) (-15 -4062 ((-652 (-1170)) $)) (-15 -4365 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -1989 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -2916 ((-652 (-1170)) $ (-652 (-1170))))))
-((-2846 (((-112) $ $) NIL)) (-3970 (((-1170) $ (-1170)) 17) (((-1170) $) 16)) (-4034 (((-1170) $ (-1170)) 15)) (-2017 (($ $ (-1170)) NIL)) (-2538 (((-3 (-1170) "failed") $) 11)) (-2808 (((-1170) $) 8)) (-2147 (((-3 (-1170) "failed") $) 12)) (-2208 (((-1170) $) 9)) (-1674 (($ (-396)) NIL) (($ (-396) (-1170)) NIL)) (-2030 (((-396) $) NIL)) (-4347 (((-1170) $) NIL)) (-3303 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3199 (((-112) $) 21)) (-2940 (((-870) $) NIL)) (-3682 (($ $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1210) (-13 (-371 (-396) (-1170)) (-10 -8 (-15 -3970 ((-1170) $ (-1170))) (-15 -3970 ((-1170) $)) (-15 -2808 ((-1170) $)) (-15 -2538 ((-3 (-1170) "failed") $)) (-15 -2147 ((-3 (-1170) "failed") $)) (-15 -3199 ((-112) $))))) (T -1210))
-((-3970 (*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-2538 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-2147 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1210)))))
-(-13 (-371 (-396) (-1170)) (-10 -8 (-15 -3970 ((-1170) $ (-1170))) (-15 -3970 ((-1170) $)) (-15 -2808 ((-1170) $)) (-15 -2538 ((-3 (-1170) "failed") $)) (-15 -2147 ((-3 (-1170) "failed") $)) (-15 -3199 ((-112) $))))
-((-2840 (((-3 (-572) "failed") |#1|) 19)) (-4102 (((-3 (-572) "failed") |#1|) 14)) (-1313 (((-572) (-1170)) 33)))
-(((-1211 |#1|) (-10 -7 (-15 -2840 ((-3 (-572) "failed") |#1|)) (-15 -4102 ((-3 (-572) "failed") |#1|)) (-15 -1313 ((-572) (-1170)))) (-1060)) (T -1211))
-((-1313 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-572)) (-5 *1 (-1211 *4)) (-4 *4 (-1060)))) (-4102 (*1 *2 *3) (|partial| -12 (-5 *2 (-572)) (-5 *1 (-1211 *3)) (-4 *3 (-1060)))) (-2840 (*1 *2 *3) (|partial| -12 (-5 *2 (-572)) (-5 *1 (-1211 *3)) (-4 *3 (-1060)))))
-(-10 -7 (-15 -2840 ((-3 (-572) "failed") |#1|)) (-15 -4102 ((-3 (-572) "failed") |#1|)) (-15 -1313 ((-572) (-1170))))
-((-1625 (((-1144 (-227))) 9)))
-(((-1212) (-10 -7 (-15 -1625 ((-1144 (-227)))))) (T -1212))
-((-1625 (*1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1212)))))
-(-10 -7 (-15 -1625 ((-1144 (-227)))))
-((-2997 (($) 12)) (-2436 (($ $) 36)) (-2409 (($ $) 34)) (-2282 (($ $) 26)) (-2460 (($ $) 18)) (-2516 (($ $) 16)) (-2448 (($ $) 20)) (-2310 (($ $) 31)) (-2423 (($ $) 35)) (-2292 (($ $) 30)))
-(((-1213 |#1|) (-10 -8 (-15 -2997 (|#1|)) (-15 -2436 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2516 (|#1| |#1|)) (-15 -2448 (|#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2310 (|#1| |#1|)) (-15 -2292 (|#1| |#1|))) (-1214)) (T -1213))
-NIL
-(-10 -8 (-15 -2997 (|#1|)) (-15 -2436 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2516 (|#1| |#1|)) (-15 -2448 (|#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2310 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)))
-((-2358 (($ $) 26)) (-2242 (($ $) 11)) (-2338 (($ $) 27)) (-2222 (($ $) 10)) (-2384 (($ $) 28)) (-2262 (($ $) 9)) (-2997 (($) 16)) (-3116 (($ $) 19)) (-1608 (($ $) 18)) (-2397 (($ $) 29)) (-2270 (($ $) 8)) (-2370 (($ $) 30)) (-2252 (($ $) 7)) (-2348 (($ $) 31)) (-2231 (($ $) 6)) (-2436 (($ $) 20)) (-2300 (($ $) 32)) (-2409 (($ $) 21)) (-2282 (($ $) 33)) (-2460 (($ $) 22)) (-2320 (($ $) 34)) (-2516 (($ $) 23)) (-2329 (($ $) 35)) (-2448 (($ $) 24)) (-2310 (($ $) 36)) (-2423 (($ $) 25)) (-2292 (($ $) 37)) (** (($ $ $) 17)))
-(((-1214) (-141)) (T -1214))
-((-2997 (*1 *1) (-4 *1 (-1214))))
-(-13 (-1217) (-95) (-501) (-35) (-290) (-10 -8 (-15 -2997 ($))))
-(((-35) . T) ((-95) . T) ((-290) . T) ((-501) . T) ((-1217) . T))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3080 ((|#1| $) 19)) (-2570 (($ |#1| (-652 $)) 28) (($ (-652 |#1|)) 35) (($ |#1|) 30)) (-1631 (((-112) $ (-779)) 72)) (-2506 ((|#1| $ |#1|) 14 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 13 (|has| $ (-6 -4455)))) (-3281 (($) NIL T CONST)) (-1863 (((-652 |#1|) $) 77 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 64)) (-1463 (((-112) $ $) 50 (|has| |#1| (-1111)))) (-1861 (((-112) $ (-779)) 62)) (-1344 (((-652 |#1|) $) 78 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2442 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 27)) (-1985 (((-112) $ (-779)) 60)) (-3505 (((-652 |#1|) $) 55)) (-2087 (((-112) $) 53)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-1612 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 107)) (-1841 (((-112) $) 9)) (-1613 (($) 10)) (-2196 ((|#1| $ "value") NIL)) (-2157 (((-572) $ $) 48)) (-3125 (((-652 $) $) 89)) (-3644 (((-112) $ $) 110)) (-3184 (((-652 $) $) 105)) (-2910 (($ $) 106)) (-3315 (((-112) $) 84)) (-3973 (((-779) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4454))) (((-779) |#1| $) 17 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3164 (($ $) 88)) (-2940 (((-870) $) 91 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) 12)) (-2804 (((-112) $ $) 39 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 37 (|has| |#1| (-1111)))) (-2860 (((-779) $) 58 (|has| $ (-6 -4454)))))
-(((-1215 |#1|) (-13 (-1021 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -2570 ($ |#1| (-652 $))) (-15 -2570 ($ (-652 |#1|))) (-15 -2570 ($ |#1|)) (-15 -3315 ((-112) $)) (-15 -2910 ($ $)) (-15 -3184 ((-652 $) $)) (-15 -3644 ((-112) $ $)) (-15 -3125 ((-652 $) $)))) (-1111)) (T -1215))
-((-3315 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))) (-2570 (*1 *1 *2 *3) (-12 (-5 *3 (-652 (-1215 *2))) (-5 *1 (-1215 *2)) (-4 *2 (-1111)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-1215 *3)))) (-2570 (*1 *1 *2) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-1111)))) (-2910 (*1 *1 *1) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-1111)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-652 (-1215 *3))) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))) (-3644 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-652 (-1215 *3))) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
-(-13 (-1021 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -2570 ($ |#1| (-652 $))) (-15 -2570 ($ (-652 |#1|))) (-15 -2570 ($ |#1|)) (-15 -3315 ((-112) $)) (-15 -2910 ($ $)) (-15 -3184 ((-652 $) $)) (-15 -3644 ((-112) $ $)) (-15 -3125 ((-652 $) $))))
-((-2242 (($ $) 15)) (-2262 (($ $) 12)) (-2270 (($ $) 10)) (-2252 (($ $) 17)))
-(((-1216 |#1|) (-10 -8 (-15 -2252 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -2242 (|#1| |#1|))) (-1217)) (T -1216))
-NIL
-(-10 -8 (-15 -2252 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)))
-((-2242 (($ $) 11)) (-2222 (($ $) 10)) (-2262 (($ $) 9)) (-2270 (($ $) 8)) (-2252 (($ $) 7)) (-2231 (($ $) 6)))
-(((-1217) (-141)) (T -1217))
-((-2242 (*1 *1 *1) (-4 *1 (-1217))) (-2222 (*1 *1 *1) (-4 *1 (-1217))) (-2262 (*1 *1 *1) (-4 *1 (-1217))) (-2270 (*1 *1 *1) (-4 *1 (-1217))) (-2252 (*1 *1 *1) (-4 *1 (-1217))) (-2231 (*1 *1 *1) (-4 *1 (-1217))))
-(-13 (-10 -8 (-15 -2231 ($ $)) (-15 -2252 ($ $)) (-15 -2270 ($ $)) (-15 -2262 ($ $)) (-15 -2222 ($ $)) (-15 -2242 ($ $))))
-((-3600 ((|#2| |#2|) 98)) (-4181 (((-112) |#2|) 29)) (-4237 ((|#2| |#2|) 33)) (-4247 ((|#2| |#2|) 35)) (-1531 ((|#2| |#2| (-1188)) 92) ((|#2| |#2|) 93)) (-4054 (((-171 |#2|) |#2|) 31)) (-2561 ((|#2| |#2| (-1188)) 94) ((|#2| |#2|) 95)))
-(((-1218 |#1| |#2|) (-10 -7 (-15 -1531 (|#2| |#2|)) (-15 -1531 (|#2| |#2| (-1188))) (-15 -2561 (|#2| |#2|)) (-15 -2561 (|#2| |#2| (-1188))) (-15 -3600 (|#2| |#2|)) (-15 -4237 (|#2| |#2|)) (-15 -4247 (|#2| |#2|)) (-15 -4181 ((-112) |#2|)) (-15 -4054 ((-171 |#2|) |#2|))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -1218))
-((-4054 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-171 *3)) (-5 *1 (-1218 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-4181 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-112)) (-5 *1 (-1218 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-4247 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-4237 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-3600 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-2561 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-1531 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
-(-10 -7 (-15 -1531 (|#2| |#2|)) (-15 -1531 (|#2| |#2| (-1188))) (-15 -2561 (|#2| |#2|)) (-15 -2561 (|#2| |#2| (-1188))) (-15 -3600 (|#2| |#2|)) (-15 -4237 (|#2| |#2|)) (-15 -4247 (|#2| |#2|)) (-15 -4181 ((-112) |#2|)) (-15 -4054 ((-171 |#2|) |#2|)))
-((-4416 ((|#4| |#4| |#1|) 31)) (-2521 ((|#4| |#4| |#1|) 32)))
-(((-1219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4416 (|#4| |#4| |#1|)) (-15 -2521 (|#4| |#4| |#1|))) (-564) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|)) (T -1219))
-((-2521 (*1 *2 *2 *3) (-12 (-4 *3 (-564)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-1219 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-4416 (*1 *2 *2 *3) (-12 (-4 *3 (-564)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-1219 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
-(-10 -7 (-15 -4416 (|#4| |#4| |#1|)) (-15 -2521 (|#4| |#4| |#1|)))
-((-4021 ((|#2| |#2|) 148)) (-3221 ((|#2| |#2|) 145)) (-4385 ((|#2| |#2|) 136)) (-1721 ((|#2| |#2|) 133)) (-2594 ((|#2| |#2|) 141)) (-4009 ((|#2| |#2|) 129)) (-4388 ((|#2| |#2|) 44)) (-2026 ((|#2| |#2|) 105)) (-2049 ((|#2| |#2|) 88)) (-2631 ((|#2| |#2|) 143)) (-2856 ((|#2| |#2|) 131)) (-2191 ((|#2| |#2|) 153)) (-2658 ((|#2| |#2|) 151)) (-4397 ((|#2| |#2|) 152)) (-3712 ((|#2| |#2|) 150)) (-3238 ((|#2| |#2|) 163)) (-2135 ((|#2| |#2|) 30 (-12 (|has| |#2| (-622 (-901 |#1|))) (|has| |#2| (-895 |#1|)) (|has| |#1| (-622 (-901 |#1|))) (|has| |#1| (-895 |#1|))))) (-3419 ((|#2| |#2|) 89)) (-4167 ((|#2| |#2|) 154)) (-2127 ((|#2| |#2|) 155)) (-2232 ((|#2| |#2|) 142)) (-3830 ((|#2| |#2|) 130)) (-4205 ((|#2| |#2|) 149)) (-4200 ((|#2| |#2|) 147)) (-1983 ((|#2| |#2|) 137)) (-4321 ((|#2| |#2|) 135)) (-4063 ((|#2| |#2|) 139)) (-1844 ((|#2| |#2|) 127)))
-(((-1220 |#1| |#2|) (-10 -7 (-15 -2127 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -3238 (|#2| |#2|)) (-15 -2026 (|#2| |#2|)) (-15 -4388 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -4167 (|#2| |#2|)) (-15 -1844 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -4205 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -2594 (|#2| |#2|)) (-15 -4385 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -4321 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -4397 (|#2| |#2|)) (-15 -2191 (|#2| |#2|)) (IF (|has| |#1| (-895 |#1|)) (IF (|has| |#1| (-622 (-901 |#1|))) (IF (|has| |#2| (-622 (-901 |#1|))) (IF (|has| |#2| (-895 |#1|)) (-15 -2135 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-460) (-13 (-438 |#1|) (-1214))) (T -1220))
-((-2135 (*1 *2 *2) (-12 (-4 *3 (-622 (-901 *3))) (-4 *3 (-895 *3)) (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-622 (-901 *3))) (-4 *2 (-895 *3)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2191 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4397 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4200 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4321 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4385 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2594 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4009 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2631 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2856 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4205 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-1983 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-1844 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4167 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3419 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4388 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2026 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3238 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2049 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2127 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))))
-(-10 -7 (-15 -2127 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -3238 (|#2| |#2|)) (-15 -2026 (|#2| |#2|)) (-15 -4388 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -4167 (|#2| |#2|)) (-15 -1844 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -4205 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -2594 (|#2| |#2|)) (-15 -4385 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -4321 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -4397 (|#2| |#2|)) (-15 -2191 (|#2| |#2|)) (IF (|has| |#1| (-895 |#1|)) (IF (|has| |#1| (-622 (-901 |#1|))) (IF (|has| |#2| (-622 (-901 |#1|))) (IF (|has| |#2| (-895 |#1|)) (-15 -2135 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2621 (((-112) |#5| $) 68) (((-112) $) 110)) (-3558 ((|#5| |#5| $) 83)) (-2162 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3713 (((-652 |#5|) (-652 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1695 (((-3 $ "failed") (-652 |#5|)) 135)) (-2923 (((-3 $ "failed") $) 120)) (-2020 ((|#5| |#5| $) 102)) (-2888 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1758 ((|#5| |#5| $) 106)) (-2865 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3433 (((-2 (|:| -1379 (-652 |#5|)) (|:| -1674 (-652 |#5|))) $) 63)) (-4338 (((-112) |#5| $) 66) (((-112) $) 111)) (-2366 ((|#4| $) 116)) (-3357 (((-3 |#5| "failed") $) 118)) (-2234 (((-652 |#5|) $) 55)) (-3005 (((-112) |#5| $) 75) (((-112) $) 115)) (-2755 ((|#5| |#5| $) 89)) (-2323 (((-112) $ $) 29)) (-3536 (((-112) |#5| $) 71) (((-112) $) 113)) (-1825 ((|#5| |#5| $) 86)) (-2912 (((-3 |#5| "failed") $) 117)) (-2772 (($ $ |#5|) 136)) (-4390 (((-779) $) 60)) (-2953 (($ (-652 |#5|)) 133)) (-2748 (($ $ |#4|) 131)) (-2365 (($ $ |#4|) 129)) (-3862 (($ $) 128)) (-2940 (((-870) $) NIL) (((-652 |#5|) $) 121)) (-3678 (((-779) $) 140)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3447 (((-112) $ (-1 (-112) |#5| (-652 |#5|))) 108)) (-4041 (((-652 |#4|) $) 123)) (-1482 (((-112) |#4| $) 126)) (-2978 (((-112) $ $) 20)))
-(((-1221 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3678 ((-779) |#1|)) (-15 -2772 (|#1| |#1| |#5|)) (-15 -2162 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1482 ((-112) |#4| |#1|)) (-15 -4041 ((-652 |#4|) |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1|)) (-15 -3357 ((-3 |#5| "failed") |#1|)) (-15 -2912 ((-3 |#5| "failed") |#1|)) (-15 -1758 (|#5| |#5| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -2020 (|#5| |#5| |#1|)) (-15 -2755 (|#5| |#5| |#1|)) (-15 -1825 (|#5| |#5| |#1|)) (-15 -3558 (|#5| |#5| |#1|)) (-15 -3713 ((-652 |#5|) (-652 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2865 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3005 ((-112) |#1|)) (-15 -3536 ((-112) |#1|)) (-15 -2621 ((-112) |#1|)) (-15 -3447 ((-112) |#1| (-1 (-112) |#5| (-652 |#5|)))) (-15 -3005 ((-112) |#5| |#1|)) (-15 -3536 ((-112) |#5| |#1|)) (-15 -2621 ((-112) |#5| |#1|)) (-15 -2888 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4338 ((-112) |#1|)) (-15 -4338 ((-112) |#5| |#1|)) (-15 -3433 ((-2 (|:| -1379 (-652 |#5|)) (|:| -1674 (-652 |#5|))) |#1|)) (-15 -4390 ((-779) |#1|)) (-15 -2234 ((-652 |#5|) |#1|)) (-15 -1536 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1536 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2323 ((-112) |#1| |#1|)) (-15 -2748 (|#1| |#1| |#4|)) (-15 -2365 (|#1| |#1| |#4|)) (-15 -2366 (|#4| |#1|)) (-15 -1695 ((-3 |#1| "failed") (-652 |#5|))) (-15 -2940 ((-652 |#5|) |#1|)) (-15 -2953 (|#1| (-652 |#5|))) (-15 -2865 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2865 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2162 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2865 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|))) (-1222 |#2| |#3| |#4| |#5|) (-564) (-801) (-858) (-1076 |#2| |#3| |#4|)) (T -1221))
-NIL
-(-10 -8 (-15 -3678 ((-779) |#1|)) (-15 -2772 (|#1| |#1| |#5|)) (-15 -2162 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1482 ((-112) |#4| |#1|)) (-15 -4041 ((-652 |#4|) |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1|)) (-15 -3357 ((-3 |#5| "failed") |#1|)) (-15 -2912 ((-3 |#5| "failed") |#1|)) (-15 -1758 (|#5| |#5| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -2020 (|#5| |#5| |#1|)) (-15 -2755 (|#5| |#5| |#1|)) (-15 -1825 (|#5| |#5| |#1|)) (-15 -3558 (|#5| |#5| |#1|)) (-15 -3713 ((-652 |#5|) (-652 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2865 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3005 ((-112) |#1|)) (-15 -3536 ((-112) |#1|)) (-15 -2621 ((-112) |#1|)) (-15 -3447 ((-112) |#1| (-1 (-112) |#5| (-652 |#5|)))) (-15 -3005 ((-112) |#5| |#1|)) (-15 -3536 ((-112) |#5| |#1|)) (-15 -2621 ((-112) |#5| |#1|)) (-15 -2888 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4338 ((-112) |#1|)) (-15 -4338 ((-112) |#5| |#1|)) (-15 -3433 ((-2 (|:| -1379 (-652 |#5|)) (|:| -1674 (-652 |#5|))) |#1|)) (-15 -4390 ((-779) |#1|)) (-15 -2234 ((-652 |#5|) |#1|)) (-15 -1536 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1536 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2323 ((-112) |#1| |#1|)) (-15 -2748 (|#1| |#1| |#4|)) (-15 -2365 (|#1| |#1| |#4|)) (-15 -2366 (|#4| |#1|)) (-15 -1695 ((-3 |#1| "failed") (-652 |#5|))) (-15 -2940 ((-652 |#5|) |#1|)) (-15 -2953 (|#1| (-652 |#5|))) (-15 -2865 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2865 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2162 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2865 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2940 ((-870) |#1|)) (-15 -2978 ((-112) |#1| |#1|)))
-((-2846 (((-112) $ $) 7)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |#4|)))) (-652 |#4|)) 86)) (-1740 (((-652 $) (-652 |#4|)) 87)) (-4353 (((-652 |#3|) $) 34)) (-1544 (((-112) $) 27)) (-2639 (((-112) $) 18 (|has| |#1| (-564)))) (-2621 (((-112) |#4| $) 102) (((-112) $) 98)) (-3558 ((|#4| |#4| $) 93)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) 28)) (-1631 (((-112) $ (-779)) 45)) (-2162 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-3281 (($) 46 T CONST)) (-2390 (((-112) $) 23 (|has| |#1| (-564)))) (-2783 (((-112) $ $) 25 (|has| |#1| (-564)))) (-3937 (((-112) $ $) 24 (|has| |#1| (-564)))) (-1616 (((-112) $) 26 (|has| |#1| (-564)))) (-3713 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1566 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) 37)) (-2204 (($ (-652 |#4|)) 36)) (-2923 (((-3 $ "failed") $) 83)) (-2020 ((|#4| |#4| $) 90)) (-2086 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2888 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1758 ((|#4| |#4| $) 88)) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3433 (((-2 (|:| -1379 (-652 |#4|)) (|:| -1674 (-652 |#4|))) $) 106)) (-1863 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-4338 (((-112) |#4| $) 105) (((-112) $) 104)) (-2366 ((|#3| $) 35)) (-1861 (((-112) $ (-779)) 44)) (-1344 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-3015 (((-652 |#3|) $) 33)) (-1683 (((-112) |#3| $) 32)) (-1985 (((-112) $ (-779)) 43)) (-4347 (((-1170) $) 10)) (-3357 (((-3 |#4| "failed") $) 84)) (-2234 (((-652 |#4|) $) 108)) (-3005 (((-112) |#4| $) 100) (((-112) $) 96)) (-2755 ((|#4| |#4| $) 91)) (-2323 (((-112) $ $) 111)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-3536 (((-112) |#4| $) 101) (((-112) $) 97)) (-1825 ((|#4| |#4| $) 92)) (-3964 (((-1131) $) 11)) (-2912 (((-3 |#4| "failed") $) 85)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3632 (((-3 $ "failed") $ |#4|) 79)) (-2772 (($ $ |#4|) 78)) (-1612 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) 39)) (-1841 (((-112) $) 42)) (-1613 (($) 41)) (-4390 (((-779) $) 107)) (-3973 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3164 (($ $) 40)) (-1835 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) 61)) (-2748 (($ $ |#3|) 29)) (-2365 (($ $ |#3|) 31)) (-3862 (($ $) 89)) (-1670 (($ $ |#3|) 30)) (-2940 (((-870) $) 12) (((-652 |#4|) $) 38)) (-3678 (((-779) $) 77 (|has| |#3| (-375)))) (-4379 (((-112) $ $) 9)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3447 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-4380 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-4041 (((-652 |#3|) $) 82)) (-1482 (((-112) |#3| $) 81)) (-2978 (((-112) $ $) 6)) (-2860 (((-779) $) 47 (|has| $ (-6 -4454)))))
-(((-1222 |#1| |#2| |#3| |#4|) (-141) (-564) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -1222))
-((-2323 (*1 *2 *1 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-1536 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-652 *8)))) (-5 *3 (-652 *8)) (-4 *1 (-1222 *5 *6 *7 *8)))) (-1536 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801)) (-4 *8 (-858)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-652 *9)))) (-5 *3 (-652 *9)) (-4 *1 (-1222 *6 *7 *8 *9)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *6)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-779)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-2 (|:| -1379 (-652 *6)) (|:| -1674 (-652 *6)))))) (-4338 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-2888 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1222 *5 *6 *7 *3)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112)))) (-2621 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-3536 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-3005 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-652 *7))) (-4 *1 (-1222 *4 *5 *6 *7)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-2621 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-2865 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1222 *5 *6 *7 *2)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *2 (-1076 *5 *6 *7)))) (-3713 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-652 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1222 *5 *6 *7 *8)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)))) (-3558 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-1825 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-2755 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-2020 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-3862 (*1 *1 *1) (-12 (-4 *1 (-1222 *2 *3 *4 *5)) (-4 *2 (-564)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-1076 *2 *3 *4)))) (-1758 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1222 *4 *5 *6 *7)))) (-3724 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-652 (-2 (|:| -1379 *1) (|:| -1674 (-652 *7))))) (-5 *3 (-652 *7)) (-4 *1 (-1222 *4 *5 *6 *7)))) (-2912 (*1 *2 *1) (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-2923 (*1 *1 *1) (|partial| -12 (-4 *1 (-1222 *2 *3 *4 *5)) (-4 *2 (-564)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-1076 *2 *3 *4)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))) (-1482 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *3 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-112)))) (-2162 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1222 *4 *5 *3 *2)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *3 (-858)) (-4 *2 (-1076 *4 *5 *3)))) (-3632 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-2772 (*1 *1 *1 *2) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *5 (-375)) (-5 *2 (-779)))))
-(-13 (-987 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -2323 ((-112) $ $)) (-15 -1536 ((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |t#4|))) "failed") (-652 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1536 ((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |t#4|))) "failed") (-652 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2234 ((-652 |t#4|) $)) (-15 -4390 ((-779) $)) (-15 -3433 ((-2 (|:| -1379 (-652 |t#4|)) (|:| -1674 (-652 |t#4|))) $)) (-15 -4338 ((-112) |t#4| $)) (-15 -4338 ((-112) $)) (-15 -2888 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2621 ((-112) |t#4| $)) (-15 -3536 ((-112) |t#4| $)) (-15 -3005 ((-112) |t#4| $)) (-15 -3447 ((-112) $ (-1 (-112) |t#4| (-652 |t#4|)))) (-15 -2621 ((-112) $)) (-15 -3536 ((-112) $)) (-15 -3005 ((-112) $)) (-15 -2865 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3713 ((-652 |t#4|) (-652 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3558 (|t#4| |t#4| $)) (-15 -1825 (|t#4| |t#4| $)) (-15 -2755 (|t#4| |t#4| $)) (-15 -2020 (|t#4| |t#4| $)) (-15 -3862 ($ $)) (-15 -1758 (|t#4| |t#4| $)) (-15 -1740 ((-652 $) (-652 |t#4|))) (-15 -3724 ((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |t#4|)))) (-652 |t#4|))) (-15 -2912 ((-3 |t#4| "failed") $)) (-15 -3357 ((-3 |t#4| "failed") $)) (-15 -2923 ((-3 $ "failed") $)) (-15 -4041 ((-652 |t#3|) $)) (-15 -1482 ((-112) |t#3| $)) (-15 -2162 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3632 ((-3 $ "failed") $ |t#4|)) (-15 -2772 ($ $ |t#4|)) (IF (|has| |t#3| (-375)) (-15 -3678 ((-779) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1229) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-1188)) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2338 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2384 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-4051 (((-961 |#1|) $ (-779)) 17) (((-961 |#1|) $ (-779) (-779)) NIL)) (-2579 (((-112) $) NIL)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-779) $ (-1188)) NIL) (((-779) $ (-1188) (-779)) NIL)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2438 (((-112) $) NIL)) (-4333 (($ $ (-652 (-1188)) (-652 (-539 (-1188)))) NIL) (($ $ (-1188) (-539 (-1188))) NIL) (($ |#1| (-539 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3116 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3034 (($ $ (-1188)) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3964 (((-1131) $) NIL)) (-1333 (($ (-1 $) (-1188) |#1|) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2772 (($ $ (-779)) NIL)) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2641 (($ $ (-1188) $) NIL) (($ $ (-652 (-1188)) (-652 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL)) (-3902 (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-4390 (((-539 (-1188)) $) NIL)) (-2397 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-564))) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-1188)) NIL) (($ (-961 |#1|)) NIL)) (-3979 ((|#1| $ (-539 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (((-961 |#1|) $ (-779)) NIL)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-3608 (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1223 |#1|) (-13 (-748 |#1| (-1188)) (-10 -8 (-15 -3979 ((-961 |#1|) $ (-779))) (-15 -2940 ($ (-1188))) (-15 -2940 ($ (-961 |#1|))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $ (-1188) |#1|)) (-15 -1333 ($ (-1 $) (-1188) |#1|))) |%noBranch|))) (-1060)) (T -1223))
-((-3979 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-961 *4)) (-5 *1 (-1223 *4)) (-4 *4 (-1060)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1223 *3)) (-4 *3 (-1060)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-1060)) (-5 *1 (-1223 *3)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *1 (-1223 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)))) (-1333 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1223 *4))) (-5 *3 (-1188)) (-5 *1 (-1223 *4)) (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)))))
-(-13 (-748 |#1| (-1188)) (-10 -8 (-15 -3979 ((-961 |#1|) $ (-779))) (-15 -2940 ($ (-1188))) (-15 -2940 ($ (-961 |#1|))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $ (-1188) |#1|)) (-15 -1333 ($ (-1 $) (-1188) |#1|))) |%noBranch|)))
-((-4281 (($ |#1| (-652 (-652 (-952 (-227)))) (-112)) 19)) (-2733 (((-112) $ (-112)) 18)) (-1842 (((-112) $) 17)) (-2919 (((-652 (-652 (-952 (-227)))) $) 13)) (-3353 ((|#1| $) 8)) (-1478 (((-112) $) 15)))
-(((-1224 |#1|) (-10 -8 (-15 -3353 (|#1| $)) (-15 -2919 ((-652 (-652 (-952 (-227)))) $)) (-15 -1478 ((-112) $)) (-15 -1842 ((-112) $)) (-15 -2733 ((-112) $ (-112))) (-15 -4281 ($ |#1| (-652 (-652 (-952 (-227)))) (-112)))) (-985)) (T -1224))
-((-4281 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-112)) (-5 *1 (-1224 *2)) (-4 *2 (-985)))) (-2733 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))) (-2919 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-1224 *3)) (-4 *3 (-985)))) (-3353 (*1 *2 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-985)))))
-(-10 -8 (-15 -3353 (|#1| $)) (-15 -2919 ((-652 (-652 (-952 (-227)))) $)) (-15 -1478 ((-112) $)) (-15 -1842 ((-112) $)) (-15 -2733 ((-112) $ (-112))) (-15 -4281 ($ |#1| (-652 (-652 (-952 (-227)))) (-112))))
-((-2601 (((-952 (-227)) (-952 (-227))) 31)) (-3588 (((-952 (-227)) (-227) (-227) (-227) (-227)) 10)) (-1585 (((-652 (-952 (-227))) (-952 (-227)) (-952 (-227)) (-952 (-227)) (-227) (-652 (-652 (-227)))) 56)) (-2264 (((-227) (-952 (-227)) (-952 (-227))) 27)) (-4025 (((-952 (-227)) (-952 (-227)) (-952 (-227))) 28)) (-3030 (((-652 (-652 (-227))) (-572)) 44)) (-3089 (((-952 (-227)) (-952 (-227)) (-952 (-227))) 26)) (-3075 (((-952 (-227)) (-952 (-227)) (-952 (-227))) 24)) (* (((-952 (-227)) (-227) (-952 (-227))) 22)))
-(((-1225) (-10 -7 (-15 -3588 ((-952 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-952 (-227)) (-227) (-952 (-227)))) (-15 -3075 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -3089 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -2264 ((-227) (-952 (-227)) (-952 (-227)))) (-15 -4025 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -2601 ((-952 (-227)) (-952 (-227)))) (-15 -3030 ((-652 (-652 (-227))) (-572))) (-15 -1585 ((-652 (-952 (-227))) (-952 (-227)) (-952 (-227)) (-952 (-227)) (-227) (-652 (-652 (-227))))))) (T -1225))
-((-1585 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-652 (-652 (-227)))) (-5 *4 (-227)) (-5 *2 (-652 (-952 *4))) (-5 *1 (-1225)) (-5 *3 (-952 *4)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-572)) (-5 *2 (-652 (-652 (-227)))) (-5 *1 (-1225)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))) (-4025 (*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))) (-2264 (*1 *2 *3 *3) (-12 (-5 *3 (-952 (-227))) (-5 *2 (-227)) (-5 *1 (-1225)))) (-3089 (*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))) (-3075 (*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-952 (-227))) (-5 *3 (-227)) (-5 *1 (-1225)))) (-3588 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)) (-5 *3 (-227)))))
-(-10 -7 (-15 -3588 ((-952 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-952 (-227)) (-227) (-952 (-227)))) (-15 -3075 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -3089 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -2264 ((-227) (-952 (-227)) (-952 (-227)))) (-15 -4025 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -2601 ((-952 (-227)) (-952 (-227)))) (-15 -3030 ((-652 (-652 (-227))) (-572))) (-15 -1585 ((-652 (-952 (-227))) (-952 (-227)) (-952 (-227)) (-952 (-227)) (-227) (-652 (-652 (-227))))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2162 ((|#1| $ (-779)) 18)) (-4133 (((-779) $) 13)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2940 (((-967 |#1|) $) 12) (($ (-967 |#1|)) 11) (((-870) $) 29 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2978 (((-112) $ $) 22 (|has| |#1| (-1111)))))
-(((-1226 |#1|) (-13 (-498 (-967 |#1|)) (-10 -8 (-15 -2162 (|#1| $ (-779))) (-15 -4133 ((-779) $)) (IF (|has| |#1| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|))) (-1229)) (T -1226))
-((-2162 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-1226 *2)) (-4 *2 (-1229)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1226 *3)) (-4 *3 (-1229)))))
-(-13 (-498 (-967 |#1|)) (-10 -8 (-15 -2162 (|#1| $ (-779))) (-15 -4133 ((-779) $)) (IF (|has| |#1| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|)))
-((-3445 (((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)) (-572)) 94)) (-3576 (((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|))) 86)) (-3467 (((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|))) 70)))
-(((-1227 |#1|) (-10 -7 (-15 -3576 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)))) (-15 -3467 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)))) (-15 -3445 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)) (-572)))) (-356)) (T -1227))
-((-3445 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-4 *5 (-356)) (-5 *2 (-426 (-1184 (-1184 *5)))) (-5 *1 (-1227 *5)) (-5 *3 (-1184 (-1184 *5))))) (-3467 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-426 (-1184 (-1184 *4)))) (-5 *1 (-1227 *4)) (-5 *3 (-1184 (-1184 *4))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-426 (-1184 (-1184 *4)))) (-5 *1 (-1227 *4)) (-5 *3 (-1184 (-1184 *4))))))
-(-10 -7 (-15 -3576 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)))) (-15 -3467 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)))) (-15 -3445 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)) (-572))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 9) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1228) (-1094)) (T -1228))
-NIL
-(-1094)
-NIL
-(((-1229) (-141)) (T -1229))
-NIL
-(-13 (-10 -7 (-6 -3518)))
-((-3903 (((-112)) 18)) (-2528 (((-1284) (-652 |#1|) (-652 |#1|)) 22) (((-1284) (-652 |#1|)) 23)) (-1861 (((-112) |#1| |#1|) 37 (|has| |#1| (-858)))) (-1985 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2043 ((|#1| (-652 |#1|)) 38 (|has| |#1| (-858))) ((|#1| (-652 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-2979 (((-2 (|:| -1945 (-652 |#1|)) (|:| -3157 (-652 |#1|)))) 20)))
-(((-1230 |#1|) (-10 -7 (-15 -2528 ((-1284) (-652 |#1|))) (-15 -2528 ((-1284) (-652 |#1|) (-652 |#1|))) (-15 -2979 ((-2 (|:| -1945 (-652 |#1|)) (|:| -3157 (-652 |#1|))))) (-15 -1985 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1985 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2043 (|#1| (-652 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3903 ((-112))) (IF (|has| |#1| (-858)) (PROGN (-15 -2043 (|#1| (-652 |#1|))) (-15 -1861 ((-112) |#1| |#1|))) |%noBranch|)) (-1111)) (T -1230))
-((-1861 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-858)) (-4 *3 (-1111)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-858)) (-5 *1 (-1230 *2)))) (-3903 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-1111)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1230 *2)) (-4 *2 (-1111)))) (-1985 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1111)) (-5 *2 (-112)) (-5 *1 (-1230 *3)))) (-1985 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-1111)))) (-2979 (*1 *2) (-12 (-5 *2 (-2 (|:| -1945 (-652 *3)) (|:| -3157 (-652 *3)))) (-5 *1 (-1230 *3)) (-4 *3 (-1111)))) (-2528 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-5 *2 (-1284)) (-5 *1 (-1230 *4)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-5 *2 (-1284)) (-5 *1 (-1230 *4)))))
-(-10 -7 (-15 -2528 ((-1284) (-652 |#1|))) (-15 -2528 ((-1284) (-652 |#1|) (-652 |#1|))) (-15 -2979 ((-2 (|:| -1945 (-652 |#1|)) (|:| -3157 (-652 |#1|))))) (-15 -1985 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1985 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2043 (|#1| (-652 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3903 ((-112))) (IF (|has| |#1| (-858)) (PROGN (-15 -2043 (|#1| (-652 |#1|))) (-15 -1861 ((-112) |#1| |#1|))) |%noBranch|))
-((-3756 (((-1284) (-652 (-1188)) (-652 (-1188))) 14) (((-1284) (-652 (-1188))) 12)) (-3575 (((-1284)) 16)) (-2010 (((-2 (|:| -3157 (-652 (-1188))) (|:| -1945 (-652 (-1188))))) 20)))
-(((-1231) (-10 -7 (-15 -3756 ((-1284) (-652 (-1188)))) (-15 -3756 ((-1284) (-652 (-1188)) (-652 (-1188)))) (-15 -2010 ((-2 (|:| -3157 (-652 (-1188))) (|:| -1945 (-652 (-1188)))))) (-15 -3575 ((-1284))))) (T -1231))
-((-3575 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1231)))) (-2010 (*1 *2) (-12 (-5 *2 (-2 (|:| -3157 (-652 (-1188))) (|:| -1945 (-652 (-1188))))) (-5 *1 (-1231)))) (-3756 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1231)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1231)))))
-(-10 -7 (-15 -3756 ((-1284) (-652 (-1188)))) (-15 -3756 ((-1284) (-652 (-1188)) (-652 (-1188)))) (-15 -2010 ((-2 (|:| -3157 (-652 (-1188))) (|:| -1945 (-652 (-1188)))))) (-15 -3575 ((-1284))))
-((-3517 (($ $) 17)) (-3879 (((-112) $) 28)))
-(((-1232 |#1|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3879 ((-112) |#1|))) (-1233)) (T -1232))
-NIL
-(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3879 ((-112) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 57)) (-2287 (((-426 $) $) 58)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-3879 (((-112) $) 59)) (-1886 (((-112) $) 35)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-4218 (((-426 $) $) 56)) (-2834 (((-3 $ "failed") $ $) 48)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
-(((-1233) (-141)) (T -1233))
-((-3879 (*1 *2 *1) (-12 (-4 *1 (-1233)) (-5 *2 (-112)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-426 *1)) (-4 *1 (-1233)))) (-3517 (*1 *1 *1) (-4 *1 (-1233))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-426 *1)) (-4 *1 (-1233)))))
-(-13 (-460) (-10 -8 (-15 -3879 ((-112) $)) (-15 -2287 ((-426 $) $)) (-15 -3517 ($ $)) (-15 -4218 ((-426 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-1753 (($ $ $) NIL)) (-1742 (($ $ $) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-1234) (-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))) (T -1234))
-((-1742 (*1 *1 *1 *1) (-5 *1 (-1234))) (-1753 (*1 *1 *1 *1) (-5 *1 (-1234))) (-3281 (*1 *1) (-5 *1 (-1234))))
-(-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 9)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 7)))
+(((-1198) (-1113)) (T -1198))
+NIL
+(-1113)
+((-3071 (((-654 (-654 (-963 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190))) 69)) (-1723 (((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|)))) 80) (((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|))) 76) (((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190)) 81) (((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190)) 75) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|))))) 106) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|)))) 105) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190))) 107) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))) (-654 (-1190))) 104)))
+(((-1199 |#1|) (-10 -7 (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190)))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -1723 ((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190))) (-15 -1723 ((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -1723 ((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)))) (-15 -1723 ((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))))) (-15 -3071 ((-654 (-654 (-963 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190))))) (-566)) (T -1199))
+((-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-963 *5)))) (-5 *1 (-1199 *5)))) (-1723 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *4))))) (-5 *1 (-1199 *4)) (-5 *3 (-302 (-417 (-963 *4)))))) (-1723 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *4))))) (-5 *1 (-1199 *4)) (-5 *3 (-417 (-963 *4))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *5))))) (-5 *1 (-1199 *5)) (-5 *3 (-302 (-417 (-963 *5)))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *5))))) (-5 *1 (-1199 *5)) (-5 *3 (-417 (-963 *5))))) (-1723 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-1199 *4)) (-5 *3 (-654 (-302 (-417 (-963 *4))))))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-963 *4)))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-1199 *4)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-1199 *5)) (-5 *3 (-654 (-302 (-417 (-963 *5))))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-1199 *5)))))
+(-10 -7 (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190)))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))))) (-15 -1723 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -1723 ((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190))) (-15 -1723 ((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -1723 ((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)))) (-15 -1723 ((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))))) (-15 -3071 ((-654 (-654 (-963 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))))
+((-4056 (((-1172)) 7)) (-2310 (((-1172)) 11 T CONST)) (-3724 (((-1286) (-1172)) 13)) (-1795 (((-1172)) 8 T CONST)) (-2842 (((-131)) 10 T CONST)))
+(((-1200) (-13 (-1231) (-10 -7 (-15 -4056 ((-1172))) (-15 -1795 ((-1172)) -1707) (-15 -2842 ((-131)) -1707) (-15 -2310 ((-1172)) -1707) (-15 -3724 ((-1286) (-1172)))))) (T -1200))
+((-4056 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200)))) (-1795 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200)))) (-2842 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1200)))) (-2310 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1200)))))
+(-13 (-1231) (-10 -7 (-15 -4056 ((-1172))) (-15 -1795 ((-1172)) -1707) (-15 -2842 ((-131)) -1707) (-15 -2310 ((-1172)) -1707) (-15 -3724 ((-1286) (-1172)))))
+((-2416 (((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 56)) (-3580 (((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|))) 38)) (-1425 (((-1202 (-654 |#1|)) (-654 |#1|)) 49)) (-1721 (((-654 (-654 |#1|)) (-654 |#1|)) 45)) (-4266 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))) 53)) (-2711 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|)))) 52)) (-2068 (((-654 (-654 |#1|)) (-654 (-654 |#1|))) 43)) (-2422 (((-654 |#1|) (-654 |#1|)) 46)) (-3582 (((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 32)) (-2084 (((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 29)) (-3780 (((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|))) 24)) (-4384 (((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 58)) (-3452 (((-654 (-654 |#1|)) (-1202 (-654 |#1|))) 60)))
+(((-1201 |#1|) (-10 -7 (-15 -3780 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -2084 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3582 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -2416 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -4384 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3452 ((-654 (-654 |#1|)) (-1202 (-654 |#1|)))) (-15 -3580 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -1425 ((-1202 (-654 |#1|)) (-654 |#1|))) (-15 -2068 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -1721 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -2422 ((-654 |#1|) (-654 |#1|))) (-15 -2711 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4266 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) (-860)) (T -1201))
+((-4266 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4)))) (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4)))))) (-5 *1 (-1201 *4)) (-5 *3 (-654 (-654 (-654 *4)))))) (-2711 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) (|:| |f4| (-654 *5)))) (-5 *1 (-1201 *6)) (-5 *4 (-654 *5)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1201 *3)))) (-1721 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4)) (-5 *3 (-654 *4)))) (-2068 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1201 *3)))) (-1425 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-1202 (-654 *4))) (-5 *1 (-1201 *4)) (-5 *3 (-654 *4)))) (-3580 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) (-5 *1 (-1201 *4)) (-5 *3 (-654 (-654 *4))))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1202 (-654 *4))) (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4)))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4)) (-4 *4 (-860)))) (-2416 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-4 *4 (-860)) (-5 *1 (-1201 *4)))) (-3582 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *1 (-1201 *4)))) (-2084 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1201 *5)))) (-3780 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) (-5 *1 (-1201 *6)) (-5 *5 (-654 *4)))))
+(-10 -7 (-15 -3780 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -2084 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3582 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -2416 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -4384 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3452 ((-654 (-654 |#1|)) (-1202 (-654 |#1|)))) (-15 -3580 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -1425 ((-1202 (-654 |#1|)) (-654 |#1|))) (-15 -2068 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -1721 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -2422 ((-654 |#1|) (-654 |#1|))) (-15 -2711 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4266 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|))))))
+((-2948 (($ (-654 (-654 |#1|))) 10)) (-1820 (((-654 (-654 |#1|)) $) 11)) (-2943 (((-872) $) 33)))
+(((-1202 |#1|) (-10 -8 (-15 -2948 ($ (-654 (-654 |#1|)))) (-15 -1820 ((-654 (-654 |#1|)) $)) (-15 -2943 ((-872) $))) (-1113)) (T -1202))
+((-2943 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1202 *3)) (-4 *3 (-1113)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1202 *3)) (-4 *3 (-1113)))) (-2948 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-1202 *3)))))
+(-10 -8 (-15 -2948 ($ (-654 (-654 |#1|)))) (-15 -1820 ((-654 (-654 |#1|)) $)) (-15 -2943 ((-872) $)))
+((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-1860 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) NIL)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) NIL)) (-3670 (($) NIL T CONST)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) NIL)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-860)))) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3429 ((|#1| $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1765 (((-654 |#1|) $) NIL)) (-1726 (((-112) |#1| $) NIL)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-2459 (((-654 |#1|) $) NIL)) (-2607 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL)) (-1363 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2826 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2923 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) NIL)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1203 |#1| |#2|) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) (-1113) (-1113)) (T -1203))
+NIL
+(-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456)))
+((-2849 (((-112) $ $) NIL)) (-4173 (($ |#1| (-55)) 10)) (-2032 ((|#1| $) 12)) (-2568 (((-1172) $) NIL)) (-2884 (((-112) $ |#1|) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2923 (((-112) $ $) NIL)) (-3944 (((-55) $) 14)) (-2982 (((-112) $ $) NIL)))
+(((-1204 |#1|) (-13 (-845 |#1|) (-10 -8 (-15 -4173 ($ |#1| (-55))))) (-1113)) (T -1204))
+((-4173 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1204 *2)) (-4 *2 (-1113)))))
+(-13 (-845 |#1|) (-10 -8 (-15 -4173 ($ |#1| (-55)))))
+((-1486 ((|#1| (-654 |#1|)) 46)) (-4422 ((|#1| |#1| (-574)) 24)) (-1451 (((-1186 |#1|) |#1| (-932)) 20)))
+(((-1205 |#1|) (-10 -7 (-15 -1486 (|#1| (-654 |#1|))) (-15 -1451 ((-1186 |#1|) |#1| (-932))) (-15 -4422 (|#1| |#1| (-574)))) (-372)) (T -1205))
+((-4422 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1205 *2)) (-4 *2 (-372)))) (-1451 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-5 *2 (-1186 *3)) (-5 *1 (-1205 *3)) (-4 *3 (-372)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1205 *2)) (-4 *2 (-372)))))
+(-10 -7 (-15 -1486 (|#1| (-654 |#1|))) (-15 -1451 ((-1186 |#1|) |#1| (-932))) (-15 -4422 (|#1| |#1| (-574))))
+((-3778 (($) 10) (($ (-654 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)))) 14)) (-1586 (($ (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) $) 39) (((-654 |#3|) $) 41)) (-2446 (($ (-1 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1778 (($ (-1 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2234 (((-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) $) 60)) (-1709 (($ (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) $) 16)) (-2459 (((-654 |#2|) $) 19)) (-2607 (((-112) |#2| $) 65)) (-1836 (((-3 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) "failed") (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) $) 64)) (-3459 (((-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) $) 69)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2121 (((-654 |#3|) $) 43)) (-2200 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) $) NIL) (((-781) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) $) NIL) (((-781) |#3| $) NIL) (((-781) (-1 (-112) |#3|) $) 79)) (-2943 (((-872) $) 27)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2982 (((-112) $ $) 51)))
+(((-1206 |#1| |#2| |#3|) (-10 -8 (-15 -2982 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -1778 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3778 (|#1| (-654 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))))) (-15 -3778 (|#1|)) (-15 -1778 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1864 ((-654 |#3|) |#1|)) (-15 -3975 ((-781) |#3| |#1|)) (-15 -2200 (|#3| |#1| |#2| |#3|)) (-15 -2200 (|#3| |#1| |#2|)) (-15 -2121 ((-654 |#3|) |#1|)) (-15 -2607 ((-112) |#2| |#1|)) (-15 -2459 ((-654 |#2|) |#1|)) (-15 -1586 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1586 (|#1| (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -1586 (|#1| (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -1836 ((-3 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) "failed") (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -2234 ((-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -1709 (|#1| (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -3459 ((-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -3975 ((-781) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -1864 ((-654 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -3975 ((-781) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -3124 ((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -2935 ((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -2446 (|#1| (-1 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -1778 (|#1| (-1 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|))) (-1207 |#2| |#3|) (-1113) (-1113)) (T -1206))
+NIL
+(-10 -8 (-15 -2982 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -1778 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3778 (|#1| (-654 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))))) (-15 -3778 (|#1|)) (-15 -1778 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2935 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3124 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1864 ((-654 |#3|) |#1|)) (-15 -3975 ((-781) |#3| |#1|)) (-15 -2200 (|#3| |#1| |#2| |#3|)) (-15 -2200 (|#3| |#1| |#2|)) (-15 -2121 ((-654 |#3|) |#1|)) (-15 -2607 ((-112) |#2| |#1|)) (-15 -2459 ((-654 |#2|) |#1|)) (-15 -1586 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1586 (|#1| (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -1586 (|#1| (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -1836 ((-3 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) "failed") (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -2234 ((-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -1709 (|#1| (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -3459 ((-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -3975 ((-781) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) |#1|)) (-15 -1864 ((-654 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -3975 ((-781) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -3124 ((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -2935 ((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -2446 (|#1| (-1 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)) (-15 -1778 (|#1| (-1 (-2 (|:| -3693 |#2|) (|:| -1909 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1909 |#3|))) |#1|)))
+((-2849 (((-112) $ $) 19 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-3778 (($) 73) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 72)) (-1860 (((-1286) $ |#1| |#1|) 100 (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) 8)) (-3143 ((|#2| $ |#1| |#2|) 74)) (-3391 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 46 (|has| $ (-6 -4456)))) (-2166 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 56 (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) 62)) (-3670 (($) 7 T CONST)) (-2158 (($ $) 59 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-1586 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 47 (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 63)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 55 (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 57 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 54 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 53 (|has| $ (-6 -4456)))) (-2462 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) 89)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 31 (|has| $ (-6 -4456))) (((-654 |#2|) $) 80 (|has| $ (-6 -4456)))) (-3735 (((-112) $ (-781)) 9)) (-1849 ((|#1| $) 97 (|has| |#1| (-860)))) (-1712 (((-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 30 (|has| $ (-6 -4456))) (((-654 |#2|) $) 81 (|has| $ (-6 -4456)))) (-3759 (((-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3429 ((|#1| $) 96 (|has| |#1| (-860)))) (-2446 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 35 (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4457)))) (-1778 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2448 (((-112) $ (-781)) 10)) (-2568 (((-1172) $) 22 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-1765 (((-654 |#1|) $) 64)) (-1726 (((-112) |#1| $) 65)) (-2234 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 40)) (-1709 (($ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 41)) (-2459 (((-654 |#1|) $) 94)) (-2607 (((-112) |#1| $) 93)) (-3966 (((-1133) $) 21 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-2915 ((|#2| $) 98 (|has| |#1| (-860)))) (-1836 (((-3 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 52)) (-1363 (($ $ |#2|) 99 (|has| $ (-6 -4457)))) (-3459 (((-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 42)) (-3124 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 33 (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))))) 27 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 26 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) 25 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 24 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2121 (((-654 |#2|) $) 92)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2826 (($) 50) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 49)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 32 (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4456)))) (-3167 (($ $) 13)) (-1837 (((-546) $) 60 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 51)) (-2943 (((-872) $) 18 (-2818 (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872)))))) (-2923 (((-112) $ $) 23 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-2817 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) 43)) (-2935 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) $) 34 (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-1207 |#1| |#2|) (-141) (-1113) (-1113)) (T -1207))
+((-3143 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1207 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-3778 (*1 *1) (-12 (-4 *1 (-1207 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-3778 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 *3) (|:| -1909 *4)))) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *1 (-1207 *3 *4)))) (-1778 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1207 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))))
+(-13 (-620 |t#1| |t#2|) (-614 |t#1| |t#2|) (-10 -8 (-15 -3143 (|t#2| $ |t#1| |t#2|)) (-15 -3778 ($)) (-15 -3778 ($ (-654 (-2 (|:| -3693 |t#1|) (|:| -1909 |t#2|))))) (-15 -1778 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -3693 |#1|) (|:| -1909 |#2|))) . T) ((-102) -2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) ((-623 (-872)) -2818 (|has| |#2| (-1113)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-499 #0#) . T) ((-499 |#2|) . T) ((-614 |#1| |#2|) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-620 |#1| |#2|) . T) ((-1113) -2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (-1113))) ((-1231) . T))
+((-1488 (((-112)) 29)) (-1579 (((-1286) (-1172)) 31)) (-3036 (((-112)) 41)) (-2694 (((-1286)) 39)) (-3464 (((-1286) (-1172) (-1172)) 30)) (-1673 (((-112)) 42)) (-1709 (((-1286) |#1| |#2|) 53)) (-3342 (((-1286)) 26)) (-3053 (((-3 |#2| "failed") |#1|) 51)) (-4304 (((-1286)) 40)))
+(((-1208 |#1| |#2|) (-10 -7 (-15 -3342 ((-1286))) (-15 -3464 ((-1286) (-1172) (-1172))) (-15 -1579 ((-1286) (-1172))) (-15 -2694 ((-1286))) (-15 -4304 ((-1286))) (-15 -1488 ((-112))) (-15 -3036 ((-112))) (-15 -1673 ((-112))) (-15 -3053 ((-3 |#2| "failed") |#1|)) (-15 -1709 ((-1286) |#1| |#2|))) (-1113) (-1113)) (T -1208))
+((-1709 (*1 *2 *3 *4) (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-3053 (*1 *2 *3) (|partial| -12 (-4 *2 (-1113)) (-5 *1 (-1208 *3 *2)) (-4 *3 (-1113)))) (-1673 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-3036 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-1488 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-4304 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-2694 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1208 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)))) (-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1208 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)))) (-3342 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))))
+(-10 -7 (-15 -3342 ((-1286))) (-15 -3464 ((-1286) (-1172) (-1172))) (-15 -1579 ((-1286) (-1172))) (-15 -2694 ((-1286))) (-15 -4304 ((-1286))) (-15 -1488 ((-112))) (-15 -3036 ((-112))) (-15 -1673 ((-112))) (-15 -3053 ((-3 |#2| "failed") |#1|)) (-15 -1709 ((-1286) |#1| |#2|)))
+((-1963 (((-1172) (-1172)) 22)) (-1774 (((-52) (-1172)) 25)))
+(((-1209) (-10 -7 (-15 -1774 ((-52) (-1172))) (-15 -1963 ((-1172) (-1172))))) (T -1209))
+((-1963 (*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1209)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-1209)))))
+(-10 -7 (-15 -1774 ((-52) (-1172))) (-15 -1963 ((-1172) (-1172))))
+((-2943 (((-1211) |#1|) 11)))
+(((-1210 |#1|) (-10 -7 (-15 -2943 ((-1211) |#1|))) (-1113)) (T -1210))
+((-2943 (*1 *2 *3) (-12 (-5 *2 (-1211)) (-5 *1 (-1210 *3)) (-4 *3 (-1113)))))
+(-10 -7 (-15 -2943 ((-1211) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-3897 (((-654 (-1172)) $) 39)) (-2494 (((-654 (-1172)) $ (-654 (-1172))) 42)) (-3224 (((-654 (-1172)) $ (-654 (-1172))) 41)) (-2753 (((-654 (-1172)) $ (-654 (-1172))) 43)) (-2917 (((-654 (-1172)) $) 38)) (-3790 (($) 28)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2349 (((-654 (-1172)) $) 40)) (-1403 (((-1286) $ (-574)) 35) (((-1286) $) 36)) (-1837 (($ (-872) (-574)) 33) (($ (-872) (-574) (-872)) NIL)) (-2943 (((-872) $) 49) (($ (-872)) 32)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1211) (-13 (-1113) (-626 (-872)) (-10 -8 (-15 -1837 ($ (-872) (-574))) (-15 -1837 ($ (-872) (-574) (-872))) (-15 -1403 ((-1286) $ (-574))) (-15 -1403 ((-1286) $)) (-15 -2349 ((-654 (-1172)) $)) (-15 -3897 ((-654 (-1172)) $)) (-15 -3790 ($)) (-15 -2917 ((-654 (-1172)) $)) (-15 -2753 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -2494 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -3224 ((-654 (-1172)) $ (-654 (-1172))))))) (T -1211))
+((-1837 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1211)))) (-1837 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1211)))) (-1403 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1211)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1211)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-3790 (*1 *1) (-5 *1 (-1211))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-2753 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-2494 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-3224 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))))
+(-13 (-1113) (-626 (-872)) (-10 -8 (-15 -1837 ($ (-872) (-574))) (-15 -1837 ($ (-872) (-574) (-872))) (-15 -1403 ((-1286) $ (-574))) (-15 -1403 ((-1286) $)) (-15 -2349 ((-654 (-1172)) $)) (-15 -3897 ((-654 (-1172)) $)) (-15 -3790 ($)) (-15 -2917 ((-654 (-1172)) $)) (-15 -2753 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -2494 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -3224 ((-654 (-1172)) $ (-654 (-1172))))))
+((-2849 (((-112) $ $) NIL)) (-3259 (((-1172) $ (-1172)) 17) (((-1172) $) 16)) (-2596 (((-1172) $ (-1172)) 15)) (-2759 (($ $ (-1172)) NIL)) (-3874 (((-3 (-1172) "failed") $) 11)) (-1539 (((-1172) $) 8)) (-1472 (((-3 (-1172) "failed") $) 12)) (-3971 (((-1172) $) 9)) (-1676 (($ (-398)) NIL) (($ (-398) (-1172)) NIL)) (-2032 (((-398) $) NIL)) (-2568 (((-1172) $) NIL)) (-3900 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2090 (((-112) $) 21)) (-2943 (((-872) $) NIL)) (-3568 (($ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1212) (-13 (-373 (-398) (-1172)) (-10 -8 (-15 -3259 ((-1172) $ (-1172))) (-15 -3259 ((-1172) $)) (-15 -1539 ((-1172) $)) (-15 -3874 ((-3 (-1172) "failed") $)) (-15 -1472 ((-3 (-1172) "failed") $)) (-15 -2090 ((-112) $))))) (T -1212))
+((-3259 (*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-3874 (*1 *2 *1) (|partial| -12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-1472 (*1 *2 *1) (|partial| -12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212)))))
+(-13 (-373 (-398) (-1172)) (-10 -8 (-15 -3259 ((-1172) $ (-1172))) (-15 -3259 ((-1172) $)) (-15 -1539 ((-1172) $)) (-15 -3874 ((-3 (-1172) "failed") $)) (-15 -1472 ((-3 (-1172) "failed") $)) (-15 -2090 ((-112) $))))
+((-3747 (((-3 (-574) "failed") |#1|) 19)) (-2035 (((-3 (-574) "failed") |#1|) 14)) (-1473 (((-574) (-1172)) 33)))
+(((-1213 |#1|) (-10 -7 (-15 -3747 ((-3 (-574) "failed") |#1|)) (-15 -2035 ((-3 (-574) "failed") |#1|)) (-15 -1473 ((-574) (-1172)))) (-1062)) (T -1213))
+((-1473 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-574)) (-5 *1 (-1213 *4)) (-4 *4 (-1062)))) (-2035 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1213 *3)) (-4 *3 (-1062)))) (-3747 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1213 *3)) (-4 *3 (-1062)))))
+(-10 -7 (-15 -3747 ((-3 (-574) "failed") |#1|)) (-15 -2035 ((-3 (-574) "failed") |#1|)) (-15 -1473 ((-574) (-1172))))
+((-3267 (((-1146 (-227))) 9)))
+(((-1214) (-10 -7 (-15 -3267 ((-1146 (-227)))))) (T -1214))
+((-3267 (*1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1214)))))
+(-10 -7 (-15 -3267 ((-1146 (-227)))))
+((-3001 (($) 12)) (-2441 (($ $) 36)) (-2414 (($ $) 34)) (-2287 (($ $) 26)) (-2465 (($ $) 18)) (-2521 (($ $) 16)) (-2453 (($ $) 20)) (-2315 (($ $) 31)) (-2428 (($ $) 35)) (-2297 (($ $) 30)))
+(((-1215 |#1|) (-10 -8 (-15 -3001 (|#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2297 (|#1| |#1|))) (-1216)) (T -1215))
+NIL
+(-10 -8 (-15 -3001 (|#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)))
+((-2364 (($ $) 26)) (-2246 (($ $) 11)) (-2343 (($ $) 27)) (-2227 (($ $) 10)) (-2388 (($ $) 28)) (-2267 (($ $) 9)) (-3001 (($) 16)) (-3119 (($ $) 19)) (-1610 (($ $) 18)) (-2402 (($ $) 29)) (-2275 (($ $) 8)) (-2375 (($ $) 30)) (-2257 (($ $) 7)) (-2353 (($ $) 31)) (-2237 (($ $) 6)) (-2441 (($ $) 20)) (-2305 (($ $) 32)) (-2414 (($ $) 21)) (-2287 (($ $) 33)) (-2465 (($ $) 22)) (-2325 (($ $) 34)) (-2521 (($ $) 23)) (-2334 (($ $) 35)) (-2453 (($ $) 24)) (-2315 (($ $) 36)) (-2428 (($ $) 25)) (-2297 (($ $) 37)) (** (($ $ $) 17)))
+(((-1216) (-141)) (T -1216))
+((-3001 (*1 *1) (-4 *1 (-1216))))
+(-13 (-1219) (-95) (-503) (-35) (-292) (-10 -8 (-15 -3001 ($))))
+(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-1219) . T))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 19)) (-2575 (($ |#1| (-654 $)) 28) (($ (-654 |#1|)) 35) (($ |#1|) 30)) (-3340 (((-112) $ (-781)) 72)) (-1630 ((|#1| $ |#1|) 14 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 13 (|has| $ (-6 -4457)))) (-3670 (($) NIL T CONST)) (-1864 (((-654 |#1|) $) 77 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 64)) (-4127 (((-112) $ $) 50 (|has| |#1| (-1113)))) (-3735 (((-112) $ (-781)) 62)) (-1712 (((-654 |#1|) $) 78 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2446 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 27)) (-2448 (((-112) $ (-781)) 60)) (-3509 (((-654 |#1|) $) 55)) (-2173 (((-112) $) 53)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-3124 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 107)) (-3556 (((-112) $) 9)) (-3135 (($) 10)) (-2200 ((|#1| $ "value") NIL)) (-1556 (((-574) $ $) 48)) (-2578 (((-654 $) $) 89)) (-3192 (((-112) $ $) 110)) (-1939 (((-654 $) $) 105)) (-3176 (($ $) 106)) (-4023 (((-112) $) 84)) (-3975 (((-781) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4456))) (((-781) |#1| $) 17 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 88)) (-2943 (((-872) $) 91 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) 12)) (-1495 (((-112) $ $) 39 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 37 (|has| |#1| (-1113)))) (-2863 (((-781) $) 58 (|has| $ (-6 -4456)))))
+(((-1217 |#1|) (-13 (-1023 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2575 ($ |#1| (-654 $))) (-15 -2575 ($ (-654 |#1|))) (-15 -2575 ($ |#1|)) (-15 -4023 ((-112) $)) (-15 -3176 ($ $)) (-15 -1939 ((-654 $) $)) (-15 -3192 ((-112) $ $)) (-15 -2578 ((-654 $) $)))) (-1113)) (T -1217))
+((-4023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))) (-2575 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1217 *2))) (-5 *1 (-1217 *2)) (-4 *2 (-1113)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-1217 *3)))) (-2575 (*1 *1 *2) (-12 (-5 *1 (-1217 *2)) (-4 *2 (-1113)))) (-3176 (*1 *1 *1) (-12 (-5 *1 (-1217 *2)) (-4 *2 (-1113)))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-654 (-1217 *3))) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))) (-3192 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-654 (-1217 *3))) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))))
+(-13 (-1023 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2575 ($ |#1| (-654 $))) (-15 -2575 ($ (-654 |#1|))) (-15 -2575 ($ |#1|)) (-15 -4023 ((-112) $)) (-15 -3176 ($ $)) (-15 -1939 ((-654 $) $)) (-15 -3192 ((-112) $ $)) (-15 -2578 ((-654 $) $))))
+((-2246 (($ $) 15)) (-2267 (($ $) 12)) (-2275 (($ $) 10)) (-2257 (($ $) 17)))
+(((-1218 |#1|) (-10 -8 (-15 -2257 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2246 (|#1| |#1|))) (-1219)) (T -1218))
+NIL
+(-10 -8 (-15 -2257 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2246 (|#1| |#1|)))
+((-2246 (($ $) 11)) (-2227 (($ $) 10)) (-2267 (($ $) 9)) (-2275 (($ $) 8)) (-2257 (($ $) 7)) (-2237 (($ $) 6)))
+(((-1219) (-141)) (T -1219))
+((-2246 (*1 *1 *1) (-4 *1 (-1219))) (-2227 (*1 *1 *1) (-4 *1 (-1219))) (-2267 (*1 *1 *1) (-4 *1 (-1219))) (-2275 (*1 *1 *1) (-4 *1 (-1219))) (-2257 (*1 *1 *1) (-4 *1 (-1219))) (-2237 (*1 *1 *1) (-4 *1 (-1219))))
+(-13 (-10 -8 (-15 -2237 ($ $)) (-15 -2257 ($ $)) (-15 -2275 ($ $)) (-15 -2267 ($ $)) (-15 -2227 ($ $)) (-15 -2246 ($ $))))
+((-3947 ((|#2| |#2|) 98)) (-1564 (((-112) |#2|) 29)) (-4239 ((|#2| |#2|) 33)) (-4249 ((|#2| |#2|) 35)) (-3621 ((|#2| |#2| (-1190)) 92) ((|#2| |#2|) 93)) (-2815 (((-171 |#2|) |#2|) 31)) (-4098 ((|#2| |#2| (-1190)) 94) ((|#2| |#2|) 95)))
+(((-1220 |#1| |#2|) (-10 -7 (-15 -3621 (|#2| |#2|)) (-15 -3621 (|#2| |#2| (-1190))) (-15 -4098 (|#2| |#2|)) (-15 -4098 (|#2| |#2| (-1190))) (-15 -3947 (|#2| |#2|)) (-15 -4239 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -1564 ((-112) |#2|)) (-15 -2815 ((-171 |#2|) |#2|))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -1220))
+((-2815 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-171 *3)) (-5 *1 (-1220 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-1564 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1220 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-4249 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-4239 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-4098 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-3621 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))))
+(-10 -7 (-15 -3621 (|#2| |#2|)) (-15 -3621 (|#2| |#2| (-1190))) (-15 -4098 (|#2| |#2|)) (-15 -4098 (|#2| |#2| (-1190))) (-15 -3947 (|#2| |#2|)) (-15 -4239 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -1564 ((-112) |#2|)) (-15 -2815 ((-171 |#2|) |#2|)))
+((-2028 ((|#4| |#4| |#1|) 31)) (-3704 ((|#4| |#4| |#1|) 32)))
+(((-1221 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2028 (|#4| |#4| |#1|)) (-15 -3704 (|#4| |#4| |#1|))) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1221))
+((-3704 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1221 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2028 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1221 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
+(-10 -7 (-15 -2028 (|#4| |#4| |#1|)) (-15 -3704 (|#4| |#4| |#1|)))
+((-2469 ((|#2| |#2|) 148)) (-4246 ((|#2| |#2|) 145)) (-2995 ((|#2| |#2|) 136)) (-1692 ((|#2| |#2|) 133)) (-3204 ((|#2| |#2|) 141)) (-3643 ((|#2| |#2|) 129)) (-3032 ((|#2| |#2|) 44)) (-2871 ((|#2| |#2|) 105)) (-1816 ((|#2| |#2|) 88)) (-3540 ((|#2| |#2|) 143)) (-3881 ((|#2| |#2|) 131)) (-3830 ((|#2| |#2|) 153)) (-2495 ((|#2| |#2|) 151)) (-1865 ((|#2| |#2|) 152)) (-2532 ((|#2| |#2|) 150)) (-4420 ((|#2| |#2|) 163)) (-1377 ((|#2| |#2|) 30 (-12 (|has| |#2| (-624 (-903 |#1|))) (|has| |#2| (-897 |#1|)) (|has| |#1| (-624 (-903 |#1|))) (|has| |#1| (-897 |#1|))))) (-2606 ((|#2| |#2|) 89)) (-1426 ((|#2| |#2|) 154)) (-2129 ((|#2| |#2|) 155)) (-4131 ((|#2| |#2|) 142)) (-4305 ((|#2| |#2|) 130)) (-3762 ((|#2| |#2|) 149)) (-3705 ((|#2| |#2|) 147)) (-2435 ((|#2| |#2|) 137)) (-3599 ((|#2| |#2|) 135)) (-2928 ((|#2| |#2|) 139)) (-3583 ((|#2| |#2|) 127)))
+(((-1222 |#1| |#2|) (-10 -7 (-15 -2129 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -4420 (|#2| |#2|)) (-15 -2871 (|#2| |#2|)) (-15 -3032 (|#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -1426 (|#2| |#2|)) (-15 -3583 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -3762 (|#2| |#2|)) (-15 -4305 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -3540 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3204 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -4246 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -2495 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -1377 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-462) (-13 (-440 |#1|) (-1216))) (T -1222))
+((-1377 (*1 *2 *2) (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2532 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3705 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-4246 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3204 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3540 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3881 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-4131 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-4305 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3762 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3583 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-1426 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2606 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3032 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2871 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-4420 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2129 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))))
+(-10 -7 (-15 -2129 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -4420 (|#2| |#2|)) (-15 -2871 (|#2| |#2|)) (-15 -3032 (|#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -1426 (|#2| |#2|)) (-15 -3583 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -3762 (|#2| |#2|)) (-15 -4305 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -3540 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3204 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -4246 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -2495 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -1377 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3456 (((-112) |#5| $) 68) (((-112) $) 110)) (-1621 ((|#5| |#5| $) 83)) (-2166 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2543 (((-654 |#5|) (-654 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1697 (((-3 $ "failed") (-654 |#5|)) 135)) (-2926 (((-3 $ "failed") $) 120)) (-2793 ((|#5| |#5| $) 102)) (-4155 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2043 ((|#5| |#5| $) 106)) (-2868 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2766 (((-2 (|:| -1381 (-654 |#5|)) (|:| -1676 (-654 |#5|))) $) 63)) (-2474 (((-112) |#5| $) 66) (((-112) $) 111)) (-2851 ((|#4| $) 116)) (-3360 (((-3 |#5| "failed") $) 118)) (-4153 (((-654 |#5|) $) 55)) (-2768 (((-112) |#5| $) 75) (((-112) $) 115)) (-2244 ((|#5| |#5| $) 89)) (-2430 (((-112) $ $) 29)) (-1406 (((-112) |#5| $) 71) (((-112) $) 113)) (-1443 ((|#5| |#5| $) 86)) (-2915 (((-3 |#5| "failed") $) 117)) (-4344 (($ $ |#5|) 136)) (-1784 (((-781) $) 60)) (-2956 (($ (-654 |#5|)) 133)) (-2175 (($ $ |#4|) 131)) (-2840 (($ $ |#4|) 129)) (-1496 (($ $) 128)) (-2943 (((-872) $) NIL) (((-654 |#5|) $) 121)) (-3530 (((-781) $) 140)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1685 (((-112) $ (-1 (-112) |#5| (-654 |#5|))) 108)) (-2681 (((-654 |#4|) $) 123)) (-4321 (((-112) |#4| $) 126)) (-2982 (((-112) $ $) 20)))
+(((-1223 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3530 ((-781) |#1|)) (-15 -4344 (|#1| |#1| |#5|)) (-15 -2166 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4321 ((-112) |#4| |#1|)) (-15 -2681 ((-654 |#4|) |#1|)) (-15 -2926 ((-3 |#1| "failed") |#1|)) (-15 -3360 ((-3 |#5| "failed") |#1|)) (-15 -2915 ((-3 |#5| "failed") |#1|)) (-15 -2043 (|#5| |#5| |#1|)) (-15 -1496 (|#1| |#1|)) (-15 -2793 (|#5| |#5| |#1|)) (-15 -2244 (|#5| |#5| |#1|)) (-15 -1443 (|#5| |#5| |#1|)) (-15 -1621 (|#5| |#5| |#1|)) (-15 -2543 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2868 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2768 ((-112) |#1|)) (-15 -1406 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -1685 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -2768 ((-112) |#5| |#1|)) (-15 -1406 ((-112) |#5| |#1|)) (-15 -3456 ((-112) |#5| |#1|)) (-15 -4155 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2474 ((-112) |#1|)) (-15 -2474 ((-112) |#5| |#1|)) (-15 -2766 ((-2 (|:| -1381 (-654 |#5|)) (|:| -1676 (-654 |#5|))) |#1|)) (-15 -1784 ((-781) |#1|)) (-15 -4153 ((-654 |#5|) |#1|)) (-15 -3668 ((-3 (-2 (|:| |bas| |#1|) (|:| -2003 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3668 ((-3 (-2 (|:| |bas| |#1|) (|:| -2003 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2430 ((-112) |#1| |#1|)) (-15 -2175 (|#1| |#1| |#4|)) (-15 -2840 (|#1| |#1| |#4|)) (-15 -2851 (|#4| |#1|)) (-15 -1697 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2943 ((-654 |#5|) |#1|)) (-15 -2956 (|#1| (-654 |#5|))) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2166 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|))) (-1224 |#2| |#3| |#4| |#5|) (-566) (-803) (-860) (-1078 |#2| |#3| |#4|)) (T -1223))
+NIL
+(-10 -8 (-15 -3530 ((-781) |#1|)) (-15 -4344 (|#1| |#1| |#5|)) (-15 -2166 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4321 ((-112) |#4| |#1|)) (-15 -2681 ((-654 |#4|) |#1|)) (-15 -2926 ((-3 |#1| "failed") |#1|)) (-15 -3360 ((-3 |#5| "failed") |#1|)) (-15 -2915 ((-3 |#5| "failed") |#1|)) (-15 -2043 (|#5| |#5| |#1|)) (-15 -1496 (|#1| |#1|)) (-15 -2793 (|#5| |#5| |#1|)) (-15 -2244 (|#5| |#5| |#1|)) (-15 -1443 (|#5| |#5| |#1|)) (-15 -1621 (|#5| |#5| |#1|)) (-15 -2543 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2868 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2768 ((-112) |#1|)) (-15 -1406 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -1685 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -2768 ((-112) |#5| |#1|)) (-15 -1406 ((-112) |#5| |#1|)) (-15 -3456 ((-112) |#5| |#1|)) (-15 -4155 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2474 ((-112) |#1|)) (-15 -2474 ((-112) |#5| |#1|)) (-15 -2766 ((-2 (|:| -1381 (-654 |#5|)) (|:| -1676 (-654 |#5|))) |#1|)) (-15 -1784 ((-781) |#1|)) (-15 -4153 ((-654 |#5|) |#1|)) (-15 -3668 ((-3 (-2 (|:| |bas| |#1|) (|:| -2003 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3668 ((-3 (-2 (|:| |bas| |#1|) (|:| -2003 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2430 ((-112) |#1| |#1|)) (-15 -2175 (|#1| |#1| |#4|)) (-15 -2840 (|#1| |#1| |#4|)) (-15 -2851 (|#4| |#1|)) (-15 -1697 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2943 ((-654 |#5|) |#1|)) (-15 -2956 (|#1| (-654 |#5|))) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2166 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2943 ((-872) |#1|)) (-15 -2982 ((-112) |#1| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |#4|)))) (-654 |#4|)) 86)) (-1886 (((-654 $) (-654 |#4|)) 87)) (-4355 (((-654 |#3|) $) 34)) (-3753 (((-112) $) 27)) (-3609 (((-112) $) 18 (|has| |#1| (-566)))) (-3456 (((-112) |#4| $) 102) (((-112) $) 98)) (-1621 ((|#4| |#4| $) 93)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) 28)) (-3340 (((-112) $ (-781)) 45)) (-2166 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3670 (($) 46 T CONST)) (-1800 (((-112) $) 23 (|has| |#1| (-566)))) (-1322 (((-112) $ $) 25 (|has| |#1| (-566)))) (-4133 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3172 (((-112) $) 26 (|has| |#1| (-566)))) (-2543 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3949 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) 37)) (-2209 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-2793 ((|#4| |#4| $) 90)) (-2158 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-4155 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2043 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2766 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1676 (-654 |#4|))) $) 106)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-2474 (((-112) |#4| $) 105) (((-112) $) 104)) (-2851 ((|#3| $) 35)) (-3735 (((-112) $ (-781)) 44)) (-1712 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) 48)) (-2867 (((-654 |#3|) $) 33)) (-2570 (((-112) |#3| $) 32)) (-2448 (((-112) $ (-781)) 43)) (-2568 (((-1172) $) 10)) (-3360 (((-3 |#4| "failed") $) 84)) (-4153 (((-654 |#4|) $) 108)) (-2768 (((-112) |#4| $) 100) (((-112) $) 96)) (-2244 ((|#4| |#4| $) 91)) (-2430 (((-112) $ $) 111)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1406 (((-112) |#4| $) 101) (((-112) $) 97)) (-1443 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3043 (((-3 $ "failed") $ |#4|) 79)) (-4344 (($ $ |#4|) 78)) (-3124 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) 39)) (-3556 (((-112) $) 42)) (-3135 (($) 41)) (-1784 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1837 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-2175 (($ $ |#3|) 29)) (-2840 (($ $ |#3|) 31)) (-1496 (($ $) 89)) (-2427 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3530 (((-781) $) 77 (|has| |#3| (-377)))) (-2923 (((-112) $ $) 9)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1685 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2935 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2681 (((-654 |#3|) $) 82)) (-4321 (((-112) |#3| $) 81)) (-2982 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456)))))
+(((-1224 |#1| |#2| |#3| |#4|) (-141) (-566) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -1224))
+((-2430 (*1 *2 *1 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-3668 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2003 (-654 *8)))) (-5 *3 (-654 *8)) (-4 *1 (-1224 *5 *6 *7 *8)))) (-3668 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2003 (-654 *9)))) (-5 *3 (-654 *9)) (-4 *1 (-1224 *6 *7 *8 *9)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *6)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-781)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-2 (|:| -1381 (-654 *6)) (|:| -1676 (-654 *6)))))) (-2474 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-2474 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-4155 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1224 *5 *6 *7 *3)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112)))) (-3456 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-1406 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-2768 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-1685 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1224 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-1406 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-2868 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1224 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *2 (-1078 *5 *6 *7)))) (-2543 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1224 *5 *6 *7 *8)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)))) (-1621 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-1443 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-2244 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-2793 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-1496 (*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1078 *2 *3 *4)))) (-2043 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1224 *4 *5 *6 *7)))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| -1381 *1) (|:| -1676 (-654 *7))))) (-5 *3 (-654 *7)) (-4 *1 (-1224 *4 *5 *6 *7)))) (-2915 (*1 *2 *1) (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-3360 (*1 *2 *1) (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-2926 (*1 *1 *1) (|partial| -12 (-4 *1 (-1224 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1078 *2 *3 *4)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5)))) (-4321 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-112)))) (-2166 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1224 *4 *5 *3 *2)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1078 *4 *5 *3)))) (-3043 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-4344 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *5 (-377)) (-5 *2 (-781)))))
+(-13 (-989 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2430 ((-112) $ $)) (-15 -3668 ((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3668 ((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4153 ((-654 |t#4|) $)) (-15 -1784 ((-781) $)) (-15 -2766 ((-2 (|:| -1381 (-654 |t#4|)) (|:| -1676 (-654 |t#4|))) $)) (-15 -2474 ((-112) |t#4| $)) (-15 -2474 ((-112) $)) (-15 -4155 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3456 ((-112) |t#4| $)) (-15 -1406 ((-112) |t#4| $)) (-15 -2768 ((-112) |t#4| $)) (-15 -1685 ((-112) $ (-1 (-112) |t#4| (-654 |t#4|)))) (-15 -3456 ((-112) $)) (-15 -1406 ((-112) $)) (-15 -2768 ((-112) $)) (-15 -2868 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2543 ((-654 |t#4|) (-654 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1621 (|t#4| |t#4| $)) (-15 -1443 (|t#4| |t#4| $)) (-15 -2244 (|t#4| |t#4| $)) (-15 -2793 (|t#4| |t#4| $)) (-15 -1496 ($ $)) (-15 -2043 (|t#4| |t#4| $)) (-15 -1886 ((-654 $) (-654 |t#4|))) (-15 -2653 ((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |t#4|)))) (-654 |t#4|))) (-15 -2915 ((-3 |t#4| "failed") $)) (-15 -3360 ((-3 |t#4| "failed") $)) (-15 -2926 ((-3 $ "failed") $)) (-15 -2681 ((-654 |t#3|) $)) (-15 -4321 ((-112) |t#3| $)) (-15 -2166 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3043 ((-3 $ "failed") $ |t#4|)) (-15 -4344 ($ $ |t#4|)) (IF (|has| |t#3| (-377)) (-15 -3530 ((-781) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1231) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-1190)) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-4053 (((-963 |#1|) $ (-781)) 17) (((-963 |#1|) $ (-781) (-781)) NIL)) (-3030 (((-112) $) NIL)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-781) $ (-1190)) NIL) (((-781) $ (-1190) (-781)) NIL)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2197 (((-112) $) NIL)) (-4335 (($ $ (-654 (-1190)) (-654 (-541 (-1190)))) NIL) (($ $ (-1190) (-541 (-1190))) NIL) (($ |#1| (-541 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-2968 (($ $ (-1190)) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-1627 (($ (-1 $) (-1190) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4344 (($ $ (-781)) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1610 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (($ $ (-1190) $) NIL) (($ $ (-654 (-1190)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3905 (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-1784 (((-541 (-1190)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-1190)) NIL) (($ (-963 |#1|)) NIL)) (-3344 ((|#1| $ (-541 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (((-963 |#1|) $ (-781)) NIL)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-3611 (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1225 |#1|) (-13 (-750 |#1| (-1190)) (-10 -8 (-15 -3344 ((-963 |#1|) $ (-781))) (-15 -2943 ($ (-1190))) (-15 -2943 ($ (-963 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $ (-1190) |#1|)) (-15 -1627 ($ (-1 $) (-1190) |#1|))) |%noBranch|))) (-1062)) (T -1225))
+((-3344 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-963 *4)) (-5 *1 (-1225 *4)) (-4 *4 (-1062)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1225 *3)) (-4 *3 (-1062)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-1062)) (-5 *1 (-1225 *3)))) (-2968 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *1 (-1225 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)))) (-1627 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1225 *4))) (-5 *3 (-1190)) (-5 *1 (-1225 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062)))))
+(-13 (-750 |#1| (-1190)) (-10 -8 (-15 -3344 ((-963 |#1|) $ (-781))) (-15 -2943 ($ (-1190))) (-15 -2943 ($ (-963 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $ (-1190) |#1|)) (-15 -1627 ($ (-1 $) (-1190) |#1|))) |%noBranch|)))
+((-3240 (($ |#1| (-654 (-654 (-954 (-227)))) (-112)) 19)) (-2006 (((-112) $ (-112)) 18)) (-3567 (((-112) $) 17)) (-3260 (((-654 (-654 (-954 (-227)))) $) 13)) (-3221 ((|#1| $) 8)) (-4276 (((-112) $) 15)))
+(((-1226 |#1|) (-10 -8 (-15 -3221 (|#1| $)) (-15 -3260 ((-654 (-654 (-954 (-227)))) $)) (-15 -4276 ((-112) $)) (-15 -3567 ((-112) $)) (-15 -2006 ((-112) $ (-112))) (-15 -3240 ($ |#1| (-654 (-654 (-954 (-227)))) (-112)))) (-987)) (T -1226))
+((-3240 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-112)) (-5 *1 (-1226 *2)) (-4 *2 (-987)))) (-2006 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-1226 *3)) (-4 *3 (-987)))) (-3221 (*1 *2 *1) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-987)))))
+(-10 -8 (-15 -3221 (|#1| $)) (-15 -3260 ((-654 (-654 (-954 (-227)))) $)) (-15 -4276 ((-112) $)) (-15 -3567 ((-112) $)) (-15 -2006 ((-112) $ (-112))) (-15 -3240 ($ |#1| (-654 (-654 (-954 (-227)))) (-112))))
+((-3290 (((-954 (-227)) (-954 (-227))) 31)) (-3591 (((-954 (-227)) (-227) (-227) (-227) (-227)) 10)) (-2876 (((-654 (-954 (-227))) (-954 (-227)) (-954 (-227)) (-954 (-227)) (-227) (-654 (-654 (-227)))) 56)) (-3222 (((-227) (-954 (-227)) (-954 (-227))) 27)) (-2503 (((-954 (-227)) (-954 (-227)) (-954 (-227))) 28)) (-2919 (((-654 (-654 (-227))) (-574)) 44)) (-3094 (((-954 (-227)) (-954 (-227)) (-954 (-227))) 26)) (-3078 (((-954 (-227)) (-954 (-227)) (-954 (-227))) 24)) (* (((-954 (-227)) (-227) (-954 (-227))) 22)))
+(((-1227) (-10 -7 (-15 -3591 ((-954 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-954 (-227)) (-227) (-954 (-227)))) (-15 -3078 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3094 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3222 ((-227) (-954 (-227)) (-954 (-227)))) (-15 -2503 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3290 ((-954 (-227)) (-954 (-227)))) (-15 -2919 ((-654 (-654 (-227))) (-574))) (-15 -2876 ((-654 (-954 (-227))) (-954 (-227)) (-954 (-227)) (-954 (-227)) (-227) (-654 (-654 (-227))))))) (T -1227))
+((-2876 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 (-954 *4))) (-5 *1 (-1227)) (-5 *3 (-954 *4)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1227)))) (-3290 (*1 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) (-2503 (*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) (-3222 (*1 *2 *3 *3) (-12 (-5 *3 (-954 (-227))) (-5 *2 (-227)) (-5 *1 (-1227)))) (-3094 (*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) (-3078 (*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-954 (-227))) (-5 *3 (-227)) (-5 *1 (-1227)))) (-3591 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)) (-5 *3 (-227)))))
+(-10 -7 (-15 -3591 ((-954 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-954 (-227)) (-227) (-954 (-227)))) (-15 -3078 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3094 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3222 ((-227) (-954 (-227)) (-954 (-227)))) (-15 -2503 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3290 ((-954 (-227)) (-954 (-227)))) (-15 -2919 ((-654 (-654 (-227))) (-574))) (-15 -2876 ((-654 (-954 (-227))) (-954 (-227)) (-954 (-227)) (-954 (-227)) (-227) (-654 (-654 (-227))))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2166 ((|#1| $ (-781)) 18)) (-4135 (((-781) $) 13)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2943 (((-969 |#1|) $) 12) (($ (-969 |#1|)) 11) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2982 (((-112) $ $) 22 (|has| |#1| (-1113)))))
+(((-1228 |#1|) (-13 (-500 (-969 |#1|)) (-10 -8 (-15 -2166 (|#1| $ (-781))) (-15 -4135 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|))) (-1231)) (T -1228))
+((-2166 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-1228 *2)) (-4 *2 (-1231)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1228 *3)) (-4 *3 (-1231)))))
+(-13 (-500 (-969 |#1|)) (-10 -8 (-15 -2166 (|#1| $ (-781))) (-15 -4135 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|)))
+((-2913 (((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)) (-574)) 94)) (-3751 (((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|))) 86)) (-1897 (((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|))) 70)))
+(((-1229 |#1|) (-10 -7 (-15 -3751 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)))) (-15 -1897 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)))) (-15 -2913 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)) (-574)))) (-358)) (T -1229))
+((-2913 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1186 (-1186 *5)))) (-5 *1 (-1229 *5)) (-5 *3 (-1186 (-1186 *5))))) (-1897 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1186 (-1186 *4)))) (-5 *1 (-1229 *4)) (-5 *3 (-1186 (-1186 *4))))) (-3751 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1186 (-1186 *4)))) (-5 *1 (-1229 *4)) (-5 *3 (-1186 (-1186 *4))))))
+(-10 -7 (-15 -3751 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)))) (-15 -1897 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)))) (-15 -2913 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)) (-574))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 9) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1230) (-1096)) (T -1230))
+NIL
+(-1096)
+NIL
+(((-1231) (-141)) (T -1231))
+NIL
+(-13 (-10 -7 (-6 -3521)))
+((-3799 (((-112)) 18)) (-3781 (((-1286) (-654 |#1|) (-654 |#1|)) 22) (((-1286) (-654 |#1|)) 23)) (-3735 (((-112) |#1| |#1|) 37 (|has| |#1| (-860)))) (-2448 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1758 ((|#1| (-654 |#1|)) 38 (|has| |#1| (-860))) ((|#1| (-654 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-2502 (((-2 (|:| -3392 (-654 |#1|)) (|:| -1669 (-654 |#1|)))) 20)))
+(((-1232 |#1|) (-10 -7 (-15 -3781 ((-1286) (-654 |#1|))) (-15 -3781 ((-1286) (-654 |#1|) (-654 |#1|))) (-15 -2502 ((-2 (|:| -3392 (-654 |#1|)) (|:| -1669 (-654 |#1|))))) (-15 -2448 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2448 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1758 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3799 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -1758 (|#1| (-654 |#1|))) (-15 -3735 ((-112) |#1| |#1|))) |%noBranch|)) (-1113)) (T -1232))
+((-3735 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-860)) (-4 *3 (-1113)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-860)) (-5 *1 (-1232 *2)))) (-3799 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1113)))) (-1758 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1232 *2)) (-4 *2 (-1113)))) (-2448 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-1232 *3)))) (-2448 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1113)))) (-2502 (*1 *2) (-12 (-5 *2 (-2 (|:| -3392 (-654 *3)) (|:| -1669 (-654 *3)))) (-5 *1 (-1232 *3)) (-4 *3 (-1113)))) (-3781 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-5 *2 (-1286)) (-5 *1 (-1232 *4)))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-5 *2 (-1286)) (-5 *1 (-1232 *4)))))
+(-10 -7 (-15 -3781 ((-1286) (-654 |#1|))) (-15 -3781 ((-1286) (-654 |#1|) (-654 |#1|))) (-15 -2502 ((-2 (|:| -3392 (-654 |#1|)) (|:| -1669 (-654 |#1|))))) (-15 -2448 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2448 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1758 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3799 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -1758 (|#1| (-654 |#1|))) (-15 -3735 ((-112) |#1| |#1|))) |%noBranch|))
+((-2959 (((-1286) (-654 (-1190)) (-654 (-1190))) 14) (((-1286) (-654 (-1190))) 12)) (-3738 (((-1286)) 16)) (-2697 (((-2 (|:| -1669 (-654 (-1190))) (|:| -3392 (-654 (-1190))))) 20)))
+(((-1233) (-10 -7 (-15 -2959 ((-1286) (-654 (-1190)))) (-15 -2959 ((-1286) (-654 (-1190)) (-654 (-1190)))) (-15 -2697 ((-2 (|:| -1669 (-654 (-1190))) (|:| -3392 (-654 (-1190)))))) (-15 -3738 ((-1286))))) (T -1233))
+((-3738 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1233)))) (-2697 (*1 *2) (-12 (-5 *2 (-2 (|:| -1669 (-654 (-1190))) (|:| -3392 (-654 (-1190))))) (-5 *1 (-1233)))) (-2959 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1233)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1233)))))
+(-10 -7 (-15 -2959 ((-1286) (-654 (-1190)))) (-15 -2959 ((-1286) (-654 (-1190)) (-654 (-1190)))) (-15 -2697 ((-2 (|:| -1669 (-654 (-1190))) (|:| -3392 (-654 (-1190)))))) (-15 -3738 ((-1286))))
+((-4348 (($ $) 17)) (-1654 (((-112) $) 28)))
+(((-1234 |#1|) (-10 -8 (-15 -4348 (|#1| |#1|)) (-15 -1654 ((-112) |#1|))) (-1235)) (T -1234))
+NIL
+(-10 -8 (-15 -4348 (|#1| |#1|)) (-15 -1654 ((-112) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 57)) (-3440 (((-428 $) $) 58)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-1654 (((-112) $) 59)) (-3965 (((-112) $) 35)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 56)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+(((-1235) (-141)) (T -1235))
+((-1654 (*1 *2 *1) (-12 (-4 *1 (-1235)) (-5 *2 (-112)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1235)))) (-4348 (*1 *1 *1) (-4 *1 (-1235))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1235)))))
+(-13 (-462) (-10 -8 (-15 -1654 ((-112) $)) (-15 -3440 ((-428 $) $)) (-15 -4348 ($ $)) (-15 -4220 ((-428 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1755 (($ $ $) NIL)) (-1743 (($ $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-1236) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))) (T -1236))
+((-1743 (*1 *1 *1 *1) (-5 *1 (-1236))) (-1755 (*1 *1 *1 *1) (-5 *1 (-1236))) (-3670 (*1 *1) (-5 *1 (-1236))))
+(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16)))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-1753 (($ $ $) NIL)) (-1742 (($ $ $) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-1235) (-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))) (T -1235))
-((-1742 (*1 *1 *1 *1) (-5 *1 (-1235))) (-1753 (*1 *1 *1 *1) (-5 *1 (-1235))) (-3281 (*1 *1) (-5 *1 (-1235))))
-(-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1755 (($ $ $) NIL)) (-1743 (($ $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-1237) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))) (T -1237))
+((-1743 (*1 *1 *1 *1) (-5 *1 (-1237))) (-1755 (*1 *1 *1 *1) (-5 *1 (-1237))) (-3670 (*1 *1) (-5 *1 (-1237))))
+(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32)))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-1753 (($ $ $) NIL)) (-1742 (($ $ $) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-1236) (-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))) (T -1236))
-((-1742 (*1 *1 *1 *1) (-5 *1 (-1236))) (-1753 (*1 *1 *1 *1) (-5 *1 (-1236))) (-3281 (*1 *1) (-5 *1 (-1236))))
-(-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1755 (($ $ $) NIL)) (-1743 (($ $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-1238) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))) (T -1238))
+((-1743 (*1 *1 *1 *1) (-5 *1 (-1238))) (-1755 (*1 *1 *1 *1) (-5 *1 (-1238))) (-3670 (*1 *1) (-5 *1 (-1238))))
+(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64)))
-((-2846 (((-112) $ $) NIL)) (-1486 (((-779)) NIL)) (-3281 (($) NIL T CONST)) (-2815 (($) NIL)) (-3654 (($ $ $) NIL) (($) NIL T CONST)) (-2427 (($ $ $) NIL) (($) NIL T CONST)) (-3715 (((-930) $) NIL)) (-4347 (((-1170) $) NIL)) (-2571 (($ (-930)) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) NIL)) (-1753 (($ $ $) NIL)) (-1742 (($ $ $) NIL)) (-4379 (((-112) $ $) NIL)) (-3039 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL)) (-3003 (((-112) $ $) NIL)))
-(((-1237) (-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))) (T -1237))
-((-1742 (*1 *1 *1 *1) (-5 *1 (-1237))) (-1753 (*1 *1 *1 *1) (-5 *1 (-1237))) (-3281 (*1 *1) (-5 *1 (-1237))))
-(-13 (-852) (-10 -8 (-15 -1742 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3281 ($) -1705)))
+((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3670 (($) NIL T CONST)) (-2820 (($) NIL)) (-3658 (($ $ $) NIL) (($) NIL T CONST)) (-2106 (($ $ $) NIL) (($) NIL T CONST)) (-2565 (((-932) $) NIL)) (-2568 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1755 (($ $ $) NIL)) (-1743 (($ $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3041 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)))
+(((-1239) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))) (T -1239))
+((-1743 (*1 *1 *1 *1) (-5 *1 (-1239))) (-1755 (*1 *1 *1 *1) (-5 *1 (-1239))) (-3670 (*1 *1) (-5 *1 (-1239))))
+(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3670 ($) -1707)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8)))
-((-1776 (((-1243 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1243 |#1| |#3| |#5|)) 23)))
-(((-1238 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1776 ((-1243 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1243 |#1| |#3| |#5|)))) (-1060) (-1060) (-1188) (-1188) |#1| |#2|) (T -1238))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1243 *5 *7 *9)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-14 *7 (-1188)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1243 *6 *8 *10)) (-5 *1 (-1238 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1188)))))
-(-10 -7 (-15 -1776 ((-1243 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1243 |#1| |#3| |#5|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4353 (((-652 (-1093)) $) 86)) (-1487 (((-1188) $) 117)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-3009 (($ $) 64 (|has| |#1| (-564)))) (-4334 (((-112) $) 66 (|has| |#1| (-564)))) (-3762 (($ $ (-572)) 112) (($ $ (-572) (-572)) 111)) (-1899 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 118)) (-2358 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 176 (|has| |#1| (-370)))) (-2287 (((-426 $) $) 177 (|has| |#1| (-370)))) (-4227 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-4217 (((-112) $ $) 167 (|has| |#1| (-370)))) (-2338 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 187)) (-2384 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) 18 T CONST)) (-2780 (($ $ $) 171 (|has| |#1| (-370)))) (-1390 (($ $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-3282 (((-415 (-961 |#1|)) $ (-572)) 185 (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) 184 (|has| |#1| (-564)))) (-2792 (($ $ $) 170 (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 165 (|has| |#1| (-370)))) (-3879 (((-112) $) 178 (|has| |#1| (-370)))) (-2579 (((-112) $) 85)) (-2997 (($) 159 (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-572) $) 114) (((-572) $ (-572)) 113)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 130 (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) 115)) (-3926 (($ (-1 |#1| (-572)) $) 186)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 174 (|has| |#1| (-370)))) (-2438 (((-112) $) 74)) (-4333 (($ |#1| (-572)) 73) (($ $ (-1093) (-572)) 88) (($ $ (-652 (-1093)) (-652 (-572))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3116 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) 77)) (-1368 ((|#1| $) 78)) (-2825 (($ (-652 $)) 163 (|has| |#1| (-370))) (($ $ $) 162 (|has| |#1| (-370)))) (-4347 (((-1170) $) 10)) (-1322 (($ $) 179 (|has| |#1| (-370)))) (-3034 (($ $) 183 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 182 (-2813 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 164 (|has| |#1| (-370)))) (-2870 (($ (-652 $)) 161 (|has| |#1| (-370))) (($ $ $) 160 (|has| |#1| (-370)))) (-4218 (((-426 $) $) 175 (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 172 (|has| |#1| (-370)))) (-2772 (($ $ (-572)) 109)) (-2834 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 166 (|has| |#1| (-370)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-572)))))) (-3847 (((-779) $) 168 (|has| |#1| (-370)))) (-2196 ((|#1| $ (-572)) 119) (($ $ $) 95 (|has| (-572) (-1123)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 169 (|has| |#1| (-370)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-1188) (-779)) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188))) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-1188)) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| (-572) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (-4390 (((-572) $) 76)) (-2397 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) 84)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564)))) (-3979 ((|#1| $ (-572)) 71)) (-3849 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-3356 ((|#1| $) 116)) (-4379 (((-112) $ $) 9)) (-2436 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2409 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-572)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) 107 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-1188) (-779)) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188))) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-1188)) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-779)) 99 (|has| |#1| (-15 * (|#1| (-572) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 70 (|has| |#1| (-370))) (($ $ $) 181 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 180 (|has| |#1| (-370))) (($ $ $) 158 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 129 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
-(((-1239 |#1|) (-141) (-1060)) (T -1239))
-((-3620 (*1 *1 *2) (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3)))) (-4 *3 (-1060)) (-4 *1 (-1239 *3)))) (-3926 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-572))) (-4 *1 (-1239 *3)) (-4 *3 (-1060)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1239 *4)) (-4 *4 (-1060)) (-4 *4 (-564)) (-5 *2 (-415 (-961 *4))))) (-3282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1239 *4)) (-4 *4 (-1060)) (-4 *4 (-564)) (-5 *2 (-415 (-961 *4))))) (-3034 (*1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572)))))) (-3034 (*1 *1 *1 *2) (-2813 (-12 (-5 *2 (-1188)) (-4 *1 (-1239 *3)) (-4 *3 (-1060)) (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214)) (-4 *3 (-38 (-415 (-572)))))) (-12 (-5 *2 (-1188)) (-4 *1 (-1239 *3)) (-4 *3 (-1060)) (-12 (|has| *3 (-15 -4353 ((-652 *2) *3))) (|has| *3 (-15 -3034 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572)))))))))
-(-13 (-1257 |t#1| (-572)) (-10 -8 (-15 -3620 ($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |t#1|))))) (-15 -3926 ($ (-1 |t#1| (-572)) $)) (IF (|has| |t#1| (-564)) (PROGN (-15 -3282 ((-415 (-961 |t#1|)) $ (-572))) (-15 -3282 ((-415 (-961 |t#1|)) $ (-572) (-572)))) |%noBranch|) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $)) (IF (|has| |t#1| (-15 -3034 (|t#1| |t#1| (-1188)))) (IF (|has| |t#1| (-15 -4353 ((-652 (-1188)) |t#1|))) (-15 -3034 ($ $ (-1188))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1214)) (IF (|has| |t#1| (-968)) (IF (|has| |t#1| (-29 (-572))) (-15 -3034 ($ $ (-1188))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1013)) (-6 (-1214))) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-572)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-572) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-572) |#1|))) ((-247) |has| |#1| (-370)) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 $ $) |has| (-572) (-1123)) ((-296) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-370) |has| |#1| (-370)) ((-460) |has| |#1| (-370)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-564) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-654 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-725 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| #0# (-1093)) . T) ((-929) |has| |#1| (-370)) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1062 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1233) |has| |#1| (-370)) ((-1257 |#1| #0#) . T))
-((-2697 (((-112) $) 12)) (-1695 (((-3 |#3| "failed") $) 17) (((-3 (-1188) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL)) (-2204 ((|#3| $) 14) (((-1188) $) NIL) (((-415 (-572)) $) NIL) (((-572) $) NIL)))
-(((-1240 |#1| |#2| |#3|) (-10 -8 (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-1188) "failed") |#1|)) (-15 -2204 ((-1188) |#1|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2204 (|#3| |#1|)) (-15 -2697 ((-112) |#1|))) (-1241 |#2| |#3|) (-1060) (-1270 |#2|)) (T -1240))
-NIL
-(-10 -8 (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -1695 ((-3 (-1188) "failed") |#1|)) (-15 -2204 ((-1188) |#1|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2204 (|#3| |#1|)) (-15 -2697 ((-112) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2689 ((|#2| $) 246 (-2085 (|has| |#2| (-313)) (|has| |#1| (-370))))) (-4353 (((-652 (-1093)) $) 86)) (-1487 (((-1188) $) 117)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-3009 (($ $) 64 (|has| |#1| (-564)))) (-4334 (((-112) $) 66 (|has| |#1| (-564)))) (-3762 (($ $ (-572)) 112) (($ $ (-572) (-572)) 111)) (-1899 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 118)) (-2295 ((|#2| $) 282)) (-3348 (((-3 |#2| "failed") $) 278)) (-4400 ((|#2| $) 279)) (-2358 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) 20)) (-2603 (((-426 (-1184 $)) (-1184 $)) 255 (-2085 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-3517 (($ $) 176 (|has| |#1| (-370)))) (-2287 (((-426 $) $) 177 (|has| |#1| (-370)))) (-4227 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 252 (-2085 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-4217 (((-112) $ $) 167 (|has| |#1| (-370)))) (-2338 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-2840 (((-572) $) 264 (-2085 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-3620 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 187)) (-2384 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#2| "failed") $) 285) (((-3 (-572) "failed") $) 275 (-2085 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-415 (-572)) "failed") $) 273 (-2085 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-1188) "failed") $) 257 (-2085 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370))))) (-2204 ((|#2| $) 286) (((-572) $) 274 (-2085 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-415 (-572)) $) 272 (-2085 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-1188) $) 256 (-2085 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370))))) (-3560 (($ $) 281) (($ (-572) $) 280)) (-2780 (($ $ $) 171 (|has| |#1| (-370)))) (-1390 (($ $) 72)) (-2993 (((-697 |#2|) (-1279 $)) 236 (|has| |#1| (-370))) (((-697 |#2|) (-697 $)) 235 (|has| |#1| (-370))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 234 (|has| |#1| (-370))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 233 (-2085 (|has| |#2| (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-697 $)) 232 (-2085 (|has| |#2| (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-1279 $)) 231 (-2085 (|has| |#2| (-647 (-572))) (|has| |#1| (-370))))) (-2062 (((-3 $ "failed") $) 37)) (-3282 (((-415 (-961 |#1|)) $ (-572)) 185 (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) 184 (|has| |#1| (-564)))) (-2815 (($) 248 (-2085 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-2792 (($ $ $) 170 (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 165 (|has| |#1| (-370)))) (-3879 (((-112) $) 178 (|has| |#1| (-370)))) (-3074 (((-112) $) 262 (-2085 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2579 (((-112) $) 85)) (-2997 (($) 159 (|has| |#1| (-38 (-415 (-572)))))) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 240 (-2085 (|has| |#2| (-895 (-386))) (|has| |#1| (-370)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 239 (-2085 (|has| |#2| (-895 (-572))) (|has| |#1| (-370))))) (-2956 (((-572) $) 114) (((-572) $ (-572)) 113)) (-1886 (((-112) $) 35)) (-2710 (($ $) 244 (|has| |#1| (-370)))) (-2963 ((|#2| $) 242 (|has| |#1| (-370)))) (-2932 (($ $ (-572)) 130 (|has| |#1| (-38 (-415 (-572)))))) (-2556 (((-3 $ "failed") $) 276 (-2085 (|has| |#2| (-1163)) (|has| |#1| (-370))))) (-1623 (((-112) $) 263 (-2085 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-4076 (($ $ (-930)) 115)) (-3926 (($ (-1 |#1| (-572)) $) 186)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 174 (|has| |#1| (-370)))) (-2438 (((-112) $) 74)) (-4333 (($ |#1| (-572)) 73) (($ $ (-1093) (-572)) 88) (($ $ (-652 (-1093)) (-652 (-572))) 87)) (-3654 (($ $ $) 266 (-2085 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-2427 (($ $ $) 267 (-2085 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-1776 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 226 (|has| |#1| (-370)))) (-3116 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) 77)) (-1368 ((|#1| $) 78)) (-2825 (($ (-652 $)) 163 (|has| |#1| (-370))) (($ $ $) 162 (|has| |#1| (-370)))) (-4411 (($ (-572) |#2|) 283)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 179 (|has| |#1| (-370)))) (-3034 (($ $) 183 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 182 (-2813 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-3815 (($) 277 (-2085 (|has| |#2| (-1163)) (|has| |#1| (-370))) CONST)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 164 (|has| |#1| (-370)))) (-2870 (($ (-652 $)) 161 (|has| |#1| (-370))) (($ $ $) 160 (|has| |#1| (-370)))) (-2340 (($ $) 247 (-2085 (|has| |#2| (-313)) (|has| |#1| (-370))))) (-3462 ((|#2| $) 250 (-2085 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-4300 (((-426 (-1184 $)) (-1184 $)) 253 (-2085 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-1494 (((-426 (-1184 $)) (-1184 $)) 254 (-2085 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-4218 (((-426 $) $) 175 (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 172 (|has| |#1| (-370)))) (-2772 (($ $ (-572)) 109)) (-2834 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 166 (|has| |#1| (-370)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-572))))) (($ $ (-1188) |#2|) 225 (-2085 (|has| |#2| (-522 (-1188) |#2|)) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 |#2|)) 224 (-2085 (|has| |#2| (-522 (-1188) |#2|)) (|has| |#1| (-370)))) (($ $ (-652 (-300 |#2|))) 223 (-2085 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ (-300 |#2|)) 222 (-2085 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ |#2| |#2|) 221 (-2085 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ (-652 |#2|) (-652 |#2|)) 220 (-2085 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370))))) (-3847 (((-779) $) 168 (|has| |#1| (-370)))) (-2196 ((|#1| $ (-572)) 119) (($ $ $) 95 (|has| (-572) (-1123))) (($ $ |#2|) 219 (-2085 (|has| |#2| (-292 |#2| |#2|)) (|has| |#1| (-370))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 169 (|has| |#1| (-370)))) (-3902 (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-370))) (($ $ (-1 |#2| |#2|) (-779)) 229 (|has| |#1| (-370))) (($ $ (-779)) 98 (-2813 (-2085 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 97 (-2813 (-2085 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) 103 (-2813 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-1188) (-779)) 102 (-2813 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-652 (-1188))) 101 (-2813 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-1188)) 100 (-2813 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))))) (-1520 (($ $) 245 (|has| |#1| (-370)))) (-2974 ((|#2| $) 243 (|has| |#1| (-370)))) (-4390 (((-572) $) 76)) (-2397 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-1835 (((-227) $) 261 (-2085 (|has| |#2| (-1033)) (|has| |#1| (-370)))) (((-386) $) 260 (-2085 (|has| |#2| (-1033)) (|has| |#1| (-370)))) (((-544) $) 259 (-2085 (|has| |#2| (-622 (-544))) (|has| |#1| (-370)))) (((-901 (-386)) $) 238 (-2085 (|has| |#2| (-622 (-901 (-386)))) (|has| |#1| (-370)))) (((-901 (-572)) $) 237 (-2085 (|has| |#2| (-622 (-901 (-572)))) (|has| |#1| (-370))))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 251 (-2085 (-2085 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#1| (-370))))) (-2590 (($ $) 84)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 284) (($ (-1188)) 258 (-2085 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370)))) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564)))) (-3979 ((|#1| $ (-572)) 71)) (-3849 (((-3 $ "failed") $) 60 (-2813 (-2085 (-2813 (|has| |#2| (-146)) (-2085 (|has| $ (-146)) (|has| |#2| (-918)))) (|has| |#1| (-370))) (|has| |#1| (-146))))) (-4249 (((-779)) 32 T CONST)) (-3356 ((|#1| $) 116)) (-3614 ((|#2| $) 249 (-2085 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-4379 (((-112) $ $) 9)) (-2436 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2409 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-572)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2700 (($ $) 265 (-2085 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-370))) (($ $ (-1 |#2| |#2|) (-779)) 227 (|has| |#1| (-370))) (($ $ (-779)) 99 (-2813 (-2085 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 96 (-2813 (-2085 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) 107 (-2813 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-1188) (-779)) 106 (-2813 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-652 (-1188))) 105 (-2813 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-1188)) 104 (-2813 (-2085 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))))) (-3039 (((-112) $ $) 269 (-2085 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3014 (((-112) $ $) 270 (-2085 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-2978 (((-112) $ $) 6)) (-3026 (((-112) $ $) 268 (-2085 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3003 (((-112) $ $) 271 (-2085 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3106 (($ $ |#1|) 70 (|has| |#1| (-370))) (($ $ $) 181 (|has| |#1| (-370))) (($ |#2| |#2|) 241 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 180 (|has| |#1| (-370))) (($ $ $) 158 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 129 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 218 (|has| |#1| (-370))) (($ |#2| $) 217 (|has| |#1| (-370))) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
-(((-1241 |#1| |#2|) (-141) (-1060) (-1270 |t#1|)) (T -1241))
-((-4390 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1270 *3)) (-5 *2 (-572)))) (-4411 (*1 *1 *2 *3) (-12 (-5 *2 (-572)) (-4 *4 (-1060)) (-4 *1 (-1241 *4 *3)) (-4 *3 (-1270 *4)))) (-2295 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))) (-3560 (*1 *1 *1) (-12 (-4 *1 (-1241 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1270 *2)))) (-3560 (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-4 *1 (-1241 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1270 *3)))) (-4400 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))) (-3348 (*1 *2 *1) (|partial| -12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))))
-(-13 (-1239 |t#1|) (-1049 |t#2|) (-624 |t#2|) (-10 -8 (-15 -4411 ($ (-572) |t#2|)) (-15 -4390 ((-572) $)) (-15 -2295 (|t#2| $)) (-15 -3560 ($ $)) (-15 -3560 ($ (-572) $)) (-15 -4400 (|t#2| $)) (-15 -3348 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-370)) (-6 (-1003 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-572)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-370)) ((-38 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-370)) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2813 (-12 (|has| |#1| (-370)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2813 (-12 (|has| |#1| (-370)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-624 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 #2=(-1188)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-1188)))) ((-624 |#1|) |has| |#1| (-174)) ((-624 |#2|) . T) ((-624 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-622 (-227)) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) ((-622 (-386)) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) ((-622 (-544)) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-901 (-572))))) ((-235 $) -2813 (-12 (|has| |#1| (-370)) (|has| |#2| (-237))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))) ((-233 |#2|) |has| |#1| (-370)) ((-237) -2813 (-12 (|has| |#1| (-370)) (|has| |#2| (-237))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))) ((-247) |has| |#1| (-370)) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 |#2| $) -12 (|has| |#1| (-370)) (|has| |#2| (-292 |#2| |#2|))) ((-292 $ $) |has| (-572) (-1123)) ((-296) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-315 |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-315 |#2|))) ((-370) |has| |#1| (-370)) ((-345 |#2|) |has| |#1| (-370)) ((-384 |#2|) |has| |#1| (-370)) ((-408 |#2|) |has| |#1| (-370)) ((-460) |has| |#1| (-370)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-522 (-1188) |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-522 (-1188) |#2|))) ((-522 |#2| |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-315 |#2|))) ((-564) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-654 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 |#2|) |has| |#1| (-370)) ((-654 $) . T) ((-656 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-656 #3=(-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-647 (-572)))) ((-656 |#1|) . T) ((-656 |#2|) |has| |#1| (-370)) ((-656 $) . T) ((-648 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-648 |#1|) |has| |#1| (-174)) ((-648 |#2|) |has| |#1| (-370)) ((-648 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-647 #3#) -12 (|has| |#1| (-370)) (|has| |#2| (-647 (-572)))) ((-647 |#2|) |has| |#1| (-370)) ((-725 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-725 |#1|) |has| |#1| (-174)) ((-725 |#2|) |has| |#1| (-370)) ((-725 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-734) . T) ((-799) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-800) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-802) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-803) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-828) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-856) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-858) -2813 (-12 (|has| |#1| (-370)) (|has| |#2| (-858))) (-12 (|has| |#1| (-370)) (|has| |#2| (-828)))) ((-909 (-1188)) -2813 (-12 (|has| |#1| (-370)) (|has| |#2| (-909 (-1188)))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) ((-895 (-386)) -12 (|has| |#1| (-370)) (|has| |#2| (-895 (-386)))) ((-895 (-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-895 (-572)))) ((-893 |#2|) |has| |#1| (-370)) ((-918) -12 (|has| |#1| (-370)) (|has| |#2| (-918))) ((-984 |#1| #0# (-1093)) . T) ((-929) |has| |#1| (-370)) ((-1003 |#2|) |has| |#1| (-370)) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1033) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) ((-1049 (-415 (-572))) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-572)))) ((-1049 (-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-572)))) ((-1049 #2#) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-1188)))) ((-1049 |#2|) . T) ((-1062 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1062 |#1|) . T) ((-1062 |#2|) |has| |#1| (-370)) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1067 |#1|) . T) ((-1067 |#2|) |has| |#1| (-370)) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) -12 (|has| |#1| (-370)) (|has| |#2| (-1163))) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1233) |has| |#1| (-370)) ((-1239 |#1|) . T) ((-1257 |#1| #0#) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 81)) (-2689 ((|#2| $) NIL (-12 (|has| |#2| (-313)) (|has| |#1| (-370))))) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) 100)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3762 (($ $ (-572)) 109) (($ $ (-572) (-572)) 111)) (-1899 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 51)) (-2295 ((|#2| $) 11)) (-3348 (((-3 |#2| "failed") $) 35)) (-4400 ((|#2| $) 36)) (-2358 (($ $) 206 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 182 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-3517 (($ $) NIL (|has| |#1| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2338 (($ $) 202 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 178 (|has| |#1| (-38 (-415 (-572)))))) (-2840 (((-572) $) NIL (-12 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-3620 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 59)) (-2384 (($ $) 210 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 186 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 157) (((-3 (-572) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-1188) "failed") $) NIL (-12 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370))))) (-2204 ((|#2| $) 156) (((-572) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-415 (-572)) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-1188) $) NIL (-12 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370))))) (-3560 (($ $) 65) (($ (-572) $) 28)) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) NIL)) (-2993 (((-697 |#2|) (-1279 $)) NIL (|has| |#1| (-370))) (((-697 |#2|) (-697 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#1| (-370))))) (-2062 (((-3 $ "failed") $) 88)) (-3282 (((-415 (-961 |#1|)) $ (-572)) 124 (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) 126 (|has| |#1| (-564)))) (-2815 (($) NIL (-12 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3879 (((-112) $) NIL (|has| |#1| (-370)))) (-3074 (((-112) $) NIL (-12 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2579 (((-112) $) 74)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| |#2| (-895 (-386))) (|has| |#1| (-370)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| |#2| (-895 (-572))) (|has| |#1| (-370))))) (-2956 (((-572) $) 105) (((-572) $ (-572)) 107)) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL (|has| |#1| (-370)))) (-2963 ((|#2| $) 165 (|has| |#1| (-370)))) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2556 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1163)) (|has| |#1| (-370))))) (-1623 (((-112) $) NIL (-12 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-4076 (($ $ (-930)) 148)) (-3926 (($ (-1 |#1| (-572)) $) 144)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-572)) 20) (($ $ (-1093) (-572)) NIL) (($ $ (-652 (-1093)) (-652 (-572))) NIL)) (-3654 (($ $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-2427 (($ $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-1776 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-370)))) (-3116 (($ $) 176 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4411 (($ (-572) |#2|) 10)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 159 (|has| |#1| (-370)))) (-3034 (($ $) 228 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 233 (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214)))))) (-3815 (($) NIL (-12 (|has| |#2| (-1163)) (|has| |#1| (-370))) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2340 (($ $) NIL (-12 (|has| |#2| (-313)) (|has| |#1| (-370))))) (-3462 ((|#2| $) NIL (-12 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-4218 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2772 (($ $ (-572)) 138)) (-2834 (((-3 $ "failed") $ $) 128 (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1608 (($ $) 174 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-572))))) (($ $ (-1188) |#2|) NIL (-12 (|has| |#2| (-522 (-1188) |#2|)) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 |#2|)) NIL (-12 (|has| |#2| (-522 (-1188) |#2|)) (|has| |#1| (-370)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370))))) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ (-572)) 103) (($ $ $) 90 (|has| (-572) (-1123))) (($ $ |#2|) NIL (-12 (|has| |#2| (-292 |#2| |#2|)) (|has| |#1| (-370))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3902 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-370))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#1| (-370))) (($ $ (-779)) NIL (-2813 (-12 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 149 (-2813 (-12 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-2813 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-2813 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-2813 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) 153 (-2813 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-1520 (($ $) NIL (|has| |#1| (-370)))) (-2974 ((|#2| $) 166 (|has| |#1| (-370)))) (-4390 (((-572) $) 12)) (-2397 (($ $) 212 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 188 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 208 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 184 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 204 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 180 (|has| |#1| (-38 (-415 (-572)))))) (-1835 (((-227) $) NIL (-12 (|has| |#2| (-1033)) (|has| |#1| (-370)))) (((-386) $) NIL (-12 (|has| |#2| (-1033)) (|has| |#1| (-370)))) (((-544) $) NIL (-12 (|has| |#2| (-622 (-544))) (|has| |#1| (-370)))) (((-901 (-386)) $) NIL (-12 (|has| |#2| (-622 (-901 (-386)))) (|has| |#1| (-370)))) (((-901 (-572)) $) NIL (-12 (|has| |#2| (-622 (-901 (-572)))) (|has| |#1| (-370))))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918)) (|has| |#1| (-370))))) (-2590 (($ $) 136)) (-2940 (((-870) $) 266) (($ (-572)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1188)) NIL (-12 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370)))) (($ (-415 (-572))) 169 (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-3979 ((|#1| $ (-572)) 85)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#2| (-918)) (|has| |#1| (-370))) (-12 (|has| |#2| (-146)) (|has| |#1| (-370))) (|has| |#1| (-146))))) (-4249 (((-779)) 155 T CONST)) (-3356 ((|#1| $) 102)) (-3614 ((|#2| $) NIL (-12 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) 218 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 194 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) 214 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 190 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 222 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 198 (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-572)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) 224 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 200 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 220 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 196 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 216 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 192 (|has| |#1| (-38 (-415 (-572)))))) (-2700 (($ $) NIL (-12 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2131 (($) 13 T CONST)) (-2143 (($) 18 T CONST)) (-3608 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-370))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#1| (-370))) (($ $ (-779)) NIL (-2813 (-12 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) NIL (-2813 (-12 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-2813 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-2813 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-2813 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-3039 (((-112) $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3014 (((-112) $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-2978 (((-112) $ $) 72)) (-3026 (((-112) $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3003 (((-112) $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) 163 (|has| |#1| (-370))) (($ |#2| |#2|) 164 (|has| |#1| (-370)))) (-3089 (($ $) 227) (($ $ $) 78)) (-3075 (($ $ $) 76)) (** (($ $ (-930)) NIL) (($ $ (-779)) 84) (($ $ (-572)) 160 (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 172 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-370))) (($ |#2| $) 161 (|has| |#1| (-370))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-1242 |#1| |#2|) (-1241 |#1| |#2|) (-1060) (-1270 |#1|)) (T -1242))
-NIL
-(-1241 |#1| |#2|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-2689 (((-1271 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-313)) (|has| |#1| (-370))))) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) 10)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-3009 (($ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-4334 (((-112) $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-3762 (($ $ (-572)) NIL) (($ $ (-572) (-572)) NIL)) (-1899 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) NIL)) (-2295 (((-1271 |#1| |#2| |#3|) $) NIL)) (-3348 (((-3 (-1271 |#1| |#2| |#3|) "failed") $) NIL)) (-4400 (((-1271 |#1| |#2| |#3|) $) NIL)) (-2358 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-3517 (($ $) NIL (|has| |#1| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2840 (((-572) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-3620 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-1271 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-572) "failed") $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))))) (-2204 (((-1271 |#1| |#2| |#3|) $) NIL) (((-1188) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (((-415 (-572)) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370)))) (((-572) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))))) (-3560 (($ $) NIL) (($ (-572) $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) NIL)) (-2993 (((-697 (-1271 |#1| |#2| |#3|)) (-1279 $)) NIL (|has| |#1| (-370))) (((-697 (-1271 |#1| |#2| |#3|)) (-697 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -3544 (-697 (-1271 |#1| |#2| |#3|))) (|:| |vec| (-1279 (-1271 |#1| |#2| |#3|)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-1279 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370))))) (-2062 (((-3 $ "failed") $) NIL)) (-3282 (((-415 (-961 |#1|)) $ (-572)) NIL (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) NIL (|has| |#1| (-564)))) (-2815 (($) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3879 (((-112) $) NIL (|has| |#1| (-370)))) (-3074 (((-112) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2579 (((-112) $) NIL)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-895 (-386))) (|has| |#1| (-370)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-895 (-572))) (|has| |#1| (-370))))) (-2956 (((-572) $) NIL) (((-572) $ (-572)) NIL)) (-1886 (((-112) $) NIL)) (-2710 (($ $) NIL (|has| |#1| (-370)))) (-2963 (((-1271 |#1| |#2| |#3|) $) NIL (|has| |#1| (-370)))) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2556 (((-3 $ "failed") $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1163)) (|has| |#1| (-370))))) (-1623 (((-112) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-4076 (($ $ (-930)) NIL)) (-3926 (($ (-1 |#1| (-572)) $) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-572)) 18) (($ $ (-1093) (-572)) NIL) (($ $ (-652 (-1093)) (-652 (-572))) NIL)) (-3654 (($ $ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-2427 (($ $ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-370)))) (-3116 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4411 (($ (-572) (-1271 |#1| |#2| |#3|)) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-3034 (($ $) 27 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 28 (|has| |#1| (-38 (-415 (-572)))))) (-3815 (($) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1163)) (|has| |#1| (-370))) CONST)) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2340 (($ $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-313)) (|has| |#1| (-370))))) (-3462 (((-1271 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-4218 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2772 (($ $ (-572)) NIL)) (-2834 (((-3 $ "failed") $ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-572))))) (($ $ (-1188) (-1271 |#1| |#2| |#3|)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-522 (-1188) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 (-1271 |#1| |#2| |#3|))) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-522 (-1188) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-300 (-1271 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-300 (-1271 |#1| |#2| |#3|))) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-1271 |#1| |#2| |#3|)) (-652 (-1271 |#1| |#2| |#3|))) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))))) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ (-572)) NIL) (($ $ $) NIL (|has| (-572) (-1123))) (($ $ (-1271 |#1| |#2| |#3|)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-292 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3902 (($ $ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) NIL (|has| |#1| (-370))) (($ $ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) (-779)) NIL (|has| |#1| (-370))) (($ $ (-1275 |#2|)) 26) (($ $ (-779)) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 25 (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-1520 (($ $) NIL (|has| |#1| (-370)))) (-2974 (((-1271 |#1| |#2| |#3|) $) NIL (|has| |#1| (-370)))) (-4390 (((-572) $) NIL)) (-2397 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1835 (((-544) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-622 (-544))) (|has| |#1| (-370)))) (((-386) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1033)) (|has| |#1| (-370)))) (((-227) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1033)) (|has| |#1| (-370)))) (((-901 (-386)) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-622 (-901 (-386)))) (|has| |#1| (-370)))) (((-901 (-572)) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-622 (-901 (-572)))) (|has| |#1| (-370))))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-2590 (($ $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1271 |#1| |#2| |#3|)) NIL) (($ (-1275 |#2|)) 24) (($ (-1188)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (($ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564)))) (($ (-415 (-572))) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))) (|has| |#1| (-38 (-415 (-572))))))) (-3979 ((|#1| $ (-572)) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-146)) (|has| |#1| (-370))) (|has| |#1| (-146))))) (-4249 (((-779)) NIL T CONST)) (-3356 ((|#1| $) 11)) (-3614 (((-1271 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-2409 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-572)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2700 (($ $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2131 (($) 20 T CONST)) (-2143 (($) 15 T CONST)) (-3608 (($ $ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) NIL (|has| |#1| (-370))) (($ $ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) (-779)) NIL (|has| |#1| (-370))) (($ $ (-779)) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-3039 (((-112) $ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3014 (((-112) $ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-2978 (((-112) $ $) NIL)) (-3026 (((-112) $ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3003 (((-112) $ $) NIL (-2813 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370))) (($ (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 22)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1271 |#1| |#2| |#3|)) NIL (|has| |#1| (-370))) (($ (-1271 |#1| |#2| |#3|) $) NIL (|has| |#1| (-370))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-1243 |#1| |#2| |#3|) (-13 (-1241 |#1| (-1271 |#1| |#2| |#3|)) (-10 -8 (-15 -2940 ($ (-1275 |#2|))) (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1243))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
-(-13 (-1241 |#1| (-1271 |#1| |#2| |#3|)) (-10 -8 (-15 -2940 ($ (-1275 |#2|))) (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|)))
-((-3204 (((-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))) |#1| (-112)) 13)) (-3832 (((-426 |#1|) |#1|) 26)) (-4218 (((-426 |#1|) |#1|) 24)))
-(((-1244 |#1|) (-10 -7 (-15 -4218 ((-426 |#1|) |#1|)) (-15 -3832 ((-426 |#1|) |#1|)) (-15 -3204 ((-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))) |#1| (-112)))) (-1255 (-572))) (T -1244))
-((-3204 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| *3) (|:| -2866 (-572))))))) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))) (-3832 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))))
-(-10 -7 (-15 -4218 ((-426 |#1|) |#1|)) (-15 -3832 ((-426 |#1|) |#1|)) (-15 -3204 ((-2 (|:| |contp| (-572)) (|:| -4225 (-652 (-2 (|:| |irr| |#1|) (|:| -2866 (-572)))))) |#1| (-112))))
-((-1776 (((-1168 |#2|) (-1 |#2| |#1|) (-1246 |#1|)) 23 (|has| |#1| (-856))) (((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|)) 17)))
-(((-1245 |#1| |#2|) (-10 -7 (-15 -1776 ((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) (IF (|has| |#1| (-856)) (-15 -1776 ((-1168 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) |%noBranch|)) (-1229) (-1229)) (T -1245))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-856)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1168 *6)) (-5 *1 (-1245 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6)))))
-(-10 -7 (-15 -1776 ((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) (IF (|has| |#1| (-856)) (-15 -1776 ((-1168 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) |%noBranch|))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3239 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1776 (((-1168 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-856)))) (-1945 ((|#1| $) 15)) (-2811 ((|#1| $) 12)) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1953 (((-572) $) 19)) (-3157 ((|#1| $) 18)) (-1964 ((|#1| $) 13)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3415 (((-112) $) 17)) (-2127 (((-1168 |#1|) $) 41 (|has| |#1| (-856))) (((-1168 |#1|) (-652 $)) 40 (|has| |#1| (-856)))) (-1835 (($ |#1|) 26)) (-2940 (($ (-1105 |#1|)) 25) (((-870) $) 37 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4275 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2728 (($ $ (-572)) 14)) (-2978 (((-112) $ $) 30 (|has| |#1| (-1111)))))
-(((-1246 |#1|) (-13 (-1104 |#1|) (-10 -8 (-15 -4275 ($ |#1|)) (-15 -3239 ($ |#1|)) (-15 -2940 ($ (-1105 |#1|))) (-15 -3415 ((-112) $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-1106 |#1| (-1168 |#1|))) |%noBranch|))) (-1229)) (T -1246))
-((-4275 (*1 *1 *2) (-12 (-5 *1 (-1246 *2)) (-4 *2 (-1229)))) (-3239 (*1 *1 *2) (-12 (-5 *1 (-1246 *2)) (-4 *2 (-1229)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-1105 *3)) (-4 *3 (-1229)) (-5 *1 (-1246 *3)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1246 *3)) (-4 *3 (-1229)))))
-(-13 (-1104 |#1|) (-10 -8 (-15 -4275 ($ |#1|)) (-15 -3239 ($ |#1|)) (-15 -2940 ($ (-1105 |#1|))) (-15 -3415 ((-112) $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-1106 |#1| (-1168 |#1|))) |%noBranch|)))
-((-1776 (((-1252 |#3| |#4|) (-1 |#4| |#2|) (-1252 |#1| |#2|)) 15)))
-(((-1247 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 ((-1252 |#3| |#4|) (-1 |#4| |#2|) (-1252 |#1| |#2|)))) (-1188) (-1060) (-1188) (-1060)) (T -1247))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1252 *5 *6)) (-14 *5 (-1188)) (-4 *6 (-1060)) (-4 *8 (-1060)) (-5 *2 (-1252 *7 *8)) (-5 *1 (-1247 *5 *6 *7 *8)) (-14 *7 (-1188)))))
-(-10 -7 (-15 -1776 ((-1252 |#3| |#4|) (-1 |#4| |#2|) (-1252 |#1| |#2|))))
-((-1848 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4241 ((|#1| |#3|) 13)) (-4386 ((|#3| |#3|) 19)))
-(((-1248 |#1| |#2| |#3|) (-10 -7 (-15 -4241 (|#1| |#3|)) (-15 -4386 (|#3| |#3|)) (-15 -1848 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-564) (-1003 |#1|) (-1255 |#2|)) (T -1248))
-((-1848 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1248 *4 *5 *3)) (-4 *3 (-1255 *5)))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-564)) (-4 *4 (-1003 *3)) (-5 *1 (-1248 *3 *4 *2)) (-4 *2 (-1255 *4)))) (-4241 (*1 *2 *3) (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-1248 *2 *4 *3)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -4241 (|#1| |#3|)) (-15 -4386 (|#3| |#3|)) (-15 -1848 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2115 (((-3 |#2| "failed") |#2| (-779) |#1|) 35)) (-2864 (((-3 |#2| "failed") |#2| (-779)) 36)) (-2614 (((-3 (-2 (|:| -3888 |#2|) (|:| -3901 |#2|)) "failed") |#2|) 50)) (-2741 (((-652 |#2|) |#2|) 52)) (-3108 (((-3 |#2| "failed") |#2| |#2|) 46)))
-(((-1249 |#1| |#2|) (-10 -7 (-15 -2864 ((-3 |#2| "failed") |#2| (-779))) (-15 -2115 ((-3 |#2| "failed") |#2| (-779) |#1|)) (-15 -3108 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2614 ((-3 (-2 (|:| -3888 |#2|) (|:| -3901 |#2|)) "failed") |#2|)) (-15 -2741 ((-652 |#2|) |#2|))) (-13 (-564) (-148)) (-1255 |#1|)) (T -1249))
-((-2741 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-148))) (-5 *2 (-652 *3)) (-5 *1 (-1249 *4 *3)) (-4 *3 (-1255 *4)))) (-2614 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-564) (-148))) (-5 *2 (-2 (|:| -3888 *3) (|:| -3901 *3))) (-5 *1 (-1249 *4 *3)) (-4 *3 (-1255 *4)))) (-3108 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1249 *3 *2)) (-4 *2 (-1255 *3)))) (-2115 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-779)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-1249 *4 *2)) (-4 *2 (-1255 *4)))) (-2864 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-779)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-1249 *4 *2)) (-4 *2 (-1255 *4)))))
-(-10 -7 (-15 -2864 ((-3 |#2| "failed") |#2| (-779))) (-15 -2115 ((-3 |#2| "failed") |#2| (-779) |#1|)) (-15 -3108 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2614 ((-3 (-2 (|:| -3888 |#2|) (|:| -3901 |#2|)) "failed") |#2|)) (-15 -2741 ((-652 |#2|) |#2|)))
-((-3177 (((-3 (-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) "failed") |#2| |#2|) 30)))
-(((-1250 |#1| |#2|) (-10 -7 (-15 -3177 ((-3 (-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) "failed") |#2| |#2|))) (-564) (-1255 |#1|)) (T -1250))
-((-3177 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-564)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-1250 *4 *3)) (-4 *3 (-1255 *4)))))
-(-10 -7 (-15 -3177 ((-3 (-2 (|:| -4215 |#2|) (|:| -3669 |#2|)) "failed") |#2| |#2|)))
-((-3312 ((|#2| |#2| |#2|) 22)) (-3707 ((|#2| |#2| |#2|) 36)) (-4019 ((|#2| |#2| |#2| (-779) (-779)) 44)))
-(((-1251 |#1| |#2|) (-10 -7 (-15 -3312 (|#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2|)) (-15 -4019 (|#2| |#2| |#2| (-779) (-779)))) (-1060) (-1255 |#1|)) (T -1251))
-((-4019 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *1 (-1251 *4 *2)) (-4 *2 (-1255 *4)))) (-3707 (*1 *2 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1255 *3)))) (-3312 (*1 *2 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1255 *3)))))
-(-10 -7 (-15 -3312 (|#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2|)) (-15 -4019 (|#2| |#2| |#2| (-779) (-779))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4166 (((-1279 |#2|) $ (-779)) NIL)) (-4353 (((-652 (-1093)) $) NIL)) (-3169 (($ (-1184 |#2|)) NIL)) (-4191 (((-1184 $) $ (-1093)) NIL) (((-1184 |#2|) $) NIL)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-3009 (($ $) NIL (|has| |#2| (-564)))) (-4334 (((-112) $) NIL (|has| |#2| (-564)))) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-1093))) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3453 (($ $ $) NIL (|has| |#2| (-564)))) (-2603 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3517 (($ $) NIL (|has| |#2| (-460)))) (-2287 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4217 (((-112) $ $) NIL (|has| |#2| (-370)))) (-1492 (($ $ (-779)) NIL)) (-4157 (($ $ (-779)) NIL)) (-2200 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-460)))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-1093) "failed") $) NIL)) (-2204 ((|#2| $) NIL) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-1093) $) NIL)) (-2361 (($ $ $ (-1093)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2780 (($ $ $) NIL (|has| |#2| (-370)))) (-1390 (($ $) NIL)) (-2993 (((-697 (-572)) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2792 (($ $ $) NIL (|has| |#2| (-370)))) (-2457 (($ $ $) NIL)) (-1809 (($ $ $) NIL (|has| |#2| (-564)))) (-3038 (((-2 (|:| -1857 |#2|) (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#2| (-564)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#2| (-370)))) (-1876 (($ $) NIL (|has| |#2| (-460))) (($ $ (-1093)) NIL (|has| |#2| (-460)))) (-1378 (((-652 $) $) NIL)) (-3879 (((-112) $) NIL (|has| |#2| (-918)))) (-1437 (($ $ |#2| (-779) $) NIL)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1093) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1093) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-2956 (((-779) $ $) NIL (|has| |#2| (-564)))) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-2556 (((-3 $ "failed") $) NIL (|has| |#2| (-1163)))) (-4343 (($ (-1184 |#2|) (-1093)) NIL) (($ (-1184 $) (-1093)) NIL)) (-4076 (($ $ (-779)) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#2| (-370)))) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-4333 (($ |#2| (-779)) 18) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-1093)) NIL) (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL)) (-2649 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-2497 (($ (-1 (-779) (-779)) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-2297 (((-1184 |#2|) $) NIL)) (-3928 (((-3 (-1093) "failed") $) NIL)) (-1357 (($ $) NIL)) (-1368 ((|#2| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-4347 (((-1170) $) NIL)) (-2507 (((-2 (|:| -4215 $) (|:| -3669 $)) $ (-779)) NIL)) (-4011 (((-3 (-652 $) "failed") $) NIL)) (-3665 (((-3 (-652 $) "failed") $) NIL)) (-1920 (((-3 (-2 (|:| |var| (-1093)) (|:| -1679 (-779))) "failed") $) NIL)) (-3034 (($ $) NIL (|has| |#2| (-38 (-415 (-572)))))) (-3815 (($) NIL (|has| |#2| (-1163)) CONST)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 ((|#2| $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-2870 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-3070 (($ $ (-779) |#2| $) NIL)) (-4300 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4218 (((-426 $) $) NIL (|has| |#2| (-918)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#2| (-370)))) (-2834 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#2| (-370)))) (-2641 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#2|) NIL) (($ $ (-652 (-1093)) (-652 |#2|)) NIL) (($ $ (-1093) $) NIL) (($ $ (-652 (-1093)) (-652 $)) NIL)) (-3847 (((-779) $) NIL (|has| |#2| (-370)))) (-2196 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-415 $) (-415 $) (-415 $)) NIL (|has| |#2| (-564))) ((|#2| (-415 $) |#2|) NIL (|has| |#2| (-370))) (((-415 $) $ (-415 $)) NIL (|has| |#2| (-564)))) (-1580 (((-3 $ "failed") $ (-779)) NIL)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#2| (-370)))) (-3537 (($ $ (-1093)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3902 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4390 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-1835 (((-901 (-386)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1093) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-1711 ((|#2| $) NIL (|has| |#2| (-460))) (($ $ (-1093)) NIL (|has| |#2| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-4039 (((-3 $ "failed") $ $) NIL (|has| |#2| (-564))) (((-3 (-415 $) "failed") (-415 $) $) NIL (|has| |#2| (-564)))) (-2940 (((-870) $) 13) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-1093)) NIL) (($ (-1275 |#1|)) 20) (($ (-415 (-572))) NIL (-2813 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#2| (-564)))) (-4268 (((-652 |#2|) $) NIL)) (-3979 ((|#2| $ (-779)) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-3849 (((-3 $ "failed") $) NIL (-2813 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2131 (($) NIL T CONST)) (-2143 (($) 14 T CONST)) (-3608 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1252 |#1| |#2|) (-13 (-1255 |#2|) (-624 (-1275 |#1|)) (-10 -8 (-15 -3070 ($ $ (-779) |#2| $)))) (-1188) (-1060)) (T -1252))
-((-3070 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1252 *4 *3)) (-14 *4 (-1188)) (-4 *3 (-1060)))))
-(-13 (-1255 |#2|) (-624 (-1275 |#1|)) (-10 -8 (-15 -3070 ($ $ (-779) |#2| $))))
-((-1776 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) (-1060) (-1255 |#1|) (-1060) (-1255 |#3|)) (T -1253))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-4 *2 (-1255 *6)) (-5 *1 (-1253 *5 *4 *6 *2)) (-4 *4 (-1255 *5)))))
-(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)))
-((-4166 (((-1279 |#2|) $ (-779)) 129)) (-4353 (((-652 (-1093)) $) 16)) (-3169 (($ (-1184 |#2|)) 80)) (-2418 (((-779) $) NIL) (((-779) $ (-652 (-1093))) 21)) (-2603 (((-426 (-1184 $)) (-1184 $)) 204)) (-3517 (($ $) 194)) (-2287 (((-426 $) $) 192)) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 95)) (-1492 (($ $ (-779)) 84)) (-4157 (($ $ (-779)) 86)) (-2200 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1695 (((-3 |#2| "failed") $) 132) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 (-1093) "failed") $) NIL)) (-2204 ((|#2| $) 130) (((-415 (-572)) $) NIL) (((-572) $) NIL) (((-1093) $) NIL)) (-1809 (($ $ $) 170)) (-3038 (((-2 (|:| -1857 |#2|) (|:| -4215 $) (|:| -3669 $)) $ $) 172)) (-2956 (((-779) $ $) 189)) (-2556 (((-3 $ "failed") $) 138)) (-4333 (($ |#2| (-779)) NIL) (($ $ (-1093) (-779)) 59) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-2649 (((-779) $) NIL) (((-779) $ (-1093)) 54) (((-652 (-779)) $ (-652 (-1093))) 55)) (-2297 (((-1184 |#2|) $) 72)) (-3928 (((-3 (-1093) "failed") $) 52)) (-2507 (((-2 (|:| -4215 $) (|:| -3669 $)) $ (-779)) 83)) (-3034 (($ $) 219)) (-3815 (($) 134)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 201)) (-4300 (((-426 (-1184 $)) (-1184 $)) 101)) (-1494 (((-426 (-1184 $)) (-1184 $)) 99)) (-4218 (((-426 $) $) 120)) (-2641 (($ $ (-652 (-300 $))) 51) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#2|) 39) (($ $ (-652 (-1093)) (-652 |#2|)) 36) (($ $ (-1093) $) 32) (($ $ (-652 (-1093)) (-652 $)) 30)) (-3847 (((-779) $) 207)) (-2196 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-415 $) (-415 $) (-415 $)) 164) ((|#2| (-415 $) |#2|) 206) (((-415 $) $ (-415 $)) 188)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 212)) (-3902 (($ $ (-1093)) 157) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) 155) (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-4390 (((-779) $) NIL) (((-779) $ (-1093)) 17) (((-652 (-779)) $ (-652 (-1093))) 23)) (-1711 ((|#2| $) NIL) (($ $ (-1093)) 140)) (-4039 (((-3 $ "failed") $ $) 180) (((-3 (-415 $) "failed") (-415 $) $) 176)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-1093)) 64) (($ (-415 (-572))) NIL) (($ $) NIL)))
-(((-1254 |#1| |#2|) (-10 -8 (-15 -2940 (|#1| |#1|)) (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -3815 (|#1|)) (-15 -2556 ((-3 |#1| "failed") |#1|)) (-15 -2196 ((-415 |#1|) |#1| (-415 |#1|))) (-15 -3847 ((-779) |#1|)) (-15 -1669 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -2196 (|#2| (-415 |#1|) |#2|)) (-15 -2200 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3038 ((-2 (|:| -1857 |#2|) (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -1809 (|#1| |#1| |#1|)) (-15 -4039 ((-3 (-415 |#1|) "failed") (-415 |#1|) |#1|)) (-15 -4039 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2956 ((-779) |#1| |#1|)) (-15 -2196 ((-415 |#1|) (-415 |#1|) (-415 |#1|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4157 (|#1| |#1| (-779))) (-15 -1492 (|#1| |#1| (-779))) (-15 -2507 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| (-779))) (-15 -3169 (|#1| (-1184 |#2|))) (-15 -2297 ((-1184 |#2|) |#1|)) (-15 -4166 ((-1279 |#2|) |#1| (-779))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -2196 (|#1| |#1| |#1|)) (-15 -2196 (|#2| |#1| |#2|)) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -2603 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -1494 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -4300 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3643 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -1711 (|#1| |#1| (-1093))) (-15 -4353 ((-652 (-1093)) |#1|)) (-15 -2418 ((-779) |#1| (-652 (-1093)))) (-15 -2418 ((-779) |#1|)) (-15 -4333 (|#1| |#1| (-652 (-1093)) (-652 (-779)))) (-15 -4333 (|#1| |#1| (-1093) (-779))) (-15 -2649 ((-652 (-779)) |#1| (-652 (-1093)))) (-15 -2649 ((-779) |#1| (-1093))) (-15 -3928 ((-3 (-1093) "failed") |#1|)) (-15 -4390 ((-652 (-779)) |#1| (-652 (-1093)))) (-15 -4390 ((-779) |#1| (-1093))) (-15 -2940 (|#1| (-1093))) (-15 -1695 ((-3 (-1093) "failed") |#1|)) (-15 -2204 ((-1093) |#1|)) (-15 -2641 (|#1| |#1| (-652 (-1093)) (-652 |#1|))) (-15 -2641 (|#1| |#1| (-1093) |#1|)) (-15 -2641 (|#1| |#1| (-652 (-1093)) (-652 |#2|))) (-15 -2641 (|#1| |#1| (-1093) |#2|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -4390 ((-779) |#1|)) (-15 -4333 (|#1| |#2| (-779))) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -2649 ((-779) |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -3902 (|#1| |#1| (-652 (-1093)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1093) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1093)))) (-15 -3902 (|#1| |#1| (-1093))) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|))) (-1255 |#2|) (-1060)) (T -1254))
-NIL
-(-10 -8 (-15 -2940 (|#1| |#1|)) (-15 -3126 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2287 ((-426 |#1|) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -3815 (|#1|)) (-15 -2556 ((-3 |#1| "failed") |#1|)) (-15 -2196 ((-415 |#1|) |#1| (-415 |#1|))) (-15 -3847 ((-779) |#1|)) (-15 -1669 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -2196 (|#2| (-415 |#1|) |#2|)) (-15 -2200 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3038 ((-2 (|:| -1857 |#2|) (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| |#1|)) (-15 -1809 (|#1| |#1| |#1|)) (-15 -4039 ((-3 (-415 |#1|) "failed") (-415 |#1|) |#1|)) (-15 -4039 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2956 ((-779) |#1| |#1|)) (-15 -2196 ((-415 |#1|) (-415 |#1|) (-415 |#1|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4157 (|#1| |#1| (-779))) (-15 -1492 (|#1| |#1| (-779))) (-15 -2507 ((-2 (|:| -4215 |#1|) (|:| -3669 |#1|)) |#1| (-779))) (-15 -3169 (|#1| (-1184 |#2|))) (-15 -2297 ((-1184 |#2|) |#1|)) (-15 -4166 ((-1279 |#2|) |#1| (-779))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3902 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1188) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1188)))) (-15 -3902 (|#1| |#1| (-1188))) (-15 -3902 (|#1| |#1|)) (-15 -3902 (|#1| |#1| (-779))) (-15 -2196 (|#1| |#1| |#1|)) (-15 -2196 (|#2| |#1| |#2|)) (-15 -4218 ((-426 |#1|) |#1|)) (-15 -2603 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -1494 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -4300 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3643 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -1711 (|#1| |#1| (-1093))) (-15 -4353 ((-652 (-1093)) |#1|)) (-15 -2418 ((-779) |#1| (-652 (-1093)))) (-15 -2418 ((-779) |#1|)) (-15 -4333 (|#1| |#1| (-652 (-1093)) (-652 (-779)))) (-15 -4333 (|#1| |#1| (-1093) (-779))) (-15 -2649 ((-652 (-779)) |#1| (-652 (-1093)))) (-15 -2649 ((-779) |#1| (-1093))) (-15 -3928 ((-3 (-1093) "failed") |#1|)) (-15 -4390 ((-652 (-779)) |#1| (-652 (-1093)))) (-15 -4390 ((-779) |#1| (-1093))) (-15 -2940 (|#1| (-1093))) (-15 -1695 ((-3 (-1093) "failed") |#1|)) (-15 -2204 ((-1093) |#1|)) (-15 -2641 (|#1| |#1| (-652 (-1093)) (-652 |#1|))) (-15 -2641 (|#1| |#1| (-1093) |#1|)) (-15 -2641 (|#1| |#1| (-652 (-1093)) (-652 |#2|))) (-15 -2641 (|#1| |#1| (-1093) |#2|)) (-15 -2641 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -2641 (|#1| |#1| |#1| |#1|)) (-15 -2641 (|#1| |#1| (-300 |#1|))) (-15 -2641 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -4390 ((-779) |#1|)) (-15 -4333 (|#1| |#2| (-779))) (-15 -1695 ((-3 (-572) "failed") |#1|)) (-15 -2204 ((-572) |#1|)) (-15 -1695 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2204 ((-415 (-572)) |#1|)) (-15 -2204 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2940 (|#1| |#2|)) (-15 -2649 ((-779) |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -3902 (|#1| |#1| (-652 (-1093)) (-652 (-779)))) (-15 -3902 (|#1| |#1| (-1093) (-779))) (-15 -3902 (|#1| |#1| (-652 (-1093)))) (-15 -3902 (|#1| |#1| (-1093))) (-15 -2940 (|#1| (-572))) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4166 (((-1279 |#1|) $ (-779)) 243)) (-4353 (((-652 (-1093)) $) 112)) (-3169 (($ (-1184 |#1|)) 241)) (-4191 (((-1184 $) $ (-1093)) 127) (((-1184 |#1|) $) 126)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 89 (|has| |#1| (-564)))) (-3009 (($ $) 90 (|has| |#1| (-564)))) (-4334 (((-112) $) 92 (|has| |#1| (-564)))) (-2418 (((-779) $) 114) (((-779) $ (-652 (-1093))) 113)) (-3330 (((-3 $ "failed") $ $) 20)) (-3453 (($ $ $) 228 (|has| |#1| (-564)))) (-2603 (((-426 (-1184 $)) (-1184 $)) 102 (|has| |#1| (-918)))) (-3517 (($ $) 100 (|has| |#1| (-460)))) (-2287 (((-426 $) $) 99 (|has| |#1| (-460)))) (-3643 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 105 (|has| |#1| (-918)))) (-4217 (((-112) $ $) 213 (|has| |#1| (-370)))) (-1492 (($ $ (-779)) 236)) (-4157 (($ $ (-779)) 235)) (-2200 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 223 (|has| |#1| (-460)))) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-415 (-572)) "failed") $) 165 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 163 (|has| |#1| (-1049 (-572)))) (((-3 (-1093) "failed") $) 140)) (-2204 ((|#1| $) 167) (((-415 (-572)) $) 166 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 164 (|has| |#1| (-1049 (-572)))) (((-1093) $) 141)) (-2361 (($ $ $ (-1093)) 110 (|has| |#1| (-174))) ((|#1| $ $) 231 (|has| |#1| (-174)))) (-2780 (($ $ $) 217 (|has| |#1| (-370)))) (-1390 (($ $) 158)) (-2993 (((-697 (-572)) (-1279 $)) 138 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 137 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 136 (|has| |#1| (-647 (-572)))) (((-2 (|:| -3544 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 135) (((-697 |#1|) (-697 $)) 134) (((-697 |#1|) (-1279 $)) 133)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 216 (|has| |#1| (-370)))) (-2457 (($ $ $) 234)) (-1809 (($ $ $) 225 (|has| |#1| (-564)))) (-3038 (((-2 (|:| -1857 |#1|) (|:| -4215 $) (|:| -3669 $)) $ $) 224 (|has| |#1| (-564)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 211 (|has| |#1| (-370)))) (-1876 (($ $) 180 (|has| |#1| (-460))) (($ $ (-1093)) 107 (|has| |#1| (-460)))) (-1378 (((-652 $) $) 111)) (-3879 (((-112) $) 98 (|has| |#1| (-918)))) (-1437 (($ $ |#1| (-779) $) 176)) (-1594 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 86 (-12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 85 (-12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2956 (((-779) $ $) 229 (|has| |#1| (-564)))) (-1886 (((-112) $) 35)) (-4368 (((-779) $) 173)) (-2556 (((-3 $ "failed") $) 209 (|has| |#1| (-1163)))) (-4343 (($ (-1184 |#1|) (-1093)) 119) (($ (-1184 $) (-1093)) 118)) (-4076 (($ $ (-779)) 240)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 220 (|has| |#1| (-370)))) (-1843 (((-652 $) $) 128)) (-2438 (((-112) $) 156)) (-4333 (($ |#1| (-779)) 157) (($ $ (-1093) (-779)) 121) (($ $ (-652 (-1093)) (-652 (-779))) 120)) (-2676 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $ (-1093)) 122) (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 238)) (-2649 (((-779) $) 174) (((-779) $ (-1093)) 124) (((-652 (-779)) $ (-652 (-1093))) 123)) (-2497 (($ (-1 (-779) (-779)) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-2297 (((-1184 |#1|) $) 242)) (-3928 (((-3 (-1093) "failed") $) 125)) (-1357 (($ $) 153)) (-1368 ((|#1| $) 152)) (-2825 (($ (-652 $)) 96 (|has| |#1| (-460))) (($ $ $) 95 (|has| |#1| (-460)))) (-4347 (((-1170) $) 10)) (-2507 (((-2 (|:| -4215 $) (|:| -3669 $)) $ (-779)) 237)) (-4011 (((-3 (-652 $) "failed") $) 116)) (-3665 (((-3 (-652 $) "failed") $) 117)) (-1920 (((-3 (-2 (|:| |var| (-1093)) (|:| -1679 (-779))) "failed") $) 115)) (-3034 (($ $) 221 (|has| |#1| (-38 (-415 (-572)))))) (-3815 (($) 208 (|has| |#1| (-1163)) CONST)) (-3964 (((-1131) $) 11)) (-1336 (((-112) $) 170)) (-1347 ((|#1| $) 171)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 97 (|has| |#1| (-460)))) (-2870 (($ (-652 $)) 94 (|has| |#1| (-460))) (($ $ $) 93 (|has| |#1| (-460)))) (-4300 (((-426 (-1184 $)) (-1184 $)) 104 (|has| |#1| (-918)))) (-1494 (((-426 (-1184 $)) (-1184 $)) 103 (|has| |#1| (-918)))) (-4218 (((-426 $) $) 101 (|has| |#1| (-918)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 219 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 218 (|has| |#1| (-370)))) (-2834 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 212 (|has| |#1| (-370)))) (-2641 (($ $ (-652 (-300 $))) 149) (($ $ (-300 $)) 148) (($ $ $ $) 147) (($ $ (-652 $) (-652 $)) 146) (($ $ (-1093) |#1|) 145) (($ $ (-652 (-1093)) (-652 |#1|)) 144) (($ $ (-1093) $) 143) (($ $ (-652 (-1093)) (-652 $)) 142)) (-3847 (((-779) $) 214 (|has| |#1| (-370)))) (-2196 ((|#1| $ |#1|) 261) (($ $ $) 260) (((-415 $) (-415 $) (-415 $)) 230 (|has| |#1| (-564))) ((|#1| (-415 $) |#1|) 222 (|has| |#1| (-370))) (((-415 $) $ (-415 $)) 210 (|has| |#1| (-564)))) (-1580 (((-3 $ "failed") $ (-779)) 239)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 215 (|has| |#1| (-370)))) (-3537 (($ $ (-1093)) 109 (|has| |#1| (-174))) ((|#1| $) 232 (|has| |#1| (-174)))) (-3902 (($ $ (-1093)) 46) (($ $ (-652 (-1093))) 45) (($ $ (-1093) (-779)) 44) (($ $ (-652 (-1093)) (-652 (-779))) 43) (($ $ (-779)) 258) (($ $) 257) (($ $ (-1188)) 255 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 254 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 253 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 252 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 245) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) $) 233)) (-4390 (((-779) $) 154) (((-779) $ (-1093)) 132) (((-652 (-779)) $ (-652 (-1093))) 131)) (-1835 (((-901 (-386)) $) 84 (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) 83 (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) 82 (-12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-1711 ((|#1| $) 179 (|has| |#1| (-460))) (($ $ (-1093)) 108 (|has| |#1| (-460)))) (-1318 (((-3 (-1279 $) "failed") (-697 $)) 106 (-2085 (|has| $ (-146)) (|has| |#1| (-918))))) (-4039 (((-3 $ "failed") $ $) 227 (|has| |#1| (-564))) (((-3 (-415 $) "failed") (-415 $) $) 226 (|has| |#1| (-564)))) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 169) (($ (-1093)) 139) (($ (-415 (-572))) 80 (-2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572)))))) (($ $) 87 (|has| |#1| (-564)))) (-4268 (((-652 |#1|) $) 172)) (-3979 ((|#1| $ (-779)) 159) (($ $ (-1093) (-779)) 130) (($ $ (-652 (-1093)) (-652 (-779))) 129)) (-3849 (((-3 $ "failed") $) 81 (-2813 (-2085 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-4249 (((-779)) 32 T CONST)) (-2099 (($ $ $ (-779)) 177 (|has| |#1| (-174)))) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 91 (|has| |#1| (-564)))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-1093)) 42) (($ $ (-652 (-1093))) 41) (($ $ (-1093) (-779)) 40) (($ $ (-652 (-1093)) (-652 (-779))) 39) (($ $ (-779)) 259) (($ $) 256) (($ $ (-1188)) 251 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 250 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 249 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 248 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 247) (($ $ (-1 |#1| |#1|)) 246)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 160 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 162 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 161 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 151) (($ $ |#1|) 150)))
-(((-1255 |#1|) (-141) (-1060)) (T -1255))
-((-4166 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-1255 *4)) (-4 *4 (-1060)) (-5 *2 (-1279 *4)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-5 *2 (-1184 *3)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1060)) (-4 *1 (-1255 *3)))) (-4076 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-1580 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-2676 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-1255 *3)))) (-2507 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-1255 *4)))) (-1492 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-2457 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)))) (-3902 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-174)))) (-2361 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-174)))) (-2196 (*1 *2 *2 *2) (-12 (-5 *2 (-415 *1)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-4 *3 (-564)))) (-2956 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-4 *3 (-564)) (-5 *2 (-779)))) (-3453 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))) (-4039 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))) (-4039 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-415 *1)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-4 *3 (-564)))) (-1809 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))) (-3038 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -1857 *3) (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-1255 *3)))) (-2200 (*1 *2 *1 *1) (-12 (-4 *3 (-460)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1255 *3)))) (-2196 (*1 *2 *3 *2) (-12 (-5 *3 (-415 *1)) (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-3034 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572)))))))
-(-13 (-958 |t#1| (-779) (-1093)) (-292 |t#1| |t#1|) (-292 $ $) (-237) (-233 |t#1|) (-10 -8 (-15 -4166 ((-1279 |t#1|) $ (-779))) (-15 -2297 ((-1184 |t#1|) $)) (-15 -3169 ($ (-1184 |t#1|))) (-15 -4076 ($ $ (-779))) (-15 -1580 ((-3 $ "failed") $ (-779))) (-15 -2676 ((-2 (|:| -4215 $) (|:| -3669 $)) $ $)) (-15 -2507 ((-2 (|:| -4215 $) (|:| -3669 $)) $ (-779))) (-15 -1492 ($ $ (-779))) (-15 -4157 ($ $ (-779))) (-15 -2457 ($ $ $)) (-15 -3902 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1163)) (-6 (-1163)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3537 (|t#1| $)) (-15 -2361 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-6 (-292 (-415 $) (-415 $))) (-15 -2196 ((-415 $) (-415 $) (-415 $))) (-15 -2956 ((-779) $ $)) (-15 -3453 ($ $ $)) (-15 -4039 ((-3 $ "failed") $ $)) (-15 -4039 ((-3 (-415 $) "failed") (-415 $) $)) (-15 -1809 ($ $ $)) (-15 -3038 ((-2 (|:| -1857 |t#1|) (|:| -4215 $) (|:| -3669 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-460)) (-15 -2200 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-370)) (PROGN (-6 (-313)) (-6 -4450) (-15 -2196 (|t#1| (-415 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-415 (-572)))) (-15 -3034 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-779)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) -2813 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 #2=(-1093)) . T) ((-624 |#1|) . T) ((-624 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-622 (-544)) -12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572))))) ((-235 $) . T) ((-233 |#1|) . T) ((-237) . T) ((-292 (-415 $) (-415 $)) |has| |#1| (-564)) ((-292 |#1| |#1|) . T) ((-292 $ $) . T) ((-296) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-315 $) . T) ((-332 |#1| #0#) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -2813 (|has| |#1| (-918)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-522 #2# |#1|) . T) ((-522 #2# $) . T) ((-522 $ $) . T) ((-564) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-654 #1#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) |has| |#1| (-38 (-415 (-572)))) ((-656 #3=(-572)) |has| |#1| (-647 (-572))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-647 #3#) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #1#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-734) . T) ((-909 #2#) . T) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-895 (-386)) -12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386)))) ((-895 (-572)) -12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))) ((-958 |#1| #0# #2#) . T) ((-918) |has| |#1| (-918)) ((-929) |has| |#1| (-370)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 #2#) . T) ((-1049 |#1|) . T) ((-1062 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-1163)) ((-1229) . T) ((-1233) |has| |#1| (-918)))
-((-4353 (((-652 (-1093)) $) 34)) (-1390 (($ $) 31)) (-4333 (($ |#2| |#3|) NIL) (($ $ (-1093) |#3|) 28) (($ $ (-652 (-1093)) (-652 |#3|)) 27)) (-1357 (($ $) 14)) (-1368 ((|#2| $) 12)) (-4390 ((|#3| $) 10)))
-(((-1256 |#1| |#2| |#3|) (-10 -8 (-15 -4353 ((-652 (-1093)) |#1|)) (-15 -4333 (|#1| |#1| (-652 (-1093)) (-652 |#3|))) (-15 -4333 (|#1| |#1| (-1093) |#3|)) (-15 -1390 (|#1| |#1|)) (-15 -4333 (|#1| |#2| |#3|)) (-15 -4390 (|#3| |#1|)) (-15 -1357 (|#1| |#1|)) (-15 -1368 (|#2| |#1|))) (-1257 |#2| |#3|) (-1060) (-800)) (T -1256))
-NIL
-(-10 -8 (-15 -4353 ((-652 (-1093)) |#1|)) (-15 -4333 (|#1| |#1| (-652 (-1093)) (-652 |#3|))) (-15 -4333 (|#1| |#1| (-1093) |#3|)) (-15 -1390 (|#1| |#1|)) (-15 -4333 (|#1| |#2| |#3|)) (-15 -4390 (|#3| |#1|)) (-15 -1357 (|#1| |#1|)) (-15 -1368 (|#2| |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4353 (((-652 (-1093)) $) 86)) (-1487 (((-1188) $) 117)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-3009 (($ $) 64 (|has| |#1| (-564)))) (-4334 (((-112) $) 66 (|has| |#1| (-564)))) (-3762 (($ $ |#2|) 112) (($ $ |#2| |#2|) 111)) (-1899 (((-1168 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 118)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-1390 (($ $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-2579 (((-112) $) 85)) (-2956 ((|#2| $) 114) ((|#2| $ |#2|) 113)) (-1886 (((-112) $) 35)) (-4076 (($ $ (-930)) 115)) (-2438 (((-112) $) 74)) (-4333 (($ |#1| |#2|) 73) (($ $ (-1093) |#2|) 88) (($ $ (-652 (-1093)) (-652 |#2|)) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1357 (($ $) 77)) (-1368 ((|#1| $) 78)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2772 (($ $ |#2|) 109)) (-2834 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-2641 (((-1168 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2196 ((|#1| $ |#2|) 119) (($ $ $) 95 (|has| |#2| (-1123)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1188) (-779)) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-652 (-1188))) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1188)) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4390 ((|#2| $) 76)) (-2590 (($ $) 84)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3979 ((|#1| $ |#2|) 71)) (-3849 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-3356 ((|#1| $) 116)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 65 (|has| |#1| (-564)))) (-3548 ((|#1| $ |#2|) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) 107 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1188) (-779)) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-652 (-1188))) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1188)) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-779)) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
-(((-1257 |#1| |#2|) (-141) (-1060) (-800)) (T -1257))
-((-1899 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-1168 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-1188)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1257 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))) (-4076 (*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-2956 (*1 *2 *1 *2) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-3762 (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-3762 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1257 *2 *3)) (-4 *3 (-800)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2940 (*2 (-1188)))) (-4 *2 (-1060)))) (-2772 (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1168 *3)))))
-(-13 (-984 |t#1| |t#2| (-1093)) (-292 |t#2| |t#1|) (-10 -8 (-15 -1899 ((-1168 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1487 ((-1188) $)) (-15 -3356 (|t#1| $)) (-15 -4076 ($ $ (-930))) (-15 -2956 (|t#2| $)) (-15 -2956 (|t#2| $ |t#2|)) (-15 -3762 ($ $ |t#2|)) (-15 -3762 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2940 (|t#1| (-1188)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3548 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2772 ($ $ |t#2|)) (IF (|has| |t#2| (-1123)) (-6 (-292 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-237)) (IF (|has| |t#1| (-909 (-1188))) (-6 (-909 (-1188))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2641 ((-1168 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-292 |#2| |#1|) . T) ((-292 $ $) |has| |#2| (-1123)) ((-296) |has| |#1| (-564)) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| |#2| (-1093)) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) . T))
-((-3517 ((|#2| |#2|) 12)) (-2287 (((-426 |#2|) |#2|) 14)) (-2555 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572)))) 30)))
-(((-1258 |#1| |#2|) (-10 -7 (-15 -2287 ((-426 |#2|) |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -2555 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572)))))) (-564) (-13 (-1255 |#1|) (-564) (-10 -8 (-15 -2870 ($ $ $))))) (T -1258))
-((-2555 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-572)))) (-4 *4 (-13 (-1255 *3) (-564) (-10 -8 (-15 -2870 ($ $ $))))) (-4 *3 (-564)) (-5 *1 (-1258 *3 *4)))) (-3517 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-13 (-1255 *3) (-564) (-10 -8 (-15 -2870 ($ $ $))))))) (-2287 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-426 *3)) (-5 *1 (-1258 *4 *3)) (-4 *3 (-13 (-1255 *4) (-564) (-10 -8 (-15 -2870 ($ $ $))))))))
-(-10 -7 (-15 -2287 ((-426 |#2|) |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -2555 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572))))))
-((-1776 (((-1264 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1264 |#1| |#3| |#5|)) 24)))
-(((-1259 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1776 ((-1264 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1264 |#1| |#3| |#5|)))) (-1060) (-1060) (-1188) (-1188) |#1| |#2|) (T -1259))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5 *7 *9)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-14 *7 (-1188)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1264 *6 *8 *10)) (-5 *1 (-1259 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1188)))))
-(-10 -7 (-15 -1776 ((-1264 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1264 |#1| |#3| |#5|))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4353 (((-652 (-1093)) $) 86)) (-1487 (((-1188) $) 117)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-3009 (($ $) 64 (|has| |#1| (-564)))) (-4334 (((-112) $) 66 (|has| |#1| (-564)))) (-3762 (($ $ (-415 (-572))) 112) (($ $ (-415 (-572)) (-415 (-572))) 111)) (-1899 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) 118)) (-2358 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 176 (|has| |#1| (-370)))) (-2287 (((-426 $) $) 177 (|has| |#1| (-370)))) (-4227 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-4217 (((-112) $ $) 167 (|has| |#1| (-370)))) (-2338 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) 185)) (-2384 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) 18 T CONST)) (-2780 (($ $ $) 171 (|has| |#1| (-370)))) (-1390 (($ $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 170 (|has| |#1| (-370)))) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 165 (|has| |#1| (-370)))) (-3879 (((-112) $) 178 (|has| |#1| (-370)))) (-2579 (((-112) $) 85)) (-2997 (($) 159 (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-415 (-572)) $) 114) (((-415 (-572)) $ (-415 (-572))) 113)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 130 (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) 115) (($ $ (-415 (-572))) 184)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 174 (|has| |#1| (-370)))) (-2438 (((-112) $) 74)) (-4333 (($ |#1| (-415 (-572))) 73) (($ $ (-1093) (-415 (-572))) 88) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3116 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) 77)) (-1368 ((|#1| $) 78)) (-2825 (($ (-652 $)) 163 (|has| |#1| (-370))) (($ $ $) 162 (|has| |#1| (-370)))) (-4347 (((-1170) $) 10)) (-1322 (($ $) 179 (|has| |#1| (-370)))) (-3034 (($ $) 183 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 182 (-2813 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 164 (|has| |#1| (-370)))) (-2870 (($ (-652 $)) 161 (|has| |#1| (-370))) (($ $ $) 160 (|has| |#1| (-370)))) (-4218 (((-426 $) $) 175 (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 172 (|has| |#1| (-370)))) (-2772 (($ $ (-415 (-572))) 109)) (-2834 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 166 (|has| |#1| (-370)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-3847 (((-779) $) 168 (|has| |#1| (-370)))) (-2196 ((|#1| $ (-415 (-572))) 119) (($ $ $) 95 (|has| (-415 (-572)) (-1123)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 169 (|has| |#1| (-370)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188) (-779)) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-652 (-1188))) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188)) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-4390 (((-415 (-572)) $) 76)) (-2397 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) 84)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564)))) (-3979 ((|#1| $ (-415 (-572))) 71)) (-3849 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-3356 ((|#1| $) 116)) (-4379 (((-112) $ $) 9)) (-2436 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2409 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-415 (-572))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) 107 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188) (-779)) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-652 (-1188))) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188)) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-779)) 99 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 70 (|has| |#1| (-370))) (($ $ $) 181 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 180 (|has| |#1| (-370))) (($ $ $) 158 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 129 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
-(((-1260 |#1|) (-141) (-1060)) (T -1260))
-((-3620 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| *4)))) (-4 *4 (-1060)) (-4 *1 (-1260 *4)))) (-4076 (*1 *1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-4 *1 (-1260 *3)) (-4 *3 (-1060)))) (-3034 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572)))))) (-3034 (*1 *1 *1 *2) (-2813 (-12 (-5 *2 (-1188)) (-4 *1 (-1260 *3)) (-4 *3 (-1060)) (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214)) (-4 *3 (-38 (-415 (-572)))))) (-12 (-5 *2 (-1188)) (-4 *1 (-1260 *3)) (-4 *3 (-1060)) (-12 (|has| *3 (-15 -4353 ((-652 *2) *3))) (|has| *3 (-15 -3034 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572)))))))))
-(-13 (-1257 |t#1| (-415 (-572))) (-10 -8 (-15 -3620 ($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |t#1|))))) (-15 -4076 ($ $ (-415 (-572)))) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $)) (IF (|has| |t#1| (-15 -3034 (|t#1| |t#1| (-1188)))) (IF (|has| |t#1| (-15 -4353 ((-652 (-1188)) |t#1|))) (-15 -3034 ($ $ (-1188))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1214)) (IF (|has| |t#1| (-968)) (IF (|has| |t#1| (-29 (-572))) (-15 -3034 ($ $ (-1188))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1013)) (-6 (-1214))) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-415 (-572))) . T) ((-25) . T) ((-38 #1=(-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) ((-247) |has| |#1| (-370)) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 $ $) |has| (-415 (-572)) (-1123)) ((-296) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-370) |has| |#1| (-370)) ((-460) |has| |#1| (-370)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-564) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-654 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-725 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| #0# (-1093)) . T) ((-929) |has| |#1| (-370)) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1062 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1233) |has| |#1| (-370)) ((-1257 |#1| #0#) . T))
-((-2697 (((-112) $) 12)) (-1695 (((-3 |#3| "failed") $) 17)) (-2204 ((|#3| $) 14)))
-(((-1261 |#1| |#2| |#3|) (-10 -8 (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2204 (|#3| |#1|)) (-15 -2697 ((-112) |#1|))) (-1262 |#2| |#3|) (-1060) (-1239 |#2|)) (T -1261))
-NIL
-(-10 -8 (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2204 (|#3| |#1|)) (-15 -2697 ((-112) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4353 (((-652 (-1093)) $) 86)) (-1487 (((-1188) $) 117)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-3009 (($ $) 64 (|has| |#1| (-564)))) (-4334 (((-112) $) 66 (|has| |#1| (-564)))) (-3762 (($ $ (-415 (-572))) 112) (($ $ (-415 (-572)) (-415 (-572))) 111)) (-1899 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) 118)) (-2358 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 176 (|has| |#1| (-370)))) (-2287 (((-426 $) $) 177 (|has| |#1| (-370)))) (-4227 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-4217 (((-112) $ $) 167 (|has| |#1| (-370)))) (-2338 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) 185)) (-2384 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#2| "failed") $) 196)) (-2204 ((|#2| $) 197)) (-2780 (($ $ $) 171 (|has| |#1| (-370)))) (-1390 (($ $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-2069 (((-415 (-572)) $) 193)) (-2792 (($ $ $) 170 (|has| |#1| (-370)))) (-4422 (($ (-415 (-572)) |#2|) 194)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 165 (|has| |#1| (-370)))) (-3879 (((-112) $) 178 (|has| |#1| (-370)))) (-2579 (((-112) $) 85)) (-2997 (($) 159 (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-415 (-572)) $) 114) (((-415 (-572)) $ (-415 (-572))) 113)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 130 (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) 115) (($ $ (-415 (-572))) 184)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 174 (|has| |#1| (-370)))) (-2438 (((-112) $) 74)) (-4333 (($ |#1| (-415 (-572))) 73) (($ $ (-1093) (-415 (-572))) 88) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3116 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) 77)) (-1368 ((|#1| $) 78)) (-2825 (($ (-652 $)) 163 (|has| |#1| (-370))) (($ $ $) 162 (|has| |#1| (-370)))) (-4226 ((|#2| $) 192)) (-1404 (((-3 |#2| "failed") $) 190)) (-4411 ((|#2| $) 191)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 179 (|has| |#1| (-370)))) (-3034 (($ $) 183 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 182 (-2813 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 164 (|has| |#1| (-370)))) (-2870 (($ (-652 $)) 161 (|has| |#1| (-370))) (($ $ $) 160 (|has| |#1| (-370)))) (-4218 (((-426 $) $) 175 (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 172 (|has| |#1| (-370)))) (-2772 (($ $ (-415 (-572))) 109)) (-2834 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 166 (|has| |#1| (-370)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-3847 (((-779) $) 168 (|has| |#1| (-370)))) (-2196 ((|#1| $ (-415 (-572))) 119) (($ $ $) 95 (|has| (-415 (-572)) (-1123)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 169 (|has| |#1| (-370)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188) (-779)) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-652 (-1188))) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188)) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-4390 (((-415 (-572)) $) 76)) (-2397 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) 84)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 195) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564)))) (-3979 ((|#1| $ (-415 (-572))) 71)) (-3849 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-3356 ((|#1| $) 116)) (-4379 (((-112) $ $) 9)) (-2436 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2409 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-415 (-572))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) 107 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188) (-779)) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-652 (-1188))) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188)) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-779)) 99 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 70 (|has| |#1| (-370))) (($ $ $) 181 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 180 (|has| |#1| (-370))) (($ $ $) 158 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 129 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
-(((-1262 |#1| |#2|) (-141) (-1060) (-1239 |t#1|)) (T -1262))
-((-4390 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1239 *3)) (-5 *2 (-415 (-572))))) (-4422 (*1 *1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-4 *4 (-1060)) (-4 *1 (-1262 *4 *3)) (-4 *3 (-1239 *4)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1239 *3)) (-5 *2 (-415 (-572))))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))) (-4411 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))) (-1404 (*1 *2 *1) (|partial| -12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))))
-(-13 (-1260 |t#1|) (-1049 |t#2|) (-624 |t#2|) (-10 -8 (-15 -4422 ($ (-415 (-572)) |t#2|)) (-15 -2069 ((-415 (-572)) $)) (-15 -4226 (|t#2| $)) (-15 -4390 ((-415 (-572)) $)) (-15 -4411 (|t#2| $)) (-15 -1404 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-415 (-572))) . T) ((-25) . T) ((-38 #1=(-415 (-572))) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 |#2|) . T) ((-624 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) ((-247) |has| |#1| (-370)) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 $ $) |has| (-415 (-572)) (-1123)) ((-296) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-370) |has| |#1| (-370)) ((-460) |has| |#1| (-370)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-564) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-654 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-725 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| #0# (-1093)) . T) ((-929) |has| |#1| (-370)) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1049 |#2|) . T) ((-1062 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) -2813 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1233) |has| |#1| (-370)) ((-1257 |#1| #0#) . T) ((-1260 |#1|) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) 104)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3762 (($ $ (-415 (-572))) 116) (($ $ (-415 (-572)) (-415 (-572))) 118)) (-1899 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) 54)) (-2358 (($ $) 192 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 168 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2338 (($ $) 188 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 164 (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) 65)) (-2384 (($ $) 196 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 172 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL)) (-2204 ((|#2| $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) 85)) (-2069 (((-415 (-572)) $) 13)) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-4422 (($ (-415 (-572)) |#2|) 11)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3879 (((-112) $) NIL (|has| |#1| (-370)))) (-2579 (((-112) $) 74)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-415 (-572)) $) 113) (((-415 (-572)) $ (-415 (-572))) 114)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) 130) (($ $ (-415 (-572))) 128)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-415 (-572))) 33) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 125)) (-3116 (($ $) 162 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4226 ((|#2| $) 12)) (-1404 (((-3 |#2| "failed") $) 44)) (-4411 ((|#2| $) 45)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) 101 (|has| |#1| (-370)))) (-3034 (($ $) 146 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 151 (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214)))))) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2772 (($ $ (-415 (-572))) 122)) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1608 (($ $) 160 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ (-415 (-572))) 108) (($ $ $) 94 (|has| (-415 (-572)) (-1123)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) 138 (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-4390 (((-415 (-572)) $) 16)) (-2397 (($ $) 198 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 174 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 194 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 170 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 190 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 166 (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) 120)) (-2940 (((-870) $) NIL) (($ (-572)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-415 (-572))) 139 (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-3979 ((|#1| $ (-415 (-572))) 107)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) 127 T CONST)) (-3356 ((|#1| $) 106)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) 204 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 180 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) 200 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 176 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 208 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 184 (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-415 (-572))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) 210 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 186 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 206 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 182 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 202 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 178 (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 21 T CONST)) (-2143 (($) 17 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-2978 (((-112) $ $) 72)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) 100 (|has| |#1| (-370)))) (-3089 (($ $) 142) (($ $ $) 78)) (-3075 (($ $ $) 76)) (** (($ $ (-930)) NIL) (($ $ (-779)) 82) (($ $ (-572)) 157 (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 158 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-1263 |#1| |#2|) (-1262 |#1| |#2|) (-1060) (-1239 |#1|)) (T -1263))
-NIL
-(-1262 |#1| |#2|)
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) 11)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) NIL (|has| |#1| (-564)))) (-3762 (($ $ (-415 (-572))) NIL) (($ $ (-415 (-572)) (-415 (-572))) NIL)) (-1899 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) NIL)) (-2358 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-370)))) (-2287 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4217 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2338 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-1243 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1271 |#1| |#2| |#3|) "failed") $) 22)) (-2204 (((-1243 |#1| |#2| |#3|) $) NIL) (((-1271 |#1| |#2| |#3|) $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-370)))) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2069 (((-415 (-572)) $) 69)) (-2792 (($ $ $) NIL (|has| |#1| (-370)))) (-4422 (($ (-415 (-572)) (-1243 |#1| |#2| |#3|)) NIL)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3879 (((-112) $) NIL (|has| |#1| (-370)))) (-2579 (((-112) $) NIL)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-415 (-572)) $) NIL) (((-415 (-572)) $ (-415 (-572))) NIL)) (-1886 (((-112) $) NIL)) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) NIL) (($ $ (-415 (-572))) NIL)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-415 (-572))) 30) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3116 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-2825 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4226 (((-1243 |#1| |#2| |#3|) $) 72)) (-1404 (((-3 (-1243 |#1| |#2| |#3|) "failed") $) NIL)) (-4411 (((-1243 |#1| |#2| |#3|) $) NIL)) (-4347 (((-1170) $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-370)))) (-3034 (($ $) 39 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 40 (|has| |#1| (-38 (-415 (-572)))))) (-3964 (((-1131) $) NIL)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-2870 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4218 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3998 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) NIL (|has| |#1| (-370)))) (-2772 (($ $ (-415 (-572))) NIL)) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1420 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-3847 (((-779) $) NIL (|has| |#1| (-370)))) (-2196 ((|#1| $ (-415 (-572))) NIL) (($ $ $) NIL (|has| (-415 (-572)) (-1123)))) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) NIL (|has| |#1| (-370)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $ (-1275 |#2|)) 38)) (-4390 (((-415 (-572)) $) NIL)) (-2397 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) NIL)) (-2940 (((-870) $) 107) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1243 |#1| |#2| |#3|)) 16) (($ (-1271 |#1| |#2| |#3|)) 17) (($ (-1275 |#2|)) 36) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-3979 ((|#1| $ (-415 (-572))) NIL)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-3356 ((|#1| $) 12)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-415 (-572))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 32 T CONST)) (-2143 (($) 26 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 34)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-1264 |#1| |#2| |#3|) (-13 (-1262 |#1| (-1243 |#1| |#2| |#3|)) (-1049 (-1271 |#1| |#2| |#3|)) (-624 (-1275 |#2|)) (-10 -8 (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1264))
-((-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1264 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1264 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
-(-13 (-1262 |#1| (-1243 |#1| |#2| |#3|)) (-1049 (-1271 |#1| |#2| |#3|)) (-624 (-1275 |#2|)) (-10 -8 (-15 -3902 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 37)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-3009 (($ $) NIL)) (-4334 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 (-572) "failed") $) NIL (|has| (-1264 |#2| |#3| |#4|) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-1264 |#2| |#3| |#4|) (-1049 (-415 (-572))))) (((-3 (-1264 |#2| |#3| |#4|) "failed") $) 22)) (-2204 (((-572) $) NIL (|has| (-1264 |#2| |#3| |#4|) (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| (-1264 |#2| |#3| |#4|) (-1049 (-415 (-572))))) (((-1264 |#2| |#3| |#4|) $) NIL)) (-1390 (($ $) 41)) (-2062 (((-3 $ "failed") $) 27)) (-1876 (($ $) NIL (|has| (-1264 |#2| |#3| |#4|) (-460)))) (-1437 (($ $ (-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|) $) NIL)) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) 11)) (-2438 (((-112) $) NIL)) (-4333 (($ (-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) 25)) (-2649 (((-325 |#2| |#3| |#4|) $) NIL)) (-2497 (($ (-1 (-325 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) $) NIL)) (-1776 (($ (-1 (-1264 |#2| |#3| |#4|) (-1264 |#2| |#3| |#4|)) $) NIL)) (-4043 (((-3 (-851 |#2|) "failed") $) 90)) (-1357 (($ $) NIL)) (-1368 (((-1264 |#2| |#3| |#4|) $) 20)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1336 (((-112) $) NIL)) (-1347 (((-1264 |#2| |#3| |#4|) $) NIL)) (-2834 (((-3 $ "failed") $ (-1264 |#2| |#3| |#4|)) NIL (|has| (-1264 |#2| |#3| |#4|) (-564))) (((-3 $ "failed") $ $) NIL)) (-1902 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1264 |#2| |#3| |#4|)) (|:| |%expon| (-325 |#2| |#3| |#4|)) (|:| |%expTerms| (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#2|)))))) (|:| |%type| (-1170))) "failed") $) 74)) (-4390 (((-325 |#2| |#3| |#4|) $) 17)) (-1711 (((-1264 |#2| |#3| |#4|) $) NIL (|has| (-1264 |#2| |#3| |#4|) (-460)))) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ (-1264 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL (-2813 (|has| (-1264 |#2| |#3| |#4|) (-38 (-415 (-572)))) (|has| (-1264 |#2| |#3| |#4|) (-1049 (-415 (-572))))))) (-4268 (((-652 (-1264 |#2| |#3| |#4|)) $) NIL)) (-3979 (((-1264 |#2| |#3| |#4|) $ (-325 |#2| |#3| |#4|)) NIL)) (-3849 (((-3 $ "failed") $) NIL (|has| (-1264 |#2| |#3| |#4|) (-146)))) (-4249 (((-779)) NIL T CONST)) (-2099 (($ $ $ (-779)) NIL (|has| (-1264 |#2| |#3| |#4|) (-174)))) (-4379 (((-112) $ $) NIL)) (-2845 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-2143 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ (-1264 |#2| |#3| |#4|)) NIL (|has| (-1264 |#2| |#3| |#4|) (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-1264 |#2| |#3| |#4|)) NIL) (($ (-1264 |#2| |#3| |#4|) $) NIL) (($ (-415 (-572)) $) NIL (|has| (-1264 |#2| |#3| |#4|) (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| (-1264 |#2| |#3| |#4|) (-38 (-415 (-572)))))))
-(((-1265 |#1| |#2| |#3| |#4|) (-13 (-332 (-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) (-564) (-10 -8 (-15 -4043 ((-3 (-851 |#2|) "failed") $)) (-15 -1902 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1264 |#2| |#3| |#4|)) (|:| |%expon| (-325 |#2| |#3| |#4|)) (|:| |%expTerms| (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#2|)))))) (|:| |%type| (-1170))) "failed") $)))) (-13 (-1049 (-572)) (-647 (-572)) (-460)) (-13 (-27) (-1214) (-438 |#1|)) (-1188) |#2|) (T -1265))
-((-4043 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460))) (-5 *2 (-851 *4)) (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188)) (-14 *6 *4))) (-1902 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1264 *4 *5 *6)) (|:| |%expon| (-325 *4 *5 *6)) (|:| |%expTerms| (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| *4)))))) (|:| |%type| (-1170)))) (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188)) (-14 *6 *4))))
-(-13 (-332 (-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) (-564) (-10 -8 (-15 -4043 ((-3 (-851 |#2|) "failed") $)) (-15 -1902 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1264 |#2| |#3| |#4|)) (|:| |%expon| (-325 |#2| |#3| |#4|)) (|:| |%expTerms| (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#2|)))))) (|:| |%type| (-1170))) "failed") $))))
-((-3080 ((|#2| $) 34)) (-2401 ((|#2| $) 18)) (-1969 (($ $) 53)) (-4382 (($ $ (-572)) 85)) (-1631 (((-112) $ (-779)) 46)) (-2506 ((|#2| $ |#2|) 82)) (-2871 ((|#2| $ |#2|) 78)) (-3140 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3735 (($ $ (-652 $)) 81)) (-2388 ((|#2| $) 17)) (-2923 (($ $) NIL) (($ $ (-779)) 59)) (-2089 (((-652 $) $) 31)) (-1463 (((-112) $ $) 69)) (-1861 (((-112) $ (-779)) 45)) (-1985 (((-112) $ (-779)) 43)) (-2087 (((-112) $) 33)) (-3357 ((|#2| $) 25) (($ $ (-779)) 64)) (-2196 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3315 (((-112) $) 23)) (-2285 (($ $) 56)) (-2391 (($ $) 86)) (-3417 (((-779) $) 58)) (-3479 (($ $) 57)) (-4155 (($ $ $) 77) (($ |#2| $) NIL)) (-2065 (((-652 $) $) 32)) (-2978 (((-112) $ $) 67)) (-2860 (((-779) $) 52)))
-(((-1266 |#1| |#2|) (-10 -8 (-15 -4382 (|#1| |#1| (-572))) (-15 -3140 (|#2| |#1| "last" |#2|)) (-15 -2871 (|#2| |#1| |#2|)) (-15 -3140 (|#1| |#1| "rest" |#1|)) (-15 -3140 (|#2| |#1| "first" |#2|)) (-15 -2391 (|#1| |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -3417 ((-779) |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -2401 (|#2| |#1|)) (-15 -2388 (|#2| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3357 (|#1| |#1| (-779))) (-15 -2196 (|#2| |#1| "last")) (-15 -3357 (|#2| |#1|)) (-15 -2923 (|#1| |#1| (-779))) (-15 -2196 (|#1| |#1| "rest")) (-15 -2923 (|#1| |#1|)) (-15 -2196 (|#2| |#1| "first")) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#1|)) (-15 -2506 (|#2| |#1| |#2|)) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -3735 (|#1| |#1| (-652 |#1|))) (-15 -1463 ((-112) |#1| |#1|)) (-15 -3315 ((-112) |#1|)) (-15 -2196 (|#2| |#1| "value")) (-15 -3080 (|#2| |#1|)) (-15 -2087 ((-112) |#1|)) (-15 -2089 ((-652 |#1|) |#1|)) (-15 -2065 ((-652 |#1|) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2860 ((-779) |#1|)) (-15 -1631 ((-112) |#1| (-779))) (-15 -1861 ((-112) |#1| (-779))) (-15 -1985 ((-112) |#1| (-779)))) (-1267 |#2|) (-1229)) (T -1266))
-NIL
-(-10 -8 (-15 -4382 (|#1| |#1| (-572))) (-15 -3140 (|#2| |#1| "last" |#2|)) (-15 -2871 (|#2| |#1| |#2|)) (-15 -3140 (|#1| |#1| "rest" |#1|)) (-15 -3140 (|#2| |#1| "first" |#2|)) (-15 -2391 (|#1| |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -3417 ((-779) |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -2401 (|#2| |#1|)) (-15 -2388 (|#2| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3357 (|#1| |#1| (-779))) (-15 -2196 (|#2| |#1| "last")) (-15 -3357 (|#2| |#1|)) (-15 -2923 (|#1| |#1| (-779))) (-15 -2196 (|#1| |#1| "rest")) (-15 -2923 (|#1| |#1|)) (-15 -2196 (|#2| |#1| "first")) (-15 -4155 (|#1| |#2| |#1|)) (-15 -4155 (|#1| |#1| |#1|)) (-15 -2506 (|#2| |#1| |#2|)) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -3735 (|#1| |#1| (-652 |#1|))) (-15 -1463 ((-112) |#1| |#1|)) (-15 -3315 ((-112) |#1|)) (-15 -2196 (|#2| |#1| "value")) (-15 -3080 (|#2| |#1|)) (-15 -2087 ((-112) |#1|)) (-15 -2089 ((-652 |#1|) |#1|)) (-15 -2065 ((-652 |#1|) |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2860 ((-779) |#1|)) (-15 -1631 ((-112) |#1| (-779))) (-15 -1861 ((-112) |#1| (-779))) (-15 -1985 ((-112) |#1| (-779))))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3080 ((|#1| $) 49)) (-2401 ((|#1| $) 66)) (-1969 (($ $) 68)) (-4382 (($ $ (-572)) 53 (|has| $ (-6 -4455)))) (-1631 (((-112) $ (-779)) 8)) (-2506 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-1385 (($ $ $) 57 (|has| $ (-6 -4455)))) (-2871 ((|#1| $ |#1|) 55 (|has| $ (-6 -4455)))) (-4178 ((|#1| $ |#1|) 59 (|has| $ (-6 -4455)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4455))) (($ $ "rest" $) 56 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4455)))) (-3735 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-2388 ((|#1| $) 67)) (-3281 (($) 7 T CONST)) (-2923 (($ $) 74) (($ $ (-779)) 72)) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2089 (((-652 $) $) 51)) (-1463 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-1861 (((-112) $ (-779)) 9)) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-1985 (((-112) $ (-779)) 10)) (-3505 (((-652 |#1|) $) 46)) (-2087 (((-112) $) 50)) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3357 ((|#1| $) 71) (($ $ (-779)) 69)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2912 ((|#1| $) 77) (($ $ (-779)) 75)) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2157 (((-572) $ $) 45)) (-3315 (((-112) $) 47)) (-2285 (($ $) 63)) (-2391 (($ $) 60 (|has| $ (-6 -4455)))) (-3417 (((-779) $) 64)) (-3479 (($ $) 65)) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3164 (($ $) 13)) (-1700 (($ $ $) 62 (|has| $ (-6 -4455))) (($ $ |#1|) 61 (|has| $ (-6 -4455)))) (-4155 (($ $ $) 79) (($ |#1| $) 78)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-2065 (((-652 $) $) 52)) (-2804 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-1267 |#1|) (-141) (-1229)) (T -1267))
-((-4155 (*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-4155 (*1 *1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2912 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-2923 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2196 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-2923 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3357 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3479 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))) (-2285 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-1700 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-1700 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2391 (*1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-4178 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-1385 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3140 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-2871 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (|has| *1 (-6 -4455)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))))
-(-13 (-1021 |t#1|) (-10 -8 (-15 -4155 ($ $ $)) (-15 -4155 ($ |t#1| $)) (-15 -2912 (|t#1| $)) (-15 -2196 (|t#1| $ "first")) (-15 -2912 ($ $ (-779))) (-15 -2923 ($ $)) (-15 -2196 ($ $ "rest")) (-15 -2923 ($ $ (-779))) (-15 -3357 (|t#1| $)) (-15 -2196 (|t#1| $ "last")) (-15 -3357 ($ $ (-779))) (-15 -1969 ($ $)) (-15 -2388 (|t#1| $)) (-15 -2401 (|t#1| $)) (-15 -3479 ($ $)) (-15 -3417 ((-779) $)) (-15 -2285 ($ $)) (IF (|has| $ (-6 -4455)) (PROGN (-15 -1700 ($ $ $)) (-15 -1700 ($ $ |t#1|)) (-15 -2391 ($ $)) (-15 -4178 (|t#1| $ |t#1|)) (-15 -3140 (|t#1| $ "first" |t#1|)) (-15 -1385 ($ $ $)) (-15 -3140 ($ $ "rest" $)) (-15 -2871 (|t#1| $ |t#1|)) (-15 -3140 (|t#1| $ "last" |t#1|)) (-15 -4382 ($ $ (-572)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
-((-1776 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) (-1060) (-1060) (-1270 |#1|) (-1270 |#2|)) (T -1268))
-((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-4 *2 (-1270 *6)) (-5 *1 (-1268 *5 *6 *4 *2)) (-4 *4 (-1270 *5)))))
-(-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2697 (((-112) $) 17)) (-2358 (($ $) 105)) (-2242 (($ $) 81)) (-2338 (($ $) 101)) (-2222 (($ $) 77)) (-2384 (($ $) 109)) (-2262 (($ $) 85)) (-3116 (($ $) 75)) (-1608 (($ $) 73)) (-2397 (($ $) 111)) (-2270 (($ $) 87)) (-2370 (($ $) 107)) (-2252 (($ $) 83)) (-2348 (($ $) 103)) (-2231 (($ $) 79)) (-2940 (((-870) $) 61) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2436 (($ $) 117)) (-2300 (($ $) 93)) (-2409 (($ $) 113)) (-2282 (($ $) 89)) (-2460 (($ $) 121)) (-2320 (($ $) 97)) (-2516 (($ $) 123)) (-2329 (($ $) 99)) (-2448 (($ $) 119)) (-2310 (($ $) 95)) (-2423 (($ $) 115)) (-2292 (($ $) 91)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-415 (-572))) 71)))
-(((-1269 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -2242 (|#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2310 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -2448 (|#1| |#1|)) (-15 -2516 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))) (-15 -2697 ((-112) |#1|)) (-15 -2940 ((-870) |#1|))) (-1270 |#2|) (-1060)) (T -1269))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -2242 (|#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2310 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -2448 (|#1| |#1|)) (-15 -2516 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2940 (|#1| |#2|)) (-15 -2940 (|#1| |#1|)) (-15 -2940 (|#1| (-415 (-572)))) (-15 -2940 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))) (-15 -2697 ((-112) |#1|)) (-15 -2940 ((-870) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-4353 (((-652 (-1093)) $) 86)) (-1487 (((-1188) $) 117)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-3009 (($ $) 64 (|has| |#1| (-564)))) (-4334 (((-112) $) 66 (|has| |#1| (-564)))) (-3762 (($ $ (-779)) 112) (($ $ (-779) (-779)) 111)) (-1899 (((-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|))) $) 118)) (-2358 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) 20)) (-4227 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-2338 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|)))) 169) (($ (-1168 |#1|)) 167)) (-2384 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) 18 T CONST)) (-1390 (($ $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-2824 (($ $) 166)) (-4051 (((-961 |#1|) $ (-779)) 164) (((-961 |#1|) $ (-779) (-779)) 163)) (-2579 (((-112) $) 85)) (-2997 (($) 159 (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-779) $) 114) (((-779) $ (-779)) 113)) (-1886 (((-112) $) 35)) (-2932 (($ $ (-572)) 130 (|has| |#1| (-38 (-415 (-572)))))) (-4076 (($ $ (-930)) 115)) (-3926 (($ (-1 |#1| (-572)) $) 165)) (-2438 (((-112) $) 74)) (-4333 (($ |#1| (-779)) 73) (($ $ (-1093) (-779)) 88) (($ $ (-652 (-1093)) (-652 (-779))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3116 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) 77)) (-1368 ((|#1| $) 78)) (-4347 (((-1170) $) 10)) (-3034 (($ $) 161 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 160 (-2813 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-3964 (((-1131) $) 11)) (-2772 (($ $ (-779)) 109)) (-2834 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-415 (-572)))))) (-2641 (((-1168 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-779)))))) (-2196 ((|#1| $ (-779)) 119) (($ $ $) 95 (|has| (-779) (-1123)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-1188) (-779)) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-652 (-1188))) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-1188)) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (-4390 (((-779) $) 76)) (-2397 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) 84)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4268 (((-1168 |#1|) $) 168)) (-3979 ((|#1| $ (-779)) 71)) (-3849 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4249 (((-779)) 32 T CONST)) (-3356 ((|#1| $) 116)) (-4379 (((-112) $ $) 9)) (-2436 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2409 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-779)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-779)))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) 107 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-1188) (-779)) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-652 (-1188))) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-1188)) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-779)) 99 (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ |#1|) 162 (|has| |#1| (-370))) (($ $ $) 158 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 129 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
-(((-1270 |#1|) (-141) (-1060)) (T -1270))
-((-3620 (*1 *1 *2) (-12 (-5 *2 (-1168 (-2 (|:| |k| (-779)) (|:| |c| *3)))) (-4 *3 (-1060)) (-4 *1 (-1270 *3)))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-1270 *3)) (-4 *3 (-1060)) (-5 *2 (-1168 *3)))) (-3620 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-4 *1 (-1270 *3)))) (-2824 (*1 *1 *1) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)))) (-3926 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-572))) (-4 *1 (-1270 *3)) (-4 *3 (-1060)))) (-4051 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-1270 *4)) (-4 *4 (-1060)) (-5 *2 (-961 *4)))) (-4051 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-4 *1 (-1270 *4)) (-4 *4 (-1060)) (-5 *2 (-961 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-3034 (*1 *1 *1) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572)))))) (-3034 (*1 *1 *1 *2) (-2813 (-12 (-5 *2 (-1188)) (-4 *1 (-1270 *3)) (-4 *3 (-1060)) (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214)) (-4 *3 (-38 (-415 (-572)))))) (-12 (-5 *2 (-1188)) (-4 *1 (-1270 *3)) (-4 *3 (-1060)) (-12 (|has| *3 (-15 -4353 ((-652 *2) *3))) (|has| *3 (-15 -3034 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572)))))))))
-(-13 (-1257 |t#1| (-779)) (-10 -8 (-15 -3620 ($ (-1168 (-2 (|:| |k| (-779)) (|:| |c| |t#1|))))) (-15 -4268 ((-1168 |t#1|) $)) (-15 -3620 ($ (-1168 |t#1|))) (-15 -2824 ($ $)) (-15 -3926 ($ (-1 |t#1| (-572)) $)) (-15 -4051 ((-961 |t#1|) $ (-779))) (-15 -4051 ((-961 |t#1|) $ (-779) (-779))) (IF (|has| |t#1| (-370)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -3034 ($ $)) (IF (|has| |t#1| (-15 -3034 (|t#1| |t#1| (-1188)))) (IF (|has| |t#1| (-15 -4353 ((-652 (-1188)) |t#1|))) (-15 -3034 ($ $ (-1188))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1214)) (IF (|has| |t#1| (-968)) (IF (|has| |t#1| (-29 (-572))) (-15 -3034 ($ $ (-1188))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1013)) (-6 (-1214))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-779)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-779) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-779) |#1|))) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 $ $) |has| (-779) (-1123)) ((-296) |has| |#1| (-564)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-564) |has| |#1| (-564)) ((-654 #1#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #1#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| #0# (-1093)) . T) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1062 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -2813 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1257 |#1| #0#) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-4353 (((-652 (-1093)) $) NIL)) (-1487 (((-1188) $) 90)) (-4366 (((-1252 |#2| |#1|) $ (-779)) 73)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-3009 (($ $) NIL (|has| |#1| (-564)))) (-4334 (((-112) $) 142 (|has| |#1| (-564)))) (-3762 (($ $ (-779)) 127) (($ $ (-779) (-779)) 130)) (-1899 (((-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|))) $) 43)) (-2358 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2242 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3330 (((-3 $ "failed") $ $) NIL)) (-4227 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2338 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3620 (($ (-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|)))) 52) (($ (-1168 |#1|)) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2262 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3281 (($) NIL T CONST)) (-1413 (($ $) 134)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-2824 (($ $) 140)) (-4051 (((-961 |#1|) $ (-779)) 63) (((-961 |#1|) $ (-779) (-779)) 65)) (-2579 (((-112) $) NIL)) (-2997 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2956 (((-779) $) NIL) (((-779) $ (-779)) NIL)) (-1886 (((-112) $) NIL)) (-4316 (($ $) 117)) (-2932 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1367 (($ (-572) (-572) $) 136)) (-4076 (($ $ (-930)) 139)) (-3926 (($ (-1 |#1| (-572)) $) 111)) (-2438 (((-112) $) NIL)) (-4333 (($ |#1| (-779)) 16) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 98)) (-3116 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1357 (($ $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-2105 (($ $) 115)) (-2622 (($ $) 113)) (-4330 (($ (-572) (-572) $) 138)) (-3034 (($ $) 150 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 156 (-2813 (-12 (|has| |#1| (-15 -3034 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -4353 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 151 (|has| |#1| (-38 (-415 (-572)))))) (-3964 (((-1131) $) NIL)) (-3729 (($ $ (-572) (-572)) 121)) (-2772 (($ $ (-779)) 123)) (-2834 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3297 (($ $) 119)) (-2641 (((-1168 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-779)))))) (-2196 ((|#1| $ (-779)) 95) (($ $ $) 132 (|has| (-779) (-1123)))) (-3902 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) 108 (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $ (-1275 |#2|)) 103)) (-4390 (((-779) $) NIL)) (-2397 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2252 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2590 (($ $) 125)) (-2940 (((-870) $) NIL) (($ (-572)) 26) (($ (-415 (-572))) 148 (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1252 |#2| |#1|)) 81) (($ (-1275 |#2|)) 22)) (-4268 (((-1168 |#1|) $) NIL)) (-3979 ((|#1| $ (-779)) 94)) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4249 (((-779)) NIL T CONST)) (-3356 ((|#1| $) 91)) (-4379 (((-112) $ $) NIL)) (-2436 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2300 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2845 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2409 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2460 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3548 ((|#1| $ (-779)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-779)))) (|has| |#1| (-15 -2940 (|#1| (-1188))))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2448 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2310 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2423 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2292 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2131 (($) 18 T CONST)) (-2143 (($) 13 T CONST)) (-3608 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (-2978 (((-112) $ $) NIL)) (-3106 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) 107)) (-3075 (($ $ $) 20)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ |#1|) 145 (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
-(((-1271 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-10 -8 (-15 -2940 ($ (-1252 |#2| |#1|))) (-15 -4366 ((-1252 |#2| |#1|) $ (-779))) (-15 -2940 ($ (-1275 |#2|))) (-15 -3902 ($ $ (-1275 |#2|))) (-15 -2622 ($ $)) (-15 -2105 ($ $)) (-15 -4316 ($ $)) (-15 -3297 ($ $)) (-15 -3729 ($ $ (-572) (-572))) (-15 -1413 ($ $)) (-15 -1367 ($ (-572) (-572) $)) (-15 -4330 ($ (-572) (-572) $)) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1271))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-1252 *4 *3)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3) (-5 *1 (-1271 *3 *4 *5)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1252 *5 *4)) (-5 *1 (-1271 *4 *5 *6)) (-4 *4 (-1060)) (-14 *5 (-1188)) (-14 *6 *4))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-2622 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-2105 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-4316 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-3297 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-3729 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3))) (-1413 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-1367 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3))) (-4330 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
-(-13 (-1270 |#1|) (-10 -8 (-15 -2940 ($ (-1252 |#2| |#1|))) (-15 -4366 ((-1252 |#2| |#1|) $ (-779))) (-15 -2940 ($ (-1275 |#2|))) (-15 -3902 ($ $ (-1275 |#2|))) (-15 -2622 ($ $)) (-15 -2105 ($ $)) (-15 -4316 ($ $)) (-15 -3297 ($ $)) (-15 -3729 ($ $ (-572) (-572))) (-15 -1413 ($ $)) (-15 -1367 ($ (-572) (-572) $)) (-15 -4330 ($ (-572) (-572) $)) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3034 ($ $ (-1275 |#2|))) |%noBranch|)))
-((-3287 (((-1 (-1168 |#1|) (-652 (-1168 |#1|))) (-1 |#2| (-652 |#2|))) 24)) (-4375 (((-1 (-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3504 (((-1 (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2|)) 13)) (-3717 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2636 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1707 ((|#2| (-1 |#2| (-652 |#2|)) (-652 |#1|)) 60)) (-4327 (((-652 |#2|) (-652 |#1|) (-652 (-1 |#2| (-652 |#2|)))) 66)) (-3711 ((|#2| |#2| |#2|) 43)))
-(((-1272 |#1| |#2|) (-10 -7 (-15 -3504 ((-1 (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2|))) (-15 -4375 ((-1 (-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3287 ((-1 (-1168 |#1|) (-652 (-1168 |#1|))) (-1 |#2| (-652 |#2|)))) (-15 -3711 (|#2| |#2| |#2|)) (-15 -2636 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3717 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1707 (|#2| (-1 |#2| (-652 |#2|)) (-652 |#1|))) (-15 -4327 ((-652 |#2|) (-652 |#1|) (-652 (-1 |#2| (-652 |#2|)))))) (-38 (-415 (-572))) (-1270 |#1|)) (T -1272))
-((-4327 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 (-1 *6 (-652 *6)))) (-4 *5 (-38 (-415 (-572)))) (-4 *6 (-1270 *5)) (-5 *2 (-652 *6)) (-5 *1 (-1272 *5 *6)))) (-1707 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-652 *2))) (-5 *4 (-652 *5)) (-4 *5 (-38 (-415 (-572)))) (-4 *2 (-1270 *5)) (-5 *1 (-1272 *5 *2)))) (-3717 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1270 *4)) (-5 *1 (-1272 *4 *2)) (-4 *4 (-38 (-415 (-572)))))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1270 *4)) (-5 *1 (-1272 *4 *2)) (-4 *4 (-38 (-415 (-572)))))) (-3711 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1272 *3 *2)) (-4 *2 (-1270 *3)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-652 *5))) (-4 *5 (-1270 *4)) (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-1 (-1168 *4) (-652 (-1168 *4)))) (-5 *1 (-1272 *4 *5)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1270 *4)) (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-1 (-1168 *4) (-1168 *4) (-1168 *4))) (-5 *1 (-1272 *4 *5)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1270 *4)) (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-1 (-1168 *4) (-1168 *4))) (-5 *1 (-1272 *4 *5)))))
-(-10 -7 (-15 -3504 ((-1 (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2|))) (-15 -4375 ((-1 (-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3287 ((-1 (-1168 |#1|) (-652 (-1168 |#1|))) (-1 |#2| (-652 |#2|)))) (-15 -3711 (|#2| |#2| |#2|)) (-15 -2636 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3717 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1707 (|#2| (-1 |#2| (-652 |#2|)) (-652 |#1|))) (-15 -4327 ((-652 |#2|) (-652 |#1|) (-652 (-1 |#2| (-652 |#2|))))))
-((-1768 ((|#2| |#4| (-779)) 31)) (-2067 ((|#4| |#2|) 26)) (-1934 ((|#4| (-415 |#2|)) 49 (|has| |#1| (-564)))) (-4206 (((-1 |#4| (-652 |#4|)) |#3|) 43)))
-(((-1273 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2067 (|#4| |#2|)) (-15 -1768 (|#2| |#4| (-779))) (-15 -4206 ((-1 |#4| (-652 |#4|)) |#3|)) (IF (|has| |#1| (-564)) (-15 -1934 (|#4| (-415 |#2|))) |%noBranch|)) (-1060) (-1255 |#1|) (-664 |#2|) (-1270 |#1|)) (T -1273))
-((-1934 (*1 *2 *3) (-12 (-5 *3 (-415 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-564)) (-4 *4 (-1060)) (-4 *2 (-1270 *4)) (-5 *1 (-1273 *4 *5 *6 *2)) (-4 *6 (-664 *5)))) (-4206 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-1255 *4)) (-5 *2 (-1 *6 (-652 *6))) (-5 *1 (-1273 *4 *5 *3 *6)) (-4 *3 (-664 *5)) (-4 *6 (-1270 *4)))) (-1768 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-1060)) (-4 *2 (-1255 *5)) (-5 *1 (-1273 *5 *2 *6 *3)) (-4 *6 (-664 *2)) (-4 *3 (-1270 *5)))) (-2067 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *3 (-1255 *4)) (-4 *2 (-1270 *4)) (-5 *1 (-1273 *4 *3 *5 *2)) (-4 *5 (-664 *3)))))
-(-10 -7 (-15 -2067 (|#4| |#2|)) (-15 -1768 (|#2| |#4| (-779))) (-15 -4206 ((-1 |#4| (-652 |#4|)) |#3|)) (IF (|has| |#1| (-564)) (-15 -1934 (|#4| (-415 |#2|))) |%noBranch|))
-NIL
-(((-1274) (-141)) (T -1274))
-NIL
-(-13 (-10 -7 (-6 -3518)))
-((-2846 (((-112) $ $) NIL)) (-1487 (((-1188)) 12)) (-4347 (((-1170) $) 18)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 11) (((-1188) $) 8)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 15)))
-(((-1275 |#1|) (-13 (-1111) (-621 (-1188)) (-10 -8 (-15 -2940 ((-1188) $)) (-15 -1487 ((-1188))))) (-1188)) (T -1275))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1275 *3)) (-14 *3 *2))) (-1487 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1275 *3)) (-14 *3 *2))))
-(-13 (-1111) (-621 (-1188)) (-10 -8 (-15 -2940 ((-1188) $)) (-15 -1487 ((-1188)))))
-((-2212 (($ (-779)) 19)) (-3896 (((-697 |#2|) $ $) 41)) (-3499 ((|#2| $) 51)) (-4133 ((|#2| $) 50)) (-2264 ((|#2| $ $) 36)) (-4025 (($ $ $) 47)) (-3089 (($ $) 23) (($ $ $) 29)) (-3075 (($ $ $) 15)) (* (($ (-572) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1276 |#1| |#2|) (-10 -8 (-15 -3499 (|#2| |#1|)) (-15 -4133 (|#2| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3896 ((-697 |#2|) |#1| |#1|)) (-15 -2264 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -2212 (|#1| (-779))) (-15 -3075 (|#1| |#1| |#1|))) (-1277 |#2|) (-1229)) (T -1276))
-NIL
-(-10 -8 (-15 -3499 (|#2| |#1|)) (-15 -4133 (|#2| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3896 ((-697 |#2|) |#1| |#1|)) (-15 -2264 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -2212 (|#1| (-779))) (-15 -3075 (|#1| |#1| |#1|)))
-((-2846 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2212 (($ (-779)) 115 (|has| |#1| (-23)))) (-3176 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) 8)) (-3140 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-3281 (($) 7 T CONST)) (-3133 (($ $) 93 (|has| $ (-6 -4455)))) (-4421 (($ $) 103)) (-2086 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3332 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) 52)) (-1439 (((-572) (-1 (-112) |#1|) $) 100) (((-572) |#1| $) 99 (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) 98 (|has| |#1| (-1111)))) (-1863 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3896 (((-697 |#1|) $ $) 108 (|has| |#1| (-1060)))) (-3787 (($ (-779) |#1|) 70)) (-1861 (((-112) $ (-779)) 9)) (-3175 (((-572) $) 44 (|has| (-572) (-858)))) (-3654 (($ $ $) 90 (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3374 (((-572) $) 45 (|has| (-572) (-858)))) (-2427 (($ $ $) 89 (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3499 ((|#1| $) 105 (-12 (|has| |#1| (-1060)) (|has| |#1| (-1013))))) (-1985 (((-112) $ (-779)) 10)) (-4133 ((|#1| $) 106 (-12 (|has| |#1| (-1060)) (|has| |#1| (-1013))))) (-4347 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1986 (((-652 (-572)) $) 47)) (-1370 (((-112) (-572) $) 48)) (-3964 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2912 ((|#1| $) 43 (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2476 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) 14)) (-3821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) 49)) (-1841 (((-112) $) 11)) (-1613 (($) 12)) (-2196 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-2264 ((|#1| $ $) 109 (|has| |#1| (-1060)))) (-2835 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-4025 (($ $ $) 107 (|has| |#1| (-1060)))) (-3973 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4095 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3164 (($ $) 13)) (-1835 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 72)) (-4155 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-2940 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) 87 (|has| |#1| (-858)))) (-3014 (((-112) $ $) 86 (|has| |#1| (-858)))) (-2978 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3026 (((-112) $ $) 88 (|has| |#1| (-858)))) (-3003 (((-112) $ $) 85 (|has| |#1| (-858)))) (-3089 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3075 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-572) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-734))) (($ $ |#1|) 110 (|has| |#1| (-734)))) (-2860 (((-779) $) 6 (|has| $ (-6 -4454)))))
-(((-1277 |#1|) (-141) (-1229)) (T -1277))
-((-3075 (*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-25)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1277 *3)) (-4 *3 (-23)) (-4 *3 (-1229)))) (-3089 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-21)))) (-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-4 *1 (-1277 *3)) (-4 *3 (-1229)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-734)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-734)))) (-2264 (*1 *2 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))) (-3896 (*1 *2 *1 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1229)) (-4 *3 (-1060)) (-5 *2 (-697 *3)))) (-4025 (*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1013)) (-4 *2 (-1060)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1013)) (-4 *2 (-1060)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3075 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2212 ($ (-779))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3089 ($ $)) (-15 -3089 ($ $ $)) (-15 * ($ (-572) $))) |%noBranch|) (IF (|has| |t#1| (-734)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1060)) (PROGN (-15 -2264 (|t#1| $ $)) (-15 -3896 ((-697 |t#1|) $ $)) (-15 -4025 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-1060)) (PROGN (-15 -4133 (|t#1| $)) (-15 -3499 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-380 |#1|) . T) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-19 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1111) -2813 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1229) . T))
-((-2273 (((-1279 |#2|) (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|) 13)) (-2865 ((|#2| (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|) 15)) (-1776 (((-3 (-1279 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1279 |#1|)) 30) (((-1279 |#2|) (-1 |#2| |#1|) (-1279 |#1|)) 18)))
-(((-1278 |#1| |#2|) (-10 -7 (-15 -2273 ((-1279 |#2|) (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|)) (-15 -2865 (|#2| (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|)) (-15 -1776 ((-1279 |#2|) (-1 |#2| |#1|) (-1279 |#1|))) (-15 -1776 ((-3 (-1279 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1279 |#1|)))) (-1229) (-1229)) (T -1278))
-((-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1279 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1279 *6)) (-5 *1 (-1278 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1279 *6)) (-5 *1 (-1278 *5 *6)))) (-2865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1279 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-1278 *5 *2)))) (-2273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1279 *6)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-5 *2 (-1279 *5)) (-5 *1 (-1278 *6 *5)))))
-(-10 -7 (-15 -2273 ((-1279 |#2|) (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|)) (-15 -2865 (|#2| (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|)) (-15 -1776 ((-1279 |#2|) (-1 |#2| |#1|) (-1279 |#1|))) (-15 -1776 ((-3 (-1279 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1279 |#1|))))
-((-2846 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2212 (($ (-779)) NIL (|has| |#1| (-23)))) (-3889 (($ (-652 |#1|)) 11)) (-3176 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2852 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3314 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2766 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-1631 (((-112) $ (-779)) NIL)) (-3140 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3281 (($) NIL T CONST)) (-3133 (($ $) NIL (|has| $ (-6 -4455)))) (-4421 (($ $) NIL)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3332 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2865 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-2453 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2380 ((|#1| $ (-572)) NIL)) (-1439 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1863 (((-652 |#1|) $) 16 (|has| $ (-6 -4454)))) (-3896 (((-697 |#1|) $ $) NIL (|has| |#1| (-1060)))) (-3787 (($ (-779) |#1|) NIL)) (-1861 (((-112) $ (-779)) NIL)) (-3175 (((-572) $) NIL (|has| (-572) (-858)))) (-3654 (($ $ $) NIL (|has| |#1| (-858)))) (-1767 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-1344 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1864 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3374 (((-572) $) 12 (|has| (-572) (-858)))) (-2427 (($ $ $) NIL (|has| |#1| (-858)))) (-2442 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3499 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-1985 (((-112) $ (-779)) NIL)) (-4133 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-4347 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1593 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1986 (((-652 (-572)) $) NIL)) (-1370 (((-112) (-572) $) NIL)) (-3964 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2912 ((|#1| $) NIL (|has| (-572) (-858)))) (-3770 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-1612 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-3776 (((-112) $ $) NIL)) (-3821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4110 (((-652 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-1613 (($) NIL)) (-2196 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-2264 ((|#1| $ $) NIL (|has| |#1| (-1060)))) (-2835 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-4025 (($ $ $) NIL (|has| |#1| (-1060)))) (-3973 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4095 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) 20 (|has| |#1| (-622 (-544))))) (-2953 (($ (-652 |#1|)) 10)) (-4155 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-2940 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4379 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4380 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3039 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3026 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3003 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3089 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3075 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-572) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-734))) (($ $ |#1|) NIL (|has| |#1| (-734)))) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1279 |#1|) (-13 (-1277 |#1|) (-10 -8 (-15 -3889 ($ (-652 |#1|))))) (-1229)) (T -1279))
-((-3889 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1279 *3)))))
-(-13 (-1277 |#1|) (-10 -8 (-15 -3889 ($ (-652 |#1|)))))
-((-2846 (((-112) $ $) NIL)) (-1601 (((-1170) $ (-1170)) 107) (((-1170) $ (-1170) (-1170)) 105) (((-1170) $ (-1170) (-652 (-1170))) 104)) (-3469 (($) 69)) (-1391 (((-1284) $ (-476) (-930)) 54)) (-1996 (((-1284) $ (-930) (-1170)) 89) (((-1284) $ (-930) (-882)) 90)) (-2803 (((-1284) $ (-930) (-386) (-386)) 57)) (-3874 (((-1284) $ (-1170)) 84)) (-1617 (((-1284) $ (-930) (-1170)) 94)) (-3778 (((-1284) $ (-930) (-386) (-386)) 58)) (-1394 (((-1284) $ (-930) (-930)) 55)) (-1579 (((-1284) $) 85)) (-2417 (((-1284) $ (-930) (-1170)) 93)) (-4098 (((-1284) $ (-476) (-930)) 41)) (-4065 (((-1284) $ (-930) (-1170)) 92)) (-3209 (((-652 (-268)) $) 29) (($ $ (-652 (-268))) 30)) (-3805 (((-1284) $ (-779) (-779)) 52)) (-2425 (($ $) 70) (($ (-476) (-652 (-268))) 71)) (-4347 (((-1170) $) NIL)) (-3690 (((-572) $) 48)) (-3964 (((-1131) $) NIL)) (-1446 (((-1279 (-3 (-476) "undefined")) $) 47)) (-3701 (((-1279 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4065 (-572)) (|:| -3127 (-572)) (|:| |spline| (-572)) (|:| -3555 (-572)) (|:| |axesColor| (-882)) (|:| -1996 (-572)) (|:| |unitsColor| (-882)) (|:| |showing| (-572)))) $) 46)) (-3255 (((-1284) $ (-930) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-882) (-572) (-882) (-572)) 83)) (-3098 (((-652 (-952 (-227))) $) NIL)) (-2623 (((-476) $ (-930)) 43)) (-3722 (((-1284) $ (-779) (-779) (-930) (-930)) 50)) (-3228 (((-1284) $ (-1170)) 95)) (-3127 (((-1284) $ (-930) (-1170)) 91)) (-2940 (((-870) $) 102)) (-1379 (((-1284) $) 96)) (-4379 (((-112) $ $) NIL)) (-3555 (((-1284) $ (-930) (-1170)) 87) (((-1284) $ (-930) (-882)) 88)) (-2978 (((-112) $ $) NIL)))
-(((-1280) (-13 (-1111) (-10 -8 (-15 -3098 ((-652 (-952 (-227))) $)) (-15 -3469 ($)) (-15 -2425 ($ $)) (-15 -3209 ((-652 (-268)) $)) (-15 -3209 ($ $ (-652 (-268)))) (-15 -2425 ($ (-476) (-652 (-268)))) (-15 -3255 ((-1284) $ (-930) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-882) (-572) (-882) (-572))) (-15 -3701 ((-1279 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4065 (-572)) (|:| -3127 (-572)) (|:| |spline| (-572)) (|:| -3555 (-572)) (|:| |axesColor| (-882)) (|:| -1996 (-572)) (|:| |unitsColor| (-882)) (|:| |showing| (-572)))) $)) (-15 -1446 ((-1279 (-3 (-476) "undefined")) $)) (-15 -3874 ((-1284) $ (-1170))) (-15 -4098 ((-1284) $ (-476) (-930))) (-15 -2623 ((-476) $ (-930))) (-15 -3555 ((-1284) $ (-930) (-1170))) (-15 -3555 ((-1284) $ (-930) (-882))) (-15 -1996 ((-1284) $ (-930) (-1170))) (-15 -1996 ((-1284) $ (-930) (-882))) (-15 -4065 ((-1284) $ (-930) (-1170))) (-15 -2417 ((-1284) $ (-930) (-1170))) (-15 -3127 ((-1284) $ (-930) (-1170))) (-15 -3228 ((-1284) $ (-1170))) (-15 -1379 ((-1284) $)) (-15 -3722 ((-1284) $ (-779) (-779) (-930) (-930))) (-15 -3778 ((-1284) $ (-930) (-386) (-386))) (-15 -2803 ((-1284) $ (-930) (-386) (-386))) (-15 -1617 ((-1284) $ (-930) (-1170))) (-15 -3805 ((-1284) $ (-779) (-779))) (-15 -1391 ((-1284) $ (-476) (-930))) (-15 -1394 ((-1284) $ (-930) (-930))) (-15 -1601 ((-1170) $ (-1170))) (-15 -1601 ((-1170) $ (-1170) (-1170))) (-15 -1601 ((-1170) $ (-1170) (-652 (-1170)))) (-15 -1579 ((-1284) $)) (-15 -3690 ((-572) $)) (-15 -2940 ((-870) $))))) (T -1280))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1280)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-652 (-952 (-227)))) (-5 *1 (-1280)))) (-3469 (*1 *1) (-5 *1 (-1280))) (-2425 (*1 *1 *1) (-5 *1 (-1280))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1280)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1280)))) (-2425 (*1 *1 *2 *3) (-12 (-5 *2 (-476)) (-5 *3 (-652 (-268))) (-5 *1 (-1280)))) (-3255 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-930)) (-5 *4 (-227)) (-5 *5 (-572)) (-5 *6 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-1279 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4065 (-572)) (|:| -3127 (-572)) (|:| |spline| (-572)) (|:| -3555 (-572)) (|:| |axesColor| (-882)) (|:| -1996 (-572)) (|:| |unitsColor| (-882)) (|:| |showing| (-572))))) (-5 *1 (-1280)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-1279 (-3 (-476) "undefined"))) (-5 *1 (-1280)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-4098 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-476)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-2623 (*1 *2 *1 *3) (-12 (-5 *3 (-930)) (-5 *2 (-476)) (-5 *1 (-1280)))) (-3555 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3555 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1996 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1996 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-4065 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-2417 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3127 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3228 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3722 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-779)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3778 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-930)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-2803 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-930)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1617 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3805 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1391 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-476)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1394 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1601 (*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1280)))) (-1601 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1280)))) (-1601 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-1280)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1280)))))
-(-13 (-1111) (-10 -8 (-15 -3098 ((-652 (-952 (-227))) $)) (-15 -3469 ($)) (-15 -2425 ($ $)) (-15 -3209 ((-652 (-268)) $)) (-15 -3209 ($ $ (-652 (-268)))) (-15 -2425 ($ (-476) (-652 (-268)))) (-15 -3255 ((-1284) $ (-930) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-882) (-572) (-882) (-572))) (-15 -3701 ((-1279 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4065 (-572)) (|:| -3127 (-572)) (|:| |spline| (-572)) (|:| -3555 (-572)) (|:| |axesColor| (-882)) (|:| -1996 (-572)) (|:| |unitsColor| (-882)) (|:| |showing| (-572)))) $)) (-15 -1446 ((-1279 (-3 (-476) "undefined")) $)) (-15 -3874 ((-1284) $ (-1170))) (-15 -4098 ((-1284) $ (-476) (-930))) (-15 -2623 ((-476) $ (-930))) (-15 -3555 ((-1284) $ (-930) (-1170))) (-15 -3555 ((-1284) $ (-930) (-882))) (-15 -1996 ((-1284) $ (-930) (-1170))) (-15 -1996 ((-1284) $ (-930) (-882))) (-15 -4065 ((-1284) $ (-930) (-1170))) (-15 -2417 ((-1284) $ (-930) (-1170))) (-15 -3127 ((-1284) $ (-930) (-1170))) (-15 -3228 ((-1284) $ (-1170))) (-15 -1379 ((-1284) $)) (-15 -3722 ((-1284) $ (-779) (-779) (-930) (-930))) (-15 -3778 ((-1284) $ (-930) (-386) (-386))) (-15 -2803 ((-1284) $ (-930) (-386) (-386))) (-15 -1617 ((-1284) $ (-930) (-1170))) (-15 -3805 ((-1284) $ (-779) (-779))) (-15 -1391 ((-1284) $ (-476) (-930))) (-15 -1394 ((-1284) $ (-930) (-930))) (-15 -1601 ((-1170) $ (-1170))) (-15 -1601 ((-1170) $ (-1170) (-1170))) (-15 -1601 ((-1170) $ (-1170) (-652 (-1170)))) (-15 -1579 ((-1284) $)) (-15 -3690 ((-572) $)) (-15 -2940 ((-870) $))))
-((-2846 (((-112) $ $) NIL)) (-3393 (((-1284) $ (-386)) 169) (((-1284) $ (-386) (-386) (-386)) 170)) (-1601 (((-1170) $ (-1170)) 179) (((-1170) $ (-1170) (-1170)) 177) (((-1170) $ (-1170) (-652 (-1170))) 176)) (-2474 (($) 67)) (-2359 (((-1284) $ (-386) (-386) (-386) (-386) (-386)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1284) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1284) $ (-572) (-572) (-386) (-386) (-386)) 144) (((-1284) $ (-386) (-386)) 145) (((-1284) $ (-386) (-386) (-386)) 152)) (-3090 (((-386)) 122) (((-386) (-386)) 123)) (-1447 (((-386)) 117) (((-386) (-386)) 119)) (-3594 (((-386)) 120) (((-386) (-386)) 121)) (-4418 (((-386)) 126) (((-386) (-386)) 127)) (-4340 (((-386)) 124) (((-386) (-386)) 125)) (-2803 (((-1284) $ (-386) (-386)) 171)) (-3874 (((-1284) $ (-1170)) 153)) (-1735 (((-1144 (-227)) $) 68) (($ $ (-1144 (-227))) 69)) (-1903 (((-1284) $ (-1170)) 187)) (-2226 (((-1284) $ (-1170)) 188)) (-4355 (((-1284) $ (-386) (-386)) 151) (((-1284) $ (-572) (-572)) 168)) (-1394 (((-1284) $ (-930) (-930)) 160)) (-1579 (((-1284) $) 137)) (-3292 (((-1284) $ (-1170)) 186)) (-1778 (((-1284) $ (-1170)) 134)) (-3209 (((-652 (-268)) $) 70) (($ $ (-652 (-268))) 71)) (-3805 (((-1284) $ (-779) (-779)) 159)) (-3202 (((-1284) $ (-779) (-952 (-227))) 193)) (-1804 (($ $) 73) (($ (-1144 (-227)) (-1170)) 74) (($ (-1144 (-227)) (-652 (-268))) 75)) (-3636 (((-1284) $ (-386) (-386) (-386)) 131)) (-4347 (((-1170) $) NIL)) (-3690 (((-572) $) 128)) (-1395 (((-1284) $ (-386)) 174)) (-2848 (((-1284) $ (-386)) 191)) (-3964 (((-1131) $) NIL)) (-1430 (((-1284) $ (-386)) 190)) (-3561 (((-1284) $ (-1170)) 136)) (-3722 (((-1284) $ (-779) (-779) (-930) (-930)) 158)) (-1472 (((-1284) $ (-1170)) 133)) (-3228 (((-1284) $ (-1170)) 135)) (-1371 (((-1284) $ (-158) (-158)) 157)) (-2940 (((-870) $) 166)) (-1379 (((-1284) $) 138)) (-3493 (((-1284) $ (-1170)) 189)) (-4379 (((-112) $ $) NIL)) (-3555 (((-1284) $ (-1170)) 132)) (-2978 (((-112) $ $) NIL)))
-(((-1281) (-13 (-1111) (-10 -8 (-15 -1447 ((-386))) (-15 -1447 ((-386) (-386))) (-15 -3594 ((-386))) (-15 -3594 ((-386) (-386))) (-15 -3090 ((-386))) (-15 -3090 ((-386) (-386))) (-15 -4340 ((-386))) (-15 -4340 ((-386) (-386))) (-15 -4418 ((-386))) (-15 -4418 ((-386) (-386))) (-15 -2474 ($)) (-15 -1804 ($ $)) (-15 -1804 ($ (-1144 (-227)) (-1170))) (-15 -1804 ($ (-1144 (-227)) (-652 (-268)))) (-15 -1735 ((-1144 (-227)) $)) (-15 -1735 ($ $ (-1144 (-227)))) (-15 -3202 ((-1284) $ (-779) (-952 (-227)))) (-15 -3209 ((-652 (-268)) $)) (-15 -3209 ($ $ (-652 (-268)))) (-15 -3805 ((-1284) $ (-779) (-779))) (-15 -1394 ((-1284) $ (-930) (-930))) (-15 -3874 ((-1284) $ (-1170))) (-15 -3722 ((-1284) $ (-779) (-779) (-930) (-930))) (-15 -2359 ((-1284) $ (-386) (-386) (-386) (-386) (-386))) (-15 -2359 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2359 ((-1284) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2359 ((-1284) $ (-572) (-572) (-386) (-386) (-386))) (-15 -2359 ((-1284) $ (-386) (-386))) (-15 -2359 ((-1284) $ (-386) (-386) (-386))) (-15 -3228 ((-1284) $ (-1170))) (-15 -3555 ((-1284) $ (-1170))) (-15 -1472 ((-1284) $ (-1170))) (-15 -1778 ((-1284) $ (-1170))) (-15 -3561 ((-1284) $ (-1170))) (-15 -4355 ((-1284) $ (-386) (-386))) (-15 -4355 ((-1284) $ (-572) (-572))) (-15 -3393 ((-1284) $ (-386))) (-15 -3393 ((-1284) $ (-386) (-386) (-386))) (-15 -2803 ((-1284) $ (-386) (-386))) (-15 -3292 ((-1284) $ (-1170))) (-15 -1430 ((-1284) $ (-386))) (-15 -2848 ((-1284) $ (-386))) (-15 -1903 ((-1284) $ (-1170))) (-15 -2226 ((-1284) $ (-1170))) (-15 -3493 ((-1284) $ (-1170))) (-15 -3636 ((-1284) $ (-386) (-386) (-386))) (-15 -1395 ((-1284) $ (-386))) (-15 -1579 ((-1284) $)) (-15 -1371 ((-1284) $ (-158) (-158))) (-15 -1601 ((-1170) $ (-1170))) (-15 -1601 ((-1170) $ (-1170) (-1170))) (-15 -1601 ((-1170) $ (-1170) (-652 (-1170)))) (-15 -1379 ((-1284) $)) (-15 -3690 ((-572) $))))) (T -1281))
-((-1447 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-1447 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-3594 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-3090 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-4340 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-4340 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-4418 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-4418 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-2474 (*1 *1) (-5 *1 (-1281))) (-1804 (*1 *1 *1) (-5 *1 (-1281))) (-1804 (*1 *1 *2 *3) (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-1170)) (-5 *1 (-1281)))) (-1804 (*1 *1 *2 *3) (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-652 (-268))) (-5 *1 (-1281)))) (-1735 (*1 *2 *1) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1281)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1281)))) (-3202 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1281)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1281)))) (-3805 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1394 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3722 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-779)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2359 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1281)))) (-2359 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2359 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-572)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2359 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2359 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3228 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3555 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1472 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1778 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3561 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-4355 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-4355 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3393 (*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3393 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2803 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3292 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1430 (*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2848 (*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1903 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3636 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1395 (*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1371 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1601 (*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1281)))) (-1601 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1281)))) (-1601 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-1281)))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1281)))))
-(-13 (-1111) (-10 -8 (-15 -1447 ((-386))) (-15 -1447 ((-386) (-386))) (-15 -3594 ((-386))) (-15 -3594 ((-386) (-386))) (-15 -3090 ((-386))) (-15 -3090 ((-386) (-386))) (-15 -4340 ((-386))) (-15 -4340 ((-386) (-386))) (-15 -4418 ((-386))) (-15 -4418 ((-386) (-386))) (-15 -2474 ($)) (-15 -1804 ($ $)) (-15 -1804 ($ (-1144 (-227)) (-1170))) (-15 -1804 ($ (-1144 (-227)) (-652 (-268)))) (-15 -1735 ((-1144 (-227)) $)) (-15 -1735 ($ $ (-1144 (-227)))) (-15 -3202 ((-1284) $ (-779) (-952 (-227)))) (-15 -3209 ((-652 (-268)) $)) (-15 -3209 ($ $ (-652 (-268)))) (-15 -3805 ((-1284) $ (-779) (-779))) (-15 -1394 ((-1284) $ (-930) (-930))) (-15 -3874 ((-1284) $ (-1170))) (-15 -3722 ((-1284) $ (-779) (-779) (-930) (-930))) (-15 -2359 ((-1284) $ (-386) (-386) (-386) (-386) (-386))) (-15 -2359 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2359 ((-1284) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2359 ((-1284) $ (-572) (-572) (-386) (-386) (-386))) (-15 -2359 ((-1284) $ (-386) (-386))) (-15 -2359 ((-1284) $ (-386) (-386) (-386))) (-15 -3228 ((-1284) $ (-1170))) (-15 -3555 ((-1284) $ (-1170))) (-15 -1472 ((-1284) $ (-1170))) (-15 -1778 ((-1284) $ (-1170))) (-15 -3561 ((-1284) $ (-1170))) (-15 -4355 ((-1284) $ (-386) (-386))) (-15 -4355 ((-1284) $ (-572) (-572))) (-15 -3393 ((-1284) $ (-386))) (-15 -3393 ((-1284) $ (-386) (-386) (-386))) (-15 -2803 ((-1284) $ (-386) (-386))) (-15 -3292 ((-1284) $ (-1170))) (-15 -1430 ((-1284) $ (-386))) (-15 -2848 ((-1284) $ (-386))) (-15 -1903 ((-1284) $ (-1170))) (-15 -2226 ((-1284) $ (-1170))) (-15 -3493 ((-1284) $ (-1170))) (-15 -3636 ((-1284) $ (-386) (-386) (-386))) (-15 -1395 ((-1284) $ (-386))) (-15 -1579 ((-1284) $)) (-15 -1371 ((-1284) $ (-158) (-158))) (-15 -1601 ((-1170) $ (-1170))) (-15 -1601 ((-1170) $ (-1170) (-1170))) (-15 -1601 ((-1170) $ (-1170) (-652 (-1170)))) (-15 -1379 ((-1284) $)) (-15 -3690 ((-572) $))))
-((-3429 (((-652 (-1170)) (-652 (-1170))) 104) (((-652 (-1170))) 96)) (-4391 (((-652 (-1170))) 94)) (-1652 (((-652 (-930)) (-652 (-930))) 69) (((-652 (-930))) 64)) (-3802 (((-652 (-779)) (-652 (-779))) 61) (((-652 (-779))) 55)) (-2404 (((-1284)) 71)) (-3913 (((-930) (-930)) 87) (((-930)) 86)) (-1759 (((-930) (-930)) 85) (((-930)) 84)) (-3948 (((-882) (-882)) 81) (((-882)) 80)) (-4000 (((-227)) 91) (((-227) (-386)) 93)) (-1523 (((-930)) 88) (((-930) (-930)) 89)) (-2176 (((-930) (-930)) 83) (((-930)) 82)) (-3295 (((-882) (-882)) 75) (((-882)) 73)) (-3827 (((-882) (-882)) 77) (((-882)) 76)) (-3626 (((-882) (-882)) 79) (((-882)) 78)))
-(((-1282) (-10 -7 (-15 -3295 ((-882))) (-15 -3295 ((-882) (-882))) (-15 -3827 ((-882))) (-15 -3827 ((-882) (-882))) (-15 -3626 ((-882))) (-15 -3626 ((-882) (-882))) (-15 -3948 ((-882))) (-15 -3948 ((-882) (-882))) (-15 -2176 ((-930))) (-15 -2176 ((-930) (-930))) (-15 -3802 ((-652 (-779)))) (-15 -3802 ((-652 (-779)) (-652 (-779)))) (-15 -1652 ((-652 (-930)))) (-15 -1652 ((-652 (-930)) (-652 (-930)))) (-15 -2404 ((-1284))) (-15 -3429 ((-652 (-1170)))) (-15 -3429 ((-652 (-1170)) (-652 (-1170)))) (-15 -4391 ((-652 (-1170)))) (-15 -1759 ((-930))) (-15 -3913 ((-930))) (-15 -1759 ((-930) (-930))) (-15 -3913 ((-930) (-930))) (-15 -1523 ((-930) (-930))) (-15 -1523 ((-930))) (-15 -4000 ((-227) (-386))) (-15 -4000 ((-227))))) (T -1282))
-((-4000 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1282)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-227)) (-5 *1 (-1282)))) (-1523 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-3913 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-1759 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-4391 (*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))) (-3429 (*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))) (-3429 (*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))) (-2404 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1282)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1282)))) (-1652 (*1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1282)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1282)))) (-3802 (*1 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1282)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-2176 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-3948 (*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-3948 (*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-3626 (*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-3626 (*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-3827 (*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-3295 (*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
-(-10 -7 (-15 -3295 ((-882))) (-15 -3295 ((-882) (-882))) (-15 -3827 ((-882))) (-15 -3827 ((-882) (-882))) (-15 -3626 ((-882))) (-15 -3626 ((-882) (-882))) (-15 -3948 ((-882))) (-15 -3948 ((-882) (-882))) (-15 -2176 ((-930))) (-15 -2176 ((-930) (-930))) (-15 -3802 ((-652 (-779)))) (-15 -3802 ((-652 (-779)) (-652 (-779)))) (-15 -1652 ((-652 (-930)))) (-15 -1652 ((-652 (-930)) (-652 (-930)))) (-15 -2404 ((-1284))) (-15 -3429 ((-652 (-1170)))) (-15 -3429 ((-652 (-1170)) (-652 (-1170)))) (-15 -4391 ((-652 (-1170)))) (-15 -1759 ((-930))) (-15 -3913 ((-930))) (-15 -1759 ((-930) (-930))) (-15 -3913 ((-930) (-930))) (-15 -1523 ((-930) (-930))) (-15 -1523 ((-930))) (-15 -4000 ((-227) (-386))) (-15 -4000 ((-227))))
-((-1901 (((-476) (-652 (-652 (-952 (-227)))) (-652 (-268))) 22) (((-476) (-652 (-652 (-952 (-227))))) 21) (((-476) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268))) 20)) (-3004 (((-1280) (-652 (-652 (-952 (-227)))) (-652 (-268))) 30) (((-1280) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268))) 29)) (-2940 (((-1280) (-476)) 46)))
-(((-1283) (-10 -7 (-15 -1901 ((-476) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268)))) (-15 -1901 ((-476) (-652 (-652 (-952 (-227)))))) (-15 -1901 ((-476) (-652 (-652 (-952 (-227)))) (-652 (-268)))) (-15 -3004 ((-1280) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268)))) (-15 -3004 ((-1280) (-652 (-652 (-952 (-227)))) (-652 (-268)))) (-15 -2940 ((-1280) (-476))))) (T -1283))
-((-2940 (*1 *2 *3) (-12 (-5 *3 (-476)) (-5 *2 (-1280)) (-5 *1 (-1283)))) (-3004 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-1283)))) (-3004 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-882)) (-5 *5 (-930)) (-5 *6 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-1283)))) (-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-652 (-268))) (-5 *2 (-476)) (-5 *1 (-1283)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-476)) (-5 *1 (-1283)))) (-1901 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-882)) (-5 *5 (-930)) (-5 *6 (-652 (-268))) (-5 *2 (-476)) (-5 *1 (-1283)))))
-(-10 -7 (-15 -1901 ((-476) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268)))) (-15 -1901 ((-476) (-652 (-652 (-952 (-227)))))) (-15 -1901 ((-476) (-652 (-652 (-952 (-227)))) (-652 (-268)))) (-15 -3004 ((-1280) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268)))) (-15 -3004 ((-1280) (-652 (-652 (-952 (-227)))) (-652 (-268)))) (-15 -2940 ((-1280) (-476))))
-((-2420 (($) 6)) (-2940 (((-870) $) 9)))
-(((-1284) (-13 (-621 (-870)) (-10 -8 (-15 -2420 ($))))) (T -1284))
-((-2420 (*1 *1) (-5 *1 (-1284))))
-(-13 (-621 (-870)) (-10 -8 (-15 -2420 ($))))
-((-3106 (($ $ |#2|) 10)))
-(((-1285 |#1| |#2|) (-10 -8 (-15 -3106 (|#1| |#1| |#2|))) (-1286 |#2|) (-370)) (T -1285))
-NIL
-(-10 -8 (-15 -3106 (|#1| |#1| |#2|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-4224 (((-135)) 33)) (-2940 (((-870) $) 12)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2978 (((-112) $ $) 6)) (-3106 (($ $ |#1|) 34)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-1286 |#1|) (-141) (-370)) (T -1286))
-((-3106 (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-370)))) (-4224 (*1 *2) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-370)) (-5 *2 (-135)))))
-(-13 (-725 |t#1|) (-10 -8 (-15 -3106 ($ $ |t#1|)) (-15 -4224 ((-135)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
-((-1461 (((-652 (-1223 |#1|)) (-1188) (-1223 |#1|)) 83)) (-1567 (((-1168 (-1168 (-961 |#1|))) (-1188) (-1168 (-961 |#1|))) 63)) (-3171 (((-1 (-1168 (-1223 |#1|)) (-1168 (-1223 |#1|))) (-779) (-1223 |#1|) (-1168 (-1223 |#1|))) 74)) (-3336 (((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779)) 65)) (-3063 (((-1 (-1184 (-961 |#1|)) (-961 |#1|)) (-1188)) 32)) (-2890 (((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779)) 64)))
-(((-1287 |#1|) (-10 -7 (-15 -3336 ((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779))) (-15 -2890 ((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779))) (-15 -1567 ((-1168 (-1168 (-961 |#1|))) (-1188) (-1168 (-961 |#1|)))) (-15 -3063 ((-1 (-1184 (-961 |#1|)) (-961 |#1|)) (-1188))) (-15 -1461 ((-652 (-1223 |#1|)) (-1188) (-1223 |#1|))) (-15 -3171 ((-1 (-1168 (-1223 |#1|)) (-1168 (-1223 |#1|))) (-779) (-1223 |#1|) (-1168 (-1223 |#1|))))) (-370)) (T -1287))
-((-3171 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-779)) (-4 *6 (-370)) (-5 *4 (-1223 *6)) (-5 *2 (-1 (-1168 *4) (-1168 *4))) (-5 *1 (-1287 *6)) (-5 *5 (-1168 *4)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-4 *5 (-370)) (-5 *2 (-652 (-1223 *5))) (-5 *1 (-1287 *5)) (-5 *4 (-1223 *5)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1 (-1184 (-961 *4)) (-961 *4))) (-5 *1 (-1287 *4)) (-4 *4 (-370)))) (-1567 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-4 *5 (-370)) (-5 *2 (-1168 (-1168 (-961 *5)))) (-5 *1 (-1287 *5)) (-5 *4 (-1168 (-961 *5))))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-1168 (-961 *4)) (-1168 (-961 *4)))) (-5 *1 (-1287 *4)) (-4 *4 (-370)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-1168 (-961 *4)) (-1168 (-961 *4)))) (-5 *1 (-1287 *4)) (-4 *4 (-370)))))
-(-10 -7 (-15 -3336 ((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779))) (-15 -2890 ((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779))) (-15 -1567 ((-1168 (-1168 (-961 |#1|))) (-1188) (-1168 (-961 |#1|)))) (-15 -3063 ((-1 (-1184 (-961 |#1|)) (-961 |#1|)) (-1188))) (-15 -1461 ((-652 (-1223 |#1|)) (-1188) (-1223 |#1|))) (-15 -3171 ((-1 (-1168 (-1223 |#1|)) (-1168 (-1223 |#1|))) (-779) (-1223 |#1|) (-1168 (-1223 |#1|)))))
-((-1702 (((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|) 80)) (-4219 (((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) 79)))
-(((-1288 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4219 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))))) (-15 -1702 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|))) (-356) (-1255 |#1|) (-1255 |#2|) (-417 |#2| |#3|)) (T -1288))
-((-1702 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 *3)) (-5 *2 (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-1288 *4 *3 *5 *6)) (-4 *6 (-417 *3 *5)))) (-4219 (*1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -4362 (-697 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-697 *4)))) (-5 *1 (-1288 *3 *4 *5 *6)) (-4 *6 (-417 *4 *5)))))
-(-10 -7 (-15 -4219 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))))) (-15 -1702 ((-2 (|:| -4362 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|)))
-((-2846 (((-112) $ $) NIL)) (-4035 (((-1146) $) 11)) (-3543 (((-1146) $) 9)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1289) (-13 (-1094) (-10 -8 (-15 -3543 ((-1146) $)) (-15 -4035 ((-1146) $))))) (T -1289))
-((-3543 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1289)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1289)))))
-(-13 (-1094) (-10 -8 (-15 -3543 ((-1146) $)) (-15 -4035 ((-1146) $))))
-((-2846 (((-112) $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2260 (((-1146) $) 9)) (-2940 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)))
-(((-1290) (-13 (-1094) (-10 -8 (-15 -2260 ((-1146) $))))) (T -1290))
-((-2260 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1290)))))
-(-13 (-1094) (-10 -8 (-15 -2260 ((-1146) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 58)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) NIL)) (-1886 (((-112) $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 81) (($ (-572)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-4249 (((-779)) NIL T CONST)) (-2159 (((-1284) (-779)) 16)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 37 T CONST)) (-2143 (($) 84 T CONST)) (-2978 (((-112) $ $) 87)) (-3106 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-3089 (($ $) 89) (($ $ $) NIL)) (-3075 (($ $ $) 63)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-1291 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1060) (-498 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -3106 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2159 ((-1284) (-779))))) (-1060) (-858) (-801) (-958 |#1| |#3| |#2|) (-652 |#2|) (-652 (-779)) (-779)) (T -1291))
-((-3106 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-370)) (-4 *2 (-1060)) (-4 *3 (-858)) (-4 *4 (-801)) (-14 *6 (-652 *3)) (-5 *1 (-1291 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-958 *2 *4 *3)) (-14 *7 (-652 (-779))) (-14 *8 (-779)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-4 *5 (-858)) (-4 *6 (-801)) (-14 *8 (-652 *5)) (-5 *2 (-1284)) (-5 *1 (-1291 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-958 *4 *6 *5)) (-14 *9 (-652 *3)) (-14 *10 *3))))
-(-13 (-1060) (-498 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -3106 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2159 ((-1284) (-779)))))
-((-2846 (((-112) $ $) NIL)) (-3724 (((-652 (-2 (|:| -1379 $) (|:| -1674 (-652 |#4|)))) (-652 |#4|)) NIL)) (-1740 (((-652 $) (-652 |#4|)) 96)) (-4353 (((-652 |#3|) $) NIL)) (-1544 (((-112) $) NIL)) (-2639 (((-112) $) NIL (|has| |#1| (-564)))) (-2621 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3558 ((|#4| |#4| $) NIL)) (-2766 (((-2 (|:| |under| $) (|:| -3462 $) (|:| |upper| $)) $ |#3|) NIL)) (-1631 (((-112) $ (-779)) NIL)) (-2162 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3281 (($) NIL T CONST)) (-2390 (((-112) $) NIL (|has| |#1| (-564)))) (-2783 (((-112) $ $) NIL (|has| |#1| (-564)))) (-3937 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1616 (((-112) $) NIL (|has| |#1| (-564)))) (-3713 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-1566 (((-652 |#4|) (-652 |#4|) $) 28 (|has| |#1| (-564)))) (-2844 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-1695 (((-3 $ "failed") (-652 |#4|)) NIL)) (-2204 (($ (-652 |#4|)) NIL)) (-2923 (((-3 $ "failed") $) 78)) (-2020 ((|#4| |#4| $) 83)) (-2086 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3332 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3669 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-2888 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1758 ((|#4| |#4| $) NIL)) (-2865 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3433 (((-2 (|:| -1379 (-652 |#4|)) (|:| -1674 (-652 |#4|))) $) NIL)) (-1863 (((-652 |#4|) $) NIL (|has| $ (-6 -4454)))) (-4338 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2366 ((|#3| $) 84)) (-1861 (((-112) $ (-779)) NIL)) (-1344 (((-652 |#4|) $) 32 (|has| $ (-6 -4454)))) (-1864 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3820 (((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-652 |#4|)) 38)) (-2442 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4455)))) (-1776 (($ (-1 |#4| |#4|) $) NIL)) (-3015 (((-652 |#3|) $) NIL)) (-1683 (((-112) |#3| $) NIL)) (-1985 (((-112) $ (-779)) NIL)) (-4347 (((-1170) $) NIL)) (-3357 (((-3 |#4| "failed") $) NIL)) (-2234 (((-652 |#4|) $) 54)) (-3005 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2755 ((|#4| |#4| $) 82)) (-2323 (((-112) $ $) 93)) (-1433 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-3536 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1825 ((|#4| |#4| $) NIL)) (-3964 (((-1131) $) NIL)) (-2912 (((-3 |#4| "failed") $) 77)) (-3770 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3632 (((-3 $ "failed") $ |#4|) NIL)) (-2772 (($ $ |#4|) NIL)) (-1612 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2641 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-3776 (((-112) $ $) NIL)) (-1841 (((-112) $) 75)) (-1613 (($) 46)) (-4390 (((-779) $) NIL)) (-3973 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3164 (($ $) NIL)) (-1835 (((-544) $) NIL (|has| |#4| (-622 (-544))))) (-2953 (($ (-652 |#4|)) NIL)) (-2748 (($ $ |#3|) NIL)) (-2365 (($ $ |#3|) NIL)) (-3862 (($ $) NIL)) (-1670 (($ $ |#3|) NIL)) (-2940 (((-870) $) NIL) (((-652 |#4|) $) 63)) (-3678 (((-779) $) NIL (|has| |#3| (-375)))) (-4415 (((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-652 |#4|)) 45)) (-4148 (((-652 $) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-652 $) (-652 |#4|)) 74)) (-4379 (((-112) $ $) NIL)) (-1536 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3447 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) NIL)) (-4380 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-4041 (((-652 |#3|) $) NIL)) (-1482 (((-112) |#3| $) NIL)) (-2978 (((-112) $ $) NIL)) (-2860 (((-779) $) NIL (|has| $ (-6 -4454)))))
-(((-1292 |#1| |#2| |#3| |#4|) (-13 (-1222 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3820 ((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3820 ((-3 $ "failed") (-652 |#4|))) (-15 -4415 ((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4415 ((-3 $ "failed") (-652 |#4|))) (-15 -4148 ((-652 $) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4148 ((-652 $) (-652 |#4|))))) (-564) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -1292))
-((-3820 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1292 *5 *6 *7 *8)))) (-3820 (*1 *1 *2) (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1292 *3 *4 *5 *6)))) (-4415 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1292 *5 *6 *7 *8)))) (-4415 (*1 *1 *2) (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1292 *3 *4 *5 *6)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801)) (-4 *8 (-858)) (-5 *2 (-652 (-1292 *6 *7 *8 *9))) (-5 *1 (-1292 *6 *7 *8 *9)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-1292 *4 *5 *6 *7))) (-5 *1 (-1292 *4 *5 *6 *7)))))
-(-13 (-1222 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3820 ((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3820 ((-3 $ "failed") (-652 |#4|))) (-15 -4415 ((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4415 ((-3 $ "failed") (-652 |#4|))) (-15 -4148 ((-652 $) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4148 ((-652 $) (-652 |#4|)))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-3330 (((-3 $ "failed") $ $) 20)) (-3281 (($) 18 T CONST)) (-2062 (((-3 $ "failed") $) 37)) (-1886 (((-112) $) 35)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 45)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
-(((-1293 |#1|) (-141) (-1060)) (T -1293))
-NIL
-(-13 (-1060) (-111 |t#1| |t#1|) (-624 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
-((-2846 (((-112) $ $) 67)) (-2697 (((-112) $) NIL)) (-1653 (((-652 |#1|) $) 52)) (-2894 (($ $ (-779)) 46)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2810 (($ $ (-779)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3281 (($) NIL T CONST)) (-3924 (($ $ $) 70) (($ $ (-827 |#1|)) 56) (($ $ |#1|) 60)) (-1695 (((-3 (-827 |#1|) "failed") $) NIL)) (-2204 (((-827 |#1|) $) NIL)) (-1390 (($ $) 39)) (-2062 (((-3 $ "failed") $) NIL)) (-4373 (((-112) $) NIL)) (-1427 (($ $) NIL)) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-3829 (($ (-827 |#1|) |#2|) 38)) (-4211 (($ $) 40)) (-2486 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) 12)) (-4402 (((-827 |#1|) $) NIL)) (-2272 (((-827 |#1|) $) 41)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3421 (($ $ $) 69) (($ $ (-827 |#1|)) 58) (($ $ |#1|) 62)) (-3318 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1357 (((-827 |#1|) $) 35)) (-1368 ((|#2| $) 37)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-4390 (((-779) $) 43)) (-3702 (((-112) $) 47)) (-1705 ((|#2| $) NIL)) (-2940 (((-870) $) NIL) (($ (-827 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-572)) NIL)) (-4268 (((-652 |#2|) $) NIL)) (-3979 ((|#2| $ (-827 |#1|)) NIL)) (-1857 ((|#2| $ $) 76) ((|#2| $ (-827 |#1|)) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 13 T CONST)) (-2143 (($) 19 T CONST)) (-1933 (((-652 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2978 (((-112) $ $) 44)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 28)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-827 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
-(((-1294 |#1| |#2|) (-13 (-389 |#2| (-827 |#1|)) (-1300 |#1| |#2|)) (-858) (-1060)) (T -1294))
-NIL
-(-13 (-389 |#2| (-827 |#1|)) (-1300 |#1| |#2|))
-((-3116 ((|#3| |#3| (-779)) 28)) (-1608 ((|#3| |#3| (-779)) 34)) (-1896 ((|#3| |#3| |#3| (-779)) 35)))
-(((-1295 |#1| |#2| |#3|) (-10 -7 (-15 -1608 (|#3| |#3| (-779))) (-15 -3116 (|#3| |#3| (-779))) (-15 -1896 (|#3| |#3| |#3| (-779)))) (-13 (-1060) (-725 (-415 (-572)))) (-858) (-1300 |#2| |#1|)) (T -1295))
-((-1896 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572))))) (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4)))) (-3116 (*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572))))) (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4)))) (-1608 (*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572))))) (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4)))))
-(-10 -7 (-15 -1608 (|#3| |#3| (-779))) (-15 -3116 (|#3| |#3| (-779))) (-15 -1896 (|#3| |#3| |#3| (-779))))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-1653 (((-652 |#1|) $) 47)) (-3330 (((-3 $ "failed") $ $) 20)) (-2810 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-779)) 49 (|has| |#2| (-174)))) (-3281 (($) 18 T CONST)) (-3924 (($ $ |#1|) 61) (($ $ (-827 |#1|)) 60) (($ $ $) 59)) (-1695 (((-3 (-827 |#1|) "failed") $) 71)) (-2204 (((-827 |#1|) $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-4373 (((-112) $) 52)) (-1427 (($ $) 51)) (-1886 (((-112) $) 35)) (-2438 (((-112) $) 57)) (-3829 (($ (-827 |#1|) |#2|) 58)) (-4211 (($ $) 56)) (-2486 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) 67)) (-4402 (((-827 |#1|) $) 68)) (-1776 (($ (-1 |#2| |#2|) $) 48)) (-3421 (($ $ |#1|) 64) (($ $ (-827 |#1|)) 63) (($ $ $) 62)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-3702 (((-112) $) 54)) (-1705 ((|#2| $) 53)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#2|) 75) (($ (-827 |#1|)) 70) (($ |#1|) 55)) (-1857 ((|#2| $ (-827 |#1|)) 66) ((|#2| $ $) 65)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1296 |#1| |#2|) (-141) (-858) (-1060)) (T -1296))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-827 *3)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-2 (|:| |k| (-827 *3)) (|:| |c| *4))))) (-1857 (*1 *2 *1 *3) (-12 (-5 *3 (-827 *4)) (-4 *1 (-1296 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1060)))) (-1857 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060)))) (-3421 (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))) (-3421 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-3924 (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))) (-3924 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-3829 (*1 *1 *2 *3) (-12 (-5 *2 (-827 *4)) (-4 *4 (-858)) (-4 *1 (-1296 *4 *3)) (-4 *3 (-1060)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-112)))) (-4211 (*1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-2940 (*1 *1 *2) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-112)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060)))) (-4373 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-112)))) (-1427 (*1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-2810 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)) (-4 *3 (-174)))) (-2810 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-4 *4 (-174)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-652 *3)))))
-(-13 (-1060) (-1293 |t#2|) (-1049 (-827 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4402 ((-827 |t#1|) $)) (-15 -2486 ((-2 (|:| |k| (-827 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1857 (|t#2| $ (-827 |t#1|))) (-15 -1857 (|t#2| $ $)) (-15 -3421 ($ $ |t#1|)) (-15 -3421 ($ $ (-827 |t#1|))) (-15 -3421 ($ $ $)) (-15 -3924 ($ $ |t#1|)) (-15 -3924 ($ $ (-827 |t#1|))) (-15 -3924 ($ $ $)) (-15 -3829 ($ (-827 |t#1|) |t#2|)) (-15 -2438 ((-112) $)) (-15 -4211 ($ $)) (-15 -2940 ($ |t#1|)) (-15 -3702 ((-112) $)) (-15 -1705 (|t#2| $)) (-15 -4373 ((-112) $)) (-15 -1427 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2810 ($ $ $)) (-15 -2810 ($ $ (-779)))) |%noBranch|) (-15 -1776 ($ (-1 |t#2| |t#2|) $)) (-15 -1653 ((-652 |t#1|) $)) (IF (|has| |t#2| (-6 -4447)) (-6 -4447) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 #0=(-827 |#1|)) . T) ((-624 |#2|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-648 |#2|) |has| |#2| (-174)) ((-725 |#2|) |has| |#2| (-174)) ((-734) . T) ((-1049 #0#) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1293 |#2|) . T))
-((-3995 (((-112) $) 15)) (-1482 (((-112) $) 14)) (-3790 (($ $) 19) (($ $ (-779)) 21)))
-(((-1297 |#1| |#2|) (-10 -8 (-15 -3790 (|#1| |#1| (-779))) (-15 -3790 (|#1| |#1|)) (-15 -3995 ((-112) |#1|)) (-15 -1482 ((-112) |#1|))) (-1298 |#2|) (-370)) (T -1297))
-NIL
-(-10 -8 (-15 -3790 (|#1| |#1| (-779))) (-15 -3790 (|#1| |#1|)) (-15 -3995 ((-112) |#1|)) (-15 -1482 ((-112) |#1|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-2072 (((-2 (|:| -3161 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-3009 (($ $) 46)) (-4334 (((-112) $) 44)) (-3995 (((-112) $) 104)) (-3667 (((-779)) 100)) (-3330 (((-3 $ "failed") $ $) 20)) (-3517 (($ $) 81)) (-2287 (((-426 $) $) 80)) (-4217 (((-112) $ $) 65)) (-3281 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 111)) (-2204 ((|#1| $) 112)) (-2780 (($ $ $) 61)) (-2062 (((-3 $ "failed") $) 37)) (-2792 (($ $ $) 62)) (-2037 (((-2 (|:| -1857 (-652 $)) (|:| -2967 $)) (-652 $)) 57)) (-2303 (($ $ (-779)) 97 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) 96 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3879 (((-112) $) 79)) (-2956 (((-841 (-930)) $) 94 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1886 (((-112) $) 35)) (-1959 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2825 (($ $ $) 52) (($ (-652 $)) 51)) (-4347 (((-1170) $) 10)) (-1322 (($ $) 78)) (-2946 (((-112) $) 103)) (-3964 (((-1131) $) 11)) (-3126 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-2870 (($ $ $) 54) (($ (-652 $)) 53)) (-4218 (((-426 $) $) 82)) (-3040 (((-841 (-930))) 101)) (-3998 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2967 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2834 (((-3 $ "failed") $ $) 48)) (-1420 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3847 (((-779) $) 64)) (-1669 (((-2 (|:| -4215 $) (|:| -3669 $)) $ $) 63)) (-3354 (((-3 (-779) "failed") $ $) 95 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4224 (((-135)) 109)) (-4390 (((-841 (-930)) $) 102)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ |#1|) 110)) (-3849 (((-3 $ "failed") $) 93 (-2813 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2845 (((-112) $ $) 45)) (-1482 (((-112) $) 105)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-3790 (($ $) 99 (|has| |#1| (-375))) (($ $ (-779)) 98 (|has| |#1| (-375)))) (-2978 (((-112) $ $) 6)) (-3106 (($ $ $) 73) (($ $ |#1|) 108)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-1298 |#1|) (-141) (-370)) (T -1298))
-((-1482 (*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))) (-2946 (*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-841 (-930))))) (-3040 (*1 *2) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-841 (-930))))) (-3667 (*1 *2) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-779)))) (-3790 (*1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-370)) (-4 *2 (-375)))) (-3790 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-4 *3 (-375)))))
-(-13 (-370) (-1049 |t#1|) (-1286 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-410)) |%noBranch|) (-15 -1482 ((-112) $)) (-15 -3995 ((-112) $)) (-15 -2946 ((-112) $)) (-15 -4390 ((-841 (-930)) $)) (-15 -3040 ((-841 (-930)))) (-15 -3667 ((-779))) (IF (|has| |t#1| (-375)) (PROGN (-6 (-410)) (-15 -3790 ($ $)) (-15 -3790 ($ $ (-779)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2813 (|has| |#1| (-375)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-410) -2813 (|has| |#1| (-375)) (|has| |#1| (-146))) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 |#1|) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1049 |#1|) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T) ((-1286 |#1|) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1653 (((-652 |#1|) $) 98)) (-2894 (($ $ (-779)) 102)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2810 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-779)) NIL (|has| |#2| (-174)))) (-3281 (($) NIL T CONST)) (-3924 (($ $ |#1|) NIL) (($ $ (-827 |#1|)) NIL) (($ $ $) NIL)) (-1695 (((-3 (-827 |#1|) "failed") $) NIL) (((-3 (-902 |#1|) "failed") $) NIL)) (-2204 (((-827 |#1|) $) NIL) (((-902 |#1|) $) NIL)) (-1390 (($ $) 101)) (-2062 (((-3 $ "failed") $) NIL)) (-4373 (((-112) $) 90)) (-1427 (($ $) 93)) (-2247 (($ $ $ (-779)) 103)) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-3829 (($ (-827 |#1|) |#2|) NIL) (($ (-902 |#1|) |#2|) 29)) (-4211 (($ $) 119)) (-2486 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4402 (((-827 |#1|) $) NIL)) (-2272 (((-827 |#1|) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3421 (($ $ |#1|) NIL) (($ $ (-827 |#1|)) NIL) (($ $ $) NIL)) (-3116 (($ $ (-779)) 112 (|has| |#2| (-725 (-415 (-572)))))) (-3318 (((-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1357 (((-902 |#1|) $) 83)) (-1368 ((|#2| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-1608 (($ $ (-779)) 109 (|has| |#2| (-725 (-415 (-572)))))) (-4390 (((-779) $) 99)) (-3702 (((-112) $) 84)) (-1705 ((|#2| $) 88)) (-2940 (((-870) $) 69) (($ (-572)) NIL) (($ |#2|) 60) (($ (-827 |#1|)) NIL) (($ |#1|) 71) (($ (-902 |#1|)) NIL) (($ (-672 |#1| |#2|)) 48) (((-1294 |#1| |#2|) $) 76) (((-1303 |#1| |#2|) $) 81)) (-4268 (((-652 |#2|) $) NIL)) (-3979 ((|#2| $ (-902 |#1|)) NIL)) (-1857 ((|#2| $ (-827 |#1|)) NIL) ((|#2| $ $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 21 T CONST)) (-2143 (($) 28 T CONST)) (-1933 (((-652 (-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4182 (((-3 (-672 |#1| |#2|) "failed") $) 118)) (-2978 (((-112) $ $) 77)) (-3089 (($ $) 111) (($ $ $) 110)) (-3075 (($ $ $) 20)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-902 |#1|)) NIL)))
-(((-1299 |#1| |#2|) (-13 (-1300 |#1| |#2|) (-389 |#2| (-902 |#1|)) (-10 -8 (-15 -2940 ($ (-672 |#1| |#2|))) (-15 -2940 ((-1294 |#1| |#2|) $)) (-15 -2940 ((-1303 |#1| |#2|) $)) (-15 -4182 ((-3 (-672 |#1| |#2|) "failed") $)) (-15 -2247 ($ $ $ (-779))) (IF (|has| |#2| (-725 (-415 (-572)))) (PROGN (-15 -1608 ($ $ (-779))) (-15 -3116 ($ $ (-779)))) |%noBranch|))) (-858) (-174)) (T -1299))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-672 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *1 (-1299 *3 *4)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-4182 (*1 *2 *1) (|partial| -12 (-5 *2 (-672 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-2247 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4)) (-4 *4 (-725 (-415 (-572)))) (-4 *3 (-858)) (-4 *4 (-174)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4)) (-4 *4 (-725 (-415 (-572)))) (-4 *3 (-858)) (-4 *4 (-174)))))
-(-13 (-1300 |#1| |#2|) (-389 |#2| (-902 |#1|)) (-10 -8 (-15 -2940 ($ (-672 |#1| |#2|))) (-15 -2940 ((-1294 |#1| |#2|) $)) (-15 -2940 ((-1303 |#1| |#2|) $)) (-15 -4182 ((-3 (-672 |#1| |#2|) "failed") $)) (-15 -2247 ($ $ $ (-779))) (IF (|has| |#2| (-725 (-415 (-572)))) (PROGN (-15 -1608 ($ $ (-779))) (-15 -3116 ($ $ (-779)))) |%noBranch|)))
-((-2846 (((-112) $ $) 7)) (-2697 (((-112) $) 17)) (-1653 (((-652 |#1|) $) 47)) (-2894 (($ $ (-779)) 80)) (-3330 (((-3 $ "failed") $ $) 20)) (-2810 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-779)) 49 (|has| |#2| (-174)))) (-3281 (($) 18 T CONST)) (-3924 (($ $ |#1|) 61) (($ $ (-827 |#1|)) 60) (($ $ $) 59)) (-1695 (((-3 (-827 |#1|) "failed") $) 71)) (-2204 (((-827 |#1|) $) 72)) (-2062 (((-3 $ "failed") $) 37)) (-4373 (((-112) $) 52)) (-1427 (($ $) 51)) (-1886 (((-112) $) 35)) (-2438 (((-112) $) 57)) (-3829 (($ (-827 |#1|) |#2|) 58)) (-4211 (($ $) 56)) (-2486 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) 67)) (-4402 (((-827 |#1|) $) 68)) (-2272 (((-827 |#1|) $) 82)) (-1776 (($ (-1 |#2| |#2|) $) 48)) (-3421 (($ $ |#1|) 64) (($ $ (-827 |#1|)) 63) (($ $ $) 62)) (-4347 (((-1170) $) 10)) (-3964 (((-1131) $) 11)) (-4390 (((-779) $) 81)) (-3702 (((-112) $) 54)) (-1705 ((|#2| $) 53)) (-2940 (((-870) $) 12) (($ (-572)) 33) (($ |#2|) 75) (($ (-827 |#1|)) 70) (($ |#1|) 55)) (-1857 ((|#2| $ (-827 |#1|)) 66) ((|#2| $ $) 65)) (-4249 (((-779)) 32 T CONST)) (-4379 (((-112) $ $) 9)) (-2131 (($) 19 T CONST)) (-2143 (($) 34 T CONST)) (-2978 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3075 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1300 |#1| |#2|) (-141) (-858) (-1060)) (T -1300))
-((-2272 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-827 *3)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-779)))) (-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))))
-(-13 (-1296 |t#1| |t#2|) (-10 -8 (-15 -2272 ((-827 |t#1|) $)) (-15 -4390 ((-779) $)) (-15 -2894 ($ $ (-779)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 #0=(-827 |#1|)) . T) ((-624 |#2|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-648 |#2|) |has| |#2| (-174)) ((-725 |#2|) |has| |#2| (-174)) ((-734) . T) ((-1049 #0#) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1293 |#2|) . T) ((-1296 |#1| |#2|) . T))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-1653 (((-652 (-1188)) $) NIL)) (-4434 (($ (-1294 (-1188) |#1|)) NIL)) (-2894 (($ $ (-779)) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-779)) NIL (|has| |#1| (-174)))) (-3281 (($) NIL T CONST)) (-3924 (($ $ (-1188)) NIL) (($ $ (-827 (-1188))) NIL) (($ $ $) NIL)) (-1695 (((-3 (-827 (-1188)) "failed") $) NIL)) (-2204 (((-827 (-1188)) $) NIL)) (-2062 (((-3 $ "failed") $) NIL)) (-4373 (((-112) $) NIL)) (-1427 (($ $) NIL)) (-1886 (((-112) $) NIL)) (-2438 (((-112) $) NIL)) (-3829 (($ (-827 (-1188)) |#1|) NIL)) (-4211 (($ $) NIL)) (-2486 (((-2 (|:| |k| (-827 (-1188))) (|:| |c| |#1|)) $) NIL)) (-4402 (((-827 (-1188)) $) NIL)) (-2272 (((-827 (-1188)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (($ $ (-1188)) NIL) (($ $ (-827 (-1188))) NIL) (($ $ $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2127 (((-1294 (-1188) |#1|) $) NIL)) (-4390 (((-779) $) NIL)) (-3702 (((-112) $) NIL)) (-1705 ((|#1| $) NIL)) (-2940 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-827 (-1188))) NIL) (($ (-1188)) NIL)) (-1857 ((|#1| $ (-827 (-1188))) NIL) ((|#1| $ $) NIL)) (-4249 (((-779)) NIL T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-2034 (((-652 (-2 (|:| |k| (-1188)) (|:| |c| $))) $) NIL)) (-2143 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1188) $) NIL)))
-(((-1301 |#1|) (-13 (-1300 (-1188) |#1|) (-10 -8 (-15 -2127 ((-1294 (-1188) |#1|) $)) (-15 -4434 ($ (-1294 (-1188) |#1|))) (-15 -2034 ((-652 (-2 (|:| |k| (-1188)) (|:| |c| $))) $)))) (-1060)) (T -1301))
-((-2127 (*1 *2 *1) (-12 (-5 *2 (-1294 (-1188) *3)) (-5 *1 (-1301 *3)) (-4 *3 (-1060)))) (-4434 (*1 *1 *2) (-12 (-5 *2 (-1294 (-1188) *3)) (-4 *3 (-1060)) (-5 *1 (-1301 *3)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |k| (-1188)) (|:| |c| (-1301 *3))))) (-5 *1 (-1301 *3)) (-4 *3 (-1060)))))
-(-13 (-1300 (-1188) |#1|) (-10 -8 (-15 -2127 ((-1294 (-1188) |#1|) $)) (-15 -4434 ($ (-1294 (-1188) |#1|))) (-15 -2034 ((-652 (-2 (|:| |k| (-1188)) (|:| |c| $))) $))))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) NIL)) (-3330 (((-3 $ "failed") $ $) NIL)) (-3281 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL)) (-2204 ((|#2| $) NIL)) (-1390 (($ $) NIL)) (-2062 (((-3 $ "failed") $) 42)) (-4373 (((-112) $) 35)) (-1427 (($ $) 37)) (-1886 (((-112) $) NIL)) (-4368 (((-779) $) NIL)) (-1843 (((-652 $) $) NIL)) (-2438 (((-112) $) NIL)) (-3829 (($ |#2| |#1|) NIL)) (-4402 ((|#2| $) 24)) (-2272 ((|#2| $) 22)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3318 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1357 ((|#2| $) NIL)) (-1368 ((|#1| $) NIL)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-3702 (((-112) $) 32)) (-1705 ((|#1| $) 33)) (-2940 (((-870) $) 65) (($ (-572)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-4268 (((-652 |#1|) $) NIL)) (-3979 ((|#1| $ |#2|) NIL)) (-1857 ((|#1| $ |#2|) 28)) (-4249 (((-779)) 14 T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 29 T CONST)) (-2143 (($) 11 T CONST)) (-1933 (((-652 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2978 (((-112) $ $) 30)) (-3106 (($ $ |#1|) 67 (|has| |#1| (-370)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3075 (($ $ $) 50)) (** (($ $ (-930)) NIL) (($ $ (-779)) 52)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2860 (((-779) $) 16)))
-(((-1302 |#1| |#2|) (-13 (-1060) (-1293 |#1|) (-389 |#1| |#2|) (-624 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2860 ((-779) $)) (-15 -2272 (|#2| $)) (-15 -4402 (|#2| $)) (-15 -1390 ($ $)) (-15 -1857 (|#1| $ |#2|)) (-15 -3702 ((-112) $)) (-15 -1705 (|#1| $)) (-15 -4373 ((-112) $)) (-15 -1427 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-370)) (-15 -3106 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4447)) (-6 -4447) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|))) (-1060) (-854)) (T -1302))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))) (-1390 (*1 *1 *1) (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-1302 *3 *4)) (-4 *4 (-854)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-854)))) (-2272 (*1 *2 *1) (-12 (-4 *2 (-854)) (-5 *1 (-1302 *3 *2)) (-4 *3 (-1060)))) (-4402 (*1 *2 *1) (-12 (-4 *2 (-854)) (-5 *1 (-1302 *3 *2)) (-4 *3 (-1060)))) (-1857 (*1 *2 *1 *3) (-12 (-4 *2 (-1060)) (-5 *1 (-1302 *2 *3)) (-4 *3 (-854)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-854)))) (-1705 (*1 *2 *1) (-12 (-4 *2 (-1060)) (-5 *1 (-1302 *2 *3)) (-4 *3 (-854)))) (-4373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-854)))) (-1427 (*1 *1 *1) (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))) (-3106 (*1 *1 *1 *2) (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-370)) (-4 *2 (-1060)) (-4 *3 (-854)))))
-(-13 (-1060) (-1293 |#1|) (-389 |#1| |#2|) (-624 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2860 ((-779) $)) (-15 -2272 (|#2| $)) (-15 -4402 (|#2| $)) (-15 -1390 ($ $)) (-15 -1857 (|#1| $ |#2|)) (-15 -3702 ((-112) $)) (-15 -1705 (|#1| $)) (-15 -4373 ((-112) $)) (-15 -1427 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-370)) (-15 -3106 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4447)) (-6 -4447) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|)))
-((-2846 (((-112) $ $) 27)) (-2697 (((-112) $) NIL)) (-1653 (((-652 |#1|) $) 132)) (-4434 (($ (-1294 |#1| |#2|)) 50)) (-2894 (($ $ (-779)) 38)) (-3330 (((-3 $ "failed") $ $) NIL)) (-2810 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-779)) 52 (|has| |#2| (-174)))) (-3281 (($) NIL T CONST)) (-3924 (($ $ |#1|) 114) (($ $ (-827 |#1|)) 115) (($ $ $) 26)) (-1695 (((-3 (-827 |#1|) "failed") $) NIL)) (-2204 (((-827 |#1|) $) NIL)) (-2062 (((-3 $ "failed") $) 122)) (-4373 (((-112) $) 117)) (-1427 (($ $) 118)) (-1886 (((-112) $) NIL)) (-2438 (((-112) $) NIL)) (-3829 (($ (-827 |#1|) |#2|) 20)) (-4211 (($ $) NIL)) (-2486 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4402 (((-827 |#1|) $) 123)) (-2272 (((-827 |#1|) $) 126)) (-1776 (($ (-1 |#2| |#2|) $) 131)) (-3421 (($ $ |#1|) 112) (($ $ (-827 |#1|)) 113) (($ $ $) 62)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2127 (((-1294 |#1| |#2|) $) 94)) (-4390 (((-779) $) 129)) (-3702 (((-112) $) 81)) (-1705 ((|#2| $) 32)) (-2940 (((-870) $) 73) (($ (-572)) 87) (($ |#2|) 85) (($ (-827 |#1|)) 18) (($ |#1|) 84)) (-1857 ((|#2| $ (-827 |#1|)) 116) ((|#2| $ $) 28)) (-4249 (((-779)) 120 T CONST)) (-4379 (((-112) $ $) NIL)) (-2131 (($) 15 T CONST)) (-2034 (((-652 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2143 (($) 33 T CONST)) (-2978 (((-112) $ $) 14)) (-3089 (($ $) 98) (($ $ $) 101)) (-3075 (($ $ $) 61)) (** (($ $ (-930)) NIL) (($ $ (-779)) 55)) (* (($ (-930) $) NIL) (($ (-779) $) 53) (($ (-572) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
-(((-1303 |#1| |#2|) (-13 (-1300 |#1| |#2|) (-10 -8 (-15 -2127 ((-1294 |#1| |#2|) $)) (-15 -4434 ($ (-1294 |#1| |#2|))) (-15 -2034 ((-652 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-858) (-1060)) (T -1303))
-((-2127 (*1 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))) (-4434 (*1 *1 *2) (-12 (-5 *2 (-1294 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *1 (-1303 *3 *4)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |k| *3) (|:| |c| (-1303 *3 *4))))) (-5 *1 (-1303 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))))
-(-13 (-1300 |#1| |#2|) (-10 -8 (-15 -2127 ((-1294 |#1| |#2|) $)) (-15 -4434 ($ (-1294 |#1| |#2|))) (-15 -2034 ((-652 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-2846 (((-112) $ $) NIL)) (-3131 (($ (-652 (-930))) 10)) (-2918 (((-982) $) 12)) (-4347 (((-1170) $) NIL)) (-3964 (((-1131) $) NIL)) (-2940 (((-870) $) 25) (($ (-982)) 14) (((-982) $) 13)) (-4379 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 17)))
-(((-1304) (-13 (-1111) (-498 (-982)) (-10 -8 (-15 -3131 ($ (-652 (-930)))) (-15 -2918 ((-982) $))))) (T -1304))
-((-3131 (*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1304)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-982)) (-5 *1 (-1304)))))
-(-13 (-1111) (-498 (-982)) (-10 -8 (-15 -3131 ($ (-652 (-930)))) (-15 -2918 ((-982) $))))
-((-1880 (((-652 (-1168 |#1|)) (-1 (-652 (-1168 |#1|)) (-652 (-1168 |#1|))) (-572)) 16) (((-1168 |#1|) (-1 (-1168 |#1|) (-1168 |#1|))) 13)))
-(((-1305 |#1|) (-10 -7 (-15 -1880 ((-1168 |#1|) (-1 (-1168 |#1|) (-1168 |#1|)))) (-15 -1880 ((-652 (-1168 |#1|)) (-1 (-652 (-1168 |#1|)) (-652 (-1168 |#1|))) (-572)))) (-1229)) (T -1305))
-((-1880 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-652 (-1168 *5)) (-652 (-1168 *5)))) (-5 *4 (-572)) (-5 *2 (-652 (-1168 *5))) (-5 *1 (-1305 *5)) (-4 *5 (-1229)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1 (-1168 *4) (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1305 *4)) (-4 *4 (-1229)))))
-(-10 -7 (-15 -1880 ((-1168 |#1|) (-1 (-1168 |#1|) (-1168 |#1|)))) (-15 -1880 ((-652 (-1168 |#1|)) (-1 (-652 (-1168 |#1|)) (-652 (-1168 |#1|))) (-572))))
-((-2445 (((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|))) 174) (((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112)) 173) (((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112)) 172) (((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112) (-112)) 171) (((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-1057 |#1| |#2|)) 156)) (-2998 (((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|))) 85) (((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112)) 84) (((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112) (-112)) 83)) (-2287 (((-652 (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))) (-1057 |#1| |#2|)) 73)) (-4129 (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|))) 140) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112)) 139) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112)) 138) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112) (-112)) 137) (((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|)) 132)) (-2421 (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|))) 145) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112)) 144) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112)) 143) (((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|)) 142)) (-1835 (((-652 (-788 |#1| (-872 |#3|))) (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))) 111) (((-1184 (-1035 (-415 |#1|))) (-1184 |#1|)) 102) (((-961 (-1035 (-415 |#1|))) (-788 |#1| (-872 |#3|))) 109) (((-961 (-1035 (-415 |#1|))) (-961 |#1|)) 107) (((-788 |#1| (-872 |#3|)) (-788 |#1| (-872 |#2|))) 33)))
-(((-1306 |#1| |#2| |#3|) (-10 -7 (-15 -2998 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112) (-112))) (-15 -2998 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112))) (-15 -2998 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-1057 |#1| |#2|))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112) (-112))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112) (-112))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)))) (-15 -2421 ((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|))) (-15 -2421 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -2421 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112))) (-15 -2421 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)))) (-15 -2287 ((-652 (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))) (-1057 |#1| |#2|))) (-15 -1835 ((-788 |#1| (-872 |#3|)) (-788 |#1| (-872 |#2|)))) (-15 -1835 ((-961 (-1035 (-415 |#1|))) (-961 |#1|))) (-15 -1835 ((-961 (-1035 (-415 |#1|))) (-788 |#1| (-872 |#3|)))) (-15 -1835 ((-1184 (-1035 (-415 |#1|))) (-1184 |#1|))) (-15 -1835 ((-652 (-788 |#1| (-872 |#3|))) (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))))) (-13 (-856) (-313) (-148) (-1033)) (-652 (-1188)) (-652 (-1188))) (T -1306))
-((-1835 (*1 *2 *3) (-12 (-5 *3 (-1157 *4 (-539 (-872 *6)) (-872 *6) (-788 *4 (-872 *6)))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-788 *4 (-872 *6)))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-1184 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-788 *4 (-872 *6))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *6 (-652 (-1188))) (-5 *2 (-961 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-961 *4)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-961 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-788 *4 (-872 *5))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-788 *4 (-872 *6))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-1157 *4 (-539 (-872 *6)) (-872 *6) (-788 *4 (-872 *6))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-2421 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-2421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-4129 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-4129 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-4129 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-2 (|:| -2130 (-1184 *4)) (|:| -4329 (-652 (-961 *4)))))) (-5 *1 (-1306 *4 *5 *6)) (-5 *3 (-652 (-961 *4))) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5)))))) (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-2445 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5)))))) (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-2445 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5)))))) (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-2 (|:| -2130 (-1184 *4)) (|:| -4329 (-652 (-961 *4)))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-1057 *4 *5))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-2998 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-2998 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))))
-(-10 -7 (-15 -2998 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112) (-112))) (-15 -2998 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112))) (-15 -2998 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-1057 |#1| |#2|))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112) (-112))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112))) (-15 -2445 ((-652 (-2 (|:| -2130 (-1184 |#1|)) (|:| -4329 (-652 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112) (-112))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112))) (-15 -4129 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)))) (-15 -2421 ((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|))) (-15 -2421 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -2421 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112))) (-15 -2421 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)))) (-15 -2287 ((-652 (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))) (-1057 |#1| |#2|))) (-15 -1835 ((-788 |#1| (-872 |#3|)) (-788 |#1| (-872 |#2|)))) (-15 -1835 ((-961 (-1035 (-415 |#1|))) (-961 |#1|))) (-15 -1835 ((-961 (-1035 (-415 |#1|))) (-788 |#1| (-872 |#3|)))) (-15 -1835 ((-1184 (-1035 (-415 |#1|))) (-1184 |#1|))) (-15 -1835 ((-652 (-788 |#1| (-872 |#3|))) (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|))))))
-((-2468 (((-3 (-1279 (-415 (-572))) "failed") (-1279 |#1|) |#1|) 21)) (-2862 (((-112) (-1279 |#1|)) 12)) (-3241 (((-3 (-1279 (-572)) "failed") (-1279 |#1|)) 16)))
-(((-1307 |#1|) (-10 -7 (-15 -2862 ((-112) (-1279 |#1|))) (-15 -3241 ((-3 (-1279 (-572)) "failed") (-1279 |#1|))) (-15 -2468 ((-3 (-1279 (-415 (-572))) "failed") (-1279 |#1|) |#1|))) (-13 (-1060) (-647 (-572)))) (T -1307))
-((-2468 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 (-572)))) (-5 *2 (-1279 (-415 (-572)))) (-5 *1 (-1307 *4)))) (-3241 (*1 *2 *3) (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 (-572)))) (-5 *2 (-1279 (-572))) (-5 *1 (-1307 *4)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 (-572)))) (-5 *2 (-112)) (-5 *1 (-1307 *4)))))
-(-10 -7 (-15 -2862 ((-112) (-1279 |#1|))) (-15 -3241 ((-3 (-1279 (-572)) "failed") (-1279 |#1|))) (-15 -2468 ((-3 (-1279 (-415 (-572))) "failed") (-1279 |#1|) |#1|)))
-((-2846 (((-112) $ $) NIL)) (-2697 (((-112) $) 11)) (-3330 (((-3 $ "failed") $ $) NIL)) (-1486 (((-779)) 8)) (-3281 (($) NIL T CONST)) (-2062 (((-3 $ "failed") $) 58)) (-2815 (($) 49)) (-1886 (((-112) $) 57)) (-2556 (((-3 $ "failed") $) 40)) (-3715 (((-930) $) 15)) (-4347 (((-1170) $) NIL)) (-3815 (($) 32 T CONST)) (-2571 (($ (-930)) 50)) (-3964 (((-1131) $) NIL)) (-1835 (((-572) $) 13)) (-2940 (((-870) $) 27) (($ (-572)) 24)) (-4249 (((-779)) 9 T CONST)) (-4379 (((-112) $ $) 60)) (-2131 (($) 29 T CONST)) (-2143 (($) 31 T CONST)) (-2978 (((-112) $ $) 38)) (-3089 (($ $) 52) (($ $ $) 47)) (-3075 (($ $ $) 35)) (** (($ $ (-930)) NIL) (($ $ (-779)) 54)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 44) (($ $ $) 43)))
-(((-1308 |#1|) (-13 (-174) (-375) (-622 (-572)) (-1163)) (-930)) (T -1308))
-NIL
-(-13 (-174) (-375) (-622 (-572)) (-1163))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3237329 3237334 3237339 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3237314 3237319 3237324 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3237299 3237304 3237309 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3237284 3237289 3237294 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1308 3236427 3237159 3237236 "ZMOD" 3237241 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1307 3235481 3235645 3235868 "ZLINDEP" 3236259 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1306 3224781 3226549 3228521 "ZDSOLVE" 3233611 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1305 3224027 3224168 3224357 "YSTREAM" 3224627 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1304 3223455 3223701 3223814 "YDIAGRAM" 3223936 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1303 3221229 3222756 3222960 "XRPOLY" 3223298 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1302 3217782 3219100 3219675 "XPR" 3220701 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1301 3215503 3217113 3217317 "XPOLY" 3217613 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1300 3213156 3214524 3214579 "XPOLYC" 3214867 NIL XPOLYC (NIL T T) -9 NIL 3214980 NIL) (-1299 3209532 3211673 3212061 "XPBWPOLY" 3212814 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1298 3205227 3207522 3207564 "XF" 3208185 NIL XF (NIL T) -9 NIL 3208585 NIL) (-1297 3204848 3204936 3205105 "XF-" 3205110 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1296 3200044 3201333 3201388 "XFALG" 3203560 NIL XFALG (NIL T T) -9 NIL 3204349 NIL) (-1295 3199177 3199281 3199486 "XEXPPKG" 3199936 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1294 3197286 3199027 3199123 "XDPOLY" 3199128 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1293 3196093 3196693 3196736 "XALG" 3196741 NIL XALG (NIL T) -9 NIL 3196852 NIL) (-1292 3189535 3194070 3194564 "WUTSET" 3195685 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1291 3187791 3188587 3188910 "WP" 3189346 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1290 3187393 3187613 3187683 "WHILEAST" 3187743 T WHILEAST (NIL) -8 NIL NIL NIL) (-1289 3186865 3187110 3187204 "WHEREAST" 3187321 T WHEREAST (NIL) -8 NIL NIL NIL) (-1288 3185751 3185949 3186244 "WFFINTBS" 3186662 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1287 3183655 3184082 3184544 "WEIER" 3185323 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1286 3182701 3183151 3183193 "VSPACE" 3183329 NIL VSPACE (NIL T) -9 NIL 3183403 NIL) (-1285 3182539 3182566 3182657 "VSPACE-" 3182662 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1284 3182348 3182390 3182458 "VOID" 3182493 T VOID (NIL) -8 NIL NIL NIL) (-1283 3180484 3180843 3181249 "VIEW" 3181964 T VIEW (NIL) -7 NIL NIL NIL) (-1282 3176908 3177547 3178284 "VIEWDEF" 3179769 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1281 3166212 3168456 3170629 "VIEW3D" 3174757 T VIEW3D (NIL) -8 NIL NIL NIL) (-1280 3158463 3160123 3161702 "VIEW2D" 3164655 T VIEW2D (NIL) -8 NIL NIL NIL) (-1279 3153816 3158233 3158325 "VECTOR" 3158406 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1278 3152393 3152652 3152970 "VECTOR2" 3153546 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1277 3145835 3150144 3150187 "VECTCAT" 3151182 NIL VECTCAT (NIL T) -9 NIL 3151769 NIL) (-1276 3144849 3145103 3145493 "VECTCAT-" 3145498 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1275 3144303 3144500 3144620 "VARIABLE" 3144764 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1274 3144236 3144241 3144271 "UTYPE" 3144276 T UTYPE (NIL) -9 NIL NIL NIL) (-1273 3143066 3143220 3143482 "UTSODETL" 3144062 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1272 3140506 3140966 3141490 "UTSODE" 3142607 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1271 3132344 3138132 3138621 "UTS" 3140075 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1270 3123131 3128500 3128543 "UTSCAT" 3129655 NIL UTSCAT (NIL T) -9 NIL 3130413 NIL) (-1269 3120479 3121201 3122190 "UTSCAT-" 3122195 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1268 3120106 3120149 3120282 "UTS2" 3120430 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1267 3114332 3116944 3116987 "URAGG" 3119057 NIL URAGG (NIL T) -9 NIL 3119780 NIL) (-1266 3111271 3112134 3113257 "URAGG-" 3113262 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1265 3106980 3109906 3110371 "UPXSSING" 3110935 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1264 3099046 3106227 3106500 "UPXS" 3106765 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1263 3092119 3098950 3099022 "UPXSCONS" 3099027 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1262 3081770 3088565 3088627 "UPXSCCA" 3089201 NIL UPXSCCA (NIL T T) -9 NIL 3089434 NIL) (-1261 3081408 3081493 3081667 "UPXSCCA-" 3081672 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1260 3070911 3077479 3077522 "UPXSCAT" 3078170 NIL UPXSCAT (NIL T) -9 NIL 3078779 NIL) (-1259 3070341 3070420 3070599 "UPXS2" 3070826 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1258 3068995 3069248 3069599 "UPSQFREE" 3070084 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1257 3062420 3065479 3065534 "UPSCAT" 3066614 NIL UPSCAT (NIL T T) -9 NIL 3067379 NIL) (-1256 3061624 3061831 3062158 "UPSCAT-" 3062163 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1255 3047120 3054977 3055020 "UPOLYC" 3057121 NIL UPOLYC (NIL T) -9 NIL 3058342 NIL) (-1254 3038448 3040874 3044021 "UPOLYC-" 3044026 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1253 3038075 3038118 3038251 "UPOLYC2" 3038399 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1252 3029797 3037758 3037887 "UP" 3037994 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1251 3029136 3029243 3029407 "UPMP" 3029686 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1250 3028689 3028770 3028909 "UPDIVP" 3029049 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1249 3027257 3027506 3027822 "UPDECOMP" 3028438 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1248 3026488 3026600 3026786 "UPCDEN" 3027141 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1247 3026007 3026076 3026225 "UP2" 3026413 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1246 3024474 3025211 3025488 "UNISEG" 3025765 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1245 3023689 3023816 3024021 "UNISEG2" 3024317 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1244 3022749 3022929 3023155 "UNIFACT" 3023505 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1243 3006510 3021926 3022177 "ULS" 3022556 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1242 2994373 3006414 3006486 "ULSCONS" 3006491 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1241 2976073 2988197 2988259 "ULSCCAT" 2988897 NIL ULSCCAT (NIL T T) -9 NIL 2989186 NIL) (-1240 2975123 2975368 2975756 "ULSCCAT-" 2975761 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1239 2964410 2970892 2970935 "ULSCAT" 2971798 NIL ULSCAT (NIL T) -9 NIL 2972529 NIL) (-1238 2963840 2963919 2964098 "ULS2" 2964325 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1237 2962959 2963469 2963576 "UINT8" 2963687 T UINT8 (NIL) -8 NIL NIL 2963772) (-1236 2962077 2962587 2962694 "UINT64" 2962805 T UINT64 (NIL) -8 NIL NIL 2962890) (-1235 2961195 2961705 2961812 "UINT32" 2961923 T UINT32 (NIL) -8 NIL NIL 2962008) (-1234 2960313 2960823 2960930 "UINT16" 2961041 T UINT16 (NIL) -8 NIL NIL 2961126) (-1233 2958616 2959573 2959603 "UFD" 2959815 T UFD (NIL) -9 NIL 2959929 NIL) (-1232 2958410 2958456 2958551 "UFD-" 2958556 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1231 2957492 2957675 2957891 "UDVO" 2958216 T UDVO (NIL) -7 NIL NIL NIL) (-1230 2955308 2955717 2956188 "UDPO" 2957056 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1229 2955241 2955246 2955276 "TYPE" 2955281 T TYPE (NIL) -9 NIL NIL NIL) (-1228 2955001 2955196 2955227 "TYPEAST" 2955232 T TYPEAST (NIL) -8 NIL NIL NIL) (-1227 2953972 2954174 2954414 "TWOFACT" 2954795 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1226 2952995 2953381 2953616 "TUPLE" 2953772 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1225 2950686 2951205 2951744 "TUBETOOL" 2952478 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1224 2949535 2949740 2949981 "TUBE" 2950479 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1223 2944264 2948507 2948790 "TS" 2949287 NIL TS (NIL T) -8 NIL NIL NIL) (-1222 2932904 2937023 2937120 "TSETCAT" 2942389 NIL TSETCAT (NIL T T T T) -9 NIL 2943920 NIL) (-1221 2927636 2929236 2931127 "TSETCAT-" 2931132 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1220 2922275 2923122 2924051 "TRMANIP" 2926772 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1219 2921716 2921779 2921942 "TRIMAT" 2922207 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1218 2919582 2919819 2920176 "TRIGMNIP" 2921465 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1217 2919102 2919215 2919245 "TRIGCAT" 2919458 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1216 2918771 2918850 2918991 "TRIGCAT-" 2918996 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1215 2915616 2917629 2917910 "TREE" 2918525 NIL TREE (NIL T) -8 NIL NIL NIL) (-1214 2914890 2915418 2915448 "TRANFUN" 2915483 T TRANFUN (NIL) -9 NIL 2915549 NIL) (-1213 2914169 2914360 2914640 "TRANFUN-" 2914645 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1212 2913973 2914005 2914066 "TOPSP" 2914130 T TOPSP (NIL) -7 NIL NIL NIL) (-1211 2913321 2913436 2913590 "TOOLSIGN" 2913854 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1210 2911955 2912498 2912737 "TEXTFILE" 2913104 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1209 2909867 2910408 2910837 "TEX" 2911548 T TEX (NIL) -8 NIL NIL NIL) (-1208 2909648 2909679 2909751 "TEX1" 2909830 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1207 2909296 2909359 2909449 "TEMUTL" 2909580 T TEMUTL (NIL) -7 NIL NIL NIL) (-1206 2907450 2907730 2908055 "TBCMPPK" 2909019 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1205 2899227 2905610 2905666 "TBAGG" 2906066 NIL TBAGG (NIL T T) -9 NIL 2906277 NIL) (-1204 2894297 2895785 2897539 "TBAGG-" 2897544 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1203 2893681 2893788 2893933 "TANEXP" 2894186 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1202 2893192 2893456 2893546 "TALGOP" 2893626 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1201 2886582 2893049 2893142 "TABLE" 2893147 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1200 2885994 2886093 2886231 "TABLEAU" 2886479 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1199 2880602 2881822 2883070 "TABLBUMP" 2884780 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1198 2879824 2879971 2880152 "SYSTEM" 2880443 T SYSTEM (NIL) -8 NIL NIL NIL) (-1197 2876283 2876982 2877765 "SYSSOLP" 2879075 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1196 2876081 2876238 2876269 "SYSPTR" 2876274 T SYSPTR (NIL) -8 NIL NIL NIL) (-1195 2875117 2875622 2875741 "SYSNNI" 2875927 NIL SYSNNI (NIL NIL) -8 NIL NIL 2876012) (-1194 2874416 2874875 2874954 "SYSINT" 2875014 NIL SYSINT (NIL NIL) -8 NIL NIL 2875059) (-1193 2870748 2871694 2872404 "SYNTAX" 2873728 T SYNTAX (NIL) -8 NIL NIL NIL) (-1192 2867906 2868508 2869140 "SYMTAB" 2870138 T SYMTAB (NIL) -8 NIL NIL NIL) (-1191 2863155 2864057 2865040 "SYMS" 2866945 T SYMS (NIL) -8 NIL NIL NIL) (-1190 2860390 2862613 2862843 "SYMPOLY" 2862960 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1189 2859907 2859982 2860105 "SYMFUNC" 2860302 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1188 2855927 2857219 2858032 "SYMBOL" 2859116 T SYMBOL (NIL) -8 NIL NIL NIL) (-1187 2849466 2851155 2852875 "SWITCH" 2854229 T SWITCH (NIL) -8 NIL NIL NIL) (-1186 2842700 2848287 2848590 "SUTS" 2849221 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1185 2834766 2841947 2842220 "SUPXS" 2842485 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1184 2826436 2834384 2834510 "SUP" 2834675 NIL SUP (NIL T) -8 NIL NIL NIL) (-1183 2825595 2825722 2825939 "SUPFRACF" 2826304 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1182 2825216 2825275 2825388 "SUP2" 2825530 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1181 2823664 2823938 2824294 "SUMRF" 2824915 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1180 2822999 2823065 2823257 "SUMFS" 2823585 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1179 2806795 2822176 2822427 "SULS" 2822806 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1178 2806397 2806617 2806687 "SUCHTAST" 2806747 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1177 2805692 2805922 2806062 "SUCH" 2806305 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1176 2799559 2800598 2801557 "SUBSPACE" 2804780 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1175 2798989 2799079 2799243 "SUBRESP" 2799447 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1174 2792357 2793654 2794965 "STTF" 2797725 NIL STTF (NIL T) -7 NIL NIL NIL) (-1173 2786530 2787650 2788797 "STTFNC" 2791257 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1172 2777843 2779712 2781506 "STTAYLOR" 2784771 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1171 2770973 2777707 2777790 "STRTBL" 2777795 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1170 2766337 2770928 2770959 "STRING" 2770964 T STRING (NIL) -8 NIL NIL NIL) (-1169 2761166 2765680 2765710 "STRICAT" 2765769 T STRICAT (NIL) -9 NIL 2765831 NIL) (-1168 2753919 2758785 2759396 "STREAM" 2760590 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1167 2753429 2753506 2753650 "STREAM3" 2753836 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1166 2752411 2752594 2752829 "STREAM2" 2753242 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1165 2752099 2752151 2752244 "STREAM1" 2752353 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1164 2751115 2751296 2751527 "STINPROD" 2751915 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1163 2750667 2750877 2750907 "STEP" 2750987 T STEP (NIL) -9 NIL 2751065 NIL) (-1162 2749854 2750156 2750304 "STEPAST" 2750541 T STEPAST (NIL) -8 NIL NIL NIL) (-1161 2743286 2749753 2749830 "STBL" 2749835 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1160 2738381 2742477 2742520 "STAGG" 2742673 NIL STAGG (NIL T) -9 NIL 2742762 NIL) (-1159 2736083 2736685 2737557 "STAGG-" 2737562 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1158 2734230 2735853 2735945 "STACK" 2736026 NIL STACK (NIL T) -8 NIL NIL NIL) (-1157 2726925 2732371 2732827 "SREGSET" 2733860 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1156 2719350 2720719 2722232 "SRDCMPK" 2725531 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1155 2712235 2716760 2716790 "SRAGG" 2718093 T SRAGG (NIL) -9 NIL 2718701 NIL) (-1154 2711252 2711507 2711886 "SRAGG-" 2711891 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1153 2705623 2710199 2710620 "SQMATRIX" 2710878 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1152 2699308 2702341 2703068 "SPLTREE" 2704968 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1151 2695271 2695964 2696610 "SPLNODE" 2698734 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1150 2694318 2694551 2694581 "SPFCAT" 2695025 T SPFCAT (NIL) -9 NIL NIL NIL) (-1149 2693055 2693265 2693529 "SPECOUT" 2694076 T SPECOUT (NIL) -7 NIL NIL NIL) (-1148 2684165 2686037 2686067 "SPADXPT" 2690743 T SPADXPT (NIL) -9 NIL 2692907 NIL) (-1147 2683926 2683966 2684035 "SPADPRSR" 2684118 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1146 2681975 2683881 2683912 "SPADAST" 2683917 T SPADAST (NIL) -8 NIL NIL NIL) (-1145 2673920 2675693 2675736 "SPACEC" 2680109 NIL SPACEC (NIL T) -9 NIL 2681925 NIL) (-1144 2672050 2673852 2673901 "SPACE3" 2673906 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1143 2670802 2670973 2671264 "SORTPAK" 2671855 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1142 2668894 2669197 2669609 "SOLVETRA" 2670466 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1141 2667944 2668166 2668427 "SOLVESER" 2668667 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1140 2663248 2664136 2665131 "SOLVERAD" 2666996 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1139 2659063 2659672 2660401 "SOLVEFOR" 2662615 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1138 2653333 2658412 2658509 "SNTSCAT" 2658514 NIL SNTSCAT (NIL T T T T) -9 NIL 2658584 NIL) (-1137 2647439 2651656 2652047 "SMTS" 2653023 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1136 2642035 2647327 2647404 "SMP" 2647409 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1135 2640194 2640495 2640893 "SMITH" 2641732 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1134 2632747 2637033 2637136 "SMATCAT" 2638487 NIL SMATCAT (NIL NIL T T T) -9 NIL 2639037 NIL) (-1133 2629465 2630350 2631608 "SMATCAT-" 2631613 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1132 2627131 2628701 2628744 "SKAGG" 2629005 NIL SKAGG (NIL T) -9 NIL 2629140 NIL) (-1131 2623407 2626604 2626788 "SINT" 2626940 T SINT (NIL) -8 NIL NIL 2627102) (-1130 2623179 2623217 2623283 "SIMPAN" 2623363 T SIMPAN (NIL) -7 NIL NIL NIL) (-1129 2622458 2622714 2622854 "SIG" 2623061 T SIG (NIL) -8 NIL NIL NIL) (-1128 2621296 2621517 2621792 "SIGNRF" 2622217 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1127 2620129 2620280 2620564 "SIGNEF" 2621125 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1126 2619435 2619712 2619836 "SIGAST" 2620027 T SIGAST (NIL) -8 NIL NIL NIL) (-1125 2617125 2617579 2618085 "SHP" 2618976 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1124 2610840 2617026 2617102 "SHDP" 2617107 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1123 2610413 2610605 2610635 "SGROUP" 2610728 T SGROUP (NIL) -9 NIL 2610790 NIL) (-1122 2610271 2610297 2610370 "SGROUP-" 2610375 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1121 2607062 2607760 2608483 "SGCF" 2609570 T SGCF (NIL) -7 NIL NIL NIL) (-1120 2601430 2606509 2606606 "SFRTCAT" 2606611 NIL SFRTCAT (NIL T T T T) -9 NIL 2606650 NIL) (-1119 2594851 2595869 2597005 "SFRGCD" 2600413 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1118 2587977 2589050 2590236 "SFQCMPK" 2593784 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1117 2587597 2587686 2587797 "SFORT" 2587918 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1116 2586715 2587437 2587558 "SEXOF" 2587563 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1115 2585822 2586596 2586664 "SEX" 2586669 T SEX (NIL) -8 NIL NIL NIL) (-1114 2581603 2582318 2582413 "SEXCAT" 2585035 NIL SEXCAT (NIL T T T T T) -9 NIL 2585595 NIL) (-1113 2578756 2581537 2581585 "SET" 2581590 NIL SET (NIL T) -8 NIL NIL NIL) (-1112 2576980 2577469 2577774 "SETMN" 2578497 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1111 2576476 2576628 2576658 "SETCAT" 2576834 T SETCAT (NIL) -9 NIL 2576944 NIL) (-1110 2576168 2576246 2576376 "SETCAT-" 2576381 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1109 2572529 2574629 2574672 "SETAGG" 2575542 NIL SETAGG (NIL T) -9 NIL 2575882 NIL) (-1108 2571987 2572103 2572340 "SETAGG-" 2572345 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1107 2571430 2571683 2571784 "SEQAST" 2571908 T SEQAST (NIL) -8 NIL NIL NIL) (-1106 2570629 2570923 2570984 "SEGXCAT" 2571270 NIL SEGXCAT (NIL T T) -9 NIL 2571390 NIL) (-1105 2569635 2570295 2570477 "SEG" 2570482 NIL SEG (NIL T) -8 NIL NIL NIL) (-1104 2568614 2568828 2568871 "SEGCAT" 2569393 NIL SEGCAT (NIL T) -9 NIL 2569614 NIL) (-1103 2567546 2567977 2568185 "SEGBIND" 2568441 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1102 2567167 2567226 2567339 "SEGBIND2" 2567481 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1101 2566740 2566968 2567045 "SEGAST" 2567112 T SEGAST (NIL) -8 NIL NIL NIL) (-1100 2565959 2566085 2566289 "SEG2" 2566584 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1099 2565369 2565894 2565941 "SDVAR" 2565946 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1098 2557807 2565139 2565269 "SDPOL" 2565274 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1097 2556400 2556666 2556985 "SCPKG" 2557522 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1096 2555564 2555736 2555928 "SCOPE" 2556230 T SCOPE (NIL) -8 NIL NIL NIL) (-1095 2554784 2554918 2555097 "SCACHE" 2555419 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1094 2554430 2554616 2554646 "SASTCAT" 2554651 T SASTCAT (NIL) -9 NIL 2554664 NIL) (-1093 2553917 2554265 2554341 "SAOS" 2554376 T SAOS (NIL) -8 NIL NIL NIL) (-1092 2553482 2553517 2553690 "SAERFFC" 2553876 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1091 2547332 2553379 2553459 "SAE" 2553464 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1090 2546925 2546960 2547119 "SAEFACT" 2547291 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1089 2545246 2545560 2545961 "RURPK" 2546591 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1088 2543883 2544189 2544494 "RULESET" 2545080 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1087 2541106 2541636 2542094 "RULE" 2543564 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1086 2540718 2540900 2540983 "RULECOLD" 2541058 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1085 2540508 2540536 2540607 "RTVALUE" 2540669 T RTVALUE (NIL) -8 NIL NIL NIL) (-1084 2539979 2540225 2540319 "RSTRCAST" 2540436 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1083 2534827 2535622 2536542 "RSETGCD" 2539178 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1082 2524057 2529136 2529233 "RSETCAT" 2533352 NIL RSETCAT (NIL T T T T) -9 NIL 2534449 NIL) (-1081 2521984 2522523 2523347 "RSETCAT-" 2523352 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1080 2514370 2515746 2517266 "RSDCMPK" 2520583 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1079 2512349 2512816 2512890 "RRCC" 2513976 NIL RRCC (NIL T T) -9 NIL 2514320 NIL) (-1078 2511700 2511874 2512153 "RRCC-" 2512158 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1077 2511143 2511396 2511497 "RPTAST" 2511621 T RPTAST (NIL) -8 NIL NIL NIL) (-1076 2484859 2494307 2494374 "RPOLCAT" 2505040 NIL RPOLCAT (NIL T T T) -9 NIL 2508200 NIL) (-1075 2476357 2478697 2481819 "RPOLCAT-" 2481824 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1074 2467288 2474568 2475050 "ROUTINE" 2475897 T ROUTINE (NIL) -8 NIL NIL NIL) (-1073 2464035 2466914 2467054 "ROMAN" 2467170 T ROMAN (NIL) -8 NIL NIL NIL) (-1072 2462279 2462895 2463155 "ROIRC" 2463840 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1071 2458511 2460795 2460825 "RNS" 2461129 T RNS (NIL) -9 NIL 2461403 NIL) (-1070 2457020 2457403 2457937 "RNS-" 2458012 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1069 2456423 2456831 2456861 "RNG" 2456866 T RNG (NIL) -9 NIL 2456887 NIL) (-1068 2455426 2455788 2455990 "RNGBIND" 2456274 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1067 2454825 2455213 2455256 "RMODULE" 2455261 NIL RMODULE (NIL T) -9 NIL 2455288 NIL) (-1066 2453661 2453755 2454091 "RMCAT2" 2454726 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1065 2450511 2453007 2453304 "RMATRIX" 2453423 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1064 2443338 2445598 2445713 "RMATCAT" 2449072 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2450054 NIL) (-1063 2442713 2442860 2443167 "RMATCAT-" 2443172 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1062 2442114 2442335 2442378 "RLINSET" 2442572 NIL RLINSET (NIL T) -9 NIL 2442663 NIL) (-1061 2441681 2441756 2441884 "RINTERP" 2442033 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1060 2440739 2441293 2441323 "RING" 2441379 T RING (NIL) -9 NIL 2441471 NIL) (-1059 2440531 2440575 2440672 "RING-" 2440677 NIL RING- (NIL T) -8 NIL NIL NIL) (-1058 2439372 2439609 2439867 "RIDIST" 2440295 T RIDIST (NIL) -7 NIL NIL NIL) (-1057 2430661 2438840 2439046 "RGCHAIN" 2439220 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1056 2430011 2430417 2430458 "RGBCSPC" 2430516 NIL RGBCSPC (NIL T) -9 NIL 2430568 NIL) (-1055 2429169 2429550 2429591 "RGBCMDL" 2429823 NIL RGBCMDL (NIL T) -9 NIL 2429937 NIL) (-1054 2426163 2426777 2427447 "RF" 2428533 NIL RF (NIL T) -7 NIL NIL NIL) (-1053 2425809 2425872 2425975 "RFFACTOR" 2426094 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1052 2425534 2425569 2425666 "RFFACT" 2425768 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1051 2423651 2424015 2424397 "RFDIST" 2425174 T RFDIST (NIL) -7 NIL NIL NIL) (-1050 2423104 2423196 2423359 "RETSOL" 2423553 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1049 2422740 2422820 2422863 "RETRACT" 2422996 NIL RETRACT (NIL T) -9 NIL 2423083 NIL) (-1048 2422589 2422614 2422701 "RETRACT-" 2422706 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1047 2422191 2422411 2422481 "RETAST" 2422541 T RETAST (NIL) -8 NIL NIL NIL) (-1046 2414929 2421844 2421971 "RESULT" 2422086 T RESULT (NIL) -8 NIL NIL NIL) (-1045 2413520 2414198 2414397 "RESRING" 2414832 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1044 2413156 2413205 2413303 "RESLATC" 2413457 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1043 2412861 2412896 2413003 "REPSQ" 2413115 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1042 2410283 2410863 2411465 "REP" 2412281 T REP (NIL) -7 NIL NIL NIL) (-1041 2409980 2410015 2410126 "REPDB" 2410242 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1040 2403880 2405269 2406492 "REP2" 2408792 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1039 2400257 2400938 2401746 "REP1" 2403107 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1038 2392953 2398398 2398854 "REGSET" 2399887 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1037 2391718 2392101 2392351 "REF" 2392738 NIL REF (NIL T) -8 NIL NIL NIL) (-1036 2391095 2391198 2391365 "REDORDER" 2391602 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1035 2387063 2390308 2390535 "RECLOS" 2390923 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1034 2386115 2386296 2386511 "REALSOLV" 2386870 T REALSOLV (NIL) -7 NIL NIL NIL) (-1033 2385961 2386002 2386032 "REAL" 2386037 T REAL (NIL) -9 NIL 2386072 NIL) (-1032 2382444 2383246 2384130 "REAL0Q" 2385126 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1031 2378045 2379033 2380094 "REAL0" 2381425 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1030 2377516 2377762 2377856 "RDUCEAST" 2377973 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1029 2376921 2376993 2377200 "RDIV" 2377438 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1028 2375989 2376163 2376376 "RDIST" 2376743 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1027 2374586 2374873 2375245 "RDETRS" 2375697 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1026 2372398 2372852 2373390 "RDETR" 2374128 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1025 2371023 2371301 2371698 "RDEEFS" 2372114 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1024 2369532 2369838 2370263 "RDEEF" 2370711 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1023 2363593 2366513 2366543 "RCFIELD" 2367838 T RCFIELD (NIL) -9 NIL 2368569 NIL) (-1022 2361657 2362161 2362857 "RCFIELD-" 2362932 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1021 2357926 2359758 2359801 "RCAGG" 2360885 NIL RCAGG (NIL T) -9 NIL 2361350 NIL) (-1020 2357554 2357648 2357811 "RCAGG-" 2357816 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1019 2356889 2357001 2357166 "RATRET" 2357438 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1018 2356442 2356509 2356630 "RATFACT" 2356817 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1017 2355750 2355870 2356022 "RANDSRC" 2356312 T RANDSRC (NIL) -7 NIL NIL NIL) (-1016 2355484 2355528 2355601 "RADUTIL" 2355699 T RADUTIL (NIL) -7 NIL NIL NIL) (-1015 2348505 2354315 2354626 "RADIX" 2355207 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1014 2340021 2348347 2348477 "RADFF" 2348482 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1013 2339668 2339743 2339773 "RADCAT" 2339933 T RADCAT (NIL) -9 NIL NIL NIL) (-1012 2339450 2339498 2339598 "RADCAT-" 2339603 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1011 2337548 2339220 2339312 "QUEUE" 2339393 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1010 2333996 2337481 2337529 "QUAT" 2337534 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1009 2333627 2333670 2333801 "QUATCT2" 2333947 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1008 2326850 2330285 2330327 "QUATCAT" 2331118 NIL QUATCAT (NIL T) -9 NIL 2331884 NIL) (-1007 2322989 2324026 2325416 "QUATCAT-" 2325512 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1006 2320454 2322065 2322108 "QUAGG" 2322489 NIL QUAGG (NIL T) -9 NIL 2322664 NIL) (-1005 2320056 2320276 2320346 "QQUTAST" 2320406 T QQUTAST (NIL) -8 NIL NIL NIL) (-1004 2319069 2319569 2319734 "QFORM" 2319937 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1003 2309903 2315231 2315273 "QFCAT" 2315941 NIL QFCAT (NIL T) -9 NIL 2316942 NIL) (-1002 2305248 2306511 2308185 "QFCAT-" 2308281 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1001 2304879 2304922 2305053 "QFCAT2" 2305199 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1000 2304334 2304444 2304576 "QEQUAT" 2304769 T QEQUAT (NIL) -8 NIL NIL NIL) (-999 2297480 2298553 2299737 "QCMPACK" 2303267 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-998 2295029 2295477 2295905 "QALGSET" 2297135 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-997 2294274 2294448 2294680 "QALGSET2" 2294849 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-996 2292964 2293188 2293505 "PWFFINTB" 2294047 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-995 2291146 2291314 2291668 "PUSHVAR" 2292778 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-994 2287064 2288118 2288159 "PTRANFN" 2290043 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-993 2285466 2285757 2286079 "PTPACK" 2286775 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-992 2285098 2285155 2285264 "PTFUNC2" 2285403 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-991 2279543 2283940 2283981 "PTCAT" 2284277 NIL PTCAT (NIL T) -9 NIL 2284430 NIL) (-990 2279201 2279236 2279360 "PSQFR" 2279502 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-989 2277796 2278094 2278428 "PSEUDLIN" 2278899 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-988 2264559 2266930 2269254 "PSETPK" 2275556 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-987 2257577 2260317 2260413 "PSETCAT" 2263434 NIL PSETCAT (NIL T T T T) -9 NIL 2264248 NIL) (-986 2255413 2256047 2256868 "PSETCAT-" 2256873 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-985 2254762 2254927 2254955 "PSCURVE" 2255223 T PSCURVE (NIL) -9 NIL 2255390 NIL) (-984 2250760 2252276 2252341 "PSCAT" 2253185 NIL PSCAT (NIL T T T) -9 NIL 2253425 NIL) (-983 2249823 2250039 2250439 "PSCAT-" 2250444 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-982 2248182 2248892 2249155 "PRTITION" 2249580 T PRTITION (NIL) -8 NIL NIL NIL) (-981 2247657 2247903 2247995 "PRTDAST" 2248110 T PRTDAST (NIL) -8 NIL NIL NIL) (-980 2236747 2238961 2241149 "PRS" 2245519 NIL PRS (NIL T T) -7 NIL NIL NIL) (-979 2234558 2236097 2236137 "PRQAGG" 2236320 NIL PRQAGG (NIL T) -9 NIL 2236422 NIL) (-978 2233894 2234199 2234227 "PROPLOG" 2234366 T PROPLOG (NIL) -9 NIL 2234481 NIL) (-977 2233498 2233555 2233678 "PROPFUN2" 2233817 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-976 2232813 2232934 2233106 "PROPFUN1" 2233359 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-975 2230994 2231560 2231857 "PROPFRML" 2232549 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-974 2230463 2230570 2230698 "PROPERTY" 2230886 T PROPERTY (NIL) -8 NIL NIL NIL) (-973 2224521 2228629 2229449 "PRODUCT" 2229689 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-972 2221799 2223979 2224213 "PR" 2224332 NIL PR (NIL T T) -8 NIL NIL NIL) (-971 2221595 2221627 2221686 "PRINT" 2221760 T PRINT (NIL) -7 NIL NIL NIL) (-970 2220935 2221052 2221204 "PRIMES" 2221475 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-969 2219000 2219401 2219867 "PRIMELT" 2220514 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-968 2218729 2218778 2218806 "PRIMCAT" 2218930 T PRIMCAT (NIL) -9 NIL NIL NIL) (-967 2214844 2218667 2218712 "PRIMARR" 2218717 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-966 2213851 2214029 2214257 "PRIMARR2" 2214662 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-965 2213494 2213550 2213661 "PREASSOC" 2213789 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-964 2212969 2213102 2213130 "PPCURVE" 2213335 T PPCURVE (NIL) -9 NIL 2213471 NIL) (-963 2212564 2212764 2212847 "PORTNUM" 2212906 T PORTNUM (NIL) -8 NIL NIL NIL) (-962 2209923 2210322 2210914 "POLYROOT" 2212145 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-961 2204016 2209527 2209687 "POLY" 2209796 NIL POLY (NIL T) -8 NIL NIL NIL) (-960 2203399 2203457 2203691 "POLYLIFT" 2203952 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-959 2199674 2200123 2200752 "POLYCATQ" 2202944 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-958 2186256 2191473 2191538 "POLYCAT" 2195052 NIL POLYCAT (NIL T T T) -9 NIL 2196930 NIL) (-957 2179483 2181407 2183871 "POLYCAT-" 2183876 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-956 2179070 2179138 2179258 "POLY2UP" 2179409 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-955 2178702 2178759 2178868 "POLY2" 2179007 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-954 2177387 2177626 2177902 "POLUTIL" 2178476 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-953 2175742 2176019 2176350 "POLTOPOL" 2177109 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-952 2171207 2175678 2175724 "POINT" 2175729 NIL POINT (NIL T) -8 NIL NIL NIL) (-951 2169394 2169751 2170126 "PNTHEORY" 2170852 T PNTHEORY (NIL) -7 NIL NIL NIL) (-950 2167852 2168149 2168548 "PMTOOLS" 2169092 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-949 2167445 2167523 2167640 "PMSYM" 2167768 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-948 2166953 2167022 2167197 "PMQFCAT" 2167370 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-947 2166308 2166418 2166574 "PMPRED" 2166830 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-946 2165701 2165787 2165949 "PMPREDFS" 2166209 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-945 2164365 2164573 2164951 "PMPLCAT" 2165463 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-944 2163897 2163976 2164128 "PMLSAGG" 2164280 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-943 2163370 2163446 2163628 "PMKERNEL" 2163815 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-942 2162987 2163062 2163175 "PMINS" 2163289 NIL PMINS (NIL T) -7 NIL NIL NIL) (-941 2162429 2162498 2162707 "PMFS" 2162912 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-940 2161657 2161775 2161980 "PMDOWN" 2162306 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-939 2160824 2160982 2161163 "PMASS" 2161496 T PMASS (NIL) -7 NIL NIL NIL) (-938 2160097 2160207 2160370 "PMASSFS" 2160711 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-937 2159752 2159820 2159914 "PLOTTOOL" 2160023 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-936 2154359 2155563 2156711 "PLOT" 2158624 T PLOT (NIL) -8 NIL NIL NIL) (-935 2150163 2151207 2152128 "PLOT3D" 2153458 T PLOT3D (NIL) -8 NIL NIL NIL) (-934 2149075 2149252 2149487 "PLOT1" 2149967 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-933 2124466 2129141 2133992 "PLEQN" 2144341 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-932 2123784 2123906 2124086 "PINTERP" 2124331 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-931 2123477 2123524 2123627 "PINTERPA" 2123731 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-930 2122693 2123241 2123328 "PI" 2123368 T PI (NIL) -8 NIL NIL 2123435) (-929 2120990 2121965 2121993 "PID" 2122175 T PID (NIL) -9 NIL 2122309 NIL) (-928 2120741 2120778 2120853 "PICOERCE" 2120947 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-927 2120061 2120200 2120376 "PGROEB" 2120597 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-926 2115648 2116462 2117367 "PGE" 2119176 T PGE (NIL) -7 NIL NIL NIL) (-925 2113771 2114018 2114384 "PGCD" 2115365 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-924 2113109 2113212 2113373 "PFRPAC" 2113655 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-923 2109749 2111657 2112010 "PFR" 2112788 NIL PFR (NIL T) -8 NIL NIL NIL) (-922 2108138 2108382 2108707 "PFOTOOLS" 2109496 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-921 2106671 2106910 2107261 "PFOQ" 2107895 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-920 2105172 2105384 2105740 "PFO" 2106455 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-919 2101725 2105061 2105130 "PF" 2105135 NIL PF (NIL NIL) -8 NIL NIL NIL) (-918 2099059 2100330 2100358 "PFECAT" 2100943 T PFECAT (NIL) -9 NIL 2101327 NIL) (-917 2098504 2098658 2098872 "PFECAT-" 2098877 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-916 2097107 2097359 2097660 "PFBRU" 2098253 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-915 2094973 2095325 2095757 "PFBR" 2096758 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-914 2091019 2092485 2093132 "PERM" 2094359 NIL PERM (NIL T) -8 NIL NIL NIL) (-913 2086253 2087226 2088096 "PERMGRP" 2090182 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-912 2084372 2085332 2085373 "PERMCAT" 2085773 NIL PERMCAT (NIL T) -9 NIL 2086071 NIL) (-911 2084025 2084066 2084190 "PERMAN" 2084325 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-910 2081513 2083690 2083812 "PENDTREE" 2083936 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-909 2079537 2080305 2080346 "PDRING" 2081003 NIL PDRING (NIL T) -9 NIL 2081289 NIL) (-908 2078640 2078858 2079220 "PDRING-" 2079225 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-907 2075855 2076633 2077301 "PDEPROB" 2077992 T PDEPROB (NIL) -8 NIL NIL NIL) (-906 2073400 2073904 2074459 "PDEPACK" 2075320 T PDEPACK (NIL) -7 NIL NIL NIL) (-905 2072312 2072502 2072753 "PDECOMP" 2073199 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-904 2069891 2070734 2070762 "PDECAT" 2071549 T PDECAT (NIL) -9 NIL 2072262 NIL) (-903 2069642 2069675 2069765 "PCOMP" 2069852 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-902 2067820 2068443 2068740 "PBWLB" 2069371 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-901 2060293 2061893 2063231 "PATTERN" 2066503 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-900 2059925 2059982 2060091 "PATTERN2" 2060230 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-899 2057682 2058070 2058527 "PATTERN1" 2059514 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-898 2055050 2055631 2056112 "PATRES" 2057247 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-897 2054614 2054681 2054813 "PATRES2" 2054977 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-896 2052497 2052902 2053309 "PATMATCH" 2054281 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-895 2052007 2052216 2052257 "PATMAB" 2052364 NIL PATMAB (NIL T) -9 NIL 2052447 NIL) (-894 2050525 2050861 2051119 "PATLRES" 2051812 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-893 2050071 2050194 2050235 "PATAB" 2050240 NIL PATAB (NIL T) -9 NIL 2050412 NIL) (-892 2048253 2048648 2049071 "PARTPERM" 2049668 T PARTPERM (NIL) -7 NIL NIL NIL) (-891 2047874 2047937 2048039 "PARSURF" 2048184 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-890 2047506 2047563 2047672 "PARSU2" 2047811 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-889 2047270 2047310 2047377 "PARSER" 2047459 T PARSER (NIL) -7 NIL NIL NIL) (-888 2046891 2046954 2047056 "PARSCURV" 2047201 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-887 2046523 2046580 2046689 "PARSC2" 2046828 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-886 2046162 2046220 2046317 "PARPCURV" 2046459 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-885 2045794 2045851 2045960 "PARPC2" 2046099 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-884 2044855 2045167 2045349 "PARAMAST" 2045632 T PARAMAST (NIL) -8 NIL NIL NIL) (-883 2044375 2044461 2044580 "PAN2EXPR" 2044756 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-882 2043152 2043496 2043724 "PALETTE" 2044167 T PALETTE (NIL) -8 NIL NIL NIL) (-881 2041545 2042157 2042517 "PAIR" 2042838 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-880 2035324 2040802 2040997 "PADICRC" 2041399 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-879 2028448 2034668 2034853 "PADICRAT" 2035171 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-878 2026763 2028385 2028430 "PADIC" 2028435 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-877 2023873 2025437 2025477 "PADICCT" 2026058 NIL PADICCT (NIL NIL) -9 NIL 2026340 NIL) (-876 2022830 2023030 2023298 "PADEPAC" 2023660 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-875 2022042 2022175 2022381 "PADE" 2022692 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-874 2020429 2021250 2021530 "OWP" 2021846 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-873 2019922 2020135 2020232 "OVERSET" 2020352 T OVERSET (NIL) -8 NIL NIL NIL) (-872 2018968 2019527 2019699 "OVAR" 2019790 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-871 2018232 2018353 2018514 "OUT" 2018827 T OUT (NIL) -7 NIL NIL NIL) (-870 2007104 2009341 2011541 "OUTFORM" 2016052 T OUTFORM (NIL) -8 NIL NIL NIL) (-869 2006440 2006701 2006828 "OUTBFILE" 2006997 T OUTBFILE (NIL) -8 NIL NIL NIL) (-868 2005747 2005912 2005940 "OUTBCON" 2006258 T OUTBCON (NIL) -9 NIL 2006424 NIL) (-867 2005348 2005460 2005617 "OUTBCON-" 2005622 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-866 2004728 2005077 2005166 "OSI" 2005279 T OSI (NIL) -8 NIL NIL NIL) (-865 2004258 2004596 2004624 "OSGROUP" 2004629 T OSGROUP (NIL) -9 NIL 2004651 NIL) (-864 2003003 2003230 2003515 "ORTHPOL" 2004005 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-863 2000554 2002838 2002959 "OREUP" 2002964 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-862 1997957 2000245 2000372 "ORESUP" 2000496 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-861 1995485 1995985 1996546 "OREPCTO" 1997446 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-860 1989171 1991372 1991413 "OREPCAT" 1993761 NIL OREPCAT (NIL T) -9 NIL 1994865 NIL) (-859 1986318 1987100 1988158 "OREPCAT-" 1988163 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-858 1985469 1985767 1985795 "ORDSET" 1986104 T ORDSET (NIL) -9 NIL 1986268 NIL) (-857 1984900 1985048 1985272 "ORDSET-" 1985277 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-856 1983465 1984256 1984284 "ORDRING" 1984486 T ORDRING (NIL) -9 NIL 1984611 NIL) (-855 1983110 1983204 1983348 "ORDRING-" 1983353 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-854 1982490 1982953 1982981 "ORDMON" 1982986 T ORDMON (NIL) -9 NIL 1983007 NIL) (-853 1981652 1981799 1981994 "ORDFUNS" 1982339 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-852 1980990 1981409 1981437 "ORDFIN" 1981502 T ORDFIN (NIL) -9 NIL 1981576 NIL) (-851 1977549 1979576 1979985 "ORDCOMP" 1980614 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-850 1976815 1976942 1977128 "ORDCOMP2" 1977409 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-849 1973396 1974306 1975120 "OPTPROB" 1976021 T OPTPROB (NIL) -8 NIL NIL NIL) (-848 1970198 1970837 1971541 "OPTPACK" 1972712 T OPTPACK (NIL) -7 NIL NIL NIL) (-847 1967885 1968651 1968679 "OPTCAT" 1969498 T OPTCAT (NIL) -9 NIL 1970148 NIL) (-846 1967269 1967562 1967667 "OPSIG" 1967800 T OPSIG (NIL) -8 NIL NIL NIL) (-845 1967037 1967076 1967142 "OPQUERY" 1967223 T OPQUERY (NIL) -7 NIL NIL NIL) (-844 1964168 1965348 1965852 "OP" 1966566 NIL OP (NIL T) -8 NIL NIL NIL) (-843 1963542 1963768 1963809 "OPERCAT" 1964021 NIL OPERCAT (NIL T) -9 NIL 1964118 NIL) (-842 1963297 1963353 1963470 "OPERCAT-" 1963475 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-841 1960110 1962094 1962463 "ONECOMP" 1962961 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-840 1959415 1959530 1959704 "ONECOMP2" 1959982 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-839 1958834 1958940 1959070 "OMSERVER" 1959305 T OMSERVER (NIL) -7 NIL NIL NIL) (-838 1955696 1958274 1958314 "OMSAGG" 1958375 NIL OMSAGG (NIL T) -9 NIL 1958439 NIL) (-837 1954319 1954582 1954864 "OMPKG" 1955434 T OMPKG (NIL) -7 NIL NIL NIL) (-836 1953749 1953852 1953880 "OM" 1954179 T OM (NIL) -9 NIL NIL NIL) (-835 1952296 1953298 1953467 "OMLO" 1953630 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-834 1951256 1951403 1951623 "OMEXPR" 1952122 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-833 1950547 1950802 1950938 "OMERR" 1951140 T OMERR (NIL) -8 NIL NIL NIL) (-832 1949698 1949968 1950128 "OMERRK" 1950407 T OMERRK (NIL) -8 NIL NIL NIL) (-831 1949149 1949375 1949483 "OMENC" 1949610 T OMENC (NIL) -8 NIL NIL NIL) (-830 1943044 1944229 1945400 "OMDEV" 1947998 T OMDEV (NIL) -8 NIL NIL NIL) (-829 1942113 1942284 1942478 "OMCONN" 1942870 T OMCONN (NIL) -8 NIL NIL NIL) (-828 1940634 1941610 1941638 "OINTDOM" 1941643 T OINTDOM (NIL) -9 NIL 1941664 NIL) (-827 1937972 1939322 1939659 "OFMONOID" 1940329 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-826 1937383 1937909 1937954 "ODVAR" 1937959 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-825 1934806 1937128 1937283 "ODR" 1937288 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-824 1927298 1934582 1934708 "ODPOL" 1934713 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-823 1920983 1927170 1927275 "ODP" 1927280 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-822 1919749 1919964 1920239 "ODETOOLS" 1920757 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-821 1916716 1917374 1918090 "ODESYS" 1919082 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-820 1911598 1912506 1913531 "ODERTRIC" 1915791 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-819 1911024 1911106 1911300 "ODERED" 1911510 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-818 1907912 1908460 1909137 "ODERAT" 1910447 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-817 1904871 1905336 1905933 "ODEPRRIC" 1907441 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-816 1902814 1903410 1903896 "ODEPROB" 1904405 T ODEPROB (NIL) -8 NIL NIL NIL) (-815 1899334 1899819 1900466 "ODEPRIM" 1902293 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-814 1898583 1898685 1898945 "ODEPAL" 1899226 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-813 1894745 1895536 1896400 "ODEPACK" 1897739 T ODEPACK (NIL) -7 NIL NIL NIL) (-812 1893806 1893913 1894135 "ODEINT" 1894634 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-811 1887907 1889332 1890779 "ODEIFTBL" 1892379 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-810 1883305 1884091 1885043 "ODEEF" 1887066 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-809 1882654 1882743 1882966 "ODECONST" 1883210 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-808 1880779 1881440 1881468 "ODECAT" 1882073 T ODECAT (NIL) -9 NIL 1882604 NIL) (-807 1877634 1880484 1880606 "OCT" 1880689 NIL OCT (NIL T) -8 NIL NIL NIL) (-806 1877272 1877315 1877442 "OCTCT2" 1877585 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-805 1871883 1874318 1874358 "OC" 1875455 NIL OC (NIL T) -9 NIL 1876313 NIL) (-804 1869110 1869858 1870848 "OC-" 1870942 NIL OC- (NIL T T) -8 NIL NIL NIL) (-803 1868462 1868930 1868958 "OCAMON" 1868963 T OCAMON (NIL) -9 NIL 1868984 NIL) (-802 1867993 1868334 1868362 "OASGP" 1868367 T OASGP (NIL) -9 NIL 1868387 NIL) (-801 1867254 1867743 1867771 "OAMONS" 1867811 T OAMONS (NIL) -9 NIL 1867854 NIL) (-800 1866668 1867101 1867129 "OAMON" 1867134 T OAMON (NIL) -9 NIL 1867154 NIL) (-799 1865926 1866444 1866472 "OAGROUP" 1866477 T OAGROUP (NIL) -9 NIL 1866497 NIL) (-798 1865616 1865666 1865754 "NUMTUBE" 1865870 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-797 1859189 1860707 1862243 "NUMQUAD" 1864100 T NUMQUAD (NIL) -7 NIL NIL NIL) (-796 1854945 1855933 1856958 "NUMODE" 1858184 T NUMODE (NIL) -7 NIL NIL NIL) (-795 1852300 1853180 1853208 "NUMINT" 1854131 T NUMINT (NIL) -9 NIL 1854895 NIL) (-794 1851248 1851445 1851663 "NUMFMT" 1852102 T NUMFMT (NIL) -7 NIL NIL NIL) (-793 1837607 1840552 1843084 "NUMERIC" 1848755 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-792 1831977 1837056 1837151 "NTSCAT" 1837156 NIL NTSCAT (NIL T T T T) -9 NIL 1837195 NIL) (-791 1831171 1831336 1831529 "NTPOLFN" 1831816 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-790 1819159 1827996 1828808 "NSUP" 1830392 NIL NSUP (NIL T) -8 NIL NIL NIL) (-789 1818791 1818848 1818957 "NSUP2" 1819096 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-788 1808928 1818565 1818698 "NSMP" 1818703 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-787 1807360 1807661 1808018 "NREP" 1808616 NIL NREP (NIL T) -7 NIL NIL NIL) (-786 1805951 1806203 1806561 "NPCOEF" 1807103 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-785 1805017 1805132 1805348 "NORMRETR" 1805832 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-784 1803058 1803348 1803757 "NORMPK" 1804725 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-783 1802743 1802771 1802895 "NORMMA" 1803024 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-782 1802543 1802700 1802729 "NONE" 1802734 T NONE (NIL) -8 NIL NIL NIL) (-781 1802332 1802361 1802430 "NONE1" 1802507 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-780 1801829 1801891 1802070 "NODE1" 1802264 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-779 1800110 1800961 1801216 "NNI" 1801563 T NNI (NIL) -8 NIL NIL 1801798) (-778 1798530 1798843 1799207 "NLINSOL" 1799778 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-777 1794771 1795766 1796665 "NIPROB" 1797651 T NIPROB (NIL) -8 NIL NIL NIL) (-776 1793528 1793762 1794064 "NFINTBAS" 1794533 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-775 1792702 1793178 1793219 "NETCLT" 1793391 NIL NETCLT (NIL T) -9 NIL 1793473 NIL) (-774 1791410 1791641 1791922 "NCODIV" 1792470 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-773 1791172 1791209 1791284 "NCNTFRAC" 1791367 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-772 1789352 1789716 1790136 "NCEP" 1790797 NIL NCEP (NIL T) -7 NIL NIL NIL) (-771 1788203 1788976 1789004 "NASRING" 1789114 T NASRING (NIL) -9 NIL 1789194 NIL) (-770 1787998 1788042 1788136 "NASRING-" 1788141 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-769 1787105 1787630 1787658 "NARNG" 1787775 T NARNG (NIL) -9 NIL 1787866 NIL) (-768 1786797 1786864 1786998 "NARNG-" 1787003 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-767 1785676 1785883 1786118 "NAGSP" 1786582 T NAGSP (NIL) -7 NIL NIL NIL) (-766 1776948 1778632 1780305 "NAGS" 1784023 T NAGS (NIL) -7 NIL NIL NIL) (-765 1775496 1775804 1776135 "NAGF07" 1776637 T NAGF07 (NIL) -7 NIL NIL NIL) (-764 1770034 1771325 1772632 "NAGF04" 1774209 T NAGF04 (NIL) -7 NIL NIL NIL) (-763 1763002 1764616 1766249 "NAGF02" 1768421 T NAGF02 (NIL) -7 NIL NIL NIL) (-762 1758226 1759326 1760443 "NAGF01" 1761905 T NAGF01 (NIL) -7 NIL NIL NIL) (-761 1751854 1753420 1755005 "NAGE04" 1756661 T NAGE04 (NIL) -7 NIL NIL NIL) (-760 1743023 1745144 1747274 "NAGE02" 1749744 T NAGE02 (NIL) -7 NIL NIL NIL) (-759 1738976 1739923 1740887 "NAGE01" 1742079 T NAGE01 (NIL) -7 NIL NIL NIL) (-758 1736771 1737305 1737863 "NAGD03" 1738438 T NAGD03 (NIL) -7 NIL NIL NIL) (-757 1728521 1730449 1732403 "NAGD02" 1734837 T NAGD02 (NIL) -7 NIL NIL NIL) (-756 1722332 1723757 1725197 "NAGD01" 1727101 T NAGD01 (NIL) -7 NIL NIL NIL) (-755 1718541 1719363 1720200 "NAGC06" 1721515 T NAGC06 (NIL) -7 NIL NIL NIL) (-754 1717006 1717338 1717694 "NAGC05" 1718205 T NAGC05 (NIL) -7 NIL NIL NIL) (-753 1716382 1716501 1716645 "NAGC02" 1716882 T NAGC02 (NIL) -7 NIL NIL NIL) (-752 1715341 1715924 1715964 "NAALG" 1716043 NIL NAALG (NIL T) -9 NIL 1716104 NIL) (-751 1715176 1715205 1715295 "NAALG-" 1715300 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-750 1709126 1710234 1711421 "MULTSQFR" 1714072 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-749 1708445 1708520 1708704 "MULTFACT" 1709038 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-748 1701169 1705082 1705135 "MTSCAT" 1706205 NIL MTSCAT (NIL T T) -9 NIL 1706720 NIL) (-747 1700881 1700935 1701027 "MTHING" 1701109 NIL MTHING (NIL T) -7 NIL NIL NIL) (-746 1700673 1700706 1700766 "MSYSCMD" 1700841 T MSYSCMD (NIL) -7 NIL NIL NIL) (-745 1696755 1699428 1699748 "MSET" 1700386 NIL MSET (NIL T) -8 NIL NIL NIL) (-744 1693824 1696316 1696357 "MSETAGG" 1696362 NIL MSETAGG (NIL T) -9 NIL 1696396 NIL) (-743 1689666 1691203 1691948 "MRING" 1693124 NIL MRING (NIL T T) -8 NIL NIL NIL) (-742 1689232 1689299 1689430 "MRF2" 1689593 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-741 1688850 1688885 1689029 "MRATFAC" 1689191 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-740 1686462 1686757 1687188 "MPRFF" 1688555 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-739 1680670 1686316 1686413 "MPOLY" 1686418 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-738 1680160 1680195 1680403 "MPCPF" 1680629 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-737 1679674 1679717 1679901 "MPC3" 1680111 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-736 1678869 1678950 1679171 "MPC2" 1679589 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-735 1677170 1677507 1677897 "MONOTOOL" 1678529 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-734 1676395 1676712 1676740 "MONOID" 1676959 T MONOID (NIL) -9 NIL 1677106 NIL) (-733 1675941 1676060 1676241 "MONOID-" 1676246 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-732 1666120 1672161 1672220 "MONOGEN" 1672894 NIL MONOGEN (NIL T T) -9 NIL 1673350 NIL) (-731 1663338 1664073 1665073 "MONOGEN-" 1665192 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-730 1662171 1662617 1662645 "MONADWU" 1663037 T MONADWU (NIL) -9 NIL 1663275 NIL) (-729 1661543 1661702 1661950 "MONADWU-" 1661955 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-728 1660902 1661146 1661174 "MONAD" 1661381 T MONAD (NIL) -9 NIL 1661493 NIL) (-727 1660587 1660665 1660797 "MONAD-" 1660802 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-726 1658876 1659500 1659779 "MOEBIUS" 1660340 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-725 1658154 1658558 1658598 "MODULE" 1658603 NIL MODULE (NIL T) -9 NIL 1658642 NIL) (-724 1657722 1657818 1658008 "MODULE-" 1658013 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-723 1655402 1656086 1656413 "MODRING" 1657546 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1652346 1653507 1654028 "MODOP" 1654931 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-721 1650934 1651413 1651690 "MODMONOM" 1652209 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-720 1640889 1649225 1649639 "MODMON" 1650571 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-719 1638045 1639733 1640009 "MODFIELD" 1640764 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-718 1637022 1637326 1637516 "MMLFORM" 1637875 T MMLFORM (NIL) -8 NIL NIL NIL) (-717 1636548 1636591 1636770 "MMAP" 1636973 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-716 1634627 1635394 1635435 "MLO" 1635858 NIL MLO (NIL T) -9 NIL 1636100 NIL) (-715 1631993 1632509 1633111 "MLIFT" 1634108 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-714 1631384 1631468 1631622 "MKUCFUNC" 1631904 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-713 1630983 1631053 1631176 "MKRECORD" 1631307 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-712 1630030 1630192 1630420 "MKFUNC" 1630794 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-711 1629418 1629522 1629678 "MKFLCFN" 1629913 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-710 1628695 1628797 1628982 "MKBCFUNC" 1629311 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-709 1625370 1628249 1628385 "MINT" 1628579 T MINT (NIL) -8 NIL NIL NIL) (-708 1624182 1624425 1624702 "MHROWRED" 1625125 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-707 1619562 1622717 1623122 "MFLOAT" 1623797 T MFLOAT (NIL) -8 NIL NIL NIL) (-706 1618919 1618995 1619166 "MFINFACT" 1619474 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-705 1615234 1616082 1616966 "MESH" 1618055 T MESH (NIL) -7 NIL NIL NIL) (-704 1613624 1613936 1614289 "MDDFACT" 1614921 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-703 1610419 1612783 1612824 "MDAGG" 1613079 NIL MDAGG (NIL T) -9 NIL 1613222 NIL) (-702 1600066 1609712 1609919 "MCMPLX" 1610232 T MCMPLX (NIL) -8 NIL NIL NIL) (-701 1599203 1599349 1599550 "MCDEN" 1599915 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-700 1597093 1597363 1597743 "MCALCFN" 1598933 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-699 1596018 1596258 1596491 "MAYBE" 1596899 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-698 1593630 1594153 1594715 "MATSTOR" 1595489 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-697 1589587 1593002 1593250 "MATRIX" 1593415 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-696 1585353 1586060 1586796 "MATLIN" 1588944 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-695 1575459 1578645 1578722 "MATCAT" 1583602 NIL MATCAT (NIL T T T) -9 NIL 1585019 NIL) (-694 1571815 1572836 1574192 "MATCAT-" 1574197 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-693 1570409 1570562 1570895 "MATCAT2" 1571650 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-692 1568521 1568845 1569229 "MAPPKG3" 1570084 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-691 1567502 1567675 1567897 "MAPPKG2" 1568345 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-690 1566001 1566285 1566612 "MAPPKG1" 1567208 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-689 1565080 1565407 1565584 "MAPPAST" 1565844 T MAPPAST (NIL) -8 NIL NIL NIL) (-688 1564691 1564749 1564872 "MAPHACK3" 1565016 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-687 1564283 1564344 1564458 "MAPHACK2" 1564623 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-686 1563721 1563824 1563966 "MAPHACK1" 1564174 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-685 1561800 1562421 1562725 "MAGMA" 1563449 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-684 1561279 1561524 1561615 "MACROAST" 1561729 T MACROAST (NIL) -8 NIL NIL NIL) (-683 1557697 1559518 1559979 "M3D" 1560851 NIL M3D (NIL T) -8 NIL NIL NIL) (-682 1551772 1556036 1556077 "LZSTAGG" 1556859 NIL LZSTAGG (NIL T) -9 NIL 1557154 NIL) (-681 1547730 1548903 1550360 "LZSTAGG-" 1550365 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-680 1544817 1545621 1546108 "LWORD" 1547275 NIL LWORD (NIL T) -8 NIL NIL NIL) (-679 1544393 1544621 1544696 "LSTAST" 1544762 T LSTAST (NIL) -8 NIL NIL NIL) (-678 1537470 1544164 1544298 "LSQM" 1544303 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-677 1536694 1536833 1537061 "LSPP" 1537325 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-676 1534506 1534807 1535263 "LSMP" 1536383 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-675 1531285 1531959 1532689 "LSMP1" 1533808 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-674 1525131 1530422 1530463 "LSAGG" 1530525 NIL LSAGG (NIL T) -9 NIL 1530603 NIL) (-673 1521826 1522750 1523963 "LSAGG-" 1523968 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-672 1519425 1520970 1521219 "LPOLY" 1521621 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-671 1519007 1519092 1519215 "LPEFRAC" 1519334 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-670 1517328 1518101 1518354 "LO" 1518839 NIL LO (NIL T T T) -8 NIL NIL NIL) (-669 1516980 1517092 1517120 "LOGIC" 1517231 T LOGIC (NIL) -9 NIL 1517312 NIL) (-668 1516842 1516865 1516936 "LOGIC-" 1516941 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-667 1516035 1516175 1516368 "LODOOPS" 1516698 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-666 1513458 1515951 1516017 "LODO" 1516022 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-665 1511996 1512231 1512584 "LODOF" 1513205 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-664 1508200 1510631 1510672 "LODOCAT" 1511110 NIL LODOCAT (NIL T) -9 NIL 1511321 NIL) (-663 1507933 1507991 1508118 "LODOCAT-" 1508123 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-662 1505253 1507774 1507892 "LODO2" 1507897 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-661 1502688 1505190 1505235 "LODO1" 1505240 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-660 1501569 1501734 1502039 "LODEEF" 1502511 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-659 1496872 1499763 1499804 "LNAGG" 1500666 NIL LNAGG (NIL T) -9 NIL 1501101 NIL) (-658 1496019 1496233 1496575 "LNAGG-" 1496580 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-657 1492155 1492944 1493583 "LMOPS" 1495434 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-656 1491558 1491946 1491987 "LMODULE" 1491992 NIL LMODULE (NIL T) -9 NIL 1492018 NIL) (-655 1488756 1491203 1491326 "LMDICT" 1491468 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-654 1488162 1488383 1488424 "LLINSET" 1488615 NIL LLINSET (NIL T) -9 NIL 1488706 NIL) (-653 1487861 1488070 1488130 "LITERAL" 1488135 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-652 1481024 1486795 1487099 "LIST" 1487590 NIL LIST (NIL T) -8 NIL NIL NIL) (-651 1480549 1480623 1480762 "LIST3" 1480944 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-650 1479556 1479734 1479962 "LIST2" 1480367 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-649 1477690 1478002 1478401 "LIST2MAP" 1479203 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-648 1477286 1477523 1477564 "LINSET" 1477569 NIL LINSET (NIL T) -9 NIL 1477603 NIL) (-647 1476015 1476548 1476589 "LINEXP" 1476940 NIL LINEXP (NIL T) -9 NIL 1477131 NIL) (-646 1474592 1474852 1475163 "LINDEP" 1475767 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-645 1471359 1472078 1472855 "LIMITRF" 1473847 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-644 1469662 1469958 1470367 "LIMITPS" 1471054 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-643 1464090 1469173 1469401 "LIE" 1469483 NIL LIE (NIL T T) -8 NIL NIL NIL) (-642 1463038 1463507 1463547 "LIECAT" 1463687 NIL LIECAT (NIL T) -9 NIL 1463838 NIL) (-641 1462879 1462906 1462994 "LIECAT-" 1462999 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-640 1455466 1462419 1462575 "LIB" 1462743 T LIB (NIL) -8 NIL NIL NIL) (-639 1451101 1451984 1452919 "LGROBP" 1454583 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-638 1449099 1449373 1449723 "LF" 1450822 NIL LF (NIL T T) -7 NIL NIL NIL) (-637 1447939 1448631 1448659 "LFCAT" 1448866 T LFCAT (NIL) -9 NIL 1449005 NIL) (-636 1444841 1445471 1446159 "LEXTRIPK" 1447303 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-635 1441585 1442411 1442914 "LEXP" 1444421 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-634 1441061 1441306 1441398 "LETAST" 1441513 T LETAST (NIL) -8 NIL NIL NIL) (-633 1439459 1439772 1440173 "LEADCDET" 1440743 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-632 1438649 1438723 1438952 "LAZM3PK" 1439380 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-631 1433566 1436726 1437264 "LAUPOL" 1438161 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-630 1433145 1433189 1433350 "LAPLACE" 1433516 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-629 1431084 1432246 1432497 "LA" 1432978 NIL LA (NIL T T T) -8 NIL NIL NIL) (-628 1430078 1430662 1430703 "LALG" 1430765 NIL LALG (NIL T) -9 NIL 1430824 NIL) (-627 1429792 1429851 1429987 "LALG-" 1429992 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-626 1429627 1429651 1429692 "KVTFROM" 1429754 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-625 1428550 1428994 1429179 "KTVLOGIC" 1429462 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-624 1428385 1428409 1428450 "KRCFROM" 1428512 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-623 1427289 1427476 1427775 "KOVACIC" 1428185 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-622 1427124 1427148 1427189 "KONVERT" 1427251 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-621 1426959 1426983 1427024 "KOERCE" 1427086 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-620 1424790 1425552 1425929 "KERNEL" 1426615 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-619 1424286 1424367 1424499 "KERNEL2" 1424704 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-618 1418056 1422825 1422879 "KDAGG" 1423256 NIL KDAGG (NIL T T) -9 NIL 1423462 NIL) (-617 1417585 1417709 1417914 "KDAGG-" 1417919 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-616 1410733 1417246 1417401 "KAFILE" 1417463 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-615 1405161 1410244 1410472 "JORDAN" 1410554 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-614 1404540 1404810 1404931 "JOINAST" 1405060 T JOINAST (NIL) -8 NIL NIL NIL) (-613 1404386 1404445 1404500 "JAVACODE" 1404505 T JAVACODE (NIL) -8 NIL NIL NIL) (-612 1400638 1402591 1402645 "IXAGG" 1403574 NIL IXAGG (NIL T T) -9 NIL 1404033 NIL) (-611 1399557 1399863 1400282 "IXAGG-" 1400287 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-610 1395087 1399479 1399538 "IVECTOR" 1399543 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-609 1393853 1394090 1394356 "ITUPLE" 1394854 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-608 1392355 1392532 1392827 "ITRIGMNP" 1393675 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-607 1391100 1391304 1391587 "ITFUN3" 1392131 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-606 1390732 1390789 1390898 "ITFUN2" 1391037 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-605 1389891 1390212 1390386 "ITFORM" 1390578 T ITFORM (NIL) -8 NIL NIL NIL) (-604 1387852 1388911 1389189 "ITAYLOR" 1389646 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-603 1376797 1381989 1383152 "ISUPS" 1386722 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-602 1375901 1376041 1376277 "ISUMP" 1376644 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-601 1371276 1375846 1375887 "ISTRING" 1375892 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-600 1370752 1370997 1371089 "ISAST" 1371204 T ISAST (NIL) -8 NIL NIL NIL) (-599 1369961 1370043 1370259 "IRURPK" 1370666 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-598 1368897 1369098 1369338 "IRSN" 1369741 T IRSN (NIL) -7 NIL NIL NIL) (-597 1366968 1367323 1367752 "IRRF2F" 1368535 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-596 1366715 1366753 1366829 "IRREDFFX" 1366924 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-595 1365330 1365589 1365888 "IROOT" 1366448 NIL IROOT (NIL T) -7 NIL NIL NIL) (-594 1361934 1363014 1363706 "IR" 1364670 NIL IR (NIL T) -8 NIL NIL NIL) (-593 1361139 1361427 1361578 "IRFORM" 1361803 T IRFORM (NIL) -8 NIL NIL NIL) (-592 1358752 1359247 1359813 "IR2" 1360617 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-591 1357852 1357965 1358179 "IR2F" 1358635 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-590 1357643 1357677 1357737 "IPRNTPK" 1357812 T IPRNTPK (NIL) -7 NIL NIL NIL) (-589 1354224 1357532 1357601 "IPF" 1357606 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-588 1352551 1354149 1354206 "IPADIC" 1354211 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-587 1351863 1352111 1352241 "IP4ADDR" 1352441 T IP4ADDR (NIL) -8 NIL NIL NIL) (-586 1351237 1351492 1351624 "IOMODE" 1351751 T IOMODE (NIL) -8 NIL NIL NIL) (-585 1350310 1350834 1350961 "IOBFILE" 1351130 T IOBFILE (NIL) -8 NIL NIL NIL) (-584 1349798 1350214 1350242 "IOBCON" 1350247 T IOBCON (NIL) -9 NIL 1350268 NIL) (-583 1349309 1349367 1349550 "INVLAPLA" 1349734 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-582 1338957 1341311 1343697 "INTTR" 1346973 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-581 1335292 1336034 1336899 "INTTOOLS" 1338142 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-580 1334878 1334969 1335086 "INTSLPE" 1335195 T INTSLPE (NIL) -7 NIL NIL NIL) (-579 1332831 1334801 1334860 "INTRVL" 1334865 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-578 1330433 1330945 1331520 "INTRF" 1332316 NIL INTRF (NIL T) -7 NIL NIL NIL) (-577 1329844 1329941 1330083 "INTRET" 1330331 NIL INTRET (NIL T) -7 NIL NIL NIL) (-576 1327841 1328230 1328700 "INTRAT" 1329452 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-575 1325104 1325687 1326306 "INTPM" 1327326 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-574 1321849 1322448 1323186 "INTPAF" 1324490 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-573 1317028 1317990 1319041 "INTPACK" 1320818 T INTPACK (NIL) -7 NIL NIL NIL) (-572 1313926 1316825 1316934 "INT" 1316939 T INT (NIL) -8 NIL NIL NIL) (-571 1313178 1313330 1313538 "INTHERTR" 1313768 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-570 1312617 1312697 1312885 "INTHERAL" 1313092 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-569 1310463 1310906 1311363 "INTHEORY" 1312180 T INTHEORY (NIL) -7 NIL NIL NIL) (-568 1301869 1303490 1305262 "INTG0" 1308815 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-567 1282442 1287232 1292042 "INTFTBL" 1297079 T INTFTBL (NIL) -8 NIL NIL NIL) (-566 1281691 1281829 1282002 "INTFACT" 1282301 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-565 1279118 1279564 1280121 "INTEF" 1281245 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-564 1277485 1278224 1278252 "INTDOM" 1278553 T INTDOM (NIL) -9 NIL 1278760 NIL) (-563 1276854 1277028 1277270 "INTDOM-" 1277275 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-562 1273242 1275170 1275224 "INTCAT" 1276023 NIL INTCAT (NIL T) -9 NIL 1276344 NIL) (-561 1272714 1272817 1272945 "INTBIT" 1273134 T INTBIT (NIL) -7 NIL NIL NIL) (-560 1271413 1271567 1271874 "INTALG" 1272559 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-559 1270896 1270986 1271143 "INTAF" 1271317 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-558 1264239 1270706 1270846 "INTABL" 1270851 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-557 1263572 1264038 1264103 "INT8" 1264137 T INT8 (NIL) -8 NIL NIL 1264182) (-556 1262904 1263370 1263435 "INT64" 1263469 T INT64 (NIL) -8 NIL NIL 1263514) (-555 1262236 1262702 1262767 "INT32" 1262801 T INT32 (NIL) -8 NIL NIL 1262846) (-554 1261568 1262034 1262099 "INT16" 1262133 T INT16 (NIL) -8 NIL NIL 1262178) (-553 1256376 1259142 1259170 "INS" 1260104 T INS (NIL) -9 NIL 1260769 NIL) (-552 1253616 1254387 1255361 "INS-" 1255434 NIL INS- (NIL T) -8 NIL NIL NIL) (-551 1252391 1252618 1252916 "INPSIGN" 1253369 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-550 1251509 1251626 1251823 "INPRODPF" 1252271 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-549 1250403 1250520 1250757 "INPRODFF" 1251389 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-548 1249403 1249555 1249815 "INNMFACT" 1250239 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-547 1248600 1248697 1248885 "INMODGCD" 1249302 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-546 1247108 1247353 1247677 "INFSP" 1248345 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-545 1246292 1246409 1246592 "INFPROD0" 1246988 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-544 1243147 1244357 1244872 "INFORM" 1245785 T INFORM (NIL) -8 NIL NIL NIL) (-543 1242757 1242817 1242915 "INFORM1" 1243082 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-542 1242280 1242369 1242483 "INFINITY" 1242663 T INFINITY (NIL) -7 NIL NIL NIL) (-541 1241456 1242000 1242101 "INETCLTS" 1242199 T INETCLTS (NIL) -8 NIL NIL NIL) (-540 1240072 1240322 1240643 "INEP" 1241204 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-539 1239321 1239969 1240034 "INDE" 1240039 NIL INDE (NIL T) -8 NIL NIL NIL) (-538 1238885 1238953 1239070 "INCRMAPS" 1239248 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-537 1237703 1238154 1238360 "INBFILE" 1238699 T INBFILE (NIL) -8 NIL NIL NIL) (-536 1233002 1233939 1234883 "INBFF" 1236791 NIL INBFF (NIL T) -7 NIL NIL NIL) (-535 1231910 1232179 1232207 "INBCON" 1232720 T INBCON (NIL) -9 NIL 1232986 NIL) (-534 1231162 1231385 1231661 "INBCON-" 1231666 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-533 1230641 1230886 1230977 "INAST" 1231091 T INAST (NIL) -8 NIL NIL NIL) (-532 1230068 1230320 1230426 "IMPTAST" 1230555 T IMPTAST (NIL) -8 NIL NIL NIL) (-531 1226514 1229912 1230016 "IMATRIX" 1230021 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-530 1225222 1225345 1225661 "IMATQF" 1226370 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-529 1223442 1223669 1224006 "IMATLIN" 1224978 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-528 1218020 1223366 1223424 "ILIST" 1223429 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-527 1215925 1217880 1217993 "IIARRAY2" 1217998 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-526 1211323 1215836 1215900 "IFF" 1215905 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-525 1210670 1210940 1211056 "IFAST" 1211227 T IFAST (NIL) -8 NIL NIL NIL) (-524 1205665 1209962 1210150 "IFARRAY" 1210527 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-523 1204845 1205569 1205642 "IFAMON" 1205647 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-522 1204429 1204494 1204548 "IEVALAB" 1204755 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-521 1204104 1204172 1204332 "IEVALAB-" 1204337 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-520 1203735 1204018 1204081 "IDPO" 1204086 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-519 1202985 1203624 1203699 "IDPOAMS" 1203704 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-518 1202292 1202874 1202949 "IDPOAM" 1202954 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-517 1201351 1201627 1201680 "IDPC" 1202093 NIL IDPC (NIL T T) -9 NIL 1202242 NIL) (-516 1200820 1201243 1201316 "IDPAM" 1201321 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-515 1200196 1200712 1200785 "IDPAG" 1200790 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-514 1199841 1200032 1200107 "IDENT" 1200141 T IDENT (NIL) -8 NIL NIL NIL) (-513 1196096 1196944 1197839 "IDECOMP" 1198998 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-512 1188933 1190019 1191066 "IDEAL" 1195132 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-511 1188093 1188205 1188405 "ICDEN" 1188817 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-510 1187164 1187573 1187720 "ICARD" 1187966 T ICARD (NIL) -8 NIL NIL NIL) (-509 1185224 1185537 1185942 "IBPTOOLS" 1186841 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-508 1180831 1184844 1184957 "IBITS" 1185143 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-507 1177554 1178130 1178825 "IBATOOL" 1180248 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-506 1175333 1175795 1176328 "IBACHIN" 1177089 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-505 1173162 1175179 1175282 "IARRAY2" 1175287 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-504 1169268 1173088 1173145 "IARRAY1" 1173150 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-503 1163306 1167680 1168161 "IAN" 1168807 T IAN (NIL) -8 NIL NIL NIL) (-502 1162817 1162874 1163047 "IALGFACT" 1163243 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-501 1162345 1162458 1162486 "HYPCAT" 1162693 T HYPCAT (NIL) -9 NIL NIL NIL) (-500 1161883 1162000 1162186 "HYPCAT-" 1162191 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-499 1161478 1161678 1161761 "HOSTNAME" 1161820 T HOSTNAME (NIL) -8 NIL NIL NIL) (-498 1161323 1161360 1161401 "HOMOTOP" 1161406 NIL HOMOTOP (NIL T) -9 NIL 1161439 NIL) (-497 1157955 1159333 1159374 "HOAGG" 1160355 NIL HOAGG (NIL T) -9 NIL 1161034 NIL) (-496 1156549 1156948 1157474 "HOAGG-" 1157479 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-495 1150458 1156142 1156292 "HEXADEC" 1156419 T HEXADEC (NIL) -8 NIL NIL NIL) (-494 1149206 1149428 1149691 "HEUGCD" 1150235 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-493 1148282 1149043 1149173 "HELLFDIV" 1149178 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-492 1146461 1148059 1148147 "HEAP" 1148226 NIL HEAP (NIL T) -8 NIL NIL NIL) (-491 1145724 1146013 1146147 "HEADAST" 1146347 T HEADAST (NIL) -8 NIL NIL NIL) (-490 1139453 1145639 1145701 "HDP" 1145706 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-489 1133352 1139088 1139240 "HDMP" 1139354 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-488 1132676 1132816 1132980 "HB" 1133208 T HB (NIL) -7 NIL NIL NIL) (-487 1126062 1132522 1132626 "HASHTBL" 1132631 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-486 1125538 1125783 1125875 "HASAST" 1125990 T HASAST (NIL) -8 NIL NIL NIL) (-485 1123316 1125160 1125342 "HACKPI" 1125376 T HACKPI (NIL) -8 NIL NIL NIL) (-484 1118984 1123169 1123282 "GTSET" 1123287 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-483 1112399 1118862 1118960 "GSTBL" 1118965 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-482 1104677 1111430 1111695 "GSERIES" 1112190 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-481 1103818 1104235 1104263 "GROUP" 1104466 T GROUP (NIL) -9 NIL 1104600 NIL) (-480 1103184 1103343 1103594 "GROUP-" 1103599 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-479 1101551 1101872 1102259 "GROEBSOL" 1102861 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-478 1100465 1100753 1100804 "GRMOD" 1101333 NIL GRMOD (NIL T T) -9 NIL 1101501 NIL) (-477 1100233 1100269 1100397 "GRMOD-" 1100402 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-476 1095523 1096587 1097587 "GRIMAGE" 1099253 T GRIMAGE (NIL) -8 NIL NIL NIL) (-475 1093989 1094250 1094574 "GRDEF" 1095219 T GRDEF (NIL) -7 NIL NIL NIL) (-474 1093433 1093549 1093690 "GRAY" 1093868 T GRAY (NIL) -7 NIL NIL NIL) (-473 1092620 1093026 1093077 "GRALG" 1093230 NIL GRALG (NIL T T) -9 NIL 1093323 NIL) (-472 1092281 1092354 1092517 "GRALG-" 1092522 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-471 1089058 1091866 1092044 "GPOLSET" 1092188 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-470 1088412 1088469 1088727 "GOSPER" 1088995 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-469 1084144 1084850 1085376 "GMODPOL" 1088111 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-468 1083149 1083333 1083571 "GHENSEL" 1083956 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-467 1077305 1078148 1079168 "GENUPS" 1082233 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-466 1077002 1077053 1077142 "GENUFACT" 1077248 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-465 1076414 1076491 1076656 "GENPGCD" 1076920 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-464 1075888 1075923 1076136 "GENMFACT" 1076373 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-463 1074454 1074711 1075018 "GENEEZ" 1075631 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-462 1068513 1074065 1074227 "GDMP" 1074377 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-461 1057856 1062284 1063390 "GCNAALG" 1067496 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-460 1056183 1057045 1057073 "GCDDOM" 1057328 T GCDDOM (NIL) -9 NIL 1057485 NIL) (-459 1055653 1055780 1055995 "GCDDOM-" 1056000 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-458 1054325 1054510 1054814 "GB" 1055432 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-457 1042941 1045271 1047663 "GBINTERN" 1052016 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-456 1040778 1041070 1041491 "GBF" 1042616 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-455 1039559 1039724 1039991 "GBEUCLID" 1040594 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-454 1038908 1039033 1039182 "GAUSSFAC" 1039430 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-453 1037275 1037577 1037891 "GALUTIL" 1038627 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-452 1035583 1035857 1036181 "GALPOLYU" 1037002 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-451 1032948 1033238 1033645 "GALFACTU" 1035280 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-450 1024754 1026253 1027861 "GALFACT" 1031380 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-449 1022142 1022800 1022828 "FVFUN" 1023984 T FVFUN (NIL) -9 NIL 1024704 NIL) (-448 1021408 1021590 1021618 "FVC" 1021909 T FVC (NIL) -9 NIL 1022092 NIL) (-447 1021051 1021233 1021301 "FUNDESC" 1021360 T FUNDESC (NIL) -8 NIL NIL NIL) (-446 1020666 1020848 1020929 "FUNCTION" 1021003 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-445 1018410 1018988 1019454 "FT" 1020220 T FT (NIL) -8 NIL NIL NIL) (-444 1017201 1017711 1017914 "FTEM" 1018227 T FTEM (NIL) -8 NIL NIL NIL) (-443 1015492 1015781 1016178 "FSUPFACT" 1016892 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-442 1013889 1014178 1014510 "FST" 1015180 T FST (NIL) -8 NIL NIL NIL) (-441 1013088 1013194 1013382 "FSRED" 1013771 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-440 1011787 1012043 1012390 "FSPRMELT" 1012803 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-439 1009093 1009531 1010017 "FSPECF" 1011350 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-438 990465 998936 998977 "FS" 1002861 NIL FS (NIL T) -9 NIL 1005150 NIL) (-437 979108 982101 986158 "FS-" 986458 NIL FS- (NIL T T) -8 NIL NIL NIL) (-436 978636 978690 978860 "FSINT" 979049 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-435 976928 977629 977932 "FSERIES" 978415 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-434 975970 976086 976310 "FSCINT" 976808 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-433 972178 974914 974955 "FSAGG" 975325 NIL FSAGG (NIL T) -9 NIL 975584 NIL) (-432 969940 970541 971337 "FSAGG-" 971432 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-431 968982 969125 969352 "FSAGG2" 969793 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-430 966664 966944 967491 "FS2UPS" 968700 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-429 966298 966341 966470 "FS2" 966615 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-428 965176 965347 965649 "FS2EXPXP" 966123 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-427 964602 964717 964869 "FRUTIL" 965056 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-426 956015 960097 961455 "FR" 963276 NIL FR (NIL T) -8 NIL NIL NIL) (-425 951029 953704 953744 "FRNAALG" 955064 NIL FRNAALG (NIL T) -9 NIL 955662 NIL) (-424 946702 947778 949053 "FRNAALG-" 949803 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-423 946340 946383 946510 "FRNAAF2" 946653 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-422 944715 945189 945485 "FRMOD" 946152 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-421 942458 943090 943408 "FRIDEAL" 944506 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-420 941649 941736 942027 "FRIDEAL2" 942365 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-419 940782 941196 941237 "FRETRCT" 941242 NIL FRETRCT (NIL T) -9 NIL 941418 NIL) (-418 939894 940125 940476 "FRETRCT-" 940481 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-417 936982 938192 938251 "FRAMALG" 939133 NIL FRAMALG (NIL T T) -9 NIL 939425 NIL) (-416 935116 935571 936201 "FRAMALG-" 936424 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-415 928946 934589 934866 "FRAC" 934871 NIL FRAC (NIL T) -8 NIL NIL NIL) (-414 928582 928639 928746 "FRAC2" 928883 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-413 928218 928275 928382 "FR2" 928519 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-412 922731 925624 925652 "FPS" 926771 T FPS (NIL) -9 NIL 927328 NIL) (-411 922180 922289 922453 "FPS-" 922599 NIL FPS- (NIL T) -8 NIL NIL NIL) (-410 919482 921151 921179 "FPC" 921404 T FPC (NIL) -9 NIL 921546 NIL) (-409 919275 919315 919412 "FPC-" 919417 NIL FPC- (NIL T) -8 NIL NIL NIL) (-408 918065 918763 918804 "FPATMAB" 918809 NIL FPATMAB (NIL T) -9 NIL 918961 NIL) (-407 915738 916241 916667 "FPARFRAC" 917702 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-406 911132 911630 912312 "FORTRAN" 915170 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-405 908848 909348 909887 "FORT" 910613 T FORT (NIL) -7 NIL NIL NIL) (-404 906524 907086 907114 "FORTFN" 908174 T FORTFN (NIL) -9 NIL 908798 NIL) (-403 906288 906338 906366 "FORTCAT" 906425 T FORTCAT (NIL) -9 NIL 906487 NIL) (-402 904394 904904 905294 "FORMULA" 905918 T FORMULA (NIL) -8 NIL NIL NIL) (-401 904182 904212 904281 "FORMULA1" 904358 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-400 903705 903757 903930 "FORDER" 904124 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-399 902801 902965 903158 "FOP" 903532 T FOP (NIL) -7 NIL NIL NIL) (-398 901382 902081 902255 "FNLA" 902683 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-397 900111 900526 900554 "FNCAT" 901014 T FNCAT (NIL) -9 NIL 901274 NIL) (-396 899650 900070 900098 "FNAME" 900103 T FNAME (NIL) -8 NIL NIL NIL) (-395 898213 899176 899204 "FMTC" 899209 T FMTC (NIL) -9 NIL 899245 NIL) (-394 896959 898149 898195 "FMONOID" 898200 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-393 893787 894955 894996 "FMONCAT" 896213 NIL FMONCAT (NIL T) -9 NIL 896818 NIL) (-392 892979 893529 893678 "FM" 893683 NIL FM (NIL T T) -8 NIL NIL NIL) (-391 890403 891049 891077 "FMFUN" 892221 T FMFUN (NIL) -9 NIL 892929 NIL) (-390 889672 889853 889881 "FMC" 890171 T FMC (NIL) -9 NIL 890353 NIL) (-389 886751 887611 887665 "FMCAT" 888860 NIL FMCAT (NIL T T) -9 NIL 889355 NIL) (-388 885617 886517 886617 "FM1" 886696 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-387 883391 883807 884301 "FLOATRP" 885168 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-386 876969 881120 881741 "FLOAT" 882790 T FLOAT (NIL) -8 NIL NIL NIL) (-385 874407 874907 875485 "FLOATCP" 876436 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-384 873254 874013 874054 "FLINEXP" 874059 NIL FLINEXP (NIL T) -9 NIL 874152 NIL) (-383 872186 872483 872891 "FLINEXP-" 872896 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-382 871262 871406 871630 "FLASORT" 872038 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-381 868378 869246 869298 "FLALG" 870525 NIL FLALG (NIL T T) -9 NIL 870992 NIL) (-380 862082 865834 865875 "FLAGG" 867137 NIL FLAGG (NIL T) -9 NIL 867789 NIL) (-379 860808 861147 861637 "FLAGG-" 861642 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-378 859850 859993 860220 "FLAGG2" 860661 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-377 856701 857709 857768 "FINRALG" 858896 NIL FINRALG (NIL T T) -9 NIL 859404 NIL) (-376 855861 856090 856429 "FINRALG-" 856434 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-375 855241 855480 855508 "FINITE" 855704 T FINITE (NIL) -9 NIL 855811 NIL) (-374 847598 849785 849825 "FINAALG" 853492 NIL FINAALG (NIL T) -9 NIL 854945 NIL) (-373 842930 843980 845124 "FINAALG-" 846503 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-372 842298 842685 842788 "FILE" 842860 NIL FILE (NIL T) -8 NIL NIL NIL) (-371 840956 841294 841348 "FILECAT" 842032 NIL FILECAT (NIL T T) -9 NIL 842248 NIL) (-370 838672 840200 840228 "FIELD" 840268 T FIELD (NIL) -9 NIL 840348 NIL) (-369 837292 837677 838188 "FIELD-" 838193 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-368 835142 835927 836274 "FGROUP" 836978 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-367 834232 834396 834616 "FGLMICPK" 834974 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-366 830064 834157 834214 "FFX" 834219 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-365 829665 829726 829861 "FFSLPE" 829997 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-364 825655 826437 827233 "FFPOLY" 828901 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-363 825159 825195 825404 "FFPOLY2" 825613 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-362 821005 825078 825141 "FFP" 825146 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-361 816403 820916 820980 "FF" 820985 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-360 811529 815746 815936 "FFNBX" 816257 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-359 806457 810664 810922 "FFNBP" 811383 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-358 801090 805741 805952 "FFNB" 806290 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-357 799922 800120 800435 "FFINTBAS" 800887 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-356 795961 798182 798210 "FFIELDC" 798830 T FFIELDC (NIL) -9 NIL 799206 NIL) (-355 794623 794994 795491 "FFIELDC-" 795496 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-354 794192 794238 794362 "FFHOM" 794565 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-353 791887 792374 792891 "FFF" 793707 NIL FFF (NIL T) -7 NIL NIL NIL) (-352 787505 791629 791730 "FFCGX" 791830 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-351 783127 787237 787344 "FFCGP" 787448 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-350 778310 782854 782962 "FFCG" 783063 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-349 759347 768532 768618 "FFCAT" 773783 NIL FFCAT (NIL T T T) -9 NIL 775234 NIL) (-348 754544 755592 756906 "FFCAT-" 758136 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-347 753955 753998 754233 "FFCAT2" 754495 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 743278 746927 748147 "FEXPR" 752807 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-345 742240 742675 742716 "FEVALAB" 742800 NIL FEVALAB (NIL T) -9 NIL 743061 NIL) (-344 741399 741609 741947 "FEVALAB-" 741952 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-343 739965 740782 740985 "FDIV" 741298 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-342 736985 737726 737841 "FDIVCAT" 739409 NIL FDIVCAT (NIL T T T T) -9 NIL 739846 NIL) (-341 736747 736774 736944 "FDIVCAT-" 736949 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-340 735967 736054 736331 "FDIV2" 736654 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 734941 735262 735464 "FCTRDATA" 735785 T FCTRDATA (NIL) -8 NIL NIL NIL) (-338 733627 733886 734175 "FCPAK1" 734672 T FCPAK1 (NIL) -7 NIL NIL NIL) (-337 732726 733127 733268 "FCOMP" 733518 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-336 716431 719876 723414 "FC" 729208 T FC (NIL) -8 NIL NIL NIL) (-335 708737 712765 712805 "FAXF" 714607 NIL FAXF (NIL T) -9 NIL 715299 NIL) (-334 706014 706671 707496 "FAXF-" 707961 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-333 701066 705390 705566 "FARRAY" 705871 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-332 695960 698027 698080 "FAMR" 699103 NIL FAMR (NIL T T) -9 NIL 699563 NIL) (-331 694850 695152 695587 "FAMR-" 695592 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-330 694019 694772 694825 "FAMONOID" 694830 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-329 691805 692515 692568 "FAMONC" 693509 NIL FAMONC (NIL T T) -9 NIL 693895 NIL) (-328 690469 691559 691696 "FAGROUP" 691701 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-327 688264 688583 688986 "FACUTIL" 690150 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-326 687363 687548 687770 "FACTFUNC" 688074 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-325 679785 686666 686865 "EXPUPXS" 687219 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-324 677268 677808 678394 "EXPRTUBE" 679219 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-323 673539 674131 674861 "EXPRODE" 676607 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-322 659258 672188 672617 "EXPR" 673143 NIL EXPR (NIL T) -8 NIL NIL NIL) (-321 653812 654399 655205 "EXPR2UPS" 658556 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-320 653444 653501 653610 "EXPR2" 653749 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-319 644697 652595 652886 "EXPEXPAN" 653280 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-318 644497 644654 644683 "EXIT" 644688 T EXIT (NIL) -8 NIL NIL NIL) (-317 643977 644221 644312 "EXITAST" 644426 T EXITAST (NIL) -8 NIL NIL NIL) (-316 643604 643666 643779 "EVALCYC" 643909 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-315 643145 643263 643304 "EVALAB" 643474 NIL EVALAB (NIL T) -9 NIL 643578 NIL) (-314 642626 642748 642969 "EVALAB-" 642974 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-313 639994 641296 641324 "EUCDOM" 641879 T EUCDOM (NIL) -9 NIL 642229 NIL) (-312 638399 638841 639431 "EUCDOM-" 639436 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-311 625938 628697 631447 "ESTOOLS" 635669 T ESTOOLS (NIL) -7 NIL NIL NIL) (-310 625570 625627 625736 "ESTOOLS2" 625875 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-309 625321 625363 625443 "ESTOOLS1" 625522 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-308 619358 620966 620994 "ES" 623762 T ES (NIL) -9 NIL 625172 NIL) (-307 614305 615592 617409 "ES-" 617573 NIL ES- (NIL T) -8 NIL NIL NIL) (-306 610679 611440 612220 "ESCONT" 613545 T ESCONT (NIL) -7 NIL NIL NIL) (-305 610424 610456 610538 "ESCONT1" 610641 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-304 610099 610149 610249 "ES2" 610368 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-303 609729 609787 609896 "ES1" 610035 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-302 608945 609074 609250 "ERROR" 609573 T ERROR (NIL) -7 NIL NIL NIL) (-301 602337 608804 608895 "EQTBL" 608900 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-300 594840 597651 599100 "EQ" 600921 NIL -2075 (NIL T) -8 NIL NIL NIL) (-299 594472 594529 594638 "EQ2" 594777 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-298 589763 590810 591903 "EP" 593411 NIL EP (NIL T) -7 NIL NIL NIL) (-297 588363 588654 588960 "ENV" 589477 T ENV (NIL) -8 NIL NIL NIL) (-296 587457 588011 588039 "ENTIRER" 588044 T ENTIRER (NIL) -9 NIL 588090 NIL) (-295 584151 585639 586000 "EMR" 587265 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-294 583281 583466 583520 "ELTAGG" 583900 NIL ELTAGG (NIL T T) -9 NIL 584111 NIL) (-293 583000 583062 583203 "ELTAGG-" 583208 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-292 582764 582793 582847 "ELTAB" 582931 NIL ELTAB (NIL T T) -9 NIL 582983 NIL) (-291 581890 582036 582235 "ELFUTS" 582615 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-290 581632 581688 581716 "ELEMFUN" 581821 T ELEMFUN (NIL) -9 NIL NIL NIL) (-289 581502 581523 581591 "ELEMFUN-" 581596 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-288 576316 579572 579613 "ELAGG" 580553 NIL ELAGG (NIL T) -9 NIL 581016 NIL) (-287 574601 575035 575698 "ELAGG-" 575703 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-286 573913 574050 574206 "ELABOR" 574465 T ELABOR (NIL) -8 NIL NIL NIL) (-285 572574 572853 573147 "ELABEXPR" 573639 T ELABEXPR (NIL) -8 NIL NIL NIL) (-284 565438 567241 568068 "EFUPXS" 571850 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-283 558888 560689 561499 "EFULS" 564714 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-282 556373 556731 557203 "EFSTRUC" 558520 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-281 546164 547730 549278 "EF" 554888 NIL EF (NIL T T) -7 NIL NIL NIL) (-280 545238 545649 545798 "EAB" 546035 T EAB (NIL) -8 NIL NIL NIL) (-279 544420 545197 545225 "E04UCFA" 545230 T E04UCFA (NIL) -8 NIL NIL NIL) (-278 543602 544379 544407 "E04NAFA" 544412 T E04NAFA (NIL) -8 NIL NIL NIL) (-277 542784 543561 543589 "E04MBFA" 543594 T E04MBFA (NIL) -8 NIL NIL NIL) (-276 541966 542743 542771 "E04JAFA" 542776 T E04JAFA (NIL) -8 NIL NIL NIL) (-275 541150 541925 541953 "E04GCFA" 541958 T E04GCFA (NIL) -8 NIL NIL NIL) (-274 540334 541109 541137 "E04FDFA" 541142 T E04FDFA (NIL) -8 NIL NIL NIL) (-273 539516 540293 540321 "E04DGFA" 540326 T E04DGFA (NIL) -8 NIL NIL NIL) (-272 533689 535041 536405 "E04AGNT" 538172 T E04AGNT (NIL) -7 NIL NIL NIL) (-271 532369 532875 532915 "DVARCAT" 533390 NIL DVARCAT (NIL T) -9 NIL 533589 NIL) (-270 531573 531785 532099 "DVARCAT-" 532104 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-269 524621 531372 531501 "DSMP" 531506 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-268 519402 520566 521634 "DROPT" 523573 T DROPT (NIL) -8 NIL NIL NIL) (-267 519067 519126 519224 "DROPT1" 519337 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-266 514182 515308 516445 "DROPT0" 517950 T DROPT0 (NIL) -7 NIL NIL NIL) (-265 512527 512852 513238 "DRAWPT" 513816 T DRAWPT (NIL) -7 NIL NIL NIL) (-264 507114 508037 509116 "DRAW" 511501 NIL DRAW (NIL T) -7 NIL NIL NIL) (-263 506747 506800 506918 "DRAWHACK" 507055 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-262 505478 505747 506038 "DRAWCX" 506476 T DRAWCX (NIL) -7 NIL NIL NIL) (-261 504993 505062 505213 "DRAWCURV" 505404 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-260 495461 497423 499538 "DRAWCFUN" 502898 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-259 492225 494154 494195 "DQAGG" 494824 NIL DQAGG (NIL T) -9 NIL 495098 NIL) (-258 480162 486720 486803 "DPOLCAT" 488655 NIL DPOLCAT (NIL T T T T) -9 NIL 489200 NIL) (-257 474999 476347 478305 "DPOLCAT-" 478310 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-256 468308 474860 474958 "DPMO" 474963 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-255 461520 468088 468255 "DPMM" 468260 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-254 461090 461304 461393 "DOMTMPLT" 461451 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-253 460523 460892 460972 "DOMCTOR" 461030 T DOMCTOR (NIL) -8 NIL NIL NIL) (-252 459735 460003 460154 "DOMAIN" 460392 T DOMAIN (NIL) -8 NIL NIL NIL) (-251 453634 459370 459522 "DMP" 459636 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-250 453234 453290 453434 "DLP" 453572 NIL DLP (NIL T) -7 NIL NIL NIL) (-249 447056 452561 452751 "DLIST" 453076 NIL DLIST (NIL T) -8 NIL NIL NIL) (-248 443853 445909 445950 "DLAGG" 446500 NIL DLAGG (NIL T) -9 NIL 446730 NIL) (-247 442529 443193 443221 "DIVRING" 443313 T DIVRING (NIL) -9 NIL 443396 NIL) (-246 441766 441956 442256 "DIVRING-" 442261 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-245 439868 440225 440631 "DISPLAY" 441380 T DISPLAY (NIL) -7 NIL NIL NIL) (-244 433617 439782 439845 "DIRPROD" 439850 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-243 432465 432668 432933 "DIRPROD2" 433410 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-242 420976 427122 427175 "DIRPCAT" 427585 NIL DIRPCAT (NIL NIL T) -9 NIL 428425 NIL) (-241 418080 418784 419745 "DIRPCAT-" 420082 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-240 417367 417527 417713 "DIOSP" 417914 T DIOSP (NIL) -7 NIL NIL NIL) (-239 414022 416279 416320 "DIOPS" 416754 NIL DIOPS (NIL T) -9 NIL 416983 NIL) (-238 413571 413685 413876 "DIOPS-" 413881 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-237 412460 413088 413116 "DIFRING" 413235 T DIFRING (NIL) -9 NIL 413318 NIL) (-236 412105 412183 412335 "DIFRING-" 412340 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-235 411813 411858 411899 "DIFFDOM" 412020 NIL DIFFDOM (NIL T) -9 NIL 412088 NIL) (-234 411666 411690 411774 "DIFFDOM-" 411779 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409345 410617 410658 "DIFEXT" 411021 NIL DIFEXT (NIL T) -9 NIL 411315 NIL) (-232 407630 408058 408724 "DIFEXT-" 408729 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 404905 407162 407203 "DIAGG" 407208 NIL DIAGG (NIL T) -9 NIL 407228 NIL) (-230 404289 404446 404698 "DIAGG-" 404703 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399706 403248 403525 "DHMATRIX" 404058 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395318 396227 397237 "DFSFUN" 398716 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390398 394249 394561 "DFLOAT" 395026 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388661 388942 389331 "DFINTTLS" 390106 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385690 386682 387082 "DERHAM" 388327 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383491 385465 385554 "DEQUEUE" 385634 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382745 382878 383061 "DEGRED" 383353 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379175 379920 380766 "DEFINTRF" 381973 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376730 377199 377791 "DEFINTEF" 378694 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376080 376350 376465 "DEFAST" 376635 T DEFAST (NIL) -8 NIL NIL NIL) (-219 369989 375673 375823 "DECIMAL" 375950 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367501 367959 368465 "DDFACT" 369533 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367097 367140 367291 "DBLRESP" 367452 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 364965 365327 365688 "DBASE" 366863 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364207 364445 364591 "DATAARY" 364864 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363313 364166 364194 "D03FAFA" 364199 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362420 363272 363300 "D03EEFA" 363305 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360370 360836 361325 "D03AGNT" 361951 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359659 360329 360357 "D02EJFA" 360362 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 358948 359618 359646 "D02CJFA" 359651 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358237 358907 358935 "D02BHFA" 358940 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357526 358196 358224 "D02BBFA" 358229 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350723 352312 353918 "D02AGNT" 355940 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348491 349014 349560 "D01WGTS" 350197 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347558 348450 348478 "D01TRNS" 348483 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346626 347517 347545 "D01GBFA" 347550 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345694 346585 346613 "D01FCFA" 346618 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344762 345653 345681 "D01ASFA" 345686 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 343830 344721 344749 "D01AQFA" 344754 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 342898 343789 343817 "D01APFA" 343822 T D01APFA (NIL) -8 NIL NIL NIL) (-199 341966 342857 342885 "D01ANFA" 342890 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341034 341925 341953 "D01AMFA" 341958 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340102 340993 341021 "D01ALFA" 341026 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339170 340061 340089 "D01AKFA" 340094 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338238 339129 339157 "D01AJFA" 339162 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331533 333086 334647 "D01AGNT" 336697 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 330870 330998 331150 "CYCLOTOM" 331401 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327603 328318 329045 "CYCLES" 330163 T CYCLES (NIL) -7 NIL NIL NIL) (-191 326915 327049 327220 "CVMP" 327464 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324756 325014 325383 "CTRIGMNP" 326643 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324192 324550 324623 "CTOR" 324703 T CTOR (NIL) -8 NIL NIL NIL) (-188 323701 323923 324024 "CTORKIND" 324111 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 322992 323308 323336 "CTORCAT" 323518 T CTORCAT (NIL) -9 NIL 323631 NIL) (-186 322590 322701 322860 "CTORCAT-" 322865 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322052 322264 322372 "CTORCALL" 322514 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321426 321525 321678 "CSTTOOLS" 321949 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317225 317882 318640 "CRFP" 320738 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316700 316946 317038 "CRCEAST" 317153 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315747 315932 316160 "CRAPACK" 316504 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315131 315232 315436 "CPMATCH" 315623 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 314856 314884 314990 "CPIMA" 315097 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311204 311876 312595 "COORDSYS" 314191 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310616 310737 310879 "CONTOUR" 311082 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306507 308619 309111 "CONTFRAC" 310156 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306387 306408 306436 "CONDUIT" 306473 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305475 306029 306057 "COMRING" 306062 T COMRING (NIL) -9 NIL 306114 NIL) (-173 304529 304833 305017 "COMPPROP" 305311 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304190 304225 304353 "COMPLPAT" 304488 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294392 303999 304108 "COMPLEX" 304113 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294028 294085 294192 "COMPLEX2" 294329 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293367 293488 293648 "COMPILER" 293888 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293085 293120 293218 "COMPFACT" 293326 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276977 287061 287101 "COMPCAT" 288105 NIL COMPCAT (NIL T) -9 NIL 289453 NIL) (-166 266267 269256 272963 "COMPCAT-" 273319 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265996 266024 266127 "COMMUPC" 266233 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265790 265824 265883 "COMMONOP" 265957 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265346 265541 265628 "COMM" 265723 T COMM (NIL) -8 NIL NIL NIL) (-162 264922 265150 265225 "COMMAAST" 265291 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264171 264365 264393 "COMBOPC" 264731 T COMBOPC (NIL) -9 NIL 264906 NIL) (-160 263067 263277 263519 "COMBINAT" 263961 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259524 260098 260725 "COMBF" 262489 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258282 258640 258875 "COLOR" 259309 T COLOR (NIL) -8 NIL NIL NIL) (-157 257758 258003 258095 "COLONAST" 258210 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257398 257445 257570 "CMPLXRT" 257705 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256846 257098 257197 "CLLCTAST" 257319 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252348 253376 254456 "CLIP" 255786 T CLIP (NIL) -7 NIL NIL NIL) (-153 250689 251449 251689 "CLIF" 252175 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246864 248835 248876 "CLAGG" 249805 NIL CLAGG (NIL T) -9 NIL 250341 NIL) (-151 245286 245743 246326 "CLAGG-" 246331 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244830 244915 245055 "CINTSLPE" 245195 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242331 242802 243350 "CHVAR" 244358 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241505 242059 242087 "CHARZ" 242092 T CHARZ (NIL) -9 NIL 242107 NIL) (-147 241259 241299 241377 "CHARPOL" 241459 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240317 240904 240932 "CHARNZ" 240979 T CHARNZ (NIL) -9 NIL 241035 NIL) (-145 238223 238971 239324 "CHAR" 239984 T CHAR (NIL) -8 NIL NIL NIL) (-144 237949 238010 238038 "CFCAT" 238149 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237190 237301 237484 "CDEN" 237833 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233155 236343 236623 "CCLASS" 236930 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232406 232563 232740 "CATEGORY" 232998 T -10 (NIL) -8 NIL NIL NIL) (-140 231979 232325 232373 "CATCTOR" 232378 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231430 231682 231780 "CATAST" 231901 T CATAST (NIL) -8 NIL NIL NIL) (-138 230906 231151 231243 "CASEAST" 231358 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226044 227063 227807 "CARTEN" 230218 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225152 225300 225521 "CARTEN2" 225891 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223468 224302 224559 "CARD" 224915 T CARD (NIL) -8 NIL NIL NIL) (-134 223044 223272 223347 "CAPSLAST" 223413 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222548 222756 222784 "CACHSET" 222916 T CACHSET (NIL) -9 NIL 222994 NIL) (-132 222018 222340 222368 "CABMON" 222418 T CABMON (NIL) -9 NIL 222474 NIL) (-131 221491 221722 221832 "BYTEORD" 221928 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220468 221020 221162 "BYTE" 221325 T BYTE (NIL) -8 NIL NIL 221447) (-129 215818 219973 220145 "BYTEBUF" 220316 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213327 215510 215617 "BTREE" 215744 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210776 212975 213097 "BTOURN" 213237 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208146 210246 210287 "BTCAT" 210355 NIL BTCAT (NIL T) -9 NIL 210432 NIL) (-125 207813 207893 208042 "BTCAT-" 208047 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203192 207072 207100 "BTAGG" 207214 T BTAGG (NIL) -9 NIL 207324 NIL) (-123 202682 202807 203013 "BTAGG-" 203018 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199677 201960 202175 "BSTREE" 202499 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198815 198941 199125 "BRILL" 199533 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195467 197541 197582 "BRAGG" 198231 NIL BRAGG (NIL T) -9 NIL 198489 NIL) (-119 193996 194402 194957 "BRAGG-" 194962 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187120 193340 193525 "BPADICRT" 193843 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185435 187057 187102 "BPADIC" 187107 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185133 185163 185277 "BOUNDZRO" 185399 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180361 181559 182471 "BOP" 184241 T BOP (NIL) -8 NIL NIL NIL) (-114 178142 178546 179021 "BOP1" 179919 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177843 177904 177932 "BOOLE" 178043 T BOOLE (NIL) -9 NIL 178125 NIL) (-112 176668 177417 177566 "BOOLEAN" 177714 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175947 176351 176405 "BMODULE" 176410 NIL BMODULE (NIL T T) -9 NIL 176475 NIL) (-110 171748 175745 175818 "BITS" 175894 T BITS (NIL) -8 NIL NIL NIL) (-109 171169 171288 171428 "BINDING" 171628 T BINDING (NIL) -8 NIL NIL NIL) (-108 165081 170764 170913 "BINARY" 171040 T BINARY (NIL) -8 NIL NIL NIL) (-107 162861 164336 164377 "BGAGG" 164637 NIL BGAGG (NIL T) -9 NIL 164774 NIL) (-106 162692 162724 162815 "BGAGG-" 162820 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161763 162076 162281 "BFUNCT" 162507 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160453 160631 160919 "BEZOUT" 161587 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156922 159305 159635 "BBTREE" 160156 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156656 156709 156737 "BASTYPE" 156856 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156508 156537 156610 "BASTYPE-" 156615 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155942 156018 156170 "BALFACT" 156419 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154798 155357 155543 "AUTOMOR" 155787 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154524 154529 154555 "ATTREG" 154560 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152776 153221 153573 "ATTRBUT" 154190 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152384 152604 152670 "ATTRAST" 152728 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151920 152033 152059 "ATRIG" 152260 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151729 151770 151857 "ATRIG-" 151862 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151374 151560 151586 "ASTCAT" 151591 T ASTCAT (NIL) -9 NIL 151621 NIL) (-92 151101 151160 151279 "ASTCAT-" 151284 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149250 150877 150965 "ASTACK" 151044 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147755 148052 148417 "ASSOCEQ" 148932 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146787 147414 147538 "ASP9" 147662 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146550 146735 146774 "ASP8" 146779 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145418 146155 146297 "ASP80" 146439 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144316 145053 145185 "ASP7" 145317 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143270 143993 144111 "ASP78" 144229 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142239 142950 143067 "ASP77" 143184 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141151 141877 142008 "ASP74" 142139 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140051 140786 140918 "ASP73" 141050 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139155 139877 139977 "ASP6" 139982 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138102 138832 138950 "ASP55" 139068 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137051 137776 137895 "ASP50" 138014 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136139 136752 136862 "ASP4" 136972 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135227 135840 135950 "ASP49" 136060 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134011 134766 134934 "ASP42" 135116 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132788 133544 133714 "ASP41" 133898 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131738 132465 132583 "ASP35" 132701 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131503 131686 131725 "ASP34" 131730 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131240 131307 131383 "ASP33" 131458 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130134 130875 131007 "ASP31" 131139 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129899 130082 130121 "ASP30" 130126 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129634 129703 129779 "ASP29" 129854 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129399 129582 129621 "ASP28" 129626 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129164 129347 129386 "ASP27" 129391 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128248 128862 128973 "ASP24" 129084 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127325 128050 128162 "ASP20" 128167 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126413 127026 127136 "ASP1" 127246 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125356 126087 126206 "ASP19" 126325 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125093 125160 125236 "ASP12" 125311 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123945 124692 124836 "ASP10" 124980 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121796 123789 123880 "ARRAY2" 123885 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117561 121444 121558 "ARRAY1" 121713 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116593 116766 116987 "ARRAY12" 117384 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110905 112823 112898 "ARR2CAT" 115528 NIL ARR2CAT (NIL T T T) -9 NIL 116286 NIL) (-56 108339 109083 110037 "ARR2CAT-" 110042 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107656 107966 108091 "ARITY" 108232 T ARITY (NIL) -8 NIL NIL NIL) (-54 106432 106584 106883 "APPRULE" 107492 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106083 106131 106250 "APPLYORE" 106378 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105437 105676 105796 "ANY" 105981 T ANY (NIL) -8 NIL NIL NIL) (-51 104715 104838 104995 "ANY1" 105311 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102245 103152 103479 "ANTISYM" 104439 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101737 101952 102048 "ANON" 102167 T ANON (NIL) -8 NIL NIL NIL) (-48 95915 100276 100730 "AN" 101301 T AN (NIL) -8 NIL NIL NIL) (-47 91813 93201 93252 "AMR" 94000 NIL AMR (NIL T T) -9 NIL 94600 NIL) (-46 90925 91146 91509 "AMR-" 91514 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75364 90842 90903 "ALIST" 90908 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72169 74958 75127 "ALGSC" 75282 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68725 69279 69886 "ALGPKG" 71609 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68002 68103 68287 "ALGMFACT" 68611 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64037 64616 65210 "ALGMANIP" 67586 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55304 63663 63813 "ALGFF" 63970 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54500 54631 54810 "ALGFACT" 55162 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53441 54041 54079 "ALGEBRA" 54084 NIL ALGEBRA (NIL T) -9 NIL 54125 NIL) (-37 53159 53218 53350 "ALGEBRA-" 53355 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35222 51131 51183 "ALAGG" 51319 NIL ALAGG (NIL T T) -9 NIL 51480 NIL) (-35 34758 34871 34897 "AHYP" 35098 T AHYP (NIL) -9 NIL NIL NIL) (-34 33689 33937 33963 "AGG" 34462 T AGG (NIL) -9 NIL 34741 NIL) (-33 33123 33285 33499 "AGG-" 33504 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30929 31352 31757 "AF" 32765 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30409 30654 30744 "ADDAST" 30857 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29677 29936 30092 "ACPLOT" 30271 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-1778 (((-1245 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1245 |#1| |#3| |#5|)) 23)))
+(((-1240 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1778 ((-1245 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1245 |#1| |#3| |#5|)))) (-1062) (-1062) (-1190) (-1190) |#1| |#2|) (T -1240))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1245 *5 *7 *9)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-14 *7 (-1190)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1245 *6 *8 *10)) (-5 *1 (-1240 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1190)))))
+(-10 -7 (-15 -1778 ((-1245 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1245 |#1| |#3| |#5|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1489 (((-1190) $) 117)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2814 (($ $) 64 (|has| |#1| (-566)))) (-2425 (((-112) $) 66 (|has| |#1| (-566)))) (-1760 (($ $ (-574)) 112) (($ $ (-574) (-574)) 111)) (-4086 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 118)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 176 (|has| |#1| (-372)))) (-3440 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3875 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 187)) (-2388 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) 18 T CONST)) (-2785 (($ $ $) 171 (|has| |#1| (-372)))) (-1392 (($ $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-3678 (((-417 (-963 |#1|)) $ (-574)) 185 (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) 184 (|has| |#1| (-566)))) (-2798 (($ $ $) 170 (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-1654 (((-112) $) 178 (|has| |#1| (-372)))) (-3030 (((-112) $) 85)) (-3001 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-574) $) 114) (((-574) $ (-574)) 113)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) 115)) (-4025 (($ (-1 |#1| (-574)) $) 186)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-2197 (((-112) $) 74)) (-4335 (($ |#1| (-574)) 73) (($ $ (-1095) (-574)) 88) (($ $ (-654 (-1095)) (-654 (-574))) 87)) (-1778 (($ (-1 |#1| |#1|) $) 75)) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2834 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-2568 (((-1172) $) 10)) (-1324 (($ $) 179 (|has| |#1| (-372)))) (-2968 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 182 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 164 (|has| |#1| (-372)))) (-2874 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4220 (((-428 $) $) 175 (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 172 (|has| |#1| (-372)))) (-4344 (($ $ (-574)) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1610 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-1347 (((-781) $) 168 (|has| |#1| (-372)))) (-2200 ((|#1| $ (-574)) 119) (($ $ $) 95 (|has| (-574) (-1125)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 169 (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-1784 (((-574) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3344 ((|#1| $ (-574)) 71)) (-1369 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-2923 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
+(((-1241 |#1|) (-141) (-1062)) (T -1241))
+((-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1062)) (-4 *1 (-1241 *3)))) (-4025 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1241 *3)) (-4 *3 (-1062)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1241 *4)) (-4 *4 (-1062)) (-4 *4 (-566)) (-5 *2 (-417 (-963 *4))))) (-3678 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1241 *4)) (-4 *4 (-1062)) (-4 *4 (-566)) (-5 *2 (-417 (-963 *4))))) (-2968 (*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) (-2968 (*1 *1 *1 *2) (-2818 (-12 (-5 *2 (-1190)) (-4 *1 (-1241 *3)) (-4 *3 (-1062)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1190)) (-4 *1 (-1241 *3)) (-4 *3 (-1062)) (-12 (|has| *3 (-15 -4355 ((-654 *2) *3))) (|has| *3 (-15 -2968 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))))
+(-13 (-1259 |t#1| (-574)) (-10 -8 (-15 -3623 ($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |t#1|))))) (-15 -4025 ($ (-1 |t#1| (-574)) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -3678 ((-417 (-963 |t#1|)) $ (-574))) (-15 -3678 ((-417 (-963 |t#1|)) $ (-574) (-574)))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $)) (IF (|has| |t#1| (-15 -2968 (|t#1| |t#1| (-1190)))) (IF (|has| |t#1| (-15 -4355 ((-654 (-1190)) |t#1|))) (-15 -2968 ($ $ (-1190))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1216)) (IF (|has| |t#1| (-970)) (IF (|has| |t#1| (-29 (-574))) (-15 -2968 ($ $ (-1190))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1015)) (-6 (-1216))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-574) (-1125)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| #0# (-1095)) . T) ((-931) |has| |#1| (-372)) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1064 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1235) |has| |#1| (-372)) ((-1259 |#1| #0#) . T))
+((-2908 (((-112) $) 12)) (-1697 (((-3 |#3| "failed") $) 17) (((-3 (-1190) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL)) (-2209 ((|#3| $) 14) (((-1190) $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL)))
+(((-1242 |#1| |#2| |#3|) (-10 -8 (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-1190) "failed") |#1|)) (-15 -2209 ((-1190) |#1|)) (-15 -1697 ((-3 |#3| "failed") |#1|)) (-15 -2209 (|#3| |#1|)) (-15 -2908 ((-112) |#1|))) (-1243 |#2| |#3|) (-1062) (-1272 |#2|)) (T -1242))
+NIL
+(-10 -8 (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -1697 ((-3 (-1190) "failed") |#1|)) (-15 -2209 ((-1190) |#1|)) (-15 -1697 ((-3 |#3| "failed") |#1|)) (-15 -2209 (|#3| |#1|)) (-15 -2908 ((-112) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2809 ((|#2| $) 246 (-2088 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4355 (((-654 (-1095)) $) 86)) (-1489 (((-1190) $) 117)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2814 (($ $) 64 (|has| |#1| (-566)))) (-2425 (((-112) $) 66 (|has| |#1| (-566)))) (-1760 (($ $ (-574)) 112) (($ $ (-574) (-574)) 111)) (-4086 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 118)) (-3502 ((|#2| $) 282)) (-3162 (((-3 |#2| "failed") $) 278)) (-4402 ((|#2| $) 279)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) 20)) (-3312 (((-428 (-1186 $)) (-1186 $)) 255 (-2088 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-4348 (($ $) 176 (|has| |#1| (-372)))) (-3440 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 252 (-2088 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-3875 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3747 (((-574) $) 264 (-2088 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 187)) (-2388 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#2| "failed") $) 285) (((-3 (-574) "failed") $) 275 (-2088 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) 273 (-2088 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-1190) "failed") $) 257 (-2088 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372))))) (-2209 ((|#2| $) 286) (((-574) $) 274 (-2088 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) 272 (-2088 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-1190) $) 256 (-2088 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372))))) (-1631 (($ $) 281) (($ (-574) $) 280)) (-2785 (($ $ $) 171 (|has| |#1| (-372)))) (-1392 (($ $) 72)) (-2668 (((-699 |#2|) (-1281 $)) 236 (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) 235 (|has| |#1| (-372))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 234 (|has| |#1| (-372))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 233 (-2088 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) 232 (-2088 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1281 $)) 231 (-2088 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-1950 (((-3 $ "failed") $) 37)) (-3678 (((-417 (-963 |#1|)) $ (-574)) 185 (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) 184 (|has| |#1| (-566)))) (-2820 (($) 248 (-2088 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2798 (($ $ $) 170 (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-1654 (((-112) $) 178 (|has| |#1| (-372)))) (-3434 (((-112) $) 262 (-2088 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3030 (((-112) $) 85)) (-3001 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 240 (-2088 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 239 (-2088 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-3593 (((-574) $) 114) (((-574) $ (-574)) 113)) (-3965 (((-112) $) 35)) (-1769 (($ $) 244 (|has| |#1| (-372)))) (-2965 ((|#2| $) 242 (|has| |#1| (-372)))) (-3379 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-4048 (((-3 $ "failed") $) 276 (-2088 (|has| |#2| (-1165)) (|has| |#1| (-372))))) (-3244 (((-112) $) 263 (-2088 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-1789 (($ $ (-932)) 115)) (-4025 (($ (-1 |#1| (-574)) $) 186)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-2197 (((-112) $) 74)) (-4335 (($ |#1| (-574)) 73) (($ $ (-1095) (-574)) 88) (($ $ (-654 (-1095)) (-654 (-574))) 87)) (-3658 (($ $ $) 266 (-2088 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2106 (($ $ $) 267 (-2088 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1778 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 226 (|has| |#1| (-372)))) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2834 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-4413 (($ (-574) |#2|) 283)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 179 (|has| |#1| (-372)))) (-2968 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 182 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3818 (($) 277 (-2088 (|has| |#2| (-1165)) (|has| |#1| (-372))) CONST)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 164 (|has| |#1| (-372)))) (-2874 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-2595 (($ $) 247 (-2088 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-1846 ((|#2| $) 250 (-2088 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3417 (((-428 (-1186 $)) (-1186 $)) 253 (-2088 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-4418 (((-428 (-1186 $)) (-1186 $)) 254 (-2088 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-4220 (((-428 $) $) 175 (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 172 (|has| |#1| (-372)))) (-4344 (($ $ (-574)) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1610 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1190) |#2|) 225 (-2088 (|has| |#2| (-524 (-1190) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 |#2|)) 224 (-2088 (|has| |#2| (-524 (-1190) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) 223 (-2088 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) 222 (-2088 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) 221 (-2088 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) 220 (-2088 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-1347 (((-781) $) 168 (|has| |#1| (-372)))) (-2200 ((|#1| $ (-574)) 119) (($ $ $) 95 (|has| (-574) (-1125))) (($ $ |#2|) 219 (-2088 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 169 (|has| |#1| (-372)))) (-3905 (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 229 (|has| |#1| (-372))) (($ $ (-781)) 98 (-2818 (-2088 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 97 (-2818 (-2088 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) 103 (-2818 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1190) (-781)) 102 (-2818 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1190))) 101 (-2818 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1190)) 100 (-2818 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-3520 (($ $) 245 (|has| |#1| (-372)))) (-2977 ((|#2| $) 243 (|has| |#1| (-372)))) (-1784 (((-574) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-1837 (((-227) $) 261 (-2088 (|has| |#2| (-1035)) (|has| |#1| (-372)))) (((-388) $) 260 (-2088 (|has| |#2| (-1035)) (|has| |#1| (-372)))) (((-546) $) 259 (-2088 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) 238 (-2088 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) 237 (-2088 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 251 (-2088 (-2088 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#1| (-372))))) (-3156 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 284) (($ (-1190)) 258 (-2088 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372)))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3344 ((|#1| $ (-574)) 71)) (-1369 (((-3 $ "failed") $) 60 (-2818 (-2088 (-2818 (|has| |#2| (-146)) (-2088 (|has| $ (-146)) (|has| |#2| (-920)))) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-4160 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-4078 ((|#2| $) 249 (-2088 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2923 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2946 (($ $) 265 (-2088 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 227 (|has| |#1| (-372))) (($ $ (-781)) 99 (-2818 (-2088 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 96 (-2818 (-2088 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) 107 (-2818 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1190) (-781)) 106 (-2818 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1190))) 105 (-2818 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1190)) 104 (-2818 (-2088 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-3041 (((-112) $ $) 269 (-2088 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3016 (((-112) $ $) 270 (-2088 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2982 (((-112) $ $) 6)) (-3028 (((-112) $ $) 268 (-2088 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3005 (((-112) $ $) 271 (-2088 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3107 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372))) (($ |#2| |#2|) 241 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 218 (|has| |#1| (-372))) (($ |#2| $) 217 (|has| |#1| (-372))) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
+(((-1243 |#1| |#2|) (-141) (-1062) (-1272 |t#1|)) (T -1243))
+((-1784 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1272 *3)) (-5 *2 (-574)))) (-4413 (*1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *4 (-1062)) (-4 *1 (-1243 *4 *3)) (-4 *3 (-1272 *4)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3)))) (-1631 (*1 *1 *1) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1272 *2)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1272 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3)))) (-3162 (*1 *2 *1) (|partial| -12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3)))))
+(-13 (-1241 |t#1|) (-1051 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4413 ($ (-574) |t#2|)) (-15 -1784 ((-574) $)) (-15 -3502 (|t#2| $)) (-15 -1631 ($ $)) (-15 -1631 ($ (-574) $)) (-15 -4402 (|t#2| $)) (-15 -3162 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-372)) (-6 (-1005 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-372)) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-372)) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-626 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1190)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-1190)))) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) ((-624 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) ((-624 (-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) ((-235 $) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-233 |#2|) |has| |#1| (-372)) ((-239) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 |#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) ((-294 $ $) |has| (-574) (-1125)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-372) |has| |#1| (-372)) ((-347 |#2|) |has| |#1| (-372)) ((-386 |#2|) |has| |#1| (-372)) ((-410 |#2|) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 (-1190) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1190) |#2|))) ((-524 |#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 |#2|) |has| |#1| (-372)) ((-656 $) . T) ((-658 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 #3=(-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-372)) ((-658 $) . T) ((-650 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 |#2|) |has| |#1| (-372)) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-649 #3#) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-649 |#2|) |has| |#1| (-372)) ((-727 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 |#2|) |has| |#1| (-372)) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-801) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-802) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-804) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-805) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-830) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-858) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-860) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-860))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830)))) ((-911 (-1190)) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-911 (-1190)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) ((-897 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574)))) ((-895 |#2|) |has| |#1| (-372)) ((-920) -12 (|has| |#1| (-372)) (|has| |#2| (-920))) ((-986 |#1| #0# (-1095)) . T) ((-931) |has| |#1| (-372)) ((-1005 |#2|) |has| |#1| (-372)) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1035) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) ((-1051 (-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-574)))) ((-1051 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-574)))) ((-1051 #2#) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-1190)))) ((-1051 |#2|) . T) ((-1064 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1064 |#1|) . T) ((-1064 |#2|) |has| |#1| (-372)) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1069 |#1|) . T) ((-1069 |#2|) |has| |#1| (-372)) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) -12 (|has| |#1| (-372)) (|has| |#2| (-1165))) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1235) |has| |#1| (-372)) ((-1241 |#1|) . T) ((-1259 |#1| #0#) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 81)) (-2809 ((|#2| $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) 100)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-1760 (($ $ (-574)) 109) (($ $ (-574) (-574)) 111)) (-4086 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 51)) (-3502 ((|#2| $) 11)) (-3162 (((-3 |#2| "failed") $) 35)) (-4402 ((|#2| $) 36)) (-2364 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-4348 (($ $) NIL (|has| |#1| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-3747 (((-574) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 59)) (-2388 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) 157) (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-1190) "failed") $) NIL (-12 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372))))) (-2209 ((|#2| $) 156) (((-574) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-1190) $) NIL (-12 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372))))) (-1631 (($ $) 65) (($ (-574) $) 28)) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-2668 (((-699 |#2|) (-1281 $)) NIL (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-1950 (((-3 $ "failed") $) 88)) (-3678 (((-417 (-963 |#1|)) $ (-574)) 124 (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) 126 (|has| |#1| (-566)))) (-2820 (($) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1654 (((-112) $) NIL (|has| |#1| (-372)))) (-3434 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3030 (((-112) $) 74)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-3593 (((-574) $) 105) (((-574) $ (-574)) 107)) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-372)))) (-2965 ((|#2| $) 165 (|has| |#1| (-372)))) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4048 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1165)) (|has| |#1| (-372))))) (-3244 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-1789 (($ $ (-932)) 148)) (-4025 (($ (-1 |#1| (-574)) $) 144)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-574)) 20) (($ $ (-1095) (-574)) NIL) (($ $ (-654 (-1095)) (-654 (-574))) NIL)) (-3658 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2106 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1778 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-372)))) (-3119 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) |#2|) 10)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 159 (|has| |#1| (-372)))) (-2968 (($ $) 228 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 233 (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216)))))) (-3818 (($) NIL (-12 (|has| |#2| (-1165)) (|has| |#1| (-372))) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2595 (($ $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-1846 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-4344 (($ $ (-574)) 138)) (-2838 (((-3 $ "failed") $ $) 128 (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1610 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1190) |#2|) NIL (-12 (|has| |#2| (-524 (-1190) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 |#2|)) NIL (-12 (|has| |#2| (-524 (-1190) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ (-574)) 103) (($ $ $) 90 (|has| (-574) (-1125))) (($ $ |#2|) NIL (-12 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-781)) NIL (-2818 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 149 (-2818 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) 153 (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-3520 (($ $) NIL (|has| |#1| (-372)))) (-2977 ((|#2| $) 166 (|has| |#1| (-372)))) (-1784 (((-574) $) 12)) (-2402 (($ $) 212 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-1837 (((-227) $) NIL (-12 (|has| |#2| (-1035)) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| |#2| (-1035)) (|has| |#1| (-372)))) (((-546) $) NIL (-12 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920)) (|has| |#1| (-372))))) (-3156 (($ $) 136)) (-2943 (((-872) $) 266) (($ (-574)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1190)) NIL (-12 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372)))) (($ (-417 (-574))) 169 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3344 ((|#1| $ (-574)) 85)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920)) (|has| |#1| (-372))) (-12 (|has| |#2| (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-4160 (((-781)) 155 T CONST)) (-3359 ((|#1| $) 102)) (-4078 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) 218 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 214 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 222 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 224 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 220 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 216 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-2946 (($ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2134 (($) 13 T CONST)) (-2146 (($) 18 T CONST)) (-3611 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-781)) NIL (-2818 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) NIL (-2818 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-3041 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3016 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2982 (((-112) $ $) 72)) (-3028 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3005 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372))) (($ |#2| |#2|) 164 (|has| |#1| (-372)))) (-3094 (($ $) 227) (($ $ $) 78)) (-3078 (($ $ $) 76)) (** (($ $ (-932)) NIL) (($ $ (-781)) 84) (($ $ (-574)) 160 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 172 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-372))) (($ |#2| $) 161 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-1244 |#1| |#2|) (-1243 |#1| |#2|) (-1062) (-1272 |#1|)) (T -1244))
+NIL
+(-1243 |#1| |#2|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2809 (((-1273 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) 10)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2814 (($ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2425 (((-112) $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1760 (($ $ (-574)) NIL) (($ $ (-574) (-574)) NIL)) (-4086 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-3502 (((-1273 |#1| |#2| |#3|) $) NIL)) (-3162 (((-3 (-1273 |#1| |#2| |#3|) "failed") $) NIL)) (-4402 (((-1273 |#1| |#2| |#3|) $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-4348 (($ $) NIL (|has| |#1| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3747 (((-574) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-1273 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))))) (-2209 (((-1273 |#1| |#2| |#3|) $) NIL) (((-1190) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))))) (-1631 (($ $) NIL) (($ (-574) $) NIL)) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-2668 (((-699 (-1273 |#1| |#2| |#3|)) (-1281 $)) NIL (|has| |#1| (-372))) (((-699 (-1273 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -1485 (-699 (-1273 |#1| |#2| |#3|))) (|:| |vec| (-1281 (-1273 |#1| |#2| |#3|)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-1950 (((-3 $ "failed") $) NIL)) (-3678 (((-417 (-963 |#1|)) $ (-574)) NIL (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) NIL (|has| |#1| (-566)))) (-2820 (($) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1654 (((-112) $) NIL (|has| |#1| (-372)))) (-3434 (((-112) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3030 (((-112) $) NIL)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-3593 (((-574) $) NIL) (((-574) $ (-574)) NIL)) (-3965 (((-112) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-372)))) (-2965 (((-1273 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4048 (((-3 $ "failed") $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1165)) (|has| |#1| (-372))))) (-3244 (((-112) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-1789 (($ $ (-932)) NIL)) (-4025 (($ (-1 |#1| (-574)) $) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-574)) 18) (($ $ (-1095) (-574)) NIL) (($ $ (-654 (-1095)) (-654 (-574))) NIL)) (-3658 (($ $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2106 (($ $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) (-1273 |#1| |#2| |#3|)) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2968 (($ $) 27 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 28 (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1165)) (|has| |#1| (-372))) CONST)) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2595 (($ $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-1846 (((-1273 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-4344 (($ $ (-574)) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1610 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1190) (-1273 |#1| |#2| |#3|)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-524 (-1190) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 (-1273 |#1| |#2| |#3|))) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-524 (-1190) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1273 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1273 |#1| |#2| |#3|))) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1273 |#1| |#2| |#3|)) (-654 (-1273 |#1| |#2| |#3|))) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ (-574)) NIL) (($ $ $) NIL (|has| (-574) (-1125))) (($ $ (-1273 |#1| |#2| |#3|)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-294 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1277 |#2|)) 26) (($ $ (-781)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 25 (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-3520 (($ $) NIL (|has| |#1| (-372)))) (-2977 (((-1273 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-1784 (((-574) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1837 (((-546) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1035)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1035)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-3156 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1273 |#1| |#2| |#3|)) NIL) (($ (-1277 |#2|)) 24) (($ (-1190)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (($ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-3344 ((|#1| $ (-574)) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-4160 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 11)) (-4078 (((-1273 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2946 (($ $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2134 (($) 20 T CONST)) (-2146 (($) 15 T CONST)) (-3611 (($ $ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-3041 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3016 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2982 (((-112) $ $) NIL)) (-3028 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3005 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372))) (($ (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 22)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1273 |#1| |#2| |#3|)) NIL (|has| |#1| (-372))) (($ (-1273 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-1245 |#1| |#2| |#3|) (-13 (-1243 |#1| (-1273 |#1| |#2| |#3|)) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1245))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))))
+(-13 (-1243 |#1| (-1273 |#1| |#2| |#3|)) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|)))
+((-2148 (((-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))) |#1| (-112)) 13)) (-4325 (((-428 |#1|) |#1|) 26)) (-4220 (((-428 |#1|) |#1|) 24)))
+(((-1246 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4325 ((-428 |#1|) |#1|)) (-15 -2148 ((-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))) |#1| (-112)))) (-1257 (-574))) (T -1246))
+((-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| *3) (|:| -3963 (-574))))))) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574))))) (-4325 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574))))))
+(-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4325 ((-428 |#1|) |#1|)) (-15 -2148 ((-2 (|:| |contp| (-574)) (|:| -3948 (-654 (-2 (|:| |irr| |#1|) (|:| -3963 (-574)))))) |#1| (-112))))
+((-1778 (((-1170 |#2|) (-1 |#2| |#1|) (-1248 |#1|)) 23 (|has| |#1| (-858))) (((-1248 |#2|) (-1 |#2| |#1|) (-1248 |#1|)) 17)))
+(((-1247 |#1| |#2|) (-10 -7 (-15 -1778 ((-1248 |#2|) (-1 |#2| |#1|) (-1248 |#1|))) (IF (|has| |#1| (-858)) (-15 -1778 ((-1170 |#2|) (-1 |#2| |#1|) (-1248 |#1|))) |%noBranch|)) (-1231) (-1231)) (T -1247))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5)) (-4 *5 (-858)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1170 *6)) (-5 *1 (-1247 *5 *6)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1248 *6)) (-5 *1 (-1247 *5 *6)))))
+(-10 -7 (-15 -1778 ((-1248 |#2|) (-1 |#2| |#1|) (-1248 |#1|))) (IF (|has| |#1| (-858)) (-15 -1778 ((-1170 |#2|) (-1 |#2| |#1|) (-1248 |#1|))) |%noBranch|))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3242 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1778 (((-1170 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-858)))) (-3392 ((|#1| $) 15)) (-2816 ((|#1| $) 12)) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1955 (((-574) $) 19)) (-1669 ((|#1| $) 18)) (-1967 ((|#1| $) 13)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2560 (((-112) $) 17)) (-2129 (((-1170 |#1|) $) 41 (|has| |#1| (-858))) (((-1170 |#1|) (-654 $)) 40 (|has| |#1| (-858)))) (-1837 (($ |#1|) 26)) (-2943 (($ (-1107 |#1|)) 25) (((-872) $) 37 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-4278 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2733 (($ $ (-574)) 14)) (-2982 (((-112) $ $) 30 (|has| |#1| (-1113)))))
+(((-1248 |#1|) (-13 (-1106 |#1|) (-10 -8 (-15 -4278 ($ |#1|)) (-15 -3242 ($ |#1|)) (-15 -2943 ($ (-1107 |#1|))) (-15 -2560 ((-112) $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1108 |#1| (-1170 |#1|))) |%noBranch|))) (-1231)) (T -1248))
+((-4278 (*1 *1 *2) (-12 (-5 *1 (-1248 *2)) (-4 *2 (-1231)))) (-3242 (*1 *1 *2) (-12 (-5 *1 (-1248 *2)) (-4 *2 (-1231)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1107 *3)) (-4 *3 (-1231)) (-5 *1 (-1248 *3)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1231)))))
+(-13 (-1106 |#1|) (-10 -8 (-15 -4278 ($ |#1|)) (-15 -3242 ($ |#1|)) (-15 -2943 ($ (-1107 |#1|))) (-15 -2560 ((-112) $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1108 |#1| (-1170 |#1|))) |%noBranch|)))
+((-1778 (((-1254 |#3| |#4|) (-1 |#4| |#2|) (-1254 |#1| |#2|)) 15)))
+(((-1249 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 ((-1254 |#3| |#4|) (-1 |#4| |#2|) (-1254 |#1| |#2|)))) (-1190) (-1062) (-1190) (-1062)) (T -1249))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1254 *5 *6)) (-14 *5 (-1190)) (-4 *6 (-1062)) (-4 *8 (-1062)) (-5 *2 (-1254 *7 *8)) (-5 *1 (-1249 *5 *6 *7 *8)) (-14 *7 (-1190)))))
+(-10 -7 (-15 -1778 ((-1254 |#3| |#4|) (-1 |#4| |#2|) (-1254 |#1| |#2|))))
+((-3618 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4090 ((|#1| |#3|) 13)) (-3009 ((|#3| |#3|) 19)))
+(((-1250 |#1| |#2| |#3|) (-10 -7 (-15 -4090 (|#1| |#3|)) (-15 -3009 (|#3| |#3|)) (-15 -3618 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1005 |#1|) (-1257 |#2|)) (T -1250))
+((-3618 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1250 *4 *5 *3)) (-4 *3 (-1257 *5)))) (-3009 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1005 *3)) (-5 *1 (-1250 *3 *4 *2)) (-4 *2 (-1257 *4)))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-1250 *2 *4 *3)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -4090 (|#1| |#3|)) (-15 -3009 (|#3| |#3|)) (-15 -3618 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-4342 (((-3 |#2| "failed") |#2| (-781) |#1|) 35)) (-3953 (((-3 |#2| "failed") |#2| (-781)) 36)) (-3406 (((-3 (-2 (|:| -3891 |#2|) (|:| -3904 |#2|)) "failed") |#2|) 50)) (-2092 (((-654 |#2|) |#2|) 52)) (-2383 (((-3 |#2| "failed") |#2| |#2|) 46)))
+(((-1251 |#1| |#2|) (-10 -7 (-15 -3953 ((-3 |#2| "failed") |#2| (-781))) (-15 -4342 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -2383 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3406 ((-3 (-2 (|:| -3891 |#2|) (|:| -3904 |#2|)) "failed") |#2|)) (-15 -2092 ((-654 |#2|) |#2|))) (-13 (-566) (-148)) (-1257 |#1|)) (T -1251))
+((-2092 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) (-5 *1 (-1251 *4 *3)) (-4 *3 (-1257 *4)))) (-3406 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| -3891 *3) (|:| -3904 *3))) (-5 *1 (-1251 *4 *3)) (-4 *3 (-1257 *4)))) (-2383 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1257 *3)))) (-4342 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1251 *4 *2)) (-4 *2 (-1257 *4)))) (-3953 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1251 *4 *2)) (-4 *2 (-1257 *4)))))
+(-10 -7 (-15 -3953 ((-3 |#2| "failed") |#2| (-781))) (-15 -4342 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -2383 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3406 ((-3 (-2 (|:| -3891 |#2|) (|:| -3904 |#2|)) "failed") |#2|)) (-15 -2092 ((-654 |#2|) |#2|)))
+((-1872 (((-3 (-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) "failed") |#2| |#2|) 30)))
+(((-1252 |#1| |#2|) (-10 -7 (-15 -1872 ((-3 (-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) "failed") |#2| |#2|))) (-566) (-1257 |#1|)) (T -1252))
+((-1872 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-1252 *4 *3)) (-4 *3 (-1257 *4)))))
+(-10 -7 (-15 -1872 ((-3 (-2 (|:| -3855 |#2|) (|:| -3435 |#2|)) "failed") |#2| |#2|)))
+((-3992 ((|#2| |#2| |#2|) 22)) (-2496 ((|#2| |#2| |#2|) 36)) (-2445 ((|#2| |#2| |#2| (-781) (-781)) 44)))
+(((-1253 |#1| |#2|) (-10 -7 (-15 -3992 (|#2| |#2| |#2|)) (-15 -2496 (|#2| |#2| |#2|)) (-15 -2445 (|#2| |#2| |#2| (-781) (-781)))) (-1062) (-1257 |#1|)) (T -1253))
+((-2445 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *1 (-1253 *4 *2)) (-4 *2 (-1257 *4)))) (-2496 (*1 *2 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1257 *3)))) (-3992 (*1 *2 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1257 *3)))))
+(-10 -7 (-15 -3992 (|#2| |#2| |#2|)) (-15 -2496 (|#2| |#2| |#2|)) (-15 -2445 (|#2| |#2| |#2| (-781) (-781))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1416 (((-1281 |#2|) $ (-781)) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1780 (($ (-1186 |#2|)) NIL)) (-4194 (((-1186 $) $ (-1095)) NIL) (((-1186 |#2|) $) NIL)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-2814 (($ $) NIL (|has| |#2| (-566)))) (-2425 (((-112) $) NIL (|has| |#2| (-566)))) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-1095))) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1744 (($ $ $) NIL (|has| |#2| (-566)))) (-3312 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4348 (($ $) NIL (|has| |#2| (-462)))) (-3440 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3875 (((-112) $ $) NIL (|has| |#2| (-372)))) (-4397 (($ $ (-781)) NIL)) (-1343 (($ $ (-781)) NIL)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-462)))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-1095) "failed") $) NIL)) (-2209 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-1095) $) NIL)) (-2800 (($ $ $ (-1095)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2785 (($ $ $) NIL (|has| |#2| (-372)))) (-1392 (($ $) NIL)) (-2668 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2798 (($ $ $) NIL (|has| |#2| (-372)))) (-4297 (($ $ $) NIL)) (-4404 (($ $ $) NIL (|has| |#2| (-566)))) (-3015 (((-2 (|:| -1859 |#2|) (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#2| (-566)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-3872 (($ $) NIL (|has| |#2| (-462))) (($ $ (-1095)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-1654 (((-112) $) NIL (|has| |#2| (-920)))) (-3157 (($ $ |#2| (-781) $) NIL)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1095) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1095) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3593 (((-781) $ $) NIL (|has| |#2| (-566)))) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-4048 (((-3 $ "failed") $) NIL (|has| |#2| (-1165)))) (-4345 (($ (-1186 |#2|) (-1095)) NIL) (($ (-1186 $) (-1095)) NIL)) (-1789 (($ $ (-781)) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-4335 (($ |#2| (-781)) 18) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-1095)) NIL) (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL)) (-2382 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1541 (($ (-1 (-781) (-781)) $) NIL)) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-3523 (((-1186 |#2|) $) NIL)) (-4045 (((-3 (-1095) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2568 (((-1172) $) NIL)) (-1639 (((-2 (|:| -3855 $) (|:| -3435 $)) $ (-781)) NIL)) (-2357 (((-3 (-654 $) "failed") $) NIL)) (-3405 (((-3 (-654 $) "failed") $) NIL)) (-3092 (((-3 (-2 (|:| |var| (-1095)) (|:| -2524 (-781))) "failed") $) NIL)) (-2968 (($ $) NIL (|has| |#2| (-38 (-417 (-574)))))) (-3818 (($) NIL (|has| |#2| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#2| $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2874 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3393 (($ $ (-781) |#2| $) NIL)) (-3417 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#2| (-372)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#2|) NIL) (($ $ (-654 (-1095)) (-654 |#2|)) NIL) (($ $ (-1095) $) NIL) (($ $ (-654 (-1095)) (-654 $)) NIL)) (-1347 (((-781) $) NIL (|has| |#2| (-372)))) (-2200 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#2| (-566))) ((|#2| (-417 $) |#2|) NIL (|has| |#2| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#2| (-566)))) (-4071 (((-3 $ "failed") $ (-781)) NIL)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#2| (-372)))) (-1415 (($ $ (-1095)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1784 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1837 (((-903 (-388)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1095) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1607 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-1095)) NIL (|has| |#2| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2659 (((-3 $ "failed") $ $) NIL (|has| |#2| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#2| (-566)))) (-2943 (((-872) $) 13) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1095)) NIL) (($ (-1277 |#1|)) 20) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3123 (((-654 |#2|) $) NIL)) (-3344 ((|#2| $ (-781)) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-1369 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2134 (($) NIL T CONST)) (-2146 (($) 14 T CONST)) (-3611 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1254 |#1| |#2|) (-13 (-1257 |#2|) (-626 (-1277 |#1|)) (-10 -8 (-15 -3393 ($ $ (-781) |#2| $)))) (-1190) (-1062)) (T -1254))
+((-3393 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1254 *4 *3)) (-14 *4 (-1190)) (-4 *3 (-1062)))))
+(-13 (-1257 |#2|) (-626 (-1277 |#1|)) (-10 -8 (-15 -3393 ($ $ (-781) |#2| $))))
+((-1778 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1255 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 (|#4| (-1 |#3| |#1|) |#2|))) (-1062) (-1257 |#1|) (-1062) (-1257 |#3|)) (T -1255))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-4 *2 (-1257 *6)) (-5 *1 (-1255 *5 *4 *6 *2)) (-4 *4 (-1257 *5)))))
+(-10 -7 (-15 -1778 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1416 (((-1281 |#2|) $ (-781)) 129)) (-4355 (((-654 (-1095)) $) 16)) (-1780 (($ (-1186 |#2|)) 80)) (-2044 (((-781) $) NIL) (((-781) $ (-654 (-1095))) 21)) (-3312 (((-428 (-1186 $)) (-1186 $)) 204)) (-4348 (($ $) 194)) (-3440 (((-428 $) $) 192)) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 95)) (-4397 (($ $ (-781)) 84)) (-1343 (($ $ (-781)) 86)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1697 (((-3 |#2| "failed") $) 132) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL)) (-2209 ((|#2| $) 130) (((-417 (-574)) $) NIL) (((-574) $) NIL) (((-1095) $) NIL)) (-4404 (($ $ $) 170)) (-3015 (((-2 (|:| -1859 |#2|) (|:| -3855 $) (|:| -3435 $)) $ $) 172)) (-3593 (((-781) $ $) 189)) (-4048 (((-3 $ "failed") $) 138)) (-4335 (($ |#2| (-781)) NIL) (($ $ (-1095) (-781)) 59) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-2382 (((-781) $) NIL) (((-781) $ (-1095)) 54) (((-654 (-781)) $ (-654 (-1095))) 55)) (-3523 (((-1186 |#2|) $) 72)) (-4045 (((-3 (-1095) "failed") $) 52)) (-1639 (((-2 (|:| -3855 $) (|:| -3435 $)) $ (-781)) 83)) (-2968 (($ $) 219)) (-3818 (($) 134)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 201)) (-3417 (((-428 (-1186 $)) (-1186 $)) 101)) (-4418 (((-428 (-1186 $)) (-1186 $)) 99)) (-4220 (((-428 $) $) 120)) (-2646 (($ $ (-654 (-302 $))) 51) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#2|) 39) (($ $ (-654 (-1095)) (-654 |#2|)) 36) (($ $ (-1095) $) 32) (($ $ (-654 (-1095)) (-654 $)) 30)) (-1347 (((-781) $) 207)) (-2200 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) 164) ((|#2| (-417 $) |#2|) 206) (((-417 $) $ (-417 $)) 188)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 212)) (-3905 (($ $ (-1095)) 157) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) 155) (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-1784 (((-781) $) NIL) (((-781) $ (-1095)) 17) (((-654 (-781)) $ (-654 (-1095))) 23)) (-1607 ((|#2| $) NIL) (($ $ (-1095)) 140)) (-2659 (((-3 $ "failed") $ $) 180) (((-3 (-417 $) "failed") (-417 $) $) 176)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1095)) 64) (($ (-417 (-574))) NIL) (($ $) NIL)))
+(((-1256 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -3818 (|#1|)) (-15 -4048 ((-3 |#1| "failed") |#1|)) (-15 -2200 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -1347 ((-781) |#1|)) (-15 -2413 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -2200 (|#2| (-417 |#1|) |#2|)) (-15 -3901 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3015 ((-2 (|:| -1859 |#2|) (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -2659 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -2659 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3593 ((-781) |#1| |#1|)) (-15 -2200 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1343 (|#1| |#1| (-781))) (-15 -4397 (|#1| |#1| (-781))) (-15 -1639 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| (-781))) (-15 -1780 (|#1| (-1186 |#2|))) (-15 -3523 ((-1186 |#2|) |#1|)) (-15 -1416 ((-1281 |#2|) |#1| (-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2200 (|#1| |#1| |#1|)) (-15 -2200 (|#2| |#1| |#2|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3312 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -4418 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3417 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3180 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -1607 (|#1| |#1| (-1095))) (-15 -4355 ((-654 (-1095)) |#1|)) (-15 -2044 ((-781) |#1| (-654 (-1095)))) (-15 -2044 ((-781) |#1|)) (-15 -4335 (|#1| |#1| (-654 (-1095)) (-654 (-781)))) (-15 -4335 (|#1| |#1| (-1095) (-781))) (-15 -2382 ((-654 (-781)) |#1| (-654 (-1095)))) (-15 -2382 ((-781) |#1| (-1095))) (-15 -4045 ((-3 (-1095) "failed") |#1|)) (-15 -1784 ((-654 (-781)) |#1| (-654 (-1095)))) (-15 -1784 ((-781) |#1| (-1095))) (-15 -2943 (|#1| (-1095))) (-15 -1697 ((-3 (-1095) "failed") |#1|)) (-15 -2209 ((-1095) |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1095)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-1095) |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1095)) (-654 |#2|))) (-15 -2646 (|#1| |#1| (-1095) |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -1784 ((-781) |#1|)) (-15 -4335 (|#1| |#2| (-781))) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2382 ((-781) |#1|)) (-15 -1607 (|#2| |#1|)) (-15 -3905 (|#1| |#1| (-654 (-1095)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1095) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1095)))) (-15 -3905 (|#1| |#1| (-1095))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1257 |#2|) (-1062)) (T -1256))
+NIL
+(-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2587 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -3440 ((-428 |#1|) |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -3818 (|#1|)) (-15 -4048 ((-3 |#1| "failed") |#1|)) (-15 -2200 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -1347 ((-781) |#1|)) (-15 -2413 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -2200 (|#2| (-417 |#1|) |#2|)) (-15 -3901 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3015 ((-2 (|:| -1859 |#2|) (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -2659 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -2659 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3593 ((-781) |#1| |#1|)) (-15 -2200 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1343 (|#1| |#1| (-781))) (-15 -4397 (|#1| |#1| (-781))) (-15 -1639 ((-2 (|:| -3855 |#1|) (|:| -3435 |#1|)) |#1| (-781))) (-15 -1780 (|#1| (-1186 |#2|))) (-15 -3523 ((-1186 |#2|) |#1|)) (-15 -1416 ((-1281 |#2|) |#1| (-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2200 (|#1| |#1| |#1|)) (-15 -2200 (|#2| |#1| |#2|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3312 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -4418 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3417 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -3180 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -1607 (|#1| |#1| (-1095))) (-15 -4355 ((-654 (-1095)) |#1|)) (-15 -2044 ((-781) |#1| (-654 (-1095)))) (-15 -2044 ((-781) |#1|)) (-15 -4335 (|#1| |#1| (-654 (-1095)) (-654 (-781)))) (-15 -4335 (|#1| |#1| (-1095) (-781))) (-15 -2382 ((-654 (-781)) |#1| (-654 (-1095)))) (-15 -2382 ((-781) |#1| (-1095))) (-15 -4045 ((-3 (-1095) "failed") |#1|)) (-15 -1784 ((-654 (-781)) |#1| (-654 (-1095)))) (-15 -1784 ((-781) |#1| (-1095))) (-15 -2943 (|#1| (-1095))) (-15 -1697 ((-3 (-1095) "failed") |#1|)) (-15 -2209 ((-1095) |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1095)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-1095) |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1095)) (-654 |#2|))) (-15 -2646 (|#1| |#1| (-1095) |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -1784 ((-781) |#1|)) (-15 -4335 (|#1| |#2| (-781))) (-15 -1697 ((-3 (-574) "failed") |#1|)) (-15 -2209 ((-574) |#1|)) (-15 -1697 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2209 ((-417 (-574)) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -1697 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2382 ((-781) |#1|)) (-15 -1607 (|#2| |#1|)) (-15 -3905 (|#1| |#1| (-654 (-1095)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1095) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1095)))) (-15 -3905 (|#1| |#1| (-1095))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1416 (((-1281 |#1|) $ (-781)) 243)) (-4355 (((-654 (-1095)) $) 112)) (-1780 (($ (-1186 |#1|)) 241)) (-4194 (((-1186 $) $ (-1095)) 127) (((-1186 |#1|) $) 126)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-2814 (($ $) 90 (|has| |#1| (-566)))) (-2425 (((-112) $) 92 (|has| |#1| (-566)))) (-2044 (((-781) $) 114) (((-781) $ (-654 (-1095))) 113)) (-2950 (((-3 $ "failed") $ $) 20)) (-1744 (($ $ $) 228 (|has| |#1| (-566)))) (-3312 (((-428 (-1186 $)) (-1186 $)) 102 (|has| |#1| (-920)))) (-4348 (($ $) 100 (|has| |#1| (-462)))) (-3440 (((-428 $) $) 99 (|has| |#1| (-462)))) (-3180 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 105 (|has| |#1| (-920)))) (-3875 (((-112) $ $) 213 (|has| |#1| (-372)))) (-4397 (($ $ (-781)) 236)) (-1343 (($ $ (-781)) 235)) (-3901 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 223 (|has| |#1| (-462)))) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1051 (-574)))) (((-3 (-1095) "failed") $) 140)) (-2209 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1051 (-574)))) (((-1095) $) 141)) (-2800 (($ $ $ (-1095)) 110 (|has| |#1| (-174))) ((|#1| $ $) 231 (|has| |#1| (-174)))) (-2785 (($ $ $) 217 (|has| |#1| (-372)))) (-1392 (($ $) 158)) (-2668 (((-699 (-574)) (-1281 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -1485 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1281 $)) 133)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 216 (|has| |#1| (-372)))) (-4297 (($ $ $) 234)) (-4404 (($ $ $) 225 (|has| |#1| (-566)))) (-3015 (((-2 (|:| -1859 |#1|) (|:| -3855 $) (|:| -3435 $)) $ $) 224 (|has| |#1| (-566)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 211 (|has| |#1| (-372)))) (-3872 (($ $) 180 (|has| |#1| (-462))) (($ $ (-1095)) 107 (|has| |#1| (-462)))) (-1380 (((-654 $) $) 111)) (-1654 (((-112) $) 98 (|has| |#1| (-920)))) (-3157 (($ $ |#1| (-781) $) 176)) (-2961 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3593 (((-781) $ $) 229 (|has| |#1| (-566)))) (-3965 (((-112) $) 35)) (-2784 (((-781) $) 173)) (-4048 (((-3 $ "failed") $) 209 (|has| |#1| (-1165)))) (-4345 (($ (-1186 |#1|) (-1095)) 119) (($ (-1186 $) (-1095)) 118)) (-1789 (($ $ (-781)) 240)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 220 (|has| |#1| (-372)))) (-3576 (((-654 $) $) 128)) (-2197 (((-112) $) 156)) (-4335 (($ |#1| (-781)) 157) (($ $ (-1095) (-781)) 121) (($ $ (-654 (-1095)) (-654 (-781))) 120)) (-2687 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $ (-1095)) 122) (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 238)) (-2382 (((-781) $) 174) (((-781) $ (-1095)) 124) (((-654 (-781)) $ (-654 (-1095))) 123)) (-1541 (($ (-1 (-781) (-781)) $) 175)) (-1778 (($ (-1 |#1| |#1|) $) 155)) (-3523 (((-1186 |#1|) $) 242)) (-4045 (((-3 (-1095) "failed") $) 125)) (-1359 (($ $) 153)) (-1370 ((|#1| $) 152)) (-2834 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-2568 (((-1172) $) 10)) (-1639 (((-2 (|:| -3855 $) (|:| -3435 $)) $ (-781)) 237)) (-2357 (((-3 (-654 $) "failed") $) 116)) (-3405 (((-3 (-654 $) "failed") $) 117)) (-3092 (((-3 (-2 (|:| |var| (-1095)) (|:| -2524 (-781))) "failed") $) 115)) (-2968 (($ $) 221 (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) 208 (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 170)) (-1349 ((|#1| $) 171)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 97 (|has| |#1| (-462)))) (-2874 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-3417 (((-428 (-1186 $)) (-1186 $)) 104 (|has| |#1| (-920)))) (-4418 (((-428 (-1186 $)) (-1186 $)) 103 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 101 (|has| |#1| (-920)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 219 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 218 (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 212 (|has| |#1| (-372)))) (-2646 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ (-1095) |#1|) 145) (($ $ (-654 (-1095)) (-654 |#1|)) 144) (($ $ (-1095) $) 143) (($ $ (-654 (-1095)) (-654 $)) 142)) (-1347 (((-781) $) 214 (|has| |#1| (-372)))) (-2200 ((|#1| $ |#1|) 261) (($ $ $) 260) (((-417 $) (-417 $) (-417 $)) 230 (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) 222 (|has| |#1| (-372))) (((-417 $) $ (-417 $)) 210 (|has| |#1| (-566)))) (-4071 (((-3 $ "failed") $ (-781)) 239)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 215 (|has| |#1| (-372)))) (-1415 (($ $ (-1095)) 109 (|has| |#1| (-174))) ((|#1| $) 232 (|has| |#1| (-174)))) (-3905 (($ $ (-1095)) 46) (($ $ (-654 (-1095))) 45) (($ $ (-1095) (-781)) 44) (($ $ (-654 (-1095)) (-654 (-781))) 43) (($ $ (-781)) 258) (($ $) 257) (($ $ (-1190)) 255 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 254 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 253 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 252 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 245) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) $) 233)) (-1784 (((-781) $) 154) (((-781) $ (-1095)) 132) (((-654 (-781)) $ (-654 (-1095))) 131)) (-1837 (((-903 (-388)) $) 84 (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1607 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ (-1095)) 108 (|has| |#1| (-462)))) (-1518 (((-3 (-1281 $) "failed") (-699 $)) 106 (-2088 (|has| $ (-146)) (|has| |#1| (-920))))) (-2659 (((-3 $ "failed") $ $) 227 (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) 226 (|has| |#1| (-566)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ (-1095)) 139) (($ (-417 (-574))) 80 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-3123 (((-654 |#1|) $) 172)) (-3344 ((|#1| $ (-781)) 159) (($ $ (-1095) (-781)) 130) (($ $ (-654 (-1095)) (-654 (-781))) 129)) (-1369 (((-3 $ "failed") $) 81 (-2818 (-2088 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-4160 (((-781)) 32 T CONST)) (-4207 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-1095)) 42) (($ $ (-654 (-1095))) 41) (($ $ (-1095) (-781)) 40) (($ $ (-654 (-1095)) (-654 (-781))) 39) (($ $ (-781)) 259) (($ $) 256) (($ $ (-1190)) 251 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 250 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 249 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 248 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 247) (($ $ (-1 |#1| |#1|)) 246)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150)))
+(((-1257 |#1|) (-141) (-1062)) (T -1257))
+((-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1257 *4)) (-4 *4 (-1062)) (-5 *2 (-1281 *4)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-5 *2 (-1186 *3)))) (-1780 (*1 *1 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-1062)) (-4 *1 (-1257 *3)))) (-1789 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-4071 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-1257 *3)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-1257 *4)))) (-4397 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-4297 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)))) (-3905 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-174)))) (-2800 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-174)))) (-2200 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-4 *3 (-566)))) (-3593 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-4 *3 (-566)) (-5 *2 (-781)))) (-1744 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))) (-2659 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))) (-2659 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-4 *3 (-566)))) (-4404 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))) (-3015 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -1859 *3) (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-1257 *3)))) (-3901 (*1 *2 *1 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1257 *3)))) (-2200 (*1 *2 *3 *2) (-12 (-5 *3 (-417 *1)) (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-2968 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))))
+(-13 (-960 |t#1| (-781) (-1095)) (-294 |t#1| |t#1|) (-294 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -1416 ((-1281 |t#1|) $ (-781))) (-15 -3523 ((-1186 |t#1|) $)) (-15 -1780 ($ (-1186 |t#1|))) (-15 -1789 ($ $ (-781))) (-15 -4071 ((-3 $ "failed") $ (-781))) (-15 -2687 ((-2 (|:| -3855 $) (|:| -3435 $)) $ $)) (-15 -1639 ((-2 (|:| -3855 $) (|:| -3435 $)) $ (-781))) (-15 -4397 ($ $ (-781))) (-15 -1343 ($ $ (-781))) (-15 -4297 ($ $ $)) (-15 -3905 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1165)) (-6 (-1165)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1415 (|t#1| $)) (-15 -2800 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-294 (-417 $) (-417 $))) (-15 -2200 ((-417 $) (-417 $) (-417 $))) (-15 -3593 ((-781) $ $)) (-15 -1744 ($ $ $)) (-15 -2659 ((-3 $ "failed") $ $)) (-15 -2659 ((-3 (-417 $) "failed") (-417 $) $)) (-15 -4404 ($ $ $)) (-15 -3015 ((-2 (|:| -1859 |t#1|) (|:| -3855 $) (|:| -3435 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (-15 -3901 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-315)) (-6 -4452) (-15 -2200 (|t#1| (-417 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-15 -2968 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1095)) . T) ((-626 |#1|) . T) ((-626 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-294 (-417 $) (-417 $)) |has| |#1| (-566)) ((-294 |#1| |#1|) . T) ((-294 $ $) . T) ((-298) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 $) . T) ((-334 |#1| #0#) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-920)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-524 #2# |#1|) . T) ((-524 #2# $) . T) ((-524 $ $) . T) ((-566) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 #3=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-649 #3#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-736) . T) ((-911 #2#) . T) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-897 (-388)) -12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388)))) ((-897 (-574)) -12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))) ((-960 |#1| #0# #2#) . T) ((-920) |has| |#1| (-920)) ((-931) |has| |#1| (-372)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 #2#) . T) ((-1051 |#1|) . T) ((-1064 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-1165)) ((-1231) . T) ((-1235) |has| |#1| (-920)))
+((-4355 (((-654 (-1095)) $) 34)) (-1392 (($ $) 31)) (-4335 (($ |#2| |#3|) NIL) (($ $ (-1095) |#3|) 28) (($ $ (-654 (-1095)) (-654 |#3|)) 27)) (-1359 (($ $) 14)) (-1370 ((|#2| $) 12)) (-1784 ((|#3| $) 10)))
+(((-1258 |#1| |#2| |#3|) (-10 -8 (-15 -4355 ((-654 (-1095)) |#1|)) (-15 -4335 (|#1| |#1| (-654 (-1095)) (-654 |#3|))) (-15 -4335 (|#1| |#1| (-1095) |#3|)) (-15 -1392 (|#1| |#1|)) (-15 -4335 (|#1| |#2| |#3|)) (-15 -1784 (|#3| |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -1370 (|#2| |#1|))) (-1259 |#2| |#3|) (-1062) (-802)) (T -1258))
+NIL
+(-10 -8 (-15 -4355 ((-654 (-1095)) |#1|)) (-15 -4335 (|#1| |#1| (-654 (-1095)) (-654 |#3|))) (-15 -4335 (|#1| |#1| (-1095) |#3|)) (-15 -1392 (|#1| |#1|)) (-15 -4335 (|#1| |#2| |#3|)) (-15 -1784 (|#3| |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -1370 (|#2| |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1489 (((-1190) $) 117)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2814 (($ $) 64 (|has| |#1| (-566)))) (-2425 (((-112) $) 66 (|has| |#1| (-566)))) (-1760 (($ $ |#2|) 112) (($ $ |#2| |#2|) 111)) (-4086 (((-1170 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 118)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1392 (($ $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-3030 (((-112) $) 85)) (-3593 ((|#2| $) 114) ((|#2| $ |#2|) 113)) (-3965 (((-112) $) 35)) (-1789 (($ $ (-932)) 115)) (-2197 (((-112) $) 74)) (-4335 (($ |#1| |#2|) 73) (($ $ (-1095) |#2|) 88) (($ $ (-654 (-1095)) (-654 |#2|)) 87)) (-1778 (($ (-1 |#1| |#1|) $) 75)) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-4344 (($ $ |#2|) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2200 ((|#1| $ |#2|) 119) (($ $ $) 95 (|has| |#2| (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1784 ((|#2| $) 76)) (-3156 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3344 ((|#1| $ |#2|) 71)) (-1369 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 65 (|has| |#1| (-566)))) (-3551 ((|#1| $ |#2|) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
+(((-1259 |#1| |#2|) (-141) (-1062) (-802)) (T -1259))
+((-4086 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-1170 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-1190)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) (-1789 (*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-3593 (*1 *2 *1 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-1760 (*1 *1 *1 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-1760 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-3551 (*1 *2 *1 *3) (-12 (-4 *1 (-1259 *2 *3)) (-4 *3 (-802)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2943 (*2 (-1190)))) (-4 *2 (-1062)))) (-4344 (*1 *1 *1 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-2646 (*1 *2 *1 *3) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1170 *3)))))
+(-13 (-986 |t#1| |t#2| (-1095)) (-294 |t#2| |t#1|) (-10 -8 (-15 -4086 ((-1170 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1489 ((-1190) $)) (-15 -3359 (|t#1| $)) (-15 -1789 ($ $ (-932))) (-15 -3593 (|t#2| $)) (-15 -3593 (|t#2| $ |t#2|)) (-15 -1760 ($ $ |t#2|)) (-15 -1760 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2943 (|t#1| (-1190)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3551 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4344 ($ $ |t#2|)) (IF (|has| |t#2| (-1125)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-911 (-1190))) (-6 (-911 (-1190))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2646 ((-1170 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-294 |#2| |#1|) . T) ((-294 $ $) |has| |#2| (-1125)) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| |#2| (-1095)) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T))
+((-4348 ((|#2| |#2|) 12)) (-3440 (((-428 |#2|) |#2|) 14)) (-4039 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))) 30)))
+(((-1260 |#1| |#2|) (-10 -7 (-15 -3440 ((-428 |#2|) |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -4039 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) (-566) (-13 (-1257 |#1|) (-566) (-10 -8 (-15 -2874 ($ $ $))))) (T -1260))
+((-4039 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-574)))) (-4 *4 (-13 (-1257 *3) (-566) (-10 -8 (-15 -2874 ($ $ $))))) (-4 *3 (-566)) (-5 *1 (-1260 *3 *4)))) (-4348 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-13 (-1257 *3) (-566) (-10 -8 (-15 -2874 ($ $ $))))))) (-3440 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1260 *4 *3)) (-4 *3 (-13 (-1257 *4) (-566) (-10 -8 (-15 -2874 ($ $ $))))))))
+(-10 -7 (-15 -3440 ((-428 |#2|) |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -4039 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))))))
+((-1778 (((-1266 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1266 |#1| |#3| |#5|)) 24)))
+(((-1261 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1778 ((-1266 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1266 |#1| |#3| |#5|)))) (-1062) (-1062) (-1190) (-1190) |#1| |#2|) (T -1261))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5 *7 *9)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-14 *7 (-1190)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1266 *6 *8 *10)) (-5 *1 (-1261 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1190)))))
+(-10 -7 (-15 -1778 ((-1266 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1266 |#1| |#3| |#5|))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1489 (((-1190) $) 117)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2814 (($ $) 64 (|has| |#1| (-566)))) (-2425 (((-112) $) 66 (|has| |#1| (-566)))) (-1760 (($ $ (-417 (-574))) 112) (($ $ (-417 (-574)) (-417 (-574))) 111)) (-4086 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 118)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 176 (|has| |#1| (-372)))) (-3440 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3875 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 185)) (-2388 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) 18 T CONST)) (-2785 (($ $ $) 171 (|has| |#1| (-372)))) (-1392 (($ $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 170 (|has| |#1| (-372)))) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-1654 (((-112) $) 178 (|has| |#1| (-372)))) (-3030 (((-112) $) 85)) (-3001 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-417 (-574)) $) 114) (((-417 (-574)) $ (-417 (-574))) 113)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) 115) (($ $ (-417 (-574))) 184)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-2197 (((-112) $) 74)) (-4335 (($ |#1| (-417 (-574))) 73) (($ $ (-1095) (-417 (-574))) 88) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) 87)) (-1778 (($ (-1 |#1| |#1|) $) 75)) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2834 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-2568 (((-1172) $) 10)) (-1324 (($ $) 179 (|has| |#1| (-372)))) (-2968 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 182 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 164 (|has| |#1| (-372)))) (-2874 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4220 (((-428 $) $) 175 (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 172 (|has| |#1| (-372)))) (-4344 (($ $ (-417 (-574))) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1610 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1347 (((-781) $) 168 (|has| |#1| (-372)))) (-2200 ((|#1| $ (-417 (-574))) 119) (($ $ $) 95 (|has| (-417 (-574)) (-1125)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 169 (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-1784 (((-417 (-574)) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3344 ((|#1| $ (-417 (-574))) 71)) (-1369 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-2923 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
+(((-1262 |#1|) (-141) (-1062)) (T -1262))
+((-3623 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) (-4 *4 (-1062)) (-4 *1 (-1262 *4)))) (-1789 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1262 *3)) (-4 *3 (-1062)))) (-2968 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) (-2968 (*1 *1 *1 *2) (-2818 (-12 (-5 *2 (-1190)) (-4 *1 (-1262 *3)) (-4 *3 (-1062)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1190)) (-4 *1 (-1262 *3)) (-4 *3 (-1062)) (-12 (|has| *3 (-15 -4355 ((-654 *2) *3))) (|has| *3 (-15 -2968 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))))
+(-13 (-1259 |t#1| (-417 (-574))) (-10 -8 (-15 -3623 ($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |t#1|))))) (-15 -1789 ($ $ (-417 (-574)))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $)) (IF (|has| |t#1| (-15 -2968 (|t#1| |t#1| (-1190)))) (IF (|has| |t#1| (-15 -4355 ((-654 (-1190)) |t#1|))) (-15 -2968 ($ $ (-1190))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1216)) (IF (|has| |t#1| (-970)) (IF (|has| |t#1| (-29 (-574))) (-15 -2968 ($ $ (-1190))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1015)) (-6 (-1216))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1125)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| #0# (-1095)) . T) ((-931) |has| |#1| (-372)) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1064 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1235) |has| |#1| (-372)) ((-1259 |#1| #0#) . T))
+((-2908 (((-112) $) 12)) (-1697 (((-3 |#3| "failed") $) 17)) (-2209 ((|#3| $) 14)))
+(((-1263 |#1| |#2| |#3|) (-10 -8 (-15 -1697 ((-3 |#3| "failed") |#1|)) (-15 -2209 (|#3| |#1|)) (-15 -2908 ((-112) |#1|))) (-1264 |#2| |#3|) (-1062) (-1241 |#2|)) (T -1263))
+NIL
+(-10 -8 (-15 -1697 ((-3 |#3| "failed") |#1|)) (-15 -2209 (|#3| |#1|)) (-15 -2908 ((-112) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1489 (((-1190) $) 117)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2814 (($ $) 64 (|has| |#1| (-566)))) (-2425 (((-112) $) 66 (|has| |#1| (-566)))) (-1760 (($ $ (-417 (-574))) 112) (($ $ (-417 (-574)) (-417 (-574))) 111)) (-4086 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 118)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 176 (|has| |#1| (-372)))) (-3440 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3875 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 185)) (-2388 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#2| "failed") $) 196)) (-2209 ((|#2| $) 197)) (-2785 (($ $ $) 171 (|has| |#1| (-372)))) (-1392 (($ $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-2016 (((-417 (-574)) $) 193)) (-2798 (($ $ $) 170 (|has| |#1| (-372)))) (-4424 (($ (-417 (-574)) |#2|) 194)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-1654 (((-112) $) 178 (|has| |#1| (-372)))) (-3030 (((-112) $) 85)) (-3001 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-417 (-574)) $) 114) (((-417 (-574)) $ (-417 (-574))) 113)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) 115) (($ $ (-417 (-574))) 184)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-2197 (((-112) $) 74)) (-4335 (($ |#1| (-417 (-574))) 73) (($ $ (-1095) (-417 (-574))) 88) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) 87)) (-1778 (($ (-1 |#1| |#1|) $) 75)) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2834 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-3957 ((|#2| $) 192)) (-2562 (((-3 |#2| "failed") $) 190)) (-4413 ((|#2| $) 191)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 179 (|has| |#1| (-372)))) (-2968 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 182 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 164 (|has| |#1| (-372)))) (-2874 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4220 (((-428 $) $) 175 (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 172 (|has| |#1| (-372)))) (-4344 (($ $ (-417 (-574))) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1610 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1347 (((-781) $) 168 (|has| |#1| (-372)))) (-2200 ((|#1| $ (-417 (-574))) 119) (($ $ $) 95 (|has| (-417 (-574)) (-1125)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 169 (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-1784 (((-417 (-574)) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 195) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3344 ((|#1| $ (-417 (-574))) 71)) (-1369 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-2923 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
+(((-1264 |#1| |#2|) (-141) (-1062) (-1241 |t#1|)) (T -1264))
+((-1784 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1241 *3)) (-5 *2 (-417 (-574))))) (-4424 (*1 *1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1062)) (-4 *1 (-1264 *4 *3)) (-4 *3 (-1241 *4)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1241 *3)) (-5 *2 (-417 (-574))))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3)))) (-4413 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3)))) (-2562 (*1 *2 *1) (|partial| -12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3)))))
+(-13 (-1262 |t#1|) (-1051 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4424 ($ (-417 (-574)) |t#2|)) (-15 -2016 ((-417 (-574)) $)) (-15 -3957 (|t#2| $)) (-15 -1784 ((-417 (-574)) $)) (-15 -4413 (|t#2| $)) (-15 -2562 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1125)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| #0# (-1095)) . T) ((-931) |has| |#1| (-372)) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1051 |#2|) . T) ((-1064 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1235) |has| |#1| (-372)) ((-1259 |#1| #0#) . T) ((-1262 |#1|) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) 104)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-1760 (($ $ (-417 (-574))) 116) (($ $ (-417 (-574)) (-417 (-574))) 118)) (-4086 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 54)) (-2364 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 65)) (-2388 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) NIL)) (-2209 ((|#2| $) NIL)) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) 85)) (-2016 (((-417 (-574)) $) 13)) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-4424 (($ (-417 (-574)) |#2|) 11)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1654 (((-112) $) NIL (|has| |#1| (-372)))) (-3030 (((-112) $) 74)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-417 (-574)) $) 113) (((-417 (-574)) $ (-417 (-574))) 114)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) 130) (($ $ (-417 (-574))) 128)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) 33) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-1778 (($ (-1 |#1| |#1|) $) 125)) (-3119 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3957 ((|#2| $) 12)) (-2562 (((-3 |#2| "failed") $) 44)) (-4413 ((|#2| $) 45)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) 101 (|has| |#1| (-372)))) (-2968 (($ $) 146 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 151 (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216)))))) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-4344 (($ $ (-417 (-574))) 122)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1610 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ (-417 (-574))) 108) (($ $ $) 94 (|has| (-417 (-574)) (-1125)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) 138 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-1784 (((-417 (-574)) $) 16)) (-2402 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) 120)) (-2943 (((-872) $) NIL) (($ (-574)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-417 (-574))) 139 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3344 ((|#1| $ (-417 (-574))) 107)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) 127 T CONST)) (-3359 ((|#1| $) 106)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 21 T CONST)) (-2146 (($) 17 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2982 (((-112) $ $) 72)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 100 (|has| |#1| (-372)))) (-3094 (($ $) 142) (($ $ $) 78)) (-3078 (($ $ $) 76)) (** (($ $ (-932)) NIL) (($ $ (-781)) 82) (($ $ (-574)) 157 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 158 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-1265 |#1| |#2|) (-1264 |#1| |#2|) (-1062) (-1241 |#1|)) (T -1265))
+NIL
+(-1264 |#1| |#2|)
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) 11)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) NIL (|has| |#1| (-566)))) (-1760 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-4086 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-372)))) (-3440 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3875 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-1245 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1273 |#1| |#2| |#3|) "failed") $) 22)) (-2209 (((-1245 |#1| |#2| |#3|) $) NIL) (((-1273 |#1| |#2| |#3|) $) NIL)) (-2785 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2016 (((-417 (-574)) $) 69)) (-2798 (($ $ $) NIL (|has| |#1| (-372)))) (-4424 (($ (-417 (-574)) (-1245 |#1| |#2| |#3|)) NIL)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1654 (((-112) $) NIL (|has| |#1| (-372)))) (-3030 (((-112) $) NIL)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3965 (((-112) $) NIL)) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) NIL) (($ $ (-417 (-574))) NIL)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) 30) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2834 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3957 (((-1245 |#1| |#2| |#3|) $) 72)) (-2562 (((-3 (-1245 |#1| |#2| |#3|) "failed") $) NIL)) (-4413 (((-1245 |#1| |#2| |#3|) $) NIL)) (-2568 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2968 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2874 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3545 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-4344 (($ $ (-417 (-574))) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2945 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1610 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1347 (((-781) $) NIL (|has| |#1| (-372)))) (-2200 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1125)))) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1277 |#2|)) 38)) (-1784 (((-417 (-574)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) NIL)) (-2943 (((-872) $) 107) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1245 |#1| |#2| |#3|)) 16) (($ (-1273 |#1| |#2| |#3|)) 17) (($ (-1277 |#2|)) 36) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3344 ((|#1| $ (-417 (-574))) NIL)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 12)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 32 T CONST)) (-2146 (($) 26 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 34)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-1266 |#1| |#2| |#3|) (-13 (-1264 |#1| (-1245 |#1| |#2| |#3|)) (-1051 (-1273 |#1| |#2| |#3|)) (-626 (-1277 |#2|)) (-10 -8 (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1266))
+((-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1266 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1266 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))))
+(-13 (-1264 |#1| (-1245 |#1| |#2| |#3|)) (-1051 (-1273 |#1| |#2| |#3|)) (-626 (-1277 |#2|)) (-10 -8 (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 37)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-2814 (($ $) NIL)) (-2425 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 (-574) "failed") $) NIL (|has| (-1266 |#2| |#3| |#4|) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1266 |#2| |#3| |#4|) (-1051 (-417 (-574))))) (((-3 (-1266 |#2| |#3| |#4|) "failed") $) 22)) (-2209 (((-574) $) NIL (|has| (-1266 |#2| |#3| |#4|) (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| (-1266 |#2| |#3| |#4|) (-1051 (-417 (-574))))) (((-1266 |#2| |#3| |#4|) $) NIL)) (-1392 (($ $) 41)) (-1950 (((-3 $ "failed") $) 27)) (-3872 (($ $) NIL (|has| (-1266 |#2| |#3| |#4|) (-462)))) (-3157 (($ $ (-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|) $) NIL)) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) 11)) (-2197 (((-112) $) NIL)) (-4335 (($ (-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) 25)) (-2382 (((-327 |#2| |#3| |#4|) $) NIL)) (-1541 (($ (-1 (-327 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) $) NIL)) (-1778 (($ (-1 (-1266 |#2| |#3| |#4|) (-1266 |#2| |#3| |#4|)) $) NIL)) (-2705 (((-3 (-853 |#2|) "failed") $) 90)) (-1359 (($ $) NIL)) (-1370 (((-1266 |#2| |#3| |#4|) $) 20)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 (((-1266 |#2| |#3| |#4|) $) NIL)) (-2838 (((-3 $ "failed") $ (-1266 |#2| |#3| |#4|)) NIL (|has| (-1266 |#2| |#3| |#4|) (-566))) (((-3 $ "failed") $ $) NIL)) (-4114 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1266 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1172))) "failed") $) 74)) (-1784 (((-327 |#2| |#3| |#4|) $) 17)) (-1607 (((-1266 |#2| |#3| |#4|) $) NIL (|has| (-1266 |#2| |#3| |#4|) (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-1266 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL (-2818 (|has| (-1266 |#2| |#3| |#4|) (-38 (-417 (-574)))) (|has| (-1266 |#2| |#3| |#4|) (-1051 (-417 (-574))))))) (-3123 (((-654 (-1266 |#2| |#3| |#4|)) $) NIL)) (-3344 (((-1266 |#2| |#3| |#4|) $ (-327 |#2| |#3| |#4|)) NIL)) (-1369 (((-3 $ "failed") $) NIL (|has| (-1266 |#2| |#3| |#4|) (-146)))) (-4160 (((-781)) NIL T CONST)) (-4207 (($ $ $ (-781)) NIL (|has| (-1266 |#2| |#3| |#4|) (-174)))) (-2923 (((-112) $ $) NIL)) (-3798 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-2146 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ (-1266 |#2| |#3| |#4|)) NIL (|has| (-1266 |#2| |#3| |#4|) (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-1266 |#2| |#3| |#4|)) NIL) (($ (-1266 |#2| |#3| |#4|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-1266 |#2| |#3| |#4|) (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| (-1266 |#2| |#3| |#4|) (-38 (-417 (-574)))))))
+(((-1267 |#1| |#2| |#3| |#4|) (-13 (-334 (-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -2705 ((-3 (-853 |#2|) "failed") $)) (-15 -4114 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1266 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1172))) "failed") $)))) (-13 (-1051 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1216) (-440 |#1|)) (-1190) |#2|) (T -1267))
+((-2705 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-1267 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) (-14 *6 *4))) (-4114 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1266 *4 *5 *6)) (|:| |%expon| (-327 *4 *5 *6)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) (|:| |%type| (-1172)))) (-5 *1 (-1267 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) (-14 *6 *4))))
+(-13 (-334 (-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -2705 ((-3 (-853 |#2|) "failed") $)) (-15 -4114 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1266 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1172))) "failed") $))))
+((-3083 ((|#2| $) 34)) (-2406 ((|#2| $) 18)) (-1971 (($ $) 53)) (-2960 (($ $ (-574)) 85)) (-3340 (((-112) $ (-781)) 46)) (-1630 ((|#2| $ |#2|) 82)) (-4003 ((|#2| $ |#2|) 78)) (-3143 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2751 (($ $ (-654 $)) 81)) (-2393 ((|#2| $) 17)) (-2926 (($ $) NIL) (($ $ (-781)) 59)) (-2192 (((-654 $) $) 31)) (-4127 (((-112) $ $) 69)) (-3735 (((-112) $ (-781)) 45)) (-2448 (((-112) $ (-781)) 43)) (-2173 (((-112) $) 33)) (-3360 ((|#2| $) 25) (($ $ (-781)) 64)) (-2200 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4023 (((-112) $) 23)) (-3420 (($ $) 56)) (-1813 (($ $) 86)) (-2584 (((-781) $) 58)) (-2022 (($ $) 57)) (-4157 (($ $ $) 77) (($ |#2| $) NIL)) (-1973 (((-654 $) $) 32)) (-2982 (((-112) $ $) 67)) (-2863 (((-781) $) 52)))
+(((-1268 |#1| |#2|) (-10 -8 (-15 -2960 (|#1| |#1| (-574))) (-15 -3143 (|#2| |#1| "last" |#2|)) (-15 -4003 (|#2| |#1| |#2|)) (-15 -3143 (|#1| |#1| "rest" |#1|)) (-15 -3143 (|#2| |#1| "first" |#2|)) (-15 -1813 (|#1| |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -2584 ((-781) |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2406 (|#2| |#1|)) (-15 -2393 (|#2| |#1|)) (-15 -1971 (|#1| |#1|)) (-15 -3360 (|#1| |#1| (-781))) (-15 -2200 (|#2| |#1| "last")) (-15 -3360 (|#2| |#1|)) (-15 -2926 (|#1| |#1| (-781))) (-15 -2200 (|#1| |#1| "rest")) (-15 -2926 (|#1| |#1|)) (-15 -2200 (|#2| |#1| "first")) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -1630 (|#2| |#1| |#2|)) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2751 (|#1| |#1| (-654 |#1|))) (-15 -4127 ((-112) |#1| |#1|)) (-15 -4023 ((-112) |#1|)) (-15 -2200 (|#2| |#1| "value")) (-15 -3083 (|#2| |#1|)) (-15 -2173 ((-112) |#1|)) (-15 -2192 ((-654 |#1|) |#1|)) (-15 -1973 ((-654 |#1|) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3340 ((-112) |#1| (-781))) (-15 -3735 ((-112) |#1| (-781))) (-15 -2448 ((-112) |#1| (-781)))) (-1269 |#2|) (-1231)) (T -1268))
+NIL
+(-10 -8 (-15 -2960 (|#1| |#1| (-574))) (-15 -3143 (|#2| |#1| "last" |#2|)) (-15 -4003 (|#2| |#1| |#2|)) (-15 -3143 (|#1| |#1| "rest" |#1|)) (-15 -3143 (|#2| |#1| "first" |#2|)) (-15 -1813 (|#1| |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -2584 ((-781) |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2406 (|#2| |#1|)) (-15 -2393 (|#2| |#1|)) (-15 -1971 (|#1| |#1|)) (-15 -3360 (|#1| |#1| (-781))) (-15 -2200 (|#2| |#1| "last")) (-15 -3360 (|#2| |#1|)) (-15 -2926 (|#1| |#1| (-781))) (-15 -2200 (|#1| |#1| "rest")) (-15 -2926 (|#1| |#1|)) (-15 -2200 (|#2| |#1| "first")) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -1630 (|#2| |#1| |#2|)) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2751 (|#1| |#1| (-654 |#1|))) (-15 -4127 ((-112) |#1| |#1|)) (-15 -4023 ((-112) |#1|)) (-15 -2200 (|#2| |#1| "value")) (-15 -3083 (|#2| |#1|)) (-15 -2173 ((-112) |#1|)) (-15 -2192 ((-654 |#1|) |#1|)) (-15 -1973 ((-654 |#1|) |#1|)) (-15 -2982 ((-112) |#1| |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3340 ((-112) |#1| (-781))) (-15 -3735 ((-112) |#1| (-781))) (-15 -2448 ((-112) |#1| (-781))))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-2406 ((|#1| $) 66)) (-1971 (($ $) 68)) (-2960 (($ $ (-574)) 53 (|has| $ (-6 -4457)))) (-3340 (((-112) $ (-781)) 8)) (-1630 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-4002 (($ $ $) 57 (|has| $ (-6 -4457)))) (-4003 ((|#1| $ |#1|) 55 (|has| $ (-6 -4457)))) (-1533 ((|#1| $ |#1|) 59 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4457))) (($ $ "rest" $) 56 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4457)))) (-2751 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-2393 ((|#1| $) 67)) (-3670 (($) 7 T CONST)) (-2926 (($ $) 74) (($ $ (-781)) 72)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2192 (((-654 $) $) 51)) (-4127 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3735 (((-112) $ (-781)) 9)) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36)) (-2448 (((-112) $ (-781)) 10)) (-3509 (((-654 |#1|) $) 46)) (-2173 (((-112) $) 50)) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 71) (($ $ (-781)) 69)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 77) (($ $ (-781)) 75)) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1556 (((-574) $ $) 45)) (-4023 (((-112) $) 47)) (-3420 (($ $) 63)) (-1813 (($ $) 60 (|has| $ (-6 -4457)))) (-2584 (((-781) $) 64)) (-2022 (($ $) 65)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2734 (($ $ $) 62 (|has| $ (-6 -4457))) (($ $ |#1|) 61 (|has| $ (-6 -4457)))) (-4157 (($ $ $) 79) (($ |#1| $) 78)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1973 (((-654 $) $) 52)) (-1495 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-1269 |#1|) (-141) (-1231)) (T -1269))
+((-4157 (*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-4157 (*1 *1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2915 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-2926 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2200 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-2926 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3360 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-1971 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2022 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-1269 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) (-3420 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2734 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2734 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-1813 (*1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-1533 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-4002 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3143 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-4003 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2960 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4457)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))))
+(-13 (-1023 |t#1|) (-10 -8 (-15 -4157 ($ $ $)) (-15 -4157 ($ |t#1| $)) (-15 -2915 (|t#1| $)) (-15 -2200 (|t#1| $ "first")) (-15 -2915 ($ $ (-781))) (-15 -2926 ($ $)) (-15 -2200 ($ $ "rest")) (-15 -2926 ($ $ (-781))) (-15 -3360 (|t#1| $)) (-15 -2200 (|t#1| $ "last")) (-15 -3360 ($ $ (-781))) (-15 -1971 ($ $)) (-15 -2393 (|t#1| $)) (-15 -2406 (|t#1| $)) (-15 -2022 ($ $)) (-15 -2584 ((-781) $)) (-15 -3420 ($ $)) (IF (|has| $ (-6 -4457)) (PROGN (-15 -2734 ($ $ $)) (-15 -2734 ($ $ |t#1|)) (-15 -1813 ($ $)) (-15 -1533 (|t#1| $ |t#1|)) (-15 -3143 (|t#1| $ "first" |t#1|)) (-15 -4002 ($ $ $)) (-15 -3143 ($ $ "rest" $)) (-15 -4003 (|t#1| $ |t#1|)) (-15 -3143 (|t#1| $ "last" |t#1|)) (-15 -2960 ($ $ (-574)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T))
+((-1778 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1270 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1778 (|#4| (-1 |#2| |#1|) |#3|))) (-1062) (-1062) (-1272 |#1|) (-1272 |#2|)) (T -1270))
+((-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-4 *2 (-1272 *6)) (-5 *1 (-1270 *5 *6 *4 *2)) (-4 *4 (-1272 *5)))))
+(-10 -7 (-15 -1778 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2908 (((-112) $) 17)) (-2364 (($ $) 105)) (-2246 (($ $) 81)) (-2343 (($ $) 101)) (-2227 (($ $) 77)) (-2388 (($ $) 109)) (-2267 (($ $) 85)) (-3119 (($ $) 75)) (-1610 (($ $) 73)) (-2402 (($ $) 111)) (-2275 (($ $) 87)) (-2375 (($ $) 107)) (-2257 (($ $) 83)) (-2353 (($ $) 103)) (-2237 (($ $) 79)) (-2943 (((-872) $) 61) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2441 (($ $) 117)) (-2305 (($ $) 93)) (-2414 (($ $) 113)) (-2287 (($ $) 89)) (-2465 (($ $) 121)) (-2325 (($ $) 97)) (-2521 (($ $) 123)) (-2334 (($ $) 99)) (-2453 (($ $) 119)) (-2315 (($ $) 95)) (-2428 (($ $) 115)) (-2297 (($ $) 91)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-417 (-574))) 71)))
+(((-1271 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2246 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1610 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))) (-15 -2908 ((-112) |#1|)) (-15 -2943 ((-872) |#1|))) (-1272 |#2|) (-1062)) (T -1271))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2246 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1610 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))) (-15 -2908 ((-112) |#1|)) (-15 -2943 ((-872) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1489 (((-1190) $) 117)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-2814 (($ $) 64 (|has| |#1| (-566)))) (-2425 (((-112) $) 66 (|has| |#1| (-566)))) (-1760 (($ $ (-781)) 112) (($ $ (-781) (-781)) 111)) (-4086 (((-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 118)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) 20)) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 169) (($ (-1170 |#1|)) 167)) (-2388 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) 18 T CONST)) (-1392 (($ $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-1665 (($ $) 166)) (-4053 (((-963 |#1|) $ (-781)) 164) (((-963 |#1|) $ (-781) (-781)) 163)) (-3030 (((-112) $) 85)) (-3001 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-781) $) 114) (((-781) $ (-781)) 113)) (-3965 (((-112) $) 35)) (-3379 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-1789 (($ $ (-932)) 115)) (-4025 (($ (-1 |#1| (-574)) $) 165)) (-2197 (((-112) $) 74)) (-4335 (($ |#1| (-781)) 73) (($ $ (-1095) (-781)) 88) (($ $ (-654 (-1095)) (-654 (-781))) 87)) (-1778 (($ (-1 |#1| |#1|) $) 75)) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2568 (((-1172) $) 10)) (-2968 (($ $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 160 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3966 (((-1133) $) 11)) (-4344 (($ $ (-781)) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1610 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2200 ((|#1| $ (-781)) 119) (($ $ $) 95 (|has| (-781) (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-1784 (((-781) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3123 (((-1170 |#1|) $) 168)) (-3344 ((|#1| $ (-781)) 71)) (-1369 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4160 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-2923 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-781)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ |#1|) 162 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
+(((-1272 |#1|) (-141) (-1062)) (T -1272))
+((-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 (-2 (|:| |k| (-781)) (|:| |c| *3)))) (-4 *3 (-1062)) (-4 *1 (-1272 *3)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-1062)) (-5 *2 (-1170 *3)))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-4 *1 (-1272 *3)))) (-1665 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)))) (-4025 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1272 *3)) (-4 *3 (-1062)))) (-4053 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1272 *4)) (-4 *4 (-1062)) (-5 *2 (-963 *4)))) (-4053 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1272 *4)) (-4 *4 (-1062)) (-5 *2 (-963 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-2968 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) (-2968 (*1 *1 *1 *2) (-2818 (-12 (-5 *2 (-1190)) (-4 *1 (-1272 *3)) (-4 *3 (-1062)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1190)) (-4 *1 (-1272 *3)) (-4 *3 (-1062)) (-12 (|has| *3 (-15 -4355 ((-654 *2) *3))) (|has| *3 (-15 -2968 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))))
+(-13 (-1259 |t#1| (-781)) (-10 -8 (-15 -3623 ($ (-1170 (-2 (|:| |k| (-781)) (|:| |c| |t#1|))))) (-15 -3123 ((-1170 |t#1|) $)) (-15 -3623 ($ (-1170 |t#1|))) (-15 -1665 ($ $)) (-15 -4025 ($ (-1 |t#1| (-574)) $)) (-15 -4053 ((-963 |t#1|) $ (-781))) (-15 -4053 ((-963 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-372)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -2968 ($ $)) (IF (|has| |t#1| (-15 -2968 (|t#1| |t#1| (-1190)))) (IF (|has| |t#1| (-15 -4355 ((-654 (-1190)) |t#1|))) (-15 -2968 ($ $ (-1190))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1216)) (IF (|has| |t#1| (-970)) (IF (|has| |t#1| (-29 (-574))) (-15 -2968 ($ $ (-1190))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1015)) (-6 (-1216))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-781) (-1125)) ((-298) |has| |#1| (-566)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| #0# (-1095)) . T) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1064 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1259 |#1| #0#) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1489 (((-1190) $) 90)) (-2763 (((-1254 |#2| |#1|) $ (-781)) 73)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-2814 (($ $) NIL (|has| |#1| (-566)))) (-2425 (((-112) $) 142 (|has| |#1| (-566)))) (-1760 (($ $ (-781)) 127) (($ $ (-781) (-781)) 130)) (-4086 (((-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 43)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2950 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 52) (($ (-1170 |#1|)) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3670 (($) NIL T CONST)) (-2860 (($ $) 134)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-1665 (($ $) 140)) (-4053 (((-963 |#1|) $ (-781)) 63) (((-963 |#1|) $ (-781) (-781)) 65)) (-3030 (((-112) $) NIL)) (-3001 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3593 (((-781) $) NIL) (((-781) $ (-781)) NIL)) (-3965 (((-112) $) NIL)) (-3559 (($ $) 117)) (-3379 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3285 (($ (-574) (-574) $) 136)) (-1789 (($ $ (-932)) 139)) (-4025 (($ (-1 |#1| (-574)) $) 111)) (-2197 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) 16) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-1778 (($ (-1 |#1| |#1|) $) 98)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-4268 (($ $) 115)) (-3466 (($ $) 113)) (-2386 (($ (-574) (-574) $) 138)) (-2968 (($ $) 150 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 156 (-2818 (-12 (|has| |#1| (-15 -2968 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 151 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-2710 (($ $ (-574) (-574)) 121)) (-4344 (($ $ (-781)) 123)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1610 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3840 (($ $) 119)) (-2646 (((-1170 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2200 ((|#1| $ (-781)) 95) (($ $ $) 132 (|has| (-781) (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) 108 (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1277 |#2|)) 103)) (-1784 (((-781) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3156 (($ $) 125)) (-2943 (((-872) $) NIL) (($ (-574)) 26) (($ (-417 (-574))) 148 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1254 |#2| |#1|)) 81) (($ (-1277 |#2|)) 22)) (-3123 (((-1170 |#1|) $) NIL)) (-3344 ((|#1| $ (-781)) 94)) (-1369 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4160 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 91)) (-2923 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3798 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-781)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2453 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2134 (($) 18 T CONST)) (-2146 (($) 13 T CONST)) (-3611 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2982 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) 107)) (-3078 (($ $ $) 20)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 145 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
+(((-1273 |#1| |#2| |#3|) (-13 (-1272 |#1|) (-10 -8 (-15 -2943 ($ (-1254 |#2| |#1|))) (-15 -2763 ((-1254 |#2| |#1|) $ (-781))) (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (-15 -3466 ($ $)) (-15 -4268 ($ $)) (-15 -3559 ($ $)) (-15 -3840 ($ $)) (-15 -2710 ($ $ (-574) (-574))) (-15 -2860 ($ $)) (-15 -3285 ($ (-574) (-574) $)) (-15 -2386 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1273))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1254 *4 *3)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3) (-5 *1 (-1273 *3 *4 *5)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1254 *5 *4)) (-5 *1 (-1273 *4 *5 *6)) (-4 *4 (-1062)) (-14 *5 (-1190)) (-14 *6 *4))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-3466 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-4268 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-3559 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-2710 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3))) (-2860 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-3285 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3))) (-2386 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))))
+(-13 (-1272 |#1|) (-10 -8 (-15 -2943 ($ (-1254 |#2| |#1|))) (-15 -2763 ((-1254 |#2| |#1|) $ (-781))) (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (-15 -3466 ($ $)) (-15 -4268 ($ $)) (-15 -3559 ($ $)) (-15 -3840 ($ $)) (-15 -2710 ($ $ (-574) (-574))) (-15 -2860 ($ $)) (-15 -3285 ($ (-574) (-574) $)) (-15 -2386 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2968 ($ $ (-1277 |#2|))) |%noBranch|)))
+((-3732 (((-1 (-1170 |#1|) (-654 (-1170 |#1|))) (-1 |#2| (-654 |#2|))) 24)) (-2875 (((-1 (-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4224 (((-1 (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2|)) 13)) (-2590 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3578 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2786 ((|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|)) 60)) (-3656 (((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))) 66)) (-2520 ((|#2| |#2| |#2|) 43)))
+(((-1274 |#1| |#2|) (-10 -7 (-15 -4224 ((-1 (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2|))) (-15 -2875 ((-1 (-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3732 ((-1 (-1170 |#1|) (-654 (-1170 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -2520 (|#2| |#2| |#2|)) (-15 -3578 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2590 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2786 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3656 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) (-38 (-417 (-574))) (-1272 |#1|)) (T -1274))
+((-3656 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1272 *5)) (-5 *2 (-654 *6)) (-5 *1 (-1274 *5 *6)))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1272 *5)) (-5 *1 (-1274 *5 *2)))) (-2590 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1272 *4)) (-5 *1 (-1274 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-3578 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1272 *4)) (-5 *1 (-1274 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-2520 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1274 *3 *2)) (-4 *2 (-1272 *3)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1272 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1170 *4) (-654 (-1170 *4)))) (-5 *1 (-1274 *4 *5)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1272 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1170 *4) (-1170 *4) (-1170 *4))) (-5 *1 (-1274 *4 *5)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1272 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1170 *4) (-1170 *4))) (-5 *1 (-1274 *4 *5)))))
+(-10 -7 (-15 -4224 ((-1 (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2|))) (-15 -2875 ((-1 (-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3732 ((-1 (-1170 |#1|) (-654 (-1170 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -2520 (|#2| |#2| |#2|)) (-15 -3578 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2590 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2786 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3656 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|))))))
+((-2142 ((|#2| |#4| (-781)) 31)) (-1994 ((|#4| |#2|) 26)) (-3262 ((|#4| (-417 |#2|)) 49 (|has| |#1| (-566)))) (-3772 (((-1 |#4| (-654 |#4|)) |#3|) 43)))
+(((-1275 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1994 (|#4| |#2|)) (-15 -2142 (|#2| |#4| (-781))) (-15 -3772 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -3262 (|#4| (-417 |#2|))) |%noBranch|)) (-1062) (-1257 |#1|) (-666 |#2|) (-1272 |#1|)) (T -1275))
+((-3262 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-566)) (-4 *4 (-1062)) (-4 *2 (-1272 *4)) (-5 *1 (-1275 *4 *5 *6 *2)) (-4 *6 (-666 *5)))) (-3772 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-1257 *4)) (-5 *2 (-1 *6 (-654 *6))) (-5 *1 (-1275 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1272 *4)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1062)) (-4 *2 (-1257 *5)) (-5 *1 (-1275 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1272 *5)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *3 (-1257 *4)) (-4 *2 (-1272 *4)) (-5 *1 (-1275 *4 *3 *5 *2)) (-4 *5 (-666 *3)))))
+(-10 -7 (-15 -1994 (|#4| |#2|)) (-15 -2142 (|#2| |#4| (-781))) (-15 -3772 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -3262 (|#4| (-417 |#2|))) |%noBranch|))
+NIL
+(((-1276) (-141)) (T -1276))
+NIL
+(-13 (-10 -7 (-6 -3521)))
+((-2849 (((-112) $ $) NIL)) (-1489 (((-1190)) 12)) (-2568 (((-1172) $) 18)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 11) (((-1190) $) 8)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 15)))
+(((-1277 |#1|) (-13 (-1113) (-623 (-1190)) (-10 -8 (-15 -2943 ((-1190) $)) (-15 -1489 ((-1190))))) (-1190)) (T -1277))
+((-2943 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1277 *3)) (-14 *3 *2))) (-1489 (*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1277 *3)) (-14 *3 *2))))
+(-13 (-1113) (-623 (-1190)) (-10 -8 (-15 -2943 ((-1190) $)) (-15 -1489 ((-1190)))))
+((-2217 (($ (-781)) 19)) (-3899 (((-699 |#2|) $ $) 41)) (-2239 ((|#2| $) 51)) (-4135 ((|#2| $) 50)) (-3222 ((|#2| $ $) 36)) (-2503 (($ $ $) 47)) (-3094 (($ $) 23) (($ $ $) 29)) (-3078 (($ $ $) 15)) (* (($ (-574) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1278 |#1| |#2|) (-10 -8 (-15 -2239 (|#2| |#1|)) (-15 -4135 (|#2| |#1|)) (-15 -2503 (|#1| |#1| |#1|)) (-15 -3899 ((-699 |#2|) |#1| |#1|)) (-15 -3222 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -2217 (|#1| (-781))) (-15 -3078 (|#1| |#1| |#1|))) (-1279 |#2|) (-1231)) (T -1278))
+NIL
+(-10 -8 (-15 -2239 (|#2| |#1|)) (-15 -4135 (|#2| |#1|)) (-15 -2503 (|#1| |#1| |#1|)) (-15 -3899 ((-699 |#2|) |#1| |#1|)) (-15 -3222 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -2217 (|#1| (-781))) (-15 -3078 (|#1| |#1| |#1|)))
+((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-2217 (($ (-781)) 115 (|has| |#1| (-23)))) (-1860 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3670 (($) 7 T CONST)) (-2672 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-2158 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1441 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) 108 (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) 70)) (-3735 (((-112) $ (-781)) 9)) (-1849 (((-574) $) 44 (|has| (-574) (-860)))) (-3658 (($ $ $) 90 (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3429 (((-574) $) 45 (|has| (-574) (-860)))) (-2106 (($ $ $) 89 (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2239 ((|#1| $) 105 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1015))))) (-2448 (((-112) $ (-781)) 10)) (-4135 ((|#1| $) 106 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1015))))) (-2568 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2459 (((-654 (-574)) $) 47)) (-2607 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1363 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) 14)) (-2282 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) 49)) (-3556 (((-112) $) 11)) (-3135 (($) 12)) (-2200 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-3222 ((|#1| $ $) 109 (|has| |#1| (-1062)))) (-2837 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-2503 (($ $ $) 107 (|has| |#1| (-1062)))) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1958 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1837 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3016 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2982 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3028 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3094 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3078 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456)))))
+(((-1279 |#1|) (-141) (-1231)) (T -1279))
+((-3078 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-25)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1279 *3)) (-4 *3 (-23)) (-4 *3 (-1231)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-21)))) (-3094 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1279 *3)) (-4 *3 (-1231)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) (-3222 (*1 *2 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1062)))) (-3899 (*1 *2 *1 *1) (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1231)) (-4 *3 (-1062)) (-5 *2 (-699 *3)))) (-2503 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1062)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1015)) (-4 *2 (-1062)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1015)) (-4 *2 (-1062)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3078 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2217 ($ (-781))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3094 ($ $)) (-15 -3094 ($ $ $)) (-15 * ($ (-574) $))) |%noBranch|) (IF (|has| |t#1| (-736)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1062)) (PROGN (-15 -3222 (|t#1| $ $)) (-15 -3899 ((-699 |t#1|) $ $)) (-15 -2503 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1015)) (IF (|has| |t#1| (-1062)) (PROGN (-15 -4135 (|t#1| $)) (-15 -2239 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1231) . T))
+((-3318 (((-1281 |#2|) (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|) 13)) (-2868 ((|#2| (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|) 15)) (-1778 (((-3 (-1281 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1281 |#1|)) 30) (((-1281 |#2|) (-1 |#2| |#1|) (-1281 |#1|)) 18)))
+(((-1280 |#1| |#2|) (-10 -7 (-15 -3318 ((-1281 |#2|) (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|)) (-15 -1778 ((-1281 |#2|) (-1 |#2| |#1|) (-1281 |#1|))) (-15 -1778 ((-3 (-1281 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1281 |#1|)))) (-1231) (-1231)) (T -1280))
+((-1778 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1281 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1281 *6)) (-5 *1 (-1280 *5 *6)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1281 *6)) (-5 *1 (-1280 *5 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1281 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-1280 *5 *2)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1281 *6)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-5 *2 (-1281 *5)) (-5 *1 (-1280 *6 *5)))))
+(-10 -7 (-15 -3318 ((-1281 |#2|) (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|)) (-15 -1778 ((-1281 |#2|) (-1 |#2| |#1|) (-1281 |#1|))) (-15 -1778 ((-3 (-1281 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1281 |#1|))))
+((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2217 (($ (-781)) NIL (|has| |#1| (-23)))) (-3892 (($ (-654 |#1|)) 11)) (-1860 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3850 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4010 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3340 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2166 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3670 (($) NIL T CONST)) (-2672 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2462 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) 16 (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) NIL (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) NIL)) (-3735 (((-112) $ (-781)) NIL)) (-1849 (((-574) $) NIL (|has| (-574) (-860)))) (-3658 (($ $ $) NIL (|has| |#1| (-860)))) (-2130 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1712 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3759 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3429 (((-574) $) 12 (|has| (-574) (-860)))) (-2106 (($ $ $) NIL (|has| |#1| (-860)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2239 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-2448 (((-112) $ (-781)) NIL)) (-4135 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-2568 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1595 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2459 (((-654 (-574)) $) NIL)) (-2607 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1836 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1363 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-3124 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-1892 (((-112) $ $) NIL)) (-2282 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2121 (((-654 |#1|) $) NIL)) (-3556 (((-112) $) NIL)) (-3135 (($) NIL)) (-2200 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3222 ((|#1| $ $) NIL (|has| |#1| (-1062)))) (-2837 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2503 (($ $ $) NIL (|has| |#1| (-1062)))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-1958 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) 20 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 10)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2935 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3041 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2982 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3028 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3078 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1281 |#1|) (-13 (-1279 |#1|) (-10 -8 (-15 -3892 ($ (-654 |#1|))))) (-1231)) (T -1281))
+((-3892 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1281 *3)))))
+(-13 (-1279 |#1|) (-10 -8 (-15 -3892 ($ (-654 |#1|)))))
+((-2849 (((-112) $ $) NIL)) (-1604 (((-1172) $ (-1172)) 107) (((-1172) $ (-1172) (-1172)) 105) (((-1172) $ (-1172) (-654 (-1172))) 104)) (-1917 (($) 69)) (-1393 (((-1286) $ (-478) (-932)) 54)) (-1998 (((-1286) $ (-932) (-1172)) 89) (((-1286) $ (-932) (-884)) 90)) (-2808 (((-1286) $ (-932) (-388) (-388)) 57)) (-3877 (((-1286) $ (-1172)) 84)) (-1619 (((-1286) $ (-932) (-1172)) 94)) (-1913 (((-1286) $ (-932) (-388) (-388)) 58)) (-3286 (((-1286) $ (-932) (-932)) 55)) (-1580 (((-1286) $) 85)) (-2033 (((-1286) $ (-932) (-1172)) 93)) (-1991 (((-1286) $ (-478) (-932)) 41)) (-2953 (((-1286) $ (-932) (-1172)) 92)) (-3212 (((-654 (-270)) $) 29) (($ $ (-654 (-270))) 30)) (-2138 (((-1286) $ (-781) (-781)) 52)) (-2086 (($ $) 70) (($ (-478) (-654 (-270))) 71)) (-2568 (((-1172) $) NIL)) (-3693 (((-574) $) 48)) (-3966 (((-1133) $) NIL)) (-3241 (((-1281 (-3 (-478) "undefined")) $) 47)) (-2436 (((-1281 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2953 (-574)) (|:| -2599 (-574)) (|:| |spline| (-574)) (|:| -1597 (-574)) (|:| |axesColor| (-884)) (|:| -1998 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $) 46)) (-1449 (((-1286) $ (-932) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574)) 83)) (-2302 (((-654 (-954 (-227))) $) NIL)) (-3476 (((-478) $ (-932)) 43)) (-2628 (((-1286) $ (-781) (-781) (-932) (-932)) 50)) (-4323 (((-1286) $ (-1172)) 95)) (-2599 (((-1286) $ (-932) (-1172)) 91)) (-2943 (((-872) $) 102)) (-1381 (((-1286) $) 96)) (-2923 (((-112) $ $) NIL)) (-1597 (((-1286) $ (-932) (-1172)) 87) (((-1286) $ (-932) (-884)) 88)) (-2982 (((-112) $ $) NIL)))
+(((-1282) (-13 (-1113) (-10 -8 (-15 -2302 ((-654 (-954 (-227))) $)) (-15 -1917 ($)) (-15 -2086 ($ $)) (-15 -3212 ((-654 (-270)) $)) (-15 -3212 ($ $ (-654 (-270)))) (-15 -2086 ($ (-478) (-654 (-270)))) (-15 -1449 ((-1286) $ (-932) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -2436 ((-1281 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2953 (-574)) (|:| -2599 (-574)) (|:| |spline| (-574)) (|:| -1597 (-574)) (|:| |axesColor| (-884)) (|:| -1998 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -3241 ((-1281 (-3 (-478) "undefined")) $)) (-15 -3877 ((-1286) $ (-1172))) (-15 -1991 ((-1286) $ (-478) (-932))) (-15 -3476 ((-478) $ (-932))) (-15 -1597 ((-1286) $ (-932) (-1172))) (-15 -1597 ((-1286) $ (-932) (-884))) (-15 -1998 ((-1286) $ (-932) (-1172))) (-15 -1998 ((-1286) $ (-932) (-884))) (-15 -2953 ((-1286) $ (-932) (-1172))) (-15 -2033 ((-1286) $ (-932) (-1172))) (-15 -2599 ((-1286) $ (-932) (-1172))) (-15 -4323 ((-1286) $ (-1172))) (-15 -1381 ((-1286) $)) (-15 -2628 ((-1286) $ (-781) (-781) (-932) (-932))) (-15 -1913 ((-1286) $ (-932) (-388) (-388))) (-15 -2808 ((-1286) $ (-932) (-388) (-388))) (-15 -1619 ((-1286) $ (-932) (-1172))) (-15 -2138 ((-1286) $ (-781) (-781))) (-15 -1393 ((-1286) $ (-478) (-932))) (-15 -3286 ((-1286) $ (-932) (-932))) (-15 -1604 ((-1172) $ (-1172))) (-15 -1604 ((-1172) $ (-1172) (-1172))) (-15 -1604 ((-1172) $ (-1172) (-654 (-1172)))) (-15 -1580 ((-1286) $)) (-15 -3693 ((-574) $)) (-15 -2943 ((-872) $))))) (T -1282))
+((-2943 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1282)))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-654 (-954 (-227)))) (-5 *1 (-1282)))) (-1917 (*1 *1) (-5 *1 (-1282))) (-2086 (*1 *1 *1) (-5 *1 (-1282))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1282)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1282)))) (-2086 (*1 *1 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1282)))) (-1449 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-932)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-1281 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2953 (-574)) (|:| -2599 (-574)) (|:| |spline| (-574)) (|:| -1597 (-574)) (|:| |axesColor| (-884)) (|:| -1998 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) (-5 *1 (-1282)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-1281 (-3 (-478) "undefined"))) (-5 *1 (-1282)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1991 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-3476 (*1 *2 *1 *3) (-12 (-5 *3 (-932)) (-5 *2 (-478)) (-5 *1 (-1282)))) (-1597 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1597 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1998 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1998 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2953 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2033 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2599 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2628 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1913 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-932)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2808 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-932)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1619 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2138 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1393 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-3286 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1604 (*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1282)))) (-1604 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1282)))) (-1604 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-1282)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1282)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1282)))))
+(-13 (-1113) (-10 -8 (-15 -2302 ((-654 (-954 (-227))) $)) (-15 -1917 ($)) (-15 -2086 ($ $)) (-15 -3212 ((-654 (-270)) $)) (-15 -3212 ($ $ (-654 (-270)))) (-15 -2086 ($ (-478) (-654 (-270)))) (-15 -1449 ((-1286) $ (-932) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -2436 ((-1281 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2953 (-574)) (|:| -2599 (-574)) (|:| |spline| (-574)) (|:| -1597 (-574)) (|:| |axesColor| (-884)) (|:| -1998 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -3241 ((-1281 (-3 (-478) "undefined")) $)) (-15 -3877 ((-1286) $ (-1172))) (-15 -1991 ((-1286) $ (-478) (-932))) (-15 -3476 ((-478) $ (-932))) (-15 -1597 ((-1286) $ (-932) (-1172))) (-15 -1597 ((-1286) $ (-932) (-884))) (-15 -1998 ((-1286) $ (-932) (-1172))) (-15 -1998 ((-1286) $ (-932) (-884))) (-15 -2953 ((-1286) $ (-932) (-1172))) (-15 -2033 ((-1286) $ (-932) (-1172))) (-15 -2599 ((-1286) $ (-932) (-1172))) (-15 -4323 ((-1286) $ (-1172))) (-15 -1381 ((-1286) $)) (-15 -2628 ((-1286) $ (-781) (-781) (-932) (-932))) (-15 -1913 ((-1286) $ (-932) (-388) (-388))) (-15 -2808 ((-1286) $ (-932) (-388) (-388))) (-15 -1619 ((-1286) $ (-932) (-1172))) (-15 -2138 ((-1286) $ (-781) (-781))) (-15 -1393 ((-1286) $ (-478) (-932))) (-15 -3286 ((-1286) $ (-932) (-932))) (-15 -1604 ((-1172) $ (-1172))) (-15 -1604 ((-1172) $ (-1172) (-1172))) (-15 -1604 ((-1172) $ (-1172) (-654 (-1172)))) (-15 -1580 ((-1286) $)) (-15 -3693 ((-574) $)) (-15 -2943 ((-872) $))))
+((-2849 (((-112) $ $) NIL)) (-2307 (((-1286) $ (-388)) 169) (((-1286) $ (-388) (-388) (-388)) 170)) (-1604 (((-1172) $ (-1172)) 179) (((-1172) $ (-1172) (-1172)) 177) (((-1172) $ (-1172) (-654 (-1172))) 176)) (-1342 (($) 67)) (-2777 (((-1286) $ (-388) (-388) (-388) (-388) (-388)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1286) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1286) $ (-574) (-574) (-388) (-388) (-388)) 144) (((-1286) $ (-388) (-388)) 145) (((-1286) $ (-388) (-388) (-388)) 152)) (-3538 (((-388)) 122) (((-388) (-388)) 123)) (-3255 (((-388)) 117) (((-388) (-388)) 119)) (-3908 (((-388)) 120) (((-388) (-388)) 121)) (-2052 (((-388)) 126) (((-388) (-388)) 127)) (-2497 (((-388)) 124) (((-388) (-388)) 125)) (-2808 (((-1286) $ (-388) (-388)) 171)) (-3877 (((-1286) $ (-1172)) 153)) (-1832 (((-1146 (-227)) $) 68) (($ $ (-1146 (-227))) 69)) (-2893 (((-1286) $ (-1172)) 187)) (-4102 (((-1286) $ (-1172)) 188)) (-2654 (((-1286) $ (-388) (-388)) 151) (((-1286) $ (-574) (-574)) 168)) (-3286 (((-1286) $ (-932) (-932)) 160)) (-1580 (((-1286) $) 137)) (-3786 (((-1286) $ (-1172)) 186)) (-4166 (((-1286) $ (-1172)) 134)) (-3212 (((-654 (-270)) $) 70) (($ $ (-654 (-270))) 71)) (-2138 (((-1286) $ (-781) (-781)) 159)) (-2125 (((-1286) $ (-781) (-954 (-227))) 193)) (-4366 (($ $) 73) (($ (-1146 (-227)) (-1172)) 74) (($ (-1146 (-227)) (-654 (-270))) 75)) (-3095 (((-1286) $ (-388) (-388) (-388)) 131)) (-2568 (((-1172) $) NIL)) (-3693 (((-574) $) 128)) (-1581 (((-1286) $ (-388)) 174)) (-3822 (((-1286) $ (-388)) 191)) (-3966 (((-1133) $) NIL)) (-3068 (((-1286) $ (-388)) 190)) (-1640 (((-1286) $ (-1172)) 136)) (-2628 (((-1286) $ (-781) (-781) (-932) (-932)) 158)) (-4216 (((-1286) $ (-1172)) 133)) (-4323 (((-1286) $ (-1172)) 135)) (-2623 (((-1286) $ (-158) (-158)) 157)) (-2943 (((-872) $) 166)) (-1381 (((-1286) $) 138)) (-2179 (((-1286) $ (-1172)) 189)) (-2923 (((-112) $ $) NIL)) (-1597 (((-1286) $ (-1172)) 132)) (-2982 (((-112) $ $) NIL)))
+(((-1283) (-13 (-1113) (-10 -8 (-15 -3255 ((-388))) (-15 -3255 ((-388) (-388))) (-15 -3908 ((-388))) (-15 -3908 ((-388) (-388))) (-15 -3538 ((-388))) (-15 -3538 ((-388) (-388))) (-15 -2497 ((-388))) (-15 -2497 ((-388) (-388))) (-15 -2052 ((-388))) (-15 -2052 ((-388) (-388))) (-15 -1342 ($)) (-15 -4366 ($ $)) (-15 -4366 ($ (-1146 (-227)) (-1172))) (-15 -4366 ($ (-1146 (-227)) (-654 (-270)))) (-15 -1832 ((-1146 (-227)) $)) (-15 -1832 ($ $ (-1146 (-227)))) (-15 -2125 ((-1286) $ (-781) (-954 (-227)))) (-15 -3212 ((-654 (-270)) $)) (-15 -3212 ($ $ (-654 (-270)))) (-15 -2138 ((-1286) $ (-781) (-781))) (-15 -3286 ((-1286) $ (-932) (-932))) (-15 -3877 ((-1286) $ (-1172))) (-15 -2628 ((-1286) $ (-781) (-781) (-932) (-932))) (-15 -2777 ((-1286) $ (-388) (-388) (-388) (-388) (-388))) (-15 -2777 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2777 ((-1286) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2777 ((-1286) $ (-574) (-574) (-388) (-388) (-388))) (-15 -2777 ((-1286) $ (-388) (-388))) (-15 -2777 ((-1286) $ (-388) (-388) (-388))) (-15 -4323 ((-1286) $ (-1172))) (-15 -1597 ((-1286) $ (-1172))) (-15 -4216 ((-1286) $ (-1172))) (-15 -4166 ((-1286) $ (-1172))) (-15 -1640 ((-1286) $ (-1172))) (-15 -2654 ((-1286) $ (-388) (-388))) (-15 -2654 ((-1286) $ (-574) (-574))) (-15 -2307 ((-1286) $ (-388))) (-15 -2307 ((-1286) $ (-388) (-388) (-388))) (-15 -2808 ((-1286) $ (-388) (-388))) (-15 -3786 ((-1286) $ (-1172))) (-15 -3068 ((-1286) $ (-388))) (-15 -3822 ((-1286) $ (-388))) (-15 -2893 ((-1286) $ (-1172))) (-15 -4102 ((-1286) $ (-1172))) (-15 -2179 ((-1286) $ (-1172))) (-15 -3095 ((-1286) $ (-388) (-388) (-388))) (-15 -1581 ((-1286) $ (-388))) (-15 -1580 ((-1286) $)) (-15 -2623 ((-1286) $ (-158) (-158))) (-15 -1604 ((-1172) $ (-1172))) (-15 -1604 ((-1172) $ (-1172) (-1172))) (-15 -1604 ((-1172) $ (-1172) (-654 (-1172)))) (-15 -1381 ((-1286) $)) (-15 -3693 ((-574) $))))) (T -1283))
+((-3255 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-3255 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-3908 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-3538 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-3538 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-2497 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-2497 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-2052 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-1342 (*1 *1) (-5 *1 (-1283))) (-4366 (*1 *1 *1) (-5 *1 (-1283))) (-4366 (*1 *1 *2 *3) (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-1172)) (-5 *1 (-1283)))) (-4366 (*1 *1 *2 *3) (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1283)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1283)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1283)))) (-2125 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1283)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1283)))) (-2138 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3286 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2628 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2777 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1283)))) (-2777 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2777 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2777 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2777 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-1597 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4216 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4166 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-1640 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2654 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2654 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2307 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2307 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3786 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3068 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3822 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2893 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4102 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2179 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3095 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-1581 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2623 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-1604 (*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1283)))) (-1604 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1283)))) (-1604 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-1283)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1283)))))
+(-13 (-1113) (-10 -8 (-15 -3255 ((-388))) (-15 -3255 ((-388) (-388))) (-15 -3908 ((-388))) (-15 -3908 ((-388) (-388))) (-15 -3538 ((-388))) (-15 -3538 ((-388) (-388))) (-15 -2497 ((-388))) (-15 -2497 ((-388) (-388))) (-15 -2052 ((-388))) (-15 -2052 ((-388) (-388))) (-15 -1342 ($)) (-15 -4366 ($ $)) (-15 -4366 ($ (-1146 (-227)) (-1172))) (-15 -4366 ($ (-1146 (-227)) (-654 (-270)))) (-15 -1832 ((-1146 (-227)) $)) (-15 -1832 ($ $ (-1146 (-227)))) (-15 -2125 ((-1286) $ (-781) (-954 (-227)))) (-15 -3212 ((-654 (-270)) $)) (-15 -3212 ($ $ (-654 (-270)))) (-15 -2138 ((-1286) $ (-781) (-781))) (-15 -3286 ((-1286) $ (-932) (-932))) (-15 -3877 ((-1286) $ (-1172))) (-15 -2628 ((-1286) $ (-781) (-781) (-932) (-932))) (-15 -2777 ((-1286) $ (-388) (-388) (-388) (-388) (-388))) (-15 -2777 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2777 ((-1286) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2777 ((-1286) $ (-574) (-574) (-388) (-388) (-388))) (-15 -2777 ((-1286) $ (-388) (-388))) (-15 -2777 ((-1286) $ (-388) (-388) (-388))) (-15 -4323 ((-1286) $ (-1172))) (-15 -1597 ((-1286) $ (-1172))) (-15 -4216 ((-1286) $ (-1172))) (-15 -4166 ((-1286) $ (-1172))) (-15 -1640 ((-1286) $ (-1172))) (-15 -2654 ((-1286) $ (-388) (-388))) (-15 -2654 ((-1286) $ (-574) (-574))) (-15 -2307 ((-1286) $ (-388))) (-15 -2307 ((-1286) $ (-388) (-388) (-388))) (-15 -2808 ((-1286) $ (-388) (-388))) (-15 -3786 ((-1286) $ (-1172))) (-15 -3068 ((-1286) $ (-388))) (-15 -3822 ((-1286) $ (-388))) (-15 -2893 ((-1286) $ (-1172))) (-15 -4102 ((-1286) $ (-1172))) (-15 -2179 ((-1286) $ (-1172))) (-15 -3095 ((-1286) $ (-388) (-388) (-388))) (-15 -1581 ((-1286) $ (-388))) (-15 -1580 ((-1286) $)) (-15 -2623 ((-1286) $ (-158) (-158))) (-15 -1604 ((-1172) $ (-1172))) (-15 -1604 ((-1172) $ (-1172) (-1172))) (-15 -1604 ((-1172) $ (-1172) (-654 (-1172)))) (-15 -1381 ((-1286) $)) (-15 -3693 ((-574) $))))
+((-2725 (((-654 (-1172)) (-654 (-1172))) 104) (((-654 (-1172))) 96)) (-1797 (((-654 (-1172))) 94)) (-2247 (((-654 (-932)) (-654 (-932))) 69) (((-654 (-932))) 64)) (-2114 (((-654 (-781)) (-654 (-781))) 61) (((-654 (-781))) 55)) (-1926 (((-1286)) 71)) (-3890 (((-932) (-932)) 87) (((-932)) 86)) (-2053 (((-932) (-932)) 85) (((-932)) 84)) (-3037 (((-884) (-884)) 81) (((-884)) 80)) (-3566 (((-227)) 91) (((-227) (-388)) 93)) (-3542 (((-932)) 88) (((-932) (-932)) 89)) (-3679 (((-932) (-932)) 83) (((-932)) 82)) (-3820 (((-884) (-884)) 75) (((-884)) 73)) (-4280 (((-884) (-884)) 77) (((-884)) 76)) (-4187 (((-884) (-884)) 79) (((-884)) 78)))
+(((-1284) (-10 -7 (-15 -3820 ((-884))) (-15 -3820 ((-884) (-884))) (-15 -4280 ((-884))) (-15 -4280 ((-884) (-884))) (-15 -4187 ((-884))) (-15 -4187 ((-884) (-884))) (-15 -3037 ((-884))) (-15 -3037 ((-884) (-884))) (-15 -3679 ((-932))) (-15 -3679 ((-932) (-932))) (-15 -2114 ((-654 (-781)))) (-15 -2114 ((-654 (-781)) (-654 (-781)))) (-15 -2247 ((-654 (-932)))) (-15 -2247 ((-654 (-932)) (-654 (-932)))) (-15 -1926 ((-1286))) (-15 -2725 ((-654 (-1172)))) (-15 -2725 ((-654 (-1172)) (-654 (-1172)))) (-15 -1797 ((-654 (-1172)))) (-15 -2053 ((-932))) (-15 -3890 ((-932))) (-15 -2053 ((-932) (-932))) (-15 -3890 ((-932) (-932))) (-15 -3542 ((-932) (-932))) (-15 -3542 ((-932))) (-15 -3566 ((-227) (-388))) (-15 -3566 ((-227))))) (T -1284))
+((-3566 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1284)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1284)))) (-3542 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-3542 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-3890 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-2053 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-1797 (*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284)))) (-2725 (*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284)))) (-1926 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1284)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1284)))) (-2247 (*1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1284)))) (-2114 (*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1284)))) (-2114 (*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1284)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-3679 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-3037 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-3037 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-4187 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-4187 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-4280 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-4280 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-3820 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))))
+(-10 -7 (-15 -3820 ((-884))) (-15 -3820 ((-884) (-884))) (-15 -4280 ((-884))) (-15 -4280 ((-884) (-884))) (-15 -4187 ((-884))) (-15 -4187 ((-884) (-884))) (-15 -3037 ((-884))) (-15 -3037 ((-884) (-884))) (-15 -3679 ((-932))) (-15 -3679 ((-932) (-932))) (-15 -2114 ((-654 (-781)))) (-15 -2114 ((-654 (-781)) (-654 (-781)))) (-15 -2247 ((-654 (-932)))) (-15 -2247 ((-654 (-932)) (-654 (-932)))) (-15 -1926 ((-1286))) (-15 -2725 ((-654 (-1172)))) (-15 -2725 ((-654 (-1172)) (-654 (-1172)))) (-15 -1797 ((-654 (-1172)))) (-15 -2053 ((-932))) (-15 -3890 ((-932))) (-15 -2053 ((-932) (-932))) (-15 -3890 ((-932) (-932))) (-15 -3542 ((-932) (-932))) (-15 -3542 ((-932))) (-15 -3566 ((-227) (-388))) (-15 -3566 ((-227))))
+((-4105 (((-478) (-654 (-654 (-954 (-227)))) (-654 (-270))) 22) (((-478) (-654 (-654 (-954 (-227))))) 21) (((-478) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270))) 20)) (-2758 (((-1282) (-654 (-654 (-954 (-227)))) (-654 (-270))) 30) (((-1282) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270))) 29)) (-2943 (((-1282) (-478)) 46)))
+(((-1285) (-10 -7 (-15 -4105 ((-478) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270)))) (-15 -4105 ((-478) (-654 (-654 (-954 (-227)))))) (-15 -4105 ((-478) (-654 (-654 (-954 (-227)))) (-654 (-270)))) (-15 -2758 ((-1282) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270)))) (-15 -2758 ((-1282) (-654 (-654 (-954 (-227)))) (-654 (-270)))) (-15 -2943 ((-1282) (-478))))) (T -1285))
+((-2943 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1282)) (-5 *1 (-1285)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-1285)))) (-2758 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-884)) (-5 *5 (-932)) (-5 *6 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-1285)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1285)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-478)) (-5 *1 (-1285)))) (-4105 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-884)) (-5 *5 (-932)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1285)))))
+(-10 -7 (-15 -4105 ((-478) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270)))) (-15 -4105 ((-478) (-654 (-654 (-954 (-227)))))) (-15 -4105 ((-478) (-654 (-654 (-954 (-227)))) (-654 (-270)))) (-15 -2758 ((-1282) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270)))) (-15 -2758 ((-1282) (-654 (-654 (-954 (-227)))) (-654 (-270)))) (-15 -2943 ((-1282) (-478))))
+((-2426 (($) 6)) (-2943 (((-872) $) 9)))
+(((-1286) (-13 (-623 (-872)) (-10 -8 (-15 -2426 ($))))) (T -1286))
+((-2426 (*1 *1) (-5 *1 (-1286))))
+(-13 (-623 (-872)) (-10 -8 (-15 -2426 ($))))
+((-3107 (($ $ |#2|) 10)))
+(((-1287 |#1| |#2|) (-10 -8 (-15 -3107 (|#1| |#1| |#2|))) (-1288 |#2|) (-372)) (T -1287))
+NIL
+(-10 -8 (-15 -3107 (|#1| |#1| |#2|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3939 (((-135)) 33)) (-2943 (((-872) $) 12)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2982 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 34)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-1288 |#1|) (-141) (-372)) (T -1288))
+((-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-372)))) (-3939 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-372)) (-5 *2 (-135)))))
+(-13 (-727 |t#1|) (-10 -8 (-15 -3107 ($ $ |t#1|)) (-15 -3939 ((-135)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T))
+((-4118 (((-654 (-1225 |#1|)) (-1190) (-1225 |#1|)) 83)) (-3959 (((-1170 (-1170 (-963 |#1|))) (-1190) (-1170 (-963 |#1|))) 63)) (-1806 (((-1 (-1170 (-1225 |#1|)) (-1170 (-1225 |#1|))) (-781) (-1225 |#1|) (-1170 (-1225 |#1|))) 74)) (-3012 (((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781)) 65)) (-3311 (((-1 (-1186 (-963 |#1|)) (-963 |#1|)) (-1190)) 32)) (-4175 (((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781)) 64)))
+(((-1289 |#1|) (-10 -7 (-15 -3012 ((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781))) (-15 -4175 ((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781))) (-15 -3959 ((-1170 (-1170 (-963 |#1|))) (-1190) (-1170 (-963 |#1|)))) (-15 -3311 ((-1 (-1186 (-963 |#1|)) (-963 |#1|)) (-1190))) (-15 -4118 ((-654 (-1225 |#1|)) (-1190) (-1225 |#1|))) (-15 -1806 ((-1 (-1170 (-1225 |#1|)) (-1170 (-1225 |#1|))) (-781) (-1225 |#1|) (-1170 (-1225 |#1|))))) (-372)) (T -1289))
+((-1806 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1225 *6)) (-5 *2 (-1 (-1170 *4) (-1170 *4))) (-5 *1 (-1289 *6)) (-5 *5 (-1170 *4)))) (-4118 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-4 *5 (-372)) (-5 *2 (-654 (-1225 *5))) (-5 *1 (-1289 *5)) (-5 *4 (-1225 *5)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1 (-1186 (-963 *4)) (-963 *4))) (-5 *1 (-1289 *4)) (-4 *4 (-372)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-4 *5 (-372)) (-5 *2 (-1170 (-1170 (-963 *5)))) (-5 *1 (-1289 *5)) (-5 *4 (-1170 (-963 *5))))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1170 (-963 *4)) (-1170 (-963 *4)))) (-5 *1 (-1289 *4)) (-4 *4 (-372)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1170 (-963 *4)) (-1170 (-963 *4)))) (-5 *1 (-1289 *4)) (-4 *4 (-372)))))
+(-10 -7 (-15 -3012 ((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781))) (-15 -4175 ((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781))) (-15 -3959 ((-1170 (-1170 (-963 |#1|))) (-1190) (-1170 (-963 |#1|)))) (-15 -3311 ((-1 (-1186 (-963 |#1|)) (-963 |#1|)) (-1190))) (-15 -4118 ((-654 (-1225 |#1|)) (-1190) (-1225 |#1|))) (-15 -1806 ((-1 (-1170 (-1225 |#1|)) (-1170 (-1225 |#1|))) (-781) (-1225 |#1|) (-1170 (-1225 |#1|)))))
+((-2754 (((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 80)) (-3885 (((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 79)))
+(((-1290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3885 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2754 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) (-358) (-1257 |#1|) (-1257 |#2|) (-419 |#2| |#3|)) (T -1290))
+((-2754 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 *3)) (-5 *2 (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1290 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5)))) (-3885 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -2722 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1290 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5)))))
+(-10 -7 (-15 -3885 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2754 ((-2 (|:| -2722 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)))
+((-2849 (((-112) $ $) NIL)) (-2608 (((-1148) $) 11)) (-1477 (((-1148) $) 9)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1291) (-13 (-1096) (-10 -8 (-15 -1477 ((-1148) $)) (-15 -2608 ((-1148) $))))) (T -1291))
+((-1477 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1291)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1291)))))
+(-13 (-1096) (-10 -8 (-15 -1477 ((-1148) $)) (-15 -2608 ((-1148) $))))
+((-2849 (((-112) $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2265 (((-1148) $) 9)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) NIL)))
+(((-1292) (-13 (-1096) (-10 -8 (-15 -2265 ((-1148) $))))) (T -1292))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1292)))))
+(-13 (-1096) (-10 -8 (-15 -2265 ((-1148) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 58)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) NIL)) (-3965 (((-112) $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 81) (($ (-574)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-4160 (((-781)) NIL T CONST)) (-1578 (((-1286) (-781)) 16)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 37 T CONST)) (-2146 (($) 84 T CONST)) (-2982 (((-112) $ $) 87)) (-3107 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) 89) (($ $ $) NIL)) (-3078 (($ $ $) 63)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-1293 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1062) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3107 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1578 ((-1286) (-781))))) (-1062) (-860) (-803) (-960 |#1| |#3| |#2|) (-654 |#2|) (-654 (-781)) (-781)) (T -1293))
+((-3107 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1062)) (-4 *3 (-860)) (-4 *4 (-803)) (-14 *6 (-654 *3)) (-5 *1 (-1293 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-960 *2 *4 *3)) (-14 *7 (-654 (-781))) (-14 *8 (-781)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-4 *5 (-860)) (-4 *6 (-803)) (-14 *8 (-654 *5)) (-5 *2 (-1286)) (-5 *1 (-1293 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-960 *4 *6 *5)) (-14 *9 (-654 *3)) (-14 *10 *3))))
+(-13 (-1062) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3107 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1578 ((-1286) (-781)))))
+((-2849 (((-112) $ $) NIL)) (-2653 (((-654 (-2 (|:| -1381 $) (|:| -1676 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1886 (((-654 $) (-654 |#4|)) 96)) (-4355 (((-654 |#3|) $) NIL)) (-3753 (((-112) $) NIL)) (-3609 (((-112) $) NIL (|has| |#1| (-566)))) (-3456 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1621 ((|#4| |#4| $) NIL)) (-2771 (((-2 (|:| |under| $) (|:| -1846 $) (|:| |upper| $)) $ |#3|) NIL)) (-3340 (((-112) $ (-781)) NIL)) (-2166 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3670 (($) NIL T CONST)) (-1800 (((-112) $) NIL (|has| |#1| (-566)))) (-1322 (((-112) $ $) NIL (|has| |#1| (-566)))) (-4133 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3172 (((-112) $) NIL (|has| |#1| (-566)))) (-2543 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3949 (((-654 |#4|) (-654 |#4|) $) 28 (|has| |#1| (-566)))) (-3788 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1697 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2209 (($ (-654 |#4|)) NIL)) (-2926 (((-3 $ "failed") $) 78)) (-2793 ((|#4| |#4| $) 83)) (-2158 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3435 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-4155 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2043 ((|#4| |#4| $) NIL)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2766 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1676 (-654 |#4|))) $) NIL)) (-1864 (((-654 |#4|) $) NIL (|has| $ (-6 -4456)))) (-2474 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2851 ((|#3| $) 84)) (-3735 (((-112) $ (-781)) NIL)) (-1712 (((-654 |#4|) $) 32 (|has| $ (-6 -4456)))) (-3759 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2273 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-654 |#4|)) 38)) (-2446 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4457)))) (-1778 (($ (-1 |#4| |#4|) $) NIL)) (-2867 (((-654 |#3|) $) NIL)) (-2570 (((-112) |#3| $) NIL)) (-2448 (((-112) $ (-781)) NIL)) (-2568 (((-1172) $) NIL)) (-3360 (((-3 |#4| "failed") $) NIL)) (-4153 (((-654 |#4|) $) 54)) (-2768 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2244 ((|#4| |#4| $) 82)) (-2430 (((-112) $ $) 93)) (-3111 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1406 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1443 ((|#4| |#4| $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 |#4| "failed") $) 77)) (-1836 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3043 (((-3 $ "failed") $ |#4|) NIL)) (-4344 (($ $ |#4|) NIL)) (-3124 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-1892 (((-112) $ $) NIL)) (-3556 (((-112) $) 75)) (-3135 (($) 46)) (-1784 (((-781) $) NIL)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1837 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) NIL)) (-2175 (($ $ |#3|) NIL)) (-2840 (($ $ |#3|) NIL)) (-1496 (($ $) NIL)) (-2427 (($ $ |#3|) NIL)) (-2943 (((-872) $) NIL) (((-654 |#4|) $) 63)) (-3530 (((-781) $) NIL (|has| |#3| (-377)))) (-2019 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-654 |#4|)) 45)) (-4378 (((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-654 $) (-654 |#4|)) 74)) (-2923 (((-112) $ $) NIL)) (-3668 (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2003 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1685 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2935 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2681 (((-654 |#3|) $) NIL)) (-4321 (((-112) |#3| $) NIL)) (-2982 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456)))))
+(((-1294 |#1| |#2| |#3| |#4|) (-13 (-1224 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2273 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2273 ((-3 $ "failed") (-654 |#4|))) (-15 -2019 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2019 ((-3 $ "failed") (-654 |#4|))) (-15 -4378 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4378 ((-654 $) (-654 |#4|))))) (-566) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -1294))
+((-2273 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1294 *5 *6 *7 *8)))) (-2273 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1294 *3 *4 *5 *6)))) (-2019 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1294 *5 *6 *7 *8)))) (-2019 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1294 *3 *4 *5 *6)))) (-4378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1294 *6 *7 *8 *9))) (-5 *1 (-1294 *6 *7 *8 *9)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1294 *4 *5 *6 *7))) (-5 *1 (-1294 *4 *5 *6 *7)))))
+(-13 (-1224 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2273 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2273 ((-3 $ "failed") (-654 |#4|))) (-15 -2019 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2019 ((-3 $ "failed") (-654 |#4|))) (-15 -4378 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4378 ((-654 $) (-654 |#4|)))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2950 (((-3 $ "failed") $ $) 20)) (-3670 (($) 18 T CONST)) (-1950 (((-3 $ "failed") $) 37)) (-3965 (((-112) $) 35)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-1295 |#1|) (-141) (-1062)) (T -1295))
+NIL
+(-13 (-1062) (-111 |t#1| |t#1|) (-626 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T))
+((-2849 (((-112) $ $) 67)) (-2908 (((-112) $) NIL)) (-1655 (((-654 |#1|) $) 52)) (-4210 (($ $ (-781)) 46)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1558 (($ $ (-781)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3670 (($) NIL T CONST)) (-4004 (($ $ $) 70) (($ $ (-829 |#1|)) 56) (($ $ |#1|) 60)) (-1697 (((-3 (-829 |#1|) "failed") $) NIL)) (-2209 (((-829 |#1|) $) NIL)) (-1392 (($ $) 39)) (-1950 (((-3 $ "failed") $) NIL)) (-2847 (((-112) $) NIL)) (-3031 (($ $) NIL)) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-3832 (($ (-829 |#1|) |#2|) 38)) (-3826 (($ $) 40)) (-1445 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 12)) (-1904 (((-829 |#1|) $) NIL)) (-3307 (((-829 |#1|) $) 41)) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-2634 (($ $ $) 69) (($ $ (-829 |#1|)) 58) (($ $ |#1|) 62)) (-4050 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1359 (((-829 |#1|) $) 35)) (-1370 ((|#2| $) 37)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1784 (((-781) $) 43)) (-2450 (((-112) $) 47)) (-1707 ((|#2| $) NIL)) (-2943 (((-872) $) NIL) (($ (-829 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-574)) NIL)) (-3123 (((-654 |#2|) $) NIL)) (-3344 ((|#2| $ (-829 |#1|)) NIL)) (-1859 ((|#2| $ $) 76) ((|#2| $ (-829 |#1|)) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 13 T CONST)) (-2146 (($) 19 T CONST)) (-3251 (((-654 (-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2982 (((-112) $ $) 44)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 28)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-829 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+(((-1296 |#1| |#2|) (-13 (-391 |#2| (-829 |#1|)) (-1302 |#1| |#2|)) (-860) (-1062)) (T -1296))
+NIL
+(-13 (-391 |#2| (-829 |#1|)) (-1302 |#1| |#2|))
+((-3119 ((|#3| |#3| (-781)) 28)) (-1610 ((|#3| |#3| (-781)) 34)) (-4065 ((|#3| |#3| |#3| (-781)) 35)))
+(((-1297 |#1| |#2| |#3|) (-10 -7 (-15 -1610 (|#3| |#3| (-781))) (-15 -3119 (|#3| |#3| (-781))) (-15 -4065 (|#3| |#3| |#3| (-781)))) (-13 (-1062) (-727 (-417 (-574)))) (-860) (-1302 |#2| |#1|)) (T -1297))
+((-4065 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4)))) (-3119 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4)))) (-1610 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4)))))
+(-10 -7 (-15 -1610 (|#3| |#3| (-781))) (-15 -3119 (|#3| |#3| (-781))) (-15 -4065 (|#3| |#3| |#3| (-781))))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1655 (((-654 |#1|) $) 47)) (-2950 (((-3 $ "failed") $ $) 20)) (-1558 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3670 (($) 18 T CONST)) (-4004 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1697 (((-3 (-829 |#1|) "failed") $) 71)) (-2209 (((-829 |#1|) $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-2847 (((-112) $) 52)) (-3031 (($ $) 51)) (-3965 (((-112) $) 35)) (-2197 (((-112) $) 57)) (-3832 (($ (-829 |#1|) |#2|) 58)) (-3826 (($ $) 56)) (-1445 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-1904 (((-829 |#1|) $) 68)) (-1778 (($ (-1 |#2| |#2|) $) 48)) (-2634 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2450 (((-112) $) 54)) (-1707 ((|#2| $) 53)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1859 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1298 |#1| |#2|) (-141) (-860) (-1062)) (T -1298))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-829 *3)))) (-1445 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4))))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-829 *4)) (-4 *1 (-1298 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1062)))) (-1859 (*1 *2 *1 *1) (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062)))) (-2634 (*1 *1 *1 *2) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-2634 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))) (-2634 (*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-4004 (*1 *1 *1 *2) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-4004 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))) (-4004 (*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-3832 (*1 *1 *2 *3) (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1298 *4 *3)) (-4 *3 (-1062)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-112)))) (-3826 (*1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-2943 (*1 *1 *2) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-112)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-112)))) (-3031 (*1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-1558 (*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)) (-4 *3 (-174)))) (-1558 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-4 *4 (-174)))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-654 *3)))))
+(-13 (-1062) (-1295 |t#2|) (-1051 (-829 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1904 ((-829 |t#1|) $)) (-15 -1445 ((-2 (|:| |k| (-829 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1859 (|t#2| $ (-829 |t#1|))) (-15 -1859 (|t#2| $ $)) (-15 -2634 ($ $ |t#1|)) (-15 -2634 ($ $ (-829 |t#1|))) (-15 -2634 ($ $ $)) (-15 -4004 ($ $ |t#1|)) (-15 -4004 ($ $ (-829 |t#1|))) (-15 -4004 ($ $ $)) (-15 -3832 ($ (-829 |t#1|) |t#2|)) (-15 -2197 ((-112) $)) (-15 -3826 ($ $)) (-15 -2943 ($ |t#1|)) (-15 -2450 ((-112) $)) (-15 -1707 (|t#2| $)) (-15 -2847 ((-112) $)) (-15 -3031 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -1558 ($ $ $)) (-15 -1558 ($ $ (-781)))) |%noBranch|) (-15 -1778 ($ (-1 |t#2| |t#2|) $)) (-15 -1655 ((-654 |t#1|) $)) (IF (|has| |t#2| (-6 -4449)) (-6 -4449) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1051 #0#) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1295 |#2|) . T))
+((-3514 (((-112) $) 15)) (-4321 (((-112) $) 14)) (-2007 (($ $) 19) (($ $ (-781)) 21)))
+(((-1299 |#1| |#2|) (-10 -8 (-15 -2007 (|#1| |#1| (-781))) (-15 -2007 (|#1| |#1|)) (-15 -3514 ((-112) |#1|)) (-15 -4321 ((-112) |#1|))) (-1300 |#2|) (-372)) (T -1299))
+NIL
+(-10 -8 (-15 -2007 (|#1| |#1| (-781))) (-15 -2007 (|#1| |#1|)) (-15 -3514 ((-112) |#1|)) (-15 -4321 ((-112) |#1|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-2047 (((-2 (|:| -1708 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-2814 (($ $) 46)) (-2425 (((-112) $) 44)) (-3514 (((-112) $) 104)) (-3416 (((-781)) 100)) (-2950 (((-3 $ "failed") $ $) 20)) (-4348 (($ $) 81)) (-3440 (((-428 $) $) 80)) (-3875 (((-112) $ $) 65)) (-3670 (($) 18 T CONST)) (-1697 (((-3 |#1| "failed") $) 111)) (-2209 ((|#1| $) 112)) (-2785 (($ $ $) 61)) (-1950 (((-3 $ "failed") $) 37)) (-2798 (($ $ $) 62)) (-1719 (((-2 (|:| -1859 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3564 (($ $ (-781)) 97 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1654 (((-112) $) 79)) (-3593 (((-843 (-932)) $) 94 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3965 (((-112) $) 35)) (-3527 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2834 (($ $ $) 52) (($ (-654 $)) 51)) (-2568 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3504 (((-112) $) 103)) (-3966 (((-1133) $) 11)) (-2587 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2874 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 82)) (-3027 (((-843 (-932))) 101)) (-3545 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-2945 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1347 (((-781) $) 64)) (-2413 (((-2 (|:| -3855 $) (|:| -3435 $)) $ $) 63)) (-3232 (((-3 (-781) "failed") $ $) 95 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3939 (((-135)) 109)) (-1784 (((-843 (-932)) $) 102)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-1369 (((-3 $ "failed") $) 93 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-3798 (((-112) $ $) 45)) (-4321 (((-112) $) 105)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2007 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-2982 (((-112) $ $) 6)) (-3107 (($ $ $) 73) (($ $ |#1|) 108)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-1300 |#1|) (-141) (-372)) (T -1300))
+((-4321 (*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-932))))) (-3027 (*1 *2) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-932))))) (-3416 (*1 *2) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-781)))) (-2007 (*1 *1 *1) (-12 (-4 *1 (-1300 *2)) (-4 *2 (-372)) (-4 *2 (-377)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-4 *3 (-377)))))
+(-13 (-372) (-1051 |t#1|) (-1288 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-412)) |%noBranch|) (-15 -4321 ((-112) $)) (-15 -3514 ((-112) $)) (-15 -3504 ((-112) $)) (-15 -1784 ((-843 (-932)) $)) (-15 -3027 ((-843 (-932)))) (-15 -3416 ((-781))) (IF (|has| |t#1| (-377)) (PROGN (-6 (-412)) (-15 -2007 ($ $)) (-15 -2007 ($ $ (-781)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) -2818 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1051 |#1|) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T) ((-1288 |#1|) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1655 (((-654 |#1|) $) 98)) (-4210 (($ $ (-781)) 102)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1558 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-781)) NIL (|has| |#2| (-174)))) (-3670 (($) NIL T CONST)) (-4004 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-1697 (((-3 (-829 |#1|) "failed") $) NIL) (((-3 (-904 |#1|) "failed") $) NIL)) (-2209 (((-829 |#1|) $) NIL) (((-904 |#1|) $) NIL)) (-1392 (($ $) 101)) (-1950 (((-3 $ "failed") $) NIL)) (-2847 (((-112) $) 90)) (-3031 (($ $) 93)) (-3059 (($ $ $ (-781)) 103)) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-3832 (($ (-829 |#1|) |#2|) NIL) (($ (-904 |#1|) |#2|) 29)) (-3826 (($ $) 119)) (-1445 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1904 (((-829 |#1|) $) NIL)) (-3307 (((-829 |#1|) $) NIL)) (-1778 (($ (-1 |#2| |#2|) $) NIL)) (-2634 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-3119 (($ $ (-781)) 112 (|has| |#2| (-727 (-417 (-574)))))) (-4050 (((-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1359 (((-904 |#1|) $) 83)) (-1370 ((|#2| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1610 (($ $ (-781)) 109 (|has| |#2| (-727 (-417 (-574)))))) (-1784 (((-781) $) 99)) (-2450 (((-112) $) 84)) (-1707 ((|#2| $) 88)) (-2943 (((-872) $) 69) (($ (-574)) NIL) (($ |#2|) 60) (($ (-829 |#1|)) NIL) (($ |#1|) 71) (($ (-904 |#1|)) NIL) (($ (-674 |#1| |#2|)) 48) (((-1296 |#1| |#2|) $) 76) (((-1305 |#1| |#2|) $) 81)) (-3123 (((-654 |#2|) $) NIL)) (-3344 ((|#2| $ (-904 |#1|)) NIL)) (-1859 ((|#2| $ (-829 |#1|)) NIL) ((|#2| $ $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 21 T CONST)) (-2146 (($) 28 T CONST)) (-3251 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1574 (((-3 (-674 |#1| |#2|) "failed") $) 118)) (-2982 (((-112) $ $) 77)) (-3094 (($ $) 111) (($ $ $) 110)) (-3078 (($ $ $) 20)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-904 |#1|)) NIL)))
+(((-1301 |#1| |#2|) (-13 (-1302 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2943 ($ (-674 |#1| |#2|))) (-15 -2943 ((-1296 |#1| |#2|) $)) (-15 -2943 ((-1305 |#1| |#2|) $)) (-15 -1574 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -3059 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1610 ($ $ (-781))) (-15 -3119 ($ $ (-781)))) |%noBranch|))) (-860) (-174)) (T -1301))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-1301 *3 *4)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1305 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1574 (*1 *2 *1) (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3059 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1610 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))) (-3119 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))))
+(-13 (-1302 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2943 ($ (-674 |#1| |#2|))) (-15 -2943 ((-1296 |#1| |#2|) $)) (-15 -2943 ((-1305 |#1| |#2|) $)) (-15 -1574 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -3059 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1610 ($ $ (-781))) (-15 -3119 ($ $ (-781)))) |%noBranch|)))
+((-2849 (((-112) $ $) 7)) (-2908 (((-112) $) 17)) (-1655 (((-654 |#1|) $) 47)) (-4210 (($ $ (-781)) 80)) (-2950 (((-3 $ "failed") $ $) 20)) (-1558 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3670 (($) 18 T CONST)) (-4004 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1697 (((-3 (-829 |#1|) "failed") $) 71)) (-2209 (((-829 |#1|) $) 72)) (-1950 (((-3 $ "failed") $) 37)) (-2847 (((-112) $) 52)) (-3031 (($ $) 51)) (-3965 (((-112) $) 35)) (-2197 (((-112) $) 57)) (-3832 (($ (-829 |#1|) |#2|) 58)) (-3826 (($ $) 56)) (-1445 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-1904 (((-829 |#1|) $) 68)) (-3307 (((-829 |#1|) $) 82)) (-1778 (($ (-1 |#2| |#2|) $) 48)) (-2634 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-2568 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1784 (((-781) $) 81)) (-2450 (((-112) $) 54)) (-1707 ((|#2| $) 53)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1859 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-4160 (((-781)) 32 T CONST)) (-2923 (((-112) $ $) 9)) (-2134 (($) 19 T CONST)) (-2146 (($) 34 T CONST)) (-2982 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3078 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1302 |#1| |#2|) (-141) (-860) (-1062)) (T -1302))
+((-3307 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-829 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-781)))) (-4210 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))))
+(-13 (-1298 |t#1| |t#2|) (-10 -8 (-15 -3307 ((-829 |t#1|) $)) (-15 -1784 ((-781) $)) (-15 -4210 ($ $ (-781)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1051 #0#) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1295 |#2|) . T) ((-1298 |#1| |#2|) . T))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-1655 (((-654 (-1190)) $) NIL)) (-2205 (($ (-1296 (-1190) |#1|)) NIL)) (-4210 (($ $ (-781)) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1558 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-781)) NIL (|has| |#1| (-174)))) (-3670 (($) NIL T CONST)) (-4004 (($ $ (-1190)) NIL) (($ $ (-829 (-1190))) NIL) (($ $ $) NIL)) (-1697 (((-3 (-829 (-1190)) "failed") $) NIL)) (-2209 (((-829 (-1190)) $) NIL)) (-1950 (((-3 $ "failed") $) NIL)) (-2847 (((-112) $) NIL)) (-3031 (($ $) NIL)) (-3965 (((-112) $) NIL)) (-2197 (((-112) $) NIL)) (-3832 (($ (-829 (-1190)) |#1|) NIL)) (-3826 (($ $) NIL)) (-1445 (((-2 (|:| |k| (-829 (-1190))) (|:| |c| |#1|)) $) NIL)) (-1904 (((-829 (-1190)) $) NIL)) (-3307 (((-829 (-1190)) $) NIL)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-2634 (($ $ (-1190)) NIL) (($ $ (-829 (-1190))) NIL) (($ $ $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2129 (((-1296 (-1190) |#1|) $) NIL)) (-1784 (((-781) $) NIL)) (-2450 (((-112) $) NIL)) (-1707 ((|#1| $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-829 (-1190))) NIL) (($ (-1190)) NIL)) (-1859 ((|#1| $ (-829 (-1190))) NIL) ((|#1| $ $) NIL)) (-4160 (((-781)) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) NIL T CONST)) (-1688 (((-654 (-2 (|:| |k| (-1190)) (|:| |c| $))) $) NIL)) (-2146 (($) NIL T CONST)) (-2982 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1190) $) NIL)))
+(((-1303 |#1|) (-13 (-1302 (-1190) |#1|) (-10 -8 (-15 -2129 ((-1296 (-1190) |#1|) $)) (-15 -2205 ($ (-1296 (-1190) |#1|))) (-15 -1688 ((-654 (-2 (|:| |k| (-1190)) (|:| |c| $))) $)))) (-1062)) (T -1303))
+((-2129 (*1 *2 *1) (-12 (-5 *2 (-1296 (-1190) *3)) (-5 *1 (-1303 *3)) (-4 *3 (-1062)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1296 (-1190) *3)) (-4 *3 (-1062)) (-5 *1 (-1303 *3)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-1190)) (|:| |c| (-1303 *3))))) (-5 *1 (-1303 *3)) (-4 *3 (-1062)))))
+(-13 (-1302 (-1190) |#1|) (-10 -8 (-15 -2129 ((-1296 (-1190) |#1|) $)) (-15 -2205 ($ (-1296 (-1190) |#1|))) (-15 -1688 ((-654 (-2 (|:| |k| (-1190)) (|:| |c| $))) $))))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) NIL)) (-2950 (((-3 $ "failed") $ $) NIL)) (-3670 (($) NIL T CONST)) (-1697 (((-3 |#2| "failed") $) NIL)) (-2209 ((|#2| $) NIL)) (-1392 (($ $) NIL)) (-1950 (((-3 $ "failed") $) 42)) (-2847 (((-112) $) 35)) (-3031 (($ $) 37)) (-3965 (((-112) $) NIL)) (-2784 (((-781) $) NIL)) (-3576 (((-654 $) $) NIL)) (-2197 (((-112) $) NIL)) (-3832 (($ |#2| |#1|) NIL)) (-1904 ((|#2| $) 24)) (-3307 ((|#2| $) 22)) (-1778 (($ (-1 |#1| |#1|) $) NIL)) (-4050 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1359 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2450 (((-112) $) 32)) (-1707 ((|#1| $) 33)) (-2943 (((-872) $) 65) (($ (-574)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3123 (((-654 |#1|) $) NIL)) (-3344 ((|#1| $ |#2|) NIL)) (-1859 ((|#1| $ |#2|) 28)) (-4160 (((-781)) 14 T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 29 T CONST)) (-2146 (($) 11 T CONST)) (-3251 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2982 (((-112) $ $) 30)) (-3107 (($ $ |#1|) 67 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3078 (($ $ $) 50)) (** (($ $ (-932)) NIL) (($ $ (-781)) 52)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2863 (((-781) $) 16)))
+(((-1304 |#1| |#2|) (-13 (-1062) (-1295 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2863 ((-781) $)) (-15 -3307 (|#2| $)) (-15 -1904 (|#2| $)) (-15 -1392 ($ $)) (-15 -1859 (|#1| $ |#2|)) (-15 -2450 ((-112) $)) (-15 -1707 (|#1| $)) (-15 -2847 ((-112) $)) (-15 -3031 ($ $)) (-15 -1778 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3107 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|))) (-1062) (-856)) (T -1304))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856)))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856)))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-1304 *3 *4)) (-4 *4 (-856)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-856)))) (-3307 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1304 *3 *2)) (-4 *3 (-1062)))) (-1904 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1304 *3 *2)) (-4 *3 (-1062)))) (-1859 (*1 *2 *1 *3) (-12 (-4 *2 (-1062)) (-5 *1 (-1304 *2 *3)) (-4 *3 (-856)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-856)))) (-1707 (*1 *2 *1) (-12 (-4 *2 (-1062)) (-5 *1 (-1304 *2 *3)) (-4 *3 (-856)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-856)))) (-3031 (*1 *1 *1) (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856)))) (-3107 (*1 *1 *1 *2) (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1062)) (-4 *3 (-856)))))
+(-13 (-1062) (-1295 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2863 ((-781) $)) (-15 -3307 (|#2| $)) (-15 -1904 (|#2| $)) (-15 -1392 ($ $)) (-15 -1859 (|#1| $ |#2|)) (-15 -2450 ((-112) $)) (-15 -1707 (|#1| $)) (-15 -2847 ((-112) $)) (-15 -3031 ($ $)) (-15 -1778 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3107 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|)))
+((-2849 (((-112) $ $) 27)) (-2908 (((-112) $) NIL)) (-1655 (((-654 |#1|) $) 132)) (-2205 (($ (-1296 |#1| |#2|)) 50)) (-4210 (($ $ (-781)) 38)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1558 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-781)) 52 (|has| |#2| (-174)))) (-3670 (($) NIL T CONST)) (-4004 (($ $ |#1|) 114) (($ $ (-829 |#1|)) 115) (($ $ $) 26)) (-1697 (((-3 (-829 |#1|) "failed") $) NIL)) (-2209 (((-829 |#1|) $) NIL)) (-1950 (((-3 $ "failed") $) 122)) (-2847 (((-112) $) 117)) (-3031 (($ $) 118)) (-3965 (((-112) $) NIL)) (-2197 (((-112) $) NIL)) (-3832 (($ (-829 |#1|) |#2|) 20)) (-3826 (($ $) NIL)) (-1445 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1904 (((-829 |#1|) $) 123)) (-3307 (((-829 |#1|) $) 126)) (-1778 (($ (-1 |#2| |#2|) $) 131)) (-2634 (($ $ |#1|) 112) (($ $ (-829 |#1|)) 113) (($ $ $) 62)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2129 (((-1296 |#1| |#2|) $) 94)) (-1784 (((-781) $) 129)) (-2450 (((-112) $) 81)) (-1707 ((|#2| $) 32)) (-2943 (((-872) $) 73) (($ (-574)) 87) (($ |#2|) 85) (($ (-829 |#1|)) 18) (($ |#1|) 84)) (-1859 ((|#2| $ (-829 |#1|)) 116) ((|#2| $ $) 28)) (-4160 (((-781)) 120 T CONST)) (-2923 (((-112) $ $) NIL)) (-2134 (($) 15 T CONST)) (-1688 (((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2146 (($) 33 T CONST)) (-2982 (((-112) $ $) 14)) (-3094 (($ $) 98) (($ $ $) 101)) (-3078 (($ $ $) 61)) (** (($ $ (-932)) NIL) (($ $ (-781)) 55)) (* (($ (-932) $) NIL) (($ (-781) $) 53) (($ (-574) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
+(((-1305 |#1| |#2|) (-13 (-1302 |#1| |#2|) (-10 -8 (-15 -2129 ((-1296 |#1| |#2|) $)) (-15 -2205 ($ (-1296 |#1| |#2|))) (-15 -1688 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-860) (-1062)) (T -1305))
+((-2129 (*1 *2 *1) (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1296 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *1 (-1305 *3 *4)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1305 *3 *4))))) (-5 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))))
+(-13 (-1302 |#1| |#2|) (-10 -8 (-15 -2129 ((-1296 |#1| |#2|) $)) (-15 -2205 ($ (-1296 |#1| |#2|))) (-15 -1688 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-2849 (((-112) $ $) NIL)) (-2651 (($ (-654 (-932))) 10)) (-3247 (((-984) $) 12)) (-2568 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 25) (($ (-984)) 14) (((-984) $) 13)) (-2923 (((-112) $ $) NIL)) (-2982 (((-112) $ $) 17)))
+(((-1306) (-13 (-1113) (-500 (-984)) (-10 -8 (-15 -2651 ($ (-654 (-932)))) (-15 -3247 ((-984) $))))) (T -1306))
+((-2651 (*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1306)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-984)) (-5 *1 (-1306)))))
+(-13 (-1113) (-500 (-984)) (-10 -8 (-15 -2651 ($ (-654 (-932)))) (-15 -3247 ((-984) $))))
+((-1882 (((-654 (-1170 |#1|)) (-1 (-654 (-1170 |#1|)) (-654 (-1170 |#1|))) (-574)) 16) (((-1170 |#1|) (-1 (-1170 |#1|) (-1170 |#1|))) 13)))
+(((-1307 |#1|) (-10 -7 (-15 -1882 ((-1170 |#1|) (-1 (-1170 |#1|) (-1170 |#1|)))) (-15 -1882 ((-654 (-1170 |#1|)) (-1 (-654 (-1170 |#1|)) (-654 (-1170 |#1|))) (-574)))) (-1231)) (T -1307))
+((-1882 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 (-1170 *5)) (-654 (-1170 *5)))) (-5 *4 (-574)) (-5 *2 (-654 (-1170 *5))) (-5 *1 (-1307 *5)) (-4 *5 (-1231)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-1 (-1170 *4) (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1307 *4)) (-4 *4 (-1231)))))
+(-10 -7 (-15 -1882 ((-1170 |#1|) (-1 (-1170 |#1|) (-1170 |#1|)))) (-15 -1882 ((-654 (-1170 |#1|)) (-1 (-654 (-1170 |#1|)) (-654 (-1170 |#1|))) (-574))))
+((-2259 (((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|))) 174) (((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112)) 173) (((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112)) 172) (((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112) (-112)) 171) (((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-1059 |#1| |#2|)) 156)) (-2717 (((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|))) 85) (((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112)) 84) (((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112) (-112)) 83)) (-3440 (((-654 (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1059 |#1| |#2|)) 73)) (-2290 (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|))) 140) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112)) 139) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112)) 138) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112) (-112)) 137) (((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|)) 132)) (-2055 (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|))) 145) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112)) 144) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112)) 143) (((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|)) 142)) (-1837 (((-654 (-790 |#1| (-874 |#3|))) (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) 111) (((-1186 (-1037 (-417 |#1|))) (-1186 |#1|)) 102) (((-963 (-1037 (-417 |#1|))) (-790 |#1| (-874 |#3|))) 109) (((-963 (-1037 (-417 |#1|))) (-963 |#1|)) 107) (((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|))) 33)))
+(((-1308 |#1| |#2| |#3|) (-10 -7 (-15 -2717 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112) (-112))) (-15 -2717 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112))) (-15 -2717 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-1059 |#1| |#2|))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112) (-112))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112) (-112))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)))) (-15 -2055 ((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|))) (-15 -2055 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -2055 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112))) (-15 -2055 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)))) (-15 -3440 ((-654 (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1059 |#1| |#2|))) (-15 -1837 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1837 ((-963 (-1037 (-417 |#1|))) (-963 |#1|))) (-15 -1837 ((-963 (-1037 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1837 ((-1186 (-1037 (-417 |#1|))) (-1186 |#1|))) (-15 -1837 ((-654 (-790 |#1| (-874 |#3|))) (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) (-13 (-858) (-315) (-148) (-1035)) (-654 (-1190)) (-654 (-1190))) (T -1308))
+((-1837 (*1 *2 *3) (-12 (-5 *3 (-1159 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-1186 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *6))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *6 (-654 (-1190))) (-5 *2 (-963 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-963 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *5))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-3440 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-1159 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-2055 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-2055 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-2290 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-2290 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-2290 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-2259 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-2 (|:| -1334 (-1186 *4)) (|:| -3676 (-654 (-963 *4)))))) (-5 *1 (-1308 *4 *5 *6)) (-5 *3 (-654 (-963 *4))) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-2259 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5)))))) (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-2259 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5)))))) (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-2259 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5)))))) (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-2 (|:| -1334 (-1186 *4)) (|:| -3676 (-654 (-963 *4)))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-1059 *4 *5))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-2717 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))))
+(-10 -7 (-15 -2717 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112) (-112))) (-15 -2717 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112))) (-15 -2717 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-1059 |#1| |#2|))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112) (-112))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112))) (-15 -2259 ((-654 (-2 (|:| -1334 (-1186 |#1|)) (|:| -3676 (-654 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112) (-112))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112))) (-15 -2290 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)))) (-15 -2055 ((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|))) (-15 -2055 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -2055 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112))) (-15 -2055 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)))) (-15 -3440 ((-654 (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1059 |#1| |#2|))) (-15 -1837 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1837 ((-963 (-1037 (-417 |#1|))) (-963 |#1|))) (-15 -1837 ((-963 (-1037 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1837 ((-1186 (-1037 (-417 |#1|))) (-1186 |#1|))) (-15 -1837 ((-654 (-790 |#1| (-874 |#3|))) (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|))))))
+((-4395 (((-3 (-1281 (-417 (-574))) "failed") (-1281 |#1|) |#1|) 21)) (-3935 (((-112) (-1281 |#1|)) 12)) (-1320 (((-3 (-1281 (-574)) "failed") (-1281 |#1|)) 16)))
+(((-1309 |#1|) (-10 -7 (-15 -3935 ((-112) (-1281 |#1|))) (-15 -1320 ((-3 (-1281 (-574)) "failed") (-1281 |#1|))) (-15 -4395 ((-3 (-1281 (-417 (-574))) "failed") (-1281 |#1|) |#1|))) (-13 (-1062) (-649 (-574)))) (T -1309))
+((-4395 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574)))) (-5 *2 (-1281 (-417 (-574)))) (-5 *1 (-1309 *4)))) (-1320 (*1 *2 *3) (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574)))) (-5 *2 (-1281 (-574))) (-5 *1 (-1309 *4)))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1309 *4)))))
+(-10 -7 (-15 -3935 ((-112) (-1281 |#1|))) (-15 -1320 ((-3 (-1281 (-574)) "failed") (-1281 |#1|))) (-15 -4395 ((-3 (-1281 (-417 (-574))) "failed") (-1281 |#1|) |#1|)))
+((-2849 (((-112) $ $) NIL)) (-2908 (((-112) $) 11)) (-2950 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781)) 8)) (-3670 (($) NIL T CONST)) (-1950 (((-3 $ "failed") $) 58)) (-2820 (($) 49)) (-3965 (((-112) $) 57)) (-4048 (((-3 $ "failed") $) 40)) (-2565 (((-932) $) 15)) (-2568 (((-1172) $) NIL)) (-3818 (($) 32 T CONST)) (-2576 (($ (-932)) 50)) (-3966 (((-1133) $) NIL)) (-1837 (((-574) $) 13)) (-2943 (((-872) $) 27) (($ (-574)) 24)) (-4160 (((-781)) 9 T CONST)) (-2923 (((-112) $ $) 60)) (-2134 (($) 29 T CONST)) (-2146 (($) 31 T CONST)) (-2982 (((-112) $ $) 38)) (-3094 (($ $) 52) (($ $ $) 47)) (-3078 (($ $ $) 35)) (** (($ $ (-932)) NIL) (($ $ (-781)) 54)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 43)))
+(((-1310 |#1|) (-13 (-174) (-377) (-624 (-574)) (-1165)) (-932)) (T -1310))
+NIL
+(-13 (-174) (-377) (-624 (-574)) (-1165))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3238050 3238055 3238060 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3238035 3238040 3238045 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3238020 3238025 3238030 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3238005 3238010 3238015 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1310 3237148 3237880 3237957 "ZMOD" 3237962 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1309 3236202 3236366 3236589 "ZLINDEP" 3236980 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1308 3225502 3227270 3229242 "ZDSOLVE" 3234332 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1307 3224748 3224889 3225078 "YSTREAM" 3225348 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1306 3224176 3224422 3224535 "YDIAGRAM" 3224657 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1305 3221950 3223477 3223681 "XRPOLY" 3224019 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1304 3218503 3219821 3220396 "XPR" 3221422 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1303 3216224 3217834 3218038 "XPOLY" 3218334 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1302 3213877 3215245 3215300 "XPOLYC" 3215588 NIL XPOLYC (NIL T T) -9 NIL 3215701 NIL) (-1301 3210253 3212394 3212782 "XPBWPOLY" 3213535 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1300 3205948 3208243 3208285 "XF" 3208906 NIL XF (NIL T) -9 NIL 3209306 NIL) (-1299 3205569 3205657 3205826 "XF-" 3205831 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1298 3200765 3202054 3202109 "XFALG" 3204281 NIL XFALG (NIL T T) -9 NIL 3205070 NIL) (-1297 3199898 3200002 3200207 "XEXPPKG" 3200657 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1296 3198007 3199748 3199844 "XDPOLY" 3199849 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1295 3196814 3197414 3197457 "XALG" 3197462 NIL XALG (NIL T) -9 NIL 3197573 NIL) (-1294 3190256 3194791 3195285 "WUTSET" 3196406 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1293 3188512 3189308 3189631 "WP" 3190067 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1292 3188114 3188334 3188404 "WHILEAST" 3188464 T WHILEAST (NIL) -8 NIL NIL NIL) (-1291 3187586 3187831 3187925 "WHEREAST" 3188042 T WHEREAST (NIL) -8 NIL NIL NIL) (-1290 3186472 3186670 3186965 "WFFINTBS" 3187383 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1289 3184376 3184803 3185265 "WEIER" 3186044 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1288 3183422 3183872 3183914 "VSPACE" 3184050 NIL VSPACE (NIL T) -9 NIL 3184124 NIL) (-1287 3183260 3183287 3183378 "VSPACE-" 3183383 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1286 3183069 3183111 3183179 "VOID" 3183214 T VOID (NIL) -8 NIL NIL NIL) (-1285 3181205 3181564 3181970 "VIEW" 3182685 T VIEW (NIL) -7 NIL NIL NIL) (-1284 3177629 3178268 3179005 "VIEWDEF" 3180490 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1283 3166933 3169177 3171350 "VIEW3D" 3175478 T VIEW3D (NIL) -8 NIL NIL NIL) (-1282 3159184 3160844 3162423 "VIEW2D" 3165376 T VIEW2D (NIL) -8 NIL NIL NIL) (-1281 3154537 3158954 3159046 "VECTOR" 3159127 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1280 3153114 3153373 3153691 "VECTOR2" 3154267 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1279 3146556 3150865 3150908 "VECTCAT" 3151903 NIL VECTCAT (NIL T) -9 NIL 3152490 NIL) (-1278 3145570 3145824 3146214 "VECTCAT-" 3146219 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1277 3145024 3145221 3145341 "VARIABLE" 3145485 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1276 3144957 3144962 3144992 "UTYPE" 3144997 T UTYPE (NIL) -9 NIL NIL NIL) (-1275 3143787 3143941 3144203 "UTSODETL" 3144783 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1274 3141227 3141687 3142211 "UTSODE" 3143328 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1273 3133065 3138853 3139342 "UTS" 3140796 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1272 3123852 3129221 3129264 "UTSCAT" 3130376 NIL UTSCAT (NIL T) -9 NIL 3131134 NIL) (-1271 3121200 3121922 3122911 "UTSCAT-" 3122916 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1270 3120827 3120870 3121003 "UTS2" 3121151 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1269 3115053 3117665 3117708 "URAGG" 3119778 NIL URAGG (NIL T) -9 NIL 3120501 NIL) (-1268 3111992 3112855 3113978 "URAGG-" 3113983 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1267 3107701 3110627 3111092 "UPXSSING" 3111656 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1266 3099767 3106948 3107221 "UPXS" 3107486 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1265 3092840 3099671 3099743 "UPXSCONS" 3099748 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1264 3082491 3089286 3089348 "UPXSCCA" 3089922 NIL UPXSCCA (NIL T T) -9 NIL 3090155 NIL) (-1263 3082129 3082214 3082388 "UPXSCCA-" 3082393 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1262 3071632 3078200 3078243 "UPXSCAT" 3078891 NIL UPXSCAT (NIL T) -9 NIL 3079500 NIL) (-1261 3071062 3071141 3071320 "UPXS2" 3071547 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1260 3069716 3069969 3070320 "UPSQFREE" 3070805 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1259 3063141 3066200 3066255 "UPSCAT" 3067335 NIL UPSCAT (NIL T T) -9 NIL 3068100 NIL) (-1258 3062345 3062552 3062879 "UPSCAT-" 3062884 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1257 3047841 3055698 3055741 "UPOLYC" 3057842 NIL UPOLYC (NIL T) -9 NIL 3059063 NIL) (-1256 3039169 3041595 3044742 "UPOLYC-" 3044747 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1255 3038796 3038839 3038972 "UPOLYC2" 3039120 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1254 3030518 3038479 3038608 "UP" 3038715 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1253 3029857 3029964 3030128 "UPMP" 3030407 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1252 3029410 3029491 3029630 "UPDIVP" 3029770 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1251 3027978 3028227 3028543 "UPDECOMP" 3029159 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1250 3027209 3027321 3027507 "UPCDEN" 3027862 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1249 3026728 3026797 3026946 "UP2" 3027134 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1248 3025195 3025932 3026209 "UNISEG" 3026486 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1247 3024410 3024537 3024742 "UNISEG2" 3025038 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1246 3023470 3023650 3023876 "UNIFACT" 3024226 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1245 3007231 3022647 3022898 "ULS" 3023277 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1244 2995094 3007135 3007207 "ULSCONS" 3007212 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1243 2976794 2988918 2988980 "ULSCCAT" 2989618 NIL ULSCCAT (NIL T T) -9 NIL 2989907 NIL) (-1242 2975844 2976089 2976477 "ULSCCAT-" 2976482 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1241 2965131 2971613 2971656 "ULSCAT" 2972519 NIL ULSCAT (NIL T) -9 NIL 2973250 NIL) (-1240 2964561 2964640 2964819 "ULS2" 2965046 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1239 2963680 2964190 2964297 "UINT8" 2964408 T UINT8 (NIL) -8 NIL NIL 2964493) (-1238 2962798 2963308 2963415 "UINT64" 2963526 T UINT64 (NIL) -8 NIL NIL 2963611) (-1237 2961916 2962426 2962533 "UINT32" 2962644 T UINT32 (NIL) -8 NIL NIL 2962729) (-1236 2961034 2961544 2961651 "UINT16" 2961762 T UINT16 (NIL) -8 NIL NIL 2961847) (-1235 2959337 2960294 2960324 "UFD" 2960536 T UFD (NIL) -9 NIL 2960650 NIL) (-1234 2959131 2959177 2959272 "UFD-" 2959277 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1233 2958213 2958396 2958612 "UDVO" 2958937 T UDVO (NIL) -7 NIL NIL NIL) (-1232 2956029 2956438 2956909 "UDPO" 2957777 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1231 2955962 2955967 2955997 "TYPE" 2956002 T TYPE (NIL) -9 NIL NIL NIL) (-1230 2955722 2955917 2955948 "TYPEAST" 2955953 T TYPEAST (NIL) -8 NIL NIL NIL) (-1229 2954693 2954895 2955135 "TWOFACT" 2955516 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1228 2953716 2954102 2954337 "TUPLE" 2954493 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1227 2951407 2951926 2952465 "TUBETOOL" 2953199 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1226 2950256 2950461 2950702 "TUBE" 2951200 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1225 2944985 2949228 2949511 "TS" 2950008 NIL TS (NIL T) -8 NIL NIL NIL) (-1224 2933625 2937744 2937841 "TSETCAT" 2943110 NIL TSETCAT (NIL T T T T) -9 NIL 2944641 NIL) (-1223 2928357 2929957 2931848 "TSETCAT-" 2931853 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1222 2922996 2923843 2924772 "TRMANIP" 2927493 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1221 2922437 2922500 2922663 "TRIMAT" 2922928 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1220 2920303 2920540 2920897 "TRIGMNIP" 2922186 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1219 2919823 2919936 2919966 "TRIGCAT" 2920179 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1218 2919492 2919571 2919712 "TRIGCAT-" 2919717 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1217 2916337 2918350 2918631 "TREE" 2919246 NIL TREE (NIL T) -8 NIL NIL NIL) (-1216 2915611 2916139 2916169 "TRANFUN" 2916204 T TRANFUN (NIL) -9 NIL 2916270 NIL) (-1215 2914890 2915081 2915361 "TRANFUN-" 2915366 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1214 2914694 2914726 2914787 "TOPSP" 2914851 T TOPSP (NIL) -7 NIL NIL NIL) (-1213 2914042 2914157 2914311 "TOOLSIGN" 2914575 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1212 2912676 2913219 2913458 "TEXTFILE" 2913825 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1211 2910588 2911129 2911558 "TEX" 2912269 T TEX (NIL) -8 NIL NIL NIL) (-1210 2910369 2910400 2910472 "TEX1" 2910551 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1209 2910017 2910080 2910170 "TEMUTL" 2910301 T TEMUTL (NIL) -7 NIL NIL NIL) (-1208 2908171 2908451 2908776 "TBCMPPK" 2909740 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1207 2899948 2906331 2906387 "TBAGG" 2906787 NIL TBAGG (NIL T T) -9 NIL 2906998 NIL) (-1206 2895018 2896506 2898260 "TBAGG-" 2898265 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1205 2894402 2894509 2894654 "TANEXP" 2894907 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1204 2893913 2894177 2894267 "TALGOP" 2894347 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1203 2887303 2893770 2893863 "TABLE" 2893868 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1202 2886715 2886814 2886952 "TABLEAU" 2887200 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1201 2881323 2882543 2883791 "TABLBUMP" 2885501 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1200 2880545 2880692 2880873 "SYSTEM" 2881164 T SYSTEM (NIL) -8 NIL NIL NIL) (-1199 2877004 2877703 2878486 "SYSSOLP" 2879796 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1198 2876802 2876959 2876990 "SYSPTR" 2876995 T SYSPTR (NIL) -8 NIL NIL NIL) (-1197 2875838 2876343 2876462 "SYSNNI" 2876648 NIL SYSNNI (NIL NIL) -8 NIL NIL 2876733) (-1196 2875137 2875596 2875675 "SYSINT" 2875735 NIL SYSINT (NIL NIL) -8 NIL NIL 2875780) (-1195 2871469 2872415 2873125 "SYNTAX" 2874449 T SYNTAX (NIL) -8 NIL NIL NIL) (-1194 2868627 2869229 2869861 "SYMTAB" 2870859 T SYMTAB (NIL) -8 NIL NIL NIL) (-1193 2863876 2864778 2865761 "SYMS" 2867666 T SYMS (NIL) -8 NIL NIL NIL) (-1192 2861111 2863334 2863564 "SYMPOLY" 2863681 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1191 2860628 2860703 2860826 "SYMFUNC" 2861023 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1190 2856648 2857940 2858753 "SYMBOL" 2859837 T SYMBOL (NIL) -8 NIL NIL NIL) (-1189 2850187 2851876 2853596 "SWITCH" 2854950 T SWITCH (NIL) -8 NIL NIL NIL) (-1188 2843421 2849008 2849311 "SUTS" 2849942 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1187 2835487 2842668 2842941 "SUPXS" 2843206 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1186 2827157 2835105 2835231 "SUP" 2835396 NIL SUP (NIL T) -8 NIL NIL NIL) (-1185 2826316 2826443 2826660 "SUPFRACF" 2827025 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1184 2825937 2825996 2826109 "SUP2" 2826251 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1183 2824385 2824659 2825015 "SUMRF" 2825636 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1182 2823720 2823786 2823978 "SUMFS" 2824306 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1181 2807516 2822897 2823148 "SULS" 2823527 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1180 2807118 2807338 2807408 "SUCHTAST" 2807468 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1179 2806413 2806643 2806783 "SUCH" 2807026 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1178 2800280 2801319 2802278 "SUBSPACE" 2805501 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1177 2799710 2799800 2799964 "SUBRESP" 2800168 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1176 2793078 2794375 2795686 "STTF" 2798446 NIL STTF (NIL T) -7 NIL NIL NIL) (-1175 2787251 2788371 2789518 "STTFNC" 2791978 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1174 2778564 2780433 2782227 "STTAYLOR" 2785492 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1173 2771694 2778428 2778511 "STRTBL" 2778516 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1172 2767058 2771649 2771680 "STRING" 2771685 T STRING (NIL) -8 NIL NIL NIL) (-1171 2761887 2766401 2766431 "STRICAT" 2766490 T STRICAT (NIL) -9 NIL 2766552 NIL) (-1170 2754640 2759506 2760117 "STREAM" 2761311 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1169 2754150 2754227 2754371 "STREAM3" 2754557 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1168 2753132 2753315 2753550 "STREAM2" 2753963 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1167 2752820 2752872 2752965 "STREAM1" 2753074 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1166 2751836 2752017 2752248 "STINPROD" 2752636 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1165 2751388 2751598 2751628 "STEP" 2751708 T STEP (NIL) -9 NIL 2751786 NIL) (-1164 2750575 2750877 2751025 "STEPAST" 2751262 T STEPAST (NIL) -8 NIL NIL NIL) (-1163 2744007 2750474 2750551 "STBL" 2750556 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1162 2739102 2743198 2743241 "STAGG" 2743394 NIL STAGG (NIL T) -9 NIL 2743483 NIL) (-1161 2736804 2737406 2738278 "STAGG-" 2738283 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1160 2734951 2736574 2736666 "STACK" 2736747 NIL STACK (NIL T) -8 NIL NIL NIL) (-1159 2727646 2733092 2733548 "SREGSET" 2734581 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1158 2720071 2721440 2722953 "SRDCMPK" 2726252 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1157 2712956 2717481 2717511 "SRAGG" 2718814 T SRAGG (NIL) -9 NIL 2719422 NIL) (-1156 2711973 2712228 2712607 "SRAGG-" 2712612 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1155 2706344 2710920 2711341 "SQMATRIX" 2711599 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1154 2700029 2703062 2703789 "SPLTREE" 2705689 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1153 2695992 2696685 2697331 "SPLNODE" 2699455 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1152 2695039 2695272 2695302 "SPFCAT" 2695746 T SPFCAT (NIL) -9 NIL NIL NIL) (-1151 2693776 2693986 2694250 "SPECOUT" 2694797 T SPECOUT (NIL) -7 NIL NIL NIL) (-1150 2684886 2686758 2686788 "SPADXPT" 2691464 T SPADXPT (NIL) -9 NIL 2693628 NIL) (-1149 2684647 2684687 2684756 "SPADPRSR" 2684839 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1148 2682696 2684602 2684633 "SPADAST" 2684638 T SPADAST (NIL) -8 NIL NIL NIL) (-1147 2674641 2676414 2676457 "SPACEC" 2680830 NIL SPACEC (NIL T) -9 NIL 2682646 NIL) (-1146 2672771 2674573 2674622 "SPACE3" 2674627 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1145 2671523 2671694 2671985 "SORTPAK" 2672576 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1144 2669615 2669918 2670330 "SOLVETRA" 2671187 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1143 2668665 2668887 2669148 "SOLVESER" 2669388 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1142 2663969 2664857 2665852 "SOLVERAD" 2667717 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1141 2659784 2660393 2661122 "SOLVEFOR" 2663336 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1140 2654054 2659133 2659230 "SNTSCAT" 2659235 NIL SNTSCAT (NIL T T T T) -9 NIL 2659305 NIL) (-1139 2648160 2652377 2652768 "SMTS" 2653744 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1138 2642756 2648048 2648125 "SMP" 2648130 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1137 2640915 2641216 2641614 "SMITH" 2642453 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1136 2633468 2637754 2637857 "SMATCAT" 2639208 NIL SMATCAT (NIL NIL T T T) -9 NIL 2639758 NIL) (-1135 2630186 2631071 2632329 "SMATCAT-" 2632334 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1134 2627852 2629422 2629465 "SKAGG" 2629726 NIL SKAGG (NIL T) -9 NIL 2629861 NIL) (-1133 2624128 2627325 2627509 "SINT" 2627661 T SINT (NIL) -8 NIL NIL 2627823) (-1132 2623900 2623938 2624004 "SIMPAN" 2624084 T SIMPAN (NIL) -7 NIL NIL NIL) (-1131 2623179 2623435 2623575 "SIG" 2623782 T SIG (NIL) -8 NIL NIL NIL) (-1130 2622017 2622238 2622513 "SIGNRF" 2622938 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1129 2620850 2621001 2621285 "SIGNEF" 2621846 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1128 2620156 2620433 2620557 "SIGAST" 2620748 T SIGAST (NIL) -8 NIL NIL NIL) (-1127 2617846 2618300 2618806 "SHP" 2619697 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1126 2611561 2617747 2617823 "SHDP" 2617828 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1125 2611134 2611326 2611356 "SGROUP" 2611449 T SGROUP (NIL) -9 NIL 2611511 NIL) (-1124 2610992 2611018 2611091 "SGROUP-" 2611096 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1123 2607783 2608481 2609204 "SGCF" 2610291 T SGCF (NIL) -7 NIL NIL NIL) (-1122 2602151 2607230 2607327 "SFRTCAT" 2607332 NIL SFRTCAT (NIL T T T T) -9 NIL 2607371 NIL) (-1121 2595572 2596590 2597726 "SFRGCD" 2601134 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1120 2588698 2589771 2590957 "SFQCMPK" 2594505 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1119 2588318 2588407 2588518 "SFORT" 2588639 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1118 2587436 2588158 2588279 "SEXOF" 2588284 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1117 2586543 2587317 2587385 "SEX" 2587390 T SEX (NIL) -8 NIL NIL NIL) (-1116 2582324 2583039 2583134 "SEXCAT" 2585756 NIL SEXCAT (NIL T T T T T) -9 NIL 2586316 NIL) (-1115 2579477 2582258 2582306 "SET" 2582311 NIL SET (NIL T) -8 NIL NIL NIL) (-1114 2577701 2578190 2578495 "SETMN" 2579218 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1113 2577197 2577349 2577379 "SETCAT" 2577555 T SETCAT (NIL) -9 NIL 2577665 NIL) (-1112 2576889 2576967 2577097 "SETCAT-" 2577102 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1111 2573250 2575350 2575393 "SETAGG" 2576263 NIL SETAGG (NIL T) -9 NIL 2576603 NIL) (-1110 2572708 2572824 2573061 "SETAGG-" 2573066 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1109 2572151 2572404 2572505 "SEQAST" 2572629 T SEQAST (NIL) -8 NIL NIL NIL) (-1108 2571350 2571644 2571705 "SEGXCAT" 2571991 NIL SEGXCAT (NIL T T) -9 NIL 2572111 NIL) (-1107 2570356 2571016 2571198 "SEG" 2571203 NIL SEG (NIL T) -8 NIL NIL NIL) (-1106 2569335 2569549 2569592 "SEGCAT" 2570114 NIL SEGCAT (NIL T) -9 NIL 2570335 NIL) (-1105 2568267 2568698 2568906 "SEGBIND" 2569162 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1104 2567888 2567947 2568060 "SEGBIND2" 2568202 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1103 2567461 2567689 2567766 "SEGAST" 2567833 T SEGAST (NIL) -8 NIL NIL NIL) (-1102 2566680 2566806 2567010 "SEG2" 2567305 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1101 2566090 2566615 2566662 "SDVAR" 2566667 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1100 2558528 2565860 2565990 "SDPOL" 2565995 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1099 2557121 2557387 2557706 "SCPKG" 2558243 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1098 2556285 2556457 2556649 "SCOPE" 2556951 T SCOPE (NIL) -8 NIL NIL NIL) (-1097 2555505 2555639 2555818 "SCACHE" 2556140 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1096 2555151 2555337 2555367 "SASTCAT" 2555372 T SASTCAT (NIL) -9 NIL 2555385 NIL) (-1095 2554638 2554986 2555062 "SAOS" 2555097 T SAOS (NIL) -8 NIL NIL NIL) (-1094 2554203 2554238 2554411 "SAERFFC" 2554597 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1093 2548053 2554100 2554180 "SAE" 2554185 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1092 2547646 2547681 2547840 "SAEFACT" 2548012 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1091 2545967 2546281 2546682 "RURPK" 2547312 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1090 2544604 2544910 2545215 "RULESET" 2545801 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1089 2541827 2542357 2542815 "RULE" 2544285 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1088 2541439 2541621 2541704 "RULECOLD" 2541779 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1087 2541229 2541257 2541328 "RTVALUE" 2541390 T RTVALUE (NIL) -8 NIL NIL NIL) (-1086 2540700 2540946 2541040 "RSTRCAST" 2541157 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1085 2535548 2536343 2537263 "RSETGCD" 2539899 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1084 2524778 2529857 2529954 "RSETCAT" 2534073 NIL RSETCAT (NIL T T T T) -9 NIL 2535170 NIL) (-1083 2522705 2523244 2524068 "RSETCAT-" 2524073 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1082 2515091 2516467 2517987 "RSDCMPK" 2521304 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1081 2513070 2513537 2513611 "RRCC" 2514697 NIL RRCC (NIL T T) -9 NIL 2515041 NIL) (-1080 2512421 2512595 2512874 "RRCC-" 2512879 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1079 2511864 2512117 2512218 "RPTAST" 2512342 T RPTAST (NIL) -8 NIL NIL NIL) (-1078 2485580 2495028 2495095 "RPOLCAT" 2505761 NIL RPOLCAT (NIL T T T) -9 NIL 2508921 NIL) (-1077 2477078 2479418 2482540 "RPOLCAT-" 2482545 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1076 2468009 2475289 2475771 "ROUTINE" 2476618 T ROUTINE (NIL) -8 NIL NIL NIL) (-1075 2464756 2467635 2467775 "ROMAN" 2467891 T ROMAN (NIL) -8 NIL NIL NIL) (-1074 2463000 2463616 2463876 "ROIRC" 2464561 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1073 2459232 2461516 2461546 "RNS" 2461850 T RNS (NIL) -9 NIL 2462124 NIL) (-1072 2457741 2458124 2458658 "RNS-" 2458733 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1071 2457144 2457552 2457582 "RNG" 2457587 T RNG (NIL) -9 NIL 2457608 NIL) (-1070 2456147 2456509 2456711 "RNGBIND" 2456995 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1069 2455546 2455934 2455977 "RMODULE" 2455982 NIL RMODULE (NIL T) -9 NIL 2456009 NIL) (-1068 2454382 2454476 2454812 "RMCAT2" 2455447 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1067 2451232 2453728 2454025 "RMATRIX" 2454144 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1066 2444059 2446319 2446434 "RMATCAT" 2449793 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2450775 NIL) (-1065 2443434 2443581 2443888 "RMATCAT-" 2443893 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1064 2442835 2443056 2443099 "RLINSET" 2443293 NIL RLINSET (NIL T) -9 NIL 2443384 NIL) (-1063 2442402 2442477 2442605 "RINTERP" 2442754 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1062 2441460 2442014 2442044 "RING" 2442100 T RING (NIL) -9 NIL 2442192 NIL) (-1061 2441252 2441296 2441393 "RING-" 2441398 NIL RING- (NIL T) -8 NIL NIL NIL) (-1060 2440093 2440330 2440588 "RIDIST" 2441016 T RIDIST (NIL) -7 NIL NIL NIL) (-1059 2431382 2439561 2439767 "RGCHAIN" 2439941 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1058 2430732 2431138 2431179 "RGBCSPC" 2431237 NIL RGBCSPC (NIL T) -9 NIL 2431289 NIL) (-1057 2429890 2430271 2430312 "RGBCMDL" 2430544 NIL RGBCMDL (NIL T) -9 NIL 2430658 NIL) (-1056 2426884 2427498 2428168 "RF" 2429254 NIL RF (NIL T) -7 NIL NIL NIL) (-1055 2426530 2426593 2426696 "RFFACTOR" 2426815 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1054 2426255 2426290 2426387 "RFFACT" 2426489 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1053 2424372 2424736 2425118 "RFDIST" 2425895 T RFDIST (NIL) -7 NIL NIL NIL) (-1052 2423825 2423917 2424080 "RETSOL" 2424274 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1051 2423461 2423541 2423584 "RETRACT" 2423717 NIL RETRACT (NIL T) -9 NIL 2423804 NIL) (-1050 2423310 2423335 2423422 "RETRACT-" 2423427 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1049 2422912 2423132 2423202 "RETAST" 2423262 T RETAST (NIL) -8 NIL NIL NIL) (-1048 2415650 2422565 2422692 "RESULT" 2422807 T RESULT (NIL) -8 NIL NIL NIL) (-1047 2414241 2414919 2415118 "RESRING" 2415553 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1046 2413877 2413926 2414024 "RESLATC" 2414178 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1045 2413582 2413617 2413724 "REPSQ" 2413836 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1044 2411004 2411584 2412186 "REP" 2413002 T REP (NIL) -7 NIL NIL NIL) (-1043 2410701 2410736 2410847 "REPDB" 2410963 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1042 2404601 2405990 2407213 "REP2" 2409513 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1041 2400978 2401659 2402467 "REP1" 2403828 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1040 2393674 2399119 2399575 "REGSET" 2400608 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1039 2392439 2392822 2393072 "REF" 2393459 NIL REF (NIL T) -8 NIL NIL NIL) (-1038 2391816 2391919 2392086 "REDORDER" 2392323 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1037 2387784 2391029 2391256 "RECLOS" 2391644 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1036 2386836 2387017 2387232 "REALSOLV" 2387591 T REALSOLV (NIL) -7 NIL NIL NIL) (-1035 2386682 2386723 2386753 "REAL" 2386758 T REAL (NIL) -9 NIL 2386793 NIL) (-1034 2383165 2383967 2384851 "REAL0Q" 2385847 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1033 2378766 2379754 2380815 "REAL0" 2382146 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1032 2378237 2378483 2378577 "RDUCEAST" 2378694 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1031 2377642 2377714 2377921 "RDIV" 2378159 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1030 2376710 2376884 2377097 "RDIST" 2377464 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1029 2375307 2375594 2375966 "RDETRS" 2376418 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1028 2373119 2373573 2374111 "RDETR" 2374849 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1027 2371744 2372022 2372419 "RDEEFS" 2372835 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1026 2370253 2370559 2370984 "RDEEF" 2371432 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1025 2364314 2367234 2367264 "RCFIELD" 2368559 T RCFIELD (NIL) -9 NIL 2369290 NIL) (-1024 2362378 2362882 2363578 "RCFIELD-" 2363653 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1023 2358647 2360479 2360522 "RCAGG" 2361606 NIL RCAGG (NIL T) -9 NIL 2362071 NIL) (-1022 2358275 2358369 2358532 "RCAGG-" 2358537 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1021 2357610 2357722 2357887 "RATRET" 2358159 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1020 2357163 2357230 2357351 "RATFACT" 2357538 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1019 2356471 2356591 2356743 "RANDSRC" 2357033 T RANDSRC (NIL) -7 NIL NIL NIL) (-1018 2356205 2356249 2356322 "RADUTIL" 2356420 T RADUTIL (NIL) -7 NIL NIL NIL) (-1017 2349226 2355036 2355347 "RADIX" 2355928 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1016 2340742 2349068 2349198 "RADFF" 2349203 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1015 2340389 2340464 2340494 "RADCAT" 2340654 T RADCAT (NIL) -9 NIL NIL NIL) (-1014 2340171 2340219 2340319 "RADCAT-" 2340324 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1013 2338269 2339941 2340033 "QUEUE" 2340114 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1012 2334717 2338202 2338250 "QUAT" 2338255 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1011 2334348 2334391 2334522 "QUATCT2" 2334668 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1010 2327571 2331006 2331048 "QUATCAT" 2331839 NIL QUATCAT (NIL T) -9 NIL 2332605 NIL) (-1009 2323710 2324747 2326137 "QUATCAT-" 2326233 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1008 2321175 2322786 2322829 "QUAGG" 2323210 NIL QUAGG (NIL T) -9 NIL 2323385 NIL) (-1007 2320777 2320997 2321067 "QQUTAST" 2321127 T QQUTAST (NIL) -8 NIL NIL NIL) (-1006 2319790 2320290 2320455 "QFORM" 2320658 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1005 2310624 2315952 2315994 "QFCAT" 2316662 NIL QFCAT (NIL T) -9 NIL 2317663 NIL) (-1004 2305969 2307232 2308906 "QFCAT-" 2309002 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1003 2305600 2305643 2305774 "QFCAT2" 2305920 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1002 2305055 2305165 2305297 "QEQUAT" 2305490 T QEQUAT (NIL) -8 NIL NIL NIL) (-1001 2298181 2299254 2300440 "QCMPACK" 2303988 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1000 2295719 2296167 2296597 "QALGSET" 2297836 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-999 2294957 2295133 2295367 "QALGSET2" 2295537 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-998 2293647 2293871 2294188 "PWFFINTB" 2294730 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-997 2291829 2291997 2292351 "PUSHVAR" 2293461 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-996 2287747 2288801 2288842 "PTRANFN" 2290726 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-995 2286149 2286440 2286762 "PTPACK" 2287458 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-994 2285781 2285838 2285947 "PTFUNC2" 2286086 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-993 2280226 2284623 2284664 "PTCAT" 2284960 NIL PTCAT (NIL T) -9 NIL 2285113 NIL) (-992 2279884 2279919 2280043 "PSQFR" 2280185 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-991 2278479 2278777 2279111 "PSEUDLIN" 2279582 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-990 2265242 2267613 2269937 "PSETPK" 2276239 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-989 2258260 2261000 2261096 "PSETCAT" 2264117 NIL PSETCAT (NIL T T T T) -9 NIL 2264931 NIL) (-988 2256096 2256730 2257551 "PSETCAT-" 2257556 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-987 2255445 2255610 2255638 "PSCURVE" 2255906 T PSCURVE (NIL) -9 NIL 2256073 NIL) (-986 2251443 2252959 2253024 "PSCAT" 2253868 NIL PSCAT (NIL T T T) -9 NIL 2254108 NIL) (-985 2250506 2250722 2251122 "PSCAT-" 2251127 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-984 2248865 2249575 2249838 "PRTITION" 2250263 T PRTITION (NIL) -8 NIL NIL NIL) (-983 2248340 2248586 2248678 "PRTDAST" 2248793 T PRTDAST (NIL) -8 NIL NIL NIL) (-982 2237430 2239644 2241832 "PRS" 2246202 NIL PRS (NIL T T) -7 NIL NIL NIL) (-981 2235241 2236780 2236820 "PRQAGG" 2237003 NIL PRQAGG (NIL T) -9 NIL 2237105 NIL) (-980 2234577 2234882 2234910 "PROPLOG" 2235049 T PROPLOG (NIL) -9 NIL 2235164 NIL) (-979 2234181 2234238 2234361 "PROPFUN2" 2234500 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-978 2233496 2233617 2233789 "PROPFUN1" 2234042 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-977 2231677 2232243 2232540 "PROPFRML" 2233232 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-976 2231146 2231253 2231381 "PROPERTY" 2231569 T PROPERTY (NIL) -8 NIL NIL NIL) (-975 2225204 2229312 2230132 "PRODUCT" 2230372 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-974 2222482 2224662 2224896 "PR" 2225015 NIL PR (NIL T T) -8 NIL NIL NIL) (-973 2222278 2222310 2222369 "PRINT" 2222443 T PRINT (NIL) -7 NIL NIL NIL) (-972 2221618 2221735 2221887 "PRIMES" 2222158 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-971 2219683 2220084 2220550 "PRIMELT" 2221197 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-970 2219412 2219461 2219489 "PRIMCAT" 2219613 T PRIMCAT (NIL) -9 NIL NIL NIL) (-969 2215527 2219350 2219395 "PRIMARR" 2219400 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-968 2214534 2214712 2214940 "PRIMARR2" 2215345 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-967 2214177 2214233 2214344 "PREASSOC" 2214472 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-966 2213652 2213785 2213813 "PPCURVE" 2214018 T PPCURVE (NIL) -9 NIL 2214154 NIL) (-965 2213247 2213447 2213530 "PORTNUM" 2213589 T PORTNUM (NIL) -8 NIL NIL NIL) (-964 2210606 2211005 2211597 "POLYROOT" 2212828 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-963 2204699 2210210 2210370 "POLY" 2210479 NIL POLY (NIL T) -8 NIL NIL NIL) (-962 2204082 2204140 2204374 "POLYLIFT" 2204635 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-961 2200357 2200806 2201435 "POLYCATQ" 2203627 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-960 2186939 2192156 2192221 "POLYCAT" 2195735 NIL POLYCAT (NIL T T T) -9 NIL 2197613 NIL) (-959 2180166 2182090 2184554 "POLYCAT-" 2184559 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-958 2179753 2179821 2179941 "POLY2UP" 2180092 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-957 2179385 2179442 2179551 "POLY2" 2179690 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-956 2178070 2178309 2178585 "POLUTIL" 2179159 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-955 2176425 2176702 2177033 "POLTOPOL" 2177792 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-954 2171890 2176361 2176407 "POINT" 2176412 NIL POINT (NIL T) -8 NIL NIL NIL) (-953 2170077 2170434 2170809 "PNTHEORY" 2171535 T PNTHEORY (NIL) -7 NIL NIL NIL) (-952 2168535 2168832 2169231 "PMTOOLS" 2169775 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-951 2168128 2168206 2168323 "PMSYM" 2168451 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-950 2167636 2167705 2167880 "PMQFCAT" 2168053 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-949 2166991 2167101 2167257 "PMPRED" 2167513 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-948 2166384 2166470 2166632 "PMPREDFS" 2166892 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-947 2165048 2165256 2165634 "PMPLCAT" 2166146 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-946 2164580 2164659 2164811 "PMLSAGG" 2164963 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-945 2164053 2164129 2164311 "PMKERNEL" 2164498 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-944 2163670 2163745 2163858 "PMINS" 2163972 NIL PMINS (NIL T) -7 NIL NIL NIL) (-943 2163112 2163181 2163390 "PMFS" 2163595 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-942 2162340 2162458 2162663 "PMDOWN" 2162989 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-941 2161507 2161665 2161846 "PMASS" 2162179 T PMASS (NIL) -7 NIL NIL NIL) (-940 2160780 2160890 2161053 "PMASSFS" 2161394 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-939 2160435 2160503 2160597 "PLOTTOOL" 2160706 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-938 2155042 2156246 2157394 "PLOT" 2159307 T PLOT (NIL) -8 NIL NIL NIL) (-937 2150846 2151890 2152811 "PLOT3D" 2154141 T PLOT3D (NIL) -8 NIL NIL NIL) (-936 2149758 2149935 2150170 "PLOT1" 2150650 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-935 2125149 2129824 2134675 "PLEQN" 2145024 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-934 2124467 2124589 2124769 "PINTERP" 2125014 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-933 2124160 2124207 2124310 "PINTERPA" 2124414 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-932 2123376 2123924 2124011 "PI" 2124051 T PI (NIL) -8 NIL NIL 2124118) (-931 2121673 2122648 2122676 "PID" 2122858 T PID (NIL) -9 NIL 2122992 NIL) (-930 2121424 2121461 2121536 "PICOERCE" 2121630 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-929 2120744 2120883 2121059 "PGROEB" 2121280 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-928 2116331 2117145 2118050 "PGE" 2119859 T PGE (NIL) -7 NIL NIL NIL) (-927 2114454 2114701 2115067 "PGCD" 2116048 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-926 2113792 2113895 2114056 "PFRPAC" 2114338 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-925 2110432 2112340 2112693 "PFR" 2113471 NIL PFR (NIL T) -8 NIL NIL NIL) (-924 2108821 2109065 2109390 "PFOTOOLS" 2110179 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-923 2107354 2107593 2107944 "PFOQ" 2108578 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-922 2105855 2106067 2106423 "PFO" 2107138 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-921 2102408 2105744 2105813 "PF" 2105818 NIL PF (NIL NIL) -8 NIL NIL NIL) (-920 2099742 2101013 2101041 "PFECAT" 2101626 T PFECAT (NIL) -9 NIL 2102010 NIL) (-919 2099187 2099341 2099555 "PFECAT-" 2099560 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-918 2097790 2098042 2098343 "PFBRU" 2098936 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-917 2095656 2096008 2096440 "PFBR" 2097441 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-916 2091702 2093168 2093815 "PERM" 2095042 NIL PERM (NIL T) -8 NIL NIL NIL) (-915 2086936 2087909 2088779 "PERMGRP" 2090865 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-914 2085055 2086015 2086056 "PERMCAT" 2086456 NIL PERMCAT (NIL T) -9 NIL 2086754 NIL) (-913 2084708 2084749 2084873 "PERMAN" 2085008 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-912 2082196 2084373 2084495 "PENDTREE" 2084619 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-911 2080220 2080988 2081029 "PDRING" 2081686 NIL PDRING (NIL T) -9 NIL 2081972 NIL) (-910 2079323 2079541 2079903 "PDRING-" 2079908 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-909 2076538 2077316 2077984 "PDEPROB" 2078675 T PDEPROB (NIL) -8 NIL NIL NIL) (-908 2074083 2074587 2075142 "PDEPACK" 2076003 T PDEPACK (NIL) -7 NIL NIL NIL) (-907 2072995 2073185 2073436 "PDECOMP" 2073882 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-906 2070574 2071417 2071445 "PDECAT" 2072232 T PDECAT (NIL) -9 NIL 2072945 NIL) (-905 2070325 2070358 2070448 "PCOMP" 2070535 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-904 2068503 2069126 2069423 "PBWLB" 2070054 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-903 2060976 2062576 2063914 "PATTERN" 2067186 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-902 2060608 2060665 2060774 "PATTERN2" 2060913 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-901 2058365 2058753 2059210 "PATTERN1" 2060197 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-900 2055733 2056314 2056795 "PATRES" 2057930 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-899 2055297 2055364 2055496 "PATRES2" 2055660 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-898 2053180 2053585 2053992 "PATMATCH" 2054964 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-897 2052690 2052899 2052940 "PATMAB" 2053047 NIL PATMAB (NIL T) -9 NIL 2053130 NIL) (-896 2051208 2051544 2051802 "PATLRES" 2052495 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-895 2050754 2050877 2050918 "PATAB" 2050923 NIL PATAB (NIL T) -9 NIL 2051095 NIL) (-894 2048936 2049331 2049754 "PARTPERM" 2050351 T PARTPERM (NIL) -7 NIL NIL NIL) (-893 2048557 2048620 2048722 "PARSURF" 2048867 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-892 2048189 2048246 2048355 "PARSU2" 2048494 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-891 2047953 2047993 2048060 "PARSER" 2048142 T PARSER (NIL) -7 NIL NIL NIL) (-890 2047574 2047637 2047739 "PARSCURV" 2047884 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-889 2047206 2047263 2047372 "PARSC2" 2047511 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-888 2046845 2046903 2047000 "PARPCURV" 2047142 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-887 2046477 2046534 2046643 "PARPC2" 2046782 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-886 2045538 2045850 2046032 "PARAMAST" 2046315 T PARAMAST (NIL) -8 NIL NIL NIL) (-885 2045058 2045144 2045263 "PAN2EXPR" 2045439 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-884 2043835 2044179 2044407 "PALETTE" 2044850 T PALETTE (NIL) -8 NIL NIL NIL) (-883 2042228 2042840 2043200 "PAIR" 2043521 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-882 2036007 2041485 2041680 "PADICRC" 2042082 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-881 2029131 2035351 2035536 "PADICRAT" 2035854 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-880 2027446 2029068 2029113 "PADIC" 2029118 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-879 2024556 2026120 2026160 "PADICCT" 2026741 NIL PADICCT (NIL NIL) -9 NIL 2027023 NIL) (-878 2023513 2023713 2023981 "PADEPAC" 2024343 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-877 2022725 2022858 2023064 "PADE" 2023375 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-876 2021112 2021933 2022213 "OWP" 2022529 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-875 2020605 2020818 2020915 "OVERSET" 2021035 T OVERSET (NIL) -8 NIL NIL NIL) (-874 2019651 2020210 2020382 "OVAR" 2020473 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-873 2018915 2019036 2019197 "OUT" 2019510 T OUT (NIL) -7 NIL NIL NIL) (-872 2007787 2010024 2012224 "OUTFORM" 2016735 T OUTFORM (NIL) -8 NIL NIL NIL) (-871 2007123 2007384 2007511 "OUTBFILE" 2007680 T OUTBFILE (NIL) -8 NIL NIL NIL) (-870 2006430 2006595 2006623 "OUTBCON" 2006941 T OUTBCON (NIL) -9 NIL 2007107 NIL) (-869 2006031 2006143 2006300 "OUTBCON-" 2006305 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-868 2005411 2005760 2005849 "OSI" 2005962 T OSI (NIL) -8 NIL NIL NIL) (-867 2004941 2005279 2005307 "OSGROUP" 2005312 T OSGROUP (NIL) -9 NIL 2005334 NIL) (-866 2003686 2003913 2004198 "ORTHPOL" 2004688 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-865 2001237 2003521 2003642 "OREUP" 2003647 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-864 1998640 2000928 2001055 "ORESUP" 2001179 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-863 1996168 1996668 1997229 "OREPCTO" 1998129 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-862 1989854 1992055 1992096 "OREPCAT" 1994444 NIL OREPCAT (NIL T) -9 NIL 1995548 NIL) (-861 1987001 1987783 1988841 "OREPCAT-" 1988846 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-860 1986152 1986450 1986478 "ORDSET" 1986787 T ORDSET (NIL) -9 NIL 1986951 NIL) (-859 1985583 1985731 1985955 "ORDSET-" 1985960 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-858 1984148 1984939 1984967 "ORDRING" 1985169 T ORDRING (NIL) -9 NIL 1985294 NIL) (-857 1983793 1983887 1984031 "ORDRING-" 1984036 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-856 1983173 1983636 1983664 "ORDMON" 1983669 T ORDMON (NIL) -9 NIL 1983690 NIL) (-855 1982335 1982482 1982677 "ORDFUNS" 1983022 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-854 1981673 1982092 1982120 "ORDFIN" 1982185 T ORDFIN (NIL) -9 NIL 1982259 NIL) (-853 1978232 1980259 1980668 "ORDCOMP" 1981297 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-852 1977498 1977625 1977811 "ORDCOMP2" 1978092 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-851 1974079 1974989 1975803 "OPTPROB" 1976704 T OPTPROB (NIL) -8 NIL NIL NIL) (-850 1970881 1971520 1972224 "OPTPACK" 1973395 T OPTPACK (NIL) -7 NIL NIL NIL) (-849 1968568 1969334 1969362 "OPTCAT" 1970181 T OPTCAT (NIL) -9 NIL 1970831 NIL) (-848 1967952 1968245 1968350 "OPSIG" 1968483 T OPSIG (NIL) -8 NIL NIL NIL) (-847 1967720 1967759 1967825 "OPQUERY" 1967906 T OPQUERY (NIL) -7 NIL NIL NIL) (-846 1964851 1966031 1966535 "OP" 1967249 NIL OP (NIL T) -8 NIL NIL NIL) (-845 1964225 1964451 1964492 "OPERCAT" 1964704 NIL OPERCAT (NIL T) -9 NIL 1964801 NIL) (-844 1963980 1964036 1964153 "OPERCAT-" 1964158 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-843 1960793 1962777 1963146 "ONECOMP" 1963644 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-842 1960098 1960213 1960387 "ONECOMP2" 1960665 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1959517 1959623 1959753 "OMSERVER" 1959988 T OMSERVER (NIL) -7 NIL NIL NIL) (-840 1956379 1958957 1958997 "OMSAGG" 1959058 NIL OMSAGG (NIL T) -9 NIL 1959122 NIL) (-839 1955002 1955265 1955547 "OMPKG" 1956117 T OMPKG (NIL) -7 NIL NIL NIL) (-838 1954432 1954535 1954563 "OM" 1954862 T OM (NIL) -9 NIL NIL NIL) (-837 1952979 1953981 1954150 "OMLO" 1954313 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-836 1951939 1952086 1952306 "OMEXPR" 1952805 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-835 1951230 1951485 1951621 "OMERR" 1951823 T OMERR (NIL) -8 NIL NIL NIL) (-834 1950381 1950651 1950811 "OMERRK" 1951090 T OMERRK (NIL) -8 NIL NIL NIL) (-833 1949832 1950058 1950166 "OMENC" 1950293 T OMENC (NIL) -8 NIL NIL NIL) (-832 1943727 1944912 1946083 "OMDEV" 1948681 T OMDEV (NIL) -8 NIL NIL NIL) (-831 1942796 1942967 1943161 "OMCONN" 1943553 T OMCONN (NIL) -8 NIL NIL NIL) (-830 1941317 1942293 1942321 "OINTDOM" 1942326 T OINTDOM (NIL) -9 NIL 1942347 NIL) (-829 1938655 1940005 1940342 "OFMONOID" 1941012 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-828 1938066 1938592 1938637 "ODVAR" 1938642 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-827 1935489 1937811 1937966 "ODR" 1937971 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-826 1927981 1935265 1935391 "ODPOL" 1935396 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-825 1921666 1927853 1927958 "ODP" 1927963 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-824 1920432 1920647 1920922 "ODETOOLS" 1921440 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-823 1917399 1918057 1918773 "ODESYS" 1919765 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-822 1912281 1913189 1914214 "ODERTRIC" 1916474 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-821 1911707 1911789 1911983 "ODERED" 1912193 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-820 1908595 1909143 1909820 "ODERAT" 1911130 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-819 1905554 1906019 1906616 "ODEPRRIC" 1908124 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-818 1903497 1904093 1904579 "ODEPROB" 1905088 T ODEPROB (NIL) -8 NIL NIL NIL) (-817 1900017 1900502 1901149 "ODEPRIM" 1902976 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-816 1899266 1899368 1899628 "ODEPAL" 1899909 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-815 1895428 1896219 1897083 "ODEPACK" 1898422 T ODEPACK (NIL) -7 NIL NIL NIL) (-814 1894489 1894596 1894818 "ODEINT" 1895317 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-813 1888590 1890015 1891462 "ODEIFTBL" 1893062 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-812 1883988 1884774 1885726 "ODEEF" 1887749 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-811 1883337 1883426 1883649 "ODECONST" 1883893 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-810 1881462 1882123 1882151 "ODECAT" 1882756 T ODECAT (NIL) -9 NIL 1883287 NIL) (-809 1878317 1881167 1881289 "OCT" 1881372 NIL OCT (NIL T) -8 NIL NIL NIL) (-808 1877955 1877998 1878125 "OCTCT2" 1878268 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-807 1872566 1875001 1875041 "OC" 1876138 NIL OC (NIL T) -9 NIL 1876996 NIL) (-806 1869793 1870541 1871531 "OC-" 1871625 NIL OC- (NIL T T) -8 NIL NIL NIL) (-805 1869145 1869613 1869641 "OCAMON" 1869646 T OCAMON (NIL) -9 NIL 1869667 NIL) (-804 1868676 1869017 1869045 "OASGP" 1869050 T OASGP (NIL) -9 NIL 1869070 NIL) (-803 1867937 1868426 1868454 "OAMONS" 1868494 T OAMONS (NIL) -9 NIL 1868537 NIL) (-802 1867351 1867784 1867812 "OAMON" 1867817 T OAMON (NIL) -9 NIL 1867837 NIL) (-801 1866609 1867127 1867155 "OAGROUP" 1867160 T OAGROUP (NIL) -9 NIL 1867180 NIL) (-800 1866299 1866349 1866437 "NUMTUBE" 1866553 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-799 1859872 1861390 1862926 "NUMQUAD" 1864783 T NUMQUAD (NIL) -7 NIL NIL NIL) (-798 1855628 1856616 1857641 "NUMODE" 1858867 T NUMODE (NIL) -7 NIL NIL NIL) (-797 1852983 1853863 1853891 "NUMINT" 1854814 T NUMINT (NIL) -9 NIL 1855578 NIL) (-796 1851931 1852128 1852346 "NUMFMT" 1852785 T NUMFMT (NIL) -7 NIL NIL NIL) (-795 1838290 1841235 1843767 "NUMERIC" 1849438 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-794 1832660 1837739 1837834 "NTSCAT" 1837839 NIL NTSCAT (NIL T T T T) -9 NIL 1837878 NIL) (-793 1831854 1832019 1832212 "NTPOLFN" 1832499 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-792 1819842 1828679 1829491 "NSUP" 1831075 NIL NSUP (NIL T) -8 NIL NIL NIL) (-791 1819474 1819531 1819640 "NSUP2" 1819779 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-790 1809611 1819248 1819381 "NSMP" 1819386 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-789 1808043 1808344 1808701 "NREP" 1809299 NIL NREP (NIL T) -7 NIL NIL NIL) (-788 1806634 1806886 1807244 "NPCOEF" 1807786 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-787 1805700 1805815 1806031 "NORMRETR" 1806515 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-786 1803741 1804031 1804440 "NORMPK" 1805408 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-785 1803426 1803454 1803578 "NORMMA" 1803707 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-784 1803226 1803383 1803412 "NONE" 1803417 T NONE (NIL) -8 NIL NIL NIL) (-783 1803015 1803044 1803113 "NONE1" 1803190 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-782 1802512 1802574 1802753 "NODE1" 1802947 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-781 1800793 1801644 1801899 "NNI" 1802246 T NNI (NIL) -8 NIL NIL 1802481) (-780 1799213 1799526 1799890 "NLINSOL" 1800461 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-779 1795454 1796449 1797348 "NIPROB" 1798334 T NIPROB (NIL) -8 NIL NIL NIL) (-778 1794211 1794445 1794747 "NFINTBAS" 1795216 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-777 1793385 1793861 1793902 "NETCLT" 1794074 NIL NETCLT (NIL T) -9 NIL 1794156 NIL) (-776 1792093 1792324 1792605 "NCODIV" 1793153 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-775 1791855 1791892 1791967 "NCNTFRAC" 1792050 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-774 1790035 1790399 1790819 "NCEP" 1791480 NIL NCEP (NIL T) -7 NIL NIL NIL) (-773 1788886 1789659 1789687 "NASRING" 1789797 T NASRING (NIL) -9 NIL 1789877 NIL) (-772 1788681 1788725 1788819 "NASRING-" 1788824 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-771 1787788 1788313 1788341 "NARNG" 1788458 T NARNG (NIL) -9 NIL 1788549 NIL) (-770 1787480 1787547 1787681 "NARNG-" 1787686 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-769 1786359 1786566 1786801 "NAGSP" 1787265 T NAGSP (NIL) -7 NIL NIL NIL) (-768 1777631 1779315 1780988 "NAGS" 1784706 T NAGS (NIL) -7 NIL NIL NIL) (-767 1776179 1776487 1776818 "NAGF07" 1777320 T NAGF07 (NIL) -7 NIL NIL NIL) (-766 1770717 1772008 1773315 "NAGF04" 1774892 T NAGF04 (NIL) -7 NIL NIL NIL) (-765 1763685 1765299 1766932 "NAGF02" 1769104 T NAGF02 (NIL) -7 NIL NIL NIL) (-764 1758909 1760009 1761126 "NAGF01" 1762588 T NAGF01 (NIL) -7 NIL NIL NIL) (-763 1752537 1754103 1755688 "NAGE04" 1757344 T NAGE04 (NIL) -7 NIL NIL NIL) (-762 1743706 1745827 1747957 "NAGE02" 1750427 T NAGE02 (NIL) -7 NIL NIL NIL) (-761 1739659 1740606 1741570 "NAGE01" 1742762 T NAGE01 (NIL) -7 NIL NIL NIL) (-760 1737454 1737988 1738546 "NAGD03" 1739121 T NAGD03 (NIL) -7 NIL NIL NIL) (-759 1729204 1731132 1733086 "NAGD02" 1735520 T NAGD02 (NIL) -7 NIL NIL NIL) (-758 1723015 1724440 1725880 "NAGD01" 1727784 T NAGD01 (NIL) -7 NIL NIL NIL) (-757 1719224 1720046 1720883 "NAGC06" 1722198 T NAGC06 (NIL) -7 NIL NIL NIL) (-756 1717689 1718021 1718377 "NAGC05" 1718888 T NAGC05 (NIL) -7 NIL NIL NIL) (-755 1717065 1717184 1717328 "NAGC02" 1717565 T NAGC02 (NIL) -7 NIL NIL NIL) (-754 1716024 1716607 1716647 "NAALG" 1716726 NIL NAALG (NIL T) -9 NIL 1716787 NIL) (-753 1715859 1715888 1715978 "NAALG-" 1715983 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-752 1709809 1710917 1712104 "MULTSQFR" 1714755 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-751 1709128 1709203 1709387 "MULTFACT" 1709721 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-750 1701852 1705765 1705818 "MTSCAT" 1706888 NIL MTSCAT (NIL T T) -9 NIL 1707403 NIL) (-749 1701564 1701618 1701710 "MTHING" 1701792 NIL MTHING (NIL T) -7 NIL NIL NIL) (-748 1701356 1701389 1701449 "MSYSCMD" 1701524 T MSYSCMD (NIL) -7 NIL NIL NIL) (-747 1697438 1700111 1700431 "MSET" 1701069 NIL MSET (NIL T) -8 NIL NIL NIL) (-746 1694507 1696999 1697040 "MSETAGG" 1697045 NIL MSETAGG (NIL T) -9 NIL 1697079 NIL) (-745 1690349 1691886 1692631 "MRING" 1693807 NIL MRING (NIL T T) -8 NIL NIL NIL) (-744 1689915 1689982 1690113 "MRF2" 1690276 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-743 1689533 1689568 1689712 "MRATFAC" 1689874 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-742 1687145 1687440 1687871 "MPRFF" 1689238 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-741 1681353 1686999 1687096 "MPOLY" 1687101 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-740 1680843 1680878 1681086 "MPCPF" 1681312 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-739 1680357 1680400 1680584 "MPC3" 1680794 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-738 1679552 1679633 1679854 "MPC2" 1680272 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-737 1677853 1678190 1678580 "MONOTOOL" 1679212 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-736 1677078 1677395 1677423 "MONOID" 1677642 T MONOID (NIL) -9 NIL 1677789 NIL) (-735 1676624 1676743 1676924 "MONOID-" 1676929 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-734 1666803 1672844 1672903 "MONOGEN" 1673577 NIL MONOGEN (NIL T T) -9 NIL 1674033 NIL) (-733 1664021 1664756 1665756 "MONOGEN-" 1665875 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-732 1662854 1663300 1663328 "MONADWU" 1663720 T MONADWU (NIL) -9 NIL 1663958 NIL) (-731 1662226 1662385 1662633 "MONADWU-" 1662638 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-730 1661585 1661829 1661857 "MONAD" 1662064 T MONAD (NIL) -9 NIL 1662176 NIL) (-729 1661270 1661348 1661480 "MONAD-" 1661485 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-728 1659559 1660183 1660462 "MOEBIUS" 1661023 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-727 1658837 1659241 1659281 "MODULE" 1659286 NIL MODULE (NIL T) -9 NIL 1659325 NIL) (-726 1658405 1658501 1658691 "MODULE-" 1658696 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-725 1656085 1656769 1657096 "MODRING" 1658229 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-724 1653029 1654190 1654711 "MODOP" 1655614 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-723 1651617 1652096 1652373 "MODMONOM" 1652892 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-722 1641572 1649908 1650322 "MODMON" 1651254 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-721 1638728 1640416 1640692 "MODFIELD" 1641447 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-720 1637705 1638009 1638199 "MMLFORM" 1638558 T MMLFORM (NIL) -8 NIL NIL NIL) (-719 1637231 1637274 1637453 "MMAP" 1637656 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-718 1635310 1636077 1636118 "MLO" 1636541 NIL MLO (NIL T) -9 NIL 1636783 NIL) (-717 1632676 1633192 1633794 "MLIFT" 1634791 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-716 1632067 1632151 1632305 "MKUCFUNC" 1632587 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-715 1631666 1631736 1631859 "MKRECORD" 1631990 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-714 1630713 1630875 1631103 "MKFUNC" 1631477 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-713 1630101 1630205 1630361 "MKFLCFN" 1630596 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-712 1629378 1629480 1629665 "MKBCFUNC" 1629994 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-711 1626053 1628932 1629068 "MINT" 1629262 T MINT (NIL) -8 NIL NIL NIL) (-710 1624865 1625108 1625385 "MHROWRED" 1625808 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-709 1620245 1623400 1623805 "MFLOAT" 1624480 T MFLOAT (NIL) -8 NIL NIL NIL) (-708 1619602 1619678 1619849 "MFINFACT" 1620157 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-707 1615917 1616765 1617649 "MESH" 1618738 T MESH (NIL) -7 NIL NIL NIL) (-706 1614307 1614619 1614972 "MDDFACT" 1615604 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-705 1611102 1613466 1613507 "MDAGG" 1613762 NIL MDAGG (NIL T) -9 NIL 1613905 NIL) (-704 1600749 1610395 1610602 "MCMPLX" 1610915 T MCMPLX (NIL) -8 NIL NIL NIL) (-703 1599886 1600032 1600233 "MCDEN" 1600598 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-702 1597776 1598046 1598426 "MCALCFN" 1599616 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-701 1596701 1596941 1597174 "MAYBE" 1597582 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-700 1594313 1594836 1595398 "MATSTOR" 1596172 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-699 1590270 1593685 1593933 "MATRIX" 1594098 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-698 1586036 1586743 1587479 "MATLIN" 1589627 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-697 1576142 1579328 1579405 "MATCAT" 1584285 NIL MATCAT (NIL T T T) -9 NIL 1585702 NIL) (-696 1572498 1573519 1574875 "MATCAT-" 1574880 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-695 1571092 1571245 1571578 "MATCAT2" 1572333 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-694 1569204 1569528 1569912 "MAPPKG3" 1570767 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-693 1568185 1568358 1568580 "MAPPKG2" 1569028 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-692 1566684 1566968 1567295 "MAPPKG1" 1567891 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-691 1565763 1566090 1566267 "MAPPAST" 1566527 T MAPPAST (NIL) -8 NIL NIL NIL) (-690 1565374 1565432 1565555 "MAPHACK3" 1565699 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-689 1564966 1565027 1565141 "MAPHACK2" 1565306 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-688 1564404 1564507 1564649 "MAPHACK1" 1564857 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-687 1562483 1563104 1563408 "MAGMA" 1564132 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-686 1561962 1562207 1562298 "MACROAST" 1562412 T MACROAST (NIL) -8 NIL NIL NIL) (-685 1558380 1560201 1560662 "M3D" 1561534 NIL M3D (NIL T) -8 NIL NIL NIL) (-684 1552455 1556719 1556760 "LZSTAGG" 1557542 NIL LZSTAGG (NIL T) -9 NIL 1557837 NIL) (-683 1548413 1549586 1551043 "LZSTAGG-" 1551048 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-682 1545500 1546304 1546791 "LWORD" 1547958 NIL LWORD (NIL T) -8 NIL NIL NIL) (-681 1545076 1545304 1545379 "LSTAST" 1545445 T LSTAST (NIL) -8 NIL NIL NIL) (-680 1538153 1544847 1544981 "LSQM" 1544986 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-679 1537377 1537516 1537744 "LSPP" 1538008 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-678 1535189 1535490 1535946 "LSMP" 1537066 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-677 1531968 1532642 1533372 "LSMP1" 1534491 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-676 1525814 1531105 1531146 "LSAGG" 1531208 NIL LSAGG (NIL T) -9 NIL 1531286 NIL) (-675 1522509 1523433 1524646 "LSAGG-" 1524651 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-674 1520108 1521653 1521902 "LPOLY" 1522304 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-673 1519690 1519775 1519898 "LPEFRAC" 1520017 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-672 1518011 1518784 1519037 "LO" 1519522 NIL LO (NIL T T T) -8 NIL NIL NIL) (-671 1517663 1517775 1517803 "LOGIC" 1517914 T LOGIC (NIL) -9 NIL 1517995 NIL) (-670 1517525 1517548 1517619 "LOGIC-" 1517624 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-669 1516718 1516858 1517051 "LODOOPS" 1517381 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-668 1514141 1516634 1516700 "LODO" 1516705 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-667 1512679 1512914 1513267 "LODOF" 1513888 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-666 1508883 1511314 1511355 "LODOCAT" 1511793 NIL LODOCAT (NIL T) -9 NIL 1512004 NIL) (-665 1508616 1508674 1508801 "LODOCAT-" 1508806 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-664 1505936 1508457 1508575 "LODO2" 1508580 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-663 1503371 1505873 1505918 "LODO1" 1505923 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-662 1502252 1502417 1502722 "LODEEF" 1503194 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-661 1497555 1500446 1500487 "LNAGG" 1501349 NIL LNAGG (NIL T) -9 NIL 1501784 NIL) (-660 1496702 1496916 1497258 "LNAGG-" 1497263 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-659 1492838 1493627 1494266 "LMOPS" 1496117 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-658 1492241 1492629 1492670 "LMODULE" 1492675 NIL LMODULE (NIL T) -9 NIL 1492701 NIL) (-657 1489439 1491886 1492009 "LMDICT" 1492151 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-656 1488845 1489066 1489107 "LLINSET" 1489298 NIL LLINSET (NIL T) -9 NIL 1489389 NIL) (-655 1488544 1488753 1488813 "LITERAL" 1488818 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-654 1481707 1487478 1487782 "LIST" 1488273 NIL LIST (NIL T) -8 NIL NIL NIL) (-653 1481232 1481306 1481445 "LIST3" 1481627 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-652 1480239 1480417 1480645 "LIST2" 1481050 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-651 1478373 1478685 1479084 "LIST2MAP" 1479886 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-650 1477969 1478206 1478247 "LINSET" 1478252 NIL LINSET (NIL T) -9 NIL 1478286 NIL) (-649 1476698 1477231 1477272 "LINEXP" 1477623 NIL LINEXP (NIL T) -9 NIL 1477814 NIL) (-648 1475275 1475535 1475846 "LINDEP" 1476450 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-647 1472042 1472761 1473538 "LIMITRF" 1474530 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-646 1470345 1470641 1471050 "LIMITPS" 1471737 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-645 1464773 1469856 1470084 "LIE" 1470166 NIL LIE (NIL T T) -8 NIL NIL NIL) (-644 1463721 1464190 1464230 "LIECAT" 1464370 NIL LIECAT (NIL T) -9 NIL 1464521 NIL) (-643 1463562 1463589 1463677 "LIECAT-" 1463682 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-642 1456149 1463102 1463258 "LIB" 1463426 T LIB (NIL) -8 NIL NIL NIL) (-641 1451784 1452667 1453602 "LGROBP" 1455266 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-640 1449782 1450056 1450406 "LF" 1451505 NIL LF (NIL T T) -7 NIL NIL NIL) (-639 1448622 1449314 1449342 "LFCAT" 1449549 T LFCAT (NIL) -9 NIL 1449688 NIL) (-638 1445524 1446154 1446842 "LEXTRIPK" 1447986 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-637 1442268 1443094 1443597 "LEXP" 1445104 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-636 1441744 1441989 1442081 "LETAST" 1442196 T LETAST (NIL) -8 NIL NIL NIL) (-635 1440142 1440455 1440856 "LEADCDET" 1441426 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-634 1439332 1439406 1439635 "LAZM3PK" 1440063 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-633 1434249 1437409 1437947 "LAUPOL" 1438844 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-632 1433828 1433872 1434033 "LAPLACE" 1434199 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-631 1431767 1432929 1433180 "LA" 1433661 NIL LA (NIL T T T) -8 NIL NIL NIL) (-630 1430761 1431345 1431386 "LALG" 1431448 NIL LALG (NIL T) -9 NIL 1431507 NIL) (-629 1430475 1430534 1430670 "LALG-" 1430675 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-628 1430310 1430334 1430375 "KVTFROM" 1430437 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-627 1429233 1429677 1429862 "KTVLOGIC" 1430145 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-626 1429068 1429092 1429133 "KRCFROM" 1429195 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-625 1427972 1428159 1428458 "KOVACIC" 1428868 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-624 1427807 1427831 1427872 "KONVERT" 1427934 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-623 1427642 1427666 1427707 "KOERCE" 1427769 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-622 1425473 1426235 1426612 "KERNEL" 1427298 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-621 1424969 1425050 1425182 "KERNEL2" 1425387 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-620 1418739 1423508 1423562 "KDAGG" 1423939 NIL KDAGG (NIL T T) -9 NIL 1424145 NIL) (-619 1418268 1418392 1418597 "KDAGG-" 1418602 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-618 1411416 1417929 1418084 "KAFILE" 1418146 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-617 1405844 1410927 1411155 "JORDAN" 1411237 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-616 1405223 1405493 1405614 "JOINAST" 1405743 T JOINAST (NIL) -8 NIL NIL NIL) (-615 1405069 1405128 1405183 "JAVACODE" 1405188 T JAVACODE (NIL) -8 NIL NIL NIL) (-614 1401321 1403274 1403328 "IXAGG" 1404257 NIL IXAGG (NIL T T) -9 NIL 1404716 NIL) (-613 1400240 1400546 1400965 "IXAGG-" 1400970 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-612 1395770 1400162 1400221 "IVECTOR" 1400226 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-611 1394536 1394773 1395039 "ITUPLE" 1395537 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-610 1393038 1393215 1393510 "ITRIGMNP" 1394358 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-609 1391783 1391987 1392270 "ITFUN3" 1392814 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-608 1391415 1391472 1391581 "ITFUN2" 1391720 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-607 1390574 1390895 1391069 "ITFORM" 1391261 T ITFORM (NIL) -8 NIL NIL NIL) (-606 1388535 1389594 1389872 "ITAYLOR" 1390329 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-605 1377480 1382672 1383835 "ISUPS" 1387405 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-604 1376584 1376724 1376960 "ISUMP" 1377327 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-603 1371959 1376529 1376570 "ISTRING" 1376575 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-602 1371435 1371680 1371772 "ISAST" 1371887 T ISAST (NIL) -8 NIL NIL NIL) (-601 1370644 1370726 1370942 "IRURPK" 1371349 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-600 1369580 1369781 1370021 "IRSN" 1370424 T IRSN (NIL) -7 NIL NIL NIL) (-599 1367651 1368006 1368435 "IRRF2F" 1369218 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-598 1367398 1367436 1367512 "IRREDFFX" 1367607 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-597 1366013 1366272 1366571 "IROOT" 1367131 NIL IROOT (NIL T) -7 NIL NIL NIL) (-596 1362617 1363697 1364389 "IR" 1365353 NIL IR (NIL T) -8 NIL NIL NIL) (-595 1361822 1362110 1362261 "IRFORM" 1362486 T IRFORM (NIL) -8 NIL NIL NIL) (-594 1359435 1359930 1360496 "IR2" 1361300 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-593 1358535 1358648 1358862 "IR2F" 1359318 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-592 1358326 1358360 1358420 "IPRNTPK" 1358495 T IPRNTPK (NIL) -7 NIL NIL NIL) (-591 1354907 1358215 1358284 "IPF" 1358289 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-590 1353234 1354832 1354889 "IPADIC" 1354894 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-589 1352546 1352794 1352924 "IP4ADDR" 1353124 T IP4ADDR (NIL) -8 NIL NIL NIL) (-588 1351920 1352175 1352307 "IOMODE" 1352434 T IOMODE (NIL) -8 NIL NIL NIL) (-587 1350993 1351517 1351644 "IOBFILE" 1351813 T IOBFILE (NIL) -8 NIL NIL NIL) (-586 1350481 1350897 1350925 "IOBCON" 1350930 T IOBCON (NIL) -9 NIL 1350951 NIL) (-585 1349992 1350050 1350233 "INVLAPLA" 1350417 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-584 1339640 1341994 1344380 "INTTR" 1347656 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-583 1335975 1336717 1337582 "INTTOOLS" 1338825 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-582 1335561 1335652 1335769 "INTSLPE" 1335878 T INTSLPE (NIL) -7 NIL NIL NIL) (-581 1333514 1335484 1335543 "INTRVL" 1335548 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-580 1331116 1331628 1332203 "INTRF" 1332999 NIL INTRF (NIL T) -7 NIL NIL NIL) (-579 1330527 1330624 1330766 "INTRET" 1331014 NIL INTRET (NIL T) -7 NIL NIL NIL) (-578 1328524 1328913 1329383 "INTRAT" 1330135 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-577 1325787 1326370 1326989 "INTPM" 1328009 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-576 1322532 1323131 1323869 "INTPAF" 1325173 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-575 1317711 1318673 1319724 "INTPACK" 1321501 T INTPACK (NIL) -7 NIL NIL NIL) (-574 1314609 1317508 1317617 "INT" 1317622 T INT (NIL) -8 NIL NIL NIL) (-573 1313861 1314013 1314221 "INTHERTR" 1314451 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-572 1313300 1313380 1313568 "INTHERAL" 1313775 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-571 1311146 1311589 1312046 "INTHEORY" 1312863 T INTHEORY (NIL) -7 NIL NIL NIL) (-570 1302552 1304173 1305945 "INTG0" 1309498 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-569 1283125 1287915 1292725 "INTFTBL" 1297762 T INTFTBL (NIL) -8 NIL NIL NIL) (-568 1282374 1282512 1282685 "INTFACT" 1282984 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-567 1279801 1280247 1280804 "INTEF" 1281928 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-566 1278168 1278907 1278935 "INTDOM" 1279236 T INTDOM (NIL) -9 NIL 1279443 NIL) (-565 1277537 1277711 1277953 "INTDOM-" 1277958 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-564 1273925 1275853 1275907 "INTCAT" 1276706 NIL INTCAT (NIL T) -9 NIL 1277027 NIL) (-563 1273397 1273500 1273628 "INTBIT" 1273817 T INTBIT (NIL) -7 NIL NIL NIL) (-562 1272096 1272250 1272557 "INTALG" 1273242 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-561 1271579 1271669 1271826 "INTAF" 1272000 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-560 1264922 1271389 1271529 "INTABL" 1271534 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-559 1264255 1264721 1264786 "INT8" 1264820 T INT8 (NIL) -8 NIL NIL 1264865) (-558 1263587 1264053 1264118 "INT64" 1264152 T INT64 (NIL) -8 NIL NIL 1264197) (-557 1262919 1263385 1263450 "INT32" 1263484 T INT32 (NIL) -8 NIL NIL 1263529) (-556 1262251 1262717 1262782 "INT16" 1262816 T INT16 (NIL) -8 NIL NIL 1262861) (-555 1257059 1259825 1259853 "INS" 1260787 T INS (NIL) -9 NIL 1261452 NIL) (-554 1254299 1255070 1256044 "INS-" 1256117 NIL INS- (NIL T) -8 NIL NIL NIL) (-553 1253074 1253301 1253599 "INPSIGN" 1254052 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-552 1252192 1252309 1252506 "INPRODPF" 1252954 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-551 1251086 1251203 1251440 "INPRODFF" 1252072 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-550 1250086 1250238 1250498 "INNMFACT" 1250922 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-549 1249283 1249380 1249568 "INMODGCD" 1249985 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-548 1247791 1248036 1248360 "INFSP" 1249028 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-547 1246975 1247092 1247275 "INFPROD0" 1247671 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-546 1243830 1245040 1245555 "INFORM" 1246468 T INFORM (NIL) -8 NIL NIL NIL) (-545 1243440 1243500 1243598 "INFORM1" 1243765 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-544 1242963 1243052 1243166 "INFINITY" 1243346 T INFINITY (NIL) -7 NIL NIL NIL) (-543 1242139 1242683 1242784 "INETCLTS" 1242882 T INETCLTS (NIL) -8 NIL NIL NIL) (-542 1240755 1241005 1241326 "INEP" 1241887 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-541 1240004 1240652 1240717 "INDE" 1240722 NIL INDE (NIL T) -8 NIL NIL NIL) (-540 1239568 1239636 1239753 "INCRMAPS" 1239931 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-539 1238386 1238837 1239043 "INBFILE" 1239382 T INBFILE (NIL) -8 NIL NIL NIL) (-538 1233685 1234622 1235566 "INBFF" 1237474 NIL INBFF (NIL T) -7 NIL NIL NIL) (-537 1232593 1232862 1232890 "INBCON" 1233403 T INBCON (NIL) -9 NIL 1233669 NIL) (-536 1231845 1232068 1232344 "INBCON-" 1232349 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-535 1231324 1231569 1231660 "INAST" 1231774 T INAST (NIL) -8 NIL NIL NIL) (-534 1230751 1231003 1231109 "IMPTAST" 1231238 T IMPTAST (NIL) -8 NIL NIL NIL) (-533 1227197 1230595 1230699 "IMATRIX" 1230704 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-532 1225905 1226028 1226344 "IMATQF" 1227053 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-531 1224125 1224352 1224689 "IMATLIN" 1225661 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-530 1218703 1224049 1224107 "ILIST" 1224112 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-529 1216608 1218563 1218676 "IIARRAY2" 1218681 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-528 1212006 1216519 1216583 "IFF" 1216588 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-527 1211353 1211623 1211739 "IFAST" 1211910 T IFAST (NIL) -8 NIL NIL NIL) (-526 1206348 1210645 1210833 "IFARRAY" 1211210 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-525 1205528 1206252 1206325 "IFAMON" 1206330 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-524 1205112 1205177 1205231 "IEVALAB" 1205438 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-523 1204787 1204855 1205015 "IEVALAB-" 1205020 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-522 1204418 1204701 1204764 "IDPO" 1204769 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1203668 1204307 1204382 "IDPOAMS" 1204387 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-520 1202975 1203557 1203632 "IDPOAM" 1203637 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-519 1202034 1202310 1202363 "IDPC" 1202776 NIL IDPC (NIL T T) -9 NIL 1202925 NIL) (-518 1201503 1201926 1201999 "IDPAM" 1202004 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-517 1200879 1201395 1201468 "IDPAG" 1201473 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-516 1200524 1200715 1200790 "IDENT" 1200824 T IDENT (NIL) -8 NIL NIL NIL) (-515 1196779 1197627 1198522 "IDECOMP" 1199681 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-514 1189616 1190702 1191749 "IDEAL" 1195815 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-513 1188776 1188888 1189088 "ICDEN" 1189500 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-512 1187847 1188256 1188403 "ICARD" 1188649 T ICARD (NIL) -8 NIL NIL NIL) (-511 1185907 1186220 1186625 "IBPTOOLS" 1187524 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-510 1181514 1185527 1185640 "IBITS" 1185826 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-509 1178237 1178813 1179508 "IBATOOL" 1180931 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-508 1176016 1176478 1177011 "IBACHIN" 1177772 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-507 1173845 1175862 1175965 "IARRAY2" 1175970 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-506 1169951 1173771 1173828 "IARRAY1" 1173833 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-505 1163989 1168363 1168844 "IAN" 1169490 T IAN (NIL) -8 NIL NIL NIL) (-504 1163500 1163557 1163730 "IALGFACT" 1163926 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-503 1163028 1163141 1163169 "HYPCAT" 1163376 T HYPCAT (NIL) -9 NIL NIL NIL) (-502 1162566 1162683 1162869 "HYPCAT-" 1162874 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-501 1162161 1162361 1162444 "HOSTNAME" 1162503 T HOSTNAME (NIL) -8 NIL NIL NIL) (-500 1162006 1162043 1162084 "HOMOTOP" 1162089 NIL HOMOTOP (NIL T) -9 NIL 1162122 NIL) (-499 1158638 1160016 1160057 "HOAGG" 1161038 NIL HOAGG (NIL T) -9 NIL 1161717 NIL) (-498 1157232 1157631 1158157 "HOAGG-" 1158162 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-497 1151141 1156825 1156975 "HEXADEC" 1157102 T HEXADEC (NIL) -8 NIL NIL NIL) (-496 1149889 1150111 1150374 "HEUGCD" 1150918 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-495 1148965 1149726 1149856 "HELLFDIV" 1149861 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-494 1147144 1148742 1148830 "HEAP" 1148909 NIL HEAP (NIL T) -8 NIL NIL NIL) (-493 1146407 1146696 1146830 "HEADAST" 1147030 T HEADAST (NIL) -8 NIL NIL NIL) (-492 1140136 1146322 1146384 "HDP" 1146389 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-491 1134035 1139771 1139923 "HDMP" 1140037 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-490 1133359 1133499 1133663 "HB" 1133891 T HB (NIL) -7 NIL NIL NIL) (-489 1126745 1133205 1133309 "HASHTBL" 1133314 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-488 1126221 1126466 1126558 "HASAST" 1126673 T HASAST (NIL) -8 NIL NIL NIL) (-487 1123999 1125843 1126025 "HACKPI" 1126059 T HACKPI (NIL) -8 NIL NIL NIL) (-486 1119667 1123852 1123965 "GTSET" 1123970 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-485 1113082 1119545 1119643 "GSTBL" 1119648 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-484 1105360 1112113 1112378 "GSERIES" 1112873 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-483 1104501 1104918 1104946 "GROUP" 1105149 T GROUP (NIL) -9 NIL 1105283 NIL) (-482 1103867 1104026 1104277 "GROUP-" 1104282 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-481 1102234 1102555 1102942 "GROEBSOL" 1103544 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-480 1101148 1101436 1101487 "GRMOD" 1102016 NIL GRMOD (NIL T T) -9 NIL 1102184 NIL) (-479 1100916 1100952 1101080 "GRMOD-" 1101085 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-478 1096206 1097270 1098270 "GRIMAGE" 1099936 T GRIMAGE (NIL) -8 NIL NIL NIL) (-477 1094672 1094933 1095257 "GRDEF" 1095902 T GRDEF (NIL) -7 NIL NIL NIL) (-476 1094116 1094232 1094373 "GRAY" 1094551 T GRAY (NIL) -7 NIL NIL NIL) (-475 1093303 1093709 1093760 "GRALG" 1093913 NIL GRALG (NIL T T) -9 NIL 1094006 NIL) (-474 1092964 1093037 1093200 "GRALG-" 1093205 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-473 1089741 1092549 1092727 "GPOLSET" 1092871 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-472 1089095 1089152 1089410 "GOSPER" 1089678 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-471 1084827 1085533 1086059 "GMODPOL" 1088794 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-470 1083832 1084016 1084254 "GHENSEL" 1084639 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-469 1077988 1078831 1079851 "GENUPS" 1082916 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-468 1077685 1077736 1077825 "GENUFACT" 1077931 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-467 1077097 1077174 1077339 "GENPGCD" 1077603 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-466 1076571 1076606 1076819 "GENMFACT" 1077056 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-465 1075137 1075394 1075701 "GENEEZ" 1076314 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-464 1069196 1074748 1074910 "GDMP" 1075060 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-463 1058539 1062967 1064073 "GCNAALG" 1068179 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-462 1056866 1057728 1057756 "GCDDOM" 1058011 T GCDDOM (NIL) -9 NIL 1058168 NIL) (-461 1056336 1056463 1056678 "GCDDOM-" 1056683 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-460 1055008 1055193 1055497 "GB" 1056115 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-459 1043624 1045954 1048346 "GBINTERN" 1052699 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-458 1041461 1041753 1042174 "GBF" 1043299 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-457 1040242 1040407 1040674 "GBEUCLID" 1041277 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-456 1039591 1039716 1039865 "GAUSSFAC" 1040113 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-455 1037958 1038260 1038574 "GALUTIL" 1039310 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-454 1036266 1036540 1036864 "GALPOLYU" 1037685 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-453 1033631 1033921 1034328 "GALFACTU" 1035963 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-452 1025437 1026936 1028544 "GALFACT" 1032063 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-451 1022825 1023483 1023511 "FVFUN" 1024667 T FVFUN (NIL) -9 NIL 1025387 NIL) (-450 1022091 1022273 1022301 "FVC" 1022592 T FVC (NIL) -9 NIL 1022775 NIL) (-449 1021734 1021916 1021984 "FUNDESC" 1022043 T FUNDESC (NIL) -8 NIL NIL NIL) (-448 1021349 1021531 1021612 "FUNCTION" 1021686 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-447 1019093 1019671 1020137 "FT" 1020903 T FT (NIL) -8 NIL NIL NIL) (-446 1017884 1018394 1018597 "FTEM" 1018910 T FTEM (NIL) -8 NIL NIL NIL) (-445 1016175 1016464 1016861 "FSUPFACT" 1017575 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-444 1014572 1014861 1015193 "FST" 1015863 T FST (NIL) -8 NIL NIL NIL) (-443 1013771 1013877 1014065 "FSRED" 1014454 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-442 1012470 1012726 1013073 "FSPRMELT" 1013486 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-441 1009776 1010214 1010700 "FSPECF" 1012033 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-440 991148 999619 999660 "FS" 1003544 NIL FS (NIL T) -9 NIL 1005833 NIL) (-439 979791 982784 986841 "FS-" 987141 NIL FS- (NIL T T) -8 NIL NIL NIL) (-438 979319 979373 979543 "FSINT" 979732 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-437 977611 978312 978615 "FSERIES" 979098 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-436 976653 976769 976993 "FSCINT" 977491 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-435 972861 975597 975638 "FSAGG" 976008 NIL FSAGG (NIL T) -9 NIL 976267 NIL) (-434 970623 971224 972020 "FSAGG-" 972115 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-433 969665 969808 970035 "FSAGG2" 970476 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-432 967347 967627 968174 "FS2UPS" 969383 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-431 966981 967024 967153 "FS2" 967298 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-430 965859 966030 966332 "FS2EXPXP" 966806 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-429 965285 965400 965552 "FRUTIL" 965739 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-428 956698 960780 962138 "FR" 963959 NIL FR (NIL T) -8 NIL NIL NIL) (-427 951712 954387 954427 "FRNAALG" 955747 NIL FRNAALG (NIL T) -9 NIL 956345 NIL) (-426 947385 948461 949736 "FRNAALG-" 950486 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-425 947023 947066 947193 "FRNAAF2" 947336 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-424 945398 945872 946168 "FRMOD" 946835 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-423 943141 943773 944091 "FRIDEAL" 945189 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-422 942332 942419 942710 "FRIDEAL2" 943048 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-421 941465 941879 941920 "FRETRCT" 941925 NIL FRETRCT (NIL T) -9 NIL 942101 NIL) (-420 940577 940808 941159 "FRETRCT-" 941164 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-419 937665 938875 938934 "FRAMALG" 939816 NIL FRAMALG (NIL T T) -9 NIL 940108 NIL) (-418 935799 936254 936884 "FRAMALG-" 937107 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-417 929629 935272 935549 "FRAC" 935554 NIL FRAC (NIL T) -8 NIL NIL NIL) (-416 929265 929322 929429 "FRAC2" 929566 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-415 928901 928958 929065 "FR2" 929202 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-414 923414 926307 926335 "FPS" 927454 T FPS (NIL) -9 NIL 928011 NIL) (-413 922863 922972 923136 "FPS-" 923282 NIL FPS- (NIL T) -8 NIL NIL NIL) (-412 920165 921834 921862 "FPC" 922087 T FPC (NIL) -9 NIL 922229 NIL) (-411 919958 919998 920095 "FPC-" 920100 NIL FPC- (NIL T) -8 NIL NIL NIL) (-410 918748 919446 919487 "FPATMAB" 919492 NIL FPATMAB (NIL T) -9 NIL 919644 NIL) (-409 916421 916924 917350 "FPARFRAC" 918385 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-408 911815 912313 912995 "FORTRAN" 915853 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-407 909531 910031 910570 "FORT" 911296 T FORT (NIL) -7 NIL NIL NIL) (-406 907207 907769 907797 "FORTFN" 908857 T FORTFN (NIL) -9 NIL 909481 NIL) (-405 906971 907021 907049 "FORTCAT" 907108 T FORTCAT (NIL) -9 NIL 907170 NIL) (-404 905077 905587 905977 "FORMULA" 906601 T FORMULA (NIL) -8 NIL NIL NIL) (-403 904865 904895 904964 "FORMULA1" 905041 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-402 904388 904440 904613 "FORDER" 904807 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-401 903484 903648 903841 "FOP" 904215 T FOP (NIL) -7 NIL NIL NIL) (-400 902065 902764 902938 "FNLA" 903366 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-399 900794 901209 901237 "FNCAT" 901697 T FNCAT (NIL) -9 NIL 901957 NIL) (-398 900333 900753 900781 "FNAME" 900786 T FNAME (NIL) -8 NIL NIL NIL) (-397 898896 899859 899887 "FMTC" 899892 T FMTC (NIL) -9 NIL 899928 NIL) (-396 897642 898832 898878 "FMONOID" 898883 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-395 894470 895638 895679 "FMONCAT" 896896 NIL FMONCAT (NIL T) -9 NIL 897501 NIL) (-394 893662 894212 894361 "FM" 894366 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 891086 891732 891760 "FMFUN" 892904 T FMFUN (NIL) -9 NIL 893612 NIL) (-392 890355 890536 890564 "FMC" 890854 T FMC (NIL) -9 NIL 891036 NIL) (-391 887434 888294 888348 "FMCAT" 889543 NIL FMCAT (NIL T T) -9 NIL 890038 NIL) (-390 886300 887200 887300 "FM1" 887379 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-389 884074 884490 884984 "FLOATRP" 885851 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-388 877652 881803 882424 "FLOAT" 883473 T FLOAT (NIL) -8 NIL NIL NIL) (-387 875090 875590 876168 "FLOATCP" 877119 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-386 873937 874696 874737 "FLINEXP" 874742 NIL FLINEXP (NIL T) -9 NIL 874835 NIL) (-385 872869 873166 873574 "FLINEXP-" 873579 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-384 871945 872089 872313 "FLASORT" 872721 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-383 869061 869929 869981 "FLALG" 871208 NIL FLALG (NIL T T) -9 NIL 871675 NIL) (-382 862765 866517 866558 "FLAGG" 867820 NIL FLAGG (NIL T) -9 NIL 868472 NIL) (-381 861491 861830 862320 "FLAGG-" 862325 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-380 860533 860676 860903 "FLAGG2" 861344 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-379 857384 858392 858451 "FINRALG" 859579 NIL FINRALG (NIL T T) -9 NIL 860087 NIL) (-378 856544 856773 857112 "FINRALG-" 857117 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-377 855924 856163 856191 "FINITE" 856387 T FINITE (NIL) -9 NIL 856494 NIL) (-376 848281 850468 850508 "FINAALG" 854175 NIL FINAALG (NIL T) -9 NIL 855628 NIL) (-375 843613 844663 845807 "FINAALG-" 847186 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-374 842981 843368 843471 "FILE" 843543 NIL FILE (NIL T) -8 NIL NIL NIL) (-373 841639 841977 842031 "FILECAT" 842715 NIL FILECAT (NIL T T) -9 NIL 842931 NIL) (-372 839355 840883 840911 "FIELD" 840951 T FIELD (NIL) -9 NIL 841031 NIL) (-371 837975 838360 838871 "FIELD-" 838876 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-370 835825 836610 836957 "FGROUP" 837661 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-369 834915 835079 835299 "FGLMICPK" 835657 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-368 830747 834840 834897 "FFX" 834902 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-367 830348 830409 830544 "FFSLPE" 830680 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-366 826338 827120 827916 "FFPOLY" 829584 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-365 825842 825878 826087 "FFPOLY2" 826296 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-364 821688 825761 825824 "FFP" 825829 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-363 817086 821599 821663 "FF" 821668 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-362 812212 816429 816619 "FFNBX" 816940 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-361 807140 811347 811605 "FFNBP" 812066 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-360 801773 806424 806635 "FFNB" 806973 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-359 800605 800803 801118 "FFINTBAS" 801570 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-358 796644 798865 798893 "FFIELDC" 799513 T FFIELDC (NIL) -9 NIL 799889 NIL) (-357 795306 795677 796174 "FFIELDC-" 796179 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-356 794875 794921 795045 "FFHOM" 795248 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-355 792570 793057 793574 "FFF" 794390 NIL FFF (NIL T) -7 NIL NIL NIL) (-354 788188 792312 792413 "FFCGX" 792513 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-353 783810 787920 788027 "FFCGP" 788131 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-352 778993 783537 783645 "FFCG" 783746 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-351 760030 769215 769301 "FFCAT" 774466 NIL FFCAT (NIL T T T) -9 NIL 775917 NIL) (-350 755227 756275 757589 "FFCAT-" 758819 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-349 754638 754681 754916 "FFCAT2" 755178 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-348 743961 747610 748830 "FEXPR" 753490 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-347 742923 743358 743399 "FEVALAB" 743483 NIL FEVALAB (NIL T) -9 NIL 743744 NIL) (-346 742082 742292 742630 "FEVALAB-" 742635 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-345 740648 741465 741668 "FDIV" 741981 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-344 737668 738409 738524 "FDIVCAT" 740092 NIL FDIVCAT (NIL T T T T) -9 NIL 740529 NIL) (-343 737430 737457 737627 "FDIVCAT-" 737632 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-342 736650 736737 737014 "FDIV2" 737337 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 735624 735945 736147 "FCTRDATA" 736468 T FCTRDATA (NIL) -8 NIL NIL NIL) (-340 734310 734569 734858 "FCPAK1" 735355 T FCPAK1 (NIL) -7 NIL NIL NIL) (-339 733409 733810 733951 "FCOMP" 734201 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-338 717114 720559 724097 "FC" 729891 T FC (NIL) -8 NIL NIL NIL) (-337 709420 713448 713488 "FAXF" 715290 NIL FAXF (NIL T) -9 NIL 715982 NIL) (-336 706697 707354 708179 "FAXF-" 708644 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-335 701749 706073 706249 "FARRAY" 706554 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-334 696643 698710 698763 "FAMR" 699786 NIL FAMR (NIL T T) -9 NIL 700246 NIL) (-333 695533 695835 696270 "FAMR-" 696275 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-332 694702 695455 695508 "FAMONOID" 695513 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-331 692488 693198 693251 "FAMONC" 694192 NIL FAMONC (NIL T T) -9 NIL 694578 NIL) (-330 691152 692242 692379 "FAGROUP" 692384 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-329 688947 689266 689669 "FACUTIL" 690833 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-328 688046 688231 688453 "FACTFUNC" 688757 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-327 680468 687349 687548 "EXPUPXS" 687902 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-326 677951 678491 679077 "EXPRTUBE" 679902 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-325 674222 674814 675544 "EXPRODE" 677290 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-324 659941 672871 673300 "EXPR" 673826 NIL EXPR (NIL T) -8 NIL NIL NIL) (-323 654495 655082 655888 "EXPR2UPS" 659239 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-322 654127 654184 654293 "EXPR2" 654432 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-321 645380 653278 653569 "EXPEXPAN" 653963 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-320 645180 645337 645366 "EXIT" 645371 T EXIT (NIL) -8 NIL NIL NIL) (-319 644660 644904 644995 "EXITAST" 645109 T EXITAST (NIL) -8 NIL NIL NIL) (-318 644287 644349 644462 "EVALCYC" 644592 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-317 643828 643946 643987 "EVALAB" 644157 NIL EVALAB (NIL T) -9 NIL 644261 NIL) (-316 643309 643431 643652 "EVALAB-" 643657 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-315 640677 641979 642007 "EUCDOM" 642562 T EUCDOM (NIL) -9 NIL 642912 NIL) (-314 639082 639524 640114 "EUCDOM-" 640119 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-313 626621 629380 632130 "ESTOOLS" 636352 T ESTOOLS (NIL) -7 NIL NIL NIL) (-312 626253 626310 626419 "ESTOOLS2" 626558 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-311 626004 626046 626126 "ESTOOLS1" 626205 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-310 620041 621649 621677 "ES" 624445 T ES (NIL) -9 NIL 625855 NIL) (-309 614988 616275 618092 "ES-" 618256 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 611362 612123 612903 "ESCONT" 614228 T ESCONT (NIL) -7 NIL NIL NIL) (-307 611107 611139 611221 "ESCONT1" 611324 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-306 610782 610832 610932 "ES2" 611051 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-305 610412 610470 610579 "ES1" 610718 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-304 609628 609757 609933 "ERROR" 610256 T ERROR (NIL) -7 NIL NIL NIL) (-303 603020 609487 609578 "EQTBL" 609583 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-302 595523 598334 599783 "EQ" 601604 NIL -2078 (NIL T) -8 NIL NIL NIL) (-301 595155 595212 595321 "EQ2" 595460 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-300 590446 591493 592586 "EP" 594094 NIL EP (NIL T) -7 NIL NIL NIL) (-299 589046 589337 589643 "ENV" 590160 T ENV (NIL) -8 NIL NIL NIL) (-298 588140 588694 588722 "ENTIRER" 588727 T ENTIRER (NIL) -9 NIL 588773 NIL) (-297 584834 586322 586683 "EMR" 587948 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-296 583964 584149 584203 "ELTAGG" 584583 NIL ELTAGG (NIL T T) -9 NIL 584794 NIL) (-295 583683 583745 583886 "ELTAGG-" 583891 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-294 583447 583476 583530 "ELTAB" 583614 NIL ELTAB (NIL T T) -9 NIL 583666 NIL) (-293 582573 582719 582918 "ELFUTS" 583298 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-292 582315 582371 582399 "ELEMFUN" 582504 T ELEMFUN (NIL) -9 NIL NIL NIL) (-291 582185 582206 582274 "ELEMFUN-" 582279 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-290 576999 580255 580296 "ELAGG" 581236 NIL ELAGG (NIL T) -9 NIL 581699 NIL) (-289 575284 575718 576381 "ELAGG-" 576386 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-288 574596 574733 574889 "ELABOR" 575148 T ELABOR (NIL) -8 NIL NIL NIL) (-287 573257 573536 573830 "ELABEXPR" 574322 T ELABEXPR (NIL) -8 NIL NIL NIL) (-286 566121 567924 568751 "EFUPXS" 572533 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-285 559571 561372 562182 "EFULS" 565397 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-284 557056 557414 557886 "EFSTRUC" 559203 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-283 546847 548413 549961 "EF" 555571 NIL EF (NIL T T) -7 NIL NIL NIL) (-282 545921 546332 546481 "EAB" 546718 T EAB (NIL) -8 NIL NIL NIL) (-281 545103 545880 545908 "E04UCFA" 545913 T E04UCFA (NIL) -8 NIL NIL NIL) (-280 544285 545062 545090 "E04NAFA" 545095 T E04NAFA (NIL) -8 NIL NIL NIL) (-279 543467 544244 544272 "E04MBFA" 544277 T E04MBFA (NIL) -8 NIL NIL NIL) (-278 542649 543426 543454 "E04JAFA" 543459 T E04JAFA (NIL) -8 NIL NIL NIL) (-277 541833 542608 542636 "E04GCFA" 542641 T E04GCFA (NIL) -8 NIL NIL NIL) (-276 541017 541792 541820 "E04FDFA" 541825 T E04FDFA (NIL) -8 NIL NIL NIL) (-275 540199 540976 541004 "E04DGFA" 541009 T E04DGFA (NIL) -8 NIL NIL NIL) (-274 534372 535724 537088 "E04AGNT" 538855 T E04AGNT (NIL) -7 NIL NIL NIL) (-273 533052 533558 533598 "DVARCAT" 534073 NIL DVARCAT (NIL T) -9 NIL 534272 NIL) (-272 532256 532468 532782 "DVARCAT-" 532787 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-271 525304 532055 532184 "DSMP" 532189 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-270 520085 521249 522317 "DROPT" 524256 T DROPT (NIL) -8 NIL NIL NIL) (-269 519750 519809 519907 "DROPT1" 520020 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 514865 515991 517128 "DROPT0" 518633 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 513210 513535 513921 "DRAWPT" 514499 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 507797 508720 509799 "DRAW" 512184 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 507430 507483 507601 "DRAWHACK" 507738 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 506161 506430 506721 "DRAWCX" 507159 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 505676 505745 505896 "DRAWCURV" 506087 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 496144 498106 500221 "DRAWCFUN" 503581 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 492908 494837 494878 "DQAGG" 495507 NIL DQAGG (NIL T) -9 NIL 495781 NIL) (-260 480845 487403 487486 "DPOLCAT" 489338 NIL DPOLCAT (NIL T T T T) -9 NIL 489883 NIL) (-259 475682 477030 478988 "DPOLCAT-" 478993 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 468991 475543 475641 "DPMO" 475646 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 462203 468771 468938 "DPMM" 468943 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 461773 461987 462076 "DOMTMPLT" 462134 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 461206 461575 461655 "DOMCTOR" 461713 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 460418 460686 460837 "DOMAIN" 461075 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 454317 460053 460205 "DMP" 460319 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 453917 453973 454117 "DLP" 454255 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 447739 453244 453434 "DLIST" 453759 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 444536 446592 446633 "DLAGG" 447183 NIL DLAGG (NIL T) -9 NIL 447413 NIL) (-249 443212 443876 443904 "DIVRING" 443996 T DIVRING (NIL) -9 NIL 444079 NIL) (-248 442449 442639 442939 "DIVRING-" 442944 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 440551 440908 441314 "DISPLAY" 442063 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 434300 440465 440528 "DIRPROD" 440533 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 433148 433351 433616 "DIRPROD2" 434093 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 421659 427805 427858 "DIRPCAT" 428268 NIL DIRPCAT (NIL NIL T) -9 NIL 429108 NIL) (-243 418763 419467 420428 "DIRPCAT-" 420765 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 418050 418210 418396 "DIOSP" 418597 T DIOSP (NIL) -7 NIL NIL NIL) (-241 414705 416962 417003 "DIOPS" 417437 NIL DIOPS (NIL T) -9 NIL 417666 NIL) (-240 414254 414368 414559 "DIOPS-" 414564 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 413143 413771 413799 "DIFRING" 413918 T DIFRING (NIL) -9 NIL 414001 NIL) (-238 412788 412866 413018 "DIFRING-" 413023 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-237 412460 412534 412562 "DIFFSPC" 412681 T DIFFSPC (NIL) -9 NIL 412756 NIL) (-236 412105 412183 412335 "DIFFSPC-" 412340 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 411813 411858 411899 "DIFFDOM" 412020 NIL DIFFDOM (NIL T) -9 NIL 412088 NIL) (-234 411666 411690 411774 "DIFFDOM-" 411779 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409345 410617 410658 "DIFEXT" 411021 NIL DIFEXT (NIL T) -9 NIL 411315 NIL) (-232 407630 408058 408724 "DIFEXT-" 408729 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 404905 407162 407203 "DIAGG" 407208 NIL DIAGG (NIL T) -9 NIL 407228 NIL) (-230 404289 404446 404698 "DIAGG-" 404703 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399706 403248 403525 "DHMATRIX" 404058 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395318 396227 397237 "DFSFUN" 398716 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390398 394249 394561 "DFLOAT" 395026 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388661 388942 389331 "DFINTTLS" 390106 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385690 386682 387082 "DERHAM" 388327 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383491 385465 385554 "DEQUEUE" 385634 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382745 382878 383061 "DEGRED" 383353 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379175 379920 380766 "DEFINTRF" 381973 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376730 377199 377791 "DEFINTEF" 378694 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376080 376350 376465 "DEFAST" 376635 T DEFAST (NIL) -8 NIL NIL NIL) (-219 369989 375673 375823 "DECIMAL" 375950 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367501 367959 368465 "DDFACT" 369533 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367097 367140 367291 "DBLRESP" 367452 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 364965 365327 365688 "DBASE" 366863 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364207 364445 364591 "DATAARY" 364864 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363313 364166 364194 "D03FAFA" 364199 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362420 363272 363300 "D03EEFA" 363305 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360370 360836 361325 "D03AGNT" 361951 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359659 360329 360357 "D02EJFA" 360362 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 358948 359618 359646 "D02CJFA" 359651 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358237 358907 358935 "D02BHFA" 358940 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357526 358196 358224 "D02BBFA" 358229 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350723 352312 353918 "D02AGNT" 355940 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348491 349014 349560 "D01WGTS" 350197 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347558 348450 348478 "D01TRNS" 348483 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346626 347517 347545 "D01GBFA" 347550 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345694 346585 346613 "D01FCFA" 346618 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344762 345653 345681 "D01ASFA" 345686 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 343830 344721 344749 "D01AQFA" 344754 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 342898 343789 343817 "D01APFA" 343822 T D01APFA (NIL) -8 NIL NIL NIL) (-199 341966 342857 342885 "D01ANFA" 342890 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341034 341925 341953 "D01AMFA" 341958 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340102 340993 341021 "D01ALFA" 341026 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339170 340061 340089 "D01AKFA" 340094 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338238 339129 339157 "D01AJFA" 339162 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331533 333086 334647 "D01AGNT" 336697 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 330870 330998 331150 "CYCLOTOM" 331401 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327603 328318 329045 "CYCLES" 330163 T CYCLES (NIL) -7 NIL NIL NIL) (-191 326915 327049 327220 "CVMP" 327464 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324756 325014 325383 "CTRIGMNP" 326643 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324192 324550 324623 "CTOR" 324703 T CTOR (NIL) -8 NIL NIL NIL) (-188 323701 323923 324024 "CTORKIND" 324111 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 322992 323308 323336 "CTORCAT" 323518 T CTORCAT (NIL) -9 NIL 323631 NIL) (-186 322590 322701 322860 "CTORCAT-" 322865 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322052 322264 322372 "CTORCALL" 322514 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321426 321525 321678 "CSTTOOLS" 321949 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317225 317882 318640 "CRFP" 320738 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316700 316946 317038 "CRCEAST" 317153 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315747 315932 316160 "CRAPACK" 316504 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315131 315232 315436 "CPMATCH" 315623 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 314856 314884 314990 "CPIMA" 315097 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311204 311876 312595 "COORDSYS" 314191 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310616 310737 310879 "CONTOUR" 311082 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306507 308619 309111 "CONTFRAC" 310156 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306387 306408 306436 "CONDUIT" 306473 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305475 306029 306057 "COMRING" 306062 T COMRING (NIL) -9 NIL 306114 NIL) (-173 304529 304833 305017 "COMPPROP" 305311 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304190 304225 304353 "COMPLPAT" 304488 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294392 303999 304108 "COMPLEX" 304113 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294028 294085 294192 "COMPLEX2" 294329 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293367 293488 293648 "COMPILER" 293888 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293085 293120 293218 "COMPFACT" 293326 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276977 287061 287101 "COMPCAT" 288105 NIL COMPCAT (NIL T) -9 NIL 289453 NIL) (-166 266267 269256 272963 "COMPCAT-" 273319 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265996 266024 266127 "COMMUPC" 266233 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265790 265824 265883 "COMMONOP" 265957 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265346 265541 265628 "COMM" 265723 T COMM (NIL) -8 NIL NIL NIL) (-162 264922 265150 265225 "COMMAAST" 265291 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264171 264365 264393 "COMBOPC" 264731 T COMBOPC (NIL) -9 NIL 264906 NIL) (-160 263067 263277 263519 "COMBINAT" 263961 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259524 260098 260725 "COMBF" 262489 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258282 258640 258875 "COLOR" 259309 T COLOR (NIL) -8 NIL NIL NIL) (-157 257758 258003 258095 "COLONAST" 258210 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257398 257445 257570 "CMPLXRT" 257705 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256846 257098 257197 "CLLCTAST" 257319 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252348 253376 254456 "CLIP" 255786 T CLIP (NIL) -7 NIL NIL NIL) (-153 250689 251449 251689 "CLIF" 252175 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246864 248835 248876 "CLAGG" 249805 NIL CLAGG (NIL T) -9 NIL 250341 NIL) (-151 245286 245743 246326 "CLAGG-" 246331 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244830 244915 245055 "CINTSLPE" 245195 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242331 242802 243350 "CHVAR" 244358 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241505 242059 242087 "CHARZ" 242092 T CHARZ (NIL) -9 NIL 242107 NIL) (-147 241259 241299 241377 "CHARPOL" 241459 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240317 240904 240932 "CHARNZ" 240979 T CHARNZ (NIL) -9 NIL 241035 NIL) (-145 238223 238971 239324 "CHAR" 239984 T CHAR (NIL) -8 NIL NIL NIL) (-144 237949 238010 238038 "CFCAT" 238149 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237190 237301 237484 "CDEN" 237833 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233155 236343 236623 "CCLASS" 236930 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232406 232563 232740 "CATEGORY" 232998 T -10 (NIL) -8 NIL NIL NIL) (-140 231979 232325 232373 "CATCTOR" 232378 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231430 231682 231780 "CATAST" 231901 T CATAST (NIL) -8 NIL NIL NIL) (-138 230906 231151 231243 "CASEAST" 231358 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226044 227063 227807 "CARTEN" 230218 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225152 225300 225521 "CARTEN2" 225891 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223468 224302 224559 "CARD" 224915 T CARD (NIL) -8 NIL NIL NIL) (-134 223044 223272 223347 "CAPSLAST" 223413 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222548 222756 222784 "CACHSET" 222916 T CACHSET (NIL) -9 NIL 222994 NIL) (-132 222018 222340 222368 "CABMON" 222418 T CABMON (NIL) -9 NIL 222474 NIL) (-131 221491 221722 221832 "BYTEORD" 221928 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220468 221020 221162 "BYTE" 221325 T BYTE (NIL) -8 NIL NIL 221447) (-129 215818 219973 220145 "BYTEBUF" 220316 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213327 215510 215617 "BTREE" 215744 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210776 212975 213097 "BTOURN" 213237 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208146 210246 210287 "BTCAT" 210355 NIL BTCAT (NIL T) -9 NIL 210432 NIL) (-125 207813 207893 208042 "BTCAT-" 208047 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203192 207072 207100 "BTAGG" 207214 T BTAGG (NIL) -9 NIL 207324 NIL) (-123 202682 202807 203013 "BTAGG-" 203018 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199677 201960 202175 "BSTREE" 202499 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198815 198941 199125 "BRILL" 199533 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195467 197541 197582 "BRAGG" 198231 NIL BRAGG (NIL T) -9 NIL 198489 NIL) (-119 193996 194402 194957 "BRAGG-" 194962 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187120 193340 193525 "BPADICRT" 193843 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185435 187057 187102 "BPADIC" 187107 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185133 185163 185277 "BOUNDZRO" 185399 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180361 181559 182471 "BOP" 184241 T BOP (NIL) -8 NIL NIL NIL) (-114 178142 178546 179021 "BOP1" 179919 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177843 177904 177932 "BOOLE" 178043 T BOOLE (NIL) -9 NIL 178125 NIL) (-112 176668 177417 177566 "BOOLEAN" 177714 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175947 176351 176405 "BMODULE" 176410 NIL BMODULE (NIL T T) -9 NIL 176475 NIL) (-110 171748 175745 175818 "BITS" 175894 T BITS (NIL) -8 NIL NIL NIL) (-109 171169 171288 171428 "BINDING" 171628 T BINDING (NIL) -8 NIL NIL NIL) (-108 165081 170764 170913 "BINARY" 171040 T BINARY (NIL) -8 NIL NIL NIL) (-107 162861 164336 164377 "BGAGG" 164637 NIL BGAGG (NIL T) -9 NIL 164774 NIL) (-106 162692 162724 162815 "BGAGG-" 162820 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161763 162076 162281 "BFUNCT" 162507 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160453 160631 160919 "BEZOUT" 161587 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156922 159305 159635 "BBTREE" 160156 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156656 156709 156737 "BASTYPE" 156856 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156508 156537 156610 "BASTYPE-" 156615 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155942 156018 156170 "BALFACT" 156419 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154798 155357 155543 "AUTOMOR" 155787 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154524 154529 154555 "ATTREG" 154560 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152776 153221 153573 "ATTRBUT" 154190 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152384 152604 152670 "ATTRAST" 152728 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151920 152033 152059 "ATRIG" 152260 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151729 151770 151857 "ATRIG-" 151862 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151374 151560 151586 "ASTCAT" 151591 T ASTCAT (NIL) -9 NIL 151621 NIL) (-92 151101 151160 151279 "ASTCAT-" 151284 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149250 150877 150965 "ASTACK" 151044 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147755 148052 148417 "ASSOCEQ" 148932 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146787 147414 147538 "ASP9" 147662 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146550 146735 146774 "ASP8" 146779 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145418 146155 146297 "ASP80" 146439 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144316 145053 145185 "ASP7" 145317 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143270 143993 144111 "ASP78" 144229 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142239 142950 143067 "ASP77" 143184 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141151 141877 142008 "ASP74" 142139 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140051 140786 140918 "ASP73" 141050 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139155 139877 139977 "ASP6" 139982 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138102 138832 138950 "ASP55" 139068 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137051 137776 137895 "ASP50" 138014 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136139 136752 136862 "ASP4" 136972 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135227 135840 135950 "ASP49" 136060 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134011 134766 134934 "ASP42" 135116 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132788 133544 133714 "ASP41" 133898 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131738 132465 132583 "ASP35" 132701 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131503 131686 131725 "ASP34" 131730 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131240 131307 131383 "ASP33" 131458 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130134 130875 131007 "ASP31" 131139 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129899 130082 130121 "ASP30" 130126 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129634 129703 129779 "ASP29" 129854 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129399 129582 129621 "ASP28" 129626 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129164 129347 129386 "ASP27" 129391 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128248 128862 128973 "ASP24" 129084 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127325 128050 128162 "ASP20" 128167 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126413 127026 127136 "ASP1" 127246 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125356 126087 126206 "ASP19" 126325 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125093 125160 125236 "ASP12" 125311 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123945 124692 124836 "ASP10" 124980 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121796 123789 123880 "ARRAY2" 123885 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117561 121444 121558 "ARRAY1" 121713 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116593 116766 116987 "ARRAY12" 117384 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110905 112823 112898 "ARR2CAT" 115528 NIL ARR2CAT (NIL T T T) -9 NIL 116286 NIL) (-56 108339 109083 110037 "ARR2CAT-" 110042 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107656 107966 108091 "ARITY" 108232 T ARITY (NIL) -8 NIL NIL NIL) (-54 106432 106584 106883 "APPRULE" 107492 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106083 106131 106250 "APPLYORE" 106378 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105437 105676 105796 "ANY" 105981 T ANY (NIL) -8 NIL NIL NIL) (-51 104715 104838 104995 "ANY1" 105311 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102245 103152 103479 "ANTISYM" 104439 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101737 101952 102048 "ANON" 102167 T ANON (NIL) -8 NIL NIL NIL) (-48 95915 100276 100730 "AN" 101301 T AN (NIL) -8 NIL NIL NIL) (-47 91813 93201 93252 "AMR" 94000 NIL AMR (NIL T T) -9 NIL 94600 NIL) (-46 90925 91146 91509 "AMR-" 91514 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75364 90842 90903 "ALIST" 90908 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72169 74958 75127 "ALGSC" 75282 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68725 69279 69886 "ALGPKG" 71609 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68002 68103 68287 "ALGMFACT" 68611 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64037 64616 65210 "ALGMANIP" 67586 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55304 63663 63813 "ALGFF" 63970 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54500 54631 54810 "ALGFACT" 55162 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53441 54041 54079 "ALGEBRA" 54084 NIL ALGEBRA (NIL T) -9 NIL 54125 NIL) (-37 53159 53218 53350 "ALGEBRA-" 53355 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35222 51131 51183 "ALAGG" 51319 NIL ALAGG (NIL T T) -9 NIL 51480 NIL) (-35 34758 34871 34897 "AHYP" 35098 T AHYP (NIL) -9 NIL NIL NIL) (-34 33689 33937 33963 "AGG" 34462 T AGG (NIL) -9 NIL 34741 NIL) (-33 33123 33285 33499 "AGG-" 33504 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30929 31352 31757 "AF" 32765 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30409 30654 30744 "ADDAST" 30857 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29677 29936 30092 "ACPLOT" 30271 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 3da0023a..1ff049a1 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,13218 +1,13254 @@
-(732665 . 3485510918)
-(((*1 *1 *2)
- (-12 (-5 *2 (-1294 (-1188) *3)) (-4 *3 (-1060)) (-5 *1 (-1301 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1294 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
- (-5 *1 (-1303 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
-(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-829)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-3 *3 (-652 *1)))
- (-4 *1 (-1082 *4 *5 *6 *3)))))
+(732799 . 3485633351)
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
- (-5 *2 (-779)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-779))))
+ (-12 (-5 *3 (-1190)) (-5 *2 (-546)) (-5 *1 (-545 *4))
+ (-4 *4 (-1231)))))
+(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062))))
((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4))
- (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-696 *4 *5 *6 *3))
- (-4 *3 (-695 *4 *5 *6))))
+ (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4))
+ (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3))
+ (-4 *3 (-658 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3))
+ (-4 *3 (-658 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062))))
+ ((*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2800 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3))))
+ (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-747 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1113))))
+ ((*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-428 *2)) (-4 *2 (-566)))))
+(((*1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1062)) (-4 *3 (-1113))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2524 (-574)))) (-4 *1 (-440 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564))
- (-5 *2 (-779)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-961 (-227))) (-5 *2 (-322 (-386))) (-5 *1 (-311)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-572))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))
- (-5 *2 (-1046)) (-5 *1 (-756)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-336)))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2524 (-903 *3))))
+ (-5 *1 (-903 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062))
+ (-4 *7 (-960 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2524 (-574))))
+ (-5 *1 (-961 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $))
+ (-15 -2977 (*7 $))))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
+ ((*1 *1 *1) (-4 *1 (-1157))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4)))))
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
+ (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-415 (-572)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
+ (-12 (-5 *4 (-417 (-574)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *5 *3))))
+ (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-300 *3)) (-5 *5 (-415 (-572)))
- (-4 *3 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *6 *3))))
+ (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574)))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-415 (-572)))) (-5 *4 (-300 *8))
- (-5 *5 (-1246 (-415 (-572)))) (-5 *6 (-415 (-572)))
- (-4 *8 (-13 (-27) (-1214) (-438 *7)))
- (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8))
+ (-5 *5 (-1248 (-417 (-574)))) (-5 *6 (-417 (-574)))
+ (-4 *8 (-13 (-27) (-1216) (-440 *7)))
+ (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-415 (-572))))
- (-5 *7 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *8)))
- (-4 *8 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *8 *3))))
+ (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-417 (-574))))
+ (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *8)))
+ (-4 *8 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-415 (-572))) (-4 *4 (-1060)) (-4 *1 (-1262 *4 *3))
- (-4 *3 (-1239 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1062)) (-4 *1 (-1264 *4 *3))
+ (-4 *3 (-1241 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231))))
((*1 *2 *2)
- (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3))))
+ (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-652 (-779)))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1205 *2)) (-4 *2 (-372)))))
+(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
- ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-697 (-415 (-961 (-572)))))
- (-5 *2 (-697 (-322 (-572)))) (-5 *1 (-1042)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-564)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
- (-5 *1 (-1219 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5))
- (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-1292 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564))
- (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1292 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-594 *3)) (-5 *1 (-434 *5 *3))
- (-4 *3 (-13 (-1214) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)) (-148)))
- (-5 *2 (-594 (-415 (-961 *5)))) (-5 *1 (-578 *5))
- (-5 *3 (-415 (-961 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-438 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188))))
- ((*1 *1 *1) (-4 *1 (-161))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-1062))
+ (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292)))
+ (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4)))))
+ (-12 (-5 *2 (-428 (-1186 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1186 *1))
+ (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1113))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
+ (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1062))
+ (-5 *1 (-1042 *4)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *2 (-1048)) (-5 *1 (-767)))))
+(((*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-781)) (-5 *1 (-600)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-572)) (-4 *5 (-13 (-460) (-1049 *4) (-647 *4)))
- (-5 *2 (-52)) (-5 *1 (-321 *5 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
+ (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1051 *4) (-649 *4)))
+ (-5 *2 (-52)) (-5 *1 (-323 *5 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *5 *3))))
+ (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-460) (-1049 *5) (-647 *5))) (-5 *5 (-572))
- (-5 *2 (-52)) (-5 *1 (-321 *6 *3))))
+ (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-462) (-1051 *5) (-649 *5))) (-5 *5 (-574))
+ (-5 *2 (-52)) (-5 *1 (-323 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-572)))
- (-4 *7 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-574)))
+ (-4 *7 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-572)))
- (-4 *3 (-13 (-27) (-1214) (-438 *7)))
- (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *7 *3))))
+ (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-574)))
+ (-4 *3 (-13 (-27) (-1216) (-440 *7)))
+ (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-572)) (-4 *4 (-1060)) (-4 *1 (-1241 *4 *3))
- (-4 *3 (-1270 *4))))
+ (-12 (-5 *2 (-574)) (-4 *4 (-1062)) (-4 *1 (-1243 *4 *3))
+ (-4 *3 (-1272 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))))
+ (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-607))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1193)) (-5 *3 (-1190)))))
+(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1257 (-574))) (-5 *1 (-496 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336))
- (-5 *1 (-338))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-1103 (-961 (-572)))) (-5 *2 (-336))
- (-5 *1 (-338))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-683 *3)) (-4 *3 (-1060))
- (-4 *3 (-1111)))))
-(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-122 *3)))))
+ (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358))
+ (-4 *2
+ (-13 (-412)
+ (-10 -7 (-15 -2943 (*2 *4)) (-15 -2565 ((-932) *2))
+ (-15 -2722 ((-1281 *2) (-932))) (-15 -2007 (*2 *2)))))
+ (-5 *1 (-365 *2 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803))
+ (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1082 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803))
+ (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-438 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112))
- (-5 *1 (-159 *4 *5)) (-4 *5 (-438 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112))
- (-5 *1 (-281 *4 *5)) (-4 *5 (-13 (-438 *4) (-1013)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-307 *4)) (-4 *4 (-308))))
- ((*1 *2 *3) (-12 (-4 *1 (-308)) (-5 *3 (-115)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *5 (-1111)) (-5 *2 (-112))
- (-5 *1 (-437 *4 *5)) (-4 *4 (-438 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112))
- (-5 *1 (-439 *4 *5)) (-4 *5 (-438 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112))
- (-5 *1 (-638 *4 *5)) (-4 *5 (-13 (-438 *4) (-1013) (-1214))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-514)) (-5 *2 (-699 (-782))) (-5 *1 (-115))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1170)) (-5 *2 (-782)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1115)) (-5 *1 (-974)))))
+ (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062))
+ (-5 *2 (-253 *4 *5)) (-5 *1 (-955 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-4 *2 (-1111)) (-5 *1 (-688 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-544)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
- (-5 *2 (-827 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-854)) (-5 *1 (-1302 *3 *2)) (-4 *3 (-1060)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-4 *2 (-1113)) (-5 *1 (-690 *5 *6 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4)))))
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
+ (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-779)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-52)) (-5 *1 (-321 *5 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
+ (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-52)) (-5 *1 (-323 *5 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *5 *3))))
+ (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-300 *3)) (-5 *5 (-779))
- (-4 *3 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-572))) (-5 *4 (-300 *6))
- (-4 *6 (-13 (-27) (-1214) (-438 *5)))
- (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *5 *6))))
+ (-12 (-5 *4 (-302 *3)) (-5 *5 (-781))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6))
+ (-4 *6 (-13 (-27) (-1216) (-440 *5)))
+ (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *6 *3))))
+ (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-779)))
- (-4 *7 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-781)))
+ (-4 *7 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-779)))
- (-4 *3 (-13 (-27) (-1214) (-438 *7)))
- (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *7 *3))))
+ (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-781)))
+ (-4 *3 (-13 (-27) (-1216) (-440 *7)))
+ (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-3 (-112) (-652 *1)))
- (-4 *1 (-1082 *4 *5 *6 *3)))))
+ (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1097 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1097 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-440 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1105 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566))
+ (-5 *1 (-159 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-161))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188))
- (-4 *5 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-594 *3)) (-5 *1 (-565 *5 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3))
- (-4 *3 (-656 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1184 (-572))) (-5 *3 (-572)) (-4 *1 (-877 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-652 (-652 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-652 (-652 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-652 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1111)))))
+ (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574))))
+ (-5 *2 (-1281 (-417 (-574)))) (-5 *1 (-1309 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1164)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803))
+ (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-832)))))
+(((*1 *1) (-5 *1 (-516))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-358))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -3948 (-654 (-2 (|:| |irr| *3) (|:| -3963 (-574)))))))
+ (-5 *1 (-218 *5 *3)) (-4 *3 (-1257 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-832)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *5 (-1233)) (-4 *6 (-1255 *5))
- (-4 *7 (-1255 (-415 *6))) (-5 *2 (-652 (-961 *5)))
- (-5 *1 (-348 *4 *5 *6 *7)) (-4 *4 (-349 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *1 (-349 *4 *5 *6)) (-4 *4 (-1233))
- (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-4 *4 (-370))
- (-5 *2 (-652 (-961 *4))))))
-(((*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
- (-14 *4 (-652 (-1188)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-572)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858)))
- (-14 *4 (-652 (-1188)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858))
- (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-280))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1184 *8)) (-5 *4 (-652 *6)) (-4 *6 (-858))
- (-4 *8 (-958 *7 *5 *6)) (-4 *5 (-801)) (-4 *7 (-1060))
- (-5 *2 (-652 (-779))) (-5 *1 (-327 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-930))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
- (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-478 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-564)) (-5 *2 (-572)) (-5 *1 (-631 *3 *4))
- (-4 *4 (-1255 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1060)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-913 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-779)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801))
- (-4 *3 (-858)) (-5 *2 (-779))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-984 *3 *2 *4)) (-4 *3 (-1060)) (-4 *4 (-858))
- (-4 *2 (-800))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-779))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1241 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1270 *3))
- (-5 *2 (-572))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1239 *3))
- (-5 *2 (-415 (-572)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-841 (-930)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
- (-5 *2 (-779)))))
+ (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4)))
+ (-5 *1 (-1201 *4)) (-4 *4 (-860)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-598 *4))
+ (-4 *4 (-358)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-960 *3 *5 *4))
+ (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1190))))
+ (-4 *5 (-803)) (-5 *1 (-935 *3 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *5)) (-5 *4 (-930)) (-4 *5 (-858))
- (-5 *2 (-652 (-680 *5))) (-5 *1 (-680 *5)))))
+ (-12 (-5 *3 (-1186 *2)) (-4 *2 (-960 (-417 (-963 *6)) *5 *4))
+ (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803))
+ (-4 *4 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $)))))
+ (-4 *6 (-566)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1294 *4 *5 *6 *7)))
+ (-5 *1 (-1294 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566))
+ (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1294 *6 *7 *8 *9)))
+ (-5 *1 (-1294 *6 *7 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1193))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-757)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286))
+ (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286))
+ (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *1) (-5 *1 (-299))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1113)) (-4 *3 (-911 *5)) (-5 *2 (-1281 *3))
+ (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3))
+ (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-699 *4)) (-4 *5 (-666 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $))
+ (-15 -2977 ((-1138 *3 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *3 (-622 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $))
+ (-15 -2977 ((-1138 *3 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *3 (-622 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 *2))
+ (-4 *2
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *4 (-622 $)) $))
+ (-15 -2977 ((-1138 *4 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *4 (-622 $)))))))
+ (-4 *4 (-566)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 (-622 *2)))
+ (-4 *2
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *4 (-622 $)) $))
+ (-15 -2977 ((-1138 *4 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *4 (-622 $)))))))
+ (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858)))
- (-14 *3 (-652 (-1188))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-4 *4 (-1003 *3)) (-5 *1 (-143 *3 *4 *2))
- (-4 *2 (-380 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-4 *2 (-380 *4))
- (-5 *1 (-511 *4 *5 *2 *3)) (-4 *3 (-380 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-697 *5)) (-4 *5 (-1003 *4)) (-4 *4 (-564))
- (-5 *2 (-697 *4)) (-5 *1 (-701 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-4 *4 (-1003 *3)) (-5 *1 (-1248 *3 *4 *2))
- (-4 *2 (-1255 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
+ (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566))))
+ ((*1 *1 *1) (|partial| -4 *1 (-732))))
(((*1 *2 *1)
- (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-759)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (|has| *1 (-6 -4455)) (-4 *1 (-1267 *3))
- (-4 *3 (-1229)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-1200 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4))
- (-4 *4 (-1229)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-572)) (-5 *1 (-245))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-572)) (-5 *1 (-245)))))
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3))
+ (-4 *3 (-1113)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1283))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-1172)) (-5 *1 (-1283))))
+ ((*1 *1 *1) (-5 *1 (-1283))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+ (-12 (-5 *3 (-1190))
+ (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *1 (-1193)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1270 *4))
- (-4 *4 (-38 (-415 (-572))))
- (-5 *2 (-1 (-1168 *4) (-1168 *4) (-1168 *4))) (-5 *1 (-1272 *4 *5)))))
+ (-12 (-4 *4 (-38 (-417 (-574))))
+ (-5 *2 (-2 (|:| -2227 (-1170 *4)) (|:| -2237 (-1170 *4))))
+ (-5 *1 (-1176 *4)) (-5 *3 (-1170 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460))
- (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-854)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))
- (-5 *2 (-1184 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-245)))))
+ (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1113))
+ (-5 *1 (-583 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
- (-5 *2 (-779))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
- (-5 *2 (-779))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-734)))))
-(((*1 *2) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-105)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1252 *5 *4)) (-5 *1 (-1186 *4 *5 *6))
- (-4 *4 (-1060)) (-14 *5 (-1188)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1252 *5 *4)) (-5 *1 (-1271 *4 *5 *6))
- (-4 *4 (-1060)) (-14 *5 (-1188)) (-14 *6 *4))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-697 (-227))) (-5 *5 (-112)) (-5 *6 (-227))
- (-5 *7 (-697 (-572)))
- (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-761)))))
-(((*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1279 *4)) (-4 *4 (-425 *3)) (-4 *3 (-313))
- (-4 *3 (-564)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-4 *4 (-370)) (-5 *2 (-1279 *1))
- (-4 *1 (-335 *4))))
- ((*1 *2) (-12 (-4 *3 (-370)) (-5 *2 (-1279 *1)) (-4 *1 (-335 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-1279 *1))
- (-4 *1 (-417 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4))
- (-5 *2 (-1279 *6)) (-5 *1 (-421 *3 *4 *5 *6))
- (-4 *6 (-13 (-417 *4 *5) (-1049 *4)))))
+ (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4))
- (-5 *2 (-1279 *6)) (-5 *1 (-422 *3 *4 *5 *6 *7))
- (-4 *6 (-417 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1279 *1)) (-4 *1 (-425 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1279 (-1279 *4))) (-5 *1 (-536 *4))
- (-4 *4 (-356)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-858)) (-5 *3 (-652 *6)) (-5 *5 (-652 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-652 *5)) (|:| |f3| *5)
- (|:| |f4| (-652 *5))))
- (-5 *1 (-1199 *6)) (-5 *4 (-652 *5)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-620 *4)) (-5 *6 (-1184 *4))
- (-4 *4 (-13 (-438 *7) (-27) (-1214)))
- (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4))))
- (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-620 *4)) (-5 *6 (-415 (-1184 *4)))
- (-4 *4 (-13 (-438 *7) (-27) (-1214)))
- (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4))))
- (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))))
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-426 *2)) (-4 *2 (-313)) (-5 *1 (-923 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-148))) (-5 *2 (-52)) (-5 *1 (-924 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-426 (-961 *6))) (-5 *5 (-1188)) (-5 *3 (-961 *6))
- (-4 *6 (-13 (-313) (-148))) (-5 *2 (-52)) (-5 *1 (-924 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-652 (-620 *4))) (-4 *4 (-438 *3)) (-4 *3 (-1111))
- (-5 *1 (-581 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-837)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1281))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-763)))))
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))
- (-5 *2 (-652 (-1188))) (-5 *1 (-272))))
+ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))
+ (-5 *2 (-654 (-1190))) (-5 *1 (-274))))
((*1 *2 *3)
- (-12 (-5 *3 (-1184 *7)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *2 (-652 *5))
- (-5 *1 (-327 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1186 *7)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *2 (-654 *5))
+ (-5 *1 (-329 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-395))))
+ (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-397))))
((*1 *2 *1)
- (-12 (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-5 *2 (-652 (-1188)))))
+ (-12 (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-5 *2 (-654 (-1190)))))
((*1 *2 *1)
- (-12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113))))
((*1 *2 *1)
- (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-652 *5))))
+ (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-654 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
- (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *5))
- (-5 *1 (-959 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062))
+ (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *5))
+ (-5 *1 (-961 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $)))))))
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-800))
- (-4 *5 (-858)) (-5 *2 (-652 *5))))
+ (-12 (-4 *1 (-986 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-802))
+ (-4 *5 (-860)) (-5 *2 (-654 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5))))
+ (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-652 (-1188)))
- (-5 *1 (-1054 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-370)) (-4 *2 (-856)) (-5 *1 (-954 *2 *3))
- (-4 *3 (-1255 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-593)) (-5 *1 (-286)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-370) (-148)))
- (-5 *2 (-652 (-2 (|:| -1679 (-779)) (|:| -3356 *4) (|:| |num| *4))))
- (-5 *1 (-407 *3 *4)) (-4 *4 (-1255 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1103 (-961 (-572)))) (-5 *3 (-961 (-572)))
- (-5 *1 (-336))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1103 (-961 (-572)))) (-5 *1 (-336)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1170)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-1076 *4 *5 *6)) (-4 *4 (-564))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-514)) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-115)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
+ (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1190)))
+ (-5 *1 (-1056 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-781)) (-4 *5 (-566))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2874 *3)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-765))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398))
+ (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-960 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-462))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *3 (-1078 *4 *5 *6))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *1))))
+ (-4 *1 (-1084 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1235)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-1260 *3 *2))
+ (-4 *2 (-13 (-1257 *3) (-566) (-10 -8 (-15 -2874 ($ $ $))))))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-766)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1190)) (-5 *6 (-112))
+ (-4 *7 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
+ (-4 *3 (-13 (-1216) (-970) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1184 (-415 (-1184 *2)))) (-5 *4 (-620 *2))
- (-4 *2 (-13 (-438 *5) (-27) (-1214)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1111))))
+ (-12 (-5 *3 (-1186 (-417 (-1186 *2)))) (-5 *4 (-622 *2))
+ (-4 *2 (-13 (-440 *5) (-27) (-1216)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1113))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1184 *1)) (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *3 (-858))))
+ (-12 (-5 *2 (-1186 *1)) (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *3 (-860))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1060)) (-4 *1 (-958 *4 *5 *3))
- (-4 *5 (-801)) (-4 *3 (-858))))
+ (-12 (-5 *2 (-1186 *4)) (-4 *4 (-1062)) (-4 *1 (-960 *4 *5 *3))
+ (-4 *5 (-803)) (-4 *3 (-860))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-1184 *2))) (-4 *5 (-801)) (-4 *4 (-858))
- (-4 *6 (-1060))
+ (-12 (-5 *3 (-417 (-1186 *2))) (-4 *5 (-803)) (-4 *4 (-860))
+ (-4 *6 (-1062))
(-4 *2
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $)))))
- (-5 *1 (-959 *5 *4 *6 *7 *2)) (-4 *7 (-958 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-1184 (-415 (-961 *5))))) (-5 *4 (-1188))
- (-5 *2 (-415 (-961 *5))) (-5 *1 (-1054 *5)) (-4 *5 (-564)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
-(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
- ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-1143 *4 *2))
- (-4 *2 (-13 (-612 (-572) *4) (-10 -7 (-6 -4454) (-6 -4455))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-858)) (-4 *3 (-1229)) (-5 *1 (-1143 *3 *2))
- (-4 *2 (-13 (-612 (-572) *3) (-10 -7 (-6 -4454) (-6 -4455)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $)))))
+ (-5 *1 (-961 *5 *4 *6 *7 *2)) (-4 *7 (-960 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-417 (-1186 (-417 (-963 *5))))) (-5 *4 (-1190))
+ (-5 *2 (-417 (-963 *5))) (-5 *1 (-1056 *5)) (-4 *5 (-566)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-860))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *1 (-993 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7))
+ (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1111)) (-5 *1 (-976 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *2 (-779))
- (-5 *1 (-1176 *4 *5)) (-14 *4 (-930))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-779))) (-5 *3 (-779)) (-5 *1 (-1176 *4 *5))
- (-14 *4 (-930)) (-4 *5 (-1060))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-779))) (-5 *3 (-952 *5)) (-4 *5 (-1060))
- (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))))
-(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386))))
- ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))))
-(((*1 *2 *1) (-12 (-4 *1 (-564)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1))
+ (-4 *1 (-1084 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148)))
+ (-5 *1 (-1251 *4 *2)) (-4 *2 (-1257 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-592)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1190))
+ (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1190))
+ (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-372)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3)))
+ (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1257 *2))
+ (-4 *5 (-1257 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6))
+ (-4 *6 (-351 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-372)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3)))
+ (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))
+ (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372))
+ (-4 *1 (-344 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1281 (-1281 (-574)))) (-5 *3 (-932)) (-5 *1 (-476)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-315))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-652 (-930))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-930))
- (-4 *2 (-370)) (-14 *5 (-1004 *4 *2))))
+ (-12 (-5 *3 (-654 (-932))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-932))
+ (-4 *2 (-372)) (-14 *5 (-1006 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-721 *5 *6 *7)) (-4 *5 (-858))
- (-4 *6 (-242 (-2860 *4) (-779)))
+ (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860))
+ (-4 *6 (-244 (-2863 *4) (-781)))
(-14 *7
- (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *6))
- (-2 (|:| -2571 *5) (|:| -1679 *6))))
- (-14 *4 (-652 (-1188))) (-4 *2 (-174))
- (-5 *1 (-469 *4 *2 *5 *6 *7 *8)) (-4 *8 (-958 *2 *6 (-872 *4)))))
+ (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *6))
+ (-2 (|:| -2576 *5) (|:| -2524 *6))))
+ (-14 *4 (-654 (-1190))) (-4 *2 (-174))
+ (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-960 *2 *6 (-874 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-858))))
+ (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-860))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-572)) (-4 *2 (-564)) (-5 *1 (-631 *2 *4))
- (-4 *4 (-1255 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-716 *2)) (-4 *2 (-1060))))
+ (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4))
+ (-4 *4 (-1257 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1062))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-743 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-734))))
+ (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-736))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 *5)) (-5 *3 (-652 (-779))) (-4 *1 (-748 *4 *5))
- (-4 *4 (-1060)) (-4 *5 (-858))))
+ (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5))
+ (-4 *4 (-1062)) (-4 *5 (-860))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *2)) (-4 *4 (-1060))
- (-4 *2 (-858))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-860 *2)) (-4 *2 (-1060))))
+ (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1062))
+ (-4 *2 (-860))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1062))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 (-779))) (-4 *1 (-958 *4 *5 *6))
- (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858))))
+ (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-960 *4 *5 *6))
+ (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-958 *4 *5 *2)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *2 (-858))))
+ (-12 (-5 *3 (-781)) (-4 *1 (-960 *4 *5 *2)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *2 (-860))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 *5)) (-4 *1 (-984 *4 *5 *6))
- (-4 *4 (-1060)) (-4 *5 (-800)) (-4 *6 (-858))))
+ (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-986 *4 *5 *6))
+ (-4 *4 (-1062)) (-4 *5 (-802)) (-4 *6 (-860))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-984 *4 *3 *2)) (-4 *4 (-1060)) (-4 *3 (-800))
- (-4 *2 (-858)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060))
- (-5 *1 (-1172 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060))
- (-14 *4 (-1188)) (-14 *5 *3))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *1 (-268))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-335 *4)) (-4 *4 (-370))
- (-5 *2 (-697 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1279 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
- (-5 *2 (-697 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
- (-5 *2 (-1279 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1255 *4)) (-5 *2 (-1279 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-417 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
- (-5 *2 (-1279 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-425 *4)) (-4 *4 (-174))
- (-5 *2 (-697 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-697 *5))) (-5 *3 (-697 *5)) (-4 *5 (-370))
- (-5 *2 (-1279 *5)) (-5 *1 (-1097 *5)))))
+ (-12 (-4 *1 (-986 *4 *3 *2)) (-4 *4 (-1062)) (-4 *3 (-802))
+ (-4 *2 (-860)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))
+ (-5 *2 (-1281 *6)) (-5 *1 (-345 *3 *4 *5 *6))
+ (-4 *6 (-351 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-120 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
+ (-12 (-5 *2 (-1170 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-112))
+ (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1216) (-29 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 (-1 *6 (-652 *6))))
- (-4 *5 (-38 (-415 (-572)))) (-4 *6 (-1270 *5)) (-5 *2 (-652 *6))
- (-5 *1 (-1272 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-481))) ((*1 *1 *1 *1) (-4 *1 (-769))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227)))
- (-5 *1 (-705)))))
-(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-756)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-566))
+ (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-780 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-566))
+ (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-780 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-699 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2722 (-654 *6)))
+ *7 *6))
+ (-4 *6 (-372)) (-4 *7 (-666 *6))
(-5 *2
- (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572))
- (|:| |success| (-112))))
- (-5 *1 (-797)) (-5 *5 (-572)))))
-(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-317))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1111)) (-4 *4 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *5 *4 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1255 *6))
- (-4 *6 (-13 (-27) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572))))
- (-4 *8 (-1255 (-415 *7))) (-5 *2 (-594 *3))
- (-5 *1 (-560 *5 *6 *7 *8 *3)) (-4 *3 (-349 *6 *7 *8)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
- (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-173)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-333 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229)) (-14 *4 *2))))
+ (-2 (|:| |particular| (-3 (-1281 *6) "failed"))
+ (|:| -2722 (-654 (-1281 *6)))))
+ (-5 *1 (-823 *6 *7)) (-5 *4 (-1281 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *3 (-654 (-574)))
+ (-5 *1 (-894)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-914 (-572))) (-5 *4 (-572)) (-5 *2 (-697 *4))
- (-5 *1 (-1039 *5)) (-4 *5 (-1060))))
+ (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1257 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1039 *4))
- (-4 *4 (-1060))))
+ (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
+ (-4 *3 (-1257 (-574)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-914 (-572)))) (-5 *4 (-572))
- (-5 *2 (-652 (-697 *4))) (-5 *1 (-1039 *5)) (-4 *5 (-1060))))
+ (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
+ (-4 *3 (-1257 (-574)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3))
+ (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
+ (-4 *3 (-1257 (-574)))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-652 (-572)))) (-5 *2 (-652 (-697 (-572))))
- (-5 *1 (-1039 *4)) (-4 *4 (-1060)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-572))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))
- (-5 *2 (-1046)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-426 (-1184 *7)))
- (-5 *1 (-915 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
+ (-12 (-5 *2 (-428 *3)) (-5 *1 (-1020 *3))
+ (-4 *3 (-1257 (-417 (-574))))))
((*1 *2 *3)
- (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5)))
- (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-761)))))
-(((*1 *2 *1) (-12 (-5 *2 (-605)) (-5 *1 (-286)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+ (-12 (-5 *2 (-428 *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-766)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1224 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803))
+ (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *5 (-1255 *4)) (-5 *2 (-652 (-661 (-415 *5))))
- (-5 *1 (-665 *4 *5)) (-5 *3 (-661 (-415 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4))
- (-5 *2 (-2 (|:| |ans| (-415 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1026 *4 *5)) (-5 *3 (-415 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-4 *3 (-13 (-27) (-1214) (-438 *6) (-10 -8 (-15 -2940 ($ *7)))))
- (-4 *7 (-856))
- (-4 *8
- (-13 (-1257 *3 *7) (-370) (-1214)
- (-10 -8 (-15 -3902 ($ $)) (-15 -3034 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))))
- (-5 *1 (-430 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1170)) (-4 *9 (-994 *8))
- (-14 *10 (-1188)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-952 *5)) (-5 *3 (-779)) (-4 *5 (-1060))
- (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
+ (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3))
+ (-4 *2
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $))
+ (-15 -2977 ((-1138 *3 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *3 (-622 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1113))
+ (-5 *1 (-688 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1113)) (-5 *1 (-692 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-313)) (-5 *1 (-181 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1) (-12 (-4 *1 (-1132 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))))
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *2 (-1078 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3))
+ (-4 *3 (-1084 *4 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-801))
- (-4 *3 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))) (-4 *5 (-564))
- (-5 *1 (-740 *4 *3 *5 *2)) (-4 *2 (-958 (-415 (-961 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1060)) (-4 *5 (-801))
- (-4 *3
- (-13 (-858)
- (-10 -8 (-15 -1835 ((-1188) $))
- (-15 -1487 ((-3 $ "failed") (-1188))))))
- (-5 *1 (-995 *4 *5 *3 *2)) (-4 *2 (-958 (-961 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 *6))
- (-4 *6
- (-13 (-858)
- (-10 -8 (-15 -1835 ((-1188) $))
- (-15 -1487 ((-3 $ "failed") (-1188))))))
- (-4 *4 (-1060)) (-4 *5 (-801)) (-5 *1 (-995 *4 *5 *6 *2))
- (-4 *2 (-958 (-961 *4) *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-707)))))
+ (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-1113))
+ (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-302 (-963 (-574))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-654 (-1190)))
+ (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed"))
+ (|:| |hom| (-654 (-1281 (-781))))))
+ (-5 *1 (-242)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-810))
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-1048)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-315))
+ (-5 *2 (-781)) (-5 *1 (-465 *5 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1060)) (-5 *1 (-835 *2 *3)) (-4 *2 (-716 *3)))))
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
(((*1 *2)
- (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-350 *3 *4)) (-14 *3 (-930))
- (-14 *4 (-930))))
- ((*1 *2)
- (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-351 *3 *4)) (-4 *3 (-356))
- (-14 *4 (-1184 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-352 *3 *4)) (-4 *3 (-356))
- (-14 *4 (-930)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-564) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
+ (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112))
+ (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1062)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 *3)) (-4 *3 (-1084 *5 *6 *7 *8)) (-4 *5 (-462))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1001 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 *3)) (-4 *3 (-1084 *5 *6 *7 *8)) (-4 *5 (-462))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1120 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
+ (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6)))
+ (-5 *1 (-638 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 *4))))
- (-5 *1 (-898 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))))
+ (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 *4))))
+ (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113))))
((*1 *2 *1)
- (-12 (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111))
- (-4 *7 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-1114 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-171 (-227))) (-5 *6 (-1170))
- (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-652 *11)) (-5 *5 (-652 (-1184 *9)))
- (-5 *6 (-652 *9)) (-5 *7 (-652 *12)) (-5 *8 (-652 (-779)))
- (-4 *11 (-858)) (-4 *9 (-313)) (-4 *12 (-958 *9 *10 *11))
- (-4 *10 (-801)) (-5 *2 (-652 (-1184 *12)))
- (-5 *1 (-715 *10 *11 *9 *12)) (-5 *3 (-1184 *12)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-300 (-841 *3)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-841 *3)) (-5 *1 (-644 *5 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-300 (-841 (-961 *5)))) (-4 *5 (-460))
- (-5 *2 (-841 (-415 (-961 *5)))) (-5 *1 (-645 *5))
- (-5 *3 (-415 (-961 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-300 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5)))
- (-4 *5 (-460)) (-5 *2 (-841 *3)) (-5 *1 (-645 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-967 (-185 (-140)))) (-5 *1 (-339))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-614)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1105 (-227)))
- (-5 *2 (-1281)) (-5 *1 (-262)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-697 (-322 (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-227)) (-5 *5 (-572)) (-5 *2 (-1224 *3))
- (-5 *1 (-798 *3)) (-4 *3 (-985))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-112))
- (-5 *1 (-1224 *2)) (-4 *2 (-985)))))
+ (-12 (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113))
+ (-4 *7 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-1116 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-969 (-185 (-140)))) (-5 *1 (-341))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-616)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1107 (-227))) (-5 *6 (-574)) (-5 *2 (-1226 (-937)))
+ (-5 *1 (-326))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1107 (-227))) (-5 *6 (-574)) (-5 *7 (-1172))
+ (-5 *2 (-1226 (-937))) (-5 *1 (-326))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1107 (-227))) (-5 *6 (-227)) (-5 *7 (-574))
+ (-5 *2 (-1226 (-937))) (-5 *1 (-326))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1107 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1172))
+ (-5 *2 (-1226 (-937))) (-5 *1 (-326)))))
+(((*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-173)))))))
(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139))))
((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
- ((*1 *1 *1) (-5 *1 (-870)))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
+ ((*1 *1 *1) (-5 *1 (-872)))
((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-1109 *3))))
- ((*1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *2 (-1111)) (-4 *3 (-1111))
- (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-281 *4 *3))
- (-4 *3 (-13 (-438 *4) (-1013))))))
-(((*1 *1 *1) (-5 *1 (-227)))
- ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *1 *1) (-4 *1 (-1150))) ((*1 *1 *1 *1) (-4 *1 (-1150))))
-(((*1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2) (-12 (-5 *1 (-1246 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
- (-4 *4 (-356)))))
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-1111 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))))
+(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1248 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987)))))
+(((*1 *2)
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1098)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1257 *6))
+ (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574))))
+ (-4 *8 (-1257 (-417 *7))) (-5 *2 (-596 *3))
+ (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-1168 (-227))) (-5 *1 (-194))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-322 (-227))) (-5 *4 (-652 (-1188)))
- (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *4 (-652 (-1188)))
- (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))))
-(((*1 *2)
- (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-918))
- (-5 *1 (-465 *3 *4 *2 *5)) (-4 *5 (-958 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-918))
- (-5 *1 (-915 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-918)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1255 *2)))))
-(((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52))))
- (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
- (-5 *2 (-652 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
- (-5 *2 (-652 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1168 *3)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 *3)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-734))))
- ((*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-652 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1270 *3)) (-4 *3 (-1060)) (-5 *2 (-1168 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *1) (-5 *1 (-445))))
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-388)) (-5 *1 (-207)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190))
+ (-14 *4 *2))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1190)) (-5 *1 (-596 *2)) (-4 *2 (-1051 *3))
+ (-4 *2 (-372))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2))
+ (-4 *2 (-13 (-440 *4) (-1015) (-1216)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1105 *2)) (-4 *2 (-13 (-440 *4) (-1015) (-1216)))
+ (-4 *4 (-566)) (-5 *1 (-640 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-1190))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-970)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-858))
+ (-12 (-4 *4 (-860))
(-5 *2
- (-2 (|:| |f1| (-652 *4)) (|:| |f2| (-652 (-652 (-652 *4))))
- (|:| |f3| (-652 (-652 *4))) (|:| |f4| (-652 (-652 (-652 *4))))))
- (-5 *1 (-1199 *4)) (-5 *3 (-652 (-652 (-652 *4)))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-703 *3)) (-4 *3 (-1111))
- (-5 *2 (-652 (-2 (|:| -1907 *3) (|:| -3973 (-779))))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1096)))))
+ (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4))))
+ (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4))))))
+ (-5 *1 (-1201 *4)) (-5 *3 (-654 (-654 (-654 *4)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $))
+ (-15 -2977 ((-1138 *3 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *3 (-622 $))))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781))
+ (-5 *1 (-956 *4 *5)) (-4 *5 (-1257 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1257 *5))
+ (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1051 (-574))))
+ (-4 *7 (-1257 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2))
+ (-4 *2 (-351 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2800 *3) (|:| |coef1| (-792 *3))))
+ (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1229)) (-4 *1 (-242 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-415 *6)) (-4 *6 (-1255 *5))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4))))
- (-5 *1 (-818 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-661 (-415 *6))) (-4 *6 (-1255 *5))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2 (-2 (|:| -4362 (-652 (-415 *6))) (|:| -3544 (-697 *5))))
- (-5 *1 (-818 *5 *6)) (-5 *4 (-652 (-415 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-415 *6)) (-4 *6 (-1255 *5))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4))))
- (-5 *1 (-818 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-662 *6 (-415 *6))) (-4 *6 (-1255 *5))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2 (-2 (|:| -4362 (-652 (-415 *6))) (|:| -3544 (-697 *5))))
- (-5 *1 (-818 *5 *6)) (-5 *4 (-652 (-415 *6))))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-779)) (-5 *1 (-683 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-572)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1229))
- (-4 *5 (-380 *4)) (-4 *3 (-380 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *3 (-652 (-268)))
- (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-476))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-476)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
-(((*1 *1) (-5 *1 (-336))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-697 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-174)) (-4 *2 (-1255 *4)) (-5 *1 (-179 *4 *2 *3))
- (-4 *3 (-732 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 (-415 (-961 *5)))) (-5 *4 (-1188))
- (-5 *2 (-961 *5)) (-5 *1 (-298 *5)) (-4 *5 (-460))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-697 (-415 (-961 *4)))) (-5 *2 (-961 *4))
- (-5 *1 (-298 *4)) (-4 *4 (-460))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-697 (-171 (-415 (-572)))))
- (-5 *2 (-961 (-171 (-415 (-572))))) (-5 *1 (-772 *4))
- (-4 *4 (-13 (-370) (-856)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *4 (-1188))
- (-5 *2 (-961 (-171 (-415 (-572))))) (-5 *1 (-772 *5))
- (-4 *5 (-13 (-370) (-856)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-961 (-415 (-572))))
- (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *4 (-1188))
- (-5 *2 (-961 (-415 (-572)))) (-5 *1 (-787 *5))
- (-4 *5 (-13 (-370) (-856))))))
+ (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1231)) (-4 *1 (-244 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190))
+ (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(((*1 *1) (-5 *1 (-338))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1060)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-544))) (-5 *2 (-1188)) (-5 *1 (-544)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-166 *3 *4))
- (-4 *3 (-167 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1229)) (-5 *2 (-779))
- (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1111)) (-5 *2 (-779)) (-5 *1 (-437 *3 *4))
- (-4 *3 (-438 *4))))
- ((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-552 *3)) (-4 *3 (-553))))
- ((*1 *2) (-12 (-4 *1 (-771)) (-5 *2 (-779))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-804 *3 *4))
- (-4 *3 (-805 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-1002 *3 *4))
- (-4 *3 (-1003 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-1007 *3 *4))
- (-4 *3 (-1008 *4))))
- ((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1022 *3)) (-4 *3 (-1023))))
- ((*1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-779))))
- ((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1070 *3)) (-4 *3 (-1071)))))
-(((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-129)))))
+ (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1190)) (-5 *1 (-546)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1039 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1062)))))
+(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282)))))
(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-322 *4))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4))))))
+ (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-324 *4))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-444)))))
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))
+ (-5 *2 (-654 (-227))) (-5 *1 (-313)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1229)) (-5 *1 (-184 *3 *2))
- (-4 *2 (-682 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-460)))))
-(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1233)) (-5 *1 (-149 *2 *4 *3))
- (-4 *3 (-1255 (-415 *4))))))
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-705 *3)) (-4 *3 (-1113))
+ (-5 *2 (-654 (-2 (|:| -1909 *3) (|:| -3975 (-781))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-143 *2 *4 *3))
- (-4 *3 (-380 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-511 *2 *4 *5 *3))
- (-4 *5 (-380 *2)) (-4 *3 (-380 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-697 *4)) (-4 *4 (-1003 *2)) (-4 *2 (-564))
- (-5 *1 (-701 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-1248 *2 *4 *3))
- (-4 *3 (-1255 *4)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
- (-5 *2 (-1046)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1188))
- (-4 *5 (-13 (-564) (-1049 (-572)) (-148)))
- (-5 *2
- (-2 (|:| -2114 (-415 (-961 *5))) (|:| |coeff| (-415 (-961 *5)))))
- (-5 *1 (-578 *5)) (-5 *3 (-415 (-961 *5))))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
+ (-12 (-5 *3 (-1281 *4)) (-4 *4 (-1062)) (-4 *2 (-1257 *4))
+ (-5 *1 (-454 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-417 (-1186 (-324 *5)))) (-5 *3 (-1281 (-324 *5)))
+ (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1143 *5)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *6 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-322 *4))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174))))
+ (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-324 *4))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
-(((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1111))
- (-5 *2 (-2 (|:| -1857 (-572)) (|:| |var| (-620 *1))))
- (-4 *1 (-438 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *3 (-1076 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-652 (-322 (-227))))
- (|:| |constraints|
- (-652
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-779)) (|:| |boundaryType| (-572))
- (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
- (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
- (|:| |tol| (-227))))
- (-5 *2 (-112)) (-5 *1 (-212)))))
-(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149))))
+ (-12 (-4 *2 (-1113)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1098))) (-5 *1 (-299)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3))
+ (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))))
-(((*1 *1 *1) (-5 *1 (-1074))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-652 (-1184 *4))) (-5 *3 (-1184 *4))
- (-4 *4 (-918)) (-5 *1 (-671 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+ (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 *5)) (-4 *5 (-1257 *3)) (-4 *3 (-315))
+ (-5 *2 (-112)) (-5 *1 (-465 *3 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1098)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-302 (-417 (-963 *5)))) (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-148)))
+ (-5 *2 (-1179 (-654 (-324 *5)) (-654 (-302 (-324 *5)))))
+ (-5 *1 (-1142 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-148)))
+ (-5 *2 (-1179 (-654 (-324 *5)) (-654 (-302 (-324 *5)))))
+ (-5 *1 (-1142 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572))))
- ((*1 *1 *1) (-4 *1 (-1013)))
- ((*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1023))))
- ((*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-4 *1 (-1023))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-930))))
- ((*1 *1 *1) (-4 *1 (-1023))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))
+ ((*1 *1 *1) (-4 *1 (-1015)))
+ ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1025))))
+ ((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1025))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-932))))
+ ((*1 *1 *1) (-4 *1 (-1025))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 (-572)))))
- (-5 *1 (-368 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-393 *3)) (-4 *3 (-1111))
- (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 (-779)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| -4218 *3) (|:| -1679 (-572)))))
- (-5 *1 (-426 *3)) (-4 *3 (-564)))))
-(((*1 *2)
- (-12 (-14 *4 (-779)) (-4 *5 (-1229)) (-5 *2 (-135))
- (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-370)) (-5 *2 (-135)) (-5 *1 (-334 *3 *4))
- (-4 *3 (-335 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-174))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-572))
- (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
+ (-12 (-4 *3 (-1062)) (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1113))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801))
- (-5 *2 (-572)) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1060)) (-5 *2 (-930))))
- ((*1 *2) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-370)) (-5 *2 (-135)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1284)) (-5 *1 (-830)))))
+ (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1113)) (-5 *2 (-781))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5))
+ (-4 *4 (-1113)) (-14 *5 *2))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 *3)) (-4 *3 (-958 *5 *6 *7)) (-4 *5 (-460))
- (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-457 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412))))
- ((*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))))
-(((*1 *1 *1 *1) (-4 *1 (-553))))
-(((*1 *2)
- (-12 (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
- (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-4 *4 (-1255 *3))
+ (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1257 *5))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
(-5 *2
- (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-697 *3))))
- (-5 *1 (-357 *3 *4 *5)) (-4 *5 (-417 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1255 (-572)))
- (-5 *2
- (-2 (|:| -4362 (-697 (-572))) (|:| |basisDen| (-572))
- (|:| |basisInv| (-697 (-572)))))
- (-5 *1 (-776 *3 *4)) (-4 *4 (-417 (-572) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-356)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 *4))
- (-5 *2
- (-2 (|:| -4362 (-697 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-697 *4))))
- (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-732 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-356)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 *4))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4))))
+ (-5 *1 (-820 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1257 *5))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-5 *2 (-2 (|:| -2722 (-654 (-417 *6))) (|:| -1485 (-699 *5))))
+ (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1257 *5))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
(-5 *2
- (-2 (|:| -4362 (-697 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-697 *4))))
- (-5 *1 (-1288 *3 *4 *5 *6)) (-4 *6 (-417 *4 *5)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4))))
+ (-5 *1 (-820 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1257 *5))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-5 *2 (-2 (|:| -2722 (-654 (-417 *6))) (|:| -1485 (-699 *5))))
+ (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1272 *4))
+ (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1170 *4) (-1170 *4)))
+ (-5 *1 (-1274 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-1194)) (-5 *1 (-1193)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1254 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1190))
+ (-4 *5 (-372)) (-5 *1 (-934 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1186 *5))
+ (-5 *1 (-934 *4 *5)) (-14 *4 (-1190))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372))
+ (-5 *2 (-417 (-963 *6))) (-5 *1 (-1063 *5 *6)) (-14 *5 (-1190)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-48))) (-5 *2 (-426 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1255 (-48)))))
+ (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1257 (-48)))))
((*1 *2 *3)
- (-12 (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48)))))
+ (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-48))) (-4 *5 (-858)) (-4 *6 (-801))
- (-5 *2 (-426 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-958 (-48) *6 *5))))
+ (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803))
+ (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-960 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-48))) (-4 *5 (-858)) (-4 *6 (-801))
- (-4 *7 (-958 (-48) *6 *5)) (-5 *2 (-426 (-1184 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1184 *7))))
+ (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803))
+ (-4 *7 (-960 (-48) *6 *5)) (-5 *2 (-428 (-1186 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1186 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-168 *4 *3))
- (-4 *3 (-1255 (-171 *4)))))
+ (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3))
+ (-4 *3 (-1257 (-171 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
+ (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
+ (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1255 *4))))
+ (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1257 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
+ (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
- (-4 *3 (-1255 (-572)))))
+ (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
+ (-4 *3 (-1257 (-574)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-779))) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
- (-4 *3 (-1255 (-572)))))
+ (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
+ (-4 *3 (-1257 (-574)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *2 (-426 *3))
- (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
+ (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3))
+ (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
- (-4 *3 (-1255 (-572)))))
+ (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
+ (-4 *3 (-1257 (-574)))))
((*1 *2 *3)
- (-12 (-5 *2 (-426 (-171 (-572)))) (-5 *1 (-454))
- (-5 *3 (-171 (-572)))))
+ (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456))
+ (-5 *3 (-171 (-574)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-858)
- (-10 -8 (-15 -1835 ((-1188) $))
- (-15 -1487 ((-3 $ "failed") (-1188))))))
- (-4 *5 (-801)) (-4 *7 (-564)) (-5 *2 (-426 *3))
- (-5 *1 (-464 *4 *5 *6 *7 *3)) (-4 *6 (-564))
- (-4 *3 (-958 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-313)) (-5 *2 (-426 (-1184 *4))) (-5 *1 (-466 *4))
- (-5 *3 (-1184 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
- (-4 *7 (-13 (-370) (-148) (-732 *5 *6))) (-5 *2 (-426 *3))
- (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-1255 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-426 (-1184 *7)) (-1184 *7)))
- (-4 *7 (-13 (-313) (-148))) (-4 *5 (-858)) (-4 *6 (-801))
- (-5 *2 (-426 *3)) (-5 *1 (-548 *5 *6 *7 *3))
- (-4 *3 (-958 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-426 (-1184 *7)) (-1184 *7)))
- (-4 *7 (-13 (-313) (-148))) (-4 *5 (-858)) (-4 *6 (-801))
- (-4 *8 (-958 *7 *6 *5)) (-5 *2 (-426 (-1184 *8)))
- (-5 *1 (-548 *5 *6 *7 *8)) (-5 *3 (-1184 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-652 *5) *6))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *6 (-1255 *5)) (-5 *2 (-652 (-661 (-415 *6))))
- (-5 *1 (-665 *5 *6)) (-5 *3 (-661 (-415 *6)))))
+ (-13 (-860)
+ (-10 -8 (-15 -1837 ((-1190) $))
+ (-15 -1489 ((-3 $ "failed") (-1190))))))
+ (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3))
+ (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566))
+ (-4 *3 (-960 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1186 *4))) (-5 *1 (-468 *4))
+ (-5 *3 (-1186 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372))
+ (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3))
+ (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1257 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-428 (-1186 *7)) (-1186 *7)))
+ (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803))
+ (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3))
+ (-4 *3 (-960 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-428 (-1186 *7)) (-1186 *7)))
+ (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803))
+ (-4 *8 (-960 *7 *6 *5)) (-5 *2 (-428 (-1186 *8)))
+ (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1186 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-654 *5) *6))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *6 (-1257 *5)) (-5 *2 (-654 (-663 (-417 *6))))
+ (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *5 (-1255 *4)) (-5 *2 (-652 (-661 (-415 *5))))
- (-5 *1 (-665 *4 *5)) (-5 *3 (-661 (-415 *5)))))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *5 (-1257 *4)) (-5 *2 (-654 (-663 (-417 *5))))
+ (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-827 *4)) (-4 *4 (-858)) (-5 *2 (-652 (-680 *4)))
- (-5 *1 (-680 *4))))
+ (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4)))
+ (-5 *1 (-682 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-572)) (-5 *2 (-652 *3)) (-5 *1 (-704 *3))
- (-4 *3 (-1255 *4))))
+ (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3))
+ (-4 *3 (-1257 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-356)) (-5 *2 (-426 *3))
- (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4))))
+ (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3))
+ (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-356))
- (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-426 (-1184 *7)))
- (-5 *1 (-706 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
+ (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358))
+ (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-428 (-1186 *7)))
+ (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1186 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-801))
+ (-12 (-4 *4 (-803))
(-4 *5
- (-13 (-858)
- (-10 -8 (-15 -1835 ((-1188) $))
- (-15 -1487 ((-3 $ "failed") (-1188))))))
- (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-738 *4 *5 *6 *3))
- (-4 *3 (-958 (-961 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-801))
- (-4 *5 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))) (-4 *6 (-564))
- (-5 *2 (-426 *3)) (-5 *1 (-740 *4 *5 *6 *3))
- (-4 *3 (-958 (-415 (-961 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-13 (-313) (-148)))
- (-5 *2 (-426 *3)) (-5 *1 (-741 *4 *5 *6 *3))
- (-4 *3 (-958 (-415 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-13 (-313) (-148)))
- (-5 *2 (-426 *3)) (-5 *1 (-749 *4 *5 *6 *3))
- (-4 *3 (-958 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-13 (-313) (-148)))
- (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-426 (-1184 *7)))
- (-5 *1 (-749 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-426 *3)) (-5 *1 (-1018 *3))
- (-4 *3 (-1255 (-415 (-572))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-426 *3)) (-5 *1 (-1052 *3))
- (-4 *3 (-1255 (-415 (-961 (-572)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1255 (-415 (-572))))
- (-4 *5 (-13 (-370) (-148) (-732 (-415 (-572)) *4)))
- (-5 *2 (-426 *3)) (-5 *1 (-1090 *4 *5 *3)) (-4 *3 (-1255 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1255 (-415 (-961 (-572)))))
- (-4 *5 (-13 (-370) (-148) (-732 (-415 (-961 (-572))) *4)))
- (-5 *2 (-426 *3)) (-5 *1 (-1092 *4 *5 *3)) (-4 *3 (-1255 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-460))
- (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 (-415 *7))))
- (-5 *1 (-1183 *4 *5 *6 *7)) (-5 *3 (-1184 (-415 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-426 *1)) (-4 *1 (-1233))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-426 *3)) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-982)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
- (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))))
-(((*1 *1) (-5 *1 (-831))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-553))))
-(((*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-858))
- (-4 *3 (-13 (-174) (-725 (-415 (-572))))) (-14 *4 (-930))))
- ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
- ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-620 *3)) (-5 *5 (-1184 *3))
- (-4 *3 (-13 (-438 *6) (-27) (-1214)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2 (-594 *3)) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-620 *3)) (-5 *5 (-415 (-1184 *3)))
- (-4 *3 (-13 (-438 *6) (-27) (-1214)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2 (-594 *3)) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-967 *3)) (-5 *1 (-1175 *4 *3))
- (-4 *3 (-1255 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-194))))
+ (-13 (-860)
+ (-10 -8 (-15 -1837 ((-1190) $))
+ (-15 -1489 ((-3 $ "failed") (-1190))))))
+ (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3))
+ (-4 *3 (-960 (-963 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-306))))
+ (-12 (-4 *4 (-803))
+ (-4 *5 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))) (-4 *6 (-566))
+ (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3))
+ (-4 *3 (-960 (-417 (-963 *6)) *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-311)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1060)) (-4 *5 (-1255 *4)) (-5 *2 (-1 *6 (-652 *6)))
- (-5 *1 (-1273 *4 *5 *3 *6)) (-4 *3 (-664 *5)) (-4 *6 (-1270 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
+ (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148)))
+ (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3))
+ (-4 *3 (-960 (-417 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-306))))
+ (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148)))
+ (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3))
+ (-4 *3 (-960 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-311)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1046)) (-5 *1 (-757))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-396)) (-5 *2 (-1046)) (-5 *1 (-757)))))
-(((*1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))))
-(((*1 *1) (-5 *1 (-831))))
+ (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148)))
+ (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-428 (-1186 *7)))
+ (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1186 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-428 *3)) (-5 *1 (-1020 *3))
+ (-4 *3 (-1257 (-417 (-574))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-428 *3)) (-5 *1 (-1054 *3))
+ (-4 *3 (-1257 (-417 (-963 (-574)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1257 (-417 (-574))))
+ (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4)))
+ (-5 *2 (-428 *3)) (-5 *1 (-1092 *4 *5 *3)) (-4 *3 (-1257 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1257 (-417 (-963 (-574)))))
+ (-4 *5 (-13 (-372) (-148) (-734 (-417 (-963 (-574))) *4)))
+ (-5 *2 (-428 *3)) (-5 *1 (-1094 *4 *5 *3)) (-4 *3 (-1257 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462))
+ (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 (-417 *7))))
+ (-5 *1 (-1185 *4 *5 *6 *7)) (-5 *3 (-1186 (-417 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1235))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-428 *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *1) (-5 *1 (-1076))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062))
+ (-14 *4 (-654 (-1190)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1231))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860)))
+ (-14 *4 (-654 (-1190)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-701 (-977 *3))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-1062)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-1193))) (-5 *1 (-889)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-426 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))))
+ (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-372) (-1216) (-1015))))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-932) (-932)))) (-5 *1 (-984)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-802)) (-4 *3 (-174)))))
+(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6))
+ (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1272 *5)) (-4 *6 (-1257 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1273 *5 *6 *7)) (-4 *5 (-372))
+ (-14 *6 (-1190)) (-14 *7 *5) (-5 *2 (-417 (-1254 *6 *5)))
+ (-5 *1 (-878 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1273 *5 *6 *7)) (-4 *5 (-372))
+ (-14 *6 (-1190)) (-14 *7 *5) (-5 *2 (-417 (-1254 *6 *5)))
+ (-5 *1 (-878 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370))
- (-5 *2 (-2 (|:| -1358 (-426 *3)) (|:| |special| (-426 *3))))
- (-5 *1 (-735 *5 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-561)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-652 (-322 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
- (-5 *1 (-212)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-882))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
+ (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338))
+ (-5 *1 (-340)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-115)) (-4 *4 (-1062)) (-5 *1 (-724 *4 *2))
+ (-4 *2 (-658 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-767)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-932)) (-5 *1 (-1114 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1172)) (-5 *1 (-796)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1231))
+ (-4 *5 (-382 *4)) (-4 *3 (-382 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-428 *4)) (-4 *4 (-566)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-620 *1)) (-4 *1 (-438 *4)) (-4 *4 (-1111))
- (-4 *4 (-564)) (-5 *2 (-415 (-1184 *1)))))
+ (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1113))
+ (-4 *4 (-566)) (-5 *2 (-417 (-1186 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2 (-1184 (-415 (-1184 *3)))) (-5 *1 (-568 *6 *3 *7))
- (-5 *5 (-1184 *3)) (-4 *7 (-1111))))
+ (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2 (-1186 (-417 (-1186 *3)))) (-5 *1 (-570 *6 *3 *7))
+ (-5 *5 (-1186 *3)) (-4 *7 (-1113))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1275 *5)) (-14 *5 (-1188)) (-4 *6 (-1060))
- (-5 *2 (-1252 *5 (-961 *6))) (-5 *1 (-956 *5 *6)) (-5 *3 (-961 *6))))
+ (-12 (-5 *4 (-1277 *5)) (-14 *5 (-1190)) (-4 *6 (-1062))
+ (-5 *2 (-1254 *5 (-963 *6))) (-5 *1 (-958 *5 *6)) (-5 *3 (-963 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-1184 *3))))
+ (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-1186 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-1184 *1))
- (-4 *1 (-958 *4 *5 *3))))
+ (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1186 *1))
+ (-4 *1 (-960 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-1060))
- (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-415 (-1184 *3)))
- (-5 *1 (-959 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1062))
+ (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-417 (-1186 *3)))
+ (-5 *1 (-961 *5 *4 *6 *7 *3))
(-4 *3
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $)))))))
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1184 *3))
+ (-12 (-5 *2 (-1186 *3))
(-4 *3
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $)))))
- (-4 *7 (-958 *6 *5 *4)) (-4 *5 (-801)) (-4 *4 (-858))
- (-4 *6 (-1060)) (-5 *1 (-959 *5 *4 *6 *7 *3))))
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $)))))
+ (-4 *7 (-960 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860))
+ (-4 *6 (-1062)) (-5 *1 (-961 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1190)) (-4 *5 (-566))
+ (-5 *2 (-417 (-1186 (-417 (-963 *5))))) (-5 *1 (-1056 *5))
+ (-5 *3 (-417 (-963 *5))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1113)) (-4 *2 (-911 *4)) (-5 *1 (-702 *4 *2 *5 *3))
+ (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4456)))))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2722 (-654 *1))))
+ (-4 *1 (-376 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-463 *3 *4 *5 *6))
+ (|:| -2722 (-654 (-463 *3 *4 *5 *6)))))
+ (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803))
+ (-4 *6 (-566)) (-4 *7 (-960 *6 *5 *3))
+ (-5 *1 (-472 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1051 (-417 (-574))) (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $))
+ (-15 -2977 (*7 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-417 (-963 (-171 (-574))))))
+ (-5 *2 (-654 (-654 (-302 (-963 (-171 *4)))))) (-5 *1 (-387 *4))
+ (-4 *4 (-13 (-372) (-858)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188)) (-4 *5 (-564))
- (-5 *2 (-415 (-1184 (-415 (-961 *5))))) (-5 *1 (-1054 *5))
- (-5 *3 (-415 (-961 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-967 (-1131)))
- (-5 *1 (-353 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5))
- (-5 *2
- (-2 (|:| -2798 (-421 *4 (-415 *4) *5 *6)) (|:| |principalPart| *6)))))
+ (-12 (-5 *3 (-654 (-302 (-417 (-963 (-171 (-574)))))))
+ (-5 *2 (-654 (-654 (-302 (-963 (-171 *4)))))) (-5 *1 (-387 *4))
+ (-4 *4 (-13 (-372) (-858)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -1358 (-415 *6))
- (|:| |special| (-415 *6))))
- (-5 *1 (-735 *5 *6)) (-5 *3 (-415 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-905 *3 *4))
- (-4 *3 (-1255 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-779)) (-4 *5 (-370))
- (-5 *2 (-2 (|:| -3888 *3) (|:| -3901 *3))) (-5 *1 (-905 *3 *5))
- (-4 *3 (-1255 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112))
- (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460))
- (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1080 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112))
- (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460))
- (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1080 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112))
- (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460))
- (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1156 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112))
- (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460))
- (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-499)))))
+ (-12 (-5 *3 (-417 (-963 (-171 (-574)))))
+ (-5 *2 (-654 (-302 (-963 (-171 *4))))) (-5 *1 (-387 *4))
+ (-4 *4 (-13 (-372) (-858)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-302 (-417 (-963 (-171 (-574))))))
+ (-5 *2 (-654 (-302 (-963 (-171 *4))))) (-5 *1 (-387 *4))
+ (-4 *4 (-13 (-372) (-858))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *5)) (-5 *4 (-932)) (-4 *5 (-860))
+ (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *3 (-654 (-270)))
+ (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-478)))))
+(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-901 *4 *3))
+ (-4 *3 (-1231))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1172)) (-5 *1 (-313)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))))
-(((*1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1279 *6)) (-5 *4 (-1279 (-572))) (-5 *5 (-572))
- (-4 *6 (-1111)) (-5 *2 (-1 *6)) (-5 *1 (-1028 *6)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1294 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
- (-5 *1 (-672 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-672 *3 *4)) (-5 *1 (-1299 *3 *4))
- (-4 *3 (-858)) (-4 *4 (-174)))))
+ (-12 (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 (-1254 *5 *4)))
+ (-5 *1 (-1127 *4 *5)) (-5 *3 (-1254 *5 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-112))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-112))
- (-5 *1 (-1218 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-370)) (-4 *3 (-1060))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2967 *1)))
- (-4 *1 (-860 *3)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-759)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
+ (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1137 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1078 *4 *5 *6))
+ (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *1 (-990 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-932)) (-5 *1 (-796)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-193)) (-5 *3 (-572))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-869))))
- ((*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-869)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
- (-4 *3 (-13 (-1111) (-34))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1229))
- (-4 *5 (-380 *4)) (-4 *2 (-380 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *6 *2 *7)) (-4 *6 (-1060))
- (-4 *7 (-242 *4 *6)) (-4 *2 (-242 *5 *6)))))
+ (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1170 (-963 *4)) (-1170 (-963 *4))))
+ (-5 *1 (-1289 *4)) (-4 *4 (-372)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-52)) (-5 *1 (-903 *4))
+ (-4 *4 (-1113)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-32 *3 *4))
- (-4 *4 (-438 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-55)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *1 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-115))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-440 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-55)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *1 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-115))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-159 *3 *4))
- (-4 *4 (-438 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-115)) (-5 *1 (-164))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4))
+ (-4 *4 (-440 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-115)) (-5 *1 (-164))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-281 *3 *4))
- (-4 *4 (-13 (-438 *3) (-1013)))))
- ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-307 *3)) (-4 *3 (-308))))
- ((*1 *2 *2) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4))
+ (-4 *4 (-13 (-440 *3) (-1015)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310))))
+ ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *4 (-1111)) (-5 *1 (-437 *3 *4))
- (-4 *3 (-438 *4))))
+ (-12 (-5 *2 (-115)) (-4 *4 (-1113)) (-5 *1 (-439 *3 *4))
+ (-4 *3 (-440 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-439 *3 *4))
- (-4 *4 (-438 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-620 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4))
+ (-4 *4 (-440 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1113))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-638 *3 *4))
- (-4 *4 (-13 (-438 *3) (-1013) (-1214)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1030))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1202 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4))
+ (-4 *4 (-13 (-440 *3) (-1015) (-1216)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1032))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1204 *2)) (-4 *2 (-1113)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))
+ ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-572)) (|has| *1 (-6 -4445)) (-4 *1 (-412))
- (-5 *2 (-930)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1237))))))
+ (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3))
+ (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1257 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-1255 *4)) (-4 *4 (-1060))
- (-5 *2 (-1279 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-438 *4) (-1013) (-1214)))
- (-4 *4 (-564)) (-4 *2 (-13 (-438 (-171 *4)) (-1013) (-1214)))
- (-5 *1 (-608 *4 *5 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-5 *3 (-1188)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-961 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-29 *3)) (-4 *3 (-564))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-564)))))
-(((*1 *1) (-5 *1 (-567))))
+ (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2))
- (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-620 *1))) (-4 *1 (-308)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-847))
- (-5 *3
- (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227)))
- (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227))))
- (|:| |ub| (-652 (-851 (-227))))))
- (-5 *2 (-1046))))
+ (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))
((*1 *2 *3)
- (-12 (-4 *1 (-847))
- (-5 *3
- (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))
- (-5 *2 (-1046)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060))
- (-5 *2 (-652 (-652 (-952 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-652 (-652 (-952 *4)))) (-5 *3 (-112)) (-4 *4 (-1060))
- (-4 *1 (-1145 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-652 (-652 (-952 *3)))) (-4 *3 (-1060))
- (-4 *1 (-1145 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-652 (-652 (-652 *4)))) (-5 *3 (-112))
- (-4 *1 (-1145 *4)) (-4 *4 (-1060))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-652 (-652 (-952 *4)))) (-5 *3 (-112))
- (-4 *1 (-1145 *4)) (-4 *4 (-1060))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-652 (-652 (-652 *5)))) (-5 *3 (-652 (-173)))
- (-5 *4 (-173)) (-4 *1 (-1145 *5)) (-4 *5 (-1060))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-652 (-652 (-952 *5)))) (-5 *3 (-652 (-173)))
- (-5 *4 (-173)) (-4 *1 (-1145 *5)) (-4 *5 (-1060)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 (-2 (|:| |val| (-652 *6)) (|:| -4090 *7))))
- (-4 *6 (-1076 *3 *4 *5)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-999 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-652 (-2 (|:| |val| (-652 *6)) (|:| -4090 *7))))
- (-4 *6 (-1076 *3 *4 *5)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1118 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1046))) (-5 *2 (-1046)) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1 *1) (-5 *1 (-1074)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1165 *4))
- (-4 *4 (-1229))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-339)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1060)) (-4 *3 (-1111))
- (-5 *2 (-2 (|:| |val| *1) (|:| -1679 (-572)))) (-4 *1 (-438 *3))))
+ (-12 (-4 *4 (-174)) (-4 *2 (-1257 *4)) (-5 *1 (-179 *4 *2 *3))
+ (-4 *3 (-734 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 (-417 (-963 *5)))) (-5 *4 (-1190))
+ (-5 *2 (-963 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-699 (-417 (-963 *4)))) (-5 *2 (-963 *4))
+ (-5 *1 (-300 *4)) (-4 *4 (-462))))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-901 *3)) (|:| -1679 (-901 *3))))
- (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
- (-4 *7 (-958 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -1679 (-572))))
- (-5 *1 (-959 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $))
- (-15 -2974 (*7 $))))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-535)) (-5 *3 (-129)) (-5 *2 (-779)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356))
- (-4 *2
- (-13 (-410)
- (-10 -7 (-15 -2940 (*2 *4)) (-15 -3715 ((-930) *2))
- (-15 -4362 ((-1279 *2) (-930))) (-15 -3790 (*2 *2)))))
- (-5 *1 (-363 *2 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-438 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1103 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564))
- (-5 *1 (-159 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-161))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188)))))
+ (-12 (-5 *3 (-699 (-171 (-417 (-574)))))
+ (-5 *2 (-963 (-171 (-417 (-574))))) (-5 *1 (-774 *4))
+ (-4 *4 (-13 (-372) (-858)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1190))
+ (-5 *2 (-963 (-171 (-417 (-574))))) (-5 *1 (-774 *5))
+ (-4 *5 (-13 (-372) (-858)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-963 (-417 (-574))))
+ (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1190))
+ (-5 *2 (-963 (-417 (-574)))) (-5 *1 (-789 *5))
+ (-4 *5 (-13 (-372) (-858))))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227))
+ (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1231)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3))
+ (-4 *3 (-684 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-963 (-574))) (-5 *3 (-1190))
+ (-5 *4 (-1107 (-417 (-574)))) (-5 *1 (-30)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1178 *4 *5))
+ (-14 *4 (-932)) (-4 *5 (-1062)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4))
+ (-4 *3 (-167 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1231)) (-5 *2 (-781))
+ (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1113)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4))
+ (-4 *3 (-440 *4))))
+ ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555))))
+ ((*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4))
+ (-4 *3 (-807 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1004 *3 *4))
+ (-4 *3 (-1005 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1009 *3 *4))
+ (-4 *3 (-1010 *4))))
+ ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1024 *3)) (-4 *3 (-1025))))
+ ((*1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-781))))
+ ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1072 *3)) (-4 *3 (-1073)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6)
+ (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2144 *6)))
+ (-5 *1 (-1029 *5 *6)) (-5 *3 (-417 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1048)) (-5 *1 (-313))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-1048))) (-5 *2 (-1048)) (-5 *1 (-313))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *1) (-5 *1 (-1076)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1167 *4))
+ (-4 *4 (-1231))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1224 *5 *6 *7 *3))
+ (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-356))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -4225 (-652 (-2 (|:| |irr| *3) (|:| -2866 (-572)))))))
- (-5 *1 (-218 *5 *3)) (-4 *3 (-1255 *5)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1074 (-1037 *4) (-1186 (-1037 *4)))) (-5 *3 (-872))
+ (-5 *1 (-1037 *4)) (-4 *4 (-13 (-858) (-372) (-1035))))))
+(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))))
+(((*1 *1) (-5 *1 (-1098))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-1292 *4 *5 *6 *7)))
- (-5 *1 (-1292 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564))
- (-4 *7 (-801)) (-4 *8 (-858)) (-5 *2 (-652 (-1292 *6 *7 *8 *9)))
- (-5 *1 (-1292 *6 *7 *8 *9)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564))))
- ((*1 *1 *1) (|partial| -4 *1 (-730))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
+ (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870)))
- (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870)))
- (|:| |args| (-652 (-870)))))
- (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1162)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227)))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-763))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227)))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-396))
- (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))))
+ (-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872)))
+ (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872)))
+ (|:| |args| (-654 (-872)))))
+ (-5 *1 (-1190)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1164)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-654
+ (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 *2))
+ (|:| |logand| (-1186 *2)))))
+ (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-372)) (-5 *1 (-596 *2)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
(((*1 *2 *3)
- (-12 (-5 *2 (-171 (-386))) (-5 *1 (-793 *3)) (-4 *3 (-622 (-386)))))
+ (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-930)) (-5 *2 (-171 (-386))) (-5 *1 (-793 *3))
- (-4 *3 (-622 (-386)))))
+ (-12 (-5 *4 (-932)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3))
+ (-4 *3 (-624 (-388)))))
((*1 *2 *3)
- (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-622 (-386)))
- (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388)))
+ (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 *5)) (-5 *4 (-930)) (-4 *5 (-174))
- (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
+ (-12 (-5 *3 (-171 *5)) (-5 *4 (-932)) (-4 *5 (-174))
+ (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-961 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-622 (-386)))
- (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388)))
+ (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-961 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-174))
- (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
+ (-12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-174))
+ (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 (-386)))
- (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 (-388)))
+ (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060))
- (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
+ (-12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062))
+ (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 (-386)))
- (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388)))
+ (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564))
- (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
+ (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566))
+ (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-415 (-961 (-171 *4)))) (-4 *4 (-564))
- (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-417 (-963 (-171 *4)))) (-4 *4 (-566))
+ (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 (-171 *5)))) (-5 *4 (-930)) (-4 *5 (-564))
- (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
+ (-12 (-5 *3 (-417 (-963 (-171 *5)))) (-5 *4 (-932)) (-4 *5 (-566))
+ (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858))
- (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860))
+ (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858))
- (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
+ (-12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860))
+ (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-322 (-171 *4))) (-4 *4 (-564)) (-4 *4 (-858))
- (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860))
+ (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-322 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-564))
- (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386)))
- (-5 *1 (-793 *5)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-370)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3)))
- (-4 *1 (-342 *4 *3 *5 *2)) (-4 *2 (-349 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-572)) (-4 *2 (-370)) (-4 *4 (-1255 *2))
- (-4 *5 (-1255 (-415 *4))) (-4 *1 (-342 *2 *4 *5 *6))
- (-4 *6 (-349 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-370)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3)))
- (-4 *1 (-342 *2 *3 *4 *5)) (-4 *5 (-349 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
- (-4 *1 (-342 *3 *4 *5 *2)) (-4 *2 (-349 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-421 *4 (-415 *4) *5 *6)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-4 *3 (-370))
- (-4 *1 (-342 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-564))
- (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-778 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-564))
- (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-778 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-697 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4362 (-652 *6)))
- *7 *6))
- (-4 *6 (-370)) (-4 *7 (-664 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1279 *6) "failed"))
- (|:| -4362 (-652 (-1279 *6)))))
- (-5 *1 (-821 *6 *7)) (-5 *4 (-1279 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-112)) (-5 *1 (-272)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-300 (-961 (-572))))
- (-5 *2
- (-2 (|:| |varOrder| (-652 (-1188)))
- (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed"))
- (|:| |hom| (-652 (-1279 (-779))))))
- (-5 *1 (-240)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112))
- (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))))
+ (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-566))
+ (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388)))
+ (-5 *1 (-795 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555))
+ (-5 *2 (-417 (-574)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2114 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-370)) (-4 *7 (-1255 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-415 *7)) (|:| |a0| *6))
- (-2 (|:| -2114 (-415 *7)) (|:| |coeff| (-415 *7))) "failed"))
- (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1060))
- (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
- (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4))))
- ((*1 *1 *1) (-4 *1 (-553)))
- ((*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-827 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-902 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1229)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1226 *3)) (-4 *3 (-1229))))
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555))
+ (-4 *3 (-566))))
+ ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1013))
- (-4 *2 (-1060)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-227))
- (-5 *7 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))))
+ (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555))
+ (-5 *2 (-417 (-574)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555))
+ (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555))
+ (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555))
+ (-5 *2 (-417 (-574)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1021 *3)) (-4 *3 (-1051 *2)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-654 (-1186 *13))) (-5 *3 (-1186 *13))
+ (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13))
+ (-5 *7 (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| *13)))))
+ (-5 *8 (-654 (-781))) (-5 *9 (-1281 (-654 (-1186 *10))))
+ (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-960 *10 *11 *12))
+ (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-446)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1281 *1)) (-4 *1 (-376 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1062))
+ (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292)))
+ (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4))))
+ ((*1 *1 *1) (-4 *1 (-555)))
+ ((*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1231)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1228 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1015))
+ (-4 *2 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1113)) (-5 *2 (-622 *5))
+ (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-982 *2 *4))
+ (-4 *4 (-1257 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1))
+ (-4 *1 (-1084 *4 *5 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1113))
+ (-5 *1 (-688 *2)))))
(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1857 *3) (|:| |gap| (-779)) (|:| -4215 (-790 *3))
- (|:| -3669 (-790 *3))))
- (-5 *1 (-790 *3)) (-4 *3 (-1060))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858))
+ (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-4 *3 (-1113))
+ (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1231)) (-5 *1 (-184 *3 *2))
+ (-4 *2 (-684 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1257 *6))
+ (-4 *6 (-13 (-372) (-148) (-1051 *4))) (-5 *4 (-574))
(-5 *2
- (-2 (|:| -1857 *1) (|:| |gap| (-779)) (|:| -4215 *1)
- (|:| -3669 *1)))
- (-4 *1 (-1076 *4 *5 *3))))
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -4122
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1028 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3))
+ (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-960 *6 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 (-1281 *4))) (-4 *4 (-1062)) (-5 *2 (-699 *4))
+ (-5 *1 (-1042 *4)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1087))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2
- (-2 (|:| -1857 *1) (|:| |gap| (-779)) (|:| -4215 *1)
- (|:| -3669 *1)))
- (-4 *1 (-1076 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-652 (-1188)))
- (-5 *2 (-652 (-652 (-386)))) (-5 *1 (-1034)) (-5 *5 (-386))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-652 (-1035 (-415 *4)))))
- (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-961 *4)))
- (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6))
- (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-961 *5)) (-4 *5 (-1060)) (-5 *2 (-251 *4 *5))
- (-5 *1 (-953 *4 *5)) (-14 *4 (-652 (-1188))))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-779)) (-4 *2 (-1111))
- (-5 *1 (-686 *2)))))
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1113)) (-5 *1 (-975 *3 *2)) (-4 *3 (-1113)))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-769)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4)))
+ (-5 *2 (-2 (|:| |num| (-1281 *4)) (|:| |den| *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1190)) (-4 *5 (-372)) (-5 *2 (-654 (-1225 *5)))
+ (-5 *1 (-1289 *5)) (-5 *4 (-1225 *5)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-462)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5))
- (-5 *2 (-421 *4 (-415 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1279 *6)) (-4 *6 (-13 (-417 *4 *5) (-1049 *4)))
- (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *3 (-313))
- (-5 *1 (-421 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-1062)) (-5 *2 (-1281 *3)) (-5 *1 (-722 *3 *4))
+ (-4 *4 (-1257 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-239)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4))
+ (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803))
+ (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1266 *4 *5 *6))
+ (|:| |%expon| (-327 *4 *5 *6))
+ (|:| |%expTerms|
+ (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4))))))
+ (|:| |%type| (-1172))))
+ (-5 *1 (-1267 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3)))
+ (-14 *5 (-1190)) (-14 *6 *4))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1152))))
+(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-699 *3))
+ (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-699 *3))
+ (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-884))
+ (-5 *5 (-932)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1285))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-478))
+ (-5 *1 (-1285))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-654 (-270)))
+ (-5 *2 (-478)) (-5 *1 (-1285)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-1170 (-984))) (-5 *1 (-984)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1257 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-998 *4 *2 *3 *5))
+ (-4 *4 (-358)) (-4 *5 (-734 *2 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1235)) (-5 *1 (-149 *2 *4 *3))
+ (-4 *3 (-1257 (-417 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574))))
+ (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-1220 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-1230))) (-5 *3 (-1230)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-960 *4 *6 *5)) (-4 *4 (-462))
+ (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1000 *4 *5 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-335 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1176 3 *3)) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
- ((*1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))))
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-526 *3 *4))
+ (-14 *4 (-574)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-173))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5)))
+ (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6))
+ (-4 *3 (-351 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-29 *4) (-1214)))
- (-5 *1 (-591 *4 *2))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))))
+ (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3))
+ (-4 *3 (-382 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-594 (-415 (-961 *4))))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-322 *4))
- (-5 *1 (-597 *4)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1085))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1184 *7))
- (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *2 (-1255 *5))
- (-5 *1 (-509 *5 *2 *6 *7)) (-4 *6 (-1255 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572)))))
- (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| -3356 *5) (|:| -2687 *5))))
- (-5 *1 (-815 *4 *5 *3 *6)) (-4 *3 (-664 *5))
- (-4 *6 (-664 (-415 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572)))))
- (-4 *4 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -3356 *4) (|:| -2687 *4))))
- (-5 *1 (-815 *5 *4 *3 *6)) (-4 *3 (-664 *4))
- (-4 *6 (-664 (-415 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572)))))
- (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| -3356 *5) (|:| -2687 *5))))
- (-5 *1 (-815 *4 *5 *6 *3)) (-4 *6 (-664 *5))
- (-4 *3 (-664 (-415 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572)))))
- (-4 *4 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -3356 *4) (|:| -2687 *4))))
- (-5 *1 (-815 *5 *4 *6 *3)) (-4 *6 (-664 *4))
- (-4 *3 (-664 (-415 *4))))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-262)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-5 *1 (-595 *2)) (-4 *2 (-553)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 *5)))
- (-4 *5 (-370)) (-4 *5 (-564)) (-5 *2 (-1279 *5))
- (-5 *1 (-646 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 *5)))
- (-2074 (-4 *5 (-370))) (-4 *5 (-564)) (-5 *2 (-1279 (-415 *5)))
- (-5 *1 (-646 *5 *4)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227)))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))))
+ (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3))
+ (-4 *5 (-382 *2)) (-4 *3 (-382 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-699 *4)) (-4 *4 (-1005 *2)) (-4 *2 (-566))
+ (-5 *1 (-703 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-1250 *2 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1160 *3)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-779)) (-4 *5 (-564))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))))
+ (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-652
- (-2
- (|:| -3690
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -1907
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1168 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1910
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-567))))
+ (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132))
+ (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 *4))))))
((*1 *2 *1)
- (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229))
- (-5 *2 (-652 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-912 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-697 *2)) (-4 *4 (-1255 *2))
- (-4 *2 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-5 *1 (-507 *2 *4 *5)) (-4 *5 (-417 *2 *4))))
+ (-12 (-5 *2 (-654 (-2 (|:| -1859 *3) (|:| -3832 *4))))
+ (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736))))
((*1 *2 *1)
- (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
- (-4 *5 (-242 *3 *2)) (-4 *2 (-1060)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-59 *3)) (-4 *3 (-1229))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-59 *3)))))
+ (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802))
+ (-5 *2 (-1170 (-2 (|:| |k| *4) (|:| |c| *3)))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1111)) (-4 *2 (-909 *5)) (-5 *1 (-700 *5 *2 *3 *4))
- (-4 *3 (-380 *2)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-868)) (-5 *2 (-699 (-557))) (-5 *3 (-557)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-572)) (-5 *1 (-1211 *3)) (-4 *3 (-1060)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-752 *3)) (-4 *3 (-174)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-930)) (-4 *5 (-313)) (-4 *3 (-1255 *5))
- (-5 *2 (-2 (|:| |plist| (-652 *3)) (|:| |modulo| *5)))
- (-5 *1 (-468 *5 *3)) (-5 *4 (-652 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1115)) (-5 *1 (-285)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-476)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-830)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (|has| *1 (-6 -4455)) (-4 *1 (-380 *3))
- (-4 *3 (-1229)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-930)) (-5 *1 (-450 *2))
- (-4 *2 (-1255 (-572)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-930)) (-5 *4 (-779)) (-5 *1 (-450 *2))
- (-4 *2 (-1255 (-572)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *1 (-450 *2))
- (-4 *2 (-1255 (-572)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *5 (-779))
- (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *5 (-779))
- (-5 *6 (-112)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-426 *2)) (-4 *2 (-1255 *5))
- (-5 *1 (-452 *5 *2)) (-4 *5 (-1060)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-697 (-415 (-961 (-572)))))
+ (-12 (-5 *4 (-1190)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3))
+ (-4 *3 (-624 (-546)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1190)) (-5 *2 (-1 (-227) (-227) (-227)))
+ (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1281 (-654 *3))) (-4 *4 (-315))
+ (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048))
+ (-5 *1 (-766)))))
+(((*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338))))
+ ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338))))
+ ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338))))
+ ((*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338))))
+ ((*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338))))
+ ((*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338))))
+ ((*1 *1) (-5 *1 (-338))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1190))
(-5 *2
- (-652
- (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572))
- (|:| |radvect| (-652 (-697 (-322 (-572))))))))
- (-5 *1 (-1042)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-4 *5 (-335 *4)) (-4 *6 (-1255 *5))
- (-5 *2 (-652 *3)) (-5 *1 (-785 *4 *5 *6 *3 *7)) (-4 *3 (-1255 *6))
- (-14 *7 (-930)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-537)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-620 *1))) (-4 *1 (-308)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1158 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-572))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046))
- (-5 *1 (-756)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-370) (-148) (-1049 (-572))))
- (-4 *5 (-1255 *4))
- (-5 *2 (-2 (|:| -2114 (-415 *5)) (|:| |coeff| (-415 *5))))
- (-5 *1 (-576 *4 *5)) (-5 *3 (-415 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-652 (-115))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1172 *4)) (-4 *4 (-1060))
- (-5 *3 (-572)))))
-(((*1 *1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 *6)) (-4 *5 (-1233)) (-4 *6 (-1255 *5))
- (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *3) (|:| |radicand| *6)))
- (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-779)) (-4 *7 (-1255 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-572) (-572))) (-5 *1 (-368 *3)) (-4 *3 (-1111))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-779) (-779))) (-4 *1 (-393 *3)) (-4 *3 (-1111))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)))))
-(((*1 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-454)) (-5 *3 (-572)))))
-(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
-(((*1 *1 *1) (-4 *1 (-637)))
+ (-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227)))
+ (|:| |singularities| (-1170 (-227)))))
+ (-5 *1 (-105)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *2 (-1048)) (-5 *1 (-764)))))
+(((*1 *1 *1) (-4 *1 (-639)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015) (-1216))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-555))))
+ ((*1 *1 *1) (-4 *1 (-1073))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-171 (-227))) (-5 *5 (-574))
+ (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1039 (-853 (-574))))
+ (-5 *3 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1062))
+ (-5 *1 (-605 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-358))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5))
+ (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7))
+ (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7))
+ (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8))
+ (-5 *6 (-654 *8)) (-4 *8 (-440 *7))
+ (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7))
+ (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8)))
+ (-4 *8 (-440 *7)) (-5 *5 (-302 *8))
+ (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6))
+ (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6))
+ (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6))
+ (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3))
+ (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
+ (-5 *1 (-325 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-839)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-1154 *3 *4)) (-4 *3 (-13 (-1113) (-34)))
+ (-4 *4 (-13 (-1113) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-930)) (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-800))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-415 (-572))) (-4 *1 (-1260 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
- (-5 *2
- (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572))
- (|:| |success| (-112))))
- (-5 *1 (-797)) (-5 *5 (-572)))))
+ (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))))
+(((*1 *1 *1) (-4 *1 (-639)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015) (-1216))))))
+(((*1 *2) (-12 (-5 *2 (-1160 (-1172))) (-5 *1 (-401)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-566) (-1051 (-574)) (-148)))
+ (-5 *2
+ (-2 (|:| -4332 (-417 (-963 *5))) (|:| |coeff| (-417 (-963 *5)))))
+ (-5 *1 (-580 *5)) (-5 *3 (-417 (-963 *5))))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-539))))
+ ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574)))))
+ (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *2 (-1113)) (-4 *3 (-1113))
+ (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1248 (-574))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-564))
- (-4 *7 (-958 *3 *5 *6))
- (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *8) (|:| |radicand| *8)))
- (-5 *1 (-962 *5 *6 *3 *7 *8)) (-5 *4 (-779))
- (-4 *8
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $)) (-15 -2974 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-300 *3))) (-5 *1 (-300 *3)) (-4 *3 (-564))
- (-4 *3 (-1229)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
- (-4 *4 (-13 (-1111) (-34))))))
+ (-12
+ (-5 *3
+ (-654
+ (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8))
+ (|:| |wcond| (-654 (-963 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *5))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *5))))))))))
+ (-5 *4 (-1172)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-960 *5 *7 *6))
+ (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-574))
+ (-5 *1 (-935 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-652 (-1188))) (-14 *5 (-779))
+ (-12 (-5 *3 (-1172)) (-4 *4 (-13 (-315) (-148)))
+ (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803))
(-5 *2
- (-652
- (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
- (-251 *4 (-415 (-572))))))
- (-5 *1 (-513 *4 *5))
- (-5 *3
- (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
- (-251 *4 (-415 (-572))))))))
-(((*1 *1 *1) (-4 *1 (-637)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1111))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-393 *3)))))
+ (-654
+ (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7))
+ (|:| |wcond| (-654 (-963 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *4))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *4))))))))))
+ (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-4 *1 (-517 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-858)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-851 *4)) (-5 *3 (-620 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1214) (-29 *6)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-226 *6 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-978))))
-(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1170)) (-5 *1 (-794)))))
-(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1198)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-171 (-322 *4)))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-171 *3)) (-5 *1 (-1218 *4 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060))
- (-5 *2 (-489 *4 *5)) (-5 *1 (-953 *4 *5)))))
-(((*1 *1)
- (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
+ (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *1) (-5 *1 (-447))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060))
- (-4 *5 (-858)) (-5 *2 (-961 *4))))
+ (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062))
+ (-4 *5 (-860)) (-5 *2 (-963 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060))
- (-4 *5 (-858)) (-5 *2 (-961 *4))))
+ (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062))
+ (-4 *5 (-860)) (-5 *2 (-963 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-1270 *4)) (-4 *4 (-1060))
- (-5 *2 (-961 *4))))
+ (-12 (-5 *3 (-781)) (-4 *1 (-1272 *4)) (-4 *4 (-1062))
+ (-5 *2 (-963 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-1270 *4)) (-4 *4 (-1060))
- (-5 *2 (-961 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+ (-12 (-5 *3 (-781)) (-4 *1 (-1272 *4)) (-4 *4 (-1062))
+ (-5 *2 (-963 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-112)) (-5 *1 (-839)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-654 (-1186 *7))) (-5 *3 (-1186 *7))
+ (-4 *7 (-960 *5 *6 *4)) (-4 *5 (-920)) (-4 *6 (-803))
+ (-4 *4 (-860)) (-5 *1 (-917 *5 *6 *4 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
- (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-652 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-763)))))
+ (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1165))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-967 (-1184 *4))) (-5 *1 (-364 *4))
- (-5 *3 (-1184 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))))
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2800 *3) (|:| |coef2| (-792 *3))))
+ (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460)))
- (-5 *2 (-851 *4)) (-5 *1 (-319 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460)))
- (-5 *2 (-851 *4)) (-5 *1 (-1265 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188))
- (-14 *6 *4))))
-(((*1 *2)
- (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
+ (|partial| -12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1062)) (-4 *6 (-960 *5 *4 *2))
+ (-4 *2 (-860)) (-5 *1 (-961 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *6)) (-15 -2965 (*6 $))
+ (-15 -2977 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566))
+ (-5 *2 (-1190)) (-5 *1 (-1056 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-415 *1)) (-4 *1 (-1255 *3)) (-4 *3 (-1060))
- (-4 *3 (-564))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2))
- (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))))
+ (-12 (-5 *2 (-1115 *3)) (-5 *1 (-916 *3)) (-4 *3 (-377))
+ (-4 *3 (-1113)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574))
+ (-5 *2 (-1048)) (-5 *1 (-766)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1216) (-970))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1113))
+ (-5 *2 (-2 (|:| -1859 (-574)) (|:| |var| (-622 *1))))
+ (-4 *1 (-440 *3)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-574))))
+ (-4 *4 (-13 (-1257 *3) (-566) (-10 -8 (-15 -2874 ($ $ $)))))
+ (-4 *3 (-566)) (-5 *1 (-1260 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-566)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1188))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-4 *4 (-13 (-29 *6) (-1214) (-968)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -4362 (-652 *4))))
- (-5 *1 (-809 *6 *4 *3)) (-4 *3 (-664 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131))))))
- (-4 *4 (-356)) (-5 *2 (-1284)) (-5 *1 (-536 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1289)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-371 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
-(((*1 *1) (-4 *1 (-356))))
+ (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860))
+ (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8))
+ (-4 *8 (-960 *3 *7 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
+ (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-370)) (-4 *7 (-1255 *5)) (-4 *4 (-732 *5 *7))
- (-5 *2 (-2 (|:| -3544 (-697 *6)) (|:| |vec| (-1279 *5))))
- (-5 *1 (-819 *5 *6 *7 *4 *3)) (-4 *6 (-664 *5)) (-4 *3 (-664 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1111)) (-4 *6 (-895 *5)) (-5 *2 (-894 *5 *6 (-652 *6)))
- (-5 *1 (-896 *5 *6 *4)) (-5 *3 (-652 *6)) (-4 *4 (-622 (-901 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1111)) (-5 *2 (-652 (-300 *3))) (-5 *1 (-896 *5 *3 *4))
- (-4 *3 (-1049 (-1188))) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1111)) (-5 *2 (-652 (-300 (-961 *3))))
- (-5 *1 (-896 *5 *3 *4)) (-4 *3 (-1060))
- (-2074 (-4 *3 (-1049 (-1188)))) (-4 *3 (-895 *5))
- (-4 *4 (-622 (-901 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1111)) (-5 *2 (-898 *5 *3)) (-5 *1 (-896 *5 *3 *4))
- (-2074 (-4 *3 (-1049 (-1188)))) (-2074 (-4 *3 (-1060)))
- (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))))
+ (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-781)) (-4 *6 (-1113)) (-4 *7 (-911 *6))
+ (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7))
+ (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4456)))))))
+(((*1 *1) (-5 *1 (-131))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-779)) (|:| -2057 *4))) (-5 *5 (-779))
- (-4 *4 (-958 *6 *7 *8)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *3 (-1078 *6 *7 *8))
(-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-457 *6 *7 *8 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233))
- (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1060))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))))
-(((*1 *2 *3) (-12 (-5 *2 (-572)) (-5 *1 (-577 *3)) (-4 *3 (-1049 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *2 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-313)) (-4 *3 (-1003 *2)) (-4 *4 (-1255 *3))
- (-5 *1 (-421 *2 *3 *4 *5)) (-4 *5 (-13 (-417 *3 *4) (-1049 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *1 (-1251 *4 *2))
- (-4 *2 (-1255 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-537)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1046)) (-5 *1 (-756)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1184 *5)) (-4 *5 (-370)) (-5 *2 (-652 *6))
- (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-317))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-981))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1005))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1047))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1084)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2)
- (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1123)) (-4 *3 (-1111)) (-5 *2 (-652 *1))
- (-4 *1 (-438 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3))
- (-4 *3 (-1111))))
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1257 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-13 (-462) (-148)))
+ (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *3 (-1078 *4 *5 *6))
+ (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *1))))
+ (-4 *1 (-1084 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1051 *2))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
- (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *3))
- (-5 *1 (-959 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $))
- (-15 -2974 (*7 $))))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1111)) (-5 *2 (-779)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *2 *4 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))))
+ (-12 (-4 *1 (-1116 *3 *4 *2 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1062)) (-5 *1 (-605 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1241 *3)) (-4 *3 (-1062))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1272 *3)) (-4 *3 (-1062)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 (-652 (-652 *4)))) (-5 *3 (-652 *4)) (-4 *4 (-858))
- (-5 *1 (-1199 *4)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-759)))))
-(((*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-227)) (-5 *1 (-1282))))
- ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1282)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
- (-5 *2
- (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572))
- (|:| |success| (-112))))
- (-5 *1 (-797)) (-5 *5 (-572)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-313))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2967 *1)))
- (-4 *1 (-313)))))
+ (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-564)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1051 *2)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1184 (-572))) (-5 *2 (-572)) (-5 *1 (-951)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1284)) (-5 *1 (-839)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286))
+ (-5 *1 (-459 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-460)) (-4 *4 (-828))
- (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-760)))))
-(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))))
+ (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 *4))
+ (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781))))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1123)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-319))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-983))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1007))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1049))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1086)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-990 *3 *4 *5 *6)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-652 (-1279 *4))) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-1186 (-963 *4))) (-5 *1 (-426 *3 *4))
+ (-4 *3 (-427 *4))))
((*1 *2)
- (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564))
- (-5 *2 (-652 (-1279 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-4 *3 (-174)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2))
- (-4 *2 (-695 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-370) (-856))) (-5 *1 (-183 *3 *2))
- (-4 *2 (-1255 (-171 *3))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-368 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3)) (-4 *3 (-1111))))
+ (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372))
+ (-5 *2 (-1186 (-963 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1194)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1048)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1190)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6))
+ (-4 *4 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-382 *2)) (-4 *2 (-1231))
+ (-4 *2 (-860))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-657 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))
- (-5 *2 (-652 (-1188))) (-5 *1 (-1087 *3 *4 *5))
- (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227)))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-435 *3 *2)) (-4 *3 (-13 (-174) (-38 (-415 (-572)))))
- (-4 *2 (-13 (-858) (-21))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1060)) (-5 *1 (-50 *2 *3)) (-14 *3 (-652 (-1188)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 (-930))) (-4 *2 (-370)) (-5 *1 (-153 *4 *2 *5))
- (-14 *4 (-930)) (-14 *5 (-1004 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-322 *3)) (-5 *1 (-225 *3 *4))
- (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-132))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1060))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *2 (-564)) (-5 *1 (-631 *2 *4))
- (-4 *4 (-1255 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-716 *2)) (-4 *2 (-1060))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1060)) (-5 *1 (-743 *2 *3)) (-4 *3 (-734))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 *5)) (-5 *3 (-652 (-779))) (-4 *1 (-748 *4 *5))
- (-4 *4 (-1060)) (-4 *5 (-858))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *2)) (-4 *4 (-1060))
- (-4 *2 (-858))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-860 *2)) (-4 *2 (-1060))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 (-779))) (-4 *1 (-958 *4 *5 *6))
- (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-958 *4 *5 *2)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *2 (-858))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-4 *2 (-958 *4 (-539 *5) *5))
- (-5 *1 (-1137 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-858))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-961 *4)) (-5 *1 (-1223 *4))
- (-4 *4 (-1060)))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
- ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
- ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
-(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564))
- (-4 *3 (-958 *7 *5 *6))
- (-5 *2
- (-2 (|:| -1679 (-779)) (|:| -1857 *3) (|:| |radicand| (-652 *3))))
- (-5 *1 (-962 *5 *6 *7 *3 *8)) (-5 *4 (-779))
- (-4 *8
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *3)) (-15 -2963 (*3 $)) (-15 -2974 (*3 $))))))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229))
- (-4 *3 (-1111)) (-5 *2 (-779))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4))
- (-4 *4 (-1229)) (-5 *2 (-779)))))
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4457))
+ (-4 *1 (-382 *3)) (-4 *3 (-1231)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-777))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))
- (-5 *1 (-573))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-777)) (-5 *4 (-1074))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))
- (-5 *1 (-573))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-795)) (-5 *3 (-1074))
- (-5 *4
- (-2 (|:| |fn| (-322 (-227)))
- (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))
- (|:| |extra| (-1046))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-795)) (-5 *3 (-1074))
- (-5 *4
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))
- (|:| |extra| (-1046))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-808)) (-5 *3 (-1074))
- (-5 *4
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-816))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170)))))
- (-5 *1 (-813))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-816)) (-5 *4 (-1074))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170)))))
- (-5 *1 (-813))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-847)) (-5 *3 (-1074))
- (-5 *4
- (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))
- (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-847)) (-5 *3 (-1074))
- (-5 *4
- (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227)))
- (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227))))
- (|:| |ub| (-652 (-851 (-227))))))
- (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-849))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170)))))
- (-5 *1 (-848))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1074))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170)))))
- (-5 *1 (-848))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-904)) (-5 *3 (-1074))
- (-5 *4
- (-2 (|:| |pde| (-652 (-322 (-227))))
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-654 (-324 (-227))))
(|:| |constraints|
- (-652
+ (-654
(-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-779)) (|:| |boundaryType| (-572))
- (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
- (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
+ (|:| |grid| (-781)) (|:| |boundaryType| (-574))
+ (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
+ (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172))
(|:| |tol| (-227))))
- (-5 *2 (-2 (|:| -3972 (-386)) (|:| |explanations| (-1170))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-907))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170)))))
- (-5 *1 (-906))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-907)) (-5 *4 (-1074))
- (-5 *2
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170)))))
- (-5 *1 (-906)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1210))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1255 *4)) (-5 *1 (-817 *4 *2 *3 *5))
- (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2))
- (-4 *5 (-664 (-415 *2))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
- (-5 *2
- (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572))
- (|:| |success| (-112))))
- (-5 *1 (-797)) (-5 *5 (-572)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1101)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1115)) (-5 *3 (-782)) (-5 *1 (-52)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-370)) (-5 *1 (-905 *2 *4))
- (-4 *2 (-1255 *4)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *1) (-5 *1 (-605))))
-(((*1 *2 *3)
- (-12
+ (-5 *2 (-112)) (-5 *1 (-212)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-797)) (-5 *2 (-1048))
(-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-572)) (-5 *1 (-206)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-386))))
- ((*1 *1 *1 *1) (-4 *1 (-553)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
- ((*1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-779)))))
-(((*1 *2 *3)
- (-12
+ (-2 (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-797)) (-5 *2 (-1048))
(-5 *3
- (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
- (-251 *4 (-415 (-572)))))
- (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112))
- (-5 *1 (-513 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-755)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-308))))
- ((*1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-1184 *3))
- (-4 *3 (-13 (-438 *6) (-27) (-1214)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3)))
- (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-415 (-1184 *3)))
- (-4 *3 (-13 (-438 *6) (-27) (-1214)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3)))
- (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))))
-(((*1 *1 *1) (-5 *1 (-1074))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4))
- (-5 *2 (-426 *3)) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1252 *4 *5)) (-5 *3 (-652 *5)) (-14 *4 (-1188))
- (-4 *5 (-370)) (-5 *1 (-932 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *5)) (-4 *5 (-370)) (-5 *2 (-1184 *5))
- (-5 *1 (-932 *4 *5)) (-14 *4 (-1188))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-652 *6)) (-5 *4 (-779)) (-4 *6 (-370))
- (-5 *2 (-415 (-961 *6))) (-5 *1 (-1061 *5 *6)) (-14 *5 (-1188)))))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227)))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-370) (-1214) (-1013))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-765)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1111)) (-4 *2 (-909 *4)) (-5 *1 (-700 *4 *2 *5 *3))
- (-4 *5 (-380 *2)) (-4 *3 (-13 (-380 *4) (-10 -7 (-6 -4454)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-899 *4 *3))
- (-4 *3 (-1229))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-52)) (-5 *1 (-901 *4))
- (-4 *4 (-1111)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-961 (-572))) (-5 *3 (-1188))
- (-5 *4 (-1105 (-415 (-572)))) (-5 *1 (-30)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+ (-12 (-5 *3 (-1281 (-699 *4))) (-4 *4 (-174))
+ (-5 *2 (-1281 (-699 (-963 *4)))) (-5 *1 (-191 *4)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1279 (-1279 *4))) (-4 *4 (-1060)) (-5 *2 (-697 *4))
- (-5 *1 (-1040 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-553)) (-5 *1 (-160 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-333 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-524 *3 *4))
- (-14 *4 (-572)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-711 *3))
- (-4 *3 (-622 (-544)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1188)) (-5 *2 (-1 (-227) (-227) (-227)))
- (-5 *1 (-711 *3)) (-4 *3 (-622 (-544))))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-300 *6)) (-5 *4 (-115)) (-4 *6 (-438 *5))
- (-4 *5 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-300 *7)) (-5 *4 (-115)) (-5 *5 (-652 *7))
- (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-652 (-300 *7))) (-5 *4 (-652 (-115))) (-5 *5 (-300 *7))
- (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-652 (-300 *8))) (-5 *4 (-652 (-115))) (-5 *5 (-300 *8))
- (-5 *6 (-652 *8)) (-4 *8 (-438 *7))
- (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-652 *7)) (-5 *4 (-652 (-115))) (-5 *5 (-300 *7))
- (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-115))) (-5 *6 (-652 (-300 *8)))
- (-4 *8 (-438 *7)) (-5 *5 (-300 *8))
- (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-300 *5)) (-5 *4 (-115)) (-4 *5 (-438 *6))
- (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-4 *3 (-438 *6))
- (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-4 *3 (-438 *6))
- (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-5 *6 (-652 *3))
- (-4 *3 (-438 *7)) (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
- (-5 *1 (-323 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
-(((*1 *1) (-5 *1 (-445))))
+ (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-801)) (-4 *5 (-1060)) (-4 *6 (-958 *5 *4 *2))
- (-4 *2 (-858)) (-5 *1 (-959 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *6)) (-15 -2963 (*6 $))
- (-15 -2974 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564))
- (-5 *2 (-1188)) (-5 *1 (-1054 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-779)) (-5 *5 (-652 *3)) (-4 *3 (-313)) (-4 *6 (-858))
- (-4 *7 (-801)) (-5 *2 (-112)) (-5 *1 (-633 *6 *7 *3 *8))
- (-4 *8 (-958 *3 *7 *6)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-572))) (-4 *3 (-1060)) (-5 *1 (-603 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-572))) (-4 *1 (-1239 *3)) (-4 *3 (-1060))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-572))) (-4 *1 (-1270 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-988 *3 *4 *5 *6)))))
+ (-12 (-4 *1 (-1116 *3 *2 *4 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1303 *3 *4)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858))
+ (-12 (-5 *2 (-1305 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860))
(-4 *4 (-174))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-393 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
+ (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-827 *3)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-1060))))
+ (-12 (-5 *2 (-829 *3)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-1062))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))))
+ (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-574)) (-5 *1 (-1170 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1123)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1113)))))
+(((*1 *2)
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-982 *4 *2))
+ (-4 *2 (-1257 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))
+ (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1033 *4))
+ (-4 *4 (-1257 (-574))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1062)) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1257 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-247)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-761)))))
+(((*1 *1 *1) (-5 *1 (-1076))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574))))
+ (-4 *2 (-174)))))
+(((*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112))
+ (-5 *2 (-1048)) (-5 *1 (-763)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-339)) (-5 *1 (-253)))))
+ (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6))
+ (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-654 (-1186 *4))) (-5 *3 (-1186 *4))
+ (-4 *4 (-920)) (-5 *1 (-673 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-654
+ (-2 (|:| -3584 (-781))
+ (|:| |eqns|
+ (-654
+ (-2 (|:| |det| *7) (|:| |rows| (-654 (-574)))
+ (|:| |cols| (-654 (-574))))))
+ (|:| |fgb| (-654 *7)))))
+ (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148)))
+ (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-781))
+ (-5 *1 (-935 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231))
+ (-4 *3 (-1113)) (-5 *2 (-781))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4))
+ (-4 *4 (-1231)) (-5 *2 (-781)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
+ (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))))
+ (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1172)) (|:| -2032 (-1172))))
+ (-5 *1 (-832)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-4 *2 (-1113))
+ (-5 *1 (-900 *4 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-478)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1133)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
+ (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-784)) (-5 *1 (-52)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1062)) (-5 *2 (-969 (-722 *3 *4))) (-5 *1 (-722 *3 *4))
+ (-4 *4 (-1257 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-757)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1190)) (-4 *5 (-372)) (-5 *2 (-1170 (-1170 (-963 *5))))
+ (-5 *1 (-1289 *5)) (-5 *4 (-1170 (-963 *5))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388))))
+ ((*1 *1 *1 *1) (-4 *1 (-555)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
+ ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4))
+ (-4 *4 (-1257 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-588))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148)))
+ (-5 *1 (-1251 *4 *2)) (-4 *2 (-1257 *4)))))
(((*1 *1 *1 *1) (-5 *1 (-227)))
((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051))))
- ((*1 *1 *1 *1) (-4 *1 (-1150))))
+ (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053))))
+ ((*1 *1 *1 *1) (-4 *1 (-1152))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-428 (-1186 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-654 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5))
+ (-4 *3 (-566)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 (-574)))))
+ (-5 *1 (-370 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-395 *3)) (-4 *3 (-1113))
+ (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 (-781)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-2 (|:| -4220 *3) (|:| -2524 (-574)))))
+ (-5 *1 (-428 *3)) (-4 *3 (-566)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-555))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 (-324 (-227))))
+ (-5 *2
+ (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574))
+ (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))))
+ (-5 *1 (-313)))))
+(((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1113)) (-5 *2 (-55)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 (-415 (-572))))
+ (-12 (-5 *3 (-699 (-417 (-574))))
(-5 *2
- (-652
- (-2 (|:| |outval| *4) (|:| |outmult| (-572))
- (|:| |outvect| (-652 (-697 *4))))))
- (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856))))))
+ (-654
+ (-2 (|:| |outval| *4) (|:| |outmult| (-574))
+ (|:| |outvect| (-654 (-699 *4))))))
+ (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-4 *4 (-1231)) (-5 *2 (-112))
+ (-5 *1 (-1170 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860)))))
(((*1 *2)
- (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
- (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6))))
+ (-12 (-14 *4 (-781)) (-4 *5 (-1231)) (-5 *2 (-135))
+ (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
- (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-174))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574))
+ (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803))
+ (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-1062)) (-5 *2 (-932))))
+ ((*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-372)) (-5 *2 (-135)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3))
+ (-4 *3 (-1113)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574))))
+ (-5 *2 (-112)) (-5 *1 (-1309 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286))
+ (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286))
+ (-5 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1062)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3))
+ (-4 *3 (-1257 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4))
+ (-4 *4 (-358)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1257 *4)) (-4 *4 (-1235))
+ (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1257 (-417 *3))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-779)) (-4 *5 (-564))
+ (-12 (-5 *4 (-781)) (-4 *5 (-566))
(-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))))
-(((*1 *1) (-5 *1 (-476))))
-(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-870))))
-(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3))
- (-4 *3 (-1111)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1111)))))
+ (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1062)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1257 *3)))))
+(((*1 *1) (-12 (-4 *1 (-1058 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1190)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-566)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-582 *5 *3)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-620 *4)) (-5 *6 (-1188))
- (-4 *4 (-13 (-438 *7) (-27) (-1214)))
- (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4))))
- (-5 *1 (-574 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))))
+ (-12 (-5 *4 (-654 *3)) (-4 *3 (-960 *5 *6 *7)) (-4 *5 (-462))
+ (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-459 *5 *6 *7 *3)))))
+(((*1 *1) (-5 *1 (-813))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4)))
+ (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))))
+(((*1 *1) (-5 *1 (-478))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-372) (-1216) (-1015))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315))
+ (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-960 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *6 *4 *5))
+ (-5 *1 (-927 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-315)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-930)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-370)) (-14 *5 (-1004 *3 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-572)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-313))
- (-4 *9 (-958 *8 *6 *7))
- (-5 *2 (-2 (|:| -2057 (-1184 *9)) (|:| |polval| (-1184 *8))))
- (-5 *1 (-750 *6 *7 *8 *9)) (-5 *3 (-1184 *9)) (-5 *4 (-1184 *8)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-313))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-455 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6))
- (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *1 (-455 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6))
- (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *1 (-455 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-1111)))))
+ (-12 (-5 *2 (-932)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-372)) (-14 *5 (-1006 *3 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414))))
+ ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))))
+(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))
+ ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8))
+ (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803))
+ (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8)))))
+(((*1 *1) (-4 *1 (-358)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1186 *5)))
+ (|:| |prim| (-1186 *5))))
+ (-5 *1 (-442 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-566) (-148)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1186 *3))
+ (|:| |pol2| (-1186 *3)) (|:| |prim| (-1186 *3))))
+ (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-963 *5)) (-5 *4 (-1190)) (-4 *5 (-13 (-372) (-148)))
+ (-5 *2
+ (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574))
+ (|:| |prim| (-1186 *5))))
+ (-5 *1 (-971 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190)))
+ (-4 *5 (-13 (-372) (-148)))
+ (-5 *2
+ (-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 *5)))
+ (|:| |prim| (-1186 *5))))
+ (-5 *1 (-971 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-5 *5 (-1190))
+ (-4 *6 (-13 (-372) (-148)))
+ (-5 *2
+ (-2 (|:| -1859 (-654 (-574))) (|:| |poly| (-654 (-1186 *6)))
+ (|:| |prim| (-1186 *6))))
+ (-5 *1 (-971 *6)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *1 (-233 *4))
- (-4 *4 (-1060))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4))
+ (-4 *4 (-1062))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1060))))
- ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-779))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-271 *3)) (-4 *3 (-858))))
- ((*1 *1 *1) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-781))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-781))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-273 *3)) (-4 *3 (-860))))
+ ((*1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233))
- (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235))
+ (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4))
- (-4 *4 (-1255 *3))))
+ (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4))
+ (-4 *4 (-1257 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-370) (-148))) (-5 *1 (-407 *2 *3))
- (-4 *3 (-1255 *2))))
+ (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3))
+ (-4 *3 (-1257 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-370)) (-4 *2 (-909 *3)) (-5 *1 (-594 *2))
- (-5 *3 (-1188))))
+ (-12 (-4 *2 (-372)) (-4 *2 (-911 *3)) (-5 *1 (-596 *2))
+ (-5 *3 (-1190))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-594 *2)) (-4 *2 (-370))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 (-779))) (-4 *1 (-909 *4))
- (-4 *4 (-1111))))
+ (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-911 *4))
+ (-4 *4 (-1113))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-909 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 (-781)) (-4 *1 (-911 *2)) (-4 *2 (-1113))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *1 (-909 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *2 (-654 *3)) (-4 *1 (-911 *3)) (-4 *3 (-1113))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1113))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1185 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1187 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1255 *3)) (-4 *3 (-1060))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1257 *3)) (-4 *3 (-1062))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1264 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1266 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3))))
-(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-858))))
- ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
- ((*1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
- (-4 *3 (-1255 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1111)))))
+ (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3))
+ (-4 *3 (-1257 *2)))))
+(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1257 *4))
+ (-5 *2 (-2 (|:| -2638 (-633 *4 *5)) (|:| -2602 (-417 *5))))
+ (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4))
+ (-14 *3 (-932)) (-4 *4 (-1062))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-462)) (-4 *3 (-1062))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1257 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1072 (-1035 *3) (-1184 (-1035 *3))))
- (-5 *1 (-1035 *3)) (-4 *3 (-13 (-856) (-370) (-1033))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2114 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-370)) (-4 *7 (-1255 *6))
- (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6)))
- (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-5 *2 (-1172)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1229)) (-4 *3 (-1060))
- (-5 *2 (-697 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-171 *5)) (-5 *1 (-608 *4 *5 *3))
- (-4 *5 (-13 (-438 *4) (-1013) (-1214)))
- (-4 *3 (-13 (-438 (-171 *4)) (-1013) (-1214))))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-858))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4))
- (-5 *2 (-426 (-1184 (-415 (-572))))) (-5 *1 (-443 *4 *5 *3))
- (-4 *3 (-1255 *5)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-112))
- (-5 *2 (-1046)) (-5 *1 (-753)))))
+ (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1231)) (-4 *3 (-1062))
+ (-5 *2 (-699 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388)))
+ (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286))
+ (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))))
+(((*1 *1 *1 *1) (-4 *1 (-555))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-566))
+ (-5 *2 (-2 (|:| -1485 (-699 *5)) (|:| |vec| (-1281 (-654 (-932))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-932)) (-4 *3 (-666 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-699 *3))
+ (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1279 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-858))))
- ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
- ((*1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1281 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
- (-4 *3 (-1255 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-1049 (-415 *2)))) (-5 *2 (-572))
- (-5 *1 (-116 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4))
- (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+ (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3))
+ (-4 *3 (-1257 *2)))))
+(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3))
- (-4 *3 (-1111)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-370)) (-5 *1 (-667 *4 *2))
- (-4 *2 (-664 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-4 *3 (-13 (-27) (-1214) (-438 *6) (-10 -8 (-15 -2940 ($ *7)))))
- (-4 *7 (-856))
- (-4 *8
- (-13 (-1257 *3 *7) (-370) (-1214)
- (-10 -8 (-15 -3902 ($ $)) (-15 -3034 ($ $)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-574))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))))
+(((*1 *2)
+ (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286))
+ (-5 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286))
+ (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2)
+ (-12 (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))
+ (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-4 *4 (-1257 *3))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))))
- (-5 *1 (-430 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1170)) (-4 *9 (-994 *8))
- (-14 *10 (-1188)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564))
+ (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-699 *3))))
+ (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1257 (-574)))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-171 (-572))) (-5 *2 (-112)) (-5 *1 (-454))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
- (-251 *4 (-415 (-572)))))
- (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112))
- (-5 *1 (-513 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-970 *3)) (-4 *3 (-553))))
- ((*1 *2 *1) (-12 (-4 *1 (-1233)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-716 *3)) (-5 *1 (-835 *2 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
- (-5 *2 (-1046)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *4 (-1188))
- (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-306)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-207))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 (-386))) (-5 *2 (-386)) (-5 *1 (-207)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1170)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-268))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *1) (-12 (-5 *2 (-967 (-779))) (-5 *1 (-339)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-460))
+ (-2 (|:| -2722 (-699 (-574))) (|:| |basisDen| (-574))
+ (|:| |basisInv| (-699 (-574)))))
+ (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-358)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 *4))
(-5 *2
- (-652
- (-2 (|:| |eigval| (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4))))
- (|:| |geneigvec| (-652 (-697 (-415 (-961 *4))))))))
- (-5 *1 (-298 *4)) (-5 *3 (-697 (-415 (-961 *4)))))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-652 (-620 *2))) (-5 *4 (-1188))
- (-4 *2 (-13 (-27) (-1214) (-438 *5)))
- (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-282 *5 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
+ (-2 (|:| -2722 (-699 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-699 *4))))
+ (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-358)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 *4))
(-5 *2
- (-2 (|:| |ir| (-594 (-415 *6))) (|:| |specpart| (-415 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-582 *5 *6)) (-5 *3 (-415 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1158 (-1170))) (-5 *1 (-399)))))
+ (-2 (|:| -2722 (-699 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-699 *4))))
+ (-5 *1 (-1290 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1074 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1235))
+ (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5)))
+ (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3))
+ (-4 *3 (-1113)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3)))
+ (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-710 *3))
+ (-4 *3 (-315)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1172)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-270))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-372)) (-4 *3 (-1062))
+ (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-862 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1062))
+ (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-863 *5 *3))
+ (-4 *3 (-862 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1172)) (-5 *1 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-937)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802))
+ (-4 *2 (-462))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-1257 *2))
+ (-4 *4 (-1257 (-417 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-462))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860)) (-4 *3 (-462))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-960 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-462))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-1257 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
- (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-952 (-227)) (-227) (-227)))
- (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-260)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-572)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1229))
- (-4 *3 (-380 *4)) (-4 *5 (-380 *4)))))
+ (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3))
+ (-4 *3 (-1257 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
+(((*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-654
+ (-2
+ (|:| -3693
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227))))
+ (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227)))
+ (|:| |g| (-324 (-227))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -1909
+ (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388))
+ (|:| |expense| (-388)) (|:| |accuracy| (-388))
+ (|:| |intermediateResults| (-388)))))))
+ (-5 *1 (-813)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -1453 (-652 (-870))) (|:| -1360 (-652 (-870)))
- (|:| |presup| (-652 (-870))) (|:| -2567 (-652 (-870)))
- (|:| |args| (-652 (-870)))))
- (-5 *1 (-1188))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 (-870)))) (-5 *1 (-1188)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1222 *2 *3 *4 *5)) (-4 *2 (-564)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *5 (-1076 *2 *3 *4)))))
+ (-2 (|:| -3304 (-654 (-872))) (|:| -1854 (-654 (-872)))
+ (|:| |presup| (-654 (-872))) (|:| -4137 (-654 (-872)))
+ (|:| |args| (-654 (-872)))))
+ (-5 *1 (-1190))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1190)))))
+(((*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *6)) (-5 *4 (-1190)) (-4 *6 (-440 *5))
+ (-4 *5 (-1113)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-569)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1113)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1186 (-963 *4))) (-5 *1 (-426 *3 *4))
+ (-4 *3 (-427 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372))
+ (-5 *2 (-1186 (-963 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5)))
+ (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1190)) (-5 *1 (-338)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
+ (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1062))
+ (-5 *2 (-1281 (-1281 *5))) (-5 *1 (-1042 *5)) (-5 *4 (-1281 *5)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48)))))
+ (-12 (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-428 (-1186 *7)))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-1186 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5)))
+ (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-584 *5 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-860)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3))))
- (-5 *1 (-122 *3)) (-4 *3 (-858))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-594 *4)) (-4 *4 (-13 (-29 *3) (-1214)))
- (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-591 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-594 (-415 (-961 *3))))
- (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-597 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370))
- (-5 *2 (-2 (|:| -1358 *3) (|:| |special| *3))) (-5 *1 (-735 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1279 *5)) (-4 *5 (-370)) (-4 *5 (-1060))
- (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5))
- (-5 *3 (-652 (-697 *5)))))
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1231))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-990 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860))
+ (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860))
+ (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *3 (-654 (-270)))
+ (-5 *1 (-268))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *1 (-270))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1279 (-1279 *5))) (-4 *5 (-370)) (-4 *5 (-1060))
- (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5))
- (-5 *3 (-652 (-697 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-652 *1)) (-4 *1 (-1155))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-652 *1)) (-4 *1 (-1155)))))
+ (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6))
+ (-14 *5 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-1281 *6))
+ (-5 *1 (-641 *5 *6)))))
+(((*1 *1) (-5 *1 (-833))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-681))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932))
+ (-14 *4 (-932)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 (-417 *2)))
+ (-4 *2 (-1257 *4)) (-5 *1 (-350 *3 *4 *2 *5))
+ (-4 *3 (-351 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1235))
+ (-4 *4 (-1257 (-417 *2))) (-4 *2 (-1257 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-1113))
+ (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4))))
+ (-5 *1 (-1089 *4 *5 *2))
+ (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3))))
+ (-5 *1 (-1089 *3 *4 *2))
+ (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-622 *4)) (-5 *6 (-1190))
+ (-4 *4 (-13 (-440 *7) (-27) (-1216)))
+ (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4))))
+ (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190))
+ (-14 *4 *2))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-564)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-605))) (-5 *1 (-605)))))
+ (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1281 (-709))) (-5 *1 (-313)))))
+(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-224 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-261 *3))))
+ ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-555))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-462))
+ (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-930)) (-5 *2 (-1184 *3)) (-5 *1 (-1203 *3))
- (-4 *3 (-370)))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1186 *7)) (-4 *5 (-1062))
+ (-4 *7 (-1062)) (-4 *2 (-1257 *5)) (-5 *1 (-511 *5 *2 *6 *7))
+ (-4 *6 (-1257 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1062)) (-4 *7 (-1062))
+ (-4 *4 (-1257 *5)) (-5 *2 (-1186 *7)) (-5 *1 (-511 *5 *4 *6 *7))
+ (-4 *6 (-1257 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1188)) (-5 *1 (-336)))))
+ (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1113))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-574)) (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3))
+ (-4 *3 (-1062))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1298 *4 *3))
+ (-4 *3 (-1062)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315))
+ (-4 *9 (-960 *8 *6 *7))
+ (-5 *2 (-2 (|:| -1900 (-1186 *9)) (|:| |polval| (-1186 *8))))
+ (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1186 *9)) (-5 *4 (-1186 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-963 (-574)))) (-5 *1 (-447))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1190)) (-5 *4 (-699 (-227))) (-5 *2 (-1117))
+ (-5 *1 (-769))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1190)) (-5 *4 (-699 (-574))) (-5 *2 (-1117))
+ (-5 *1 (-769)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286))
+ (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286))
+ (-5 *1 (-1121 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270)))))
+(((*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860))
+ (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-932))))
+ ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1076)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-566)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566)))))
+(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801)) (-4 *7 (-958 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-652 *7)) (|:| |n0| (-652 *7))))
- (-5 *1 (-933 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-219)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1060)) (-5 *1 (-903 *2 *3)) (-4 *2 (-1255 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
+ (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372))
+ (-4 *5 (-1062)) (-5 *2 (-112)) (-5 *1 (-1042 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1062))
+ (-5 *2 (-112)) (-5 *1 (-1042 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860))))
+ ((*1 *1) (-4 *1 (-1165))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801))
- (-5 *2 (-112)) (-5 *1 (-998 *3 *4 *5 *6))
- (-4 *6 (-958 *3 *5 *4))))
+ (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
- (-4 *4 (-13 (-1111) (-34))))))
-(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-356)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-918)))))
-(((*1 *2 *3)
- (-12
- (-5 *2
- (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))
- (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572)))))
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872))
+ (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1113)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1062))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-872))))
+ ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-872)) (-5 *1 (-1186 *3)) (-4 *3 (-1062)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5)))
+ (-5 *1 (-1142 *5))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))
- (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572)))
- (-5 *4 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))))
+ (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190)))
+ (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5))))
+ (-5 *1 (-1142 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-174))
+ (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))
- (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))) (-5 *4 (-415 (-572)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-415 (-572)))
- (-5 *2 (-652 (-2 (|:| -3888 *5) (|:| -3901 *5)))) (-5 *1 (-1031 *3))
- (-4 *3 (-1255 (-572))) (-5 *4 (-2 (|:| -3888 *5) (|:| -3901 *5)))))
+ (|partial| -12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-174))
+ (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))
- (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572))))))
+ (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1062))
+ (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))
- (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572))))
- (-5 *4 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-415 (-572)))
- (-5 *2 (-652 (-2 (|:| -3888 *4) (|:| -3901 *4)))) (-5 *1 (-1032 *3))
- (-4 *3 (-1255 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-415 (-572)))
- (-5 *2 (-652 (-2 (|:| -3888 *5) (|:| -3901 *5)))) (-5 *1 (-1032 *3))
- (-4 *3 (-1255 *5)) (-5 *4 (-2 (|:| -3888 *5) (|:| -3901 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-779)))))
-(((*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-856)) (-5 *1 (-309 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2361 *3) (|:| |coef1| (-790 *3)) (|:| |coef2| (-790 *3))))
- (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-1203 *2)) (-4 *2 (-370)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-830)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-1111))
- (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
- (-5 *1 (-1087 *4 *5 *2))
- (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))
- (-5 *1 (-1087 *3 *4 *2))
- (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-596 *4))
- (-4 *4 (-356)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-587)))))
-(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-120 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1255 *4))))
+ (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062))
+ (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
+ (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566))
+ (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
- (-4 *3 (-1255 (-572)))))
+ (|partial| -12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566))
+ (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-417 (-963 (-171 *4)))) (-4 *4 (-566))
+ (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-779))) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
- (-4 *3 (-1255 (-572)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *2 (-426 *3))
- (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
- (-4 *3 (-1255 (-572)))))
+ (|partial| -12 (-5 *3 (-417 (-963 (-171 *5)))) (-5 *4 (-932))
+ (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388)))
+ (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-426 *3)) (-5 *1 (-1018 *3))
- (-4 *3 (-1255 (-415 (-572))))))
+ (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860))
+ (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566))
+ (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388)))
+ (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-426 *3)) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-779) *2)) (-5 *4 (-779)) (-4 *2 (-1111))
- (-5 *1 (-686 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-779) *3)) (-4 *3 (-1111)) (-5 *1 (-690 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-389 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1111))))
+ (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860))
+ (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-572)) (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3))
- (-4 *3 (-1060))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-827 *4)) (-4 *4 (-858)) (-4 *1 (-1296 *4 *3))
- (-4 *3 (-1060)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))))
-(((*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
+ (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-566))
+ (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388)))
+ (-5 *1 (-795 *5)))))
+(((*1 *1 *1) (-4 *1 (-555))))
+(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-413 *3)) (-4 *3 (-414))))
+ ((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-413 *3)) (-4 *3 (-414))))
+ ((*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414))))
+ ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932))))
+ ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1170 (-574))))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-835)))))
+(((*1 *1 *1) (-5 *1 (-546))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-315))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6))
+ (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *1 (-457 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6))
+ (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *1 (-457 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-622 *3)) (-5 *5 (-1186 *3))
+ (-4 *3 (-13 (-440 *6) (-27) (-1216)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1186 *3)))
+ (-4 *3 (-13 (-440 *6) (-27) (-1216)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-386)) (-5 *1 (-207)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1096))) (-5 *1 (-297)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-572))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4454)) (-4 *1 (-612 *4 *3)) (-4 *4 (-1111))
- (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-803)) (-4 *2 (-960 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2))
+ (-4 *4 (-462)) (-4 *6 (-860)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2))
+ (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))))))
+(((*1 *1) (-5 *1 (-447))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *2) (-12 (-5 *1 (-912 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5))
- (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-1292 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564))
- (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1292 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
- (-5 *2 (-697 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-415 (-572))) (-5 *2 (-227)) (-5 *1 (-311)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -4090 *8)))
- (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -4090 *8)))
- (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1188)) (-5 *6 (-652 (-620 *3)))
- (-5 *5 (-620 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *7)))
- (-4 *7 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3)))
- (-5 *1 (-565 *7 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858))))
- ((*1 *1) (-4 *1 (-1163))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-697 *2)) (-5 *4 (-572))
- (-4 *2 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-4 *5 (-1255 *2)) (-5 *1 (-507 *2 *5 *6)) (-4 *6 (-417 *2 *5)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-760)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227)))
- (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227))))
- (|:| |ub| (-652 (-851 (-227))))))
- (-5 *1 (-272)))))
-(((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-564)) (-4 *2 (-958 *3 *5 *4))
- (-5 *1 (-740 *5 *4 *6 *2)) (-5 *3 (-415 (-961 *6))) (-4 *5 (-801))
- (-4 *4 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))))))
-(((*1 *1 *1) (-4 *1 (-553))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+ (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1051 *4)) (-4 *3 (-315))
+ (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *6 (-419 *4 *5))
+ (-14 *7 (-1281 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1281 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1005 *3))
+ (-4 *5 (-1257 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1190)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))
+ (-5 *2 (-1186 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))
+ (-5 *2 (-1186 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1233)) (-4 *5 (-1255 *3)) (-4 *6 (-1255 (-415 *5)))
- (-5 *2 (-112)) (-5 *1 (-348 *4 *3 *5 *6)) (-4 *4 (-349 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-1280))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *1 *1) (-5 *1 (-544))))
-(((*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-339)))))
-(((*1 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1282)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-333 *3)) (-4 *3 (-1229))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229))
- (-14 *4 (-572)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2) (-12 (-5 *1 (-910 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-870)))))
-(((*1 *2 *1)
+ (-12 (-4 *4 (-566)) (-5 *2 (-969 *3)) (-5 *1 (-1177 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-654 (-1186 *11))) (-5 *3 (-1186 *11))
+ (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781)))
+ (-5 *7 (-1281 (-654 (-1186 *8)))) (-4 *10 (-860))
+ (-4 *8 (-315)) (-4 *11 (-960 *8 *9 *10)) (-4 *9 (-803))
+ (-5 *1 (-717 *9 *10 *8 *11)))))
+(((*1 *2 *3 *2)
(-12
(-5 *2
- (-652
- (-652
- (-3 (|:| -2030 (-1188))
- (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))))
- (-5 *1 (-1192)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-870)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-145))) (-5 *1 (-142))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-142)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112))
- (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7))))
- (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-356)) (-4 *4 (-335 *3)) (-4 *5 (-1255 *4))
- (-5 *1 (-785 *3 *4 *5 *2 *6)) (-4 *2 (-1255 *5)) (-14 *6 (-930))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-4 *3 (-375))))
- ((*1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-370)) (-4 *2 (-375)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2361 *4)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+ (-654
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-803)) (-4 *3 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860))
+ (-5 *1 (-459 *4 *5 *6 *3)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860))
+ (-5 *2 (-2 (|:| -1859 *1) (|:| |gap| (-781)) (|:| -3435 *1)))
+ (-4 *1 (-1078 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-2 (|:| -1859 *1) (|:| |gap| (-781)) (|:| -3435 *1)))
+ (-4 *1 (-1078 *3 *4 *5)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-779)) (-4 *3 (-1229)) (-4 *1 (-57 *3 *4 *5))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ (-12 (-5 *2 (-781)) (-4 *3 (-1231)) (-4 *1 (-57 *3 *4 *5))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
((*1 *1) (-5 *1 (-173)))
- ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1111))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-397))))
- ((*1 *1) (-5 *1 (-402)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
+ ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1113))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-399))))
+ ((*1 *1) (-5 *1 (-404)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1231))))
((*1 *1)
- (-12 (-4 *3 (-1111)) (-5 *1 (-894 *2 *3 *4)) (-4 *2 (-1111))
- (-4 *4 (-674 *3))))
- ((*1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111))))
+ (-12 (-4 *3 (-1113)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1113))
+ (-4 *4 (-676 *3))))
+ ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))
((*1 *1 *2)
- (-12 (-5 *1 (-1153 *3 *2)) (-14 *3 (-779)) (-4 *2 (-1060))))
- ((*1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060))))
- ((*1 *1 *1) (-5 *1 (-1188))) ((*1 *1) (-5 *1 (-1188)))
- ((*1 *1) (-5 *1 (-1209))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))
- (-5 *2 (-415 (-572))) (-5 *1 (-1031 *4)) (-4 *4 (-1255 (-572))))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1060))
- (-5 *1 (-861 *5 *2)) (-4 *2 (-860 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1207)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412))))
- ((*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930))))
- ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707))))
- ((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-251 *5 *6))) (-4 *6 (-460))
- (-5 *2 (-251 *5 *6)) (-14 *5 (-652 (-1188))) (-5 *1 (-639 *5 *6)))))
+ (-12 (-5 *1 (-1155 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1062))))
+ ((*1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062))))
+ ((*1 *1 *1) (-5 *1 (-1190))) ((*1 *1) (-5 *1 (-1190)))
+ ((*1 *1) (-5 *1 (-1211))))
(((*1 *2 *1)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-325 *3 *4 *5)) (-4 *3 (-370))
- (-14 *4 (-1188)) (-14 *5 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-426 *6)) (-4 *6 (-1255 *5))
- (-4 *5 (-1060)) (-5 *2 (-652 *6)) (-5 *1 (-452 *5 *6)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
- ((*1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-2 (|:| -3690 *3) (|:| -1907 *4))))
- (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *1 (-1205 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1205 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-958 *3 *5 *4)) (-5 *1 (-998 *3 *4 *5 *2))
- (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170))
- (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-759)))))
-(((*1 *1) (-5 *1 (-586))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2))
- (-4 *2 (-1229)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-5 *5 (-652 *8))
- (-4 *7 (-858)) (-4 *8 (-1060)) (-4 *9 (-958 *8 *6 *7))
- (-4 *6 (-801)) (-5 *2 (-1184 *8)) (-5 *1 (-327 *6 *7 *8 *9)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-553))))
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-654 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5))
+ (-4 *3 (-566)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1062))
+ (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414))))
+ ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932))))
+ ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709))))
+ ((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-370) (-1214) (-1013))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *7)) (-4 *7 (-858))
- (-4 *8 (-958 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801))
+ (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-308))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-313)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-5 *2 (-1286))
+ (-5 *1 (-1232 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-5 *2 (-1286))
+ (-5 *1 (-1232 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4))))
+ (-5 *1 (-1201 *6)) (-5 *5 (-654 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1053)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-2 (|:| -3693 *3) (|:| -1909 *4))))
+ (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *1 (-1207 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1207 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574)))
+ (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-767)))))
+(((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 (-1279 (-415 *8)) "failed"))
- (|:| -4362 (-652 (-1279 (-415 *8))))))
- (-5 *1 (-677 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-62 *3)) (-14 *3 (-1188))))
- ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-69 *3)) (-14 *3 (-1188))))
- ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-72 *3)) (-14 *3 (-1188))))
- ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1284))))
- ((*1 *2 *3) (-12 (-5 *3 (-396)) (-5 *2 (-1284)) (-5 *1 (-405))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149))))
- ((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))))
+ (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3))
+ (|:| |genIdeal| (-514 *3 *4 *5 *6))))
+ (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1049 (-572))) (-4 *3 (-564)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-438 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1184 *4)) (-5 *1 (-166 *3 *4))
- (-4 *3 (-167 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1060)) (-4 *1 (-308))))
- ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1184 *3))))
- ((*1 *2) (-12 (-4 *1 (-732 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1079 *3 *2)) (-4 *3 (-13 (-856) (-370)))
- (-4 *2 (-1255 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-697 (-961 *4))) (-5 *1 (-1039 *4))
- (-4 *4 (-1060)))))
-(((*1 *1 *1) (-4 *1 (-1071)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-652 (-1038 *5 *6 *7 *3))) (-5 *1 (-1038 *5 *6 *7 *3))
- (-4 *3 (-1076 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-652 *6)) (-4 *1 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5 *2)) (-4 *3 (-460)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-652 (-1157 *5 *6 *7 *3))) (-5 *1 (-1157 *5 *6 *7 *3))
- (-4 *3 (-1076 *5 *6 *7)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1146)) (-5 *2 (-699 (-286))) (-5 *1 (-169)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-858)) (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4))
- (-5 *3 (-652 *4)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *2 (-1046)) (-5 *1 (-760)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1231))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1231)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-399)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-1151 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34)))
- (-5 *1 (-1152 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-1151 *3 *4))) (-4 *3 (-13 (-1111) (-34)))
- (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))))
+ (-12 (-4 *4 (-1062)) (-4 *5 (-1257 *4)) (-5 *2 (-1 *6 (-654 *6)))
+ (-5 *1 (-1275 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1272 *4)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1257 (-171 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1257 (-171 *2))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-372)) (-4 *3 (-1062))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1)))
+ (-4 *1 (-862 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-62 *3)) (-14 *3 (-1190))))
+ ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-69 *3)) (-14 *3 (-1190))))
+ ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-72 *3)) (-14 *3 (-1190))))
+ ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1286))))
+ ((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1286)) (-5 *1 (-407))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4))))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1074 (-1037 *3) (-1186 (-1037 *3))))
+ (-5 *1 (-1037 *3)) (-4 *3 (-13 (-858) (-372) (-1035))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1195)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1190)))))
+ (-5 *6 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1117))
+ (-5 *1 (-407))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1190)))))
+ (-5 *6 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1117))
+ (-5 *1 (-407))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-654 (-1190))) (-5 *5 (-1193)) (-5 *3 (-1190))
+ (-5 *2 (-1117)) (-5 *1 (-407)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1153 *3 *2)) (-4 *3 (-13 (-1113) (-34)))
+ (-4 *2 (-13 (-1113) (-34))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
+ ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
+ ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231))
+ (-4 *3 (-1113)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-112))
+ (-5 *1 (-915 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-932)) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-401)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-654 *11))
+ (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4091 *11))))))
+ (-5 *6 (-781))
+ (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4091 *11))))
+ (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1078 *7 *8 *9))
+ (-4 *11 (-1084 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803))
+ (-4 *9 (-860)) (-5 *1 (-1082 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-654 *11))
+ (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4091 *11))))))
+ (-5 *6 (-781))
+ (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4091 *11))))
+ (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1078 *7 *8 *9))
+ (-4 *11 (-1122 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803))
+ (-4 *9 (-860)) (-5 *1 (-1158 *7 *8 *9 *10 *11)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -4332 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-372)) (-4 *7 (-1257 *6))
+ (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6)))
+ (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-386)) (-5 *1 (-207)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-930)) (-5 *1 (-707))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-697 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-370)) (-5 *1 (-989 *5)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-755)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930))
(-5 *2
- (-3 (-1184 *4)
- (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131)))))))
- (-5 *1 (-353 *4)) (-4 *4 (-356)))))
+ (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -2905 (-781))))
+ (-5 *1 (-792 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2905 (-781))))
+ (-4 *1 (-1078 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1279 (-779))) (-5 *1 (-683 *3)) (-4 *3 (-1111)))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-109))) (-5 *1 (-177)))))
-(((*1 *2 *3) (-12 (-5 *3 (-396)) (-5 *2 (-1284)) (-5 *1 (-399))))
- ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-399)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1186 (-1186 *4))))
+ (-5 *1 (-1229 *4)) (-5 *3 (-1186 (-1186 *4))))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
+ ((*1 *1 *1) (-4 *1 (-1157))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5))
+ (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-935 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-315) (-148)))
+ (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-112))
+ (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1286)) (-5 *1 (-401))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-401)))))
+(((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-916 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372)))
+ (-4 *3 (-1257 *4)) (-5 *2 (-574))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-566) (-1051 *2) (-649 *2) (-462)))
+ (-5 *2 (-574)) (-5 *1 (-1129 *4 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-853 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574))
+ (-5 *1 (-1129 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-1172))
+ (-4 *6 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574))
+ (-5 *1 (-1129 *6 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-462)) (-5 *2 (-574))
+ (-5 *1 (-1130 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-853 (-417 (-963 *6))))
+ (-5 *3 (-417 (-963 *6))) (-4 *6 (-462)) (-5 *2 (-574))
+ (-5 *1 (-1130 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-417 (-963 *6))) (-5 *4 (-1190))
+ (-5 *5 (-1172)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1130 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1213 *3)) (-4 *3 (-1062)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-683 *2)) (-4 *2 (-1060)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-779)) (-4 *6 (-1111)) (-4 *3 (-909 *6))
- (-5 *2 (-697 *3)) (-5 *1 (-700 *6 *3 *7 *4)) (-4 *7 (-380 *3))
- (-4 *4 (-13 (-380 *6) (-10 -7 (-6 -4454)))))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -4225 (-652 (-2 (|:| |irr| *10) (|:| -2866 (-572)))))))
- (-5 *6 (-652 *3)) (-5 *7 (-652 *8)) (-4 *8 (-858)) (-4 *3 (-313))
- (-4 *10 (-958 *3 *9 *8)) (-4 *9 (-801))
- (-5 *2
- (-2 (|:| |polfac| (-652 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-652 (-1184 *3)))))
- (-5 *1 (-633 *8 *9 *3 *10)) (-5 *4 (-652 (-1184 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))))
+ (-12 (-5 *1 (-685 *2)) (-4 *2 (-1062)) (-4 *2 (-1113)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3))
+ (-4 *5 (-13 (-440 *4) (-1015) (-1216)))
+ (-4 *3 (-13 (-440 (-171 *4)) (-1015) (-1216))))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2))
- (-4 *3 (-564)))))
+ (-12 (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))
+ (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1188)) (-5 *3 (-442)) (-4 *5 (-1111))
- (-5 *1 (-1117 *5 *4)) (-4 *4 (-438 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
+ (-12 (-5 *2 (-1190)) (-5 *3 (-444)) (-4 *5 (-1113))
+ (-5 *1 (-1119 *5 *4)) (-4 *4 (-440 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860))
+ (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1048)) (-5 *1 (-759))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-398)) (-5 *2 (-1048)) (-5 *1 (-759)))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1233)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5))
+ (-14 *5 (-654 (-1190))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6))
+ (-4 *6 (-462))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
+ (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5))
+ (-14 *5 (-654 (-1190))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6))
+ (-4 *6 (-462)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))
- (-5 *1 (-416 *3 *4 *5)) (-4 *3 (-417 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
- (-5 *2 (-697 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 *1)) (|has| *1 (-6 -4455)) (-4 *1 (-1021 *3))
- (-4 *3 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-129)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-1193))) (-5 *1 (-1147)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060))
- (-5 *1 (-1172 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060))
- (-14 *4 (-1188)) (-14 *5 *3))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-631 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3901 *4) (|:| |sol?| (-112)))
- (-572) *4))
- (-4 *4 (-370)) (-4 *5 (-1255 *4)) (-5 *1 (-582 *4 *5)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-827 *3)) (-4 *3 (-858)) (-5 *1 (-680 *3)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-652
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-779)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-801)) (-4 *6 (-958 *4 *3 *5)) (-4 *4 (-460)) (-4 *5 (-858))
- (-5 *1 (-457 *4 *3 *5 *6)))))
+ (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-1195))) (-5 *1 (-1149)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-860))
+ (-4 *3 (-1113)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7)))
- (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801))
- (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8)))
- (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
+ (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1272 *4))
+ (-4 *4 (-38 (-417 (-574))))
+ (-5 *2 (-1 (-1170 *4) (-654 (-1170 *4)))) (-5 *1 (-1274 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172))
+ (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6))
- (-5 *2 (-652 (-2 (|:| -1379 *1) (|:| -1674 (-652 *7)))))
- (-5 *3 (-652 *7)) (-4 *1 (-1222 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-699 (-324 (-227))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))))
+ (-5 *1 (-207)))))
+(((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-460)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *2 (-652 *3)) (-5 *1 (-988 *4 *5 *6 *3))
- (-4 *3 (-1076 *4 *5 *6)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-779)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-779)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1198)))))
+ (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *2 (-1286)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1200)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 (-445)))))
- (-5 *1 (-1192)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
- (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227)))
- (-5 *1 (-705)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-428 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))
- (-14 *4 (-1188)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-4 *2 (-13 (-27) (-1214) (-438 *3) (-10 -8 (-15 -2940 ($ *4)))))
- (-4 *4 (-856))
- (-4 *5
- (-13 (-1257 *2 *4) (-370) (-1214)
- (-10 -8 (-15 -3902 ($ $)) (-15 -3034 ($ $)))))
- (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *6 (-994 *5)) (-14 *7 (-1188)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1270 *4)) (-5 *1 (-1272 *4 *2))
- (-4 *4 (-38 (-415 (-572)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1279 *5)) (-4 *5 (-13 (-1060) (-647 *4)))
- (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-646 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-375)) (-5 *2 (-930))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-930))
- (-5 *1 (-536 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460))
- (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-652 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1222 *5 *6 *7 *8)) (-4 *5 (-564))
- (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1272 *3 *2))
- (-4 *2 (-1270 *3)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-397)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-913 *4))
- (-4 *4 (-1111))))
- ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1060)) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1255 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1168 (-652 (-930)))) (-5 *1 (-892)))))
+ (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 (-447)))))
+ (-5 *1 (-1194)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-860))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-832)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-762)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-652 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-572)) (-14 *4 (-779)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-129)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-258 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-858))
- (-4 *5 (-801)) (-4 *2 (-271 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-854)))))
-(((*1 *2 *1)
(-12
(-5 *2
- (-1279
- (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4065 (-572))
- (|:| -3127 (-572)) (|:| |spline| (-572)) (|:| -3555 (-572))
- (|:| |axesColor| (-882)) (|:| -1996 (-572))
- (|:| |unitsColor| (-882)) (|:| |showing| (-572)))))
- (-5 *1 (-1280)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-484 *4 *5 *6 *7)) (|:| -2001 (-652 *7))))
- (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7))))
- (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-683 (-227)))
- (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3))
- (-4 *3 (-13 (-438 *6) (-27) (-1214)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1111)))))
+ (-654
+ (-2
+ (|:| -3693
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -1909
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1170 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2967
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-569)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))))
+(((*1 *1) (-5 *1 (-833))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-315) (-148)))
+ (-4 *2 (-960 *4 *6 *5)) (-5 *1 (-935 *4 *5 *6 *2))
+ (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-399)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769)))))
+(((*1 *1 *1) (-4 *1 (-1157))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *2)) (-5 *1 (-181 *2)) (-4 *2 (-313))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-652 (-652 *4))) (-5 *2 (-652 *4)) (-4 *4 (-313))
- (-5 *1 (-181 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 *8))
- (-5 *4
- (-652
- (-2 (|:| -4362 (-697 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-697 *7)))))
- (-5 *5 (-779)) (-4 *8 (-1255 *7)) (-4 *7 (-1255 *6)) (-4 *6 (-356))
- (-5 *2
- (-2 (|:| -4362 (-697 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-697 *7))))
- (-5 *1 (-506 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *5)) (-4 *5 (-438 *4)) (-4 *4 (-564))
- (-5 *2 (-870)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 (-952 *4))) (-4 *1 (-1145 *4)) (-4 *4 (-1060))
- (-5 *2 (-779)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1168 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1060))
- (-5 *3 (-415 (-572))) (-5 *1 (-1172 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-476))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1280))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1281)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-572)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-637)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
-(((*1 *2 *1) (-12 (-5 *2 (-699 (-1146))) (-5 *1 (-1162)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1046))
- (-5 *1 (-757)))))
-(((*1 *2)
- (-12 (-5 *2 (-1279 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4))
- (-14 *3 (-930)) (-14 *4 (-930)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-767)))))
-(((*1 *1 *1) (-4 *1 (-175)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-371 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-514)) (-5 *2 (-652 (-974))) (-5 *1 (-297)))))
+ (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-982 *2 *3))
+ (-4 *3 (-1257 *2)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-112)) (-5 *1 (-306)))))
+ (|partial| -12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4))
+ (-5 *2 (-428 (-1186 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3))
+ (-4 *3 (-1257 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *5 (-375))
- (-5 *2 (-779)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4))
- (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4)) (-4 *6 (-1255 *5))
- (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7))
- (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-112))
- (-5 *1 (-920 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6))
- (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4)))
- (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-921 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+ (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-860))
+ (-4 *5 (-803)) (-4 *2 (-273 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-115)) (-5 *4 (-779))
- (-4 *5 (-13 (-460) (-1049 (-572)))) (-4 *5 (-564))
- (-5 *1 (-41 *5 *2)) (-4 *2 (-438 *5))
- (-4 *2
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *5 (-620 $)) $))
- (-15 -2974 ((-1136 *5 (-620 $)) $))
- (-15 -2940 ($ (-1136 *5 (-620 $))))))))))
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
+ (-5 *1 (-1221 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
+(((*1 *1 *1) (-5 *1 (-1076))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1172) (-1195)))
+ (-5 *1 (-1195)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112))
+ (-5 *2 (-1048)) (-5 *1 (-755)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-699 *4)) (-5 *3 (-932)) (|has| *4 (-6 (-4458 "*")))
+ (-4 *4 (-1062)) (-5 *1 (-1041 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-932))
+ (|has| *4 (-6 (-4458 "*"))) (-4 *4 (-1062)) (-5 *1 (-1041 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4))
- (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-593)) (-5 *3 (-605)) (-5 *4 (-297)) (-5 *1 (-286)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060))))
- ((*1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-1060)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+ (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5))
+ (-4 *3 (-1257 *4))
+ (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1153 *4 *2)) (-14 *4 (-930))
- (-4 *2 (-13 (-1060) (-10 -7 (-6 (-4456 "*")))))
- (-5 *1 (-911 *4 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-334 *3 *4))
- (-4 *3 (-335 *4))))
- ((*1 *2) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-779)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -4090 *9))))
- (-5 *4 (-779)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-1284))
- (-5 *1 (-1080 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -4090 *9))))
- (-5 *4 (-779)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-1284))
- (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-372) (-1216) (-1015))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-1195))) (-5 *1 (-891)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7)))
+ (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803))
+ (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8)))
+ (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7)))
+ (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803))
+ (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8)))
+ (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1283)))))
+(((*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1044)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-574)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-1051 (-417 *2)))) (-5 *2 (-574))
+ (-5 *1 (-116 *4 *3)) (-4 *3 (-1257 *4)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1111)) (-5 *2 (-652 *1))
- (-4 *1 (-438 *3))))
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2))
+ (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174))
+ (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3))
- (-4 *3 (-1111))))
+ (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1172)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1172)) (-5 *1 (-97)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1152))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-372)) (-4 *5 (-566))
+ (-5 *2
+ (-2 (|:| |minor| (-654 (-932))) (|:| -4122 *3)
+ (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-932)) (-4 *3 (-666 *5)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-112)) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574)))))
+ (-4 *5 (-1257 *4))
+ (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4122 *5))))
+ (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5))
+ (-4 *6 (-666 (-417 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1113)) (-4 *5 (-1113))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
+(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-574)) (-4 *1 (-1241 *4)) (-4 *4 (-1062)) (-4 *4 (-566))
+ (-5 *2 (-417 (-963 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *1 (-1241 *4)) (-4 *4 (-1062)) (-4 *4 (-566))
+ (-5 *2 (-417 (-963 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-1013 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *1 (-270))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372))
+ (-5 *2 (-699 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1281 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
+ (-5 *2 (-699 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
+ (-5 *2 (-1281 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1257 *4)) (-5 *2 (-699 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1257 *4)) (-5 *2 (-1281 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1257 *4)) (-5 *2 (-699 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5))))
+ (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3))
+ (-5 *2 (-1281 *3))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
- (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *3))
- (-5 *1 (-959 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $))
- (-15 -2974 (*7 $))))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-755)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1046)) (-5 *1 (-848))))
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174))
+ (-5 *2 (-699 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-322 (-386)))) (-5 *4 (-652 (-386)))
- (-5 *2 (-1046)) (-5 *1 (-848)))))
+ (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372))
+ (-5 *2 (-1281 *5)) (-5 *1 (-1099 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 *4)) (-4 *4 (-1060)) (-5 *2 (-1279 *4))
- (-5 *1 (-1189 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-930)) (-5 *2 (-1279 *3)) (-5 *1 (-1189 *3))
- (-4 *3 (-1060)))))
-(((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
- ((*1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-499)) (-5 *4 (-963)) (-5 *2 (-699 (-541)))
- (-5 *1 (-541))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-963)) (-4 *3 (-1111)) (-5 *2 (-699 *1))
- (-4 *1 (-775 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *2 (-1284))
- (-5 *1 (-441 *3 *4)) (-4 *4 (-438 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))
+ (-5 *2 (-388)) (-5 *1 (-274))))
((*1 *2 *3)
- (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-779)) (-4 *5 (-370)) (-5 *2 (-176 *6))
- (-5 *1 (-875 *5 *4 *6)) (-4 *4 (-1270 *5)) (-4 *6 (-1255 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1)
- (-12 (-4 *1 (-412)) (-2074 (|has| *1 (-6 -4445)))
- (-2074 (|has| *1 (-6 -4437)))))
- ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-858))))
- ((*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-858))))
- ((*1 *1) (-4 *1 (-852))) ((*1 *1 *1 *1) (-4 *1 (-858))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-572))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046))
- (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-961 *6)) (-5 *4 (-1188))
- (-5 *5 (-851 *7))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-4 *7 (-13 (-1214) (-29 *6))) (-5 *1 (-226 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1184 *6)) (-5 *4 (-851 *6))
- (-4 *6 (-13 (-1214) (-29 *5)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-226 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-370) (-1214) (-1013))))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1111)) (-5 *2 (-898 *3 *5)) (-5 *1 (-894 *3 *4 *5))
- (-4 *3 (-1111)) (-4 *5 (-674 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-4 *4 (-1111))
- (-5 *1 (-581 *4 *2)) (-4 *2 (-438 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-764)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-112)) (-5 *1 (-901 *4))
- (-4 *4 (-1111)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-652 (-1184 *5))) (-5 *3 (-1184 *5))
- (-4 *5 (-167 *4)) (-4 *4 (-553)) (-5 *1 (-150 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-652 *3)) (-4 *3 (-1255 *5))
- (-4 *5 (-1255 *4)) (-4 *4 (-356)) (-5 *1 (-365 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-652 (-1184 (-572)))) (-5 *3 (-1184 (-572)))
- (-5 *1 (-580))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-652 (-1184 *1))) (-5 *3 (-1184 *1))
- (-4 *1 (-918)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-4 *1 (-381 *3 *4))
- (-4 *4 (-174)))))
+ (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313)))))
+(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1255 (-572))) (-5 *1 (-494 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2361 *4)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882)))
- (-5 *4 (-652 (-930))) (-5 *5 (-652 (-268))) (-5 *1 (-476))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882)))
- (-5 *4 (-652 (-930))) (-5 *1 (-476))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476))))
- ((*1 *1 *1) (-5 *1 (-476))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892))
- (-5 *3 (-652 (-572))))))
-(((*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+ (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5))
+ (-5 *1 (-1001 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5))
+ (-5 *1 (-1120 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-779)) (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-553)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-445)) (-5 *1 (-1192)))))
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4))
+ (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-130)))
+ ((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
+ (-4 *4 (-174))))
+ ((*1 *1) (-5 *1 (-556))) ((*1 *1) (-5 *1 (-557)))
+ ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559)))
+ ((*1 *1) (-4 *1 (-736))) ((*1 *1) (-5 *1 (-1190)))
+ ((*1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-932))))
+ ((*1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932))))
+ ((*1 *1) (-5 *1 (-1236))) ((*1 *1) (-5 *1 (-1237)))
+ ((*1 *1) (-5 *1 (-1238))) ((*1 *1) (-5 *1 (-1239))))
(((*1 *2 *3 *4)
- (-12 (-4 *7 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564))
- (-4 *8 (-958 *7 *5 *6))
- (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *3) (|:| |radicand| *3)))
- (-5 *1 (-962 *5 *6 *7 *8 *3)) (-5 *4 (-779))
- (-4 *3
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *8)) (-15 -2963 (*8 $)) (-15 -2974 (*8 $))))))))
+ (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9))))
+ (-5 *4 (-781)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1286))
+ (-5 *1 (-1082 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9))))
+ (-5 *4 (-781)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1286))
+ (-5 *1 (-1158 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803))
+ (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2003 (-654 *9))))
+ (-5 *3 (-654 *9)) (-4 *1 (-1224 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2003 (-654 *8))))
+ (-5 *3 (-654 *8)) (-4 *1 (-1224 *5 *6 *7 *8)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1062)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-546)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4))))
+ (-5 *1 (-1137 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3))
+ (-4 *3 (-1113)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-932))) (-5 *4 (-112))
+ (-5 *1 (-1123)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462))
+ (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-990 *3 *4 *5 *6)))))
+(((*1 *1)
+ (-12 (-4 *1 (-414)) (-2077 (|has| *1 (-6 -4447)))
+ (-2077 (|has| *1 (-6 -4439)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-860))))
+ ((*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860))))
+ ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-764)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6))))
+ (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1272 *5)) (-5 *2 (-654 *6))
+ (-5 *1 (-1274 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1113)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5))
+ (-4 *3 (-1113)) (-4 *5 (-676 *4)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1111)) (-5 *2 (-112)) (-5 *1 (-894 *3 *4 *5))
- (-4 *3 (-1111)) (-4 *5 (-674 *4))))
+ (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781))
+ (-14 *4 (-781)) (-4 *5 (-174)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-622 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190)))
+ (-4 *2 (-13 (-440 *5) (-27) (-1216)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1113)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858)))
+ (-5 *2 (-654 (-2 (|:| -3948 (-654 *3)) (|:| -2678 *5))))
+ (-5 *1 (-183 *5 *3)) (-4 *3 (-1257 (-171 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-372) (-858)))
+ (-5 *2 (-654 (-2 (|:| -3948 (-654 *3)) (|:| -2678 *4))))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))))
+(((*1 *1 *1 *1) (-4 *1 (-483))) ((*1 *1 *1 *1) (-4 *1 (-771))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372))
+ (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-779))) (-5 *3 (-173)) (-5 *1 (-1176 *4 *5))
- (-14 *4 (-930)) (-4 *5 (-1060)))))
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2))
+ (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174))
+ (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2874 *3)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
(((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1048)) (-5 *1 (-763)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1279 (-1279 (-572)))) (-5 *1 (-474)))))
-(((*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4))
+ (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372))
+ (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *1) (-5 *1 (-642))))
(((*1 *2 *3)
- (-12 (-4 *4 (-313)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1135 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *6 (-227))
- (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-759)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
+ (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-654 (-227)))
+ (-5 *1 (-478)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227)))
+ (-5 *1 (-707)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3))
+ (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2))
+ (-4 *2 (-697 *3 *5 *6)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
+(((*1 *1 *1) (-4 *1 (-879 *2))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-761)))))
+(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-194))))
+ ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-308))))
+ ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-313)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-833)) (-5 *1 (-832)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-572)))))
-(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1279 *1)) (-4 *1 (-374 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-566)) (-4 *3 (-1062))
+ (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-862 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1062))
+ (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-863 *5 *3))
+ (-4 *3 (-862 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1190)))
+ (-4 *4 (-462)) (-5 *1 (-641 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4)))))
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
+ (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-415 (-572)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
+ (-12 (-5 *4 (-417 (-574)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *5 *3))))
+ (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-300 *3)) (-5 *5 (-415 (-572)))
- (-4 *3 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-321 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-572))) (-5 *4 (-300 *6))
- (-4 *6 (-13 (-27) (-1214) (-438 *5)))
- (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *5 *6))))
+ (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574)))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-323 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6))
+ (-4 *6 (-13 (-27) (-1216) (-440 *5)))
+ (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *6 *3))))
+ (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-572)))
- (-4 *7 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-574)))
+ (-4 *7 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-572)))
- (-4 *3 (-13 (-27) (-1214) (-438 *7)))
- (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *7 *3))))
+ (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-574)))
+ (-4 *3 (-13 (-27) (-1216) (-440 *7)))
+ (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-415 (-572)))) (-5 *4 (-300 *8))
- (-5 *5 (-1246 (-415 (-572)))) (-5 *6 (-415 (-572)))
- (-4 *8 (-13 (-27) (-1214) (-438 *7)))
- (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8))
+ (-5 *5 (-1248 (-417 (-574)))) (-5 *6 (-417 (-574)))
+ (-4 *8 (-13 (-27) (-1216) (-440 *7)))
+ (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-415 (-572))))
- (-5 *7 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *8)))
- (-4 *8 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
- (-5 *1 (-467 *8 *3))))
+ (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-417 (-574))))
+ (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *8)))
+ (-4 *8 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52))
+ (-5 *1 (-469 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3))))
- (-4 *3 (-1060)) (-5 *1 (-603 *3))))
+ (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3))))
+ (-4 *3 (-1062)) (-5 *1 (-605 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-604 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-606 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3))))
- (-4 *3 (-1060)) (-4 *1 (-1239 *3))))
+ (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3))))
+ (-4 *3 (-1062)) (-4 *1 (-1241 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-779))
- (-5 *3 (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| *4))))
- (-4 *4 (-1060)) (-4 *1 (-1260 *4))))
+ (-12 (-5 *2 (-781))
+ (-5 *3 (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4))))
+ (-4 *4 (-1062)) (-4 *1 (-1262 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-4 *1 (-1270 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-4 *1 (-1272 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 (-2 (|:| |k| (-779)) (|:| |c| *3))))
- (-4 *3 (-1060)) (-4 *1 (-1270 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3))
- (-5 *1 (-750 *5 *4 *6 *3)) (-4 *3 (-958 *6 *5 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-5 *2 (-1279 *3)) (-5 *1 (-720 *3 *4))
- (-4 *4 (-1255 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-697 *3))
- (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-697 *3))
- (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-1228))) (-5 *3 (-1228)) (-5 *1 (-689)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-553))))
- ((*1 *1 *1) (-4 *1 (-1071))))
-(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-537))))
- ((*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-537)))))
+ (-12 (-5 *2 (-1170 (-2 (|:| |k| (-781)) (|:| |c| *3))))
+ (-4 *3 (-1062)) (-4 *1 (-1272 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-781)) (-5 *3 (-954 *5)) (-4 *5 (-1062))
+ (-5 *1 (-1178 *4 *5)) (-14 *4 (-932))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1178 *4 *5))
+ (-14 *4 (-932)) (-4 *5 (-1062))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-781))) (-5 *3 (-954 *5)) (-4 *5 (-1062))
+ (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
- (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+ (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574))))
+ (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-1220 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-460) (-148))) (-5 *2 (-426 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1255 *4))))
+ (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1190))))
+ (-4 *5 (-803)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-960 *3 *5 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-758)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3))
+ (-4 *3 (-382 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-699 *5)) (-4 *5 (-1005 *4)) (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4)))
+ (-5 *1 (-703 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-13 (-460) (-148)))
- (-5 *2 (-426 *3)) (-5 *1 (-100 *5 *3)))))
+ (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574)))))
+ (-4 *6 (-1257 *5))
+ (-5 *2 (-2 (|:| -4122 *7) (|:| |rh| (-654 (-417 *6)))))
+ (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6)))
+ (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1250 *4 *5 *3))
+ (-4 *3 (-1257 *5)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574)))))
+ (-4 *2 (-13 (-860) (-21))))))
+(((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1113)) (-5 *2 (-781)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803)) (-5 *2 (-417 (-963 *4))) (-5 *1 (-935 *4 *5 *6 *3))
+ (-4 *3 (-960 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-699 *7)) (-4 *7 (-960 *4 *6 *5))
+ (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803)) (-5 *2 (-699 (-417 (-963 *4))))
+ (-5 *1 (-935 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5))
+ (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803)) (-5 *2 (-654 (-417 (-963 *4))))
+ (-5 *1 (-935 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-766)))))
+(((*1 *1 *1) (-4 *1 (-1073))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *1 (-233 *4))
- (-4 *4 (-1060))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4))
+ (-4 *4 (-1062))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1060))))
- ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-779))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-781))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-781))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4))
- (-4 *4 (-1255 *3))))
+ (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4))
+ (-4 *4 (-1257 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-370) (-148))) (-5 *1 (-407 *2 *3))
- (-4 *3 (-1255 *2))))
- ((*1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060))))
+ (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3))
+ (-4 *3 (-1257 *2))))
+ ((*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 (-779))) (-4 *1 (-909 *4))
- (-4 *4 (-1111))))
+ (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-911 *4))
+ (-4 *4 (-1113))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-909 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 (-781)) (-4 *1 (-911 *2)) (-4 *2 (-1113))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *1 (-909 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 *4))
- (-5 *2 (-2 (|:| |radicand| (-415 *5)) (|:| |deg| (-779))))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-795)) (-5 *2 (-1046))
- (-5 *3
- (-2 (|:| |fn| (-322 (-227)))
- (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-795)) (-5 *2 (-1046))
- (-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227)))))))
+ (-12 (-5 *2 (-654 *3)) (-4 *1 (-911 *3)) (-4 *3 (-1113))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-620 *4)) (-5 *1 (-619 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-476)))))
-(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3))))))
+ (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-639)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015) (-1216))))))
+(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3))
- (-4 *3 (-1111)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
(((*1 *1)
- (-12 (-4 *3 (-1111)) (-5 *1 (-894 *2 *3 *4)) (-4 *2 (-1111))
- (-4 *4 (-674 *3))))
- ((*1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
-(((*1 *1) (-5 *1 (-811))))
-(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
- ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-763)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-856) (-370))) (-5 *2 (-112)) (-5 *1 (-1072 *4 *3))
- (-4 *3 (-1255 *4)))))
+ (-12 (-4 *3 (-1113)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1113))
+ (-4 *4 (-676 *3))))
+ ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))))
+(((*1 *2)
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938)))))
+(((*1 *2 *1) (-12 (-5 *2 (-701 (-1148))) (-5 *1 (-1164)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062))
+ (-5 *2 (-654 (-654 (-654 (-781))))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-227)))) (-5 *1 (-935)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *6)) (-5 *4 (-1188)) (-4 *6 (-438 *5))
- (-4 *5 (-1111)) (-5 *2 (-652 (-620 *6))) (-5 *1 (-581 *5 *6)))))
+ (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860))
+ (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860))
+ (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-932))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372)))
+ (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-4 *7 (-351 *4 *5 *6))
+ (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-932)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4))
+ (-4 *4 (-1257 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1062))
+ (-4 *3 (-860))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1062)) (-4 *3 (-860))
+ (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-915 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4))
+ (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6)))
+ (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574))))
+ (-5 *2 (-781)) (-5 *1 (-922 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6))
+ (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4)))
+ (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781))
+ (-5 *1 (-923 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372))
+ (-4 *7 (-1257 *6)) (-4 *4 (-1257 (-417 *7))) (-4 *8 (-351 *6 *7 *4))
+ (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781))
+ (-5 *1 (-1031 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-4 *3 (-566))
+ (-5 *2 (-781))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-952 (-227))) (-5 *4 (-882)) (-5 *2 (-1284))
- (-5 *1 (-476))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1060)) (-4 *1 (-991 *3))))
+ (-12 (-5 *3 (-954 (-227))) (-5 *4 (-884)) (-5 *2 (-1286))
+ (-5 *1 (-478))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1062)) (-4 *1 (-993 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-952 *3))))
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-954 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-1062)) (-4 *1 (-1147 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
+ (-12 (-5 *2 (-781)) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
+ (-12 (-5 *2 (-654 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
+ (-12 (-5 *2 (-954 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)) (-5 *3 (-227)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
- (-5 *1 (-763)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-679))))
+ (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)) (-5 *3 (-227)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1281 *4))
+ (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-216 *4))
+ (-4 *4
+ (-13 (-860)
+ (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 (*2 $))
+ (-15 -3588 (*2 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930))
- (-14 *4 (-930)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-460))
- (-5 *2 (-489 *4 *5)) (-5 *1 (-639 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2))
- (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))))
+ (-12 (-5 *2 (-1286)) (-5 *1 (-216 *3))
+ (-4 *3
+ (-13 (-860)
+ (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 (*2 $))
+ (-15 -3588 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-512)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-5 *2
+ (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574))
+ (|:| |success| (-112))))
+ (-5 *1 (-799)) (-5 *5 (-574)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062))
+ (-5 *2 (-654 (-654 (-654 (-954 *3))))))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1048))
+ (-5 *1 (-759)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))
+ (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))
(-14 *4 *2) (-4 *5 (-174))))
((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-930)) (-5 *1 (-166 *3 *4))
+ (-12 (-4 *4 (-174)) (-5 *2 (-932)) (-5 *1 (-166 *3 *4))
(-4 *3 (-167 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-930))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-932))))
((*1 *2)
- (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
- (-5 *2 (-930))))
+ (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3))
+ (-5 *2 (-932))))
((*1 *2 *3)
- (-12 (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
- (-5 *2 (-779)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6))))
+ (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
+ (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-370))
- (-5 *2 (-779)) (-5 *1 (-675 *5))))
+ (-12 (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-372))
+ (-5 *2 (-781)) (-5 *1 (-677 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455))))
- (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-779))
- (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4))))
+ (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457))))
+ (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-781))
+ (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-779))))
+ (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781))))
((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4))
- (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-696 *4 *5 *6 *3))
- (-4 *3 (-695 *4 *5 *6))))
+ (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4))
+ (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3))
+ (-4 *3 (-697 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564))
- (-5 *2 (-779)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-652 (-1184 *11))) (-5 *3 (-1184 *11))
- (-5 *4 (-652 *10)) (-5 *5 (-652 *8)) (-5 *6 (-652 (-779)))
- (-5 *7 (-1279 (-652 (-1184 *8)))) (-4 *10 (-858))
- (-4 *8 (-313)) (-4 *11 (-958 *8 *9 *10)) (-4 *9 (-801))
- (-5 *1 (-715 *9 *10 *8 *11)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-858)) (-5 *4 (-652 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-652 *4))))
- (-5 *1 (-1199 *6)) (-5 *5 (-652 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1255 (-171 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1255 (-171 *2))))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
- ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
- ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-426 (-1184 (-1184 *4))))
- (-5 *1 (-1227 *4)) (-5 *3 (-1184 (-1184 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1231)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-386)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *1 *1) (-5 *1 (-1074))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-837)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-537))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2870 *3)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566))
+ (-5 *2 (-781)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-831)) (-5 *1 (-830)))))
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860))
+ (-5 *1 (-1201 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1048)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4))))
+ (-5 *1 (-1201 *4)) (-5 *3 (-654 (-654 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1113)) (-4 *4 (-1113))
+ (-4 *6 (-1113)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1272 *4)) (-5 *1 (-1274 *4 *2))
+ (-4 *4 (-38 (-417 (-574)))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1281 (-1114 *3 *4))) (-5 *1 (-1114 *3 *4))
+ (-14 *3 (-932)) (-14 *4 (-932)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-654 *1))
+ (-4 *1 (-391 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-736))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-960 *3 *4 *5)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
+ (-12 (-5 *2 (-1 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1231)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-761)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235))
+ (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1048)) (-5 *3 (-1190)) (-5 *1 (-274)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1190)) (-5 *2 (-622 *6))
+ (-4 *6 (-440 *5)) (-4 *5 (-1113)) (-5 *1 (-583 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-118 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-572))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-879 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-879 *2)) (-14 *2 (-572))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-572)) (-14 *3 *2) (-5 *1 (-880 *3 *4))
- (-4 *4 (-877 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-572)) (-5 *1 (-880 *2 *3)) (-4 *3 (-877 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-572)) (-4 *1 (-1241 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-1270 *3))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1257 *6))
+ (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574))))
+ (-4 *8 (-1257 (-417 *7))) (-5 *2 (-596 *3))
+ (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1164)))))
+(((*1 *1 *1) (-4 *1 (-175)))
((*1 *1 *1)
- (-12 (-4 *1 (-1241 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1270 *2)))))
+ (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1284))))
+ ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1284)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781))))
+ ((*1 *1 *1) (-4 *1 (-412))))
+(((*1 *1) (-5 *1 (-158))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1105 *3)) (-4 *3 (-958 *7 *6 *4)) (-4 *6 (-801))
- (-4 *4 (-858)) (-4 *7 (-564))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-572))))
- (-5 *1 (-602 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-564))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-572))))
- (-5 *1 (-602 *5 *4 *6 *3)) (-4 *3 (-958 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1) (-5 *1 (-870)))
+ (-12 (-5 *5 (-1107 *3)) (-4 *3 (-960 *7 *6 *4)) (-4 *6 (-803))
+ (-4 *4 (-860)) (-4 *7 (-566))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574))))
+ (-5 *1 (-604 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574))))
+ (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-960 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1) (-5 *1 (-872)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-1180 *4 *2)) (-4 *2 (-13 (-438 *4) (-161) (-27) (-1214)))))
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-1182 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1216)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1103 *2)) (-4 *2 (-13 (-438 *4) (-161) (-27) (-1214)))
- (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-1180 *4 *2))))
+ (-12 (-5 *3 (-1105 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1216)))
+ (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-1182 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572))))
- (-5 *2 (-415 (-961 *5))) (-5 *1 (-1181 *5)) (-5 *3 (-961 *5))))
+ (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574))))
+ (-5 *2 (-417 (-963 *5))) (-5 *1 (-1183 *5)) (-5 *3 (-963 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572))))
- (-5 *2 (-3 (-415 (-961 *5)) (-322 *5))) (-5 *1 (-1181 *5))
- (-5 *3 (-415 (-961 *5)))))
+ (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574))))
+ (-5 *2 (-3 (-417 (-963 *5)) (-324 *5))) (-5 *1 (-1183 *5))
+ (-5 *3 (-417 (-963 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1103 (-961 *5))) (-5 *3 (-961 *5))
- (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 *3))
- (-5 *1 (-1181 *5))))
+ (-12 (-5 *4 (-1105 (-963 *5))) (-5 *3 (-963 *5))
+ (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 *3))
+ (-5 *1 (-1183 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1103 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5)))
- (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-3 *3 (-322 *5)))
- (-5 *1 (-1181 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-239 *3))
- (-4 *3 (-1111))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4454)) (-4 *1 (-239 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-572)) (-4 *4 (-1111))
- (-5 *1 (-745 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-5 *1 (-745 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
- (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+ (-12 (-5 *4 (-1105 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5)))
+ (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-3 *3 (-324 *5)))
+ (-5 *1 (-1183 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-1279 *5))) (-5 *4 (-572)) (-5 *2 (-1279 *5))
- (-5 *1 (-1040 *5)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *2 (-13 (-438 *4) (-1013) (-1214)))
- (-5 *1 (-608 *4 *2 *3))
- (-4 *3 (-13 (-438 (-171 *4)) (-1013) (-1214))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-779)) (-4 *5 (-356)) (-4 *6 (-1255 *5))
+ (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4220 *3) (|:| -1784 *4))))
+ (-5 *1 (-706 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190))
+ (-14 *4 *2))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112))
+ (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34)))
+ (-4 *4 (-13 (-1113) (-34))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
(-5 *2
- (-652
- (-2 (|:| -4362 (-697 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-697 *6)))))
- (-5 *1 (-506 *5 *6 *7))
- (-5 *3
- (-2 (|:| -4362 (-697 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-697 *6))))
- (-4 *7 (-1255 *6)))))
+ (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574))
+ (|:| |success| (-112))))
+ (-5 *1 (-799)) (-5 *5 (-574)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1062)) (-4 *2 (-697 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1257 *4)) (-4 *5 (-382 *4))
+ (-4 *6 (-382 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1019)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-118 *4)) (-14 *4 *3)
- (-5 *3 (-572))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572))))
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3)
+ (-5 *3 (-574))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-879 *4)) (-14 *4 *3)
- (-5 *3 (-572))))
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3)
+ (-5 *3 (-574))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-415 (-572))) (-5 *1 (-880 *4 *5))
- (-5 *3 (-572)) (-4 *5 (-877 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1023)) (-5 *2 (-415 (-572)))))
+ (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5))
+ (-5 *3 (-574)) (-4 *5 (-879 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-417 (-574)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1079 *2 *3)) (-4 *2 (-13 (-856) (-370)))
- (-4 *3 (-1255 *2))))
+ (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-13 (-858) (-372)))
+ (-4 *3 (-1257 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1257 *2 *3)) (-4 *3 (-800))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2940 (*2 (-1188))))
- (-4 *2 (-1060)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-322 *4)) (-4 *4 (-13 (-836) (-1060))) (-5 *2 (-1170))
- (-5 *1 (-834 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-322 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-836) (-1060)))
- (-5 *2 (-1170)) (-5 *1 (-834 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-322 *5)) (-4 *5 (-13 (-836) (-1060)))
- (-5 *2 (-1284)) (-5 *1 (-834 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-830)) (-5 *4 (-322 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-836) (-1060))) (-5 *2 (-1284)) (-5 *1 (-834 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-836)) (-5 *2 (-1170))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-112)) (-5 *2 (-1170))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-836)) (-5 *3 (-830)) (-5 *2 (-1284))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-836)) (-5 *3 (-830)) (-5 *4 (-112)) (-5 *2 (-1284)))))
+ (-12 (-4 *1 (-1259 *2 *3)) (-4 *3 (-802))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2943 (*2 (-1190))))
+ (-4 *2 (-1062)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -1900 *3))))
+ (-5 *4 (-781)) (-4 *3 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803))
+ (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 *4))))
- (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-759)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-227))) (-5 *4 (-779)) (-5 *2 (-697 (-227)))
- (-5 *1 (-311)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1289)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *3 (-858)) (-5 *1 (-680 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1279 (-1188))) (-5 *3 (-1279 (-461 *4 *5 *6 *7)))
- (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-930))
- (-14 *6 (-652 (-1188))) (-14 *7 (-1279 (-697 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-461 *4 *5 *6 *7)))
- (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-930))
- (-14 *6 (-652 *2)) (-14 *7 (-1279 (-697 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-461 *3 *4 *5 *6))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188)))
- (-14 *6 (-1279 (-697 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-1188))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188)))
- (-14 *6 (-1279 (-697 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1188)) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-930)) (-14 *5 (-652 *2)) (-14 *6 (-1279 (-697 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-461 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-930))
- (-14 *4 (-652 (-1188))) (-14 *5 (-1279 (-697 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
+ (-12 (-5 *2 (-173)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *2 *4)) (-4 *4 (-1255 *2))
- (-4 *2 (-174))))
- ((*1 *2)
- (-12 (-4 *4 (-1255 *2)) (-4 *2 (-174)) (-5 *1 (-416 *3 *2 *4))
- (-4 *3 (-417 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-417 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174))))
- ((*1 *2)
- (-12 (-4 *3 (-1255 *2)) (-5 *2 (-572)) (-5 *1 (-776 *3 *4))
- (-4 *4 (-417 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858)) (-4 *3 (-174))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-174)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-516)) (-5 *2 (-654 (-976))) (-5 *1 (-299)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-315))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-1074))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-572))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))))
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1)))
+ (-4 *1 (-315)))))
+(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284))))
+ ((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) (-14 *4 *2))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-324)) (-5 *3 (-227)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-652 *5)) (-5 *4 (-572)) (-4 *5 (-856)) (-4 *5 (-370))
- (-5 *2 (-779)) (-5 *1 (-954 *5 *6)) (-4 *6 (-1255 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *2)) (-4 *2 (-174))))
- ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-424 *3 *2)) (-4 *3 (-425 *2))))
- ((*1 *2) (-12 (-4 *1 (-425 *2)) (-4 *2 (-174)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
- (-5 *2 (-1046)) (-5 *1 (-765)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-112)) (-5 *1 (-308)))))
+(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))
+ ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-566)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *1 *1) (-5 *1 (-1076))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-932))
+ (-5 *2 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133))))))
+ (-5 *1 (-355 *4)) (-4 *4 (-358)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801))
- (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1080 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-916 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4))
+ (-5 *1 (-1041 *5)) (-4 *5 (-1062))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1041 *4))
+ (-4 *4 (-1062))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801))
- (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1146)) (-5 *3 (-297)) (-5 *1 (-169)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-755)))))
+ (-12 (-5 *3 (-654 (-916 (-574)))) (-5 *4 (-574))
+ (-5 *2 (-654 (-699 *4))) (-5 *1 (-1041 *5)) (-4 *5 (-1062))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574))))
+ (-5 *1 (-1041 *4)) (-4 *4 (-1062)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3))
- (-4 *3 (-1111)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))))
-(((*1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-460))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *3 (-1076 *4 *5 *6))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *1))))
- (-4 *1 (-1082 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1233)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-1258 *3 *2))
- (-4 *2 (-13 (-1255 *3) (-564) (-10 -8 (-15 -2870 ($ $ $))))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1279 (-1279 (-572)))) (-5 *3 (-930)) (-5 *1 (-474)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *3 (-652 (-572)))
- (-5 *1 (-892)))))
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *5 (-377))
+ (-5 *2 (-781)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-4 *6 (-462))
+ (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372))
+ (-4 *5 (-13 (-372) (-858))))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3904 *7) (|:| |sol?| (-112)))
+ (-574) *7))
+ (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1257 *7))
+ (-5 *3 (-417 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-584 *7 *8)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-299)) (-5 *1 (-169)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1048)) (-5 *1 (-758)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3))
- (-4 *2
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $))
- (-15 -2974 ((-1136 *3 (-620 $)) $))
- (-15 -2940 ($ (-1136 *3 (-620 $))))))))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
- (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6)))
- (-5 *1 (-636 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-185 (-253))) (-5 *1 (-252)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+ (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-5 *2 (-1186 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 *4)) (-4 *4 (-856)) (-4 *4 (-370)) (-5 *2 (-779))
- (-5 *1 (-954 *4 *5)) (-4 *5 (-1255 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-280)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1279 *4)) (-4 *4 (-1060)) (-4 *2 (-1255 *4))
- (-5 *1 (-452 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-415 (-1184 (-322 *5)))) (-5 *3 (-1279 (-322 *5)))
- (-5 *4 (-572)) (-4 *5 (-564)) (-5 *1 (-1141 *5)))))
+ (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-839)) (-5 *3 (-1172)))))
+(((*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-566))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))
+ (-5 *2 (-1048)) (-5 *1 (-756)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-300 (-415 (-961 *5)))) (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-148)))
- (-5 *2 (-1177 (-652 (-322 *5)) (-652 (-300 (-322 *5)))))
- (-5 *1 (-1140 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-148)))
- (-5 *2 (-1177 (-652 (-322 *5)) (-652 (-300 (-322 *5)))))
- (-5 *1 (-1140 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-652 *3)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1270 *4))
- (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-1 (-1168 *4) (-1168 *4)))
- (-5 *1 (-1272 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336))
- (-5 *1 (-338)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1013))
- (-4 *2 (-1060)))))
+ (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4))
+ (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *8)) (-4 *8 (-958 *5 *7 *6))
- (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
- (-4 *7 (-801))
- (-5 *2
- (-652
- (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8))
- (|:| |wcond| (-652 (-961 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *5))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *5))))))))))
- (-5 *1 (-933 *5 *6 *7 *8)) (-5 *4 (-652 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *8)) (-5 *4 (-652 (-1188))) (-4 *8 (-958 *5 *7 *6))
- (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
- (-4 *7 (-801))
- (-5 *2
- (-652
- (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8))
- (|:| |wcond| (-652 (-961 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *5))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *5))))))))))
- (-5 *1 (-933 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-781)) (-4 *5 (-1062)) (-5 *2 (-574))
+ (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1257 *5))
+ (-4 *6 (-13 (-414) (-1051 *5) (-372) (-1216) (-292)))))
((*1 *2 *3)
- (-12 (-5 *3 (-697 *7)) (-4 *7 (-958 *4 *6 *5))
- (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801))
- (-5 *2
- (-652
- (-2 (|:| |eqzro| (-652 *7)) (|:| |neqzro| (-652 *7))
- (|:| |wcond| (-652 (-961 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *4))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *4))))))))))
- (-5 *1 (-933 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-697 *9)) (-5 *5 (-930)) (-4 *9 (-958 *6 *8 *7))
- (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188))))
- (-4 *8 (-801))
- (-5 *2
- (-652
- (-2 (|:| |eqzro| (-652 *9)) (|:| |neqzro| (-652 *9))
- (|:| |wcond| (-652 (-961 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *6))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *6))))))))))
- (-5 *1 (-933 *6 *7 *8 *9)) (-5 *4 (-652 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 (-1188))) (-5 *5 (-930))
- (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148)))
- (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801))
- (-5 *2
- (-652
- (-2 (|:| |eqzro| (-652 *9)) (|:| |neqzro| (-652 *9))
- (|:| |wcond| (-652 (-961 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *6))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *6))))))))))
- (-5 *1 (-933 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *8)) (-5 *4 (-930)) (-4 *8 (-958 *5 *7 *6))
- (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
- (-4 *7 (-801))
+ (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5))
+ (-4 *3 (-1257 *4))
+ (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803))
(-5 *2
- (-652
- (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8))
- (|:| |wcond| (-652 (-961 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *5))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *5))))))))))
- (-5 *1 (-933 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 *9)) (-5 *5 (-1170))
- (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148)))
- (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572))
- (-5 *1 (-933 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 (-1188))) (-5 *5 (-1170))
- (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148)))
- (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572))
- (-5 *1 (-933 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *8)) (-5 *4 (-1170)) (-4 *8 (-958 *5 *7 *6))
- (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
- (-4 *7 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-697 *10)) (-5 *4 (-652 *10)) (-5 *5 (-930))
- (-5 *6 (-1170)) (-4 *10 (-958 *7 *9 *8)) (-4 *7 (-13 (-313) (-148)))
- (-4 *8 (-13 (-858) (-622 (-1188)))) (-4 *9 (-801)) (-5 *2 (-572))
- (-5 *1 (-933 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-697 *10)) (-5 *4 (-652 (-1188))) (-5 *5 (-930))
- (-5 *6 (-1170)) (-4 *10 (-958 *7 *9 *8)) (-4 *7 (-13 (-313) (-148)))
- (-4 *8 (-13 (-858) (-622 (-1188)))) (-4 *9 (-801)) (-5 *2 (-572))
- (-5 *1 (-933 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-697 *9)) (-5 *4 (-930)) (-5 *5 (-1170))
- (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148)))
- (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572))
- (-5 *1 (-933 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-652 (-112))))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-697 (-227))) (-5 *6 (-112)) (-5 *7 (-697 (-572)))
- (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-572)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *6))))
- (-5 *4 (-1037 (-851 (-572)))) (-5 *5 (-1188)) (-5 *7 (-415 (-572)))
- (-4 *6 (-1060)) (-5 *2 (-870)) (-5 *1 (-603 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+ (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4))
+ (|:| |genIdeal| (-514 *4 *5 *6 *7))))
+ (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1113) (-34))) (-4 *6 (-13 (-1113) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1153 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 (-417 (-963 *6))))
+ (-5 *3 (-417 (-963 *6)))
+ (-4 *6 (-13 (-566) (-1051 (-574)) (-148)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-580 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-652 (-952 (-227)))))
- (-5 *2 (-652 (-1105 (-227)))) (-5 *1 (-937)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-112)) (-5 *5 (-697 (-171 (-227))))
- (-5 *2 (-1046)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-851 (-227)))) (-5 *4 (-227)) (-5 *2 (-652 *4))
- (-5 *1 (-272)))))
+ (-12 (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-428 (-1186 *7)))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-1186 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5)))
+ (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-654 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4))
- (-4 *4 (-1060)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-564)) (-4 *2 (-1060))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *3 (-1076 *4 *5 *6))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *1))))
- (-4 *1 (-1082 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572))
- (-5 *2 (-1046)) (-5 *1 (-762)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
- (-5 *2 (-697 *3)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-415 (-1184 (-322 *3)))) (-4 *3 (-564))
- (-5 *1 (-1141 *3)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *5 (-1255 *4)) (-5 *2 (-1184 (-415 *5))) (-5 *1 (-623 *4 *5))
- (-5 *3 (-415 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5))
- (-4 *5 (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2 (-1184 (-415 *6))) (-5 *1 (-623 *5 *6)) (-5 *3 (-415 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-1188))) (-4 *6 (-370))
- (-5 *2 (-652 (-300 (-961 *6)))) (-5 *1 (-546 *5 *6 *7))
- (-4 *5 (-460)) (-4 *7 (-13 (-370) (-856))))))
+ (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1257 *5))
+ (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7))
+ (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-112))
+ (-5 *1 (-922 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6))
+ (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4)))
+ (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-923 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781))))
+ (-5 *1 (-1170 *4)) (-4 *4 (-1231)) (-5 *3 (-781)))))
+(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1186 (-574))) (-5 *2 (-574)) (-5 *1 (-953)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -3709 *4))) (-5 *1 (-982 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803))
+ (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4122 (-654 *9)) (|:| -4091 *4) (|:| |ineq| (-654 *9))))
+ (-5 *1 (-1001 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9))
+ (-4 *4 (-1084 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803))
+ (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4122 (-654 *9)) (|:| -4091 *4) (|:| |ineq| (-654 *9))))
+ (-5 *1 (-1120 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9))
+ (-4 *4 (-1084 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *1 *1) (-4 *1 (-1152))))
(((*1 *2 *3)
- (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3))
- (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-958 *6 *4 *5)))))
+ (|partial| -12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-796)))))
+(((*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-407)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-547 *4 *2 *5 *6))
- (-4 *4 (-313)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-779))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-514)) (-5 *3 (-652 (-974))) (-5 *1 (-297)))))
+ (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1133)) (-5 *2 (-1286)) (-5 *1 (-841)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-762)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1111) (-1049 *5)))
- (-4 *5 (-895 *4)) (-4 *4 (-1111)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-940 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-444)))))
-(((*1 *1) (-5 *1 (-1280))))
-(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-426 (-1184 (-1184 *4))))
- (-5 *1 (-1227 *4)) (-5 *3 (-1184 (-1184 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1049 (-48)))
- (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4))
- (-5 *2 (-426 (-1184 (-48)))) (-5 *1 (-443 *4 *5 *3))
- (-4 *3 (-1255 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4))))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-553))))
- ((*1 *1 *1) (-4 *1 (-1071))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-514)) (-5 *2 (-699 (-1115))) (-5 *1 (-297)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801))
- (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-652 *3))
- (-5 *1 (-599 *5 *6 *7 *8 *3)) (-4 *3 (-1120 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148)))
- (-5 *2
- (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5))))))
- (-5 *1 (-1089 *5 *6)) (-5 *3 (-652 (-961 *5)))
- (-14 *6 (-652 (-1188)))))
+ (-12 (-5 *3 (-963 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1025))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1025))))
+ ((*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-1025)) (-5 *2 (-654 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1186 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1025))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1186 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1025))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1186 *1)) (-4 *1 (-1025)) (-5 *2 (-654 *1))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-313) (-148)))
+ (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-654 *1))
+ (-4 *1 (-1081 *4 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
+ (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227)))
+ (-5 *1 (-707))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-227)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-1 (-954 (-227)) (-227) (-227)))
+ (-5 *4 (-1107 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707)))))
+(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))))
+(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1237))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133))))))
+ (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-932))
+ (-14 *4 (-932))))
+ ((*1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358))
+ (-14 *4
+ (-3 (-1186 *3)
+ (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358))
+ (-14 *4 (-932)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2800 *4)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1084 *6 *7 *8 *9))
+ (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *9 (-1078 *6 *7 *8))
(-5 *2
- (-652 (-2 (|:| -2130 (-1184 *4)) (|:| -4329 (-652 (-961 *4))))))
- (-5 *1 (-1089 *4 *5)) (-5 *3 (-652 (-961 *4)))
- (-14 *5 (-652 (-1188)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148)))
+ (-654
+ (-2 (|:| -4122 (-654 *9)) (|:| -4091 *10) (|:| |ineq| (-654 *9)))))
+ (-5 *1 (-1001 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1084 *6 *7 *8 *9))
+ (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *9 (-1078 *6 *7 *8))
(-5 *2
- (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5))))))
- (-5 *1 (-1089 *5 *6)) (-5 *3 (-652 (-961 *5)))
- (-14 *6 (-652 (-1188))))))
+ (-654
+ (-2 (|:| -4122 (-654 *9)) (|:| -4091 *10) (|:| |ineq| (-654 *9)))))
+ (-5 *1 (-1120 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019))))
+ ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555)))))
+(((*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1113)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-692 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-697 *4)) (-4 *4 (-370)) (-5 *2 (-1184 *4))
- (-5 *1 (-540 *4 *5 *6)) (-4 *5 (-370)) (-4 *6 (-13 (-370) (-856))))))
-(((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
- (-5 *2 (-779)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-779)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572)))))
- (-4 *3 (-1255 *4)) (-5 *1 (-817 *4 *3 *2 *5)) (-4 *2 (-664 *3))
- (-4 *5 (-664 (-415 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-415 *5))
- (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4))
- (-5 *1 (-817 *4 *5 *2 *6)) (-4 *2 (-664 *5)) (-4 *6 (-664 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *2)) (-4 *2 (-174))))
- ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-424 *3 *2)) (-4 *3 (-425 *2))))
- ((*1 *2) (-12 (-4 *1 (-425 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227)))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1046)) (-5 *1 (-761)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-652 *2) *2 *2 *2)) (-4 *2 (-1111))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1111)) (-5 *1 (-103 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-652 *7))) (-4 *1 (-1222 *4 *5 *6 *7))
- (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *5 (-1257 *4)) (-5 *2 (-654 (-663 (-417 *5))))
+ (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-932)) (-5 *2 (-478)) (-5 *1 (-1282)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-115)) (-5 *4 (-781))
+ (-4 *5 (-13 (-462) (-1051 (-574)))) (-4 *5 (-566))
+ (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5))
+ (-4 *2
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *5 (-622 $)) $))
+ (-15 -2977 ((-1138 *5 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *5 (-622 $))))))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))))
+ (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-427 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-572)) (-4 *5 (-356)) (-5 *2 (-426 (-1184 (-1184 *5))))
- (-5 *1 (-1227 *5)) (-5 *3 (-1184 (-1184 *5))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))))
-(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-977 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1107 (-853 (-227)))) (-5 *1 (-313)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1257 (-417 (-574))))
+ (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))
+ (-5 *1 (-924 *3 *4)) (-4 *4 (-1257 (-417 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-112))
- (-5 *1 (-364 *4)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170))
- (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+ (-12 (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *3))
+ (-4 *3 (-1257 (-417 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4))
+ (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1028 *4 *5)) (-5 *3 (-417 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-652 (-961 *3))) (-4 *3 (-460)) (-5 *1 (-367 *3 *4))
- (-14 *4 (-652 (-1188)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-458 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6))
- (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *1 (-458 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6))
- (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *1 (-458 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
- (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-652 (-788 *3 (-872 *4)))) (-4 *3 (-460))
- (-14 *4 (-652 (-1188))) (-5 *1 (-636 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-239 *3))))
- ((*1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-652 *5) *6))
- (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5))
- (-5 *2 (-652 (-2 (|:| -1705 *5) (|:| -4121 *3))))
- (-5 *1 (-817 *5 *6 *3 *7)) (-4 *3 (-664 *6))
- (-4 *7 (-664 (-415 *6))))))
-(((*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386))))
- ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))))
-(((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-135)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
- (-5 *2 (-2 (|:| -1379 (-652 *6)) (|:| -1674 (-652 *6)))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2870 (-790 *3)) (|:| |coef2| (-790 *3))))
- (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-2 (|:| -2870 *1) (|:| |coef2| *1)))
- (-4 *1 (-1076 *3 *4 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-514)) (-5 *1 (-285)))))
-(((*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))))
+ (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190))
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4))
+ (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1208 *4 *5))
+ (-4 *4 (-1113)) (-4 *5 (-1113)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1281 *4)) (-5 *3 (-781)) (-4 *4 (-358))
+ (-5 *1 (-538 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830))
+ (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-386)) (-5 *1 (-207)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112)))))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-194)))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-446)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *1 *1) (-4 *1 (-1152))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 (-415 (-961 (-572))))) (-5 *4 (-652 (-1188)))
- (-5 *2 (-652 (-652 *5))) (-5 *1 (-387 *5))
- (-4 *5 (-13 (-856) (-370)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 (-572)))) (-5 *2 (-652 *4)) (-5 *1 (-387 *4))
- (-4 *4 (-13 (-856) (-370))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-763)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1046)) (-5 *3 (-1188)) (-5 *1 (-194)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1303 *3 *4)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-174))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-393 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-827 *3)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-1060))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-426 *4) *4)) (-4 *4 (-564)) (-5 *2 (-426 *4))
- (-5 *1 (-427 *4))))
- ((*1 *1 *1) (-5 *1 (-935)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935))))
- ((*1 *1 *1) (-5 *1 (-936)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))
- (-5 *4 (-415 (-572))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))
- (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))
- (-5 *4 (-415 (-572))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572)))))
- (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
- (-4 *3 (-1255 *2)))))
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6) (-10 -8 (-15 -2943 ($ *7)))))
+ (-4 *7 (-858))
+ (-4 *8
+ (-13 (-1259 *3 *7) (-372) (-1216)
+ (-10 -8 (-15 -3905 ($ $)) (-15 -2968 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))))
+ (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1172)) (-4 *9 (-996 *8))
+ (-14 *10 (-1190)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1257 (-417 *2)))
+ (-4 *2 (-1257 *5)) (-5 *1 (-217 *5 *2 *6 *3))
+ (-4 *3 (-351 *5 *2 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1202 (-654 *4))) (-4 *4 (-860))
+ (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-762)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1113)) (-4 *2 (-1113))
+ (-5 *1 (-621 *2 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-699 (-921 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-932))
+ (-14 *4 (-932))))
+ ((*1 *2)
+ (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358))
+ (-14 *4
+ (-3 (-1186 *3)
+ (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358))
+ (-14 *4 (-932)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1257 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-954 *5)) (-5 *3 (-781)) (-4 *5 (-1062))
+ (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-462)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1188))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-652 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2114 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1214) (-27) (-438 *8)))
- (-4 *8 (-13 (-460) (-148) (-1049 *3) (-647 *3))) (-5 *3 (-572))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3901 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1024 *8 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))))
-(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
- (-4 *4 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1246 *3)) (-4 *3 (-1229)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-697 (-572))) (-5 *3 (-652 (-572))) (-5 *1 (-1121)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-112))
- (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1046)) (-5 *1 (-764)))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
+ (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062))))
+ ((*1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3))
- (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6))))
+ (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
+ (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
+ (-4 *7 (-1005 *4)) (-4 *2 (-697 *7 *8 *9))
+ (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6))
+ (-4 *8 (-382 *7)) (-4 *9 (-382 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2)) (-4 *2 (-315))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2))
+ (-4 *2 (-697 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-652 *7) (-652 *7))) (-5 *2 (-652 *7))
- (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801))
- (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *4 (-1062))
+ (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227)))
+ (-5 *2 (-1048)) (-5 *1 (-757)))))
+(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-572)) (-4 *4 (-1255 (-415 *3))) (-5 *2 (-930))
- (-5 *1 (-922 *4 *5)) (-4 *5 (-1255 (-415 *4))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-572))) (-5 *5 (-1 (-1168 *4))) (-4 *4 (-370))
- (-4 *4 (-1060)) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 (-652 (-652 *4)))) (-5 *2 (-652 (-652 *4)))
- (-4 *4 (-858)) (-5 *1 (-1199 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-336)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1188)) (-5 *1 (-683 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-426 *3)) (-4 *3 (-564))))
+ (-12 (-5 *3 (-1186 *6)) (-4 *6 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-1186 *7)) (-5 *1 (-329 *4 *5 *6 *7))
+ (-4 *7 (-960 *6 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-2 (|:| -4218 *4) (|:| -4390 (-572)))))
- (-4 *4 (-1255 (-572))) (-5 *2 (-779)) (-5 *1 (-450 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1184 (-961 *6))) (-4 *6 (-564))
- (-4 *2 (-958 (-415 (-961 *6)) *5 *4)) (-5 *1 (-740 *5 *4 *6 *2))
- (-4 *5 (-801))
- (-4 *4 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060))))
- ((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-930)) (-5 *1 (-794)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-425 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-189))) (-5 *1 (-189)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-886 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-888 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-891 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-569)) (-5 *3 (-572))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
- (-4 *7 (-1255 (-415 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3112 *3)))
- (-5 *1 (-570 *5 *6 *7 *3)) (-4 *3 (-349 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
- (-5 *2
- (-2 (|:| |answer| (-415 *6)) (|:| -3112 (-415 *6))
- (|:| |specpart| (-415 *6)) (|:| |polypart| *6)))
- (-5 *1 (-571 *5 *6)) (-5 *3 (-415 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1046)) (-5 *3 (-1188)) (-5 *1 (-272)))))
-(((*1 *1) (-5 *1 (-158))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *1 *1) (-5 *1 (-1074))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-837)) (-5 *3 (-1170)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1111) (-34))) (-4 *6 (-13 (-1111) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1151 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *4 (-564))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3285 *4))) (-5 *1 (-980 *4 *3))
- (-4 *3 (-1255 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-961 (-572))) (-5 *2 (-652 *1)) (-4 *1 (-1023))))
+ (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3))
+ (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-960 *6 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *2 (-652 *1)) (-4 *1 (-1023))))
- ((*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-1023)) (-5 *2 (-652 *1))))
+ (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315))
+ (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 *7)))
+ (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1186 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-462)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-428 *1)) (-4 *1 (-960 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1184 (-572))) (-5 *2 (-652 *1)) (-4 *1 (-1023))))
+ (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3))
+ (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1184 (-415 (-572)))) (-5 *2 (-652 *1)) (-4 *1 (-1023))))
+ (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462))
+ (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 (-417 *7))))
+ (-5 *1 (-1185 *4 *5 *6 *7)) (-5 *3 (-1186 (-417 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1235))))
((*1 *2 *3)
- (-12 (-5 *3 (-1184 *1)) (-4 *1 (-1023)) (-5 *2 (-652 *1))))
+ (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1260 *4 *3))
+ (-4 *3 (-13 (-1257 *4) (-566) (-10 -8 (-15 -2874 ($ $ $)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-652 *1))
- (-4 *1 (-1079 *4 *3)))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017))))
- ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1105 (-851 (-227)))) (-5 *1 (-311)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-620 *4)) (-4 *4 (-1111)) (-4 *2 (-1111))
- (-5 *1 (-619 *2 *4)))))
+ (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-14 *5 (-654 (-1190)))
+ (-5 *2
+ (-654 (-1159 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))))
+ (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))))
(((*1 *1 *1)
- (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
- (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))))
+ (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
+ (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
+ (-5 *1 (-1137 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6))
+ (|:| -2144 *6)))
+ (-5 *1 (-1028 *5 *6)) (-5 *3 (-417 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-1062)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-612 *2 *3)) (-4 *3 (-1229)) (-4 *2 (-1111))
- (-4 *2 (-858)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+ (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372)))
+ (-4 *3 (-1257 *4)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4)))
+ (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-284 *4 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1281 *4))) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566))
+ (-5 *2 (-654 (-1281 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872))))
+ ((*1 *1 *1) (-5 *1 (-872))))
(((*1 *2 *1)
- (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-308)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
- (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
- (-5 *1 (-796))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
- (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
- (-5 *1 (-796)))))
+ (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1231)) (-4 *2 (-1113))
+ (-4 *2 (-860)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 *1)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1062)) (-5 *1 (-699 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 *4)) (-4 *4 (-1062)) (-4 *1 (-1136 *3 *4 *5 *6))
+ (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566))
+ (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8))))
+ (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1155 *4 *2)) (-14 *4 (-932))
+ (-4 *2 (-13 (-1062) (-10 -7 (-6 (-4458 "*")))))
+ (-5 *1 (-913 *4 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *3 (-1078 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1082 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *3 (-1078 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1158 *6 *7 *8 *3 *4)) (-4 *4 (-1122 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-630 *4 *2)) (-4 *2 (-13 (-1214) (-968) (-29 *4))))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-5 *2 (-2 (|:| -3690 *3) (|:| -1907 *4))))))
+ (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4))
+ (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2))
+ (-4 *2 (-697 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2))
+ (-4 *2 (-697 *3 *4 *5)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1216)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1113)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1)))))
(((*1 *2)
- (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-572))
- (-5 *6
- (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386))))
- (-5 *7 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
- (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
- (-5 *1 (-796))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-572))
- (-5 *6
- (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -3977 (-386))))
- (-5 *7 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
- (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
- (-5 *1 (-796)))))
+ (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-781)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))))
+ (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170)))))
- (-5 *2 (-1046)) (-5 *1 (-311))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3972 (-386)) (|:| -2030 (-1170))
- (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))
- (-5 *2 (-1046)) (-5 *1 (-311)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
- (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572))
- (-5 *2 (-1046)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
-(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1107))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229))))
- ((*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-245))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-652 (-1170))) (-5 *3 (-572)) (-5 *4 (-1170))
- (-5 *1 (-245))))
- ((*1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1257 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))))
+ (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112))
+ (-5 *1 (-682 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-1257 (-171 *3))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-779)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1060)) (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
- (-4 *5 (-242 *3 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-779))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-410)) (-5 *2 (-779)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-985)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-370)))))
-(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-982)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-699 (-286)))) (-5 *1 (-169)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1023)) (-5 *2 (-870)))))
+ (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1062)) (-5 *1 (-724 *2 *4))
+ (-4 *4 (-658 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2874 (-792 *3)) (|:| |coef1| (-792 *3))))
+ (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-2 (|:| -2874 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1078 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-803))
+ (-4 *3 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))) (-4 *5 (-566))
+ (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-960 (-417 (-963 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1062)) (-4 *5 (-803))
+ (-4 *3
+ (-13 (-860)
+ (-10 -8 (-15 -1837 ((-1190) $))
+ (-15 -1489 ((-3 $ "failed") (-1190))))))
+ (-5 *1 (-997 *4 *5 *3 *2)) (-4 *2 (-960 (-963 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 *6))
+ (-4 *6
+ (-13 (-860)
+ (-10 -8 (-15 -1837 ((-1190) $))
+ (-15 -1489 ((-3 $ "failed") (-1190))))))
+ (-4 *4 (-1062)) (-4 *5 (-803)) (-5 *1 (-997 *4 *5 *6 *2))
+ (-4 *2 (-960 (-963 *4) *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-566) (-148)))
+ (-5 *2 (-2 (|:| -3891 *3) (|:| -3904 *3))) (-5 *1 (-1251 *4 *3))
+ (-4 *3 (-1257 *4)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060))
- (-4 *2 (-1270 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1049 (-572)))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1113)) (-5 *2 (-654 *1))
+ (-4 *1 (-440 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-652 *3)) (|:| |image| (-652 *3))))
- (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
- (-14 *4 (-652 (-1188)))))
+ (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3))
+ (-4 *3 (-1113))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858)))
- (-14 *4 (-652 (-1188))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188)))
- (-4 *5 (-564)) (-5 *2 (-652 (-652 (-961 *5)))) (-5 *1 (-1197 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-313))
- (-5 *2 (-415 (-426 (-961 *4)))) (-5 *1 (-1053 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-1190 (-415 (-572))))
- (-5 *1 (-192)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188)))
- (-4 *6 (-13 (-564) (-1049 *5))) (-4 *5 (-564))
- (-5 *2 (-652 (-652 (-300 (-415 (-961 *6)))))) (-5 *1 (-1050 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1 (-1168 (-961 *4)) (-1168 (-961 *4))))
- (-5 *1 (-1287 *4)) (-4 *4 (-370)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188))
- (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572))))
- (-5 *2 (-2 (|:| -2587 *3) (|:| |nconst| *3))) (-5 *1 (-575 *5 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+ (|partial| -12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062))
+ (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *3))
+ (-5 *1 (-961 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $))
+ (-15 -2977 (*7 $))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7))))
+ (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *5))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-699 *2)) (-5 *4 (-781))
+ (-4 *2 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-4 *5 (-1257 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229))
- (-4 *2 (-1111))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-132))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *3))
- (-4 *3 (-1229))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-370 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-682 *3)) (-4 *3 (-1229))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-572)) (-4 *4 (-1111))
- (-5 *1 (-745 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-5 *1 (-745 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1113))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
- (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *2)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-132))))
-(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-97)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-652 (-1184 *13))) (-5 *3 (-1184 *13))
- (-5 *4 (-652 *12)) (-5 *5 (-652 *10)) (-5 *6 (-652 *13))
- (-5 *7 (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| *13)))))
- (-5 *8 (-652 (-779))) (-5 *9 (-1279 (-652 (-1184 *10))))
- (-4 *12 (-858)) (-4 *10 (-313)) (-4 *13 (-958 *10 *11 *12))
- (-4 *11 (-801)) (-5 *1 (-715 *11 *12 *10 *13)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1))
- (-4 *1 (-1082 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-659 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1062)) (-4 *4 (-1257 *3)) (-5 *1 (-165 *3 *4 *2))
+ (-4 *2 (-1257 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-112))
+ (-5 *1 (-900 *4 *5)) (-4 *5 (-1113))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-5 *2 (-112))
+ (-5 *1 (-901 *5 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1113))
+ (-4 *6 (-1231)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-757)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1062))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-974 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566))
+ (-4 *3 (-1062)) (-4 *2 (-802))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-781)) (-5 *1 (-1186 *3)) (-4 *3 (-1062))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-984)) (-4 *2 (-132)) (-5 *1 (-1192 *3)) (-4 *3 (-566))
+ (-4 *3 (-1062))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-781)) (-5 *1 (-1254 *4 *3)) (-14 *4 (-1190))
+ (-4 *3 (-1062)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-241 *3))
+ (-4 *3 (-1113))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1111)) (-5 *1 (-973 *3 *2)) (-4 *3 (-1111)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+ (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3))))
+ (-5 *2 (-654 (-1190))) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1281 *5)) (-5 *3 (-781)) (-5 *4 (-1133)) (-4 *5 (-358))
+ (-5 *1 (-538 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1255 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-996 *4 *2 *3 *5))
- (-4 *4 (-356)) (-4 *5 (-732 *2 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
- (-5 *2 (-652 (-652 *4))) (-5 *1 (-348 *3 *4 *5 *6))
- (-4 *3 (-349 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-4 *3 (-375)) (-5 *2 (-652 (-652 *3))))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
- (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-1158 (-1170))) (-5 *1 (-399)))))
-(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1048)) (-5 *1 (-850))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388)))
+ (-5 *2 (-1048)) (-5 *1 (-850)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-427 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1257 (-574))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-417 (-963 *6)) (-1179 (-1190) (-963 *6))))
+ (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *6)))))
+ (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-963 *6))))))
+ ((*1 *2 *3 *4)
(-12
(-5 *3
- (-652
- (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8))
- (|:| |wcond| (-652 (-961 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *5))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *5))))))))))
- (-5 *4 (-1170)) (-4 *5 (-13 (-313) (-148))) (-4 *8 (-958 *5 *7 *6))
- (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-572))
- (-5 *1 (-933 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572))
- (-5 *2 (-1046)) (-5 *1 (-764)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-380 *2)) (-4 *2 (-1229))
- (-4 *2 (-858))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4455))
- (-4 *1 (-380 *3)) (-4 *3 (-1229)))))
+ (-2 (|:| |eigval| (-3 (-417 (-963 *5)) (-1179 (-1190) (-963 *5))))
+ (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4))))
+ (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *5)))))
+ (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-963 *5)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-428 *5)) (-4 *5 (-566))
+ (-5 *2
+ (-2 (|:| -2524 (-781)) (|:| -1859 *5) (|:| |radicand| (-654 *5))))
+ (-5 *1 (-328 *5)) (-5 *4 (-781))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-574)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1281 *4)) (-5 *3 (-574)) (-4 *4 (-358))
+ (-5 *1 (-538 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-5 *2
+ (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574))
+ (|:| |success| (-112))))
+ (-5 *1 (-799)) (-5 *5 (-574)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-1062)) (-5 *2 (-1281 *4))
+ (-5 *1 (-1191 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-932)) (-5 *2 (-1281 *3)) (-5 *1 (-1191 *3))
+ (-4 *3 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-1281 (-324 (-388))))
+ (-5 *1 (-313)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *3 (-1078 *6 *7 *8))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1078 *6 *7 *4)) (-4 *9 (-1084 *6 *7 *4 *8))
+ (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860))
+ (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4091 *9))))
+ (-5 *1 (-1121 *6 *7 *4 *8 *9)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1060)) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1255 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-755)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-145)))))
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-5 *2 (-2 (|:| -3693 *3) (|:| -1909 *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388)))
+ (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286))
+ (-5 *1 (-798))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388)))
+ (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286))
+ (-5 *1 (-798)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1060)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3))
- (-4 *3 (-1255 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-112)))))
-(((*1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-371 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-5 *2 (-1170)))))
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227)))
+ (|:| |lb| (-654 (-853 (-227))))
+ (|:| |cf| (-654 (-324 (-227))))
+ (|:| |ub| (-654 (-853 (-227))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-654 (-324 (-227))))
+ (|:| -3818 (-654 (-227)))))))
+ (-5 *2 (-654 (-1172))) (-5 *1 (-274)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-963 *8))))
+ (-5 *5 (-781)) (-5 *6 (-1172)) (-4 *8 (-13 (-315) (-148)))
+ (-4 *11 (-960 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1190))))
+ (-4 *10 (-803))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-654
+ (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11))
+ (|:| |wcond| (-654 (-963 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *8))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *8))))))))))
+ (|:| |rgsz| (-574))))
+ (-5 *1 (-935 *8 *9 *10 *11)) (-5 *7 (-574)))))
(((*1 *2)
- (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
- (-5 *1 (-999 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-352 *3 *4)) (-14 *3 (-932))
+ (-14 *4 (-932))))
((*1 *2)
- (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
- (-5 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *3 (-564)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-553)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-115))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-115))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858))
- (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779))))
+ (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358))
+ (-14 *4 (-1186 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358))
+ (-14 *4 (-932)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1190)))
+ (-4 *5 (-462))
+ (-5 *2
+ (-2 (|:| |gblist| (-654 (-253 *4 *5)))
+ (|:| |gvlist| (-654 (-574)))))
+ (-5 *1 (-641 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))))
+(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1109))))
((*1 *2 *1)
- (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
- (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-271 *3)) (-4 *3 (-858)) (-5 *2 (-779)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-961 (-572)))) (-5 *1 (-445))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-697 (-227))) (-5 *2 (-1115))
- (-5 *1 (-767))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-697 (-572))) (-5 *2 (-1115))
- (-5 *1 (-767)))))
-(((*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-833)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))
- (-5 *2 (-1184 *3))))
+ (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-247))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-654 (-1172))) (-5 *3 (-574)) (-5 *4 (-1172))
+ (-5 *1 (-247))))
+ ((*1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
((*1 *2 *1)
- (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))
- (-5 *2 (-1184 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572)))
- (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-765)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-285))) (-5 *1 (-285))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1193)))))
-(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1259 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-982 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574)))))
+ (-4 *2 (-13 (-860) (-21))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-954 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1216) (-970) (-29 *4))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))
+ (-5 *2 (-1048)) (-5 *1 (-758)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |polnum| (-790 *3)) (|:| |polden| *3) (|:| -3029 (-779))))
- (-5 *1 (-790 *3)) (-4 *3 (-1060))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3029 (-779))))
- (-4 *1 (-1076 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-652 *5))) (-4 *5 (-1270 *4))
- (-4 *4 (-38 (-415 (-572))))
- (-5 *2 (-1 (-1168 *4) (-652 (-1168 *4)))) (-5 *1 (-1272 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-760)))))
+ (-654
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-803)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860))
+ (-5 *1 (-459 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
+ ((*1 *1 *1) (-5 *1 (-872))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-564)) (-4 *2 (-460)) (-5 *1 (-980 *2 *3))
- (-4 *3 (-1255 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5))
- (-4 *3 (-1255 *4))
- (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2))
- (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-174))
- (-5 *1 (-696 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
- (-4 *5 (-242 *3 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-1239 *4)) (-4 *4 (-1060)) (-4 *4 (-564))
- (-5 *2 (-415 (-961 *4)))))
+ (-12 (|has| *2 (-6 (-4458 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2))
+ (-4 *2 (-1062)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1257 *2))
+ (-4 *4 (-697 *2 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))))
+(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-654 (-963 *4))) (-5 *3 (-654 (-1190))) (-4 *4 (-462))
+ (-5 *1 (-929 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1062)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1190)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-1239 *4)) (-4 *4 (-1060)) (-4 *4 (-564))
- (-5 *2 (-415 (-961 *4))))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-130)))
- ((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
- (-4 *4 (-174))))
- ((*1 *1) (-5 *1 (-554))) ((*1 *1) (-5 *1 (-555)))
- ((*1 *1) (-5 *1 (-556))) ((*1 *1) (-5 *1 (-557)))
- ((*1 *1) (-4 *1 (-734))) ((*1 *1) (-5 *1 (-1188)))
- ((*1 *1) (-12 (-5 *1 (-1194 *2)) (-14 *2 (-930))))
- ((*1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930))))
- ((*1 *1) (-5 *1 (-1234))) ((*1 *1) (-5 *1 (-1235)))
- ((*1 *1) (-5 *1 (-1236))) ((*1 *1) (-5 *1 (-1237))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-652 (-572))) (-5 *3 (-652 (-930))) (-5 *4 (-112))
- (-5 *1 (-1121)))))
+ (-12 (-5 *3 (-654 (-932))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5))
+ (-14 *4 (-932)) (-14 *5 (-1006 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4))
+ (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-132))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1062))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4))
+ (-4 *4 (-1257 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1062))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1062)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5))
+ (-4 *4 (-1062)) (-4 *5 (-860))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1062))
+ (-4 *2 (-860))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1062))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-960 *4 *5 *6))
+ (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-781)) (-4 *1 (-960 *4 *5 *2)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *2 (-860))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-781)) (-4 *2 (-960 *4 (-541 *5) *5))
+ (-5 *1 (-1139 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-860))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-963 *4)) (-5 *1 (-1225 *4))
+ (-4 *4 (-1062)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 *4)) (-4 *4 (-370)) (-5 *2 (-697 *4))
- (-5 *1 (-822 *4 *5)) (-4 *5 (-664 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *5)) (-5 *4 (-779)) (-4 *5 (-370))
- (-5 *2 (-697 *5)) (-5 *1 (-822 *5 *6)) (-4 *6 (-664 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-313) (-148))) (-4 *4 (-13 (-858) (-622 (-1188))))
- (-4 *5 (-801)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-958 *3 *5 *4)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227)))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-764)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-386)) (-5 *1 (-1074)))))
+ (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1257 *4)) (-5 *2 (-1286))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1257 (-417 *5))) (-14 *7 *6))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1172))
+ (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2))
+ (-4 *2 (-666 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-652 *4)) (-5 *1 (-787 *4))
- (-4 *4 (-13 (-370) (-856))))))
-(((*1 *2)
- (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1188))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-652 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2114 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1214) (-27) (-438 *8)))
- (-4 *8 (-13 (-460) (-148) (-1049 *3) (-647 *3))) (-5 *3 (-572))
- (-5 *2 (-652 *4)) (-5 *1 (-1025 *8 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4))
- (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
- (-5 *1 (-999 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
- (-5 *1 (-1118 *3 *4 *5 *6 *7)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-858)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 (-572)))
- (-5 *1 (-441 *4 *3)) (-4 *3 (-438 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-620 *3)) (-4 *3 (-438 *5))
- (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-1184 (-415 (-572))))
- (-5 *1 (-441 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-832)) (-5 *3 (-652 (-1188))) (-5 *1 (-833)))))
-(((*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564))))
+ (-12 (-5 *3 (-501)) (-5 *4 (-965)) (-5 *2 (-701 (-543)))
+ (-5 *1 (-543))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-965)) (-4 *3 (-1113)) (-5 *2 (-701 *1))
+ (-4 *1 (-777 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231))
+ (-4 *2 (-1113))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *3))
+ (-4 *3 (-1231))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1113))
+ (-5 *1 (-747 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34)))
+ (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858))
- (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-652 (-779)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
- (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-652 (-779))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-1143 *4 *2))
- (-4 *2 (-13 (-612 (-572) *4) (-10 -7 (-6 -4454) (-6 -4455))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-858)) (-4 *3 (-1229)) (-5 *1 (-1143 *3 *2))
- (-4 *2 (-13 (-612 (-572) *3) (-10 -7 (-6 -4454) (-6 -4455)))))))
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-930)) (-5 *4 (-227)) (-5 *5 (-572)) (-5 *6 (-882))
- (-5 *2 (-1284)) (-5 *1 (-1280)))))
-(((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1073))))
- ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1073)))))
-(((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-572)) (-5 *5 (-112)) (-5 *6 (-697 (-227)))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-112)) (-5 *1 (-561)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))))
+ (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3)))
+ (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-372)) (-4 *3 (-1062))
+ (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-862 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1062))
+ (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-863 *5 *3))
+ (-4 *3 (-862 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-417 (-574))))
+ (-5 *2 (-2 (|:| -2343 (-1170 *4)) (|:| -2353 (-1170 *4))))
+ (-5 *1 (-1176 *4)) (-5 *3 (-1170 *4)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
+ ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
+ ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-574))
+ (-5 *6
+ (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))))
+ (-5 *7 (-1 (-1286) (-1281 *5) (-1281 *5) (-388)))
+ (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286))
+ (-5 *1 (-798))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-574))
+ (-5 *6
+ (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))))
+ (-5 *7 (-1 (-1286) (-1281 *5) (-1281 *5) (-388)))
+ (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286))
+ (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4))))
+ (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1186 *9)))
+ (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781)))
+ (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-960 *9 *10 *11))
+ (-4 *10 (-803)) (-5 *2 (-654 (-1186 *12)))
+ (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1186 *12)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-699 (-1186 *8))) (-4 *5 (-1062)) (-4 *8 (-1062))
+ (-4 *6 (-1257 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8))
+ (-4 *7 (-1257 *6)))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -4362 (-652 *1))))
- (-4 *1 (-374 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-461 *3 *4 *5 *6))
- (|:| -4362 (-652 (-461 *3 *4 *5 *6)))))
- (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3901 *6) (|:| |sol?| (-112))) (-572)
- *6))
- (-4 *6 (-370)) (-4 *7 (-1255 *6))
+ (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *2 (-1286))
+ (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1231))
+ (-4 *5 (-1231)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781))
+ (-4 *7 (-1231)) (-4 *5 (-1231)) (-5 *2 (-246 *6 *5))
+ (-5 *1 (-245 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1231)) (-4 *5 (-1231))
+ (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1113)) (-4 *5 (-1113))
+ (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1231))
+ (-4 *5 (-1231)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-969 *6)) (-4 *6 (-1231))
+ (-4 *5 (-1231)) (-5 *2 (-969 *5)) (-5 *1 (-968 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1170 *6)) (-4 *6 (-1231))
+ (-4 *3 (-1231)) (-5 *2 (-1170 *3)) (-5 *1 (-1168 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1281 *6)) (-4 *6 (-1231))
+ (-4 *5 (-1231)) (-5 *2 (-1281 *5)) (-5 *1 (-1280 *6 *5)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1115 (-781))) (-5 *6 (-781))
(-5 *2
- (-3 (-2 (|:| |answer| (-415 *7)) (|:| |a0| *6))
- (-2 (|:| -2114 (-415 *7)) (|:| |coeff| (-415 *7))) "failed"))
- (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
-(((*1 *1 *1) (-5 *1 (-870)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111))))
- ((*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1169))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1188)))))
-(((*1 *1) (-5 *1 (-586)))
- ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-871))))
- ((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-871))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-870)) (-5 *2 (-1284)) (-5 *1 (-871))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1168 *4))
- (-4 *4 (-1111)) (-4 *4 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1 *1 *1) (-4 *1 (-978))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-112))
- (-5 *2 (-1046)) (-5 *1 (-753)))))
+ (-2 (|:| |contp| (-574))
+ (|:| -3948 (-654 (-2 (|:| |irr| *3) (|:| -3963 (-574)))))))
+ (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 (-572))))
- (-5 *2 (-1279 (-572))) (-5 *1 (-1307 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-572)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-426 *2)) (-4 *2 (-564)))))
+ (-12 (-5 *2 (-428 (-1186 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1186 *1))
+ (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1113))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1190)) (-5 *2 (-1 (-1186 (-963 *4)) (-963 *4)))
+ (-5 *1 (-1289 *4)) (-4 *4 (-372)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1104 *3)) (-5 *1 (-1068 *2 *3)) (-4 *3 (-1229))))
+ (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))
+ (-5 *2 (-829 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-1105 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-1229))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2) (-12 (-5 *1 (-1246 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-280)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 (-652 *6))) (-4 *6 (-958 *3 *5 *4))
- (-4 *3 (-13 (-313) (-148))) (-4 *4 (-13 (-858) (-622 (-1188))))
- (-4 *5 (-801)) (-5 *1 (-933 *3 *4 *5 *6)))))
+ (-12 (-4 *2 (-856)) (-5 *1 (-1304 *3 *2)) (-4 *3 (-1062)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172)))))
+ (-5 *2 (-1048)) (-5 *1 (-313))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))))
+ (-5 *2 (-1048)) (-5 *1 (-313)))))
+(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6))
+ (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1272 *5)) (-4 *6 (-1257 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-5 *2
+ (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574))
+ (|:| |success| (-112))))
+ (-5 *1 (-799)) (-5 *5 (-574)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803))
+ (-4 *8 (-860)) (-5 *1 (-990 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1111)) (-4 *3 (-909 *5)) (-5 *2 (-1279 *3))
- (-5 *1 (-700 *5 *3 *6 *4)) (-4 *6 (-380 *3))
- (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1188))
- (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *1 (-1191)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-779)) (-4 *5 (-564))
+ (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566))
+ (-4 *3 (-960 *7 *5 *6))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-590)))))
+ (-2 (|:| -2524 (-781)) (|:| -1859 *3) (|:| |radicand| (-654 *3))))
+ (-5 *1 (-964 *5 *6 *7 *3 *8)) (-5 *4 (-781))
+ (-4 *8
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *3)) (-15 -2965 (*3 $)) (-15 -2977 (*3 $))))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1168 (-415 *3))) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *2 (-1076 *4 *5 *6)) (-5 *1 (-784 *4 *5 *6 *2 *3))
- (-4 *3 (-1082 *4 *5 *6 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
+ (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))
+ (-5 *2 (-1281 *6)) (-5 *1 (-345 *3 *4 *5 *6))
+ (-4 *6 (-351 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1188)) (-5 *1 (-594 *2)) (-4 *2 (-1049 *3))
- (-4 *2 (-370))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-370))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-638 *4 *2))
- (-4 *2 (-13 (-438 *4) (-1013) (-1214)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1103 *2)) (-4 *2 (-13 (-438 *4) (-1013) (-1214)))
- (-4 *4 (-564)) (-5 *1 (-638 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-968)) (-5 *2 (-1188))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-968)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-127 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3))
- (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)))))
-(((*1 *1) (-5 *1 (-1074))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-881 (-930) (-930)))) (-5 *1 (-982)))))
-(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1170)) (-5 *1 (-794)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-858)) (-4 *5 (-801))
- (-4 *6 (-564)) (-4 *7 (-958 *6 *5 *3))
- (-5 *1 (-470 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1049 (-415 (-572))) (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $))
- (-15 -2974 (*7 $))))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))))
+ (-12 (-4 *3 (-372)) (-5 *1 (-1038 *3 *2)) (-4 *2 (-666 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4122 *3) (|:| -4296 (-654 *5))))
+ (-5 *1 (-1038 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1107 (-227)))
+ (-5 *5 (-112)) (-5 *2 (-1283)) (-5 *1 (-264)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3))
- (-4 *4 (-13 (-370) (-856))) (-4 *3 (-1255 *2)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-882)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))))
-(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1280))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1280))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1281))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1281)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1188)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-710 *3 *5 *6 *7))
- (-4 *3 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229))
- (-4 *7 (-1229))))
+ (-12 (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1415 *4)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-302 (-843 *3)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188)) (-5 *2 (-1 *6 *5)) (-5 *1 (-714 *3 *5 *6))
- (-4 *3 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+ (-12 (-5 *4 (-302 (-843 (-963 *5)))) (-4 *5 (-462))
+ (-5 *2 (-843 (-417 (-963 *5)))) (-5 *1 (-647 *5))
+ (-5 *3 (-417 (-963 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-302 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5)))
+ (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-932)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1062))
+ (-4 *4 (-1231))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174))
+ (-4 *5 (-244 (-2863 *3) (-781)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2576 *2) (|:| -2524 *5))
+ (-2 (|:| -2576 *2) (|:| -2524 *5))))
+ (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860))
+ (-4 *7 (-960 *4 *5 (-874 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062))
+ (-5 *1 (-1174 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062))
+ (-14 *4 (-1190)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-779))
(-5 *2
- (-2 (|:| |contp| (-572))
- (|:| -4225 (-652 (-2 (|:| |irr| *3) (|:| -2866 (-572)))))))
- (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))))
+ (-5 *1 (-575))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
+ (-12 (-5 *3 (-779)) (-5 *4 (-1076))
(-5 *2
- (-2 (|:| |contp| (-572))
- (|:| -4225 (-652 (-2 (|:| |irr| *3) (|:| -2866 (-572)))))))
- (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-779)) (-5 *3 (-952 *4)) (-4 *1 (-1145 *4))
- (-4 *4 (-1060))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-779)) (-5 *4 (-952 (-227))) (-5 *2 (-1284))
- (-5 *1 (-1281)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227)))
- (-5 *2 (-1046)) (-5 *1 (-755)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188))
- (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))))
+ (-5 *1 (-575))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-797)) (-5 *3 (-1076))
+ (-5 *4
+ (-2 (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))
+ (|:| |extra| (-1048))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-797)) (-5 *3 (-1076))
+ (-5 *4
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))
+ (|:| |extra| (-1048))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-810)) (-5 *3 (-1076))
+ (-5 *4
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-818))
+ (-5 *2
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172)))))
+ (-5 *1 (-815))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-818)) (-5 *4 (-1076))
+ (-5 *2
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172)))))
+ (-5 *1 (-815))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-849)) (-5 *3 (-1076))
+ (-5 *4
+ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))
+ (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-849)) (-5 *3 (-1076))
+ (-5 *4
+ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227)))
+ (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227))))
+ (|:| |ub| (-654 (-853 (-227))))))
+ (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-851))
+ (-5 *2
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172)))))
+ (-5 *1 (-850))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-851)) (-5 *4 (-1076))
+ (-5 *2
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172)))))
+ (-5 *1 (-850))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-906)) (-5 *3 (-1076))
+ (-5 *4
+ (-2 (|:| |pde| (-654 (-324 (-227))))
+ (|:| |constraints|
+ (-654
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-781)) (|:| |boundaryType| (-574))
+ (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
+ (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172))
+ (|:| |tol| (-227))))
+ (-5 *2 (-2 (|:| -3284 (-388)) (|:| |explanations| (-1172))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-909))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-652 (-620 *3)))
- (|:| |vals| (-652 *3))))
- (-5 *1 (-282 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1210)))))
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172)))))
+ (-5 *1 (-908))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-909)) (-5 *4 (-1076))
+ (-5 *2
+ (-2 (|:| -3284 (-388)) (|:| -2032 (-1172))
+ (|:| |explanations| (-654 (-1172)))))
+ (-5 *1 (-908)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-781)) (-5 *4 (-1281 *2)) (-4 *5 (-315))
+ (-4 *6 (-1005 *5)) (-4 *2 (-13 (-419 *6 *7) (-1051 *6)))
+ (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1257 *6)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574))
+ (-5 *2 (-1048)) (-5 *1 (-766)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048))
+ (-5 *1 (-758)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388))
+ (|:| |expense| (-388)) (|:| |accuracy| (-388))
+ (|:| |intermediateResults| (-388))))
+ (-5 *2 (-1048)) (-5 *1 (-313)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-654 (-1186 *7))) (-5 *3 (-1186 *7))
+ (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-920)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-5 *1 (-917 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-654 (-1186 *5))) (-5 *3 (-1186 *5))
+ (-4 *5 (-1257 *4)) (-4 *4 (-920)) (-5 *1 (-918 *4 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1107 (-227)))
+ (-5 *2 (-1283)) (-5 *1 (-264)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048))
+ (-5 *1 (-758)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112))
+ (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-103 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-5 *1 (-447)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1186 *1)) (-4 *1 (-1025)))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-872)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1214)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4))
+ (-4 *4 (-358)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-963 *6)) (-5 *4 (-1190))
+ (-5 *5 (-853 *7))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-4 *7 (-13 (-1216) (-29 *6))) (-5 *1 (-226 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1186 *6)) (-5 *4 (-853 *6))
+ (-4 *6 (-13 (-1216) (-29 *5)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-226 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-417 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-566))
+ (-4 *4 (-1062)) (-4 *2 (-1272 *4)) (-5 *1 (-1275 *4 *5 *6 *2))
+ (-4 *6 (-666 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-417 (-963 *4))) (-5 *3 (-1190))
+ (-4 *4 (-13 (-566) (-1051 (-574)) (-148))) (-5 *1 (-580 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-5 *2 (-1279 *3)) (-5 *1 (-720 *3 *4))
- (-4 *4 (-1255 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386))))
- ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))))
+ (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-1226 *3))
+ (-4 *3 (-987)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1212))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1212)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553))
- (-5 *2 (-415 (-572)))))
+ (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566))
+ (-5 *2 (-1186 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))
+ ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372))
+ (-5 *2 (-2 (|:| -4332 (-417 *6)) (|:| |coeff| (-417 *6))))
+ (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-372) (-1216) (-1015))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113))
+ (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-426 *3)) (-4 *3 (-553))
- (-4 *3 (-564))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-553)) (-5 *2 (-415 (-572)))))
+ (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4))))
+ (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
+ (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553))
- (-5 *2 (-415 (-572)))))
+ (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3))
+ (-4 *3 (-1113)))))
+(((*1 *1 *1) (-5 *1 (-872)))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-841 *3)) (-4 *3 (-553))
- (-4 *3 (-1111))))
+ (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113))))
+ ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1190)))))
+(((*1 *1) (-5 *1 (-588)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-873))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-873))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-872)) (-5 *2 (-1286)) (-5 *1 (-873))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1170 *4))
+ (-4 *4 (-1113)) (-4 *4 (-1231)))))
+(((*1 *2 *1) (-12 (-5 *2 (-984)) (-5 *1 (-1306)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1257 *4)) (-5 *1 (-819 *4 *2 *3 *5))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2))
+ (-4 *5 (-666 (-417 *2))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-781)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1062)) (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372)))
+ (-4 *3 (-1257 *4)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-771))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1106 *3)) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1231))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-851 *3)) (-4 *3 (-553))
- (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1107 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1248 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553))
- (-5 *2 (-415 (-572)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-1019 *3))
- (-4 *3 (-1049 *2)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-595 *2)) (-4 *2 (-553)))))
+ (-12 (-5 *2 (-1281 (-3 (-478) "undefined"))) (-5 *1 (-1282)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1226 *3))
+ (-5 *1 (-800 *3)) (-4 *3 (-987))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-112))
+ (-5 *1 (-1226 *2)) (-4 *2 (-987)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-1076 *3 *4 *5)))))
+ (-12 (-4 *1 (-1051 (-574))) (-4 *1 (-310)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-4 *4 (-1113))
+ (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
+ ((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-388)))
+ ((*1 *1) (-5 *1 (-388))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
+ (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
(-5 *2
- (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572))
+ (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574))
(|:| |success| (-112))))
- (-5 *1 (-797)) (-5 *5 (-572)))))
+ (-5 *1 (-799)) (-5 *5 (-574)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-762)))))
+(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *2 (-1113)) (-4 *3 (-1113))
+ (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-930))) (-5 *2 (-1190 (-415 (-572))))
- (-5 *1 (-192)))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-5 *2 (-1286)) (-5 *1 (-1193))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1190))
+ (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286))
+ (-5 *1 (-1193))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1190))
+ (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286))
+ (-5 *1 (-1193)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-171 (-227))) (-5 *5 (-574))
+ (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-699 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-1062))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872))))
+ ((*1 *1 *1) (-5 *1 (-872)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-954 (-227))) (-5 *2 (-227)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1062)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-987)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1051 *4)) (-4 *3 (-566)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3))
+ (-4 *3 (-13 (-440 *4) (-1015))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1153 *3 *4)) (-14 *3 (-930)) (-4 *4 (-370))
- (-5 *1 (-1004 *3 *4)))))
+ (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1062) (-860)))
+ (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1190))))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-766)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| -3544 (-697 (-415 (-961 *4))))
- (|:| |vec| (-652 (-415 (-961 *4)))) (|:| -3581 (-779))
- (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))
- (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801))
- (-5 *2
- (-2 (|:| |partsol| (-1279 (-415 (-961 *4))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *4)))))))
- (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-300 *2)) (-4 *2 (-734)) (-4 *2 (-1229)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-632 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *2 (-1120 *3 *4 *5 *6)))))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-388)) (-5 *1 (-194)))))
+(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-711))))
+ ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-711)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-654 (-1190))) (-4 *2 (-174))
+ (-4 *3 (-244 (-2863 *4) (-781)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *3))
+ (-2 (|:| -2576 *5) (|:| -2524 *3))))
+ (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860))
+ (-4 *7 (-960 *2 *3 (-874 *4))))))
+(((*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1282))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1283))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1283)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1103)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-760)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-757)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4))
+ (-4 *4 (-358)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-831)))))
+(((*1 *1 *1) (-5 *1 (-227)))
+ ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *1 *1) (-4 *1 (-1152))) ((*1 *1 *1 *1) (-4 *1 (-1152))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-249 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-1215 *3))) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-872 *5))) (-14 *5 (-652 (-1188))) (-4 *6 (-460))
- (-5 *2
- (-2 (|:| |dpolys| (-652 (-251 *5 *6)))
- (|:| |coords| (-652 (-572)))))
- (-5 *1 (-479 *5 *6 *7)) (-5 *3 (-652 (-251 *5 *6))) (-4 *7 (-460)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-336)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-370) (-148) (-1049 (-572))))
- (-4 *5 (-1255 *4)) (-5 *2 (-652 (-415 *5))) (-5 *1 (-1027 *4 *5))
- (-5 *3 (-415 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-572))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-779)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-801)) (-4 *4 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-858))
- (-5 *1 (-457 *5 *6 *7 *4)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-564))
- (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-1250 *4 *3))
- (-4 *3 (-1255 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-612 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1229)) (-5 *2 (-1284)))))
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-112)) (-5 *1 (-903 *4))
+ (-4 *4 (-1113)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-781)) (-4 *5 (-174))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
+ (-4 *4 (-174))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1062)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3))
+ (-4 *4 (-382 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1155 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1062)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-612 *2 *3)) (-4 *3 (-1229)) (-4 *2 (-1111))
- (-4 *2 (-858)))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1257 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1257 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1062))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574))
+ (-5 *2 (-699 *6)) (-5 *1 (-1042 *6)) (-4 *6 (-372)) (-4 *6 (-1062))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1042 *4))
+ (-4 *4 (-372)) (-4 *4 (-1062))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5))
+ (-5 *1 (-1042 *5)) (-4 *5 (-372)) (-4 *5 (-1062)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1113))
+ (-4 *2 (-132)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-462)))))
+(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-984)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-932)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1186 *1))
+ (-4 *1 (-337 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1186 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372))
+ (-4 *2 (-1257 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-1186 *4))
+ (-5 *1 (-538 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-120 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1186 *1)) (-4 *1 (-1025)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-652 (-415 *6))) (-5 *3 (-415 *6))
- (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-576 *5 *6)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *2 (-1046)) (-5 *1 (-760)))))
+ (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52))
+ (-5 *1 (-1018)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-2 (|:| |deg| (-779)) (|:| -4371 *5))))
- (-4 *5 (-1255 *4)) (-4 *4 (-356)) (-5 *2 (-652 *5))
- (-5 *1 (-218 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-2 (|:| -4218 *5) (|:| -4390 (-572)))))
- (-5 *4 (-572)) (-4 *5 (-1255 *4)) (-5 *2 (-652 *5))
- (-5 *1 (-704 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-779)) (-4 *6 (-370)) (-5 *4 (-1223 *6))
- (-5 *2 (-1 (-1168 *4) (-1168 *4))) (-5 *1 (-1287 *6))
- (-5 *5 (-1168 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))))
+ (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4))
+ (-4 *4 (-358)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-654 (-1186 *5))) (-5 *3 (-1186 *5))
+ (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1257 *5))
+ (-4 *5 (-1257 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-654 (-1186 (-574)))) (-5 *3 (-1186 (-574)))
+ (-5 *1 (-582))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-654 (-1186 *1))) (-5 *3 (-1186 *1))
+ (-4 *1 (-920)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1060)) (-4 *1 (-1255 *3)))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-747 *3)))))
+ (-12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148)))
+ (-5 *1 (-409 *3 *4)))))
+(((*1 *1 *1) (-4 *1 (-1157))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-813)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1217 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-907 *2 *4))
+ (-4 *2 (-1257 *4)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1025)) (-5 *2 (-872)))))
+(((*1 *2)
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-322 (-227))) (-5 *2 (-322 (-415 (-572))))
- (-5 *1 (-311)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115)))
- ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-553)))
- ((*1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
- (-4 *3 (-13 (-1111) (-34))))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
- (-5 *1 (-178 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-268))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))))
+ (-12 (-14 *4 (-654 (-1190))) (-4 *5 (-462))
+ (-5 *2
+ (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574)))))
+ (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1168 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1910
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1046)) (-5 *1 (-311)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-1170 (-227))) (-5 *1 (-194))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1190)))
+ (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *4 (-654 (-1190)))
+ (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4))
+ (-4 *4 (-174)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1186 *7)) (-5 *3 (-574)) (-4 *7 (-960 *6 *4 *5))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062))
+ (-5 *1 (-329 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115)))
+ ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-555)))
+ ((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34)))
+ (-4 *3 (-13 (-1113) (-34))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-935 *4 *5 *6 *3))
+ (-4 *3 (-960 *4 *6 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-555))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-132))
+ (-4 *3 (-802)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062))
+ (-4 *2 (-1272 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-699 *4)) (-5 *3 (-932)) (-4 *4 (-1062))
+ (-5 *1 (-1041 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-932)) (-4 *4 (-1062))
+ (-5 *1 (-1041 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191))))
+ (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-445)) (-5 *3 (-652 (-1188))) (-5 *4 (-1188))
- (-5 *1 (-1191))))
+ (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1190))) (-5 *4 (-1190))
+ (-5 *1 (-1193))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191))))
+ (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1192))))
+ (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1194))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-445)) (-5 *3 (-652 (-1188))) (-5 *1 (-1192)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-572)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))))
+ (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1190))) (-5 *1 (-1194)))))
(((*1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))))
+ (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-920))
+ (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-960 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-920))
+ (-5 *1 (-917 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-920)) (-5 *1 (-918 *2 *3)) (-4 *3 (-1257 *2)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))))
+(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))
+ ((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1) (-4 *1 (-879 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-802))
+ (-4 *4 (-860)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1257 (-574))) (-5 *1 (-496 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4))))
- (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-652 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-438 *4) (-1013))) (-4 *4 (-564))
- (-5 *1 (-281 *4 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
- (-4 *3 (-13 (-1111) (-34))))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-930)) (-5 *1 (-1112 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1150))))
-(((*1 *1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553))))
- ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058))
- (-5 *3 (-572)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-118 *3)) (-14 *3 (-572))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1168 *2)) (-4 *2 (-313)) (-5 *1 (-176 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-415 *3)) (-4 *3 (-313)) (-5 *1 (-176 *3))))
+ (-12 (-5 *3 (-654 (-932))) (-5 *4 (-654 (-574)))
+ (-5 *2 (-699 (-574))) (-5 *1 (-1123)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574))
+ (-5 *2 (-1048)) (-5 *1 (-766)))))
+(((*1 *1) (-5 *1 (-607))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938))
+ (-5 *2
+ (-2 (|:| |brans| (-654 (-654 (-954 (-227)))))
+ (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-938)) (-5 *4 (-417 (-574)))
+ (-5 *2
+ (-2 (|:| |brans| (-654 (-654 (-954 (-227)))))
+ (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))))
+ (-5 *1 (-154))))
((*1 *2 *3)
- (-12 (-5 *2 (-176 (-572))) (-5 *1 (-773 *3)) (-4 *3 (-412))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-879 *3)) (-14 *3 (-572))))
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-654 (-654 (-954 (-227)))))
+ (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))))
+ (-5 *1 (-154)) (-5 *3 (-654 (-954 (-227))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-654 (-654 (-954 (-227)))))
+ (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))))
+ (-5 *1 (-154)) (-5 *3 (-654 (-654 (-954 (-227)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1051 (-574)))))
((*1 *2 *1)
- (-12 (-14 *3 (-572)) (-5 *2 (-176 (-415 (-572))))
- (-5 *1 (-880 *3 *4)) (-4 *4 (-877 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-881 (-1193) (-779)))) (-5 *1 (-339)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-1113 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1111)) (-5 *2 (-1113 (-652 *4))) (-5 *1 (-913 *4))
- (-5 *3 (-652 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1111)) (-5 *2 (-1113 (-1113 *4))) (-5 *1 (-913 *4))
- (-5 *3 (-1113 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1113 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-38 (-415 (-572))))
- (-4 *2 (-174)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1035 *3))
- (-4 *3 (-13 (-856) (-370) (-1033)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
- (-4 *3 (-1255 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1079 *2 *3)) (-4 *2 (-13 (-856) (-370)))
- (-4 *3 (-1255 *2)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-779)) (-5 *2 (-1284)))))
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-699 (-417 (-963 (-574)))))
+ (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044)))))
+(((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2800 *4)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229))
- (-4 *4 (-380 *2)) (-4 *5 (-380 *2))))
+ (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231))
+ (-4 *4 (-382 *2)) (-4 *5 (-382 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4455)) (-4 *1 (-120 *3))
- (-4 *3 (-1229))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4457)) (-4 *1 (-120 *3))
+ (-4 *3 (-1231))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4455)) (-4 *1 (-120 *3))
- (-4 *3 (-1229))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4457)) (-4 *1 (-120 *3))
+ (-4 *3 (-1231))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-294 *3 *2)) (-4 *3 (-1111))
- (-4 *2 (-1229))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1188)) (-5 *1 (-640))))
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1113))
+ (-4 *2 (-1231))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1190)) (-5 *1 (-642))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1246 (-572))) (|has| *1 (-6 -4455)) (-4 *1 (-659 *2))
- (-4 *2 (-1229))))
+ (-12 (-5 *3 (-1248 (-574))) (|has| *1 (-6 -4457)) (-4 *1 (-661 *2))
+ (-4 *2 (-1231))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-652 (-572))) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4455)) (-4 *1 (-1021 *2))
- (-4 *2 (-1229))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4457)) (-4 *1 (-1023 *2))
+ (-4 *2 (-1231))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111))))
+ (-12 (-4 *1 (-1207 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2))
- (-4 *2 (-1229))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2))
+ (-4 *2 (-1231))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *3))
- (-4 *3 (-1229))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *3))
+ (-4 *3 (-1231))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2))
- (-4 *2 (-1229)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-300 (-851 *3))) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *2
- (-3 (-851 *3)
- (-2 (|:| |leftHandLimit| (-3 (-851 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-851 *3) "failed")))
- "failed"))
- (-5 *1 (-644 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-300 *3)) (-5 *5 (-1170))
- (-4 *3 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-851 *3)) (-5 *1 (-644 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-300 (-851 (-961 *5)))) (-4 *5 (-460))
- (-5 *2
- (-3 (-851 (-415 (-961 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-851 (-415 (-961 *5))) "failed")))
- "failed"))
- (-5 *1 (-645 *5)) (-5 *3 (-415 (-961 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-300 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5)))
- (-4 *5 (-460))
- (-5 *2
- (-3 (-851 *3)
- (-2 (|:| |leftHandLimit| (-3 (-851 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-851 *3) "failed")))
- "failed"))
- (-5 *1 (-645 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-300 (-415 (-961 *6)))) (-5 *5 (-1170))
- (-5 *3 (-415 (-961 *6))) (-4 *6 (-460)) (-5 *2 (-851 *3))
- (-5 *1 (-645 *6)))))
-(((*1 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2))
+ (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3430 (-574)) (|:| -3948 (-654 *3))))
+ (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-220))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-449))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1128))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-1195))) (-5 *3 (-1195)) (-5 *1 (-1131)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))))
+(((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-574)) (-5 *1 (-206)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860))
+ (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-960 *8 *6 *7))
(-5 *2
- (-1279 (-652 (-2 (|:| -3080 (-919 *3)) (|:| -2571 (-1131))))))
- (-5 *1 (-358 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930))))
- ((*1 *2)
- (-12 (-5 *2 (-1279 (-652 (-2 (|:| -3080 *3) (|:| -2571 (-1131))))))
- (-5 *1 (-359 *3 *4)) (-4 *3 (-356)) (-14 *4 (-3 (-1184 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1279 (-652 (-2 (|:| -3080 *3) (|:| -2571 (-1131))))))
- (-5 *1 (-360 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-447))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1126))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-1193))) (-5 *3 (-1193)) (-5 *1 (-1129)))))
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-654 (-2 (|:| -4220 (-1186 *9)) (|:| -2524 (-574)))))))
+ (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1186 *9)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-299)))
+ ((*1 *1) (-5 *1 (-872)))
+ ((*1 *1)
+ (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803))
+ (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1098)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34)))
+ (-4 *3 (-13 (-1113) (-34)))))
+ ((*1 *1) (-5 *1 (-1193))) ((*1 *1) (-5 *1 (-1194))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-803))
+ (-4 *3 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))) (-4 *5 (-566))
+ (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-960 (-417 (-963 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1062)) (-4 *5 (-803))
+ (-4 *3
+ (-13 (-860)
+ (-10 -8 (-15 -1837 ((-1190) $))
+ (-15 -1489 ((-3 $ "failed") (-1190))))))
+ (-5 *1 (-997 *4 *5 *3 *2)) (-4 *2 (-960 (-963 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 *6))
+ (-4 *6
+ (-13 (-860)
+ (-10 -8 (-15 -1837 ((-1190) $))
+ (-15 -1489 ((-3 $ "failed") (-1190))))))
+ (-4 *4 (-1062)) (-4 *5 (-803)) (-5 *1 (-997 *4 *5 *6 *2))
+ (-4 *2 (-960 (-963 *4) *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52))))
+ (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1062)) (-4 *7 (-1062))
+ (-4 *6 (-1257 *5)) (-5 *2 (-1186 (-1186 *7)))
+ (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1257 *6)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884)))
+ (-5 *4 (-654 (-932))) (-5 *5 (-654 (-270))) (-5 *1 (-478))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884)))
+ (-5 *4 (-654 (-932))) (-5 *1 (-478))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478))))
+ ((*1 *1 *1) (-5 *1 (-478))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))))
+ (-12 (-4 *4 (-462))
+ (-5 *2
+ (-654
+ (-2 (|:| |eigval| (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4))))
+ (|:| |eigmult| (-781))
+ (|:| |eigvec| (-654 (-699 (-417 (-963 *4))))))))
+ (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-963 *4)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3))
+ (-4 *2
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $))
+ (-15 -2977 ((-1138 *3 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *3 (-622 $))))))))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-757)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1060))
- (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
- (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-930)) (-4 *5 (-1060))
- (-4 *2 (-13 (-412) (-1049 *5) (-370) (-1214) (-290)))
- (-5 *1 (-451 *5 *3 *2)) (-4 *3 (-1255 *5)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564))
- (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-988 *5 *6 *7 *8)))))
-(((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-380 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1) (-5 *1 (-1093))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1304)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *3 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
- (-5 *1 (-457 *4 *3 *5 *6)) (-4 *6 (-958 *4 *3 *5)))))
-(((*1 *1 *1) (-5 *1 (-1074))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *4 (-564))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3285 *4)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-460))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *5 (-918)) (-5 *1 (-465 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-918)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-1215 *3))) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-779)) (-5 *1 (-569)))))
-(((*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-227)) (-5 *1 (-311)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
+ (-12
+ (-5 *3
+ (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
+ (-253 *4 (-417 (-574)))))
+ (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112))
+ (-5 *1 (-515 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1153 *4 *5)) (-4 *4 (-13 (-1113) (-34)))
+ (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1154 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4))
+ (-4 *4 (-1231)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564))
- (-5 *2 (-1184 *3)))))
+ (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802))
+ (-5 *2 (-654 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113))
+ (-5 *2 (-654 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1170 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-736))))
+ ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-654 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1272 *3)) (-4 *3 (-1062)) (-5 *2 (-1170 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1236))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894))
+ (-5 *3 (-654 (-574))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
- (-4 *4 (-356)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
- (-5 *2
- (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572))
- (|:| |success| (-112))))
- (-5 *1 (-797)) (-5 *5 (-572)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1188))
- (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-583 *4 *2))
- (-4 *2 (-13 (-1214) (-968) (-1150) (-29 *4))))))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1113))
+ (-4 *3 (-1113)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
- ((*1 *1 *1) (-4 *1 (-290)))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
+ ((*1 *1 *1) (-4 *1 (-292)))
((*1 *2 *3)
- (-12 (-5 *3 (-426 *4)) (-4 *4 (-564))
- (-5 *2 (-652 (-2 (|:| -1857 (-779)) (|:| |logand| *4))))
- (-5 *1 (-326 *4))))
+ (-12 (-5 *3 (-428 *4)) (-4 *4 (-566))
+ (-5 *2 (-654 (-2 (|:| -1859 (-781)) (|:| |logand| *4))))
+ (-5 *1 (-328 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
((*1 *2 *1)
- (-12 (-5 *2 (-672 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
- (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
+ (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
+ (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572)))))
- (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4))))
+ (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574)))))
+ (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4))
- (-4 *4 (-725 (-415 (-572)))) (-4 *3 (-858)) (-4 *4 (-174)))))
-(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
- (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
- (-5 *1 (-796)))))
+ (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4))
+ (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))))
+(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1048))
+ (-5 *1 (-766)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-652
- (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 *3))
- (|:| |logand| (-1184 *3)))))
- (-5 *1 (-594 *3)) (-4 *3 (-370)))))
+ (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3))))
+ (-5 *1 (-916 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-516)) (-5 *3 (-1117)) (-5 *1 (-299)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-185 (-140)))) (-5 *1 (-141)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-779)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1249 *3 *2))
- (-4 *2 (-1255 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (-5 *1 (-322 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))))
+ (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-1062)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-833)) (-5 *1 (-832)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))
- (-4 *2 (-370))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-227))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802))
+ (-4 *2 (-372))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227))))
((*1 *1 *1 *1)
- (-2813 (-12 (-5 *1 (-300 *2)) (-4 *2 (-370)) (-4 *2 (-1229)))
- (-12 (-5 *1 (-300 *2)) (-4 *2 (-481)) (-4 *2 (-1229)))))
- ((*1 *1 *1 *1) (-4 *1 (-370)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-386))))
+ (-2818 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1231)))
+ (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1231)))))
+ ((*1 *1 *1 *1) (-4 *1 (-372)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1136 *3 (-620 *1))) (-4 *3 (-564)) (-4 *3 (-1111))
- (-4 *1 (-438 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-481)))
+ (-12 (-5 *2 (-1138 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1113))
+ (-4 *1 (-440 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-483)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-544)))
+ (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-546)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-629 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-734) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-736) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-174)) (-5 *1 (-629 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-734) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-174)) (-4 *2 (-370))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-736) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-670 *2 *4 *3)) (-4 *2 (-725 *4))
- (-4 *3 (|SubsetCategory| (-734) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4))
+ (-4 *3 (|SubsetCategory| (-736) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-174)) (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-725 *4))
- (-4 *2 (|SubsetCategory| (-734) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4))
+ (-4 *2 (|SubsetCategory| (-736) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2)) (-4 *2 (-370))))
- ((*1 *1 *1 *1) (-5 *1 (-870)))
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2)) (-4 *2 (-372))))
+ ((*1 *1 *1 *1) (-5 *1 (-872)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-874 *2 *3 *4 *5)) (-4 *2 (-370))
- (-4 *2 (-1060)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-779)))
- (-14 *5 (-779))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564))))
+ (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372))
+ (-4 *2 (-1062)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-781)))
+ (-14 *5 (-781))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1064 *3 *4 *2 *5 *6)) (-4 *2 (-1060))
- (-4 *5 (-242 *4 *2)) (-4 *6 (-242 *3 *2)) (-4 *2 (-370))))
+ (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *2 (-1062))
+ (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-370))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-372))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-370)) (-4 *2 (-1060)) (-4 *3 (-858))
- (-4 *4 (-801)) (-14 *6 (-652 *3))
- (-5 *1 (-1291 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-958 *2 *4 *3))
- (-14 *7 (-652 (-779))) (-14 *8 (-779))))
+ (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1062)) (-4 *3 (-860))
+ (-4 *4 (-803)) (-14 *6 (-654 *3))
+ (-5 *1 (-1293 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-960 *2 *4 *3))
+ (-14 *7 (-654 (-781))) (-14 *8 (-781))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-370)) (-4 *2 (-1060))
- (-4 *3 (-854)))))
-(((*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-313)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1255 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-313)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1255 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-313)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-779)))
- (-5 *1 (-547 *3 *2 *4 *5)) (-4 *2 (-1255 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1184 *3)) (-4 *3 (-375)) (-4 *1 (-335 *3))
- (-4 *3 (-370)))))
+ (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1062))
+ (-4 *3 (-856)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3))))
+ (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-652 (-1087 *4 *5 *2))) (-4 *4 (-1111))
- (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
- (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-652 (-1087 *5 *6 *2))) (-5 *4 (-930)) (-4 *5 (-1111))
- (-4 *6 (-13 (-1060) (-895 *5) (-622 (-901 *5))))
- (-4 *2 (-13 (-438 *6) (-895 *5) (-622 (-901 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-779)) (-4 *5 (-564))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-769))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-952 (-227)))) (-5 *1 (-1280)))))
+ (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-757)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-512 (-415 (-572)) (-244 *4 (-779)) (-872 *3)
- (-251 *3 (-415 (-572)))))
- (-14 *3 (-652 (-1188))) (-14 *4 (-779)) (-5 *1 (-513 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-1 (-112) *8))) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8))))
- (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-1131)) (-5 *2 (-112)) (-5 *1 (-829)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *3 (-564)))))
-(((*1 *2 *2) (-12 (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)))))
-(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
- ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
+ (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3)
+ (-253 *3 (-417 (-574)))))
+ (-14 *3 (-654 (-1190))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-654
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-574)))))
+ (-5 *1 (-428 *3)) (-4 *3 (-566))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1257 *3))
+ (-5 *2 (-654 (-1186 *3))) (-5 *1 (-508 *3 *5 *6))
+ (-4 *6 (-1257 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
+ (-5 *2 (-699 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4))
+ (-4 *3 (-427 *4))))
+ ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-916 *3)))))
+(((*1 *1) (-5 *1 (-447))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-135)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-216 *2))
(-4 *2
- (-13 (-858)
- (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 ((-1284) $))
- (-15 -1528 ((-1284) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229))))
+ (-13 (-860)
+ (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $))
+ (-15 -3588 ((-1286) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2))))
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2))))
- ((*1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2))))
+ ((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-21)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-21)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7))))
+ (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1190)) (-4 *4 (-1062)) (-4 *4 (-1113))
+ (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2524 (-574))))
+ (-4 *1 (-440 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1062)) (-4 *4 (-1113))
+ (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2524 (-574))))
+ (-4 *1 (-440 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1125)) (-4 *3 (-1113))
+ (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2524 (-574))))
+ (-4 *1 (-440 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2524 (-781))))
+ (-5 *1 (-903 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -2524 (-781))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062))
+ (-4 *7 (-960 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2524 (-574))))
+ (-5 *1 (-961 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $))
+ (-15 -2977 (*7 $))))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *1 (-812 *4 *2)) (-4 *2 (-13 (-29 *4) (-1214) (-968)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1) (-5 *1 (-870)))
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1216) (-970)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1) (-5 *1 (-872)))
((*1 *2 *3)
- (-12 (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3901 *7) (|:| |sol?| (-112)))
- (-572) *7))
- (-5 *6 (-652 (-415 *8))) (-4 *7 (-370)) (-4 *8 (-1255 *7))
- (-5 *3 (-415 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-582 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-793 *3)) (-4 *3 (-622 *2))))
+ (-12 (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062))
+ (-5 *2 (-963 *5)) (-5 *1 (-955 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-930)) (-5 *2 (-386)) (-5 *1 (-793 *3))
- (-4 *3 (-622 *2))))
+ (-12 (-5 *4 (-932)) (-5 *2 (-388)) (-5 *1 (-795 *3))
+ (-4 *3 (-624 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 *2))
- (-5 *2 (-386)) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 *2))
+ (-5 *2 (-388)) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060))
- (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5))))
+ (-12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062))
+ (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 *2))
- (-5 *2 (-386)) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2))
+ (-5 *2 (-388)) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564))
- (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5))))
+ (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566))
+ (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858))
- (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4))))
+ (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860))
+ (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858))
- (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))))
+ (-12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860))
+ (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-872)) (-5 *1 (-1170 *3)) (-4 *3 (-1113))
+ (-4 *3 (-1231)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062))
+ (-14 *4 (-654 (-1190)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860)))
+ (-14 *4 (-654 (-1190))))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1097 *3)) (-4 *3 (-133)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-779)) (-4 *5 (-1060)) (-5 *2 (-572))
- (-5 *1 (-451 *5 *3 *6)) (-4 *3 (-1255 *5))
- (-4 *6 (-13 (-412) (-1049 *5) (-370) (-1214) (-290)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5))
- (-4 *3 (-1255 *4))
- (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))))
-(((*1 *2 *3 *1)
- (-12
+ (-12 (-5 *3 (-699 *8)) (-4 *8 (-960 *5 *7 *6))
+ (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190))))
+ (-4 *7 (-803))
(-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -4213 (-779)) (|:| |period| (-779))))
- (-5 *1 (-1168 *4)) (-4 *4 (-1229)) (-5 *3 (-779)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-794)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1095 *3)) (-4 *3 (-133)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))))
-(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-866))))
- ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-974))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1000))))
- ((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1229))))
+ (-654
+ (-2 (|:| -3584 (-781))
+ (|:| |eqns|
+ (-654
+ (-2 (|:| |det| *8) (|:| |rows| (-654 (-574)))
+ (|:| |cols| (-654 (-574))))))
+ (|:| |fgb| (-654 *8)))))
+ (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-781)))))
+(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-976))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1002))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1231))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1111) (-34))) (-5 *1 (-1151 *2 *3))
- (-4 *3 (-13 (-1111) (-34))))))
+ (-12 (-4 *2 (-13 (-1113) (-34))) (-5 *1 (-1153 *2 *3))
+ (-4 *3 (-13 (-1113) (-34))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-425 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1206 *4 *5))
- (-4 *4 (-1111)) (-4 *5 (-1111)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-370)) (-4 *6 (-1255 (-415 *2)))
- (-4 *2 (-1255 *5)) (-5 *1 (-217 *5 *2 *6 *3))
- (-4 *3 (-349 *5 *2 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
- (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-2 (|:| -4220 *4) (|:| -1784 (-574)))))
+ (-4 *4 (-1257 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
- (-4 *7 (-1003 *4)) (-4 *2 (-695 *7 *8 *9))
- (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-695 *4 *5 *6))
- (-4 *8 (-380 *7)) (-4 *9 (-380 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2)) (-4 *2 (-313))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-313)) (-4 *3 (-174)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2))
- (-4 *2 (-695 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4 *5 *6)) (-4 *4 (-1060))
- (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *2 *4)) (-4 *4 (-313)))))
+ (-12 (-5 *3 (-428 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-1062))
+ (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *2) (-12 (-5 *1 (-972 *2)) (-4 *2 (-555)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-216 *2))
(-4 *2
- (-13 (-858)
- (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 ((-1284) $))
- (-15 -1528 ((-1284) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-25)) (-4 *2 (-1229))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-25)) (-4 *2 (-1229))))
+ (-13 (-860)
+ (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $))
+ (-15 -3588 ((-1286) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1231))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1231))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-132))))
+ (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-132))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *2))
- (-4 *2 (-1255 *3))))
+ (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-1257 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
- (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-544)))
+ (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
+ (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-546)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-25)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370)))
- (-4 *3 (-1255 *4)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *4 (-174)) (-4 *5 (-380 *4))
- (-4 *6 (-380 *4)) (-5 *1 (-696 *4 *5 *6 *2))
- (-4 *2 (-695 *4 *5 *6)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-25)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-321 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))))
+ (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))
+ (-14 *6 (-1190)) (-14 *7 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358))
+ (-5 *2 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133))))))
+ (-5 *1 (-355 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-827 *4)) (-4 *4 (-858)) (-5 *2 (-112))
- (-5 *1 (-680 *4)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1188))
- (-4 *5 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3))) (-5 *1 (-565 *5 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-790 *3)) (-4 *3 (-1060))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-972 *3 *2)) (-4 *2 (-132)) (-4 *3 (-564))
- (-4 *3 (-1060)) (-4 *2 (-800))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-1184 *3)) (-4 *3 (-1060))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-982)) (-4 *2 (-132)) (-5 *1 (-1190 *3)) (-4 *3 (-564))
- (-4 *3 (-1060))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-1252 *4 *3)) (-14 *4 (-1188))
- (-4 *3 (-1060)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-415 (-961 *6)) (-1177 (-1188) (-961 *6))))
- (-5 *5 (-779)) (-4 *6 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *6)))))
- (-5 *1 (-298 *6)) (-5 *4 (-697 (-415 (-961 *6))))))
- ((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |eigval| (-3 (-415 (-961 *5)) (-1177 (-1188) (-961 *5))))
- (|:| |eigmult| (-779)) (|:| |eigvec| (-652 *4))))
- (-4 *5 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *5)))))
- (-5 *1 (-298 *5)) (-5 *4 (-697 (-415 (-961 *5)))))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *3 (-1076 *6 *7 *8))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-1119 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -4090 *9))))
- (-5 *5 (-112)) (-4 *8 (-1076 *6 *7 *4)) (-4 *9 (-1082 *6 *7 *4 *8))
- (-4 *6 (-460)) (-4 *7 (-801)) (-4 *4 (-858))
- (-5 *2 (-652 (-2 (|:| |val| *8) (|:| -4090 *9))))
- (-5 *1 (-1119 *6 *7 *4 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))))
+ (-5 *1 (-207)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1186 *3))
+ (-4 *3 (-13 (-440 *6) (-27) (-1216)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3)))
+ (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1186 *3)))
+ (-4 *3 (-13 (-440 *6) (-27) (-1216)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3)))
+ (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1186 *1)) (-5 *4 (-1190)) (-4 *1 (-27))
+ (-5 *2 (-654 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *2 (-654 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190)))
+ (-4 *5 (-566)) (-5 *2 (-654 (-654 (-963 *5)))) (-5 *1 (-1199 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-654 *7) *7 (-1186 *7))) (-5 *5 (-1 (-428 *7) *7))
+ (-4 *7 (-1257 *6)) (-4 *6 (-13 (-372) (-148) (-1051 (-417 (-574)))))
+ (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4122 *3))))
+ (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7))
+ (-4 *8 (-666 (-417 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-5 *2
+ (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4122 (-664 *6 (-417 *6))))))
+ (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-447)) (-5 *1 (-1194)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1188)) (-5 *2 (-1 (-1184 (-961 *4)) (-961 *4)))
- (-5 *1 (-1287 *4)) (-4 *4 (-370)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
+ (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1107 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
+ (-5 *1 (-313))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
+ (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))))
+ (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-372) (-1216) (-1015))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112))
- (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-415 (-961 *4))) (-5 *3 (-1188))
- (-4 *4 (-13 (-564) (-1049 (-572)) (-148))) (-5 *1 (-578 *4)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3))
- (-4 *3 (-1111)))))
-(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-386)))
- ((*1 *1) (-5 *1 (-386))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1170)) (-5 *4 (-171 (-227))) (-5 *5 (-572))
- (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-652 (-1188))) (-4 *2 (-174))
- (-4 *3 (-242 (-2860 *4) (-779)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *3))
- (-2 (|:| -2571 *5) (|:| -1679 *3))))
- (-5 *1 (-469 *4 *2 *5 *3 *6 *7)) (-4 *5 (-858))
- (-4 *7 (-958 *2 *3 (-872 *4))))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-779)) (-4 *5 (-174))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
+ (-12 (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 (-1254 *5 *4)))
+ (-5 *1 (-1127 *4 *5)) (-5 *3 (-1254 *5 *4)))))
+(((*1 *1 *1) (-5 *1 (-1076))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
(-4 *4 (-174))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1060)) (-4 *1 (-695 *3 *2 *4)) (-4 *2 (-380 *3))
- (-4 *4 (-380 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1153 *2 *3)) (-14 *2 (-779)) (-4 *3 (-1060)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-930)) (-4 *4 (-375)) (-4 *4 (-370)) (-5 *2 (-1184 *1))
- (-4 *1 (-335 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1184 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-174)) (-4 *3 (-370))
- (-4 *2 (-1255 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-1184 *4))
- (-5 *1 (-536 *4)))))
-(((*1 *1 *1) (-4 *1 (-1155))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-440 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1105 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566))
+ (-5 *1 (-159 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-161))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-174)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801)) (-5 *2 (-652 *3)) (-5 *1 (-933 *4 *5 *6 *3))
- (-4 *3 (-958 *4 *6 *5)))))
+ (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-315))
+ (-5 *2 (-417 (-428 (-963 *4)))) (-5 *1 (-1055 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34)))
+ (-4 *3 (-13 (-1113) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-930))) (-5 *4 (-652 (-572)))
- (-5 *2 (-697 (-572))) (-5 *1 (-1121)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3))
- (-4 *2
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $))
- (-15 -2974 ((-1136 *3 (-620 $)) $))
- (-15 -2940 ($ (-1136 *3 (-620 $))))))))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-171 (-227)))) (-5 *2 (-1046))
- (-5 *1 (-764)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))))
+ (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566))
+ (-4 *8 (-960 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *3) (|:| |radicand| *3)))
+ (-5 *1 (-964 *5 *6 *7 *8 *3)) (-5 *4 (-781))
+ (-4 *3
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *8)) (-15 -2965 (*8 $)) (-15 -2977 (*8 $))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7))))
- (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
+ (|partial| -12 (-4 *2 (-1113)) (-5 *1 (-1208 *3 *2)) (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-372))
+ (-5 *2
+ (-2 (|:| A (-699 *5))
+ (|:| |eqs|
+ (-654
+ (-2 (|:| C (-699 *5)) (|:| |g| (-1281 *5)) (|:| -4122 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1281 *5))
+ (-4 *6 (-666 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-372)) (-4 *6 (-666 *5))
+ (-5 *2 (-2 (|:| -1485 (-699 *6)) (|:| |vec| (-1281 *5))))
+ (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1281 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-227))
+ (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-762)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1115 *4)) (-4 *4 (-1113)) (-5 *2 (-1 *4))
+ (-5 *1 (-1030 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1107 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1060)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *5)) (-5 *4 (-932)) (-4 *5 (-860))
+ (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-761)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-960 *7 *5 *6))
+ (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-315)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1062))
+ (-5 *1 (-700 *4)))))
+(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-1041 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1062)) (-5 *1 (-1041 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-1041 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1192 (-417 (-574))))
+ (-5 *1 (-192)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-2 (|:| |det| *12) (|:| |rows| (-654 (-574)))
+ (|:| |cols| (-654 (-574)))))
+ (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-963 *9))))
+ (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574))
+ (-4 *9 (-13 (-315) (-148))) (-4 *12 (-960 *9 *11 *10))
+ (-4 *10 (-13 (-860) (-624 (-1190)))) (-4 *11 (-803))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))))
- (-5 *1 (-207)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-572)) (-5 *4 (-426 *2)) (-4 *2 (-958 *7 *5 *6))
- (-5 *1 (-750 *5 *6 *7 *2)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-313)))))
+ (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12))
+ (|:| |wcond| (-654 (-963 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *9))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *9)))))))))
+ (-5 *1 (-935 *9 *10 *11 *12)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-802))
+ (-4 *5 (-860)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5))
+ (-4 *3 (-1113)) (-4 *5 (-676 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
(((*1 *2)
- (-12 (-4 *4 (-370)) (-5 *2 (-930)) (-5 *1 (-334 *3 *4))
- (-4 *3 (-335 *4))))
+ (-12 (-4 *4 (-372)) (-5 *2 (-932)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
((*1 *2)
- (-12 (-4 *4 (-370)) (-5 *2 (-841 (-930))) (-5 *1 (-334 *3 *4))
- (-4 *3 (-335 *4))))
- ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-930))))
+ (-12 (-4 *4 (-372)) (-5 *2 (-843 (-932))) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-932))))
((*1 *2)
- (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-841 (-930))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-870))))
+ (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-932))))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4))
+ (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190)))
+ (-4 *6 (-13 (-566) (-1051 *5))) (-4 *5 (-566))
+ (-5 *2 (-654 (-654 (-302 (-417 (-963 *6)))))) (-5 *1 (-1052 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564))
- (-5 *2 (-2 (|:| -1857 *4) (|:| -4215 *3) (|:| -3669 *3)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4))))
+ (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574))))
+ (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-960 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860)))
+ (-14 *3 (-654 (-1190))))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-1000 (-417 (-574)) (-874 *3) (-246 *4 (-781))
+ (-253 *3 (-417 (-574)))))
+ (-14 *3 (-654 (-1190))) (-14 *4 (-781)) (-5 *1 (-999 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566))
+ (-5 *2 (-2 (|:| -1859 *4) (|:| -3855 *3) (|:| -3435 *3)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-1076 *3 *4 *5))))
+ (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-1078 *3 *4 *5))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-564)) (-4 *3 (-1060))
- (-5 *2 (-2 (|:| -1857 *3) (|:| -4215 *1) (|:| -3669 *1)))
- (-4 *1 (-1255 *3)))))
+ (-12 (-4 *3 (-566)) (-4 *3 (-1062))
+ (-5 *2 (-2 (|:| -1859 *3) (|:| -3855 *1) (|:| -3435 *1)))
+ (-4 *1 (-1257 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216)))))
+ ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-596 *3) *3 (-1190)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1190)))
+ (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1051 *4)) (-4 *3 (-440 *7))
+ (-5 *4 (-1190)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462))
+ (-4 *7 (-897 (-574))) (-4 *7 (-1113)) (-5 *2 (-596 *3))
+ (-5 *1 (-583 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1170 (-963 *4)) (-1170 (-963 *4))))
+ (-5 *1 (-1289 *4)) (-4 *4 (-372)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1281 *5)) (-4 *5 (-13 (-1062) (-649 *4)))
+ (-4 *4 (-566)) (-5 *2 (-1281 *4)) (-5 *1 (-648 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-4 *4 (-1005 *3)) (-5 *1 (-143 *3 *4 *2))
+ (-4 *2 (-382 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-4 *2 (-382 *4))
+ (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-699 *5)) (-4 *5 (-1005 *4)) (-4 *4 (-566))
+ (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-4 *4 (-1005 *3)) (-5 *1 (-1250 *3 *4 *2))
+ (-4 *2 (-1257 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-624 (-903 (-574))))
+ (-4 *5 (-897 (-574)))
+ (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-577 *5 *3)) (-4 *3 (-639))
+ (-4 *3 (-13 (-27) (-1216) (-440 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1190)) (-5 *4 (-853 *2)) (-4 *2 (-1152))
+ (-4 *2 (-13 (-27) (-1216) (-440 *5)))
+ (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574)))
+ (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574))))
+ (-5 *1 (-577 *5 *2)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1178 *4 *5))
+ (-14 *4 (-932)) (-4 *5 (-1062)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1152))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 *2))
- (-5 *2 (-386)) (-5 *1 (-793 *4))))
+ (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 *2))
+ (-5 *2 (-388)) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060))
- (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5))))
+ (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062))
+ (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564))
- (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4))))
+ (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566))
+ (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564))
- (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5))))
+ (|partial| -12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566))
+ (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858))
- (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4))))
+ (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860))
+ (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564))
- (-4 *5 (-858)) (-4 *5 (-622 *2)) (-5 *2 (-386))
- (-5 *1 (-793 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-336)))))
+ (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566))
+ (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388))
+ (-5 *1 (-795 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1257 *4)) (-4 *4 (-1235))
+ (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1257 (-417 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1281 *1)) (-4 *4 (-174))
+ (-4 *1 (-376 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1281 *1)) (-4 *4 (-174))
+ (-4 *1 (-379 *4 *5)) (-4 *5 (-1257 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4))
+ (-4 *4 (-1257 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2))
+ (-4 *3 (-566))))
+ ((*1 *1)
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
+ ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-4 *1 (-1216))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1216) (-970))))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-654 (-1190))) (-14 *5 (-781))
+ (-5 *2
+ (-654
+ (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
+ (-253 *4 (-417 (-574))))))
+ (-5 *1 (-515 *4 *5))
+ (-5 *3
+ (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
+ (-253 *4 (-417 (-574))))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-982 *4 *2))
+ (-4 *2 (-1257 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574))))
+ (-5 *2 (-2 (|:| -3120 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *5))))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1062))
+ (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1257 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1062))
+ (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1257 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1062))
+ (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1186 *3))
+ (-4 *3 (-13 (-440 *7) (-27) (-1216)))
+ (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1113))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3))
+ (-5 *6 (-417 (-1186 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1216)))
+ (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1113)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-654 *3)) (-5 *5 (-932)) (-4 *3 (-1257 *4))
+ (-4 *4 (-315)) (-5 *1 (-470 *4 *3)))))
+(((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-338)))))
+(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2))
+ (-4 *2 (-1272 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3))
+ (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2))
+ (-4 *2 (-1272 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148)))
+ (-5 *1 (-1166 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-932))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1286)) (-5 *1 (-841)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))
+ ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1039 *3)) (-4 *3 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1281 (-1281 (-574)))) (-5 *1 (-476)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1107 (-853 (-388)))) (-5 *2 (-1107 (-853 (-227))))
+ (-5 *1 (-313)))))
(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1005 *2)) (-4 *4 (-1257 *3)) (-4 *2 (-315))
+ (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1051 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-566)) (-4 *3 (-1113)) (-5 *2 (-1138 *3 (-622 *1)))
+ (-4 *1 (-440 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4))
+ (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4))
+ (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *4))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *4)))))))
+ (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148)))
+ (-4 *7 (-960 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803)) (-5 *1 (-935 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5))
+ (-4 *3 (-1257 *4))
+ (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062))
+ (-5 *2 (-963 *5)) (-5 *1 (-955 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-761)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062))
+ (-14 *4 (-654 (-1190)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860)))
+ (-14 *4 (-654 (-1190)))))
+ ((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372))
+ (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))
+ (-4 *2 (-351 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-174))))
+ ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1257 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))
+ (-14 *4 (-781)) (-4 *5 (-174)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1103 (-851 *3))) (-4 *3 (-13 (-1214) (-968) (-29 *5)))
- (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-12 (-5 *4 (-1105 (-853 *3))) (-4 *3 (-13 (-1216) (-970) (-29 *5)))
+ (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
(-5 *2
- (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3)))
+ (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3)))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
(-5 *1 (-221 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1103 (-851 *3))) (-5 *5 (-1170))
- (-4 *3 (-13 (-1214) (-968) (-29 *6)))
- (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-12 (-5 *4 (-1105 (-853 *3))) (-5 *5 (-1172))
+ (-4 *3 (-13 (-1216) (-970) (-29 *6)))
+ (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
(-5 *2
- (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3)))
+ (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3)))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
(-5 *1 (-221 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1103 (-851 (-322 *5))))
- (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1105 (-853 (-324 *5))))
+ (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
(-5 *2
- (-3 (|:| |f1| (-851 (-322 *5))) (|:| |f2| (-652 (-851 (-322 *5))))
+ (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5))))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
(-5 *1 (-222 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-415 (-961 *6))) (-5 *4 (-1103 (-851 (-322 *6))))
- (-5 *5 (-1170))
- (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-12 (-5 *3 (-417 (-963 *6))) (-5 *4 (-1105 (-853 (-324 *6))))
+ (-5 *5 (-1172))
+ (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
(-5 *2
- (-3 (|:| |f1| (-851 (-322 *6))) (|:| |f2| (-652 (-851 (-322 *6))))
+ (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6))))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
(-5 *1 (-222 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1103 (-851 (-415 (-961 *5))))) (-5 *3 (-415 (-961 *5)))
- (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-12 (-5 *4 (-1105 (-853 (-417 (-963 *5))))) (-5 *3 (-417 (-963 *5)))
+ (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
(-5 *2
- (-3 (|:| |f1| (-851 (-322 *5))) (|:| |f2| (-652 (-851 (-322 *5))))
+ (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5))))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
(-5 *1 (-222 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1103 (-851 (-415 (-961 *6))))) (-5 *5 (-1170))
- (-5 *3 (-415 (-961 *6)))
- (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-12 (-5 *4 (-1105 (-853 (-417 (-963 *6))))) (-5 *5 (-1172))
+ (-5 *3 (-417 (-963 *6)))
+ (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
(-5 *2
- (-3 (|:| |f1| (-851 (-322 *6))) (|:| |f2| (-652 (-851 (-322 *6))))
+ (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6))))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
(-5 *1 (-222 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-3 *3 (-652 *3))) (-5 *1 (-436 *5 *3))
- (-4 *3 (-13 (-1214) (-968) (-29 *5)))))
+ (-12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3))
+ (-4 *3 (-13 (-1216) (-970) (-29 *5)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386))))
- (-5 *5 (-386)) (-5 *6 (-1074)) (-5 *2 (-1046)) (-5 *1 (-573))))
- ((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388))))
+ (-5 *5 (-388)) (-5 *6 (-1076)) (-5 *2 (-1048)) (-5 *1 (-575))))
+ ((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386))))
- (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388))))
+ (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386))))
- (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388))))
+ (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386))))
- (-5 *2 (-1046)) (-5 *1 (-573))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388))))
+ (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386)))))
- (-5 *2 (-1046)) (-5 *1 (-573))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388)))))
+ (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386)))))
- (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388)))))
+ (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386)))))
- (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388)))))
+ (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386)))))
- (-5 *5 (-386)) (-5 *6 (-1074)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388)))))
+ (-5 *5 (-388)) (-5 *6 (-1076)) (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-322 (-386))) (-5 *4 (-1103 (-851 (-386))))
- (-5 *5 (-1170)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1105 (-853 (-388))))
+ (-5 *5 (-1172)) (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-322 (-386))) (-5 *4 (-1103 (-851 (-386))))
- (-5 *5 (-1188)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1105 (-853 (-388))))
+ (-5 *5 (-1190)) (-5 *2 (-1048)) (-5 *1 (-575))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4))
- (-5 *2 (-594 (-415 *5))) (-5 *1 (-576 *4 *5)) (-5 *3 (-415 *5))))
+ (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4))
+ (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-148))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-3 (-322 *5) (-652 (-322 *5)))) (-5 *1 (-597 *5))))
+ (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-148))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5))))
((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060))))
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-748 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-858))
- (-4 *3 (-38 (-415 (-572))))))
+ (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-860))
+ (-4 *3 (-38 (-417 (-574))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1188)) (-5 *1 (-961 *3)) (-4 *3 (-38 (-415 (-572))))
- (-4 *3 (-1060))))
+ (-12 (-5 *2 (-1190)) (-5 *1 (-963 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-4 *3 (-1062))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-4 *2 (-858))
- (-5 *1 (-1137 *3 *2 *4)) (-4 *4 (-958 *3 (-539 *2) *2))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-4 *2 (-860))
+ (-5 *1 (-1139 *3 *2 *4)) (-4 *4 (-960 *3 (-541 *2) *2))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060))
- (-5 *1 (-1172 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062))
+ (-5 *1 (-1174 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1185 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1187 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *1 (-1223 *3)) (-4 *3 (-38 (-415 (-572))))
- (-4 *3 (-1060))))
+ (-12 (-5 *2 (-1190)) (-5 *1 (-1225 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-4 *3 (-1062))))
((*1 *1 *1 *2)
- (-2813
- (-12 (-5 *2 (-1188)) (-4 *1 (-1239 *3)) (-4 *3 (-1060))
- (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214))
- (-4 *3 (-38 (-415 (-572))))))
- (-12 (-5 *2 (-1188)) (-4 *1 (-1239 *3)) (-4 *3 (-1060))
- (-12 (|has| *3 (-15 -4353 ((-652 *2) *3)))
- (|has| *3 (-15 -3034 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572))))))))
+ (-2818
+ (-12 (-5 *2 (-1190)) (-4 *1 (-1241 *3)) (-4 *3 (-1062))
+ (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216))
+ (-4 *3 (-38 (-417 (-574))))))
+ (-12 (-5 *2 (-1190)) (-4 *1 (-1241 *3)) (-4 *3 (-1062))
+ (-12 (|has| *3 (-15 -4355 ((-654 *2) *3)))
+ (|has| *3 (-15 -2968 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572))))))
+ (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572))))))
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574))))))
((*1 *1 *1 *2)
- (-2813
- (-12 (-5 *2 (-1188)) (-4 *1 (-1260 *3)) (-4 *3 (-1060))
- (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214))
- (-4 *3 (-38 (-415 (-572))))))
- (-12 (-5 *2 (-1188)) (-4 *1 (-1260 *3)) (-4 *3 (-1060))
- (-12 (|has| *3 (-15 -4353 ((-652 *2) *3)))
- (|has| *3 (-15 -3034 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572))))))))
+ (-2818
+ (-12 (-5 *2 (-1190)) (-4 *1 (-1262 *3)) (-4 *3 (-1062))
+ (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216))
+ (-4 *3 (-38 (-417 (-574))))))
+ (-12 (-5 *2 (-1190)) (-4 *1 (-1262 *3)) (-4 *3 (-1062))
+ (-12 (|has| *3 (-15 -4355 ((-654 *2) *3)))
+ (|has| *3 (-15 -2968 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572))))))
+ (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1264 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1266 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-2813
- (-12 (-5 *2 (-1188)) (-4 *1 (-1270 *3)) (-4 *3 (-1060))
- (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214))
- (-4 *3 (-38 (-415 (-572))))))
- (-12 (-5 *2 (-1188)) (-4 *1 (-1270 *3)) (-4 *3 (-1060))
- (-12 (|has| *3 (-15 -4353 ((-652 *2) *3)))
- (|has| *3 (-15 -3034 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572))))))))
+ (-2818
+ (-12 (-5 *2 (-1190)) (-4 *1 (-1272 *3)) (-4 *3 (-1062))
+ (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216))
+ (-4 *3 (-38 (-417 (-574))))))
+ (-12 (-5 *2 (-1190)) (-4 *1 (-1272 *3)) (-4 *3 (-1062))
+ (-12 (|has| *3 (-15 -4355 ((-654 *2) *3)))
+ (|has| *3 (-15 -2968 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572))))))
+ (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-308))))
- ((*1 *1 *1) (-4 *1 (-308)))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
- ((*1 *1 *1) (-5 *1 (-870))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-973 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-572)) (-5 *2 (-652 (-652 (-227)))) (-5 *1 (-1225)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-370)) (-4 *3 (-1060))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-112)) (-5 *6 (-697 (-227)))
- (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-812 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1214) (-968))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2))
- (-4 *2 (-1270 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3))
- (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2))
- (-4 *2 (-1270 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148)))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1279 (-415 (-961 *4))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *4)))))))
- (-5 *3 (-652 *7)) (-4 *4 (-13 (-313) (-148)))
- (-4 *7 (-958 *4 *6 *5)) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801)) (-5 *1 (-933 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-763)))))
-(((*1 *1) (-5 *1 (-445))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-1111))
- (-4 *3 (-1229)))))
-(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-130))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-690 *2)) (-4 *2 (-1111))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-652 *5) (-652 *5))) (-5 *4 (-572))
- (-5 *2 (-652 *5)) (-5 *1 (-690 *5)) (-4 *5 (-1111)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2))
- (-4 *2 (-1270 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3))
- (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2))
- (-4 *2 (-1270 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148)))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *6 (-227))
- (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *3 (-129)) (-5 *2 (-779)))))
-(((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214)))))
- ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *2 (-13 (-438 (-171 *4)) (-1013) (-1214)))
- (-5 *1 (-608 *4 *3 *2)) (-4 *3 (-13 (-438 *4) (-1013) (-1214))))))
-(((*1 *1 *1) (-4 *1 (-564))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-425 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7))
- (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1))
- (-4 *1 (-1082 *4 *5 *6 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-882))
- (-5 *5 (-930)) (-5 *6 (-652 (-268))) (-5 *2 (-1280))
- (-5 *1 (-1283))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-652 (-268)))
- (-5 *2 (-1280)) (-5 *1 (-1283)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1010 *3)) (-4 *3 (-174)) (-5 *1 (-807 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 (-171 (-415 (-572)))))
- (-5 *2
- (-652
- (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-572))
- (|:| |outvect| (-652 (-697 (-171 *4)))))))
- (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))))
-(((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-130)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1306 *5 *6 *7))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1306 *5 *6 *7))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-961 *4)))
- (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-1057 *4 *5))) (-5 *1 (-1306 *4 *5 *6))
- (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2))
- (-4 *3 (-564))))
- ((*1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
- ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-4 *1 (-1214))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-779)) (-4 *3 (-564)) (-5 *1 (-980 *3 *2))
- (-4 *2 (-1255 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-5 *5 (-652 (-652 *8)))
- (-4 *7 (-858)) (-4 *8 (-313)) (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801))
- (-5 *2
- (-2 (|:| |upol| (-1184 *8)) (|:| |Lval| (-652 *8))
- (|:| |Lfact|
- (-652 (-2 (|:| -4218 (-1184 *8)) (|:| -1679 (-572)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-750 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *1)) (-5 *4 (-1279 *1)) (-4 *1 (-647 *5))
- (-4 *5 (-1060))
- (-5 *2 (-2 (|:| -3544 (-697 *5)) (|:| |vec| (-1279 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-697 *1)) (-4 *1 (-647 *4)) (-4 *4 (-1060))
- (-5 *2 (-697 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-647 *4)) (-4 *4 (-1060))
- (-5 *2 (-697 *4)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386))
- (|:| |expense| (-386)) (|:| |accuracy| (-386))
- (|:| |intermediateResults| (-386))))
- (-5 *1 (-811)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-386)) (-5 *1 (-1074)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-652 *5) *6))
- (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5))
- (-5 *2 (-652 (-2 (|:| |poly| *6) (|:| -4121 *3))))
- (-5 *1 (-817 *5 *6 *3 *7)) (-4 *3 (-664 *6))
- (-4 *7 (-664 (-415 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-652 *5) *6))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *6 (-1255 *5))
- (-5 *2 (-652 (-2 (|:| |poly| *6) (|:| -4121 (-662 *6 (-415 *6))))))
- (-5 *1 (-820 *5 *6)) (-5 *3 (-662 *6 (-415 *6))))))
-(((*1 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))))
-(((*1 *1) (-5 *1 (-605))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-553))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
-(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
- (-4 *4 (-174)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336))
- (-5 *1 (-338)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-227))
- (-5 *2
- (-2 (|:| |brans| (-652 (-652 (-952 *4))))
- (|:| |xValues| (-1105 *4)) (|:| |yValues| (-1105 *4))))
- (-5 *1 (-154)) (-5 *3 (-652 (-652 (-952 *4)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-572))) (-4 *3 (-1060)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-99 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -1945 (-652 *3)) (|:| -3157 (-652 *3))))
- (-5 *1 (-1230 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442))))
- ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1037 *3)) (-4 *3 (-1229)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3))))
- (-5 *1 (-603 *3)) (-4 *3 (-1060)))))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-417 (-574))))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270)))))
(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-801)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858))
- (-5 *2 (-112)) (-5 *1 (-457 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-1003 *2)) (-4 *4 (-1255 *3)) (-4 *2 (-313))
- (-5 *1 (-421 *2 *3 *4 *5)) (-4 *5 (-13 (-417 *3 *4) (-1049 *3)))))
+ (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4))
+ (-5 *2 (-1281 *6)) (-5 *1 (-423 *3 *4 *5 *6))
+ (-4 *6 (-13 (-419 *4 *5) (-1051 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-564)) (-4 *3 (-1111)) (-5 *2 (-1136 *3 (-620 *1)))
- (-4 *1 (-438 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503))))
+ (-12 (-4 *3 (-1062)) (-4 *3 (-1113)) (-5 *2 (-1138 *3 (-622 *1)))
+ (-4 *1 (-440 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505))))
((*1 *2 *1)
- (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-734) *4))
- (-5 *1 (-629 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-736) *3))))
((*1 *2 *1)
- (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-734) *4))
- (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-725 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-652 (-779)))
- (-5 *1 (-913 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-868)) (-5 *2 (-699 (-1237))) (-5 *3 (-1237)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-652 (-1188))) (-4 *2 (-174))
- (-4 *4 (-242 (-2860 *5) (-779)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2571 *3) (|:| -1679 *4))
- (-2 (|:| -2571 *3) (|:| -1679 *4))))
- (-5 *1 (-469 *5 *2 *3 *4 *6 *7)) (-4 *3 (-858))
- (-4 *7 (-958 *2 *4 (-872 *5))))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4456 "*"))) (-4 *5 (-380 *2)) (-4 *6 (-380 *2))
- (-4 *2 (-1060)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1255 *2))
- (-4 *4 (-695 *2 *5 *6)))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-736) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-765)))))
+(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1113))
+ (-4 *3 (-167 *6)) (-4 (-963 *6) (-897 *5))
+ (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4))
+ (-4 *4 (-1113))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1113))
+ (-4 *6 (-13 (-1113) (-1051 *3))) (-4 *3 (-897 *5))
+ (-5 *1 (-942 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113))
+ (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1051 (-622 $))))
+ (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5)))
+ (-5 *1 (-943 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555))
+ (-5 *1 (-944 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1113))
+ (-4 *6 (-13 (-1113) (-1051 (-622 $)) (-624 *4) (-897 *5)))
+ (-5 *4 (-903 *5)) (-5 *1 (-945 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1113))
+ (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-946 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3)))
+ (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6))
+ (-4 *6 (-1113)) (-4 *3 (-13 (-960 *9 *7 *8) (-624 *4)))
+ (-4 *7 (-803)) (-4 *9 (-13 (-1062) (-897 *6)))
+ (-5 *1 (-947 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113))
+ (-4 *3 (-13 (-960 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5))
+ (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *8 (-13 (-1062) (-897 *5))) (-5 *1 (-947 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) (-4 *3 (-1005 *6))
+ (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5))
+ (-5 *1 (-950 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-900 *5 (-1190))) (-5 *3 (-1190)) (-5 *4 (-903 *5))
+ (-4 *5 (-1113)) (-5 *1 (-951 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9)))
+ (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1113))
+ (-4 *9 (-13 (-1062) (-624 (-903 *7)) (-1051 *8)))
+ (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1062))
+ (-5 *1 (-952 *7 *8 *9)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-574)) (|has| *1 (-6 -4457)) (-4 *1 (-1269 *3))
+ (-4 *3 (-1231)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-620 *5)) (-4 *5 (-438 *4)) (-4 *4 (-1049 (-572)))
- (-4 *4 (-564)) (-5 *2 (-1184 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-620 *1)) (-4 *1 (-1060)) (-4 *1 (-308))
- (-5 *2 (-1184 *1)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
- (-14 *4 (-652 (-1188)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858)))
- (-14 *4 (-652 (-1188)))))
- ((*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-342 *3 *4 *5 *2)) (-4 *3 (-370))
- (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
- (-4 *2 (-349 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-174))))
- ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-732 *2 *3)) (-4 *3 (-1255 *2)))))
+ (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1233))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1233)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4))
- (-5 *2 (-1279 *6)) (-5 *1 (-421 *3 *4 *5 *6))
- (-4 *6 (-13 (-417 *4 *5) (-1049 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-4 *3 (-1111)) (-5 *2 (-1136 *3 (-620 *1)))
- (-4 *1 (-438 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-629 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-734) *3))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-725 *3)) (-5 *1 (-670 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-734) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227)))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1046)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *2 (-1046)) (-5 *1 (-759)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 (-489 *3 *4))) (-14 *3 (-652 (-1188)))
- (-4 *4 (-460)) (-5 *1 (-639 *3 *4)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
- (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-779))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858))
- (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-271 *3)) (-4 *3 (-858)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-930))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-343 *4 *5 *6 *7)) (-4 *4 (-13 (-375) (-370)))
- (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-4 *7 (-349 *4 *5 *6))
- (-5 *2 (-779)) (-5 *1 (-400 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-841 (-930)))))
- ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-564)) (-5 *2 (-572)) (-5 *1 (-631 *3 *4))
- (-4 *4 (-1255 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-748 *4 *3)) (-4 *4 (-1060))
- (-4 *3 (-858))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-748 *4 *3)) (-4 *4 (-1060)) (-4 *3 (-858))
- (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-913 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4))
- (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6)))
- (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572))))
- (-5 *2 (-779)) (-5 *1 (-920 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6))
- (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4)))
- (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-779))
- (-5 *1 (-921 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-343 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-370))
- (-4 *7 (-1255 *6)) (-4 *4 (-1255 (-415 *7))) (-4 *8 (-349 *6 *7 *4))
- (-4 *9 (-13 (-375) (-370))) (-5 *2 (-779))
- (-5 *1 (-1029 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-4 *3 (-564))
- (-5 *2 (-779))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1046)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1168 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1229)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-152 *3))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133))))))
+ (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-152 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-652 (-2 (|:| -1679 (-779)) (|:| -3356 *4) (|:| |num| *4))))
- (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4))))
+ (-5 *2 (-654 (-2 (|:| -2524 (-781)) (|:| -3359 *4) (|:| |num| *4))))
+ (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-112)) (-5 *1 (-445))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-112)) (-5 *1 (-447))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-5 *3 (-652 (-1188))) (-5 *4 (-112)) (-5 *1 (-445))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-5 *3 (-654 (-1190))) (-5 *4 (-112)) (-5 *1 (-447))))
((*1 *2 *1)
- (-12 (-5 *2 (-1168 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-174))))
+ (-12 (-5 *2 (-1170 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4))
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4))
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4))
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 (-652 (-652 *3)))) (-4 *3 (-1111))
- (-5 *1 (-683 *3))))
+ (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1113))
+ (-5 *1 (-685 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-721 *2 *3 *4)) (-4 *2 (-858)) (-4 *3 (-1111))
+ (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1113))
(-14 *4
- (-1 (-112) (-2 (|:| -2571 *2) (|:| -1679 *3))
- (-2 (|:| -2571 *2) (|:| -1679 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1129)) (-5 *1 (-846))))
+ (-1 (-112) (-2 (|:| -2576 *2) (|:| -2524 *3))
+ (-2 (|:| -2576 *2) (|:| -2524 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1131)) (-5 *1 (-848))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1229)) (-4 *3 (-1229))))
+ (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1231)) (-4 *3 (-1231))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 (-2 (|:| -3690 (-1188)) (|:| -1907 *4))))
- (-4 *4 (-1111)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1909 *4))))
+ (-4 *4 (-1113)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 *5)) (-4 *5 (-13 (-1111) (-34)))
- (-5 *2 (-652 (-1151 *3 *5))) (-5 *1 (-1151 *3 *5))
- (-4 *3 (-13 (-1111) (-34)))))
+ (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1113) (-34)))
+ (-5 *2 (-654 (-1153 *3 *5))) (-5 *1 (-1153 *3 *5))
+ (-4 *3 (-13 (-1113) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-2 (|:| |val| *4) (|:| -4090 *5))))
- (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34)))
- (-5 *2 (-652 (-1151 *4 *5))) (-5 *1 (-1151 *4 *5))))
+ (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4091 *5))))
+ (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34)))
+ (-5 *2 (-654 (-1153 *4 *5))) (-5 *1 (-1153 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4090 *4)))
- (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34)))
- (-5 *1 (-1151 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4091 *4)))
+ (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34)))
+ (-5 *1 (-1153 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
- (-4 *3 (-13 (-1111) (-34)))))
+ (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34)))
+ (-4 *3 (-13 (-1113) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
- (-4 *3 (-13 (-1111) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34)))
+ (-4 *3 (-13 (-1113) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-652 *3)) (-4 *3 (-13 (-1111) (-34)))
- (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34)))))
+ (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1113) (-34)))
+ (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-1151 *2 *3))) (-4 *2 (-13 (-1111) (-34)))
- (-4 *3 (-13 (-1111) (-34))) (-5 *1 (-1152 *2 *3))))
+ (-12 (-5 *4 (-654 (-1153 *2 *3))) (-4 *2 (-13 (-1113) (-34)))
+ (-4 *3 (-13 (-1113) (-34))) (-5 *1 (-1154 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-1152 *2 *3))) (-5 *1 (-1152 *2 *3))
- (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34)))))
+ (-12 (-5 *4 (-654 (-1154 *2 *3))) (-5 *1 (-1154 *2 *3))
+ (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
- (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4))))
+ (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34)))
+ (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1060)) (-4 *2 (-695 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1255 *4)) (-4 *5 (-380 *4))
- (-4 *6 (-380 *4)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1046)) (-5 *1 (-756)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801))
+ (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310))))
+ ((*1 *1 *1) (-4 *1 (-310)))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
+ ((*1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-762)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))))
+(((*1 *1) (-5 *1 (-447))))
+(((*1 *1) (-5 *1 (-447))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-132))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803))
+ (-4 *9 (-860)) (-4 *3 (-1078 *7 *8 *9))
(-5 *2
- (-2 (|:| |mval| (-697 *4)) (|:| |invmval| (-697 *4))
- (|:| |genIdeal| (-512 *4 *5 *6 *7))))
- (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-760)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-652 *10)) (-5 *5 (-112)) (-4 *10 (-1082 *6 *7 *8 *9))
- (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *9 (-1076 *6 *7 *8))
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1082 *7 *8 *9 *3 *4)) (-4 *4 (-1084 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *3 (-1078 *6 *7 *8))
(-5 *2
- (-652
- (-2 (|:| -4121 (-652 *9)) (|:| -4090 *10) (|:| |ineq| (-652 *9)))))
- (-5 *1 (-999 *6 *7 *8 *9 *10)) (-5 *3 (-652 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-652 *10)) (-5 *5 (-112)) (-4 *10 (-1082 *6 *7 *8 *9))
- (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *9 (-1076 *6 *7 *8))
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
(-5 *2
- (-652
- (-2 (|:| -4121 (-652 *9)) (|:| -4090 *10) (|:| |ineq| (-652 *9)))))
- (-5 *1 (-1118 *6 *7 *8 *9 *10)) (-5 *3 (-652 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1082 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803))
+ (-4 *9 (-860)) (-4 *3 (-1078 *7 *8 *9))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-194)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-779))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-930))))
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1158 *7 *8 *9 *3 *4)) (-4 *4 (-1122 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *3 (-1078 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1158 *6 *7 *8 *3 *4)) (-4 *4 (-1122 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-654 *4))
+ (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))))
+ (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-1202 *3)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-1153 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34)))
+ (-5 *1 (-1154 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-1153 *3 *4))) (-4 *3 (-13 (-1113) (-34)))
+ (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1073))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1073))))
+ ((*1 *1 *1) (-4 *1 (-858)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)) (-4 *2 (-1073))))
+ ((*1 *1 *1) (-4 *1 (-1073))) ((*1 *1 *1) (-4 *1 (-1152))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-931)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-932))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
(-4 *4 (-174))))
((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-158))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-158))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214)))
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216)))
(-5 *1 (-229 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-734))))
+ (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-736))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-734))))
+ (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-736))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-300 *2)) (-4 *2 (-1123)) (-4 *2 (-1229))))
+ (-12 (-5 *1 (-302 *2)) (-4 *2 (-1125)) (-4 *2 (-1231))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-300 *2)) (-4 *2 (-1123)) (-4 *2 (-1229))))
+ (-12 (-5 *1 (-302 *2)) (-4 *2 (-1125)) (-4 *2 (-1231))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-132))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-368 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-368 *2)) (-4 *2 (-1111))))
+ (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-132))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1113))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-388 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-858))))
+ (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-860))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-389 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1111))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111))))
+ (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1113))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
- (-4 *6 (-242 (-2860 *3) (-779)))
+ (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174))
+ (-4 *6 (-244 (-2863 *3) (-781)))
(-14 *7
- (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *6))
- (-2 (|:| -2571 *5) (|:| -1679 *6))))
- (-5 *1 (-469 *3 *4 *5 *6 *7 *2)) (-4 *5 (-858))
- (-4 *2 (-958 *4 *6 (-872 *3)))))
+ (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *6))
+ (-2 (|:| -2576 *5) (|:| -2524 *6))))
+ (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860))
+ (-4 *2 (-960 *4 *6 (-874 *3)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
- (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
+ (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
+ (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-544)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1069))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-692 *5 *6 *7))))
+ (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-546)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1062))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1071))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-694 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-695 *3 *2 *4)) (-4 *3 (-1060)) (-4 *2 (-380 *3))
- (-4 *4 (-380 *3))))
+ (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1062)) (-4 *2 (-382 *3))
+ (-4 *4 (-382 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-695 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
- (-4 *2 (-380 *3))))
+ (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-382 *3))
+ (-4 *2 (-382 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2))))
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2))))
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-728))) ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-730))) ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-564))
- (-5 *1 (-980 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1069))))
- ((*1 *1 *1 *1) (-4 *1 (-1123)))
+ (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-566))
+ (-5 *1 (-982 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1071))))
+ ((*1 *1 *1 *1) (-4 *1 (-1125)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1134 *3 *4 *2 *5)) (-4 *4 (-1060)) (-4 *2 (-242 *3 *4))
- (-4 *5 (-242 *3 *4))))
+ (-12 (-4 *1 (-1136 *3 *4 *2 *5)) (-4 *4 (-1062)) (-4 *2 (-244 *3 *4))
+ (-4 *5 (-244 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1134 *3 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4))
- (-4 *2 (-242 *3 *4))))
+ (-12 (-4 *1 (-1136 *3 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4))
+ (-4 *2 (-244 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-858)) (-5 *1 (-1137 *3 *4 *2))
- (-4 *2 (-958 *3 (-539 *4) *4))))
+ (-12 (-4 *3 (-1062)) (-4 *4 (-860)) (-5 *1 (-1139 *3 *4 *2))
+ (-4 *2 (-960 *3 (-541 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-952 (-227))) (-5 *3 (-227)) (-5 *1 (-1225))))
+ (-12 (-5 *2 (-954 (-227))) (-5 *3 (-227)) (-5 *1 (-1227))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-734))))
+ (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-736))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-734))))
+ (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-736))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-572)) (-4 *1 (-1277 *3)) (-4 *3 (-1229)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-574)) (-4 *1 (-1279 *3)) (-4 *3 (-1231)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
+ (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060))))
+ (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))))
+ (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1279 *3)) (-4 *3 (-370)) (-14 *6 (-1279 (-697 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-930)) (-14 *5 (-652 (-1188)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1229))))
+ (-12 (-5 *2 (-1281 *3)) (-4 *3 (-372)) (-14 *6 (-1281 (-699 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-932)) (-14 *5 (-654 (-1190)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1231))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953 'JINT 'X 'ELAM) (-2953) (-707))))
- (-5 *1 (-61 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956 'JINT 'X 'ELAM) (-2956) (-709))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953) (-2953 'XC) (-707))))
- (-5 *1 (-63 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 'XC) (-709))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-346 (-2953 'X) (-2953) (-707))) (-5 *1 (-64 *3))
- (-14 *3 (-1188))))
+ (-12 (-5 *2 (-348 (-2956 'X) (-2956) (-709))) (-5 *1 (-64 *3))
+ (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-346 (-2953) (-2953 'XC) (-707))) (-5 *1 (-66 *3))
- (-14 *3 (-1188))))
+ (-12 (-5 *2 (-348 (-2956) (-2956 'XC) (-709))) (-5 *1 (-66 *3))
+ (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953 'X) (-2953 '-1880) (-707))))
- (-5 *1 (-71 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956 'X) (-2956 '-1882) (-709))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953) (-2953 'X) (-707))))
- (-5 *1 (-74 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 'X) (-709))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953 'X 'EPS) (-2953 '-1880) (-707))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1188)) (-14 *4 (-1188))
- (-14 *5 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956 'X 'EPS) (-2956 '-1882) (-709))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1190)) (-14 *4 (-1190))
+ (-14 *5 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953 'EPS) (-2953 'YA 'YB) (-707))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1188)) (-14 *4 (-1188))
- (-14 *5 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956 'EPS) (-2956 'YA 'YB) (-709))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1190)) (-14 *4 (-1190))
+ (-14 *5 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-346 (-2953) (-2953 'X) (-707))) (-5 *1 (-77 *3))
- (-14 *3 (-1188))))
+ (-12 (-5 *2 (-348 (-2956) (-2956 'X) (-709))) (-5 *1 (-77 *3))
+ (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-346 (-2953) (-2953 'X) (-707))) (-5 *1 (-78 *3))
- (-14 *3 (-1188))))
+ (-12 (-5 *2 (-348 (-2956) (-2956 'X) (-709))) (-5 *1 (-78 *3))
+ (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953) (-2953 'XC) (-707))))
- (-5 *1 (-79 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 'XC) (-709))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953) (-2953 'X) (-707))))
- (-5 *1 (-80 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 'X) (-709))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953 'X '-1880) (-2953) (-707))))
- (-5 *1 (-82 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956 'X '-1882) (-2956) (-709))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-697 (-346 (-2953 'X '-1880) (-2953) (-707))))
- (-5 *1 (-83 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-699 (-348 (-2956 'X '-1882) (-2956) (-709))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-697 (-346 (-2953 'X) (-2953) (-707)))) (-5 *1 (-84 *3))
- (-14 *3 (-1188))))
+ (-12 (-5 *2 (-699 (-348 (-2956 'X) (-2956) (-709)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953 'X) (-2953) (-707))))
- (-5 *1 (-85 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956 'X) (-2956) (-709))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-346 (-2953 'X) (-2953 '-1880) (-707))))
- (-5 *1 (-86 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-1281 (-348 (-2956 'X) (-2956 '-1882) (-709))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-697 (-346 (-2953 'XL 'XR 'ELAM) (-2953) (-707))))
- (-5 *1 (-87 *3)) (-14 *3 (-1188))))
+ (-12 (-5 *2 (-699 (-348 (-2956 'XL 'XR 'ELAM) (-2956) (-709))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-346 (-2953 'X) (-2953 '-1880) (-707))) (-5 *1 (-89 *3))
- (-14 *3 (-1188))))
+ (-12 (-5 *2 (-348 (-2956 'X) (-2956 '-1882) (-709))) (-5 *1 (-89 *3))
+ (-14 *3 (-1190))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-572)) (-14 *4 (-779)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-572)) (-14 *4 (-779))))
+ (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-574)) (-14 *4 (-781))))
((*1 *1 *2)
- (-12 (-5 *2 (-1153 *4 *5)) (-14 *4 (-779)) (-4 *5 (-174))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))))
+ (-12 (-5 *2 (-1155 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))))
((*1 *1 *2)
- (-12 (-5 *2 (-244 *4 *5)) (-14 *4 (-779)) (-4 *5 (-174))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))))
+ (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))))
((*1 *2 *3)
- (-12 (-5 *3 (-1279 (-697 *4))) (-4 *4 (-174))
- (-5 *2 (-1279 (-697 (-415 (-961 *4))))) (-5 *1 (-191 *4))))
+ (-12 (-5 *3 (-1281 (-699 *4))) (-4 *4 (-174))
+ (-5 *2 (-1281 (-699 (-417 (-963 *4))))) (-5 *1 (-191 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1103 (-322 *4)))
- (-4 *4 (-13 (-858) (-564) (-622 (-386)))) (-5 *2 (-1103 (-386)))
- (-5 *1 (-263 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-280))))
+ (-12 (-5 *3 (-1105 (-324 *4)))
+ (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1105 (-388)))
+ (-5 *1 (-265 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282))))
((*1 *2 *1)
- (-12 (-4 *2 (-1255 *3)) (-5 *1 (-295 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1257 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7))
(-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1264 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3)))
- (-14 *5 (-1188)) (-14 *6 *4)
- (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460)))
- (-5 *1 (-319 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1266 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3)))
+ (-14 *5 (-1190)) (-14 *6 *4)
+ (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462)))
+ (-5 *1 (-321 *3 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-5 *2 (-322 *5)) (-5 *1 (-346 *3 *4 *5))
- (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5))
+ (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-4 *2 (-335 *4)) (-5 *1 (-354 *3 *4 *2))
- (-4 *3 (-335 *4))))
+ (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2))
+ (-4 *3 (-337 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-4 *2 (-335 *4)) (-5 *1 (-354 *2 *4 *3))
- (-4 *3 (-335 *4))))
+ (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3))
+ (-4 *3 (-337 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
- (-5 *2 (-1303 *3 *4))))
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
+ (-5 *2 (-1305 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
- (-5 *2 (-1294 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174))))
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
+ (-5 *2 (-1296 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))
- (-4 *1 (-390))))
- ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-390))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-390))))
- ((*1 *1 *2) (-12 (-5 *2 (-697 (-707))) (-4 *1 (-390))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))
+ (-4 *1 (-392))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392))))
+ ((*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))
- (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-391))))
- ((*1 *2 *3) (-12 (-5 *2 (-402)) (-5 *1 (-401 *3)) (-4 *3 (-1111))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))
+ (-4 *1 (-393))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393))))
+ ((*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1113))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))
- (-4 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-404))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))
+ (-4 *1 (-406))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406))))
((*1 *1 *2)
- (-12 (-5 *2 (-300 (-322 (-171 (-386))))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-300 (-322 (-386)))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-300 (-322 (-572)))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 (-171 (-386)))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 (-386))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 (-572))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-300 (-322 (-702)))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-300 (-322 (-707)))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-300 (-322 (-709)))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 (-702))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 (-707))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 (-709))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))
- (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188))
- (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))
+ (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190))
+ (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 (-336))) (-5 *1 (-406 *3 *4 *5 *6))
- (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6))
+ (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-336)) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188))
- (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
+ (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190))
+ (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void")))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))
((*1 *1 *2)
- (-12 (-5 *2 (-337 *4)) (-4 *4 (-13 (-858) (-21)))
- (-5 *1 (-435 *3 *4)) (-4 *3 (-13 (-174) (-38 (-415 (-572)))))))
+ (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21)))
+ (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-435 *2 *3)) (-4 *2 (-13 (-174) (-38 (-415 (-572)))))
- (-4 *3 (-13 (-858) (-21)))))
+ (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574)))))
+ (-4 *3 (-13 (-860) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-415 (-961 (-415 *3)))) (-4 *3 (-564)) (-4 *3 (-1111))
- (-4 *1 (-438 *3))))
+ (-12 (-5 *2 (-417 (-963 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1113))
+ (-4 *1 (-440 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-961 (-415 *3))) (-4 *3 (-564)) (-4 *3 (-1111))
- (-4 *1 (-438 *3))))
+ (-12 (-5 *2 (-963 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1113))
+ (-4 *1 (-440 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-415 *3)) (-4 *3 (-564)) (-4 *3 (-1111))
- (-4 *1 (-438 *3))))
+ (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1113))
+ (-4 *1 (-440 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1136 *3 (-620 *1))) (-4 *3 (-1060)) (-4 *3 (-1111))
- (-4 *1 (-438 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-442))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-442))))
- ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-442))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-442))))
- ((*1 *1 *2) (-12 (-5 *2 (-442)) (-5 *1 (-445))))
+ (-12 (-5 *2 (-1138 *3 (-622 *1))) (-4 *3 (-1062)) (-4 *3 (-1113))
+ (-4 *1 (-440 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-444))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))
- (-4 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-1279 (-707))) (-4 *1 (-448))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))
+ (-4 *1 (-450))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1281 (-709))) (-4 *1 (-450))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -2048 (-652 (-336)))))
- (-4 *1 (-449))))
- ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-449))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-449))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2051 (-654 (-338)))))
+ (-4 *1 (-451))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 (-415 (-961 *3)))) (-4 *3 (-174))
- (-14 *6 (-1279 (-697 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-14 *4 (-930)) (-14 *5 (-652 (-1188)))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476))))
- ((*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-476))))
+ (-12 (-5 *2 (-1281 (-417 (-963 *3)))) (-4 *3 (-174))
+ (-14 *6 (-1281 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-14 *4 (-932)) (-14 *5 (-654 (-1190)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478))))
((*1 *1 *2)
- (-12 (-5 *2 (-1264 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188))
- (-14 *5 *3) (-5 *1 (-482 *3 *4 *5))))
+ (-12 (-5 *2 (-1266 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190))
+ (-14 *5 *3) (-5 *1 (-484 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-510))))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-512))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-532))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-614))))
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-534))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-616))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-5 *1 (-615 *3 *2)) (-4 *2 (-752 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1060))))
+ (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1062))))
((*1 *2 *1)
- (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
- (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
+ (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
+ (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932))))
((*1 *2 *1)
- (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
- (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
+ (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
+ (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-5 *1 (-643 *3 *2)) (-4 *2 (-752 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-685 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
+ (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
((*1 *2 *1)
- (-12 (-5 *2 (-967 (-967 (-967 *3)))) (-5 *1 (-683 *3))
- (-4 *3 (-1111))))
+ (-12 (-5 *2 (-969 (-969 (-969 *3)))) (-5 *1 (-685 *3))
+ (-4 *3 (-1113))))
((*1 *1 *2)
- (-12 (-5 *2 (-967 (-967 (-967 *3)))) (-4 *3 (-1111))
- (-5 *1 (-683 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-689))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-969 (-969 (-969 *3)))) (-4 *3 (-1113))
+ (-5 *1 (-685 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-691))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1113))))
((*1 *1 *2)
- (-12 (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *2)) (-4 *4 (-380 *3))
- (-4 *2 (-380 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-702))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-702))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-707))) (-5 *1 (-702))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-572))) (-5 *1 (-702))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-702))))
- ((*1 *1 *2) (-12 (-5 *2 (-709)) (-5 *1 (-707))))
- ((*1 *2 *1) (-12 (-5 *2 (-386)) (-5 *1 (-707))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-322 (-572))) (-5 *2 (-322 (-709))) (-5 *1 (-709))))
- ((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718))))
+ (-12 (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3))
+ (-4 *2 (-382 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704))))
+ ((*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 (-2 (|:| -1857 *3) (|:| -3829 *4))))
- (-4 *3 (-1060)) (-4 *4 (-734)) (-5 *1 (-743 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-771))))
+ (-12 (-5 *2 (-654 (-2 (|:| -1859 *3) (|:| -3832 *4))))
+ (-4 *3 (-1062)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(|:| |mdnia|
- (-2 (|:| |fn| (-322 (-227)))
- (|:| -1910 (-652 (-1105 (-851 (-227)))))
+ (-2 (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-654 (-1107 (-853 (-227)))))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))))
- (-5 *1 (-777))))
+ (-5 *1 (-779))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-322 (-227)))
- (|:| -1910 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227))
+ (-2 (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *1 (-777))))
+ (-5 *1 (-779))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *1 (-777))))
- ((*1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-781 *3)) (-4 *3 (-1229))))
+ (-5 *1 (-779))))
+ ((*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1231))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *1 (-816))))
- ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-832))))
+ (-5 *1 (-818))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-834))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227)))
- (|:| |lb| (-652 (-851 (-227))))
- (|:| |cf| (-652 (-322 (-227))))
- (|:| |ub| (-652 (-851 (-227))))))
+ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227)))
+ (|:| |lb| (-654 (-853 (-227))))
+ (|:| |cf| (-654 (-324 (-227))))
+ (|:| |ub| (-654 (-853 (-227))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-652 (-322 (-227))))
- (|:| -3815 (-652 (-227)))))))
- (-5 *1 (-849))))
+ (-2 (|:| |lfn| (-654 (-324 (-227))))
+ (|:| -3818 (-654 (-227)))))))
+ (-5 *1 (-851))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))
- (-5 *1 (-849))))
+ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))
+ (-5 *1 (-851))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227)))
- (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227))))
- (|:| |ub| (-652 (-851 (-227))))))
- (-5 *1 (-849))))
- ((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-866))))
- ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-961 (-48))) (-5 *2 (-322 (-572))) (-5 *1 (-883))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-415 (-961 (-48)))) (-5 *2 (-322 (-572)))
- (-5 *1 (-883))))
- ((*1 *1 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858))))
+ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227)))
+ (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227))))
+ (|:| |ub| (-654 (-853 (-227))))))
+ (-5 *1 (-851))))
+ ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-963 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-417 (-963 (-48)))) (-5 *2 (-324 (-574)))
+ (-5 *1 (-885))))
+ ((*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-652 (-322 (-227))))
+ (-2 (|:| |pde| (-654 (-324 (-227))))
(|:| |constraints|
- (-652
+ (-654
(-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-779)) (|:| |boundaryType| (-572))
- (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
- (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
+ (|:| |grid| (-781)) (|:| |boundaryType| (-574))
+ (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
+ (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172))
(|:| |tol| (-227))))
- (-5 *1 (-907))))
+ (-5 *1 (-909))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 (-914 *3))) (-4 *3 (-1111)) (-5 *1 (-913 *3))))
+ (-12 (-5 *2 (-654 (-916 *3))) (-4 *3 (-1113)) (-5 *1 (-915 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-914 *3))))
+ (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-916 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3))))
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-415 (-426 *3))) (-4 *3 (-313)) (-5 *1 (-923 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-415 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313))))
+ (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-925 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315))))
((*1 *2 *3)
- (-12 (-5 *3 (-485)) (-5 *2 (-322 *4)) (-5 *1 (-928 *4))
- (-4 *4 (-564))))
- ((*1 *2 *3) (-12 (-5 *2 (-1284)) (-5 *1 (-1044 *3)) (-4 *3 (-1229))))
- ((*1 *2 *3) (-12 (-5 *3 (-318)) (-5 *1 (-1044 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-930 *4))
+ (-4 *4 (-566))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1286)) (-5 *1 (-1046 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1046 *2)) (-4 *2 (-1231))))
((*1 *1 *2)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *2 (-958 *3 *4 *5))
- (-14 *6 (-652 *2))))
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *2 (-960 *3 *4 *5))
+ (-14 *6 (-654 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-564))))
+ (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-1056 *3)) (-4 *3 (-566))))
((*1 *1 *2)
- (-12 (-4 *3 (-1060)) (-4 *4 (-858)) (-5 *1 (-1137 *3 *4 *2))
- (-4 *2 (-958 *3 (-539 *4) *4))))
+ (-12 (-4 *3 (-1062)) (-4 *4 (-860)) (-5 *1 (-1139 *3 *4 *2))
+ (-4 *2 (-960 *3 (-541 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1060)) (-4 *2 (-858)) (-5 *1 (-1137 *3 *2 *4))
- (-4 *4 (-958 *3 (-539 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-870))))
- ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1155))))
+ (-12 (-4 *3 (-1062)) (-4 *2 (-860)) (-5 *1 (-1139 *3 *2 *4))
+ (-4 *4 (-960 *3 (-541 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-872))))
+ ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1157))))
((*1 *2 *3)
- (-12 (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060))))
+ (-12 (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062))))
((*1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1252 *4 *3)) (-4 *3 (-1060)) (-14 *4 (-1188))
- (-14 *5 *3) (-5 *1 (-1186 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1187))))
- ((*1 *2 *1) (-12 (-5 *2 (-1201 (-1188) (-445))) (-5 *1 (-1192))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1193))))
- ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1193))))
- ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1193))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1193))))
- ((*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1200 *3)) (-4 *3 (-1111))))
- ((*1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *1 (-1208 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1254 *4 *3)) (-4 *3 (-1062)) (-14 *4 (-1190))
+ (-14 *5 *3) (-5 *1 (-1188 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1189))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1203 (-1190) (-447))) (-5 *1 (-1194))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1202 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1211)) (-5 *1 (-1210 *3)) (-4 *3 (-1113))))
((*1 *1 *2)
- (-12 (-5 *2 (-961 *3)) (-4 *3 (-1060)) (-5 *1 (-1223 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1223 *3)) (-4 *3 (-1060))))
+ (-12 (-5 *2 (-963 *3)) (-4 *3 (-1062)) (-5 *1 (-1225 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1225 *3)) (-4 *3 (-1062))))
((*1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1105 *3)) (-4 *3 (-1229)) (-5 *1 (-1246 *3))))
+ (-12 (-5 *2 (-1107 *3)) (-4 *3 (-1231)) (-5 *1 (-1248 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5))
- (-4 *3 (-1060)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5))
+ (-4 *3 (-1062)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1252 *4 *3)) (-4 *3 (-1060)) (-14 *4 (-1188))
- (-14 *5 *3) (-5 *1 (-1271 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1275 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1280))))
- ((*1 *2 *3) (-12 (-5 *3 (-476)) (-5 *2 (-1280)) (-5 *1 (-1283))))
+ (-12 (-5 *2 (-1254 *4 *3)) (-4 *3 (-1062)) (-14 *4 (-1190))
+ (-14 *5 *3) (-5 *1 (-1273 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1277 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1282))))
+ ((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1282)) (-5 *1 (-1285))))
((*1 *1 *2)
- (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
+ (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062))))
((*1 *2 *1)
- (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858))
+ (-12 (-5 *2 (-1305 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860))
(-4 *4 (-174))))
((*1 *2 *1)
- (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858))
+ (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860))
(-4 *4 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-672 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
- (-5 *1 (-1299 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1200 (-652 *4))) (-4 *4 (-858))
- (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1184 *6)) (-4 *6 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-1184 *7)) (-5 *1 (-327 *4 *5 *6 *7))
- (-4 *7 (-958 *6 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *2 (-112)) (-5 *1 (-272)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
+ (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
+ (-5 *1 (-1301 *3 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-898 *4 *5)) (-5 *3 (-898 *4 *6)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-674 *5)) (-5 *1 (-894 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
+ (-12 (-5 *1 (-975 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-426 *5)) (-4 *5 (-564))
- (-5 *2
- (-2 (|:| -1679 (-779)) (|:| -1857 *5) (|:| |radicand| (-652 *5))))
- (-5 *1 (-326 *5)) (-5 *4 (-779))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-572)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-868)) (-5 *2 (-699 (-130))) (-5 *3 (-130)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-980 *4 *3))
- (-4 *3 (-1255 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+ (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *4 (-654 (-1190)))
+ (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1113)) (-4 *6 (-911 *5)) (-5 *2 (-699 *6))
+ (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6))
+ (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1113))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-395 *3)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4))
+ (-4 *4 (-1231)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-415 (-572))))
- (-5 *2 (-2 (|:| -2338 (-1168 *4)) (|:| -2348 (-1168 *4))))
- (-5 *1 (-1174 *4)) (-5 *3 (-1168 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-388)) (-5 *1 (-207)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
- (-5 *2 (-1279 *6)) (-5 *1 (-343 *3 *4 *5 *6))
- (-4 *6 (-349 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
- ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
- ((*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858))))
+ (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1113))
+ (-4 *3 (-1231)))))
+(((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1222 *2 *3 *4 *5)) (-4 *2 (-564))
- (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-1076 *2 *3 *4))))
+ (|partial| -12 (-4 *1 (-1224 *2 *3 *4 *5)) (-4 *2 (-566))
+ (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1078 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1 *1) (-4 *1 (-669))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-779)) (-5 *4 (-1279 *2)) (-4 *5 (-313))
- (-4 *6 (-1003 *5)) (-4 *2 (-13 (-417 *6 *7) (-1049 *6)))
- (-5 *1 (-421 *5 *6 *7 *2)) (-4 *7 (-1255 *6)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1184 *1)) (-4 *1 (-1023)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-1224 *3))
- (-4 *3 (-985)))))
-(((*1 *2 *1) (-12 (-5 *2 (-982)) (-5 *1 (-1304)))))
+ (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *1 *1) (-4 *1 (-671))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830))
+ (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-932)) (-5 *1 (-709))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-372)) (-5 *1 (-991 *5)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-758)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-329 *4 *2)) (-4 *4 (-1111))
- (-4 *2 (-132)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-120 *2)) (-4 *2 (-1229)))))
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1227)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-932))) (-5 *2 (-654 (-699 (-574))))
+ (-5 *1 (-1123)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))))
+(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1111)) (-4 *3 (-858))
- (-4 *2 (-1229))))
- ((*1 *2 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
- ((*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
+ (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1113)) (-4 *3 (-860))
+ (-4 *2 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
+ ((*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
((*1 *2 *1)
- (-12 (-4 *2 (-1229)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1229))))
- ((*1 *2 *1) (-12 (-5 *2 (-680 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858))))
+ (-12 (-4 *2 (-1231)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229))))
- ((*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+ (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-870)))) (-5 *1 (-870))))
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872))))
((*1 *2 *1)
- (-12 (-5 *2 (-1153 *3 *4)) (-5 *1 (-1004 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-370))))
+ (-12 (-5 *2 (-1155 *3 *4)) (-5 *1 (-1006 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-372))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *5))) (-4 *5 (-1060))
- (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *6 (-242 *4 *5))
- (-4 *7 (-242 *3 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *1 *1) (-4 *1 (-669))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-132))
- (-4 *3 (-800)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-936))
- (-5 *2
- (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
- (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-415 (-572)))
- (-5 *2
- (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
- (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
- (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
- (-5 *1 (-154)) (-5 *3 (-652 (-952 (-227))))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
- (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
- (-5 *1 (-154)) (-5 *3 (-652 (-652 (-952 (-227)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-755)))))
-(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1) (-4 *1 (-308))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060))
- (-5 *2 (-961 *5)) (-5 *1 (-953 *4 *5)))))
+ (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1062))
+ (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5))
+ (-4 *7 (-244 *3 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1188)) (-4 *1 (-27))
- (-5 *2 (-652 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *2 (-652 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *3)))))
+ (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1186 (-1186 *5))))
+ (-5 *1 (-1229 *5)) (-5 *3 (-1186 (-1186 *5))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 (-1252 *5 *4)))
- (-5 *1 (-1125 *4 *5)) (-5 *3 (-1252 *5 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))))
+ (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190))
+ (-5 *2 (-654 *4)) (-5 *1 (-1127 *4 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-671))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-574)) (-5 *1 (-247))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-574)) (-5 *1 (-247)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
+ (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372)))
+ (-4 *3 (-1257 *4)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-372)) (-4 *3 (-1062))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-757)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-372)) (-4 *3 (-1062))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1113))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574))
+ (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1113)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-656 *5)) (-4 *5 (-1060))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-860 *5))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1062))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-697 *3)) (-4 *1 (-425 *3)) (-4 *3 (-174))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060))))
+ (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1060))
- (-5 *1 (-861 *2 *3)) (-4 *3 (-860 *2)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-174))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-1060)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-115)) (-4 *4 (-1060)) (-5 *1 (-722 *4 *2))
- (-4 *2 (-656 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-844 *2)) (-4 *2 (-1060)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -4362 (-652 *1))))
- (-4 *1 (-374 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-461 *3 *4 *5 *6))
- (|:| -4362 (-652 (-461 *3 *4 *5 *6)))))
- (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1170)) (-5 *1 (-311)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1 (-1168 (-961 *4)) (-1168 (-961 *4))))
- (-5 *1 (-1287 *4)) (-4 *4 (-370)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1222 *5 *6 *7 *3))
- (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *2 (-564)) (-5 *1 (-980 *2 *4))
- (-4 *4 (-1255 *2)))))
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1062))
+ (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *1 *1) (-5 *1 (-163)))
+ ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3))
+ (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2))
+ (-4 *2 (-697 *3 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4)))
- (-5 *2 (-2 (|:| |num| (-1279 *4)) (|:| |den| *4))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-227))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-227))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-386))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-386)))))
+ (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *2))
+ (-2 (|:| -2576 *5) (|:| -2524 *2))))
+ (-4 *2 (-244 (-2863 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-860)) (-4 *7 (-960 *4 *2 (-874 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1168 (-982))) (-5 *1 (-982)))))
-(((*1 *1) (-4 *1 (-978))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-958 *4 *6 *5)) (-4 *4 (-460))
- (-4 *5 (-858)) (-4 *6 (-801)) (-5 *1 (-998 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1279 (-652 *3))) (-4 *4 (-313))
- (-5 *2 (-652 *3)) (-5 *1 (-463 *4 *3)) (-4 *3 (-1255 *4)))))
+ (-12 (-5 *3 (-932))
+ (-5 *2
+ (-3 (-1186 *4)
+ (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))))
+ (-5 *1 (-355 *4)) (-4 *4 (-358)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227)))
+ (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2))
+ (-4 *2 (-1272 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3))
+ (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2))
+ (-4 *2 (-1272 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148)))
+ (-5 *1 (-1166 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-860)))))
+(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))))
(((*1 *2)
- (-12 (-4 *1 (-356))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *2 (-1111)) (-4 *3 (-1111))
- (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1113 *3)) (-5 *1 (-914 *3)) (-4 *3 (-375))
- (-4 *3 (-1111)))))
-(((*1 *2 *2) (-12 (-5 *2 (-652 (-322 (-227)))) (-5 *1 (-272)))))
-(((*1 *1 *1) (-4 *1 (-669))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *1) (-4 *1 (-980))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1190)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1190)) (-5 *2 (-112)) (-5 *1 (-622 *4))
+ (-4 *4 (-1113))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1113))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1113)) (-5 *2 (-112))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4))
+ (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1113))
+ (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5))))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1184 (-961 *4))) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-4 *3 (-370))
- (-5 *2 (-1184 (-961 *3)))))
+ (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286))
+ (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-460))))
- ((*1 *1 *1 *1) (-4 *1 (-460)))
+ (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286))
+ (-5 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1281 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227))
+ (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-762)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1216) (-29 *6)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-226 *6 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-5 *1 (-494 *2)) (-4 *2 (-1255 (-572)))))
+ (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-112))
+ (-5 *1 (-366 *4)))))
+(((*1 *1 *1) (-4 *1 (-671))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227))
+ (-5 *2 (-654 (-954 *4))) (-5 *1 (-1227)) (-5 *3 (-954 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1272 *4))
+ (-4 *4 (-38 (-417 (-574))))
+ (-5 *2 (-1 (-1170 *4) (-1170 *4) (-1170 *4))) (-5 *1 (-1274 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462))))
+ ((*1 *1 *1 *1) (-4 *1 (-462)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1257 (-574)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-779)))
+ (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-781)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313))
- (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-958 *5 *3 *4))))
+ (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315))
+ (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-960 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *6 *4 *5))
- (-5 *1 (-925 *4 *5 *6 *2)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-313))))
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *6 *4 *5))
+ (-5 *1 (-927 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-315))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1184 *7))) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-313)) (-5 *2 (-1184 *7)) (-5 *1 (-925 *4 *5 *6 *7))
- (-4 *7 (-958 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-930)))
+ (-12 (-5 *3 (-654 (-1186 *7))) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-315)) (-5 *2 (-1186 *7)) (-5 *1 (-927 *4 *5 *6 *7))
+ (-4 *7 (-960 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-932)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-460)) (-4 *3 (-564)) (-5 *1 (-980 *3 *2))
- (-4 *2 (-1255 *3))))
+ (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-982 *3 *2))
+ (-4 *2 (-1257 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-460)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))
- (-5 *2 (-652 (-415 (-572)))) (-5 *1 (-1031 *4))
- (-4 *4 (-1255 (-572))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-38 (-415 (-572))))
- (-4 *2 (-174)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1170)) (|:| -2030 (-1170))))
- (-5 *1 (-830)))))
-(((*1 *2)
- (-12 (-4 *3 (-1060)) (-5 *2 (-967 (-720 *3 *4))) (-5 *1 (-720 *3 *4))
- (-4 *4 (-1255 *3)))))
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-462)))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-372))
+ (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1281 *5)))))
+ (-5 *1 (-991 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-440 *4) (-1015))) (-4 *4 (-566))
+ (-5 *1 (-283 *4 *2)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1229))
- (-4 *2 (-1229)) (-5 *1 (-58 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1231))
+ (-4 *2 (-1231)) (-5 *1 (-58 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1111)) (|has| *1 (-6 -4454))
- (-4 *1 (-152 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1113)) (|has| *1 (-6 -4456))
+ (-4 *1 (-152 *2)) (-4 *2 (-1231))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2))
- (-4 *2 (-1229))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2))
+ (-4 *2 (-1231))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2))
- (-4 *2 (-1229))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2))
+ (-4 *2 (-1231))))
((*1 *2 *3)
- (-12 (-4 *4 (-1060))
- (-5 *2 (-2 (|:| -2057 (-1184 *4)) (|:| |deg| (-930))))
- (-5 *1 (-223 *4 *5)) (-5 *3 (-1184 *4)) (-4 *5 (-564))))
+ (-12 (-4 *4 (-1062))
+ (-5 *2 (-2 (|:| -1900 (-1186 *4)) (|:| |deg| (-932))))
+ (-5 *1 (-223 *4 *5)) (-5 *3 (-1186 *4)) (-4 *5 (-566))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-244 *5 *6)) (-14 *5 (-779))
- (-4 *6 (-1229)) (-4 *2 (-1229)) (-5 *1 (-243 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781))
+ (-4 *6 (-1231)) (-4 *2 (-1231)) (-5 *1 (-245 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-295 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1255 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1257 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-322 *2)) (-4 *2 (-564)) (-4 *2 (-1111))))
+ ((*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1113))))
((*1 *1 *1)
- (-12 (-4 *1 (-342 *2 *3 *4 *5)) (-4 *2 (-370)) (-4 *3 (-1255 *2))
- (-4 *4 (-1255 (-415 *3))) (-4 *5 (-349 *2 *3 *4))))
+ (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1257 *2))
+ (-4 *4 (-1257 (-417 *3))) (-4 *5 (-351 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1229)) (-4 *2 (-1229))
- (-5 *1 (-378 *5 *4 *2 *6)) (-4 *4 (-380 *5)) (-4 *6 (-380 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1231)) (-4 *2 (-1231))
+ (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1111)) (-4 *2 (-1111))
- (-5 *1 (-431 *5 *4 *2 *6)) (-4 *4 (-433 *5)) (-4 *6 (-433 *2))))
- ((*1 *1 *1) (-5 *1 (-503)))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1113)) (-4 *2 (-1113))
+ (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2))))
+ ((*1 *1 *1) (-5 *1 (-505)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-652 *5)) (-4 *5 (-1229))
- (-4 *2 (-1229)) (-5 *1 (-650 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1231))
+ (-4 *2 (-1231)) (-5 *1 (-652 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1060)) (-4 *2 (-1060))
- (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *8 (-380 *2))
- (-4 *9 (-380 *2)) (-5 *1 (-693 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-695 *5 *6 *7)) (-4 *10 (-695 *2 *8 *9))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1062)) (-4 *2 (-1062))
+ (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2))
+ (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1060)) (-5 *1 (-720 *3 *2)) (-4 *2 (-1255 *3))))
+ (-12 (-4 *3 (-1062)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1257 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-370))
- (-4 *3 (-174)) (-4 *1 (-732 *3 *4))))
+ (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-372))
+ (-4 *3 (-174)) (-4 *1 (-734 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-4 *1 (-732 *3 *2)) (-4 *2 (-1255 *3))))
+ (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1257 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-967 *5)) (-4 *5 (-1229))
- (-4 *2 (-1229)) (-5 *1 (-966 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-969 *5)) (-4 *5 (-1231))
+ (-4 *2 (-1231)) (-5 *1 (-968 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *2 (-958 *3 *4 *5))
- (-14 *6 (-652 *2))))
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *2 (-960 *3 *4 *5))
+ (-14 *6 (-654 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1060)) (-4 *2 (-1060))
- (-14 *5 (-779)) (-14 *6 (-779)) (-4 *8 (-242 *6 *7))
- (-4 *9 (-242 *5 *7)) (-4 *10 (-242 *6 *2)) (-4 *11 (-242 *5 *2))
- (-5 *1 (-1066 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1064 *5 *6 *7 *8 *9)) (-4 *12 (-1064 *5 *6 *2 *10 *11))))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1062)) (-4 *2 (-1062))
+ (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7))
+ (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2))
+ (-5 *1 (-1068 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1066 *5 *6 *7 *8 *9)) (-4 *12 (-1066 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1229))
- (-4 *2 (-1229)) (-5 *1 (-1166 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1170 *5)) (-4 *5 (-1231))
+ (-4 *2 (-1231)) (-5 *1 (-1168 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1222 *5 *6 *7 *2)) (-4 *5 (-564)) (-4 *6 (-801))
- (-4 *7 (-858)) (-4 *2 (-1076 *5 *6 *7))))
+ (-4 *1 (-1224 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803))
+ (-4 *7 (-860)) (-4 *2 (-1078 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1279 *5)) (-4 *5 (-1229))
- (-4 *2 (-1229)) (-5 *1 (-1278 *5 *2)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-779)) (-4 *4 (-13 (-564) (-148)))
- (-5 *1 (-1249 *4 *2)) (-4 *2 (-1255 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1111)) (-5 *2 (-55)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 (-572))))
- (-5 *2 (-112)) (-5 *1 (-1307 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1060)) (-5 *1 (-720 *3 *2)) (-4 *2 (-1255 *3)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-34)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-254))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-982))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-572))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-854)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-370) (-1214) (-1013))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1281 *5)) (-4 *5 (-1231))
+ (-4 *2 (-1231)) (-5 *1 (-1280 *5 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-572))))
+ (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-980))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172))
+ (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-34)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-574))))
((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))))
+ (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-856)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462))
+ (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-990 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
- (-4 *3 (-1255 *2)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1184 (-961 *4))) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-4 *3 (-370))
- (-5 *2 (-1184 (-961 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-858)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-380 *4)) (-4 *4 (-1229))
- (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34)))
+ (-4 *3 (-13 (-1113) (-34))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-654 (-781)))
+ (-5 *1 (-915 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-620 *6)) (-4 *6 (-13 (-438 *5) (-27) (-1214)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2 (-1184 (-415 (-1184 *6)))) (-5 *1 (-568 *5 *6 *7))
- (-5 *3 (-1184 *6)) (-4 *7 (-1111))))
+ (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1216)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2 (-1186 (-417 (-1186 *6)))) (-5 *1 (-570 *5 *6 *7))
+ (-5 *3 (-1186 *6)) (-4 *7 (-1113))))
((*1 *2 *1)
- (-12 (-4 *2 (-1255 *3)) (-5 *1 (-720 *3 *2)) (-4 *3 (-1060))))
+ (-12 (-4 *2 (-1257 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1062))))
((*1 *2 *1)
- (-12 (-4 *1 (-732 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3))))
+ (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1184 *11)) (-5 *6 (-652 *10))
- (-5 *7 (-652 (-779))) (-5 *8 (-652 *11)) (-4 *10 (-858))
- (-4 *11 (-313)) (-4 *9 (-801)) (-4 *5 (-958 *11 *9 *10))
- (-5 *2 (-652 (-1184 *5))) (-5 *1 (-750 *9 *10 *11 *5))
- (-5 *3 (-1184 *5))))
+ (|partial| -12 (-5 *4 (-1186 *11)) (-5 *6 (-654 *10))
+ (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860))
+ (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-960 *11 *9 *10))
+ (-5 *2 (-654 (-1186 *5))) (-5 *1 (-752 *9 *10 *11 *5))
+ (-5 *3 (-1186 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-958 *3 *4 *5)) (-5 *1 (-1045 *3 *4 *5 *2 *6))
- (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-14 *6 (-652 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1279 (-707))) (-5 *1 (-311)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-961 (-171 *4))) (-4 *4 (-174))
- (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-961 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-174))
- (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-961 *4)) (-4 *4 (-1060))
- (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060))
- (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564))
- (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564))
- (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-415 (-961 (-171 *4)))) (-4 *4 (-564))
- (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-415 (-961 (-171 *5)))) (-5 *4 (-930))
- (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386)))
- (-5 *1 (-793 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858))
- (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564))
- (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386)))
- (-5 *1 (-793 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-322 (-171 *4))) (-4 *4 (-564)) (-4 *4 (-858))
- (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-322 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-564))
- (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386)))
- (-5 *1 (-793 *5)))))
+ (-12 (-4 *2 (-960 *3 *4 *5)) (-5 *1 (-1047 *3 *4 *5 *2 *6))
+ (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1172)) (-5 *1 (-796)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-1078 *3 *4 *2)) (-4 *2 (-860))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 (-963 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4))
+ (-14 *4 (-654 (-1190)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6))
+ (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *1 (-460 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6))
+ (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *1 (-460 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
+ (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462))
+ (-14 *4 (-654 (-1190))) (-5 *1 (-638 *3 *4)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-564)) (-5 *2 (-112)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-652 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
- (-4 *3 (-564)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
+ ((*1 *1 *1 *1) (-5 *1 (-872))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4))))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-652 *11))
- (|:| |todo| (-652 (-2 (|:| |val| *3) (|:| -4090 *11))))))
- (-5 *6 (-779))
- (-5 *2 (-652 (-2 (|:| |val| (-652 *10)) (|:| -4090 *11))))
- (-5 *3 (-652 *10)) (-5 *4 (-652 *11)) (-4 *10 (-1076 *7 *8 *9))
- (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-460)) (-4 *8 (-801))
- (-4 *9 (-858)) (-5 *1 (-1080 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-652 *11))
- (|:| |todo| (-652 (-2 (|:| |val| *3) (|:| -4090 *11))))))
- (-5 *6 (-779))
- (-5 *2 (-652 (-2 (|:| |val| (-652 *10)) (|:| -4090 *11))))
- (-5 *3 (-652 *10)) (-5 *4 (-652 *11)) (-4 *10 (-1076 *7 *8 *9))
- (-4 *11 (-1120 *7 *8 *9 *10)) (-4 *7 (-460)) (-4 *8 (-801))
- (-4 *9 (-858)) (-5 *1 (-1156 *7 *8 *9 *10 *11)))))
-(((*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-572))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-914 *3)) (-4 *3 (-1111))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370)))
- (-4 *3 (-1255 *4)) (-5 *2 (-572))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-564) (-1049 *2) (-647 *2) (-460)))
- (-5 *2 (-572)) (-5 *1 (-1127 *4 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-851 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572))
- (-5 *1 (-1127 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-1170))
- (-4 *6 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572))
- (-5 *1 (-1127 *6 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-460)) (-5 *2 (-572))
- (-5 *1 (-1128 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-851 (-415 (-961 *6))))
- (-5 *3 (-415 (-961 *6))) (-4 *6 (-460)) (-5 *2 (-572))
- (-5 *1 (-1128 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-415 (-961 *6))) (-5 *4 (-1188))
- (-5 *5 (-1170)) (-4 *6 (-460)) (-5 *2 (-572)) (-5 *1 (-1128 *6))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2))
+ (-4 *2 (-1113))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1113))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1113))
+ (-5 *1 (-114 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-572)) (-5 *1 (-1211 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-830)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-514)) (-5 *1 (-285))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4)))
+ (-5 *1 (-114 *4)) (-4 *4 (-1113))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1062))
+ (-5 *1 (-724 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-846 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-3 (-572) (-227) (-514) (-1170) (-1193)))
- (-5 *1 (-1193)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-856)))))
+(((*1 *2 *1) (-12 (-5 *2 (-984)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1246 (-572))) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))))
+ (|partial| -12 (-5 *2 (-932)) (-5 *1 (-1114 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227)))
+ (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1048))
+ (-5 *1 (-764)))))
+(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1200)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-564))))
+ (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))
- (-4 *2 (-564))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-564)))
+ (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802))
+ (-4 *2 (-566))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-566)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060))
- (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-564))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-779)))
+ (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062))
+ (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-781)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-564))))
- ((*1 *1 *1 *1) (-5 *1 (-870)))
+ (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-566))))
+ ((*1 *1 *1 *1) (-5 *1 (-872)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-564))
- (-5 *1 (-980 *3 *4))))
+ (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-566))
+ (-5 *1 (-982 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1064 *3 *4 *2 *5 *6)) (-4 *2 (-1060))
- (-4 *5 (-242 *4 *2)) (-4 *6 (-242 *3 *2)) (-4 *2 (-564))))
+ (|partial| -12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *2 (-1062))
+ (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-370)) (-4 *5 (-564))
- (-5 *2
- (-2 (|:| |minor| (-652 (-930))) (|:| -4121 *3)
- (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-930)) (-4 *3 (-664 *5)))))
+ (|partial| -12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1248 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1111)) (-4 *5 (-1111))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-691 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
- (-5 *1 (-999 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
- (-5 *1 (-1118 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-313)) (-4 *6 (-380 *5)) (-4 *4 (-380 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4))))
- (-5 *1 (-1135 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
- (-5 *2
- (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572))
- (|:| |success| (-112))))
- (-5 *1 (-797)) (-5 *5 (-572)))))
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462))))
+ ((*1 *1 *1 *1) (-4 *1 (-462))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1152))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-766)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386)))
- (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
- (-5 *1 (-1187)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-794)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-460))))
- ((*1 *1 *1 *1) (-4 *1 (-460))))
-(((*1 *1 *1) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-620 *3))
- (-4 *3 (-13 (-438 *5) (-27) (-1214)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2 (-2 (|:| -2114 *3) (|:| |coeff| *3)))
- (-5 *1 (-574 *5 *3 *6)) (-4 *6 (-1111)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-661 *4)) (-4 *4 (-349 *5 *6 *7))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4))))
- (-5 *1 (-814 *5 *6 *7 *4)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-572))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046))
- (-5 *1 (-756)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-827 *3)) (|:| |rm| (-827 *3))))
- (-5 *1 (-827 *3)) (-4 *3 (-858))))
- ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-697 *4)) (-4 *4 (-1060)) (-5 *1 (-1153 *3 *4))
- (-14 *3 (-779)))))
+ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388)))
+ (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189))))
+ (-5 *1 (-1189)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-216 (-510))) (-5 *1 (-845)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-574)) (|has| *1 (-6 -4447)) (-4 *1 (-414))
+ (-5 *2 (-932)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
- (-4 *4 (-356))))
+ (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1015) (-1216)))
+ (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1015) (-1216))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1113) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1153 *4 *5)) (-4 *4 (-13 (-1113) (-34))))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-241 *3))))
+ ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3))))
+ (-5 *1 (-829 *3)) (-4 *3 (-860))))
+ ((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-624 (-903 (-574))))
+ (-4 *5 (-897 (-574)))
+ (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-577 *5 *3)) (-4 *3 (-639))
+ (-4 *3 (-13 (-27) (-1216) (-440 *5))))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-781)) (-4 *6 (-1113)) (-4 *3 (-911 *6))
+ (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3))
+ (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4456)))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4))
+ (-4 *4 (-358))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
- (-4 *4 (-356))))
- ((*1 *1) (-4 *1 (-375)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4))
- (-4 *4 (-356))))
- ((*1 *1 *1) (-4 *1 (-553))) ((*1 *1) (-4 *1 (-553)))
- ((*1 *1 *1) (-5 *1 (-779)))
- ((*1 *2 *1) (-12 (-5 *2 (-914 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4))
+ (-4 *4 (-358))))
+ ((*1 *1) (-4 *1 (-377)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4))
+ (-4 *4 (-358))))
+ ((*1 *1 *1) (-4 *1 (-555))) ((*1 *1) (-4 *1 (-555)))
+ ((*1 *1 *1) (-5 *1 (-781)))
+ ((*1 *2 *1) (-12 (-5 *2 (-916 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-5 *2 (-914 *4)) (-5 *1 (-913 *4))
- (-4 *4 (-1111))))
- ((*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-553)) (-4 *2 (-564)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-930)) (-4 *5 (-564)) (-5 *2 (-697 *5))
- (-5 *1 (-965 *5 *3)) (-4 *3 (-664 *5)))))
+ (-12 (-5 *3 (-574)) (-5 *2 (-916 *4)) (-5 *1 (-915 *4))
+ (-4 *4 (-1113))))
+ ((*1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-555)) (-4 *2 (-566)))))
+(((*1 *1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))
+ ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060))
+ (-5 *3 (-574)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386)))
- (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
- (-5 *1 (-1187)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-460)) (-4 *4 (-1111))
- (-5 *1 (-581 *4 *2)) (-4 *2 (-290)) (-4 *2 (-438 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-1060)) (-4 *4 (-174))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))
- (-4 *3 (-174)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-697 (-572))) (-5 *5 (-112)) (-5 *7 (-697 (-227)))
- (-5 *3 (-572)) (-5 *6 (-227)) (-5 *2 (-1046)) (-5 *1 (-762)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))))
-(((*1 *1) (-5 *1 (-445))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-415 (-572)))
- (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-4 *3 (-1111))
- (-5 *2 (-112)))))
+ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388)))
+ (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189))))
+ (-5 *1 (-1189)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-107 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-171 (-324 *4)))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-171 *3)) (-5 *1 (-1220 *4 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *4))))))
+(((*1 *1 *1) (-4 *1 (-566))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-654 *5) *6))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5))
+ (-5 *2 (-654 (-2 (|:| -1707 *5) (|:| -4122 *3))))
+ (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6))
+ (-4 *7 (-666 (-417 *6))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))
+ (-5 *2 (-1186 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))
+ ((*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-315))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-574)))))
(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214)))))
+ (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216)))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ (-12 (-5 *3 (-932)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1282))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1191))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1284))
- (-5 *1 (-1191))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1284))
- (-5 *1 (-1191)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-1187)))
+ (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1170 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574))))
+ (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1186 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))))
+(((*1 *1 *1) (-5 *1 (-1189)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386)))
- (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
- (-5 *1 (-1187)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-697 (-415 (-961 *4)))) (-4 *4 (-460))
- (-5 *2 (-652 (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4)))))
- (-5 *1 (-298 *4)))))
-(((*1 *2 *2) (-12 (-5 *1 (-690 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227)))
- (-5 *2 (-1046)) (-5 *1 (-755)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-572))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))))
+ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388)))
+ (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189))))
+ (-5 *1 (-1189)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -3948 (-654 (-2 (|:| |irr| *10) (|:| -3963 (-574)))))))
+ (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315))
+ (-4 *10 (-960 *3 *9 *8)) (-4 *9 (-803))
+ (-5 *2
+ (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-654 (-1186 *3)))))
+ (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1186 *3))))))
+(((*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1113)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-801)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858))
- (-5 *2 (-112)) (-5 *1 (-457 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-1 (-652 *5) *6))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *6 (-1255 *5)) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-661 (-415 *7))) (-5 *4 (-1 (-652 *6) *7))
- (-5 *5 (-1 (-426 *7) *7))
- (-4 *6 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *7 (-1255 *6)) (-5 *2 (-652 (-415 *7))) (-5 *1 (-820 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-1 (-652 *5) *6))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *6 (-1255 *5)) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-662 *7 (-415 *7))) (-5 *4 (-1 (-652 *6) *7))
- (-5 *5 (-1 (-426 *7) *7))
- (-4 *6 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-4 *7 (-1255 *6)) (-5 *2 (-652 (-415 *7))) (-5 *1 (-820 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-661 (-415 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2 (-652 (-415 *5))) (-5 *1 (-820 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-1 (-426 *6) *6))
- (-4 *6 (-1255 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-662 *5 (-415 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2 (-652 (-415 *5))) (-5 *1 (-820 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-1 (-426 *6) *6))
- (-4 *6 (-1255 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1 *1) (-5 *1 (-779)))
- ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1071)) (-4 *3 (-1214))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1) (-5 *1 (-1191))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-974))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1170) (-782))) (-5 *1 (-115)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-697 *5)) (-4 *5 (-1060)) (-5 *1 (-1065 *3 *4 *5))
- (-14 *3 (-779)) (-14 *4 (-779)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-745 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1111))))
- ((*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))))
-(((*1 *1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1 *1) (-5 *1 (-779)))
- ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *1) (-5 *1 (-605))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1095 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-572) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1095 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801))
- (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))))
-(((*1 *1) (-5 *1 (-297))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-176 *3)) (-4 *3 (-313))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-682 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-748 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-858))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *1 (-991 *3)) (-4 *3 (-1060))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7))
- (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6))))
+ (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062))
+ (-5 *2 (-491 *4 *5)) (-5 *1 (-955 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-427 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860)) (-4 *3 (-174))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-174)))))
+(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781)))
+ ((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-1186 *4)) (-5 *1 (-538 *4))
+ (-4 *4 (-358)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-247)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769)))))
+(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1195) (-781)))) (-5 *1 (-341)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-976))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1172) (-784))) (-5 *1 (-115)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7))
+ (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-1082 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-1084 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6))))
+ (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1))
- (-4 *1 (-1082 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))))
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1))
+ (-4 *1 (-1084 *4 *5 *6 *3)))))
+(((*1 *1)
+ (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388))))
+ ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5))
+ (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1272 *5))
+ (-5 *1 (-1274 *5 *2)))))
+(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781)))
+ ((*1 *1 *1 *1) (-5 *1 (-872))))
(((*1 *2 *1)
- (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
- (-5 *2 (-1279 *6)) (-5 *1 (-343 *3 *4 *5 *6))
- (-4 *6 (-349 *3 *4 *5)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802))
+ (-5 *2 (-781))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113))
+ (-5 *2 (-781))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-736)))))
(((*1 *2)
- (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1105 (-227))) (-5 *6 (-572)) (-5 *2 (-1224 (-935)))
- (-5 *1 (-324))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1105 (-227))) (-5 *6 (-572)) (-5 *7 (-1170))
- (-5 *2 (-1224 (-935))) (-5 *1 (-324))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1105 (-227))) (-5 *6 (-227)) (-5 *7 (-572))
- (-5 *2 (-1224 (-935))) (-5 *1 (-324))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1105 (-227))) (-5 *6 (-227)) (-5 *7 (-572)) (-5 *8 (-1170))
- (-5 *2 (-1224 (-935))) (-5 *1 (-324)))))
-(((*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1229))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858))
- (-4 *6 (-1076 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3462 *1) (|:| |upper| *1)))
- (-4 *1 (-987 *4 *5 *3 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+ (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2))
+ (-4 *3 (-566)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1192 (-417 (-574)))) (-5 *2 (-417 (-574)))
+ (-5 *1 (-192)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1255 *6))
- (-4 *6 (-13 (-27) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572))))
- (-4 *8 (-1255 (-415 *7))) (-5 *2 (-594 *3))
- (-5 *1 (-560 *5 *6 *7 *8 *3)) (-4 *3 (-349 *6 *7 *8)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8))))
+ (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *1 (-270))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))
+ ((*1 *2 *1 *3)
(-12
(-5 *3
- (-652 (-2 (|:| -3888 (-415 (-572))) (|:| -3901 (-415 (-572))))))
- (-5 *2 (-652 (-227))) (-5 *1 (-311)))))
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *2 (-1286)) (-5 *1 (-1283))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1913 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *1 (-1283))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1257 (-171 *2))))))
+(((*1 *2) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-105)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))))
+(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860))
+ (-4 *6 (-1078 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -1846 *1) (|:| |upper| *1)))
+ (-4 *1 (-989 *4 *5 *3 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1257 *4))
+ (-5 *1 (-933 *4 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-1115 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1113)) (-5 *2 (-1115 (-654 *4))) (-5 *1 (-915 *4))
+ (-5 *3 (-654 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1113)) (-5 *2 (-1115 (-1115 *4))) (-5 *1 (-915 *4))
+ (-5 *3 (-1115 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1115 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1111)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1111)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1381 (-654 *6)) (|:| -1676 (-654 *6)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *3))
+ (-4 *3 (-1257 (-417 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-1254 *5 *4)) (-5 *1 (-1188 *4 *5 *6))
+ (-4 *4 (-1062)) (-14 *5 (-1190)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-1254 *5 *4)) (-5 *1 (-1273 *4 *5 *6))
+ (-4 *4 (-1062)) (-14 *5 (-1190)) (-14 *6 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1257 *4)) (-5 *2 (-699 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4))
+ (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3))
+ (-5 *2 (-699 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1 *4 (-572))) (-4 *4 (-1060))
- (-5 *1 (-1172 *4)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1255 *4)))))
+ (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574))))
+ (-4 *2 (-174)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1172)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-884))
+ (-5 *5 (-932)) (-5 *6 (-654 (-270))) (-5 *2 (-1282))
+ (-5 *1 (-1285))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-654 (-270)))
+ (-5 *2 (-1282)) (-5 *1 (-1285)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860))
+ (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860)))
+ (-14 *3 (-654 (-1190))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-356))
- (-5 *2 (-652 (-2 (|:| |deg| (-779)) (|:| -4371 *3))))
- (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1046))
- (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))
- (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-829)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170))
- (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707))))
- ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))))
+ (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-4 *4 (-1257 *3))
+ (-5 *2
+ (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-699 *3))))
+ (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-574)) (-4 *4 (-1257 *3))
+ (-5 *2
+ (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-699 *3))))
+ (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 *3))
+ (-5 *2
+ (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-699 *3))))
+ (-5 *1 (-998 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 *3))
+ (-5 *2
+ (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-699 *3))))
+ (-5 *1 (-1290 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1194)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1060)) (-4 *2 (-695 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1255 *4)) (-4 *5 (-380 *4))
- (-4 *6 (-380 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2361 *4)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
+ (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4457)) (-4 *1 (-1023 *3))
+ (-4 *3 (-1231)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-564) (-148))) (-5 *2 (-652 *3))
- (-5 *1 (-1249 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-801))
- (-4 *5 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))) (-4 *6 (-564))
- (-5 *2 (-2 (|:| -1360 (-961 *6)) (|:| -3661 (-961 *6))))
- (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-958 (-415 (-961 *6)) *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3901 *6) (|:| |sol?| (-112))) (-572)
- *6))
- (-4 *6 (-370)) (-4 *7 (-1255 *6))
- (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6)))
- (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
+ (-5 *2 (-1281 (-699 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-426 *3 *4))
+ (-4 *3 (-427 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 (-699 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-1190))) (-4 *5 (-372))
+ (-5 *2 (-1281 (-699 (-417 (-963 *5))))) (-5 *1 (-1099 *5))
+ (-5 *4 (-699 (-417 (-963 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-1190))) (-4 *5 (-372))
+ (-5 *2 (-1281 (-699 (-963 *5)))) (-5 *1 (-1099 *5))
+ (-5 *4 (-699 (-963 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372))
+ (-5 *2 (-1281 (-699 *4))) (-5 *1 (-1099 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1037 *3))
+ (-4 *3 (-13 (-858) (-372) (-1035)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3))
+ (-4 *3 (-1257 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-13 (-858) (-372)))
+ (-4 *3 (-1257 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2874 (-792 *3)) (|:| |coef2| (-792 *3))))
+ (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-2 (|:| -2874 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1078 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1257 (-417 (-574)))) (-5 *1 (-924 *3 *2))
+ (-4 *2 (-1257 (-417 *3))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-1076 *3 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-829)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-846))) (-5 *1 (-141)))))
-(((*1 *2 *2) (-12 (-5 *1 (-970 *2)) (-4 *2 (-553)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-4 *1 (-912 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-572))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))
- (-5 *2 (-1046)) (-5 *1 (-756)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-91 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1150))))
+ (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-596 *3)) (-4 *3 (-372)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227))
+ (-5 *7 (-699 (-574)))
+ (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1415 *4)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1186 *3) (-1186 *3)))
+ (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3))
+ (-5 *1 (-561 *6 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1286)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1012 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (-4 *1 (-1104 *3)) (-4 *3 (-1229)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227)))
- (-5 *2 (-1046)) (-5 *1 (-755)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *1 (-1043 *2))
- (-4 *2 (-13 (-1111) (-10 -8 (-15 * ($ $ $))))))))
+ (-12 (-5 *2 (-574)) (-4 *1 (-1106 *3)) (-4 *3 (-1231)))))
+(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-388)) (-5 *1 (-1076)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-415 *2)) (-4 *2 (-1255 *5))
- (-5 *1 (-815 *5 *2 *3 *6))
- (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572)))))
- (-4 *3 (-664 *2)) (-4 *6 (-664 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-415 *2))) (-4 *2 (-1255 *5))
- (-5 *1 (-815 *5 *2 *3 *6))
- (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2))
- (-4 *6 (-664 (-415 *2))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1184 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-177))) (-5 *1 (-1096)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+ (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1216) (-440 *5)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *2
+ (-3 (-853 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-853 *3) "failed")))
+ "failed"))
+ (-5 *1 (-646 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1172))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-302 (-853 (-963 *5)))) (-4 *5 (-462))
+ (-5 *2
+ (-3 (-853 (-417 (-963 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-853 (-417 (-963 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-647 *5)) (-5 *3 (-417 (-963 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-302 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5)))
+ (-4 *5 (-462))
+ (-5 *2
+ (-3 (-853 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-853 *3) "failed")))
+ "failed"))
+ (-5 *1 (-647 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-302 (-417 (-963 *6)))) (-5 *5 (-1172))
+ (-5 *3 (-417 (-963 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3))
+ (-5 *1 (-647 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 (-171 (-417 (-574)))))
+ (-5 *2
+ (-654
+ (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574))
+ (|:| |outvect| (-654 (-699 (-171 *4)))))))
+ (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-5 *2 (-969 (-1186 *4))) (-5 *1 (-366 *4))
+ (-5 *3 (-1186 *4)))))
+(((*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-444))
+ (-5 *2
+ (-654
+ (-3 (|:| -2032 (-1190))
+ (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))))
+ (-5 *1 (-1194)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1281 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315))
+ (-4 *3 (-566)) (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-4 *4 (-372)) (-5 *2 (-1281 *1))
+ (-4 *1 (-337 *4))))
+ ((*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1281 *1)) (-4 *1 (-337 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-1281 *1))
+ (-4 *1 (-419 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4))
+ (-5 *2 (-1281 *6)) (-5 *1 (-423 *3 *4 *5 *6))
+ (-4 *6 (-13 (-419 *4 *5) (-1051 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4))
+ (-5 *2 (-1281 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7))
+ (-4 *6 (-419 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1281 *1)) (-4 *1 (-427 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1281 (-1281 *4))) (-5 *1 (-538 *4))
+ (-4 *4 (-358)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938))
+ (-5 *1 (-936 *3)) (-4 *3 (-624 (-546)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938))
+ (-5 *1 (-936 *3)) (-4 *3 (-624 (-546)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-937))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-937))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-938))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-938))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-938))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-938))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-938))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-938)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-938)))))
+(((*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-654 (-654 (-954 (-227)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-654 (-654 (-954 (-227))))))))
(((*1 *2)
- (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
- (-5 *2 (-779)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6))))
+ (-12
+ (-5 *2
+ (-1281 (-654 (-2 (|:| -3083 (-921 *3)) (|:| -2576 (-1133))))))
+ (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133))))))
+ (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1186 *3) *2))))
((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))))
+ (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133))))))
+ (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1308 *5 *6 *7))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1308 *5 *6 *7))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-963 *4)))
+ (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-1059 *4 *5))) (-5 *1 (-1308 *4 *5 *6))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))))
+(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2))
+ (-4 *2 (-1272 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3)))
+ (-4 *5 (-1257 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2))
+ (-4 *2 (-1272 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3)))
+ (-5 *1 (-552 *4 *2)) (-4 *2 (-1272 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148)))
+ (-5 *1 (-1166 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-313)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1135 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-1168 *7))) (-4 *6 (-858))
- (-4 *7 (-958 *5 (-539 *6) *6)) (-4 *5 (-1060))
- (-5 *2 (-1 (-1168 *7) *7)) (-5 *1 (-1137 *5 *6 *7)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-388)) (-5 *1 (-207)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-952 *4)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1170)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-268)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2))
- (-4 *2 (-695 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *2 (-1046)) (-5 *1 (-759)))))
-(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-1060))))
- ((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4))
- (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-1184 *3)))))
+ (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3))
+ (-4 *3 (-1113)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-848))))
- ((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1046)) (-5 *1 (-848))))
+ (-12 (-5 *3 (-851)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-850))))
+ ((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1048)) (-5 *1 (-850))))
((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-652 (-386))) (-5 *5 (-652 (-851 (-386))))
- (-5 *6 (-652 (-322 (-386)))) (-5 *3 (-322 (-386))) (-5 *2 (-1046))
- (-5 *1 (-848))))
+ (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388))))
+ (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1048))
+ (-5 *1 (-850))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-386)))
- (-5 *5 (-652 (-851 (-386)))) (-5 *2 (-1046)) (-5 *1 (-848))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388)))
+ (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1048)) (-5 *1 (-850))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-386))) (-5 *2 (-1046))
- (-5 *1 (-848))))
+ (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1048))
+ (-5 *1 (-850))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-322 (-386)))) (-5 *4 (-652 (-386)))
- (-5 *2 (-1046)) (-5 *1 (-848)))))
-(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1191)))))
+ (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388)))
+ (-5 *2 (-1048)) (-5 *1 (-850)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5)
+ (|:| |f4| (-654 *5))))
+ (-5 *1 (-1201 *6)) (-5 *4 (-654 *5)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062))
+ (-5 *1 (-1174 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062))
+ (-14 *4 (-1190)) (-14 *5 *3))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-1188)) (-5 *1 (-544))))
+ (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-1190)) (-5 *1 (-546))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544)))))
+ (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544)))))
+ (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544)))))
+ (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-652 (-1188))) (-5 *2 (-1188)) (-5 *1 (-712 *3))
- (-4 *3 (-622 (-544))))))
-(((*1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-1111))))
- ((*1 *1 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-313)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
- (-5 *1 (-1135 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-171 (-227))))
- (-5 *2 (-1046)) (-5 *1 (-762)))))
+ (-12 (-5 *4 (-654 (-1190))) (-5 *2 (-1190)) (-5 *1 (-714 *3))
+ (-4 *3 (-624 (-546))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131))))))
- (-4 *4 (-356)) (-5 *2 (-697 *4)) (-5 *1 (-353 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))
- ((*1 *1 *1) (-4 *1 (-856)))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))
- ((*1 *1 *1) (-4 *1 (-1071))) ((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 (-251 *4 *5))) (-5 *2 (-251 *4 *5))
- (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-639 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-460)) (-4 *4 (-828))
- (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
- (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370)))
- (-4 *3 (-1255 *4)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-572)) (-4 *3 (-174)) (-4 *5 (-380 *3))
- (-4 *6 (-380 *3)) (-5 *1 (-696 *3 *5 *6 *2))
- (-4 *2 (-695 *3 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-1188)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-115)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-620 *4))
- (-4 *4 (-1111))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-620 *4)) (-4 *4 (-1111))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1111)) (-5 *2 (-112))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-896 *5 *3 *4))
- (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *6)) (-4 *6 (-895 *5)) (-4 *5 (-1111))
- (-5 *2 (-112)) (-5 *1 (-896 *5 *6 *4)) (-4 *4 (-622 (-901 *5))))))
+ (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-370))
- (-5 *2 (-652 (-2 (|:| C (-697 *5)) (|:| |g| (-1279 *5)))))
- (-5 *1 (-989 *5)) (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *1) (-12 (-5 *2 (-982)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1113)) (-4 *5 (-1113))
+ (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462)))
+ (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462)))
+ (-5 *2 (-853 *4)) (-5 *1 (-1267 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190))
+ (-14 *6 *4))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-982 *3 *2))
+ (-4 *2 (-1257 *3)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1153 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1113) (-34))) (-4 *6 (-13 (-1113) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1154 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1248 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-622 *4)) (-5 *6 (-1186 *4))
+ (-4 *4 (-13 (-440 *7) (-27) (-1216)))
+ (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4))))
+ (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1186 *4)))
+ (-4 *4 (-13 (-440 *7) (-27) (-1216)))
+ (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4))))
+ (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-954 *4)) (-4 *4 (-1062)) (-5 *1 (-1178 *3 *4))
+ (-14 *3 (-932)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-633 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3904 *4) (|:| |sol?| (-112)))
+ (-574) *4))
+ (-4 *4 (-372)) (-4 *5 (-1257 *4)) (-5 *1 (-584 *4 *5)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -1669 (-654 (-1190))) (|:| -3392 (-654 (-1190)))))
+ (-5 *1 (-1233)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-572)) (|has| *1 (-6 -4445)) (-4 *1 (-412))
- (-5 *2 (-930)))))
+ (-12 (-4 *4 (-1062))
+ (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292)))
+ (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-932)) (-4 *5 (-1062))
+ (-4 *2 (-13 (-414) (-1051 *5) (-372) (-1216) (-292)))
+ (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1257 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395)))))
-(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313))))
- ((*1 *2 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313))))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-313))))
- ((*1 *2 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-572)))))
-(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-557))))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1170)) (-5 *1 (-1000))))
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1172)) (-5 *1 (-1002))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-4 *4 (-1229)) (-5 *1 (-1068 *3 *4))
- (-4 *3 (-1104 *4))))
+ (-12 (-5 *2 (-1190)) (-4 *4 (-1231)) (-5 *1 (-1070 *3 *4))
+ (-4 *3 (-1106 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1105 *4)) (-4 *4 (-1229))
- (-5 *1 (-1103 *4)))))
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1107 *4)) (-4 *4 (-1231))
+ (-5 *1 (-1105 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1131)) (-5 *1 (-1128)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1190 (-415 (-572)))) (-5 *2 (-415 (-572)))
- (-5 *1 (-192)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1192)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3537 *4)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-262)))))
+ (-12 (-5 *3 (-654 (-2 (|:| -4220 (-1186 *6)) (|:| -2524 (-574)))))
+ (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
+ (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936))
- (-5 *1 (-934 *3)) (-4 *3 (-622 (-544)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936))
- (-5 *1 (-934 *3)) (-4 *3 (-622 (-544)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-935))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-935))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-936))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-936))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-652 (-1 (-227) (-227)))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-936))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-1 (-227) (-227)))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-936))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-936))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-936)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1111)) (-4 *5 (-1111))
- (-5 *2 (-1 *5)) (-5 *1 (-691 *4 *5)))))
+ (-12 (-5 *3 (-654 (-417 (-963 (-574))))) (-5 *4 (-654 (-1190)))
+ (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5))
+ (-4 *5 (-13 (-858) (-372)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-417 (-963 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-858) (-372))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860))
+ (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-960 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1062)) (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1)))
+ (-4 *1 (-1257 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-990 *5 *6 *7 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1186 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566))
+ (-5 *1 (-32 *4 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *6)) (-4 *5 (-1111))
- (-4 *6 (-1229)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *5 *6))))
+ (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1113))
+ (-4 *6 (-1231)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-4 *5 (-1111))
- (-4 *2 (-1229)) (-5 *1 (-649 *5 *2))))
+ (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1113))
+ (-4 *2 (-1231)) (-5 *1 (-651 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 *5)) (-4 *6 (-1111))
- (-4 *5 (-1229)) (-5 *2 (-1 *5 *6)) (-5 *1 (-649 *6 *5))))
+ (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1113))
+ (-4 *5 (-1231)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-4 *5 (-1111))
- (-4 *2 (-1229)) (-5 *1 (-649 *5 *2))))
+ (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1113))
+ (-4 *2 (-1231)) (-5 *1 (-651 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-652 *5)) (-5 *4 (-652 *6))
- (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *1 (-649 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6))
+ (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *1 (-651 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1111)) (-4 *2 (-1229)) (-5 *1 (-649 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-145)) (-5 *2 (-779)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-952 *4)) (-4 *4 (-1060)) (-5 *1 (-1176 *3 *4))
- (-14 *3 (-930)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858))
- (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-958 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1060)) (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1)))
- (-4 *1 (-1255 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1170) (-782))) (-5 *1 (-115)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227)))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227))
- (-5 *2 (-1046)) (-5 *1 (-757)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-652
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-572)))))
- (-4 *2 (-564)) (-5 *1 (-426 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-572))
- (|:| -4225 (-652 (-2 (|:| |irr| *4) (|:| -2866 (-572)))))))
- (-4 *4 (-1255 (-572))) (-5 *2 (-426 *4)) (-5 *1 (-450 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302))))
+ (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1113)) (-4 *2 (-1231)) (-5 *1 (-651 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-145)) (-5 *2 (-781)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8)))
+ (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803))
+ (-5 *2
+ (-2 (|:| |upol| (-1186 *8)) (|:| |Lval| (-654 *8))
+ (|:| |Lfact|
+ (-654 (-2 (|:| -4220 (-1186 *8)) (|:| -2524 (-574)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-752 *6 *7 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-318)) (-5 *1 (-302))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302))))
+ (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-320)) (-5 *1 (-304))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-1170))) (-5 *3 (-1170)) (-5 *2 (-318))
- (-5 *1 (-302)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1111)) (-4 *3 (-909 *5)) (-5 *2 (-697 *3))
- (-5 *1 (-700 *5 *3 *6 *4)) (-4 *6 (-380 *3))
- (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-664 *3)) (-4 *3 (-1060)) (-4 *3 (-370))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-779)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370))
- (-5 *1 (-667 *5 *2)) (-4 *2 (-664 *5)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-952 (-227))) (-5 *4 (-882)) (-5 *5 (-930))
- (-5 *2 (-1284)) (-5 *1 (-476))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-476))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *4 (-882)) (-5 *5 (-930))
- (-5 *2 (-1284)) (-5 *1 (-476)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
- (-14 *6 (-652 (-1188)))
+ (-12 (-5 *4 (-654 (-1172))) (-5 *3 (-1172)) (-5 *2 (-320))
+ (-5 *1 (-304)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-13 (-315) (-148)))
+ (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803))
+ (-5 *2 (-654 (-417 (-963 *4)))) (-5 *1 (-935 *4 *5 *6 *7))
+ (-4 *7 (-960 *4 *6 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-925 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-926 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-428 (-963 *6))) (-5 *5 (-1190)) (-5 *3 (-963 *6))
+ (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-926 *6)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-652 (-1157 *5 (-539 (-872 *6)) (-872 *6) (-788 *5 (-872 *6)))))
- (-5 *1 (-636 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-652 (-300 *4))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
- (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))))
+ (-654
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-803)) (-4 *6 (-960 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860))
+ (-5 *1 (-459 *4 *3 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1172) (-784))) (-5 *1 (-115)))))
+(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-382 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 *4)) (-5 *1 (-1152 *3 *4))
- (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-652 (-779))) (-5 *1 (-980 *4 *3))
- (-4 *3 (-1255 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 (-620 *5))) (-5 *3 (-1188)) (-4 *5 (-438 *4))
- (-4 *4 (-1111)) (-5 *1 (-581 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1192)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-975 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *2 (-654 *4)) (-5 *1 (-1154 *3 *4))
+ (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 *1)) (-5 *4 (-1281 *1)) (-4 *1 (-649 *5))
+ (-4 *5 (-1062))
+ (-5 *2 (-2 (|:| -1485 (-699 *5)) (|:| |vec| (-1281 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1062))
+ (-5 *2 (-699 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1062))
+ (-5 *2 (-699 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
+ (-12 (-4 *3 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4)))))
+ ((*1 *1 *1) (-5 *1 (-388)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
+(((*1 *1) (-5 *1 (-145)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-270)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-839)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7)))
+ (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803))
+ (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8)))
+ (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
+(((*1 *1) (-5 *1 (-1095))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1257 *3)) (-4 *3 (-1062))
+ (-4 *3 (-566))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-954 *4 *3))
- (-4 *3 (-1255 *4)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388))
+ (|:| |expense| (-388)) (|:| |accuracy| (-388))
+ (|:| |intermediateResults| (-388))))
+ (-5 *1 (-813)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4))))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-194)))))
-(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1191)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-258 *2 *3 *4 *5)) (-4 *2 (-1060)) (-4 *3 (-858))
- (-4 *4 (-271 *3)) (-4 *5 (-801)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1255 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-158))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800))))
- ((*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1060)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-779))))
+ (-12 (-5 *3 (-1186 *1)) (-5 *4 (-1190)) (-4 *1 (-27))
+ (-5 *2 (-654 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-779)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801))
- (-4 *3 (-858)) (-5 *2 (-779)))))
+ (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *2 (-654 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1190)))
+ (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-779))
- (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
- (-5 *2 (-697 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3))
- (-4 *3 (-1111)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2)))))
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1283))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6))
+ (-5 *2 (-654 (-2 (|:| -1381 *1) (|:| -1676 (-654 *7)))))
+ (-5 *3 (-654 *7)) (-4 *1 (-1224 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1306)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-963 *5)) (-4 *5 (-1062)) (-5 *2 (-491 *4 *5))
+ (-5 *1 (-955 *4 *5)) (-14 *4 (-654 (-1190))))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-687 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936))
- (-5 *1 (-934 *3)) (-4 *3 (-622 (-544)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188)) (-5 *2 (-936)) (-5 *1 (-934 *3))
- (-4 *3 (-622 (-544)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-936))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-936)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))))
+ (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-388)) (-5 *1 (-1076)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2))
+ (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-415 *5)) (-4 *4 (-1233)) (-4 *5 (-1255 *4))
- (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1255 *3))))
+ (-12 (-5 *3 (-417 *5)) (-4 *4 (-1235)) (-4 *5 (-1257 *4))
+ (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1257 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1190 (-415 (-572)))) (-5 *2 (-415 (-572)))
+ (-12 (-5 *3 (-1192 (-417 (-574)))) (-5 *2 (-417 (-574)))
(-5 *1 (-192))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-697 (-322 (-227)))) (-5 *3 (-652 (-1188)))
- (-5 *4 (-1279 (-322 (-227)))) (-5 *1 (-207))))
+ (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1190)))
+ (-5 *4 (-1281 (-324 (-227)))) (-5 *1 (-207))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-300 *3))) (-4 *3 (-315 *3)) (-4 *3 (-1111))
- (-4 *3 (-1229)) (-5 *1 (-300 *3))))
+ (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1113))
+ (-4 *3 (-1231)) (-5 *1 (-302 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-315 *2)) (-4 *2 (-1111)) (-4 *2 (-1229))
- (-5 *1 (-300 *2))))
+ (-12 (-4 *2 (-317 *2)) (-4 *2 (-1113)) (-4 *2 (-1231))
+ (-5 *1 (-302 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-308))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-652 *1))) (-4 *1 (-308))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 (-1 *1 (-652 *1))))
- (-4 *1 (-308))))
+ (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1))))
+ (-4 *1 (-310))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 (-1 *1 *1))) (-4 *1 (-308))))
+ (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1 *1 *1)) (-4 *1 (-308))))
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1 *1 (-652 *1))) (-4 *1 (-308))))
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-1 *1 (-652 *1))))
- (-4 *1 (-308))))
+ (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-1 *1 (-654 *1))))
+ (-4 *1 (-310))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-1 *1 *1))) (-4 *1 (-308))))
+ (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-300 *3))) (-4 *1 (-315 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1113))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-300 *3)) (-4 *1 (-315 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1113))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-572))) (-5 *4 (-1190 (-415 (-572))))
- (-5 *1 (-316 *2)) (-4 *2 (-38 (-415 (-572))))))
+ (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1192 (-417 (-574))))
+ (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 *1)) (-4 *1 (-381 *4 *5))
- (-4 *4 (-858)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5))
+ (-4 *4 (-860)) (-4 *5 (-174))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174))))
+ (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060))))
+ (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *4 (-1 *1 (-652 *1)))
- (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060))))
+ (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1)))
+ (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-779)))
- (-5 *4 (-652 (-1 *1 (-652 *1)))) (-4 *1 (-438 *5)) (-4 *5 (-1111))
- (-4 *5 (-1060))))
+ (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-781)))
+ (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1113))
+ (-4 *5 (-1062))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-779)))
- (-5 *4 (-652 (-1 *1 *1))) (-4 *1 (-438 *5)) (-4 *5 (-1111))
- (-4 *5 (-1060))))
+ (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-781)))
+ (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1113))
+ (-4 *5 (-1062))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 *1)) (-5 *4 (-1188))
- (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-622 (-544)))))
+ (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1190))
+ (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-624 (-546)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1188)) (-4 *1 (-438 *4)) (-4 *4 (-1111))
- (-4 *4 (-622 (-544)))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1190)) (-4 *1 (-440 *4)) (-4 *4 (-1113))
+ (-4 *4 (-624 (-546)))))
((*1 *1 *1)
- (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-622 (-544)))))
+ (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-624 (-546)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-1188))) (-4 *1 (-438 *3)) (-4 *3 (-1111))
- (-4 *3 (-622 (-544)))))
+ (-12 (-5 *2 (-654 (-1190))) (-4 *1 (-440 *3)) (-4 *3 (-1113))
+ (-4 *3 (-624 (-546)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111))
- (-4 *3 (-622 (-544)))))
+ (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113))
+ (-4 *3 (-624 (-546)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1229))))
+ (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1231))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 *5)) (-4 *1 (-522 *4 *5))
- (-4 *4 (-1111)) (-4 *5 (-1229))))
+ (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5))
+ (-4 *4 (-1113)) (-4 *5 (-1231))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-841 *3)) (-4 *3 (-370)) (-5 *1 (-726 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
+ (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-415 (-961 *4))) (-5 *3 (-1188)) (-4 *4 (-564))
- (-5 *1 (-1054 *4))))
+ (-12 (-5 *2 (-417 (-963 *4))) (-5 *3 (-1190)) (-4 *4 (-566))
+ (-5 *1 (-1056 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-652 (-1188))) (-5 *4 (-652 (-415 (-961 *5))))
- (-5 *2 (-415 (-961 *5))) (-4 *5 (-564)) (-5 *1 (-1054 *5))))
+ (-12 (-5 *3 (-654 (-1190))) (-5 *4 (-654 (-417 (-963 *5))))
+ (-5 *2 (-417 (-963 *5))) (-4 *5 (-566)) (-5 *1 (-1056 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-300 (-415 (-961 *4)))) (-5 *2 (-415 (-961 *4)))
- (-4 *4 (-564)) (-5 *1 (-1054 *4))))
+ (-12 (-5 *3 (-302 (-417 (-963 *4)))) (-5 *2 (-417 (-963 *4)))
+ (-4 *4 (-566)) (-5 *1 (-1056 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 (-300 (-415 (-961 *4))))) (-5 *2 (-415 (-961 *4)))
- (-4 *4 (-564)) (-5 *1 (-1054 *4))))
+ (-12 (-5 *3 (-654 (-302 (-417 (-963 *4))))) (-5 *2 (-417 (-963 *4)))
+ (-4 *4 (-566)) (-5 *1 (-1056 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1168 *3)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-426 *3)) (-4 *3 (-564)) (-5 *1 (-427 *3)))))
+ (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1170 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *8 (-1078 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-654 *8))
+ (|:| |towers| (-654 (-1040 *5 *6 *7 *8)))))
+ (-5 *1 (-1040 *5 *6 *7 *8)) (-5 *3 (-654 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *8 (-1078 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-654 *8))
+ (|:| |towers| (-654 (-1159 *5 *6 *7 *8)))))
+ (-5 *1 (-1159 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1062))
+ (-5 *1 (-724 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-846 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1048)) (-5 *3 (-1190)) (-5 *1 (-194)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *2 (-654 *3)) (-5 *1 (-990 *4 *5 *6 *3))
+ (-4 *3 (-1078 *4 *5 *6)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-654
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-574)))))
+ (-4 *2 (-566)) (-5 *1 (-428 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-574))
+ (|:| -3948 (-654 (-2 (|:| |irr| *4) (|:| -3963 (-574)))))))
+ (-4 *4 (-1257 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
+ (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-960 *4 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060))
- (-5 *2 (-652 (-652 (-652 (-952 *3))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1270 *4)) (-5 *1 (-1272 *4 *2))
- (-4 *4 (-38 (-415 (-572)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1162)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
+ (-12 (-4 *2 (-1257 *3)) (-5 *1 (-409 *3 *2))
+ (-4 *3 (-13 (-372) (-148))))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-687 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-4 *6 (-460))
- (-5 *2 (-652 (-652 *7))) (-5 *1 (-546 *6 *7 *5)) (-4 *7 (-370))
- (-4 *5 (-13 (-370) (-856))))))
+ (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) ((*1 *1) (-4 *1 (-553)))
- ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1235))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-930)) (-5 *2 (-476)) (-5 *1 (-1280)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
- (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-460)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-514))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-884))) (-5 *1 (-491)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572))))
+ (-12 (-5 *4 (-1 (-654 *5) *6))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5))
+ (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4122 *3))))
+ (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6))
+ (-4 *7 (-666 (-417 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-654 *5) *6))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *6 (-1257 *5))
+ (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4122 (-664 *6 (-417 *6))))))
+ (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1190))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-4 *4 (-13 (-29 *6) (-1216) (-970)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2722 (-654 *4))))
+ (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1305 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-829 *3)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-1062))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -4332 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1257 *7))
+ (-5 *3 (-417 *8))
(-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-415 *6)) (|:| |c| (-415 *6))
- (|:| -2141 *6)))
- (-5 *1 (-1026 *5 *6)) (-5 *3 (-415 *6)))))
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-584 *7 *8)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-762)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-956 *2 *3))
+ (-4 *3 (-1257 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) ((*1 *1) (-4 *1 (-555)))
+ ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-781)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-781)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564))
- (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8))))
- (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))))
+ (-12 (-4 *5 (-1113)) (-4 *3 (-911 *5)) (-5 *2 (-699 *3))
+ (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3))
+ (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))))
+(((*1 *1 *1) (-5 *1 (-1076))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-245)) (-5 *3 (-1170))))
- ((*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-564) (-148)))
- (-5 *2 (-2 (|:| -3888 *3) (|:| -3901 *3))) (-5 *1 (-1249 *4 *3))
- (-4 *3 (-1255 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-239 *3))
- (-4 *3 (-1111))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))))
+ (-12 (-4 *1 (-1051 (-574))) (-4 *1 (-310)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-158)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4))
+ (-5 *1 (-429 *4))))
+ ((*1 *1 *1) (-5 *1 (-937)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937))))
+ ((*1 *1 *1) (-5 *1 (-938)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))
+ (-5 *4 (-417 (-574))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))
+ (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))
+ (-5 *4 (-417 (-574))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))
+ (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3))
+ (-4 *3 (-1257 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1281 *5)) (-4 *5 (-315))
+ (-4 *5 (-1062)) (-5 *2 (-699 *5)) (-5 *1 (-1042 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-425 *4)))))
+ (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-247)) (-5 *3 (-1172))))
+ ((*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-247))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133))))))
+ (-4 *4 (-358)) (-5 *2 (-1286)) (-5 *1 (-538 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145)))))
+(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-158)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060))
- (-5 *2
- (-2 (|:| -4065 (-779)) (|:| |curves| (-779))
- (|:| |polygons| (-779)) (|:| |constructs| (-779)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-1279 (-322 (-386))))
- (-5 *1 (-311)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-489 *4 *5))) (-14 *4 (-652 (-1188)))
- (-4 *5 (-460))
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062))
(-5 *2
- (-2 (|:| |gblist| (-652 (-251 *4 *5)))
- (|:| |gvlist| (-652 (-572)))))
- (-5 *1 (-639 *4 *5)))))
+ (-2 (|:| -2953 (-781)) (|:| |curves| (-781))
+ (|:| |polygons| (-781)) (|:| |constructs| (-781)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
+ (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227)))
+ (-5 *1 (-707)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1062)) (-4 *3 (-372))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372))
+ (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5)))))
(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4456 "*"))) (-4 *5 (-380 *2)) (-4 *6 (-380 *2))
- (-4 *2 (-1060)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1255 *2))
- (-4 *4 (-695 *2 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-697 (-1184 *8))) (-4 *5 (-1060)) (-4 *8 (-1060))
- (-4 *6 (-1255 *5)) (-5 *2 (-697 *6)) (-5 *1 (-509 *5 *6 *7 *8))
- (-4 *7 (-1255 *6)))))
+ (-12 (-4 *4 (-462)) (-4 *4 (-566))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3709 *4)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-781))
+ (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574))))))
+ (-5 *1 (-252 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1229)) (-4 *3 (-1229)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-426 (-1184 *1))) (-5 *1 (-322 *4)) (-5 *3 (-1184 *1))
- (-4 *4 (-460)) (-4 *4 (-564)) (-4 *4 (-1111))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
- (-5 *2
- (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572))
- (|:| |success| (-112))))
- (-5 *1 (-797)) (-5 *5 (-572)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-930)) (-4 *1 (-242 *3 *4)) (-4 *4 (-1060))
- (-4 *4 (-1229))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
- (-4 *5 (-242 (-2860 *3) (-779)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2571 *2) (|:| -1679 *5))
- (-2 (|:| -2571 *2) (|:| -1679 *5))))
- (-5 *1 (-469 *3 *4 *2 *5 *6 *7)) (-4 *2 (-858))
- (-4 *7 (-958 *4 *5 (-872 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
- (-5 *2 (-2 (|:| -2114 (-415 *6)) (|:| |coeff| (-415 *6))))
- (-5 *1 (-582 *5 *6)) (-5 *3 (-415 *6)))))
+ (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1231)) (-4 *3 (-1231)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1291)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231))
+ (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1049 (-572))) (-4 *1 (-308)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-5 *2 (-1284)) (-5 *1 (-1191))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188))
- (-5 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *2 (-1284))
- (-5 *1 (-1191))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1188))
- (-5 *4 (-3 (|:| |fst| (-442)) (|:| -2420 "void"))) (-5 *2 (-1284))
- (-5 *1 (-1191)))))
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-386)) (-5 *1 (-194)))))
+ (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4))
+ (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062)))))
+(((*1 *1) (-5 *1 (-607))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-372) (-148)))
+ (-5 *2 (-654 (-2 (|:| -2524 (-781)) (|:| -3359 *4) (|:| |num| *4))))
+ (-5 *1 (-409 *3 *4)) (-4 *4 (-1257 *3)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-954 (-227))) (-5 *4 (-884)) (-5 *5 (-932))
+ (-5 *2 (-1286)) (-5 *1 (-478))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-478))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *4 (-884)) (-5 *5 (-932))
+ (-5 *2 (-1286)) (-5 *1 (-478)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148)))
- (-5 *1 (-407 *3 *4)))))
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))
+ (-14 *4 (-1190)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-4 *2 (-13 (-27) (-1216) (-440 *3) (-10 -8 (-15 -2943 ($ *4)))))
+ (-4 *4 (-858))
+ (-4 *5
+ (-13 (-1259 *2 *4) (-372) (-1216)
+ (-10 -8 (-15 -3905 ($ $)) (-15 -2968 ($ $)))))
+ (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-996 *5)) (-14 *7 (-1190)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1184 *7)) (-5 *3 (-572)) (-4 *7 (-958 *6 *4 *5))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
- (-5 *1 (-327 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192))))
- ((*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1) (-4 *1 (-877 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-800))
- (-4 *4 (-858)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1060)) (-4 *7 (-1060))
- (-4 *6 (-1255 *5)) (-5 *2 (-1184 (-1184 *7)))
- (-5 *1 (-509 *5 *6 *4 *7)) (-4 *4 (-1255 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-691 *4 *3)) (-4 *4 (-1111))
- (-4 *3 (-1111)))))
+ (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6))
+ (-4 *6 (-462)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-258 *2 *3 *4 *5)) (-4 *2 (-1060)) (-4 *3 (-858))
- (-4 *4 (-271 *3)) (-4 *5 (-801)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-831)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-4 *1 (-775 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *1 (-970 *2)) (-4 *2 (-553)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-305 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1105 (-851 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
- (-5 *1 (-311))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
- (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
- (-4 *3 (-13 (-1111) (-34))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-315))))
((*1 *2 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-800))
- (-4 *5 (-858)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1150))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-652 *3)) (-5 *5 (-930)) (-4 *3 (-1255 *4))
- (-4 *4 (-313)) (-5 *1 (-468 *4 *3)))))
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574))))
+ ((*1 *1 *1) (-4 *1 (-1073))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1190))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-654 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -4332 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1216) (-27) (-440 *8)))
+ (-4 *8 (-13 (-462) (-148) (-1051 *3) (-649 *3))) (-5 *3 (-574))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3904 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1026 *8 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1105 (-963 (-574)))) (-5 *3 (-963 (-574)))
+ (-5 *1 (-338))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1105 (-963 (-574)))) (-5 *1 (-338)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1062)) (-4 *3 (-860))
+ (-4 *4 (-273 *3)) (-4 *5 (-803)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1272 *4)) (-5 *1 (-1274 *4 *2))
+ (-4 *4 (-38 (-417 (-574)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
+ (-14 *6 (-654 (-1190)))
+ (-5 *2
+ (-654 (-1159 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6)))))
+ (-5 *1 (-638 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1105 (-851 (-386)))) (-5 *2 (-1105 (-851 (-227))))
- (-5 *1 (-311)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-652 *7)) (-5 *3 (-112)) (-4 *7 (-1076 *4 *5 *6))
- (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *1 (-988 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-324 (-574))))
+ (-5 *1 (-1044)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-462))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *5 (-920)) (-5 *1 (-467 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-920)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *1) (-4 *1 (-358))))
+(((*1 *2 *1) (-12 (-4 *1 (-1269 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1229)) (-5 *2 (-779)) (-5 *1 (-184 *4 *3))
- (-4 *3 (-682 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-375))))
+ (-12 (-5 *3 (-1281 *5)) (-4 *5 (-13 (-1062) (-649 *4)))
+ (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
+ (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-1217 *3))) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-377))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4))
- (-4 *4 (-356))))
+ (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4))
+ (-4 *4 (-358))))
((*1 *2 *1)
- (-12 (-4 *2 (-858)) (-5 *1 (-721 *2 *3 *4)) (-4 *3 (-1111))
+ (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1113))
(-14 *4
- (-1 (-112) (-2 (|:| -2571 *2) (|:| -1679 *3))
- (-2 (|:| -2571 *2) (|:| -1679 *3)))))))
-(((*1 *1 *2) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-1111))))
+ (-1 (-112) (-2 (|:| -2576 *2) (|:| -2524 *3))
+ (-2 (|:| -2576 *2) (|:| -2524 *3)))))))
+(((*1 *1 *2) (-12 (-5 *1 (-1217 *2)) (-4 *2 (-1113))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-1215 *3))))
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-1217 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-652 (-1215 *2))) (-5 *1 (-1215 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-415 *6)) (|:| |h| *6)
- (|:| |c1| (-415 *6)) (|:| |c2| (-415 *6)) (|:| -2141 *6)))
- (-5 *1 (-1027 *5 *6)) (-5 *3 (-415 *6)))))
-(((*1 *1) (-5 *1 (-1096))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
+ (-12 (-5 *3 (-654 (-1217 *2))) (-5 *1 (-1217 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-555))))
+(((*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-901 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1111))
- (-4 *5 (-1229)) (-5 *1 (-899 *4 *5))))
+ (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1113))
+ (-4 *5 (-1231)) (-5 *1 (-901 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-901 *4)) (-5 *3 (-652 (-1 (-112) *5))) (-4 *4 (-1111))
- (-4 *5 (-1229)) (-5 *1 (-899 *4 *5))))
+ (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1113))
+ (-4 *5 (-1231)) (-5 *1 (-901 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-901 *5)) (-5 *3 (-652 (-1188)))
- (-5 *4 (-1 (-112) (-652 *6))) (-4 *5 (-1111)) (-4 *6 (-1229))
- (-5 *1 (-899 *5 *6))))
+ (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1190)))
+ (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1113)) (-4 *6 (-1231))
+ (-5 *1 (-901 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1229)) (-4 *4 (-1111))
- (-5 *1 (-946 *4 *2 *5)) (-4 *2 (-438 *4))))
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1231)) (-4 *4 (-1113))
+ (-5 *1 (-948 *4 *2 *5)) (-4 *2 (-440 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 (-1 (-112) *5))) (-4 *5 (-1229)) (-4 *4 (-1111))
- (-5 *1 (-946 *4 *2 *5)) (-4 *2 (-438 *4))))
+ (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1231)) (-4 *4 (-1113))
+ (-5 *1 (-948 *4 *2 *5)) (-4 *2 (-440 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1229))
- (-5 *2 (-322 (-572))) (-5 *1 (-947 *5))))
+ (-12 (-5 *3 (-1190)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1231))
+ (-5 *2 (-324 (-574))) (-5 *1 (-949 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-652 (-1 (-112) *5))) (-4 *5 (-1229))
- (-5 *2 (-322 (-572))) (-5 *1 (-947 *5))))
+ (-12 (-5 *3 (-1190)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1231))
+ (-5 *2 (-324 (-574))) (-5 *1 (-949 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-1 (-112) (-652 *6)))
- (-4 *6 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))) (-4 *4 (-1111))
- (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
- (-5 *1 (-1087 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1255 *6))
- (-4 *6 (-13 (-370) (-148) (-1049 *4))) (-5 *4 (-572))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -4121
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1026 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-237)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4))
- (-4 *6 (-801)) (-5 *2 (-1 *1 (-779))) (-4 *1 (-258 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801))
- (-5 *2 (-1 *1 (-779))) (-4 *1 (-258 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-271 *2)) (-4 *2 (-858)))))
-(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572))))
- (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-1218 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1170)) (-5 *4 (-171 (-227))) (-5 *5 (-572))
- (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-313) (-148)))
- (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801))
- (-5 *2
- (-652
- (-2 (|:| |eqzro| (-652 *7)) (|:| |neqzro| (-652 *7))
- (|:| |wcond| (-652 (-961 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *4))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *4))))))))))
- (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1163))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-572))))
- (-4 *4 (-13 (-1255 *3) (-564) (-10 -8 (-15 -2870 ($ $ $)))))
- (-4 *3 (-564)) (-5 *1 (-1258 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284))
- (-5 *1 (-457 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1279 (-697 *4))) (-4 *4 (-174))
- (-5 *2 (-1279 (-697 (-961 *4)))) (-5 *1 (-191 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-313)) (-5 *1 (-181 *3)))))
-(((*1 *1) (-5 *1 (-131))))
+ (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-1 (-112) (-654 *6)))
+ (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1113))
+ (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4))))
+ (-5 *1 (-1089 *4 *5 *6)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-4 *2 (-1111))
- (-5 *1 (-898 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-572)) (-5 *1 (-494 *4))
- (-4 *4 (-1255 *2)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-553))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-492 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1255 *4)) (-4 *4 (-1233))
- (-4 *1 (-349 *4 *3 *5)) (-4 *5 (-1255 (-415 *3))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-652 *8))) (-5 *3 (-652 *8))
- (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801))
- (-4 *7 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-564))
- (-5 *2 (-2 (|:| -3544 (-697 *5)) (|:| |vec| (-1279 (-652 (-930))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-930)) (-4 *3 (-664 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-308)) (-4 *2 (-1229))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-620 *1))) (-5 *3 (-652 *1)) (-4 *1 (-308))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-300 *1))) (-4 *1 (-308))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-300 *1)) (-4 *1 (-308)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-1210)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-567)))))
+ (-12 (-4 *1 (-989 *4 *5 *3 *6)) (-4 *4 (-1062)) (-4 *5 (-803))
+ (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
+ (-4 *4 (-174)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172)))))
+(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-932))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-932))
+ (-5 *1 (-538 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-697 *5))) (-4 *5 (-313)) (-4 *5 (-1060))
- (-5 *2 (-1279 (-1279 *5))) (-5 *1 (-1040 *5)) (-5 *4 (-1279 *5)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 (-415 *2)))
- (-4 *2 (-1255 *4)) (-5 *1 (-348 *3 *4 *2 *5))
- (-4 *3 (-349 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-349 *3 *2 *4)) (-4 *3 (-1233))
- (-4 *4 (-1255 (-415 *2))) (-4 *2 (-1255 *3)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1074)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-870) (-870) (-870))) (-5 *4 (-572)) (-5 *2 (-870))
- (-5 *1 (-657 *5 *6 *7)) (-4 *5 (-1111)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-870)) (-5 *1 (-862 *3 *4 *5)) (-4 *3 (-1060))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-870))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870))))
- ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-870))))
- ((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-870)) (-5 *1 (-1184 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-801)) (-4 *2 (-958 *4 *5 *6)) (-5 *1 (-457 *4 *5 *6 *2))
- (-4 *4 (-460)) (-4 *6 (-858)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-1087 *3 *4 *5))) (-4 *3 (-1111))
- (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))
- (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3))))
- (-5 *1 (-1088 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-652
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-801)) (-4 *3 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858))
- (-5 *1 (-457 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-5 *2 (-1284))
- (-5 *1 (-1230 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-5 *2 (-1284))
- (-5 *1 (-1230 *4)))))
+ (|partial| -12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062))
+ (-4 *2 (-1241 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1231)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-372)) (-4 *7 (-1257 *5)) (-4 *4 (-734 *5 *7))
+ (-5 *2 (-2 (|:| -1485 (-699 *6)) (|:| |vec| (-1281 *5))))
+ (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372))
+ (-4 *7 (-1257 *6))
+ (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6)))
+ (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-1078 *4 *5 *6)) (-4 *4 (-566))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462))
+ (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-990 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-982 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *1) (-5 *1 (-833))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-549 *4 *2 *5 *6))
+ (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-514)) (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
- ((*1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-652 (-489 *5 *6))) (-5 *4 (-872 *5))
- (-14 *5 (-652 (-1188))) (-5 *2 (-489 *5 *6)) (-5 *1 (-639 *5 *6))
- (-4 *6 (-460))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-489 *5 *6))) (-5 *4 (-872 *5))
- (-14 *5 (-652 (-1188))) (-5 *2 (-489 *5 *6)) (-5 *1 (-639 *5 *6))
- (-4 *6 (-460)))))
+ (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4))
+ (-5 *2 (-2 (|:| -1859 (-417 *5)) (|:| |poly| *3)))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-572)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *2 (-1284)) (-5 *1 (-457 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))))
-(((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1062))
+ (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-960 *2 *4 *5)))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
+ (-4 *4 (-174)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1231))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-115)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1224 *5 *6 *7 *8)) (-4 *5 (-566))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-564)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
- (-5 *1 (-1219 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7)))
- (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801))
- (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8)))
- (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7)))
- (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7))))
+ (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1190)) (-4 *5 (-440 *4))
+ (-4 *4 (-1113)) (-5 *1 (-583 *4 *5)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-372)) (-5 *1 (-907 *2 *3))
+ (-4 *2 (-1257 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1113)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6)))
+ (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1113)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4))
+ (-4 *3 (-1051 (-1190))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801))
- (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8)))
- (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+ (-12 (-4 *5 (-1113)) (-5 *2 (-654 (-302 (-963 *3))))
+ (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1062))
+ (-2077 (-4 *3 (-1051 (-1190)))) (-4 *3 (-897 *5))
+ (-4 *4 (-624 (-903 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1113)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4))
+ (-2077 (-4 *3 (-1051 (-1190)))) (-2077 (-4 *3 (-1062)))
+ (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338))
+ (-5 *1 (-340)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1123)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-1089 *3 *4 *5))) (-4 *3 (-1113))
+ (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3))))
+ (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))
+ (-5 *1 (-1090 *3 *4 *5)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3815 (-652 (-227)))))
- (-5 *2 (-386)) (-5 *1 (-272))))
+ (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
+ (-5 *2 (-654 (-963 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-654 (-963 *4))) (-5 *1 (-426 *3 *4))
+ (-4 *3 (-427 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-963 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-654 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-386)) (-5 *1 (-311)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
+ (-12 (-5 *3 (-1281 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-963 *4)))
+ (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174))
+ (-14 *5 (-932)) (-14 *6 (-654 (-1190))) (-14 *7 (-1281 (-699 *4))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -1900 *4))) (-5 *5 (-781))
+ (-4 *4 (-960 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-459 *6 *7 *8 *4)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112))
+ (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1048)) (-5 *1 (-766)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1266 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372))
+ (-14 *4 (-1190)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1113)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2576 *3) (|:| -2524 *2))
+ (-2 (|:| -2576 *3) (|:| -2524 *2)))))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-227))
+ (-5 *2
+ (-2 (|:| |brans| (-654 (-654 (-954 *4))))
+ (|:| |xValues| (-1107 *4)) (|:| |yValues| (-1107 *4))))
+ (-5 *1 (-154)) (-5 *3 (-654 (-654 (-954 *4)))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1274 *3 *2))
+ (-4 *2 (-1272 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1194)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386)))
- (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
- (-5 *1 (-1187)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-370))
- (-5 *1 (-529 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2))
- (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-174))
- (-5 *1 (-696 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
- (-4 *5 (-242 *3 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-572)) (-4 *3 (-174)) (-4 *5 (-380 *3))
- (-4 *6 (-380 *3)) (-5 *1 (-696 *3 *5 *6 *2))
- (-4 *2 (-695 *3 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))))
+ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388)))
+ (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189))))
+ (-5 *1 (-1189)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566))
+ (-5 *2 (-1186 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-899 *4 *5)) (-4 *5 (-1229))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1178)))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1113)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
- (-5 *2 (-697 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-697 *4)) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
- ((*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))))
+ (-12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-901 *4 *5)) (-4 *5 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1180)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233))
- (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-1060))
- (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-1255 *4)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1021 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1121)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-870)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 (-779))
- (-14 *4 (-779)) (-4 *5 (-174)))))
+ (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235))
+ (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1062)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-99 *3)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
+(((*1 *1 *1) (-4 *1 (-639)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015) (-1216))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386)))
- (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
- (-5 *1 (-1187)))))
-(((*1 *2 *1) (-12 (-5 *2 (-491)) (-5 *1 (-220))))
- ((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1) (-12 (-5 *2 (-491)) (-5 *1 (-684))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-572))) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-564)) (-4 *8 (-958 *7 *5 *6))
- (-5 *2 (-2 (|:| -1679 (-779)) (|:| -1857 *9) (|:| |radicand| *9)))
- (-5 *1 (-962 *5 *6 *7 *8 *9)) (-5 *4 (-779))
- (-4 *9
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *8)) (-15 -2963 (*8 $)) (-15 -2974 (*8 $))))))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-603 *3)) (-4 *3 (-1060)))))
-(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-386))))
+ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388)))
+ (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189))))
+ (-5 *1 (-1189)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-915 *4))
+ (-4 *4 (-1113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313))
- (-5 *2 (-652 (-779))) (-5 *1 (-786 *3 *4 *5 *6 *7))
- (-4 *3 (-1255 *6)) (-4 *7 (-958 *6 *4 *5)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-800)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+ (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4))
+ (-4 *4 (-358)))))
+(((*1 *2)
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1062))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1062)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3392 (-654 *3)) (|:| -1669 (-654 *3))))
+ (-5 *1 (-1232 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-652 *1)) (-4 *1 (-438 *4))
- (-4 *4 (-1111))))
+ (-12 (-5 *2 (-1190)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4))
+ (-4 *4 (-1113))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-1184 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
+ (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))
+ ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1062)) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1257 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-5 *2
+ (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574))
+ (|:| |success| (-112))))
+ (-5 *1 (-799)) (-5 *5 (-574)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386)))
- (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
- (-5 *1 (-1187)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1279 (-572))) (-5 *3 (-572)) (-5 *1 (-1121))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1279 (-572))) (-5 *3 (-652 (-572))) (-5 *4 (-572))
- (-5 *1 (-1121)))))
-(((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-532)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
- (-5 *2 (-2 (|:| |k| (-827 *3)) (|:| |c| *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-858)) (-5 *2 (-1200 (-652 *4))) (-5 *1 (-1199 *4))
- (-5 *3 (-652 *4)))))
+ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388)))
+ (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189))))
+ (-5 *1 (-1189)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+ (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3))
+ (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3))))
+ (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336))
- (-5 *1 (-338)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-697 (-227)))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
+ (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-1145 *4 *2))
+ (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4456) (-6 -4457))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-860)) (-4 *3 (-1231)) (-5 *1 (-1145 *3 *2))
+ (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4456) (-6 -4457)))))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386)))
- (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
- (-5 *1 (-1187)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801))
- (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1080 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801))
- (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
+ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388)))
+ (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189))))
+ (-5 *1 (-1189)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-956 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3))
+ (-4 *3 (-1113)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1170 (-654 (-932)))) (-5 *1 (-894)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-585 *4 *2))
+ (-4 *2 (-13 (-1216) (-970) (-1152) (-29 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3))))
+ (-5 *1 (-605 *3)) (-4 *3 (-1062)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-315)) (-4 *3 (-1005 *2)) (-4 *4 (-1257 *3))
+ (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1051 *3))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-535)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-858)) (-4 *5 (-918)) (-4 *6 (-801))
- (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-426 (-1184 *8)))
- (-5 *1 (-915 *5 *6 *7 *8)) (-5 *4 (-1184 *8))))
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4))))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-574)) (-14 *4 (-781)))))
+(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
((*1 *2 *3)
- (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5)))
- (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-612 *3 *2)) (-4 *3 (-1111))
- (-4 *2 (-1229)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))))
-(((*1 *1) (-5 *1 (-1281))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1113 (-1113 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1188)) (-5 *2 (-544)) (-5 *1 (-543 *4))
- (-4 *4 (-1229)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-652 (-697 *4))) (-5 *2 (-697 *4)) (-4 *4 (-1060))
- (-5 *1 (-1040 *4)))))
+ (-12 (-4 *4 (-566)) (-5 *2 (-1186 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *4 (-622 $)) $))
+ (-15 -2977 ((-1138 *4 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *4 (-622 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-803)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860))
+ (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3))
+ (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7))
+ (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-489 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060))
- (-5 *2 (-251 *4 *5)) (-5 *1 (-953 *4 *5)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-13 (-1060) (-647 (-572))))
- (-5 *2 (-1279 (-415 (-572)))) (-5 *1 (-1307 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1191))))
- ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-764)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1188))
- (-4 *4 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
+ (-12
+ (-5 *3
+ (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
+ (-253 *4 (-417 (-574)))))
+ (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112))
+ (-5 *1 (-515 *4 *5)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-572)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))))
+ (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-372) (-1216) (-1015)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 (-417 *2)))
+ (-4 *2 (-1257 *4)) (-5 *1 (-350 *3 *4 *2 *5))
+ (-4 *3 (-351 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1235))
+ (-4 *4 (-1257 (-417 *2))) (-4 *2 (-1257 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-977 *3)) (-4 *3 (-1113)) (-5 *1 (-978 *3)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231))
+ (-4 *4 (-382 *2)) (-4 *5 (-382 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1113))
+ (-4 *2 (-1231)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-808))
+ (-12
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-1046)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-194)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231))
+ (-5 *2 (-654 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-514)) (-5 *2 (-699 (-109))) (-5 *1 (-177))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-514)) (-5 *2 (-699 (-109))) (-5 *1 (-1096)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1255 *5))
- (-4 *5 (-13 (-27) (-438 *4))) (-4 *4 (-13 (-564) (-1049 (-572))))
- (-4 *7 (-1255 (-415 *6))) (-5 *1 (-560 *4 *5 *6 *7 *2))
- (-4 *2 (-349 *5 *6 *7)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229))
- (-4 *4 (-380 *2)) (-4 *5 (-380 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-294 *3 *2)) (-4 *3 (-1111))
- (-4 *2 (-1229)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1058)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
- (-5 *6 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-830)))))
+ (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-654 (-781)))
+ (-5 *1 (-915 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-574)) (-4 *4 (-1257 (-417 *3))) (-5 *2 (-932))
+ (-5 *1 (-924 *4 *5)) (-4 *5 (-1257 (-417 *4))))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-779)) (-4 *5 (-370)) (-5 *2 (-415 *6))
- (-5 *1 (-875 *5 *4 *6)) (-4 *4 (-1270 *5)) (-4 *6 (-1255 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-779)) (-5 *4 (-1271 *5 *6 *7)) (-4 *5 (-370))
- (-14 *6 (-1188)) (-14 *7 *5) (-5 *2 (-415 (-1252 *6 *5)))
- (-5 *1 (-876 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-779)) (-5 *4 (-1271 *5 *6 *7)) (-4 *5 (-370))
- (-14 *6 (-1188)) (-14 *7 *5) (-5 *2 (-415 (-1252 *6 *5)))
- (-5 *1 (-876 *5 *6 *7)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-14 *5 (-652 (-1188)))
- (-5 *2
- (-652 (-2 (|:| -2130 (-1184 *4)) (|:| -4329 (-652 (-961 *4))))))
- (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2
- (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5))))))
- (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5)))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2
- (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5))))))
- (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5)))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2
- (-652 (-2 (|:| -2130 (-1184 *5)) (|:| -4329 (-652 (-961 *5))))))
- (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5)))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2
- (-652 (-2 (|:| -2130 (-1184 *4)) (|:| -4329 (-652 (-961 *4))))))
- (-5 *1 (-1306 *4 *5 *6)) (-5 *3 (-652 (-961 *4)))
- (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1131)) (-4 *4 (-356))
- (-5 *1 (-536 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *3 (-1076 *6 *7 *8))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-1083 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -4090 *9))))
- (-5 *5 (-112)) (-4 *8 (-1076 *6 *7 *4)) (-4 *9 (-1082 *6 *7 *4 *8))
- (-4 *6 (-460)) (-4 *7 (-801)) (-4 *4 (-858))
- (-5 *2 (-652 (-2 (|:| |val| *8) (|:| -4090 *9))))
- (-5 *1 (-1083 *6 *7 *4 *8 *9)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4455)) (-4 *1 (-497 *3))
- (-4 *3 (-1229)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-370)) (-5 *2 (-652 (-1168 *4))) (-5 *1 (-291 *4 *5))
- (-5 *3 (-1168 *4)) (-4 *5 (-1270 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-683 *3)) (-4 *3 (-1060))
- (-4 *3 (-1111)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
- (-5 *2 (-112))))
+ (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-427 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *2 (-781))
+ (-5 *1 (-1178 *4 *5)) (-14 *4 (-932))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1178 *4 *5))
+ (-14 *4 (-932)) (-4 *5 (-1062))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-654 (-781))) (-5 *3 (-954 *5)) (-4 *5 (-1062))
+ (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))
((*1 *2 *1)
- (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
+ (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))
(-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-603 *3)) (-4 *3 (-1060))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-631 *3 *4))
- (-4 *4 (-1255 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-734))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
- (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
- (-4 *5 (-242 (-2860 *3) (-779)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2571 *2) (|:| -1679 *5))
- (-2 (|:| -2571 *2) (|:| -1679 *5))))
- (-4 *2 (-858)) (-5 *1 (-469 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-958 *4 *5 (-872 *3))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-856)))))
+(((*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1193)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1113)) (-5 *2 (-112))
+ (-5 *1 (-1232 *3)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388)))
+ (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286))
+ (-5 *1 (-798)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4457)) (-4 *1 (-499 *3))
+ (-4 *3 (-1231)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *1 (-1253 *4 *2))
+ (-4 *2 (-1257 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1239))) (-5 *3 (-1239)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1170 *4))) (-4 *4 (-372))
+ (-4 *4 (-1062)) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1186 *6)) (-1186 *6)))
+ (-4 *6 (-372))
+ (-5 *2
+ (-654
+ (-2 (|:| |outval| *7) (|:| |outmult| (-574))
+ (|:| |outvect| (-654 (-699 *7))))))
+ (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858))))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-975 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-1076)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-2 (|:| -4294 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
-(((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
- ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
- ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-375)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *4 (-779))
- (-5 *2 (-697 (-227))) (-5 *1 (-272)))))
-(((*1 *1)
- (-12 (-4 *1 (-412)) (-2074 (|has| *1 (-6 -4445)))
- (-2074 (|has| *1 (-6 -4437)))))
- ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-858))))
- ((*1 *1) (-4 *1 (-852))) ((*1 *1 *1 *1) (-4 *1 (-858)))
- ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))))
-(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-923 *3)) (-4 *3 (-313)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-476)) (-5 *3 (-652 (-268))) (-5 *1 (-1280))))
- ((*1 *1 *1) (-5 *1 (-1280))))
-(((*1 *2 *3)
+ (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388))))
+ ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388)))))
+(((*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227))))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-386)) (-5 *1 (-207)))))
+ (-5 *2
+ (-1281
+ (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2953 (-574))
+ (|:| -2599 (-574)) (|:| |spline| (-574)) (|:| -1597 (-574))
+ (|:| |axesColor| (-884)) (|:| -1998 (-574))
+ (|:| |unitsColor| (-884)) (|:| |showing| (-574)))))
+ (-5 *1 (-1282)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-654
+ (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 *3))
+ (|:| |logand| (-1186 *3)))))
+ (-5 *1 (-596 *3)) (-4 *3 (-372)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-654 (-1190))) (-4 *2 (-174))
+ (-4 *4 (-244 (-2863 *5) (-781)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2576 *3) (|:| -2524 *4))
+ (-2 (|:| -2576 *3) (|:| -2524 *4))))
+ (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860))
+ (-4 *7 (-960 *2 *4 (-874 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-652 (-1035 (-415 *4)))))
- (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
- (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-961 *4)))
- (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6))
- (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))))
-(((*1 *1) (-5 *1 (-1284))))
-(((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1105 (-227)))))
- ((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-779))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-779)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-697 (-415 (-961 (-572)))))
- (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042))
- (-5 *3 (-322 (-572))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
- (-5 *1 (-766)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2)))))
+(((*1 *1) (-5 *1 (-1286))))
+(((*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-1107 (-227)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
+ (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
+ (-4 *7 (-1005 *4)) (-4 *2 (-697 *7 *8 *9))
+ (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6))
+ (-4 *8 (-382 *7)) (-4 *9 (-382 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062))
+ (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2))
+ (-4 *2 (-697 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1062))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1136 *2 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372))))
+ ((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1201 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-544))) (-5 *1 (-544)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-760)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1168 *3))) (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3))
- (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)))))
+ (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-546))) (-5 *1 (-546)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1062)) (-4 *3 (-860))
+ (-4 *4 (-273 *3)) (-4 *5 (-803)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1048)) (-5 *1 (-758)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-489 *4 *5))) (-14 *4 (-652 (-1188)))
- (-4 *5 (-460)) (-5 *2 (-652 (-251 *4 *5))) (-5 *1 (-639 *4 *5)))))
+ (-12 (|has| *2 (-6 (-4458 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2))
+ (-4 *2 (-1062)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1257 *2))
+ (-4 *4 (-697 *2 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4)))
+ (-4 *4 (-860)) (-5 *1 (-1201 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *8)) (-5 *4 (-779)) (-4 *8 (-958 *5 *7 *6))
- (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
- (-4 *7 (-801))
- (-5 *2
- (-652
- (-2 (|:| |det| *8) (|:| |rows| (-652 (-572)))
- (|:| |cols| (-652 (-572))))))
- (-5 *1 (-933 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1105 (-227)))))
- ((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *6))
- (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1282)))))
-(((*1 *1) (-5 *1 (-297))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-370) (-856))) (-5 *1 (-183 *3 *2))
- (-4 *2 (-1255 (-171 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-1170))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1046))
- (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-158))))
- ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-882))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-935))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-935))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-936))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227)))
- (-5 *1 (-936)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-315))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-4 *3 (-1113))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3855 (-781)) (|:| -3435 (-781))))
+ (-5 *1 (-781))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-1107 (-227)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227))))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2003 (-654 *7))))
+ (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
+(((*1 *1 *1) (-5 *1 (-1076))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1051 (-574)))
+ (-4 *4 (-566)) (-5 *2 (-1186 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-622 *1)) (-4 *1 (-1062)) (-4 *1 (-310))
+ (-5 *2 (-1186 *1)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132))
+ (-4 *2 (-1113))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1113))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1113))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *2 (-1113)) (-5 *1 (-659 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-338)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
- ((*1 *1 *1) (-4 *1 (-501)))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
+ ((*1 *1 *1) (-4 *1 (-503)))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-882)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *2 (-1048)) (-5 *1 (-767)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158))))
+ ((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7))))
+ (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-781)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2 *3) (-12 (-5 *3 (-984)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-779)) (-5 *1 (-215 *4 *2)) (-14 *4 (-930))
- (-4 *2 (-1111)))))
+ (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-932))
+ (-4 *2 (-1113)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1229)) (-5 *1 (-881 *3 *2)) (-4 *3 (-1229))))
- ((*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-1207)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-652 (-415 *7)))
- (-4 *7 (-1255 *6)) (-5 *3 (-415 *7)) (-4 *6 (-370))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-582 *6 *7)))))
+ (-12 (-4 *2 (-1231)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1231))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1190)) (-5 *1 (-685 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-587))))
+ ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1195))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1195))) (-5 *1 (-1195)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
- ((*1 *1 *1) (-4 *1 (-501)))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
+ ((*1 *1 *1) (-4 *1 (-503)))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *4)) (-4 *4 (-858)) (-5 *2 (-652 (-672 *4 *5)))
- (-5 *1 (-635 *4 *5 *6)) (-4 *5 (-13 (-174) (-725 (-415 (-572)))))
- (-14 *6 (-930)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1186 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6))
+ (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062))
+ (-5 *1 (-1174 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062))
+ (-14 *4 (-1190)) (-14 *5 *3))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-380 *2))
- (-4 *5 (-380 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2))
+ (-4 *5 (-382 *2)) (-4 *2 (-1231))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-4 *2 (-1111)) (-5 *1 (-215 *4 *2))
- (-14 *4 (-930))))
+ (-12 (-5 *3 (-781)) (-4 *2 (-1113)) (-5 *1 (-215 *4 *2))
+ (-14 *4 (-932))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229))))
+ (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7))
- (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)) (-4 *2 (-1060)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-930)) (-4 *1 (-412))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-412))))
+ (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7))
+ (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1062)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-932)) (-4 *1 (-414))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414))))
((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *2 *6)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930))
- (-14 *4 (-930)))))
-(((*1 *2)
- (-12 (-4 *3 (-1060)) (-5 *2 (-967 (-720 *3 *4))) (-5 *1 (-720 *3 *4))
- (-4 *4 (-1255 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-779)) (-4 *4 (-313)) (-4 *6 (-1255 *4))
- (-5 *2 (-1279 (-652 *6))) (-5 *1 (-463 *4 *6)) (-5 *5 (-652 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-564)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 *4))))
- (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-657 *3 *4 *5)))))
+ (-12 (-4 *1 (-1116 *3 *4 *5 *2 *6)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1251 *3 *2))
+ (-4 *2 (-1257 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802))))
+ ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1062)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-781))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803))
+ (-4 *3 (-860)) (-5 *2 (-781)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227)))
+ (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-760)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *2 (-112))
- (-5 *1 (-268)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188))
- (-5 *2 (-652 *4)) (-5 *1 (-1125 *4 *5)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286))
+ (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-2 (|:| -4220 *4) (|:| -1784 (-574)))))
+ (-4 *4 (-1257 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
- ((*1 *1 *1) (-4 *1 (-501)))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
+ ((*1 *1 *1) (-4 *1 (-503)))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-1076 *3 *4 *2)) (-4 *2 (-858))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227)))
+ (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112))
+ (-5 *2 (-1048)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3))
+ (-4 *3 (-13 (-440 *6) (-27) (-1216)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1113)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781))
+ (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227)))
+ (-5 *2 (-1048)) (-5 *1 (-765)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-652 (-52))) (-5 *2 (-1284)) (-5 *1 (-871)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1111) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1151 *4 *5)) (-4 *4 (-13 (-1111) (-34))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858)) (-4 *3 (-174))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *1 (-268))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-572)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *2 (-1284)) (-5 *1 (-1281))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3778 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *1 (-1281))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+ (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1113)))))
+(((*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1286)) (-5 *1 (-873)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2)
+ (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-287)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
- ((*1 *1 *1) (-4 *1 (-501)))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
+ ((*1 *1 *1) (-4 *1 (-503)))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-285)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *3))
- (-4 *3 (-1255 (-415 *4))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858)))
- (-14 *3 (-652 (-1188))))))
+ (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1255 (-415 (-572)))) (-5 *1 (-922 *3 *2))
- (-4 *2 (-1255 (-415 *3))))))
-(((*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-442))
+ (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3))
+ (-4 *2
+ (-13 (-372) (-310)
+ (-10 -8 (-15 -2965 ((-1138 *3 (-622 $)) $))
+ (-15 -2977 ((-1138 *3 (-622 $)) $))
+ (-15 -2943 ($ (-1138 *3 (-622 $))))))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315))
+ (-5 *1 (-181 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-654 *8))
+ (-5 *4
+ (-654
+ (-2 (|:| -2722 (-699 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-699 *7)))))
+ (-5 *5 (-781)) (-4 *8 (-1257 *7)) (-4 *7 (-1257 *6)) (-4 *6 (-358))
(-5 *2
- (-652
- (-3 (|:| -2030 (-1188))
- (|:| -3966 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))))
- (-5 *1 (-1192)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-545 *4 *2))
- (-4 *2 (-1270 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *4 (-13 (-370) (-375) (-622 *3)))
- (-4 *5 (-1255 *4)) (-4 *6 (-732 *4 *5)) (-5 *1 (-549 *4 *5 *6 *2))
- (-4 *2 (-1270 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *4 (-13 (-370) (-375) (-622 *3)))
- (-5 *1 (-550 *4 *2)) (-4 *2 (-1270 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-13 (-564) (-148)))
- (-5 *1 (-1164 *4)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1151 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1111) (-34))) (-4 *6 (-13 (-1111) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1152 *5 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1129)) (-5 *1 (-1126)))))
+ (-2 (|:| -2722 (-699 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-699 *7))))
+ (-5 *1 (-508 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
+ (-5 *2 (-699 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556))))))
+(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1125)) (-4 *3 (-1113)) (-5 *2 (-654 *1))
+ (-4 *1 (-440 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3))
+ (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062))
+ (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *3))
+ (-5 *1 (-961 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $))
+ (-15 -2977 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1186 (-963 *6))) (-4 *6 (-566))
+ (-4 *2 (-960 (-417 (-963 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2))
+ (-4 *5 (-803))
+ (-4 *4 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *6 (-624 (-1190)))
+ (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *2 (-1179 (-654 (-963 *4)) (-654 (-302 (-963 *4)))))
+ (-5 *1 (-514 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
- ((*1 *1 *1) (-4 *1 (-501)))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
+ ((*1 *1 *1) (-4 *1 (-503)))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-564) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4)))))
- ((*1 *1 *1) (-5 *1 (-386)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1188)) (-4 *1 (-27))
- (-5 *2 (-652 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *2 (-652 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-322 (-227))) (-5 *4 (-652 (-1188)))
- (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *8 (-1076 *5 *6 *7))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938))
(-5 *2
- (-2 (|:| |val| (-652 *8))
- (|:| |towers| (-652 (-1038 *5 *6 *7 *8)))))
- (-5 *1 (-1038 *5 *6 *7 *8)) (-5 *3 (-652 *8))))
+ (-2 (|:| |brans| (-654 (-654 (-954 (-227)))))
+ (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))))
+ (-5 *1 (-154))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *8 (-1076 *5 *6 *7))
+ (-12 (-5 *3 (-938)) (-5 *4 (-417 (-574)))
(-5 *2
- (-2 (|:| |val| (-652 *8))
- (|:| |towers| (-652 (-1157 *5 *6 *7 *8)))))
- (-5 *1 (-1157 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2114 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-652 (-415 *8))) (-4 *7 (-370)) (-4 *8 (-1255 *7))
- (-5 *3 (-415 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-582 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-1279 *5)) (-4 *5 (-313))
- (-4 *5 (-1060)) (-5 *2 (-697 *5)) (-5 *1 (-1040 *5)))))
+ (-2 (|:| |brans| (-654 (-654 (-954 (-227)))))
+ (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))))
+ (-5 *1 (-154)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
-(((*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-219))))
- ((*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-495))))
- ((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-313))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572))))
- ((*1 *1 *1) (-4 *1 (-1071))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))))
+ (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3))
+ (-4 *3 (-1113)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566))
+ (-5 *2 (-872)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1257 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1257 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781)))
+ (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1257 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062))))
+ ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
- ((*1 *1 *1) (-4 *1 (-501)))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
+ ((*1 *1 *1) (-4 *1 (-503)))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))))
-(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4))
- (-5 *2 (-2 (|:| -1857 (-415 *5)) (|:| |poly| *3)))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-689))))
- ((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-981))))
- ((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-1084))))
- ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1129)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4))
+ (-4 *4 (-358)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 (-954 *4))) (-4 *1 (-1147 *4)) (-4 *4 (-1062))
+ (-5 *2 (-781)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803))
+ (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-960 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1186 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3))
+ (-4 *3 (-372)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4457)) (-4 *4 (-372)) (-4 *5 (-382 *4))
+ (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3))
+ (-4 *3 (-697 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4457)) (-4 *4 (-566)) (-4 *5 (-382 *4))
+ (-4 *6 (-382 *4)) (-4 *7 (-1005 *4)) (-4 *8 (-382 *7))
+ (-4 *9 (-382 *7)) (-5 *2 (-654 *6))
+ (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6))
+ (-4 *10 (-697 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4))
+ (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3))
+ (-4 *3 (-697 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566))
+ (-5 *2 (-654 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-932)) (-5 *1 (-796)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-691))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-983))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1086))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1131)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3))
- (-4 *3 (-1111)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
- (-4 *4 (-380 *2)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
- (-251 *4 (-415 (-572)))))
- (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112))
- (-5 *1 (-513 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1170 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1062))
+ (-5 *3 (-417 (-574))) (-5 *1 (-1174 *4)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-697 *6)) (-5 *5 (-1 (-426 (-1184 *6)) (-1184 *6)))
- (-4 *6 (-370))
+ (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938))
+ (-5 *1 (-936 *3)) (-4 *3 (-624 (-546)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1190)) (-5 *2 (-938)) (-5 *1 (-936 *3))
+ (-4 *3 (-624 (-546)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-938))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-938)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *1 *1) (-4 *1 (-1152))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-654 (-1089 *4 *5 *2))) (-4 *4 (-1113))
+ (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4))))
+ (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-654 (-1089 *5 *6 *2))) (-5 *4 (-932)) (-4 *5 (-1113))
+ (-4 *6 (-13 (-1062) (-897 *5) (-624 (-903 *5))))
+ (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -4332 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-372)) (-4 *7 (-1257 *6))
(-5 *2
- (-652
- (-2 (|:| |outval| *7) (|:| |outmult| (-572))
- (|:| |outvect| (-652 (-697 *7))))))
- (-5 *1 (-540 *6 *7 *4)) (-4 *7 (-370)) (-4 *4 (-13 (-370) (-856))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-329 *2 *4)) (-4 *4 (-132))
- (-4 *2 (-1111))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-368 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-393 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *2 (-1111)) (-5 *1 (-657 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
+ (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6))
+ (-2 (|:| -4332 (-417 *7)) (|:| |coeff| (-417 *7))) "failed"))
+ (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286))
+ (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286))
+ (-5 *1 (-1121 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-427 *4)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-585))))
- ((*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-585)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284))
- (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *6 (-622 (-1188)))
- (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *2 (-1177 (-652 (-961 *4)) (-652 (-300 (-961 *4)))))
- (-5 *1 (-512 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-572)) (-5 *1 (-386)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-145))))
- ((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-145)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4455)) (-4 *4 (-370)) (-4 *5 (-380 *4))
- (-4 *6 (-380 *4)) (-5 *2 (-652 *6)) (-5 *1 (-529 *4 *5 *6 *3))
- (-4 *3 (-695 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4455)) (-4 *4 (-564)) (-4 *5 (-380 *4))
- (-4 *6 (-380 *4)) (-4 *7 (-1003 *4)) (-4 *8 (-380 *7))
- (-4 *9 (-380 *7)) (-5 *2 (-652 *6))
- (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-695 *4 *5 *6))
- (-4 *10 (-695 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-652 *5))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-194))))
((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4))
- (-4 *6 (-380 *4)) (-5 *2 (-652 *6)) (-5 *1 (-696 *4 *5 *6 *3))
- (-4 *3 (-695 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564))
- (-5 *2 (-652 *7)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
- (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
- (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-851 (-572))) (-5 *1 (-542))))
- ((*1 *1) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-308))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-313)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377))
+ (-4 *6 (-1062)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1042 *6))
+ (-5 *3 (-654 (-699 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1062))
+ (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1042 *4))
+ (-5 *3 (-654 (-699 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062))
+ (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5))
+ (-5 *3 (-654 (-699 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-932)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062))
+ (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5))
+ (-5 *3 (-654 (-699 *5))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-781)) (-4 *5 (-566))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-145))))
+ ((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-227))
+ (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-762)))))
+(((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544))))
+ ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1113)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-692 *4 *5 *6)) (-4 *4 (-1111)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1111)) (-5 *2 (-898 *3 *4)) (-5 *1 (-894 *3 *4 *5))
- (-4 *3 (-1111)) (-4 *5 (-674 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-975 *4)) (-4 *4 (-1111)) (-5 *2 (-1113 *4))
- (-5 *1 (-976 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
- ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233))
- (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-779))))
- ((*1 *1 *1) (-4 *1 (-410))))
-(((*1 *2 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1017)))))
-(((*1 *2) (-12 (-5 *2 (-851 (-572))) (-5 *1 (-542))))
- ((*1 *1) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574))
+ (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))))
+(((*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200)))))
+(((*1 *1 *1 *1) (-4 *1 (-771))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544))))
+ ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1113)))))
(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
- ((*1 *1 *1 *1) (-5 *1 (-386)))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
+ ((*1 *1 *1 *1) (-5 *1 (-388)))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-555))))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-932))) (-5 *4 (-916 (-574)))
+ (-5 *2 (-699 (-574))) (-5 *1 (-600))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-932))) (-5 *2 (-654 (-699 (-574))))
+ (-5 *1 (-600))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-932))) (-5 *4 (-654 (-916 (-574))))
+ (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-954 (-227)))) (-5 *1 (-1282)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-930))
- (-5 *2 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131))))))
- (-5 *1 (-353 *4)) (-4 *4 (-356)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-5 *2 (-1184 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 (-415 (-961 *6))))
- (-5 *3 (-415 (-961 *6)))
- (-4 *6 (-13 (-564) (-1049 (-572)) (-148)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-578 *6)))))
+ (-12 (-5 *3 (-654 (-2 (|:| -4220 (-1186 *6)) (|:| -2524 (-574)))))
+ (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574))
+ (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1859 *3) (|:| |gap| (-781)) (|:| -3855 (-792 *3))
+ (|:| -3435 (-792 *3))))
+ (-5 *1 (-792 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860))
+ (-5 *2
+ (-2 (|:| -1859 *1) (|:| |gap| (-781)) (|:| -3855 *1)
+ (|:| -3435 *1)))
+ (-4 *1 (-1078 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2
+ (-2 (|:| -1859 *1) (|:| |gap| (-781)) (|:| -3855 *1)
+ (|:| -3435 *1)))
+ (-4 *1 (-1078 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
- (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227)))
- (-5 *1 (-705))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-227)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-1 (-952 (-227)) (-227) (-227)))
- (-5 *4 (-1105 (-227))) (-5 *5 (-652 (-268))) (-5 *1 (-705)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-566 *2)) (-4 *2 (-553)))))
+ (-12 (-4 *4 (-1113)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5))
+ (-4 *3 (-1113)) (-4 *5 (-676 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-977 *4)) (-4 *4 (-1113)) (-5 *2 (-1115 *4))
+ (-5 *1 (-978 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1231)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-975 *3)) (-4 *3 (-1111)))))
-(((*1 *1 *1) (-4 *1 (-553))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-444)))))
-(((*1 *2)
- (-12 (-5 *2 (-697 (-919 *3))) (-5 *1 (-358 *3 *4)) (-14 *3 (-930))
- (-14 *4 (-930))))
- ((*1 *2)
- (-12 (-5 *2 (-697 *3)) (-5 *1 (-359 *3 *4)) (-4 *3 (-356))
- (-14 *4
- (-3 (-1184 *3)
- (-1279 (-652 (-2 (|:| -3080 *3) (|:| -2571 (-1131)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-697 *3)) (-5 *1 (-360 *3 *4)) (-4 *3 (-356))
- (-14 *4 (-930)))))
-(((*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3))
- (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-958 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313))
- (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 *7)))
- (-5 *1 (-750 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860))
+ (-4 *5 (-803)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))))
+(((*1 *1 *1) (-4 *1 (-555))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-574))))
((*1 *2 *1)
- (-12 (-4 *3 (-460)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-426 *1)) (-4 *1 (-958 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-460)) (-5 *2 (-426 *3))
- (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-460))
- (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 (-415 *7))))
- (-5 *1 (-1183 *4 *5 *6 *7)) (-5 *3 (-1184 (-415 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-426 *1)) (-4 *1 (-1233))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-426 *3)) (-5 *1 (-1258 *4 *3))
- (-4 *3 (-13 (-1255 *4) (-564) (-10 -8 (-15 -2870 ($ $ $)))))))
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8))))
+ (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-872)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-654 (-1190)))
+ (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1036)) (-5 *5 (-388))))
((*1 *2 *3)
- (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-14 *5 (-652 (-1188)))
- (-5 *2
- (-652 (-1157 *4 (-539 (-872 *6)) (-872 *6) (-788 *4 (-872 *6)))))
- (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870))))
- ((*1 *1 *1) (-5 *1 (-870))))
-(((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-368 (-115))) (-4 *2 (-1060)) (-5 *1 (-722 *2 *4))
- (-4 *4 (-656 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-368 (-115))) (-5 *1 (-844 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1060)) (-4 *4 (-1255 *3)) (-5 *1 (-165 *3 *4 *2))
- (-4 *2 (-1255 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))))
+ (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-654 (-1037 (-417 *4)))))
+ (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-963 *4)))
+ (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))))
+(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
+ ((*1 *1 *1 *1) (-5 *1 (-872))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-689))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1129)))))
-(((*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-543 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-544)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1279 *5)) (-5 *3 (-779)) (-5 *4 (-1131)) (-4 *5 (-356))
- (-5 *1 (-536 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1279 *4)) (-5 *3 (-572)) (-4 *4 (-356))
- (-5 *1 (-536 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227)))
- (|:| |lb| (-652 (-851 (-227))))
- (|:| |cf| (-652 (-322 (-227))))
- (|:| |ub| (-652 (-851 (-227))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-652 (-322 (-227))))
- (|:| -3815 (-652 (-227)))))))
- (-5 *2 (-652 (-1170))) (-5 *1 (-272)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-952 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-691))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1131)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3))
+ (-4 *3 (-13 (-372) (-148) (-1051 (-574)))) (-5 *1 (-578 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1062))
+ (-5 *1 (-1174 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4456)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1113))
+ (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1048))
+ (-5 *1 (-756)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5))
+ (|:| |c2| (-417 *5)) (|:| |deg| (-781))))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-370)) (-4 *5 (-1255 *4)) (-5 *2 (-1284))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1255 (-415 *5))) (-14 *7 *6))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-858)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1229))
- (-4 *5 (-1229)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-244 *6 *7)) (-14 *6 (-779))
- (-4 *7 (-1229)) (-4 *5 (-1229)) (-5 *2 (-244 *6 *5))
- (-5 *1 (-243 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1229)) (-4 *5 (-1229))
- (-4 *2 (-380 *5)) (-5 *1 (-378 *6 *4 *5 *2)) (-4 *4 (-380 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1111)) (-4 *5 (-1111))
- (-4 *2 (-433 *5)) (-5 *1 (-431 *6 *4 *5 *2)) (-4 *4 (-433 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-652 *6)) (-4 *6 (-1229))
- (-4 *5 (-1229)) (-5 *2 (-652 *5)) (-5 *1 (-650 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-967 *6)) (-4 *6 (-1229))
- (-4 *5 (-1229)) (-5 *2 (-967 *5)) (-5 *1 (-966 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1168 *6)) (-4 *6 (-1229))
- (-4 *3 (-1229)) (-5 *2 (-1168 *3)) (-5 *1 (-1166 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1279 *6)) (-4 *6 (-1229))
- (-4 *5 (-1229)) (-5 *2 (-1279 *5)) (-5 *1 (-1278 *6 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
- (-5 *2 (-827 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-854)) (-5 *1 (-1302 *3 *2)) (-4 *3 (-1060)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-370)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-664 *3))))
+ (-12 (-5 *3 (-963 *5)) (-4 *5 (-1062)) (-5 *2 (-253 *4 *5))
+ (-5 *1 (-955 *4 *5)) (-14 *4 (-654 (-1190))))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372))
+ (-4 *7 (-1257 (-417 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -2433 *3)))
+ (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-370)) (-5 *2 (-2 (|:| -4121 *3) (|:| -4294 (-652 *5))))
- (-5 *1 (-1036 *5 *3)) (-5 *4 (-652 *5)) (-4 *3 (-664 *5)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372))
+ (-5 *2
+ (-2 (|:| |answer| (-417 *6)) (|:| -2433 (-417 *6))
+ (|:| |specpart| (-417 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3))))
- ((*1 *1 *1) (-4 *1 (-1217))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386))
- (|:| |expense| (-386)) (|:| |accuracy| (-386))
- (|:| |intermediateResults| (-386))))
- (-5 *2 (-1046)) (-5 *1 (-311)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-870)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564))
- (-5 *2 (-1184 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-769))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-760)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-1060))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870))))
- ((*1 *1 *1) (-5 *1 (-870)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-952 (-227))) (-5 *2 (-227)) (-5 *1 (-1225))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-755)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3))))
+ ((*1 *1 *1) (-4 *1 (-1219))))
+(((*1 *1 *1 *1) (-4 *1 (-555))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5))
+ (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-1294 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1294 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1257 *4)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-1133)) (-5 *2 (-112)) (-5 *1 (-831)))))
+(((*1 *1) (-5 *1 (-145))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1048))
+ (-5 *1 (-764)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3))))
- ((*1 *1 *1) (-4 *1 (-1217))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-460)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3))))
+ ((*1 *1 *1) (-4 *1 (-1219))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-654 *3)) (-5 *1 (-972 *3)) (-4 *3 (-555)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1111) (-34))) (-5 *1 (-1151 *3 *2))
- (-4 *3 (-13 (-1111) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1290)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1184 *1)) (-4 *1 (-1023)))))
-(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-697 *4)) (-5 *3 (-930)) (-4 *4 (-1060))
- (-5 *1 (-1039 *4))))
+ (-12 (-4 *2 (-13 (-1113) (-34))) (-5 *1 (-1153 *3 *2))
+ (-4 *3 (-13 (-1113) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1292)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
+ (-5 *2 (-699 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462))
+ (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-990 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 (-697 *4))) (-5 *3 (-930)) (-4 *4 (-1060))
- (-5 *1 (-1039 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-652 *7)) (-5 *5 (-652 (-652 *8))) (-4 *7 (-858))
- (-4 *8 (-313)) (-4 *6 (-801)) (-4 *9 (-958 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-652 (-2 (|:| -4218 (-1184 *9)) (|:| -1679 (-572)))))))
- (-5 *1 (-750 *6 *7 *8 *9)) (-5 *3 (-1184 *9)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1151 *4 *5)) (-4 *4 (-13 (-1111) (-34)))
- (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *4 *5)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-514)) (-5 *3 (-1115)) (-5 *1 (-297)))))
+ (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1078 *4 *5 *6))
+ (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *1 (-990 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3))))
- ((*1 *1 *1) (-4 *1 (-1217))))
-(((*1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572))))
- ((*1 *1 *1) (-5 *1 (-1131))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
(((*1 *2 *1)
- (-12
+ (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5))
+ (-5 *2 (-423 *4 (-417 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1281 *6)) (-4 *6 (-13 (-419 *4 *5) (-1051 *4)))
+ (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *3 (-315))
+ (-5 *1 (-423 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-14 *5 (-654 (-1190)))
(-5 *2
- (-652
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-572)))))
- (-5 *1 (-426 *3)) (-4 *3 (-564))))
+ (-654 (-2 (|:| -1334 (-1186 *4)) (|:| -3676 (-654 (-963 *4))))))
+ (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-779)) (-4 *3 (-356)) (-4 *5 (-1255 *3))
- (-5 *2 (-652 (-1184 *3))) (-5 *1 (-506 *3 *5 *6))
- (-4 *6 (-1255 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-870)) (-5 *1 (-1168 *3)) (-4 *3 (-1111))
- (-4 *3 (-1229)))))
-(((*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1060)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
- (-4 *4 (-174))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-438 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1103 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564))
- (-5 *1 (-159 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-161))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-174)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-227))
- (-5 *7 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-1039 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-652 (-697 *3))) (-4 *3 (-1060)) (-5 *1 (-1039 *3))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2
+ (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5))))))
+ (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5)))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2
+ (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5))))))
+ (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5)))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2
+ (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5))))))
+ (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5)))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2
+ (-654 (-2 (|:| -1334 (-1186 *4)) (|:| -3676 (-654 (-963 *4))))))
+ (-5 *1 (-1308 *4 *5 *6)) (-5 *3 (-654 (-963 *4)))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-1039 *3))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-652 (-697 *3))) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801)) (-5 *2 (-652 (-652 (-572))))
- (-5 *1 (-933 *4 *5 *6 *7)) (-5 *3 (-572)) (-4 *7 (-958 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3))))
+ ((*1 *1 *1) (-4 *1 (-1219))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5))))
+ (-5 *1 (-1142 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-13 (-315) (-148)))
+ (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1142 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-302 (-417 (-963 *5)))) (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5))))
+ (-5 *1 (-1142 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-302 (-417 (-963 *4)))) (-4 *4 (-13 (-315) (-148)))
+ (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1142 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190)))
+ (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5)))))
+ (-5 *1 (-1142 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-417 (-963 *4)))) (-4 *4 (-13 (-315) (-148)))
+ (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1142 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-302 (-417 (-963 *5))))) (-5 *4 (-654 (-1190)))
+ (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5)))))
+ (-5 *1 (-1142 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-302 (-417 (-963 *4)))))
+ (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4)))))
+ (-5 *1 (-1142 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))
+ ((*1 *1 *1) (-5 *1 (-1133))))
+(((*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-358))
+ (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -2823 *3))))
+ (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1178 3 *3)) (-4 *3 (-1062)) (-4 *1 (-1147 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1133)) (-4 *4 (-358))
+ (-5 *1 (-538 *4)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1284)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3))))
- ((*1 *1 *1) (-4 *1 (-1217))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-564)) (-5 *1 (-980 *4 *2))
- (-4 *2 (-1255 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572))))
- ((*1 *1 *1 *1) (-5 *1 (-1131))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-930))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5))
- (-4 *3 (-1255 *4))
- (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))))
-(((*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-495)))))
-(((*1 *1) (-5 *1 (-445))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3))))
+ ((*1 *1 *1) (-4 *1 (-1219))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))
+ ((*1 *1 *1 *1) (-5 *1 (-1133))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8)))
+ (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8)))
+ (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553))
- (-5 *2 (-415 (-572)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-426 *3)) (-4 *3 (-553))
- (-4 *3 (-564))))
- ((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-415 (-572)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553))
- (-5 *2 (-415 (-572)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-841 *3)) (-4 *3 (-553))
- (-4 *3 (-1111))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-851 *3)) (-4 *3 (-553))
- (-4 *3 (-1111))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553))
- (-5 *2 (-415 (-572)))))
+ (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2))
+ (-4 *2 (-1272 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3))
+ (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2))
+ (-4 *2 (-1272 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148)))
+ (-5 *1 (-1166 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1216)))
+ (-5 *1 (-593 *4 *2))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574))))))
((*1 *2 *3)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1019 *3)) (-4 *3 (-1049 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
+ (-12 (-5 *3 (-596 (-417 (-963 *4))))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-324 *4))
+ (-5 *1 (-599 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1015))
+ (-4 *2 (-1062)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *3 (-1078 *6 *7 *8))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1078 *6 *7 *4)) (-4 *9 (-1084 *6 *7 *4 *8))
+ (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860))
+ (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4091 *9))))
+ (-5 *1 (-1085 *6 *7 *4 *8 *9)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3))))
- ((*1 *1 *1) (-4 *1 (-1217))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572))))
- ((*1 *1 *1 *1) (-5 *1 (-1131))))
-(((*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-767)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-5 *1 (-336)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-173))))))
-(((*1 *1 *2) (-12 (-5 *2 (-322 (-171 (-386)))) (-5 *1 (-336))))
- ((*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-5 *1 (-336))))
- ((*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-5 *1 (-336))))
- ((*1 *1 *2) (-12 (-5 *2 (-322 (-702))) (-5 *1 (-336))))
- ((*1 *1 *2) (-12 (-5 *2 (-322 (-709))) (-5 *1 (-336))))
- ((*1 *1 *2) (-12 (-5 *2 (-322 (-707))) (-5 *1 (-336))))
- ((*1 *1) (-5 *1 (-336))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3))))
+ ((*1 *1 *1) (-4 *1 (-1219))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))
+ ((*1 *1 *1 *1) (-5 *1 (-1133))))
+(((*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1048))
+ (-5 *1 (-756)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1190)) (-5 *6 (-654 (-622 *3)))
+ (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *7)))
+ (-4 *7 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3)))
+ (-5 *1 (-567 *7 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1186 *7))
+ (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *2 (-1257 *5))
+ (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1257 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 *8)) (-4 *8 (-960 *5 *7 *6))
+ (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190))))
+ (-4 *7 (-803))
+ (-5 *2
+ (-654
+ (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8))
+ (|:| |wcond| (-654 (-963 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *5))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *5))))))))))
+ (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-654 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1190))) (-4 *8 (-960 *5 *7 *6))
+ (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190))))
+ (-4 *7 (-803))
+ (-5 *2
+ (-654
+ (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8))
+ (|:| |wcond| (-654 (-963 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *5))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *5))))))))))
+ (-5 *1 (-935 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-699 *7)) (-4 *7 (-960 *4 *6 *5))
+ (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803))
+ (-5 *2
+ (-654
+ (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7))
+ (|:| |wcond| (-654 (-963 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *4))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *4))))))))))
+ (-5 *1 (-935 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-699 *9)) (-5 *5 (-932)) (-4 *9 (-960 *6 *8 *7))
+ (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190))))
+ (-4 *8 (-803))
+ (-5 *2
+ (-654
+ (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9))
+ (|:| |wcond| (-654 (-963 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *6))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *6))))))))))
+ (-5 *1 (-935 *6 *7 *8 *9)) (-5 *4 (-654 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1190))) (-5 *5 (-932))
+ (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148)))
+ (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803))
+ (-5 *2
+ (-654
+ (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9))
+ (|:| |wcond| (-654 (-963 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *6))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *6))))))))))
+ (-5 *1 (-935 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 *8)) (-5 *4 (-932)) (-4 *8 (-960 *5 *7 *6))
+ (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190))))
+ (-4 *7 (-803))
+ (-5 *2
+ (-654
+ (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8))
+ (|:| |wcond| (-654 (-963 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *5))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *5))))))))))
+ (-5 *1 (-935 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1172))
+ (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148)))
+ (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574))
+ (-5 *1 (-935 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1190))) (-5 *5 (-1172))
+ (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148)))
+ (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574))
+ (-5 *1 (-935 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 *8)) (-5 *4 (-1172)) (-4 *8 (-960 *5 *7 *6))
+ (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190))))
+ (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-932))
+ (-5 *6 (-1172)) (-4 *10 (-960 *7 *9 *8)) (-4 *7 (-13 (-315) (-148)))
+ (-4 *8 (-13 (-860) (-624 (-1190)))) (-4 *9 (-803)) (-5 *2 (-574))
+ (-5 *1 (-935 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1190))) (-5 *5 (-932))
+ (-5 *6 (-1172)) (-4 *10 (-960 *7 *9 *8)) (-4 *7 (-13 (-315) (-148)))
+ (-4 *8 (-13 (-860) (-624 (-1190)))) (-4 *9 (-803)) (-5 *2 (-574))
+ (-5 *1 (-935 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-699 *9)) (-5 *4 (-932)) (-5 *5 (-1172))
+ (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148)))
+ (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574))
+ (-5 *1 (-935 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1170 *4))) (-5 *1 (-293 *4 *5))
+ (-5 *3 (-1170 *4)) (-4 *5 (-1272 *4)))))
(((*1 *2 *3 *4)
(-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-713 *3 *4)) (-4 *3 (-1229)) (-4 *4 (-1229)))))
+ (-5 *1 (-715 *3 *4)) (-4 *3 (-1231)) (-4 *4 (-1231)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3))))
- ((*1 *1 *1) (-4 *1 (-1217))))
-(((*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-837)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1246 (-572))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-837)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-851 (-386))) (-5 *2 (-851 (-227))) (-5 *1 (-311)))))
-(((*1 *2 *2) (-12 (-5 *2 (-652 (-322 (-227)))) (-5 *1 (-272)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-572)) (-5 *1 (-577 *3)) (-4 *3 (-1049 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1192)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3))))
+ ((*1 *1 *1) (-4 *1 (-1219))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4))))
+ (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-699 *2)) (-5 *4 (-574))
+ (-4 *2 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-4 *5 (-1257 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1231)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574)))))
+ (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| -3359 *5) (|:| -2692 *5))))
+ (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5))
+ (-4 *6 (-666 (-417 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574)))))
+ (-4 *4 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -3359 *4) (|:| -2692 *4))))
+ (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4))
+ (-4 *6 (-666 (-417 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574)))))
+ (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| -3359 *5) (|:| -2692 *5))))
+ (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5))
+ (-4 *3 (-666 (-417 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574)))))
+ (-4 *4 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -3359 *4) (|:| -2692 *4))))
+ (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4))
+ (-4 *3 (-666 (-417 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-990 *3 *4 *5 *6)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-779)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ (-12 (-5 *2 (-781)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1277 *3)) (-4 *3 (-23)) (-4 *3 (-1229)))))
-(((*1 *1 *1) (-4 *1 (-637)))
+ (-12 (-5 *2 (-781)) (-4 *1 (-1279 *3)) (-4 *3 (-23)) (-4 *3 (-1231)))))
+(((*1 *1 *1) (-4 *1 (-639)))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-245)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-112))
- (-5 *2 (-1046)) (-5 *1 (-761)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-371 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-426 (-1184 (-572)))) (-5 *1 (-193)) (-5 *3 (-572)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-4 *4 (-1229)) (-5 *2 (-112))
- (-5 *1 (-1168 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1229))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015) (-1216))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1186 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6))
+ (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-963 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6))
+ (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-831)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-762)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2))
+ (-4 *3 (-566)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1231))))
((*1 *1 *2)
- (-12 (-5 *2 (-961 (-386))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (-12 (-5 *2 (-963 (-388))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-415 (-961 (-386)))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (-12 (-5 *2 (-417 (-963 (-388)))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 (-386))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-961 (-572))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (-12 (-5 *2 (-963 (-574))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-415 (-961 (-572)))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (-12 (-5 *2 (-417 (-963 (-574)))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 (-572))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-1188)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 *2))
- (-14 *4 (-652 *2)) (-4 *5 (-395))))
+ (-12 (-5 *2 (-1190)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2))
+ (-14 *4 (-654 *2)) (-4 *5 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 *5)) (-4 *5 (-395)) (-5 *1 (-346 *3 *4 *5))
- (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188)))))
- ((*1 *1 *2) (-12 (-5 *2 (-697 (-415 (-961 (-572))))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-697 (-415 (-961 (-386))))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-697 (-961 (-572)))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-697 (-961 (-386)))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-697 (-322 (-572)))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-697 (-322 (-386)))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-572)))) (-4 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-386)))) (-4 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-961 (-386))) (-4 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-4 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-4 *1 (-404))))
- ((*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 (-572))))) (-4 *1 (-449))))
- ((*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 (-386))))) (-4 *1 (-449))))
- ((*1 *1 *2) (-12 (-5 *2 (-1279 (-961 (-572)))) (-4 *1 (-449))))
- ((*1 *1 *2) (-12 (-5 *2 (-1279 (-961 (-386)))) (-4 *1 (-449))))
- ((*1 *1 *2) (-12 (-5 *2 (-1279 (-322 (-572)))) (-4 *1 (-449))))
- ((*1 *1 *2) (-12 (-5 *2 (-1279 (-322 (-386)))) (-4 *1 (-449))))
+ (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5))
+ (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-963 (-574))))) (-4 *1 (-393))))
+ ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-963 (-388))))) (-4 *1 (-393))))
+ ((*1 *1 *2) (-12 (-5 *2 (-699 (-963 (-574)))) (-4 *1 (-393))))
+ ((*1 *1 *2) (-12 (-5 *2 (-699 (-963 (-388)))) (-4 *1 (-393))))
+ ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393))))
+ ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393))))
+ ((*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-574)))) (-4 *1 (-406))))
+ ((*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-388)))) (-4 *1 (-406))))
+ ((*1 *1 *2) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-406))))
+ ((*1 *1 *2) (-12 (-5 *2 (-963 (-388))) (-4 *1 (-406))))
+ ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406))))
+ ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 (-574))))) (-4 *1 (-451))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 (-388))))) (-4 *1 (-451))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1281 (-963 (-574)))) (-4 *1 (-451))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1281 (-963 (-388)))) (-4 *1 (-451))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1281 (-324 (-574)))) (-4 *1 (-451))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1281 (-324 (-388)))) (-4 *1 (-451))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(|:| |mdnia|
- (-2 (|:| |fn| (-322 (-227)))
- (|:| -1910 (-652 (-1105 (-851 (-227)))))
+ (-2 (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-654 (-1107 (-853 (-227)))))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))))
- (-5 *1 (-777))))
+ (-5 *1 (-779))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *1 (-816))))
+ (-5 *1 (-818))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-322 (-227))) (|:| -3815 (-652 (-227)))
- (|:| |lb| (-652 (-851 (-227))))
- (|:| |cf| (-652 (-322 (-227))))
- (|:| |ub| (-652 (-851 (-227))))))
+ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227)))
+ (|:| |lb| (-654 (-853 (-227))))
+ (|:| |cf| (-654 (-324 (-227))))
+ (|:| |ub| (-654 (-853 (-227))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-652 (-322 (-227))))
- (|:| -3815 (-652 (-227)))))))
- (-5 *1 (-849))))
+ (-2 (|:| |lfn| (-654 (-324 (-227))))
+ (|:| -3818 (-654 (-227)))))))
+ (-5 *1 (-851))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-652 (-322 (-227))))
+ (-2 (|:| |pde| (-654 (-324 (-227))))
(|:| |constraints|
- (-652
+ (-654
(-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-779)) (|:| |boundaryType| (-572))
- (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
- (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
+ (|:| |grid| (-781)) (|:| |boundaryType| (-574))
+ (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
+ (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172))
(|:| |tol| (-227))))
- (-5 *1 (-907))))
+ (-5 *1 (-909))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *1 (-987 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-989 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1231))))
((*1 *1 *2)
- (-2813
- (-12 (-5 *2 (-961 *3))
- (-12 (-2074 (-4 *3 (-38 (-415 (-572)))))
- (-2074 (-4 *3 (-38 (-572)))) (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
- (-4 *5 (-858)))
- (-12 (-5 *2 (-961 *3))
- (-12 (-2074 (-4 *3 (-553))) (-2074 (-4 *3 (-38 (-415 (-572)))))
- (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
- (-4 *5 (-858)))
- (-12 (-5 *2 (-961 *3))
- (-12 (-2074 (-4 *3 (-1003 (-572)))) (-4 *3 (-38 (-415 (-572))))
- (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
- (-4 *5 (-858)))))
+ (-2818
+ (-12 (-5 *2 (-963 *3))
+ (-12 (-2077 (-4 *3 (-38 (-417 (-574)))))
+ (-2077 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803))
+ (-4 *5 (-860)))
+ (-12 (-5 *2 (-963 *3))
+ (-12 (-2077 (-4 *3 (-555))) (-2077 (-4 *3 (-38 (-417 (-574)))))
+ (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803))
+ (-4 *5 (-860)))
+ (-12 (-5 *2 (-963 *3))
+ (-12 (-2077 (-4 *3 (-1005 (-574)))) (-4 *3 (-38 (-417 (-574))))
+ (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803))
+ (-4 *5 (-860)))))
((*1 *1 *2)
- (-2813
- (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
- (-12 (-2074 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572)))
- (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))
- (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))))
+ (-2818
+ (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5))
+ (-12 (-2077 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574)))
+ (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))
+ (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))))
((*1 *1 *2)
- (-12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060))
- (-4 *4 (-801)) (-4 *5 (-858)))))
+ (-12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062))
+ (-4 *4 (-803)) (-4 *5 (-860)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1062))
+ (-4 *3 (-1113)))))
+(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1172)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-4 *4 (-1078 *6 *7 *8)) (-5 *2 (-1286))
+ (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1084 *6 *7 *8 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1296 (-1190) *3)) (-4 *3 (-1062)) (-5 *1 (-1303 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1296 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))
+ (-5 *1 (-1305 *3 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172))
+ (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-1188)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-370)) (-4 *4 (-564)) (-4 *5 (-1255 *4))
- (-5 *2 (-2 (|:| -2004 (-631 *4 *5)) (|:| -4350 (-415 *5))))
- (-5 *1 (-631 *4 *5)) (-5 *3 (-415 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4))
- (-14 *3 (-930)) (-4 *4 (-1060))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-460)) (-4 *3 (-1060))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1255 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-313)) (-4 *3 (-174)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3)))
- (-5 *1 (-696 *3 *4 *5 *6)) (-4 *6 (-695 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-708 *3))
- (-4 *3 (-313)))))
-(((*1 *2 *2) (-12 (-5 *2 (-396)) (-5 *1 (-444))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-396)) (-5 *1 (-444)))))
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229))
- (-4 *4 (-380 *2)) (-4 *5 (-380 *2))))
+ (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231))
+ (-4 *4 (-382 *2)) (-4 *5 (-382 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-380 *2))
- (-4 *5 (-380 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2))
+ (-4 *5 (-382 *2)) (-4 *2 (-1231))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1229))))
+ (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1231))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 (-572))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 (-572)) (-14 *5 (-779))))
+ (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 (-574)) (-14 *5 (-781))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-779))))
+ (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-781))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-779))))
+ (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-781))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-779))))
+ (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-781))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-572))
- (-14 *4 (-779))))
+ (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574))
+ (-14 *4 (-781))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1188)) (-5 *2 (-249 (-1170))) (-5 *1 (-216 *4))
+ (-12 (-5 *3 (-1190)) (-5 *2 (-251 (-1172))) (-5 *1 (-216 *4))
(-4 *4
- (-13 (-858)
- (-10 -8 (-15 -2196 ((-1170) $ *3)) (-15 -1401 ((-1284) $))
- (-15 -1528 ((-1284) $)))))))
+ (-13 (-860)
+ (-10 -8 (-15 -2200 ((-1172) $ *3)) (-15 -1403 ((-1286) $))
+ (-15 -3588 ((-1286) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1000)) (-5 *1 (-216 *3))
+ (-12 (-5 *2 (-1002)) (-5 *1 (-216 *3))
(-4 *3
- (-13 (-858)
- (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 ((-1284) $))
- (-15 -1528 ((-1284) $)))))))
+ (-13 (-860)
+ (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $))
+ (-15 -3588 ((-1286) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-779)) (-5 *1 (-249 *4)) (-4 *4 (-858))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-249 *3)) (-4 *3 (-858))))
+ (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-249 *3)) (-4 *3 (-858))))
+ (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1229)) (-4 *2 (-1229))))
+ (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1231)) (-4 *2 (-1231))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 *1)) (-4 *1 (-308))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
+ (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-349 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-1255 *2))
- (-4 *4 (-1255 (-415 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1170)) (-5 *1 (-510))))
+ (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-1257 *2))
+ (-4 *4 (-1257 (-417 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1172)) (-5 *1 (-512))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-779)) (-5 *1 (-683 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1113))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-652 (-572))) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
+ (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-652 (-901 *4))) (-5 *1 (-901 *4))
- (-4 *4 (-1111))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4))
+ (-4 *4 (-1113))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-914 *4)) (-5 *1 (-913 *4))
- (-4 *4 (-1111))))
+ (-12 (-5 *3 (-781)) (-5 *2 (-916 *4)) (-5 *1 (-915 *4))
+ (-4 *4 (-1113))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1021 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *3 "value") (-4 *1 (-1023 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7)) (-4 *2 (-1060))
- (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2))))
+ (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) (-4 *2 (-1062))
+ (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7))
- (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)) (-4 *2 (-1060))))
+ (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7))
+ (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1062))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-930)) (-4 *4 (-1111))
- (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
- (-5 *1 (-1087 *4 *5 *2))
- (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4))))))
+ (-12 (-5 *3 (-932)) (-4 *4 (-1113))
+ (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4))))
+ (-5 *1 (-1089 *4 *5 *2))
+ (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-930)) (-4 *4 (-1111))
- (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
- (-5 *1 (-1088 *4 *5 *2))
- (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4))))))
- ((*1 *1 *1 *1) (-4 *1 (-1155)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188))))
+ (-12 (-5 *3 (-932)) (-4 *4 (-1113))
+ (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4))))
+ (-5 *1 (-1090 *4 *5 *2))
+ (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))
+ ((*1 *1 *1 *1) (-4 *1 (-1157)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-415 *1)) (-4 *1 (-1255 *2)) (-4 *2 (-1060))
- (-4 *2 (-370))))
+ (-12 (-5 *3 (-417 *1)) (-4 *1 (-1257 *2)) (-4 *2 (-1062))
+ (-4 *2 (-372))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-415 *1)) (-4 *1 (-1255 *3)) (-4 *3 (-1060))
- (-4 *3 (-564))))
+ (-12 (-5 *2 (-417 *1)) (-4 *1 (-1257 *3)) (-4 *3 (-1062))
+ (-4 *3 (-566))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1267 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *3 "last") (-4 *1 (-1269 *2)) (-4 *2 (-1231))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1267 *3)) (-4 *3 (-1229))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1269 *3)) (-4 *3 (-1231))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-779))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-781))))
((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-779)))))
-(((*1 *2)
- (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
- (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-322 (-227))) (-5 *1 (-272)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-572)) (-4 *5 (-370))
- (-4 *5 (-1060)) (-5 *2 (-112)) (-5 *1 (-1040 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-697 *4))) (-4 *4 (-370)) (-4 *4 (-1060))
- (-5 *2 (-112)) (-5 *1 (-1040 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-411 *3)) (-4 *3 (-412))))
- ((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-411 *3)) (-4 *3 (-412))))
- ((*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412))))
- ((*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930))))
- ((*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-1168 (-572))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-421 *3 *4 *5 *6)) (-4 *6 (-1049 *4)) (-4 *3 (-313))
- (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *6 (-417 *4 *5))
- (-14 *7 (-1279 *6)) (-5 *1 (-422 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1279 *6)) (-4 *6 (-417 *4 *5)) (-4 *4 (-1003 *3))
- (-4 *5 (-1255 *4)) (-4 *3 (-313)) (-5 *1 (-422 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-779))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
- (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-779)))))
-(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-697 *3)) (|:| |invmval| (-697 *3))
- (|:| |genIdeal| (-512 *3 *4 *5 *6))))
- (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-652 (-652 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-652 (-3 (|:| |array| (-652 *3)) (|:| |scalar| (-1188)))))
- (-5 *6 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1115))
- (-5 *1 (-405))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-652 (-652 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-652 (-3 (|:| |array| (-652 *3)) (|:| |scalar| (-1188)))))
- (-5 *6 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1115))
- (-5 *1 (-405))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-652 (-1188))) (-5 *5 (-1191)) (-5 *3 (-1188))
- (-5 *2 (-1115)) (-5 *1 (-405)))))
-(((*1 *1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170))
- (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *1 *2)
+ (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1062))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4))
+ (-4 *4 (-1257 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-736))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574)))
+ (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-652
- (-2
- (|:| -3690
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -1907
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1168 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1910
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-567)))))
-(((*1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-697 *4)) (-5 *3 (-930)) (|has| *4 (-6 (-4456 "*")))
- (-4 *4 (-1060)) (-5 *1 (-1039 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 (-697 *4))) (-5 *3 (-930))
- (|has| *4 (-6 (-4456 "*"))) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-1170)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-1170)) (-5 *1 (-97)))))
-(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))))
+ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227)))
+ (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227))))
+ (|:| |ub| (-654 (-853 (-227))))))
+ (-5 *1 (-274)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1231)) (-5 *2 (-654 *1)) (-4 *1 (-1023 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-781))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *6))))
+ (-5 *4 (-1039 (-853 (-574)))) (-5 *5 (-1190)) (-5 *7 (-417 (-574)))
+ (-4 *6 (-1062)) (-5 *2 (-872)) (-5 *1 (-605 *6)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174))
+ (-4 *5 (-244 (-2863 *3) (-781)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2576 *2) (|:| -2524 *5))
+ (-2 (|:| -2576 *2) (|:| -2524 *5))))
+ (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-960 *4 *5 (-874 *3))))))
+(((*1 *1 *1) (-5 *1 (-1076))))
+(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))))
+(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))
+ ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 *5)))
+ (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1281 *5))
+ (-5 *1 (-648 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 *5)))
+ (-2077 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1281 (-417 *5)))
+ (-5 *1 (-648 *5 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1257 *4)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1)))
+ (-4 *1 (-1084 *4 *5 *6 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-415 (-572))) (-5 *1 (-603 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1060)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460))
- (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-620 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188)))
- (-4 *2 (-13 (-438 *5) (-27) (-1214)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *1 (-574 *5 *2 *6)) (-4 *6 (-1111)))))
-(((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1) (-5 *1 (-640))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-194))))
- ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-306))))
- ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-311)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-779)) (-5 *3 (-952 *5)) (-4 *5 (-1060))
- (-5 *1 (-1176 *4 *5)) (-14 *4 (-930))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-779))) (-5 *3 (-779)) (-5 *1 (-1176 *4 *5))
- (-14 *4 (-930)) (-4 *5 (-1060))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-779))) (-5 *3 (-952 *5)) (-4 *5 (-1060))
- (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801)) (-5 *2 (-415 (-961 *4))) (-5 *1 (-933 *4 *5 *6 *3))
- (-4 *3 (-958 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-697 *7)) (-4 *7 (-958 *4 *6 *5))
- (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801)) (-5 *2 (-697 (-415 (-961 *4))))
- (-5 *1 (-933 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5))
- (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801)) (-5 *2 (-652 (-415 (-961 *4))))
- (-5 *1 (-933 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
-(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-652 *4)) (-4 *4 (-370)) (-5 *2 (-1279 *4))
- (-5 *1 (-822 *4 *3)) (-4 *3 (-664 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1172 *4)) (-4 *4 (-1060))
- (-5 *3 (-572)))))
-(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-333 *3)) (-4 *3 (-1229))))
+ (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-566)) (-4 *2 (-960 *3 *5 *4))
+ (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-963 *6))) (-4 *5 (-803))
+ (-4 *4 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229))
- (-14 *4 (-572)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-954 *4 *3))
- (-4 *3 (-1255 *4)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-916 *3))) (-4 *3 (-1113)) (-5 *1 (-915 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1190)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7))
+ (-4 *3 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231))
+ (-4 *7 (-1231))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1190)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6))
+ (-4 *3 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-654 (-954 (-227)))))
+ (-5 *2 (-654 (-1107 (-227)))) (-5 *1 (-939)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-2 (|:| -4296 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *3))
- (-4 *3 (-1229))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *3))
+ (-4 *3 (-1231))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-682 *3)) (-4 *3 (-1229))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1231))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1222 *4 *5 *3 *2)) (-4 *4 (-564))
- (-4 *5 (-801)) (-4 *3 (-858)) (-4 *2 (-1076 *4 *5 *3))))
+ (|partial| -12 (-4 *1 (-1224 *4 *5 *3 *2)) (-4 *4 (-566))
+ (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1078 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-5 *1 (-1226 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
+ (-12 (-5 *3 (-781)) (-5 *1 (-1228 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-874 *4 *5 *6 *7))
- (-4 *4 (-1060)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-4 *5 (-858)) (-4 *6 (-801))
- (-14 *8 (-652 *5)) (-5 *2 (-1284))
- (-5 *1 (-1291 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-958 *4 *6 *5))
- (-14 *9 (-652 *3)) (-14 *10 *3))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-697 *7)) (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5))
- (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801)) (-5 *1 (-933 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-572)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 *3))
- (-4 *3 (-13 (-27) (-1214) (-438 *6)))
- (-4 *6 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-565 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-872 *5))) (-14 *5 (-652 (-1188))) (-4 *6 (-460))
- (-5 *2 (-652 (-652 (-251 *5 *6)))) (-5 *1 (-479 *5 *6 *7))
- (-5 *3 (-652 (-251 *5 *6))) (-4 *7 (-460)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-544)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-652 *8))) (-5 *3 (-652 *8))
- (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148)))
- (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-112))
- (-5 *1 (-933 *5 *6 *7 *8)))))
-(((*1 *1) (-5 *1 (-1096))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1168 *2)) (-4 *2 (-313)) (-5 *1 (-176 *2)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-779)) (-5 *1 (-595 *2)) (-4 *2 (-553))))
+ (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
+ (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2625 *3) (|:| -1679 (-779)))) (-5 *1 (-595 *3))
- (-4 *3 (-553)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-112)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-372 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-1210)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
+ (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4))
+ (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3))
+ (-4 *3 (-697 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566))
+ (-5 *2 (-781)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188))
- (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1279 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370))
- (-4 *1 (-732 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1255 *5))
- (-5 *2 (-697 *5)))))
-(((*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-4 *1 (-730)))
- ((*1 *1) (-4 *1 (-734)))
- ((*1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
- ((*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1060))
- (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
- (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))))
-(((*1 *1 *2) (-12 (-5 *2 (-185 (-253))) (-5 *1 (-252)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227))))
+ (-5 *2 (-1048)) (-5 *1 (-764)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231))
+ (-4 *2 (-1113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-546)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
+ ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
+ ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1235)) (-4 *5 (-1257 *3)) (-4 *6 (-1257 (-417 *5)))
+ (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1062)) (-4 *2 (-697 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1257 *4)) (-4 *5 (-382 *4))
+ (-4 *6 (-382 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-652 (-171 *4))) (-5 *1 (-156 *3 *4))
- (-4 *3 (-1255 (-171 (-572)))) (-4 *4 (-13 (-370) (-856)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-171 *4)))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-574))
+ (|:| -3948 (-654 (-2 (|:| |irr| *3) (|:| -3963 (-574)))))))
+ (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-171 *4)))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| |k| (-680 *3)) (|:| |c| *4))))
- (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
- (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-622 (-901 *3))) (-4 *3 (-895 *3)) (-4 *3 (-460))
- (-5 *1 (-1220 *3 *2)) (-4 *2 (-622 (-901 *3))) (-4 *2 (-895 *3))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-620 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188))) (-5 *5 (-1184 *2))
- (-4 *2 (-13 (-438 *6) (-27) (-1214)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *1 (-568 *6 *2 *7)) (-4 *7 (-1111))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-620 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188)))
- (-5 *5 (-415 (-1184 *2))) (-4 *2 (-13 (-438 *6) (-27) (-1214)))
- (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *1 (-568 *6 *2 *7)) (-4 *7 (-1111)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-779)) (-4 *5 (-174))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-779)) (-4 *5 (-174))))
- ((*1 *2 *2 *3)
- (-12
+ (-12 (-5 *4 (-112))
(-5 *2
- (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
- (-251 *4 (-415 (-572)))))
- (-5 *3 (-652 (-872 *4))) (-14 *4 (-652 (-1188))) (-14 *5 (-779))
- (-5 *1 (-513 *4 *5)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-544)))
- ((*1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1069))))
- ((*1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
- ((*1 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1069)))))
+ (-2 (|:| |contp| (-574))
+ (|:| -3948 (-654 (-2 (|:| |irr| *3) (|:| -3963 (-574)))))))
+ (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 (-171 (-572))))) (-5 *2 (-652 (-171 *4)))
- (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 (-415 (-961 (-171 (-572))))))
- (-5 *4 (-652 (-1188))) (-5 *2 (-652 (-652 (-171 *5))))
- (-5 *1 (-385 *5)) (-4 *5 (-13 (-370) (-856))))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-4 *1 (-732)))
+ ((*1 *1) (-4 *1 (-736)))
+ ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113))))
+ ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227))))
+ (-5 *2 (-1048)) (-5 *1 (-765)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 *3)) (-4 *3 (-1120 *5 *6 *7 *8))
- (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-599 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
+ (-12 (-5 *4 (-781)) (-4 *5 (-1062)) (-4 *2 (-1257 *5))
+ (-5 *1 (-1275 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1272 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-963 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-1282))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2800 *4)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4))
+ (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6)))
+ (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574))))
+ (-5 *2 (-2 (|:| -3593 (-781)) (|:| -2709 *8)))
+ (-5 *1 (-922 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6))
+ (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4)))
+ (-4 *6 (-351 (-417 (-574)) *4 *5))
+ (-5 *2 (-2 (|:| -3593 (-781)) (|:| -2709 *6)))
+ (-5 *1 (-923 *4 *5 *6)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-546)))
+ ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1071))))
+ ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113))))
+ ((*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1071)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-781)) (-4 *5 (-566))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-377)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4))
+ (-5 *1 (-274)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4))
+ (-14 *3 (-932)) (-4 *4 (-1062))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-930)) (-4 *6 (-564)) (-5 *2 (-652 (-322 *6)))
- (-5 *1 (-223 *5 *6)) (-5 *3 (-322 *6)) (-4 *5 (-1060))))
- ((*1 *2 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564))))
+ (-12 (-5 *4 (-932)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6)))
+ (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1062))))
+ ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))
((*1 *2 *3)
- (-12 (-5 *3 (-594 *5)) (-4 *5 (-13 (-29 *4) (-1214)))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-652 *5))
- (-5 *1 (-591 *4 *5))))
+ (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1216)))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-654 *5))
+ (-5 *1 (-593 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-594 (-415 (-961 *4))))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-652 (-322 *4))) (-5 *1 (-597 *4))))
+ (-12 (-5 *3 (-596 (-417 (-963 *4))))
+ (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1160 *3))))
+ (-12 (-4 *1 (-1108 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1162 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 *1)) (-4 *1 (-1106 *4 *2)) (-4 *4 (-856))
- (-4 *2 (-1160 *4))))
+ (-12 (-5 *3 (-654 *1)) (-4 *1 (-1108 *4 *2)) (-4 *4 (-858))
+ (-4 *2 (-1162 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214)))))
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1294 (-1188) *3)) (-5 *1 (-1301 *3)) (-4 *3 (-1060))))
+ (-12 (-5 *2 (-1296 (-1190) *3)) (-5 *1 (-1303 *3)) (-4 *3 (-1062))))
((*1 *2 *1)
- (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-1060)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1060))
- (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
- (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1191)) (-5 *3 (-1188)))))
-(((*1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-553)))))
-(((*1 *1) (-5 *1 (-514))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1184 *2)) (-4 *2 (-958 (-415 (-961 *6)) *5 *4))
- (-5 *1 (-740 *5 *4 *6 *2)) (-4 *5 (-801))
- (-4 *4 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $)))))
- (-4 *6 (-564)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-697 *4)) (-4 *5 (-664 *4)))))
+ (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-1062)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))
+ (-5 *2 (-1048)) (-5 *1 (-758)))))
+(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832)))))
+(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-781)) (-5 *3 (-954 *4)) (-4 *1 (-1147 *4))
+ (-4 *4 (-1062))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-781)) (-5 *4 (-954 (-227))) (-5 *2 (-1286))
+ (-5 *1 (-1283)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1561)) (-5 *2 (-112)) (-5 *1 (-625))))
+ (-12 (-5 *3 (|[\|\|]| -1562)) (-5 *2 (-112)) (-5 *1 (-627))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2032)) (-5 *2 (-112)) (-5 *1 (-625))))
+ (-12 (-5 *3 (|[\|\|]| -2034)) (-5 *2 (-112)) (-5 *1 (-627))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2882)) (-5 *2 (-112)) (-5 *1 (-625))))
+ (-12 (-5 *3 (|[\|\|]| -2885)) (-5 *2 (-112)) (-5 *1 (-627))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2229)) (-5 *2 (-112)) (-5 *1 (-699 *4))
- (-4 *4 (-621 (-870)))))
+ (-12 (-5 *3 (|[\|\|]| -2235)) (-5 *2 (-112)) (-5 *1 (-701 *4))
+ (-4 *4 (-623 (-872)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-621 (-870))) (-5 *2 (-112))
- (-5 *1 (-699 *4))))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112))
+ (-5 *1 (-701 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-884))))
+ (-12 (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)) (-5 *1 (-886))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)) (-5 *1 (-884))))
+ (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-572))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-600))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-634))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1101))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-981))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-983))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1049))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-317))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1164))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-533))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1290))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1292))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1128))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1289))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1291))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-532))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-1193))))
+ (-12 (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)) (-5 *1 (-1195))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)) (-5 *1 (-1193))))
+ (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1195))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1193))))
+ (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1195))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-572))) (-5 *2 (-112)) (-5 *1 (-1193)))))
+ (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1195)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 *2)))
- (-5 *2 (-901 *3)) (-5 *1 (-1087 *3 *4 *5))
- (-4 *5 (-13 (-438 *4) (-895 *3) (-622 *2))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-963)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-779)) (-4 *4 (-13 (-564) (-148)))
- (-5 *1 (-1249 *4 *2)) (-4 *2 (-1255 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-370)))))
+ (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 *2)))
+ (-5 *2 (-903 *3)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2))))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-654
+ (-2
+ (|:| -3693
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -1909
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1170 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2967
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231))
+ (-5 *2 (-654 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-538 *3)) (-4 *3 (-13 (-734) (-25))))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-764)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-514)) (-5 *1 (-115))))
+ (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4))
+ (-4 *4 (-1062)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-965)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2800 *4)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781))
+ (-5 *2 (-699 (-227))) (-5 *1 (-274)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))))
+(((*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1284)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-514)) (-4 *4 (-1111)) (-5 *1 (-938 *4 *2))
- (-4 *2 (-438 *4))))
+ (-12 (-5 *3 (-516)) (-4 *4 (-1113)) (-5 *1 (-940 *4 *2))
+ (-4 *2 (-440 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-5 *4 (-514)) (-5 *2 (-322 (-572)))
- (-5 *1 (-939)))))
+ (-12 (-5 *3 (-1190)) (-5 *4 (-516)) (-5 *2 (-324 (-574)))
+ (-5 *1 (-941)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227)))
+ (-5 *2 (-1048)) (-5 *1 (-757)))))
(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))
- ((*1 *1 *1 *1) (-5 *1 (-1131))))
-(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))))
+ ((*1 *1 *1 *1) (-5 *1 (-1133))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1062))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *3 (-1078 *4 *5 *6))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *1))))
+ (-4 *1 (-1084 *4 *5 *6 *3)))))
+(((*1 *1)
+ (-12 (-4 *1 (-414)) (-2077 (|has| *1 (-6 -4447)))
+ (-2077 (|has| *1 (-6 -4439)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-860))))
+ ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860)))
+ ((*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))))
+ (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
- (-14 *4 (-652 (-1188)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1229))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858)))
- (-14 *4 (-652 (-1188)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-858)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-800)) (-4 *3 (-174)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-930)) (-5 *1 (-1112 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
+ (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-415 (-961 (-171 (-572))))))
- (-5 *2 (-652 (-652 (-300 (-961 (-171 *4)))))) (-5 *1 (-385 *4))
- (-4 *4 (-13 (-370) (-856)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-300 (-415 (-961 (-171 (-572)))))))
- (-5 *2 (-652 (-652 (-300 (-961 (-171 *4)))))) (-5 *1 (-385 *4))
- (-4 *4 (-13 (-370) (-856)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 (-171 (-572)))))
- (-5 *2 (-652 (-300 (-961 (-171 *4))))) (-5 *1 (-385 *4))
- (-4 *4 (-13 (-370) (-856)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-300 (-415 (-961 (-171 (-572))))))
- (-5 *2 (-652 (-300 (-961 (-171 *4))))) (-5 *1 (-385 *4))
- (-4 *4 (-13 (-370) (-856))))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 (-1252 *5 *4)))
- (-5 *1 (-1125 *4 *5)) (-5 *3 (-1252 *5 *4)))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707))))
- ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1229)) (-5 *1 (-184 *3 *2)) (-4 *2 (-682 *3)))))
+ (-12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3)))
+ (|:| |vals| (-654 *3))))
+ (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-914 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-925 *3)) (-4 *3 (-315)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574))
+ (-5 *2 (-1048)) (-5 *1 (-764)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1279 (-652 (-572)))) (-5 *1 (-488))))
+ (-12 (-5 *3 (-781)) (-5 *2 (-1281 (-654 (-574)))) (-5 *1 (-490))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2))
- (-4 *3 (-564)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-589)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1229)) (-5 *2 (-652 *1)) (-4 *1 (-1021 *3)))))
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229))
- (-4 *2 (-1111)))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4))
- (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6)))
- (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572))))
- (-5 *2 (-2 (|:| -2956 (-779)) (|:| -2705 *8)))
- (-5 *1 (-920 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6))
- (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4)))
- (-4 *6 (-349 (-415 (-572)) *4 *5))
- (-5 *2 (-2 (|:| -2956 (-779)) (|:| -2705 *6)))
- (-5 *1 (-921 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+ (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3))
+ (-5 *1 (-1251 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-652
- (-2 (|:| -3581 (-779))
+ (-654
+ (-2 (|:| -3584 (-781))
(|:| |eqns|
- (-652
- (-2 (|:| |det| *7) (|:| |rows| (-652 (-572)))
- (|:| |cols| (-652 (-572))))))
- (|:| |fgb| (-652 *7)))))
- (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148)))
- (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-779))
- (-5 *1 (-933 *4 *5 *6 *7)))))
+ (-654
+ (-2 (|:| |det| *7) (|:| |rows| (-654 (-574)))
+ (|:| |cols| (-654 (-574))))))
+ (|:| |fgb| (-654 *7)))))
+ (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148)))
+ (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-781))
+ (-5 *1 (-935 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-699 *2)) (-4 *4 (-1257 *2))
+ (-4 *2 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)) (-4 *2 (-1062)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1282))))
+ ((*1 *1 *1) (-5 *1 (-1282))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1257 *4)) (-5 *2 (-699 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3))
+ (-5 *2 (-699 *3)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1201 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-338)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-803))
+ (-4 *5 (-13 (-860) (-10 -8 (-15 -1837 ((-1190) $))))) (-4 *6 (-566))
+ (-5 *2 (-2 (|:| -1854 (-963 *6)) (|:| -3361 (-963 *6))))
+ (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-960 (-417 (-963 *6)) *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231))
+ (-14 *4 (-574)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1062)) (-5 *2 (-1281 *3)) (-5 *1 (-722 *3 *4))
+ (-4 *4 (-1257 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-112))
- (-5 *1 (-364 *4))))
+ (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-112))
+ (-5 *1 (-366 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-112))
- (-5 *1 (-536 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-858)) (-5 *1 (-1199 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1264 *3 *4 *5)) (-4 *3 (-370)) (-14 *4 (-1188))
- (-14 *5 *3) (-5 *1 (-325 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))))
+ (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-112))
+ (-5 *1 (-538 *4)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-322 (-572))) (|:| -1384 (-322 (-386)))
- (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
- (-5 *1 (-1187)))))
-(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-870))))
+ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388)))
+ (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189))))
+ (-5 *1 (-1189)))))
+(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-872))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-779)) (-5 *1 (-1112 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-781)) (-5 *1 (-1114 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-59 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-417 (-1186 (-324 *3)))) (-4 *3 (-566))
+ (-5 *1 (-1143 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-388)) (-5 *1 (-207)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))
+ (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *5))
+ (-4 *5 (-1257 (-417 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3161 *1) (|:| -4441 *1) (|:| |associate| *1)))
- (-4 *1 (-564)))))
-(((*1 *1) (-5 *1 (-831))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-652 (-790 *3))) (-5 *1 (-790 *3)) (-4 *3 (-564))
- (-4 *3 (-1060)))))
+ (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1239 *3))
- (-5 *2 (-415 (-572))))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-538 *3)) (-4 *3 (-13 (-734) (-25))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1060)) (-4 *3 (-1255 *4)) (-4 *2 (-1270 *4))
- (-5 *1 (-1273 *4 *3 *5 *2)) (-4 *5 (-664 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-488)))))
+ (-12
+ (-5 *2
+ (-654
+ (-654
+ (-3 (|:| -2032 (-1190))
+ (|:| -3211 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))))
+ (-5 *1 (-1194)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3904 *6) (|:| |sol?| (-112))) (-574)
+ *6))
+ (-4 *6 (-372)) (-4 *7 (-1257 *6))
+ (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6)))
+ (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1201 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388))))
+ ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1231)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1113)) (-4 *2 (-911 *5)) (-5 *1 (-702 *5 *2 *3 *4))
+ (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *5 (-1257 *4)) (-5 *2 (-1186 (-417 *5))) (-5 *1 (-625 *4 *5))
+ (-5 *3 (-417 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5))
+ (-4 *5 (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-5 *2 (-1186 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1229)) (-5 *2 (-652 *1)) (-4 *1 (-1021 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4))
- (-14 *3 (-930)) (-4 *4 (-1060)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-652 *5))
- (-5 *1 (-899 *4 *5)) (-4 *5 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1229)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-930)) (-4 *3 (-370))
- (-14 *4 (-1004 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
- ((*1 *1) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
- ((*1 *1 *1) (|partial| -4 *1 (-730)))
- ((*1 *1 *1) (|partial| -4 *1 (-734)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1079 *3 *2)) (-4 *3 (-13 (-856) (-370)))
- (-4 *2 (-1255 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
- (-4 *4 (-13 (-1111) (-34))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-38 (-415 (-572))))
- (-4 *2 (-174)))))
+ (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-1078 *3 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-872)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1266 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1190))
+ (-14 *5 *3) (-5 *1 (-327 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-1113 *3))))
+ (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555))
+ (-5 *2 (-417 (-574)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1113 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1188)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-710 *4 *5 *6 *7))
- (-4 *4 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229))
- (-4 *7 (-1229)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-1184 *4))
- (-5 *1 (-536 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1170)) (-5 *1 (-311)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892))
- (-5 *3 (-652 (-572)))))
+ (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555))
+ (-4 *3 (-566))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555))
+ (-5 *2 (-417 (-574)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555))
+ (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555))
+ (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555))
+ (-5 *2 (-417 (-574)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892))
- (-5 *3 (-652 (-572))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-356)) (-4 *2 (-1060)) (-5 *1 (-720 *2 *3))
- (-4 *3 (-1255 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1214))))
- ((*1 *2 *1) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-1 (-227) (-227) (-227) (-227)))
- (-5 *2 (-1 (-952 (-227)) (-227) (-227))) (-5 *1 (-705)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-779))
- (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
+ (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1021 *3))
+ (-4 *3 (-1051 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-904))
- (-5 *3
- (-2 (|:| |pde| (-652 (-322 (-227))))
- (|:| |constraints|
- (-652
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-779)) (|:| |boundaryType| (-572))
- (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
- (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
- (|:| |tol| (-227))))
- (-5 *2 (-1046)))))
-(((*1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1111)) (-5 *1 (-976 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-148)) (-4 *2 (-313)) (-4 *2 (-460)) (-4 *3 (-858))
- (-4 *4 (-801)) (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-322 (-572))) (-5 *1 (-1130))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
+ (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-654 (-1037 (-417 *4)))))
+ (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-963 *4)))
+ (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284))))
+ ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))))
+(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))
+ ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1188))
- (|:| |arrayIndex| (-652 (-961 (-572))))
+ (-2 (|:| |var| (-1190))
+ (|:| |arrayIndex| (-654 (-963 (-574))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1188)) (|:| |rand| (-870))
+ (-2 (|:| |var| (-1190)) (|:| |rand| (-872))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1187)) (|:| |thenClause| (-336))
- (|:| |elseClause| (-336))))
+ (-2 (|:| |switch| (-1189)) (|:| |thenClause| (-338))
+ (|:| |elseClause| (-338))))
(|:| |returnBranch|
- (-2 (|:| -1841 (-112))
- (|:| -3080
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1443 (-870))))))
- (|:| |blockBranch| (-652 (-336)))
- (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170))
+ (-2 (|:| -3556 (-112))
+ (|:| -3083
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872))))))
+ (|:| |blockBranch| (-654 (-338)))
+ (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172))
(|:| |forBranch|
- (-2 (|:| -1910 (-1103 (-961 (-572))))
- (|:| |span| (-961 (-572))) (|:| -2042 (-336))))
- (|:| |labelBranch| (-1131))
- (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2042 (-336))))
+ (-2 (|:| -2967 (-1105 (-963 (-574))))
+ (|:| |span| (-963 (-574))) (|:| -2045 (-338))))
+ (|:| |labelBranch| (-1133))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2045 (-338))))
(|:| |commonBranch|
- (-2 (|:| -2030 (-1188)) (|:| |contents| (-652 (-1188)))))
- (|:| |printBranch| (-652 (-870)))))
- (-5 *1 (-336)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2870 (-790 *3)) (|:| |coef1| (-790 *3))
- (|:| |coef2| (-790 *3))))
- (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-2 (|:| -2870 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1076 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *2 (-594 *3)) (-5 *1 (-434 *5 *3))
- (-4 *3 (-13 (-1214) (-29 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1230 *2))
- (-4 *2 (-1111))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-858))
- (-5 *1 (-1230 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-139))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-162))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-684))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1030))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1077))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1168 (-415 *3))) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-370))
- (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *1 (-458 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-370))
- (-5 *2
- (-2 (|:| R (-697 *6)) (|:| A (-697 *6)) (|:| |Ainv| (-697 *6))))
- (-5 *1 (-989 *6)) (-5 *3 (-697 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-336))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-336)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-425 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-929)) (-5 *2 (-2 (|:| -1857 (-652 *1)) (|:| -2967 *1)))
- (-5 *3 (-652 *1)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-858))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-858))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (-4 *1 (-288 *3)) (-4 *3 (-1229))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-288 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3690
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -1907
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1168 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1910
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-567))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-779)) (-4 *1 (-703 *2)) (-4 *2 (-1111))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3690
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (|:| -1907
- (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386))
- (|:| |expense| (-386)) (|:| |accuracy| (-386))
- (|:| |intermediateResults| (-386))))))
- (-5 *1 (-811))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-564)) (-4 *3 (-1060))
- (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-860 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-564)) (-4 *5 (-1060))
- (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-861 *5 *3))
- (-4 *3 (-860 *5)))))
+ (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190)))))
+ (|:| |printBranch| (-654 (-872)))))
+ (-5 *1 (-338)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1133)) (-5 *2 (-112)) (-5 *1 (-831)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-142)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| |k| (-1188)) (|:| |c| (-1301 *3)))))
- (-5 *1 (-1301 *3)) (-4 *3 (-1060))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| |k| *3) (|:| |c| (-1303 *3 *4)))))
- (-5 *1 (-1303 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))))
-(((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))))
-(((*1 *1) (-5 *1 (-625))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-370) (-1214) (-1013))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-96))))
- ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-109))))
+ (-12 (-5 *2 (-2 (|:| -1708 *1) (|:| -4443 *1) (|:| |associate| *1)))
+ (-4 *1 (-566)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-162))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-220))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-686))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1032))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1079))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1109)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781))))
((*1 *2 *1)
- (-12 (-4 *1 (-371 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1111))))
- ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-446 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-491))))
- ((*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1111))))
- ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-873))))
- ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-974))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1086 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1126))))
- ((*1 *1 *1) (-5 *1 (-1188))))
+ (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-781)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-338))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-338)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-699 (-417 (-963 (-574)))))
+ (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1044)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112))
+ (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-1076 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-620 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1184 (-48))) (-5 *3 (-652 (-620 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1184 (-48))) (-5 *3 (-620 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1255 (-171 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-930)) (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))))
- ((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-370))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1003 *3)) (-5 *1 (-421 *3 *2 *4 *5))
- (-4 *3 (-313)) (-4 *5 (-13 (-417 *2 *4) (-1049 *2)))))
+ (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-1078 *3 *4 *5)))))
+(((*1 *1) (-5 *1 (-833))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1213 *3)) (-4 *3 (-1062)))))
+(((*1 *1) (-5 *1 (-627))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-96))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109))))
((*1 *2 *1)
- (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1003 *3))
- (-5 *1 (-422 *3 *2 *4 *5 *6)) (-4 *3 (-313)) (-4 *5 (-417 *2 *4))
- (-14 *6 (-1279 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-930)) (-4 *5 (-1060))
- (-4 *2 (-13 (-412) (-1049 *5) (-370) (-1214) (-290)))
- (-5 *1 (-451 *5 *3 *2)) (-4 *3 (-1255 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-620 (-503)))) (-5 *1 (-503))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-503))) (-5 *1 (-503))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1184 (-503))) (-5 *3 (-652 (-620 (-503))))
- (-5 *1 (-503))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1184 (-503))) (-5 *3 (-620 (-503))) (-5 *1 (-503))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1279 *4)) (-5 *3 (-930)) (-4 *4 (-356))
- (-5 *1 (-536 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-732 *4 *2)) (-4 *2 (-1255 *4))
- (-5 *1 (-783 *4 *2 *5 *3)) (-4 *3 (-1255 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174))))
- ((*1 *1 *1) (-4 *1 (-1071))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-652 (-779)))
- (-5 *1 (-913 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-652 (-112))) (-5 *5 (-697 (-227)))
- (-5 *6 (-697 (-572))) (-5 *7 (-227)) (-5 *3 (-572)) (-5 *2 (-1046))
- (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-764)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-107 *3)))))
+ (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1113))))
+ ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-448 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493))))
+ ((*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-976))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1088 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1128))))
+ ((*1 *1 *1) (-5 *1 (-1190))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310))))
+ ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1184 *6)) (-5 *3 (-572)) (-4 *6 (-313)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
+ (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
+ (-5 *1 (-1221 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *1 (-972 *2)) (-4 *2 (-555)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-5 *2
+ (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574))
+ (|:| |success| (-112))))
+ (-5 *1 (-799)) (-5 *5 (-574)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566))
+ (-4 *3 (-1062)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-754 *3)) (-4 *3 (-174)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-1 (-112) *8))) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8))))
- (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *4)) (-4 *4 (-370)) (-4 *2 (-1255 *4))
- (-5 *1 (-931 *4 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170)) (-4 *1 (-371 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
+ (-12 (-5 *4 (-699 (-417 (-963 (-574)))))
+ (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044))
+ (-5 *3 (-324 (-574))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
- (-5 *2 (-1279 (-697 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 (-697 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-1188))) (-4 *5 (-370))
- (-5 *2 (-1279 (-697 (-415 (-961 *5))))) (-5 *1 (-1097 *5))
- (-5 *4 (-697 (-415 (-961 *5))))))
+ (-12 (-5 *3 (-654 (-2 (|:| -3083 *4) (|:| -3848 (-574)))))
+ (-4 *4 (-1113)) (-5 *2 (-1 *4)) (-5 *1 (-1030 *4)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5))
+ (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-1294 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1294 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7))))
+ (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-4 *1 (-914 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1241 *3))
+ (-5 *2 (-417 (-574))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-932))) (-5 *2 (-1192 (-417 (-574))))
+ (-5 *1 (-192)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-932)) (-4 *5 (-315)) (-4 *3 (-1257 *5))
+ (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1048))
+ (-5 *1 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1190))) (-4 *6 (-372))
+ (-5 *2 (-654 (-302 (-963 *6)))) (-5 *1 (-548 *5 *6 *7))
+ (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-757)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3))
+ (-4 *3 (-13 (-1216) (-29 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-1188))) (-4 *5 (-370))
- (-5 *2 (-1279 (-697 (-961 *5)))) (-5 *1 (-1097 *5))
- (-5 *4 (-697 (-961 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-697 *4))) (-4 *4 (-370))
- (-5 *2 (-1279 (-697 *4))) (-5 *1 (-1097 *4)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-620 *3)) (-5 *5 (-1 (-1184 *3) (-1184 *3)))
- (-4 *3 (-13 (-27) (-438 *6))) (-4 *6 (-564)) (-5 *2 (-594 *3))
- (-5 *1 (-559 *6 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-386)) (-5 *1 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-652 (-652 (-952 (-227)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-652 (-652 (-952 (-227))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))
- (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3157 (-652 (-1188))) (|:| -1945 (-652 (-1188)))))
- (-5 *1 (-1231)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1184 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
+ (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)) (-148)))
+ (-5 *2 (-596 (-417 (-963 *5)))) (-5 *1 (-580 *5))
+ (-5 *3 (-417 (-963 *5))))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(-5 *2
(-2
@@ -13227,430 +13263,397 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1168 (-227)))
+ (-3 (|:| |str| (-1170 (-227)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1910
+ (|:| -2967
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-567)))))
+ (-5 *1 (-569)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1257 *4))
+ (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1257 *5)) (-14 *6 (-932))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-4 *3 (-377))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1300 *2)) (-4 *2 (-372)) (-4 *2 (-377)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1155 *3 *4)) (-14 *3 (-932)) (-4 *4 (-372))
+ (-5 *1 (-1006 *3 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-287)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-961 *5)) (-4 *5 (-1060)) (-5 *2 (-489 *4 *5))
- (-5 *1 (-953 *4 *5)) (-14 *4 (-652 (-1188))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1255 *3)) (-5 *1 (-407 *3 *2))
- (-4 *3 (-13 (-370) (-148))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1049 (-572))) (-4 *1 (-308)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-779))
- (-4 *3 (-13 (-734) (-375) (-10 -7 (-15 ** (*3 *3 (-572))))))
- (-5 *1 (-250 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-652 (-489 *4 *5))) (-5 *3 (-652 (-872 *4)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-479 *4 *5 *6))
- (-4 *6 (-460)))))
+ (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3))
+ (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-960 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-322 (-572))))
- (-5 *1 (-1042)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+ (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-427 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 (-386))) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-476))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-476))))
+ (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ (-12 (-5 *3 (-932)) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
+ (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))
- (-5 *2 (-652 (-1087 *3 *4 *5))) (-5 *1 (-1088 *3 *4 *5))
- (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))))
-(((*1 *1) (-5 *1 (-831))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-370)) (-5 *1 (-905 *2 *3))
- (-4 *2 (-1255 *3)))))
+ (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3))))
+ (-5 *2 (-654 (-1089 *3 *4 *5))) (-5 *1 (-1090 *3 *4 *5))
+ (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2800 *4)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))
+ (-5 *2 (-1048)) (-5 *1 (-758)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-322 (-227))) (-5 *2 (-415 (-572))) (-5 *1 (-311)))))
+ (-12 (-4 *4 (-1062)) (-4 *3 (-1257 *4)) (-4 *2 (-1272 *4))
+ (-5 *1 (-1275 *4 *3 *5 *2)) (-4 *5 (-666 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1111)))))
-(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3))
- (-4 *3 (-1111)))))
+ (-12
+ (-5 *3
+ (-2 (|:| -1485 (-699 (-417 (-963 *4))))
+ (|:| |vec| (-654 (-417 (-963 *4)))) (|:| -3584 (-781))
+ (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))
+ (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803))
+ (-5 *2
+ (-2 (|:| |partsol| (-1281 (-417 (-963 *4))))
+ (|:| -2722 (-654 (-1281 (-417 (-963 *4)))))))
+ (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-440 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190))))
+ ((*1 *1 *1) (-4 *1 (-161))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-478)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-762)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-1184 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *4 (-620 $)) $))
- (-15 -2974 ((-1136 *4 (-620 $)) $))
- (-15 -2940 ($ (-1136 *4 (-620 $))))))))))
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-549 *4 *2 *5 *6))
+ (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1231))
+ (-4 *5 (-382 *4)) (-4 *2 (-382 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *6 *7 *2)) (-4 *6 (-1062))
+ (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229))
- (-5 *2 (-652 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-1111))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1111)) (-5 *2 (-112))
- (-5 *1 (-1230 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-252)))))
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-254)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1190))
+ (-5 *1 (-269 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *2 (-52))
+ (-5 *1 (-270)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-832)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1170 *3))) (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1076)) (-5 *3 (-1172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))
+ (-5 *2 (-417 (-574))) (-5 *1 (-1033 *4)) (-4 *4 (-1257 (-574))))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-91 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1231)) (-5 *2 (-654 *1)) (-4 *1 (-1023 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4))
+ (-14 *3 (-932)) (-4 *4 (-1062)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1190)))
+ (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-516)) (-5 *3 (-654 (-976))) (-5 *1 (-299)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))))
+(((*1 *1) (-5 *1 (-447))))
+(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141))))
+ ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187))))
+ ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338))
+ (-5 *1 (-340))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1190)) (-5 *4 (-1105 (-963 (-574)))) (-5 *2 (-338))
+ (-5 *1 (-340))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1062))
+ (-4 *3 (-1113)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1209)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1152))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-654 *5))
+ (-5 *1 (-901 *4 *5)) (-4 *5 (-1231)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
- (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
- (-4 *7 (-1003 *4)) (-4 *2 (-695 *7 *8 *9))
- (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-695 *4 *5 *6))
- (-4 *8 (-380 *7)) (-4 *9 (-380 *7))))
+ (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *2 (-1122 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -4332 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1257 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-574)) (|has| *1 (-6 -4457)) (-4 *1 (-382 *3))
+ (-4 *3 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1113) (-1051 *5)))
+ (-4 *5 (-897 *4)) (-4 *4 (-1113)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-942 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-960 *5 *7 *6))
+ (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190))))
+ (-4 *7 (-803))
+ (-5 *2
+ (-654
+ (-2 (|:| |det| *8) (|:| |rows| (-654 (-574)))
+ (|:| |cols| (-654 (-574))))))
+ (-5 *1 (-935 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1231)) (-5 *2 (-574)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *3 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-758)))))
+(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227)))
+ (-5 *2 (-1048)) (-5 *1 (-757)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-932)) (-4 *3 (-372))
+ (-14 *4 (-1006 *2 *3))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060))
- (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-370))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-370)) (-4 *3 (-174)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2))
- (-4 *2 (-695 *3 *4 *5))))
+ (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (|partial| -12 (-5 *1 (-697 *2)) (-4 *2 (-370)) (-4 *2 (-1060))))
+ (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1134 *2 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-242 *2 *3)) (-4 *5 (-242 *2 *3)) (-4 *3 (-370))))
- ((*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-1199 *3)))))
-(((*1 *1 *1) (-5 *1 (-1074))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2 *3) (-12 (-5 *3 (-982)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-652 (-268))) (-5 *4 (-1188))
- (-5 *1 (-267 *2)) (-4 *2 (-1229))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *2 (-52))
- (-5 *1 (-268)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-322 (-386))) (-5 *1 (-311)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-112)) (-5 *5 (-697 (-227)))
- (-5 *2 (-1046)) (-5 *1 (-763)))))
-(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-554))))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801))
- (-5 *1 (-512 *4 *5 *6 *2)) (-4 *2 (-958 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
+ ((*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
+ ((*1 *1 *1) (|partial| -4 *1 (-732)))
+ ((*1 *1 *1) (|partial| -4 *1 (-736)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-13 (-858) (-372)))
+ (-4 *2 (-1257 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-572)) (-4 *6 (-370)) (-4 *6 (-375))
- (-4 *6 (-1060)) (-5 *2 (-652 (-652 (-697 *6)))) (-5 *1 (-1040 *6))
- (-5 *3 (-652 (-697 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-370)) (-4 *4 (-375)) (-4 *4 (-1060))
- (-5 *2 (-652 (-652 (-697 *4)))) (-5 *1 (-1040 *4))
- (-5 *3 (-652 (-697 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060))
- (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5))
- (-5 *3 (-652 (-697 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-930)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060))
- (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5))
- (-5 *3 (-652 (-697 *5))))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-2 (|:| -4218 (-1184 *6)) (|:| -1679 (-572)))))
- (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-572))
- (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858))))
- ((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-870)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1046))
- (-5 *1 (-754)))))
-(((*1 *1) (-5 *1 (-145))))
+ (|partial| -12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460))
- (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-988 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 *7)) (-5 *3 (-112)) (-4 *7 (-1076 *4 *5 *6))
- (-4 *4 (-460)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *1 (-988 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141))))
- ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187))))
- ((*1 *2 *1) (-12 (-5 *2 (-253)) (-5 *1 (-252)))))
-(((*1 *1) (-5 *1 (-142))))
+ (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-762)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-932)) (-5 *1 (-452 *2))
+ (-4 *2 (-1257 (-574)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-932)) (-5 *4 (-781)) (-5 *1 (-452 *2))
+ (-4 *2 (-1257 (-574)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2))
+ (-4 *2 (-1257 (-574)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *5 (-781))
+ (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *5 (-781))
+ (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-932)) (-5 *4 (-428 *2)) (-4 *2 (-1257 *5))
+ (-5 *1 (-454 *5 *2)) (-4 *5 (-1062)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2))
- (-4 *2 (-1270 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3))
- (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2))
- (-4 *2 (-1270 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148)))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-652 *1)) (-4 *1 (-313)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
-(((*1 *2 *3) (-12 (-5 *3 (-961 (-227))) (-5 *2 (-227)) (-5 *1 (-311)))))
-(((*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-405)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2361 *4)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1229)) (-5 *2 (-572)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1279 *4)) (-5 *3 (-779)) (-4 *4 (-356))
- (-5 *1 (-536 *4)))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227)))
- (-5 *2 (-1046)) (-5 *1 (-755)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1194)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1281 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372))
+ (-5 *1 (-677 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-372))
+ (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4457))))
+ (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457))))
+ (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372))
+ (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-620 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4)))
- (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-282 *4 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *3 (-1076 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *3 (-1076 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1156 *6 *7 *8 *3 *4)) (-4 *4 (-1120 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1111)))))
+ (-12 (-5 *3 (-932)) (-5 *1 (-1045 *2))
+ (-4 *2 (-13 (-1113) (-10 -8 (-15 * ($ $ $))))))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-697 *2)) (-5 *4 (-779))
- (-4 *2 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-4 *5 (-1255 *2)) (-5 *1 (-507 *2 *5 *6)) (-4 *6 (-417 *2 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-5 *1 (-494 *2)) (-4 *2 (-1255 (-572))))))
-(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-833)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-652 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801))
- (-4 *8 (-858)) (-5 *1 (-988 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+ (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462))
+ (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1190))) (-5 *1 (-641 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-1217 *3))) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-103 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34)))
+ (-4 *4 (-13 (-1113) (-34))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-415 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-564))
- (-4 *4 (-1060)) (-4 *2 (-1270 *4)) (-5 *1 (-1273 *4 *5 *6 *2))
- (-4 *6 (-664 *5)))))
+ (-12 (-5 *3 (-699 (-417 (-963 (-574)))))
+ (-5 *2
+ (-654
+ (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574))
+ (|:| |radvect| (-654 (-699 (-324 (-574))))))))
+ (-5 *1 (-1044)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
- (-5 *2 (-652 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| |k| (-902 *3)) (|:| |c| *4))))
- (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
- (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-680 *3))) (-5 *1 (-902 *3)) (-4 *3 (-858)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
- ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-697 (-227)))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
-(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-709))))
- ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-709)))))
+ (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-295 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1255 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6))
+ (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-719 *3 *2 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1255 *3)) (-5 *1 (-720 *3 *2)) (-4 *3 (-1060))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))))
-(((*1 *2 *2) (-12 (-5 *2 (-322 (-227))) (-5 *1 (-212)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-811)))))
-(((*1 *1 *1 *1) (-4 *1 (-553))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572))
- (-5 *2 (-1046)) (-5 *1 (-764)))))
+ (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884)))
+ (-5 *1 (-478)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2286 (-572)) (|:| -4225 (-652 *3))))
- (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+ (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-440 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112))
+ (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112))
+ (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1015)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310))))
+ ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *5 (-1113)) (-5 *2 (-112))
+ (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112))
+ (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112))
+ (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1015) (-1216))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1257 *5))
+ (-5 *1 (-817 *5 *2 *3 *6))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574)))))
+ (-4 *3 (-666 *2)) (-4 *6 (-666 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1257 *5))
+ (-5 *1 (-817 *5 *2 *3 *6))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2))
+ (-4 *6 (-666 (-417 *2))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372))
+ (-14 *4 (-1190)) (-14 *5 *3))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574))))
+ (-4 *2 (-174)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-460))
- (-5 *2
- (-652
- (-2 (|:| |eigval| (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4))))
- (|:| |eigmult| (-779))
- (|:| |eigvec| (-652 (-697 (-415 (-961 *4))))))))
- (-5 *1 (-298 *4)) (-5 *3 (-697 (-415 (-961 *4)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-322 (-227))) (-5 *1 (-272)))))
+ (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1257 *5))
+ (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1257 *6))
+ (-14 *7 (-932)))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1284)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-446)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3 *4 *2 *5)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4))
+ (-4 *2 (-244 *3 *4)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1188)) (-4 *4 (-1060)) (-4 *4 (-1111))
- (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -1679 (-572))))
- (-4 *1 (-438 *4))))
+ (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1060)) (-4 *4 (-1111))
- (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -1679 (-572))))
- (-4 *1 (-438 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1123)) (-4 *3 (-1111))
- (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -1679 (-572))))
- (-4 *1 (-438 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-901 *3)) (|:| -1679 (-779))))
- (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ (|partial| -12 (-5 *3 (-1172)) (-5 *2 (-784)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1117)) (-5 *1 (-976)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1186 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-932)) (-5 *4 (-428 *6)) (-4 *6 (-1257 *5))
+ (-4 *5 (-1062)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-1115 *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *2 (-2 (|:| |var| *5) (|:| -1679 (-779))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
- (-4 *7 (-958 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -1679 (-572))))
- (-5 *1 (-959 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-370)
- (-10 -8 (-15 -2940 ($ *7)) (-15 -2963 (*7 $))
- (-15 -2974 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356))
- (-5 *2 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131))))))
- (-5 *1 (-353 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
+ (-12 (-5 *2 (-1115 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-370))
+ (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1190))) (-4 *6 (-462))
(-5 *2
- (-2 (|:| A (-697 *5))
- (|:| |eqs|
- (-652
- (-2 (|:| C (-697 *5)) (|:| |g| (-1279 *5)) (|:| -4121 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-821 *5 *6)) (-5 *3 (-697 *5)) (-5 *4 (-1279 *5))
- (-4 *6 (-664 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-370)) (-4 *6 (-664 *5))
- (-5 *2 (-2 (|:| -3544 (-697 *6)) (|:| |vec| (-1279 *5))))
- (-5 *1 (-821 *5 *6)) (-5 *3 (-697 *6)) (-5 *4 (-1279 *5)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-697 *4)) (-5 *3 (-779)) (-4 *4 (-1060))
- (-5 *1 (-698 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-594 *3) *3 (-1188)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1188)))
- (-4 *3 (-290)) (-4 *3 (-637)) (-4 *3 (-1049 *4)) (-4 *3 (-438 *7))
- (-5 *4 (-1188)) (-4 *7 (-622 (-901 (-572)))) (-4 *7 (-460))
- (-4 *7 (-895 (-572))) (-4 *7 (-1111)) (-5 *2 (-594 *3))
- (-5 *1 (-581 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-370)) (-4 *1 (-335 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1255 *4)) (-4 *4 (-1233))
- (-4 *1 (-349 *4 *3 *5)) (-4 *5 (-1255 (-415 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1279 *1)) (-4 *4 (-174))
- (-4 *1 (-374 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1279 *1)) (-4 *4 (-174))
- (-4 *1 (-377 *4 *5)) (-4 *5 (-1255 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-417 *3 *4))
- (-4 *4 (-1255 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-425 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-227)) (-5 *1 (-311)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-415 (-572))))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *2 (-1046)) (-5 *1 (-760)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *4 (-652 (-1188)))
- (-5 *2 (-697 (-322 (-227)))) (-5 *1 (-207))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1111)) (-4 *6 (-909 *5)) (-5 *2 (-697 *6))
- (-5 *1 (-700 *5 *6 *3 *4)) (-4 *3 (-380 *6))
- (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
+ (-2 (|:| |dpolys| (-654 (-253 *5 *6)))
+ (|:| |coords| (-654 (-574)))))
+ (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-539)))))
+(((*1 *1) (-5 *1 (-1282))))
+(((*1 *1) (-5 *1 (-299))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
+ (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-960 *4 *3 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-546)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
+ ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-932)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1282)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1190)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7))
+ (-4 *4 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231))
+ (-4 *7 (-1231)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(-5 *2
(-2
@@ -13665,3026 +13668,3013 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1168 (-227)))
+ (-3 (|:| |str| (-1170 (-227)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1910
+ (|:| -2967
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-567)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-930))) (-5 *2 (-652 (-697 (-572))))
- (-5 *1 (-1121)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1264 *4 *5 *6))
- (|:| |%expon| (-325 *4 *5 *6))
- (|:| |%expTerms|
- (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| *4))))))
- (|:| |%type| (-1170))))
- (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3)))
- (-14 *5 (-1188)) (-14 *6 *4))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-882))
- (-5 *5 (-930)) (-5 *6 (-652 (-268))) (-5 *2 (-476)) (-5 *1 (-1283))))
+ (-5 *1 (-569)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-1257 (-171 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-462)) (-5 *2 (-112))
+ (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1190)))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-476))
- (-5 *1 (-1283))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-652 (-268)))
- (-5 *2 (-476)) (-5 *1 (-1283)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462))
+ (-14 *5 (-654 (-1190))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132))
- (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -1608 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| -1857 *3) (|:| -3829 *4))))
- (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734))))
+ (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))
+ (-5 *2 (-829 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
- (-5 *2 (-1168 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1037 (-851 (-572))))
- (-5 *3 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *4)))) (-4 *4 (-1060))
- (-5 *1 (-603 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572)))))
- (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2361 *3) (|:| |coef2| (-790 *3))))
- (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-564)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *3 (-1076 *4 *5 *6))
- (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *1))))
- (-4 *1 (-1082 *4 *5 *6 *3)))))
+ (-12 (-4 *2 (-856)) (-5 *1 (-1304 *3 *2)) (-4 *3 (-1062)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1098)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1121)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-564)) (-5 *1 (-980 *4 *2))
- (-4 *2 (-1255 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+ (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1051 (-574))))
+ (-4 *5 (-1257 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1029 *4 *5))
+ (-5 *3 (-417 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-652
- (-2 (|:| -3581 (-779))
- (|:| |eqns|
- (-652
- (-2 (|:| |det| *7) (|:| |rows| (-652 (-572)))
- (|:| |cols| (-652 (-572))))))
- (|:| |fgb| (-652 *7)))))
- (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148)))
- (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-779))
- (-5 *1 (-933 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
- (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-730)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-586))))
+ (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-1186 *4))
+ (-5 *1 (-538 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048))
+ (-5 *1 (-758)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1279 (-322 (-227))))
- (-5 *2
- (-2 (|:| |additions| (-572)) (|:| |multiplications| (-572))
- (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572))))
- (-5 *1 (-311)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+ (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1186 (-1186 *4))))
+ (-5 *1 (-1229 *4)) (-5 *3 (-1186 (-1186 *4))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1172))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1048))
+ (-5 *1 (-760)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *2 (-652 (-171 *4)))
- (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1168 *4) (-1168 *4))) (-5 *2 (-1168 *4))
- (-5 *1 (-1305 *4)) (-4 *4 (-1229))))
+ (-12 (-4 *2 (-1257 *4)) (-5 *1 (-817 *4 *2 *3 *5))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2))
+ (-4 *5 (-666 (-417 *2)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-652 (-1168 *5)) (-652 (-1168 *5)))) (-5 *4 (-572))
- (-5 *2 (-652 (-1168 *5))) (-5 *1 (-1305 *5)) (-4 *5 (-1229)))))
-(((*1 *1) (-4 *1 (-356)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 *5)) (-4 *5 (-438 *4)) (-4 *4 (-13 (-564) (-148)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-652 (-1184 *5)))
- (|:| |prim| (-1184 *5))))
- (-5 *1 (-440 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-564) (-148)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1184 *3))
- (|:| |pol2| (-1184 *3)) (|:| |prim| (-1184 *3))))
- (-5 *1 (-440 *4 *3)) (-4 *3 (-27)) (-4 *3 (-438 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-961 *5)) (-5 *4 (-1188)) (-4 *5 (-13 (-370) (-148)))
- (-5 *2
- (-2 (|:| |coef1| (-572)) (|:| |coef2| (-572))
- (|:| |prim| (-1184 *5))))
- (-5 *1 (-969 *5))))
+ (-12 (-4 *2 (-1257 *4)) (-5 *1 (-817 *4 *2 *5 *3))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-666 *2))
+ (-4 *3 (-666 (-417 *2))))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1172)) (-5 *1 (-313)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1051 (-574))))
+ (-4 *5 (-1257 *4))
+ (-5 *2 (-2 (|:| -4332 (-417 *5)) (|:| |coeff| (-417 *5))))
+ (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151)))))
+(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158))))
+ ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884))))
+ ((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10))
+ (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1084 *5 *6 *7 *8))
+ (-4 *10 (-1122 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188)))
- (-4 *5 (-13 (-370) (-148)))
- (-5 *2
- (-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 *5)))
- (|:| |prim| (-1184 *5))))
- (-5 *1 (-969 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-5 *5 (-1188))
- (-4 *6 (-13 (-370) (-148)))
+ (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
+ (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6)))
+ (-5 *1 (-638 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
+ (-14 *6 (-654 (-1190)))
(-5 *2
- (-2 (|:| -1857 (-652 (-572))) (|:| |poly| (-652 (-1184 *6)))
- (|:| |prim| (-1184 *6))))
- (-5 *1 (-969 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-697 *3))
- (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-349 *4 *5 *6)) (-4 *4 (-1233))
- (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
- (-5 *2 (-2 (|:| |num| (-697 *5)) (|:| |den| *5))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))
- (-4 *2 (-460))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-349 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-1255 *2))
- (-4 *4 (-1255 (-415 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-460))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858)) (-4 *3 (-460))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-460))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-313)) (-4 *3 (-564)) (-5 *1 (-1175 *3 *2))
- (-4 *2 (-1255 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-426 (-1184 *7)))
- (-5 *1 (-915 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
+ (-654 (-1159 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6)))))
+ (-5 *1 (-638 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
+ (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6)))
+ (-5 *1 (-1059 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-1084 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5)))
- (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))))
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-1224 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1)))
+ (-4 *1 (-1084 *4 *5 *6 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1184 *7)) (-4 *5 (-1060))
- (-4 *7 (-1060)) (-4 *2 (-1255 *5)) (-5 *1 (-509 *5 *2 *6 *7))
- (-4 *6 (-1255 *2))))
+ (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5)))
+ (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-960 *3 *5 *4)) (-5 *1 (-1000 *3 *4 *5 *2))
+ (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1170 *4) (-1170 *4))) (-5 *2 (-1170 *4))
+ (-5 *1 (-1307 *4)) (-4 *4 (-1231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1060)) (-4 *7 (-1060))
- (-4 *4 (-1255 *5)) (-5 *2 (-1184 *7)) (-5 *1 (-509 *5 *4 *6 *7))
- (-4 *6 (-1255 *4)))))
+ (-12 (-5 *3 (-1 (-654 (-1170 *5)) (-654 (-1170 *5)))) (-5 *4 (-574))
+ (-5 *2 (-654 (-1170 *5))) (-5 *1 (-1307 *5)) (-4 *5 (-1231)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894))
+ (-5 *3 (-654 (-574)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894))
+ (-5 *3 (-654 (-574))))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-574))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-803)) (-4 *4 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860))
+ (-5 *1 (-459 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115))))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-937))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-937))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-938))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227)))
+ (-5 *1 (-938)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-564)))))
+ (|partial| -12 (-4 *5 (-1051 (-48)))
+ (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4))
+ (-5 *2 (-428 (-1186 (-48)))) (-5 *1 (-445 *4 *5 *3))
+ (-4 *3 (-1257 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-322 *5)))
- (-5 *1 (-1140 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188)))
- (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-322 *5))))
- (-5 *1 (-1140 *5)))))
-(((*1 *1) (-5 *1 (-445))))
-(((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-52)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858))
- (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-779)) (|:| -3669 *1)))
- (-4 *1 (-1076 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-779)) (|:| -3669 *1)))
- (-4 *1 (-1076 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-386)) (-5 *1 (-1051)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-370)) (-4 *3 (-1060))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2967 *1)))
- (-4 *1 (-860 *3)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229))
- (-4 *3 (-1111)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-112))
- (-5 *1 (-913 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-930)) (-5 *2 (-112)) (-5 *1 (-1112 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
+ (-12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1137 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172))
+ (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-566))
+ (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-1252 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-358)) (-4 *2 (-1062)) (-5 *1 (-722 *2 *3))
+ (-4 *3 (-1257 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-52)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1174 *4)) (-4 *4 (-1062))
+ (-5 *3 (-574)))))
+(((*1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-401)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
- (-4 *5 (-380 *3)) (-5 *2 (-652 *3))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-654 *3))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229))
- (-5 *2 (-652 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-982)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5))
- (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
- (-4 *6 (-801)) (-5 *2 (-112)) (-5 *1 (-933 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-313) (-148)))
- (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-112))
- (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-858))
- (-4 *3 (-1111)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-961 *4)) (-4 *4 (-13 (-313) (-148)))
- (-4 *2 (-958 *4 *6 *5)) (-5 *1 (-933 *4 *5 *6 *2))
- (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))))
+ (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231))
+ (-5 *2 (-654 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1231)) (-5 *2 (-1286)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1303 *4 *2)) (-4 *1 (-381 *4 *2)) (-4 *4 (-858))
+ (-12 (-5 *3 (-1305 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860))
(-4 *2 (-174))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060))))
+ (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-827 *4)) (-4 *1 (-1296 *4 *2)) (-4 *4 (-858))
- (-4 *2 (-1060))))
+ (-12 (-5 *3 (-829 *4)) (-4 *1 (-1298 *4 *2)) (-4 *4 (-860))
+ (-4 *2 (-1062))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-1060)) (-5 *1 (-1302 *2 *3)) (-4 *3 (-854)))))
-(((*1 *2 *2) (-12 (-5 *2 (-697 (-322 (-572)))) (-5 *1 (-1042)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572)))))
- (-4 *5 (-1255 *4))
- (-5 *2 (-652 (-2 (|:| |deg| (-779)) (|:| -4121 *5))))
- (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-664 *5))
- (-4 *6 (-664 (-415 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-544))) (-5 *1 (-544)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-544)))))
+ (-12 (-4 *2 (-1062)) (-5 *1 (-1304 *2 *3)) (-4 *3 (-856)))))
+(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4))))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-870)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 (-779))
- (-14 *4 (-779)) (-4 *5 (-174)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-877 *2))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-564)) (-4 *3 (-1060))
- (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-860 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-564)) (-4 *5 (-1060))
- (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-861 *5 *3))
- (-4 *3 (-860 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3))
- (-4 *3 (-380 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-511 *4 *5 *6 *3)) (-4 *6 (-380 *4)) (-4 *3 (-380 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-697 *5)) (-4 *5 (-1003 *4)) (-4 *4 (-564))
- (-5 *2 (-2 (|:| |num| (-697 *4)) (|:| |den| *4)))
- (-5 *1 (-701 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572)))))
- (-4 *6 (-1255 *5))
- (-5 *2 (-2 (|:| -4121 *7) (|:| |rh| (-652 (-415 *6)))))
- (-5 *1 (-815 *5 *6 *7 *3)) (-5 *4 (-652 (-415 *6)))
- (-4 *7 (-664 *6)) (-4 *3 (-664 (-415 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1248 *4 *5 *3))
- (-4 *3 (-1255 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216)))))
+ ((*1 *1 *1 *1) (-4 *1 (-803))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1170 *7))) (-4 *6 (-860))
+ (-4 *7 (-960 *5 (-541 *6) *6)) (-4 *5 (-1062))
+ (-5 *2 (-1 (-1170 *7) *7)) (-5 *1 (-1139 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-588))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-1 (-227) (-227) (-227) (-227)))
+ (-5 *2 (-1 (-954 (-227)) (-227) (-227))) (-5 *1 (-707)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060))
- (-5 *2 (-652 (-652 (-652 (-779))))))))
+ (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1231)) (-4 *2 (-1113))
+ (-4 *2 (-860)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
+ (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1146 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-888 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
- (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227)))
- (-5 *1 (-264 *6))))
+ (-12 (-5 *3 (-890 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270)))
+ (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227)))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-888 *5)) (-5 *4 (-1103 (-386)))
- (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227)))
- (-5 *1 (-264 *5))))
+ (-12 (-5 *3 (-890 *5)) (-5 *4 (-1105 (-388)))
+ (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227)))
+ (-5 *1 (-266 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
- (-5 *2 (-1144 (-227))) (-5 *1 (-264 *3))
- (-4 *3 (-13 (-622 (-544)) (-1111)))))
+ (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270)))
+ (-5 *2 (-1146 (-227))) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-624 (-546)) (-1113)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *3))
- (-4 *3 (-13 (-622 (-544)) (-1111)))))
+ (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-624 (-546)) (-1113)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-891 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
- (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227)))
- (-5 *1 (-264 *6))))
+ (-12 (-5 *3 (-893 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270)))
+ (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227)))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-891 *5)) (-5 *4 (-1103 (-386)))
- (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227)))
- (-5 *1 (-264 *5)))))
+ (-12 (-5 *3 (-893 *5)) (-5 *4 (-1105 (-388)))
+ (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227)))
+ (-5 *1 (-266 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-417 *6)) (-4 *5 (-1235)) (-4 *6 (-1257 *5))
+ (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *3) (|:| |radicand| *6)))
+ (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1257 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-555))))
+ ((*1 *1 *1) (-4 *1 (-1073))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1186 *7)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *2 (-1186 *6))
+ (-5 *1 (-329 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
+ (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3))
+ (-4 *3 (-658 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-652 *1))
- (-4 *1 (-389 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-652 (-743 *3 *4))) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-734))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-958 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-112))
- (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
- (-4 *4 (-13 (-1111) (-34))))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-763)))))
-(((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-1229)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-779))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1060))
- (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
- (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-620 *3)) (-4 *3 (-1111))))
- ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
-(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-52)) (-5 *1 (-839)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 (-961 *4))) (-5 *3 (-652 (-1188))) (-4 *4 (-460))
- (-5 *1 (-927 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-652 *7)) (-5 *3 (-572)) (-4 *7 (-958 *4 *5 *6))
- (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-5 *1 (-457 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-954 *4)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1231)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1062))
+ (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292)))
+ (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1113))))
+ ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6))
+ (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-578 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-781))
+ (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-622 *2) (-174))) (-5 *2 (-901 *4))
- (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1111)) (-4 *3 (-167 *5))))
+ (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4))
+ (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1113)) (-4 *3 (-167 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1105 (-851 (-386)))))
- (-5 *2 (-652 (-1105 (-851 (-227))))) (-5 *1 (-311))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-402))))
+ (-12 (-5 *3 (-654 (-1107 (-853 (-388)))))
+ (-5 *2 (-654 (-1107 (-853 (-227))))) (-5 *1 (-313))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404))))
((*1 *1 *2)
- (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-417 *3 *4))
- (-4 *4 (-1255 *3))))
+ (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4))
+ (-4 *4 (-1257 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
- (-5 *2 (-1279 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-425 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 *3))))
+ (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3))
+ (-5 *2 (-1281 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-426 *1)) (-4 *1 (-438 *3)) (-4 *3 (-564))
- (-4 *3 (-1111))))
+ (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566))
+ (-4 *3 (-1113))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-471 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-544))))
- ((*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1229))))
+ (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-546))))
+ ((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1231))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-4 *1 (-732 *3 *2)) (-4 *2 (-1255 *3))))
+ (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1257 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113))))
((*1 *1 *2)
- (-12 (-5 *2 (-961 *3)) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5))
- (-4 *5 (-622 (-1188))) (-4 *4 (-801)) (-4 *5 (-858))))
+ (-12 (-5 *2 (-963 *3)) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5))
+ (-4 *5 (-624 (-1190))) (-4 *4 (-803)) (-4 *5 (-860))))
((*1 *1 *2)
- (-2813
- (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
- (-12 (-2074 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572)))
- (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))
- (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))))
+ (-2818
+ (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5))
+ (-12 (-2077 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574)))
+ (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))
+ (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))))
((*1 *1 *2)
- (-12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060))
- (-4 *4 (-801)) (-4 *5 (-858))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -4090 *8)))
- (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1170))
- (-5 *1 (-1080 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -4090 *8)))
- (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1120 *4 *5 *6 *7)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1170))
- (-5 *1 (-1156 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-1193))))
- ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1193))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-1209))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-1209))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-788 *4 (-872 *5)))
- (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188)))
- (-5 *2 (-788 *4 (-872 *6))) (-5 *1 (-1306 *4 *5 *6))
- (-14 *6 (-652 (-1188)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-961 *4)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-961 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6))
- (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-788 *4 (-872 *6)))
- (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *6 (-652 (-1188)))
- (-5 *2 (-961 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6))
- (-14 *5 (-652 (-1188)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1184 *4)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
- (-5 *2 (-1184 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6))
- (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188)))))
+ (-12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062))
+ (-4 *4 (-803)) (-4 *5 (-860))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8)))
+ (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1172))
+ (-5 *1 (-1082 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8)))
+ (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1122 *4 *5 *6 *7)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1172))
+ (-5 *1 (-1158 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1195))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1211))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1211))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-790 *4 (-874 *5)))
+ (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190)))
+ (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1308 *4 *5 *6))
+ (-14 *6 (-654 (-1190)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-963 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-790 *4 (-874 *6)))
+ (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *6 (-654 (-1190)))
+ (-5 *2 (-963 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6))
+ (-14 *5 (-654 (-1190)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1186 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1035)))
+ (-5 *2 (-1186 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1157 *4 (-539 (-872 *6)) (-872 *6) (-788 *4 (-872 *6))))
- (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *6 (-652 (-1188)))
- (-5 *2 (-652 (-788 *4 (-872 *6)))) (-5 *1 (-1306 *4 *5 *6))
- (-14 *5 (-652 (-1188))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-652 (-1 *4 (-652 *4)))) (-4 *4 (-1111))
- (-5 *1 (-114 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1111))
- (-5 *1 (-114 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-652 (-1 *4 (-652 *4))))
- (-5 *1 (-114 *4)) (-4 *4 (-1111)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-652 (-620 *2))) (-5 *4 (-652 (-1188)))
- (-4 *2 (-13 (-438 (-171 *5)) (-1013) (-1214))) (-4 *5 (-564))
- (-5 *1 (-608 *5 *6 *2)) (-4 *6 (-13 (-438 *5) (-1013) (-1214))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-194))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-514)) (-5 *3 (-652 (-974))) (-5 *1 (-109)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-1203 *2)) (-4 *2 (-370)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-415 (-961 *5)) (-1177 (-1188) (-961 *5))))
- (-4 *5 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *5)))))
- (-5 *1 (-298 *5)) (-5 *4 (-697 (-415 (-961 *5)))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
+ (-5 *3 (-1159 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))
+ (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *6 (-654 (-1190)))
+ (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1308 *4 *5 *6))
+ (-14 *5 (-654 (-1190))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2))
+ (-4 *2 (-1231)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1113))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1113))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)))))
+(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4)))
- (-5 *2 (-2 (|:| |num| (-1279 *4)) (|:| |den| *4))))))
-(((*1 *1) (-5 *1 (-297))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-5 *3 (-1188)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-961 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-29 *3)) (-4 *3 (-564))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-564))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1184 *2)) (-5 *4 (-1188)) (-4 *2 (-438 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-564))))
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-1178 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1283))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1283)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1) (-5 *1 (-872)))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1184 *1)) (-5 *3 (-930)) (-4 *1 (-1023))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1184 *1)) (-5 *3 (-930)) (-5 *4 (-870))
- (-4 *1 (-1023))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-930)) (-4 *4 (-13 (-856) (-370)))
- (-4 *1 (-1079 *4 *2)) (-4 *2 (-1255 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-415 (-572))) (-5 *1 (-311)))))
+ (-12 (-5 *2 (-1186 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1062)) (-5 *1 (-722 *3 *4))
+ (-4 *4 (-1257 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8))
+ (-4 *7 (-860)) (-4 *8 (-1062)) (-4 *9 (-960 *8 *6 *7))
+ (-4 *6 (-803)) (-5 *2 (-1186 *8)) (-5 *1 (-329 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-299))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-906))
+ (-5 *3
+ (-2 (|:| |pde| (-654 (-324 (-227))))
+ (|:| |constraints|
+ (-654
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-781)) (|:| |boundaryType| (-574))
+ (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
+ (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172))
+ (|:| |tol| (-227))))
+ (-5 *2 (-1048)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-762)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1172)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-270)))))
+(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1117))) (-5 *1 (-299)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6)))
+ (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1113))
+ (-4 *8 (-13 (-1062) (-624 (-903 *6)) (-1051 *7)))
+ (-5 *2 (-900 *6 *8)) (-4 *7 (-1062)) (-5 *1 (-952 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2
- (-2 (|:| |solns| (-652 *5))
- (|:| |maps| (-652 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1139 *3 *5)) (-4 *3 (-1255 *5)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))))
+ (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1202 *3)) (-4 *3 (-1113)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-356)) (-5 *3 (-572)) (-5 *2 (-1201 (-930) (-779))))))
+ (-12 (-5 *2 (-654 (-1186 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
- (-5 *1 (-178 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4))
- (-4 *6 (-380 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3))
- (-4 *3 (-656 *2))))
+ (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2))
+ (-4 *2 (-697 *3 *4 *5)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-555))))
+(((*1 *2 *2) (-12 (-5 *2 (-977 *3)) (-4 *3 (-1113)) (-5 *1 (-978 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3))
- (-4 *3 (-656 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060))))
- ((*1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
- ((*1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-779)) (-5 *1 (-598)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-533))))
- ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-486))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-600))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-634))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1111))
- (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3))))
- (-5 *1 (-1087 *3 *4 *2))
- (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1111)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-1111)))))
+ (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860))
+ (-4 *4 (-803)) (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1132))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-652 (-652 *4)))) (-5 *2 (-652 (-652 *4)))
- (-5 *1 (-1199 *4)) (-4 *4 (-858)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
- (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
- (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-652 (-268))) (-5 *1 (-1281))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-1170)) (-5 *1 (-1281))))
- ((*1 *1 *1) (-5 *1 (-1281))))
+ (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -2823 *5))))
+ (-4 *5 (-1257 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5))
+ (-5 *1 (-218 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-2 (|:| -4220 *5) (|:| -1784 (-574)))))
+ (-5 *4 (-574)) (-4 *5 (-1257 *4)) (-5 *2 (-654 *5))
+ (-5 *1 (-706 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-699 (-587))) (-5 *1 (-587)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1188)) (-5 *6 (-112))
- (-4 *7 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
- (-4 *3 (-13 (-1214) (-968) (-29 *7)))
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803))
+ (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-654 *3))
+ (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1122 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148)))
(-5 *2
- (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *7 *3)) (-5 *5 (-851 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-313))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-455 *4 *5 *6 *2)))))
+ (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5))))))
+ (-5 *1 (-1091 *5 *6)) (-5 *3 (-654 (-963 *5)))
+ (-14 *6 (-654 (-1190)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-315) (-148)))
+ (-5 *2
+ (-654 (-2 (|:| -1334 (-1186 *4)) (|:| -3676 (-654 (-963 *4))))))
+ (-5 *1 (-1091 *4 *5)) (-5 *3 (-654 (-963 *4)))
+ (-14 *5 (-654 (-1190)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148)))
+ (-5 *2
+ (-654 (-2 (|:| -1334 (-1186 *5)) (|:| -3676 (-654 (-963 *5))))))
+ (-5 *1 (-1091 *5 *6)) (-5 *3 (-654 (-963 *5)))
+ (-14 *6 (-654 (-1190))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566))))
+ ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1113))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1021 *3)) (-4 *3 (-1051 (-417 (-574)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1048)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-488))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-602))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-636))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1113))
+ (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))
+ (-5 *1 (-1089 *3 *4 *2))
+ (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1113)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-1113)))))
+(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1225 *6))
+ (-5 *2 (-1 (-1170 *4) (-1170 *4))) (-5 *1 (-1289 *6))
+ (-5 *5 (-1170 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *5 (-1235)) (-4 *6 (-1257 *5))
+ (-4 *7 (-1257 (-417 *6))) (-5 *2 (-654 (-963 *5)))
+ (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1235))
+ (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-4 *4 (-372))
+ (-5 *2 (-654 (-963 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-372) (-1216) (-1015))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1280)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1282)) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1280)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1282)) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386)))
- (-5 *2 (-1281)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388)))
+ (-5 *2 (-1283)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-300 *7)) (-5 *4 (-1188)) (-5 *5 (-652 (-268)))
- (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-858) (-1049 (-572))))
- (-5 *2 (-1280)) (-5 *1 (-261 *6 *7))))
+ (-12 (-5 *3 (-302 *7)) (-5 *4 (-1190)) (-5 *5 (-654 (-270)))
+ (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1051 (-574))))
+ (-5 *2 (-1282)) (-5 *1 (-263 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1280))
- (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111)))))
+ (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1282))
+ (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1280)) (-5 *1 (-264 *3))
- (-4 *3 (-13 (-622 (-544)) (-1111)))))
+ (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1282)) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-624 (-546)) (-1113)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-886 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
- (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1280))
- (-5 *1 (-264 *6))))
+ (-12 (-5 *3 (-888 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270)))
+ (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1282))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 *5)) (-5 *4 (-1103 (-386)))
- (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1280))
- (-5 *1 (-264 *5))))
+ (-12 (-5 *3 (-888 *5)) (-5 *4 (-1105 (-388)))
+ (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1282))
+ (-5 *1 (-266 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-888 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
- (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281))
- (-5 *1 (-264 *6))))
+ (-12 (-5 *3 (-890 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270)))
+ (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-888 *5)) (-5 *4 (-1103 (-386)))
- (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281))
- (-5 *1 (-264 *5))))
+ (-12 (-5 *3 (-890 *5)) (-5 *4 (-1105 (-388)))
+ (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283))
+ (-5 *1 (-266 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281))
- (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111)))))
+ (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283))
+ (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1281)) (-5 *1 (-264 *3))
- (-4 *3 (-13 (-622 (-544)) (-1111)))))
+ (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1283)) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-624 (-546)) (-1113)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-891 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
- (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281))
- (-5 *1 (-264 *6))))
+ (-12 (-5 *3 (-893 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270)))
+ (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-891 *5)) (-5 *4 (-1103 (-386)))
- (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281))
- (-5 *1 (-264 *5))))
+ (-12 (-5 *3 (-893 *5)) (-5 *4 (-1105 (-388)))
+ (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283))
+ (-5 *1 (-266 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1280)) (-5 *1 (-265))))
+ (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1282)) (-5 *1 (-267))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-652 (-227))) (-5 *4 (-652 (-268))) (-5 *2 (-1280))
- (-5 *1 (-265))))
+ (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1282))
+ (-5 *1 (-267))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *2 (-1280)) (-5 *1 (-265))))
+ (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *2 (-1282)) (-5 *1 (-267))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *4 (-652 (-268)))
- (-5 *2 (-1280)) (-5 *1 (-265))))
+ (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *4 (-654 (-270)))
+ (-5 *2 (-1282)) (-5 *1 (-267))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1281)) (-5 *1 (-265))))
+ (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1283)) (-5 *1 (-267))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-652 (-227))) (-5 *4 (-652 (-268))) (-5 *2 (-1281))
- (-5 *1 (-265)))))
+ (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1283))
+ (-5 *1 (-267)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574))
+ (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-488))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-602))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-636))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1113))
+ (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))
+ (-5 *1 (-1089 *3 *4 *2))
+ (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1113)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-1113)))))
+(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-872))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-973)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-853 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566))))
+ ((*1 *1 *1) (|partial| -4 *1 (-732))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-779)) (-5 *4 (-572)) (-5 *1 (-453 *2)) (-4 *2 (-1060)))))
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860))
+ (-4 *8 (-960 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1281 (-417 *8)) "failed"))
+ (|:| -2722 (-654 (-1281 (-417 *8))))))
+ (-5 *1 (-679 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-313))
- (-5 *2 (-779)) (-5 *1 (-463 *5 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-460))
- (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-999 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-460))
- (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1118 *5 *6 *7 *8 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-486))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-600))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-634))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-932)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-802))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1262 *3)) (-4 *3 (-1062)))))
+(((*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1190)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1186 *4))
+ (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858))))))
+(((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802))))
((*1 *2 *1)
- (-12 (-4 *3 (-1111))
- (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3))))
- (-5 *1 (-1087 *3 *4 *2))
- (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))))
+ (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062))
+ (-14 *4 (-654 (-1190)))))
((*1 *2 *1)
- (-12 (-4 *2 (-1111)) (-5 *1 (-1177 *2 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-173)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-870))))
- ((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-971)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2361 *3) (|:| |coef1| (-790 *3))))
- (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1037 (-851 (-572)))) (-5 *1 (-603 *3)) (-4 *3 (-1060)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *1 *2) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-829)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-1192)) (-5 *1 (-1191)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-699 (-975 *3))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))))
+ (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860)))
+ (-14 *4 (-654 (-1190)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860))
+ (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1186 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860))
+ (-4 *8 (-960 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1062))
+ (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-932))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
+ (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4))
+ (-4 *4 (-1257 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1062)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-915 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803))
+ (-4 *3 (-860)) (-5 *2 (-781))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *2 *4)) (-4 *3 (-1062)) (-4 *4 (-860))
+ (-4 *2 (-802))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-781))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1272 *3))
+ (-5 *2 (-574))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1241 *3))
+ (-5 *2 (-417 (-574)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-932)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))
+ (-5 *2 (-781)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-426 *4)) (-4 *4 (-564)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-322 (-227))) (-5 *1 (-311))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-1235))
+ (-4 *6 (-1257 (-417 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-351 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1051 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-440 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1186 *4)) (-5 *1 (-166 *3 *4))
+ (-4 *3 (-167 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1062)) (-4 *1 (-310))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1186 *3))))
+ ((*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-13 (-858) (-372)))
+ (-4 *2 (-1257 *3)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313))))
((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |num| (-901 *3)) (|:| |den| (-901 *3))))
- (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-930)) (-5 *1 (-794)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
+ (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3))))
+ (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1186 *3)) (-4 *3 (-1062)) (-4 *1 (-1257 *3)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2874 (-792 *3)) (|:| |coef1| (-792 *3))
+ (|:| |coef2| (-792 *3))))
+ (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *2 (-2 (|:| -2874 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1078 *3 *4 *5)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-800))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-802))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-652 (-1188)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-654 (-1190)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-572))
- (-14 *6 (-779)) (-4 *7 (-174)) (-4 *8 (-174))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574))
+ (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174))
(-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174))
(-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-322 *3) (-322 *3))) (-4 *3 (-13 (-1060) (-858)))
- (-5 *1 (-225 *3 *4)) (-14 *4 (-652 (-1188)))))
+ (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1062) (-860)))
+ (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1190)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-244 *5 *6)) (-14 *5 (-779))
- (-4 *6 (-1229)) (-4 *7 (-1229)) (-5 *2 (-244 *5 *7))
- (-5 *1 (-243 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781))
+ (-4 *6 (-1231)) (-4 *7 (-1231)) (-5 *2 (-246 *5 *7))
+ (-5 *1 (-245 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-300 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-300 *6)) (-5 *1 (-299 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-300 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-302 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1170)) (-5 *5 (-620 *6))
- (-4 *6 (-308)) (-4 *2 (-1229)) (-5 *1 (-303 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1172)) (-5 *5 (-622 *6))
+ (-4 *6 (-310)) (-4 *2 (-1231)) (-5 *1 (-305 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-620 *5)) (-4 *5 (-308))
- (-4 *2 (-308)) (-5 *1 (-304 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310))
+ (-4 *2 (-310)) (-5 *1 (-306 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-620 *1)) (-4 *1 (-308))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-697 *5)) (-4 *5 (-1060))
- (-4 *6 (-1060)) (-5 *2 (-697 *6)) (-5 *1 (-310 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1062))
+ (-4 *6 (-1062)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-322 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-322 *6)) (-5 *1 (-320 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-343 *5 *6 *7 *8)) (-4 *5 (-370))
- (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7))
- (-4 *9 (-370)) (-4 *10 (-1255 *9)) (-4 *11 (-1255 (-415 *10)))
- (-5 *2 (-343 *9 *10 *11 *12))
- (-5 *1 (-340 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-349 *9 *10 *11))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372))
+ (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7))
+ (-4 *9 (-372)) (-4 *10 (-1257 *9)) (-4 *11 (-1257 (-417 *10)))
+ (-5 *2 (-345 *9 *10 *11 *12))
+ (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-351 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-345 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1113))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1233)) (-4 *8 (-1233))
- (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *9 (-1255 *8))
- (-4 *2 (-349 *8 *9 *10)) (-5 *1 (-347 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-349 *5 *6 *7)) (-4 *10 (-1255 (-415 *9)))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1235)) (-4 *8 (-1235))
+ (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *9 (-1257 *8))
+ (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1257 (-417 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1229)) (-4 *6 (-1229))
- (-4 *2 (-380 *6)) (-5 *1 (-378 *5 *4 *6 *2)) (-4 *4 (-380 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1231)) (-4 *6 (-1231))
+ (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-389 *3 *4)) (-4 *3 (-1060))
- (-4 *4 (-1111))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-1113))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-426 *5)) (-4 *5 (-564))
- (-4 *6 (-564)) (-5 *2 (-426 *6)) (-5 *1 (-413 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566))
+ (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-415 *5)) (-4 *5 (-564))
- (-4 *6 (-564)) (-5 *2 (-415 *6)) (-5 *1 (-414 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566))
+ (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-421 *5 *6 *7 *8)) (-4 *5 (-313))
- (-4 *6 (-1003 *5)) (-4 *7 (-1255 *6))
- (-4 *8 (-13 (-417 *6 *7) (-1049 *6))) (-4 *9 (-313))
- (-4 *10 (-1003 *9)) (-4 *11 (-1255 *10))
- (-5 *2 (-421 *9 *10 *11 *12))
- (-5 *1 (-420 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-417 *10 *11) (-1049 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315))
+ (-4 *6 (-1005 *5)) (-4 *7 (-1257 *6))
+ (-4 *8 (-13 (-419 *6 *7) (-1051 *6))) (-4 *9 (-315))
+ (-4 *10 (-1005 *9)) (-4 *11 (-1257 *10))
+ (-5 *2 (-423 *9 *10 *11 *12))
+ (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-419 *10 *11) (-1051 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-425 *6)) (-5 *1 (-423 *4 *5 *2 *6)) (-4 *4 (-425 *5))))
+ (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-564)) (-5 *1 (-426 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060))
- (-4 *2 (-438 *6)) (-5 *1 (-429 *5 *4 *6 *2)) (-4 *4 (-438 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062))
+ (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111))
- (-4 *2 (-433 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-433 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113))
+ (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-497 *3)) (-4 *3 (-1229))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1231))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-517 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-858))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-860))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-594 *5)) (-4 *5 (-370))
- (-4 *6 (-370)) (-5 *2 (-594 *6)) (-5 *1 (-592 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372))
+ (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2114 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-370)) (-4 *6 (-370))
- (-5 *2 (-2 (|:| -2114 *6) (|:| |coeff| *6)))
- (-5 *1 (-592 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -4332 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-372)) (-4 *6 (-372))
+ (-5 *2 (-2 (|:| -4332 *6) (|:| |coeff| *6)))
+ (-5 *1 (-594 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-370)) (-4 *2 (-370)) (-5 *1 (-592 *5 *2))))
+ (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
- (-4 *5 (-370)) (-4 *6 (-370))
+ (-4 *5 (-372)) (-4 *6 (-372))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-592 *5 *6))))
+ (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-594 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-609 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-609 *6)) (-5 *1 (-606 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-609 *6)) (-5 *5 (-609 *7))
- (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-609 *8))
- (-5 *1 (-607 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7))
+ (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-611 *8))
+ (-5 *1 (-609 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1168 *6)) (-5 *5 (-609 *7))
- (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8))
- (-5 *1 (-607 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1170 *6)) (-5 *5 (-611 *7))
+ (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8))
+ (-5 *1 (-609 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-609 *6)) (-5 *5 (-1168 *7))
- (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8))
- (-5 *1 (-607 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1170 *7))
+ (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8))
+ (-5 *1 (-609 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-652 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-652 *6)) (-5 *1 (-650 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-652 *6)) (-5 *5 (-652 *7))
- (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-652 *8))
- (-5 *1 (-651 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7))
+ (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-654 *8))
+ (-5 *1 (-653 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1060)) (-4 *8 (-1060))
- (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *2 (-695 *8 *9 *10))
- (-5 *1 (-693 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-695 *5 *6 *7))
- (-4 *9 (-380 *8)) (-4 *10 (-380 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1060))
- (-4 *8 (-1060)) (-4 *6 (-380 *5)) (-4 *7 (-380 *5))
- (-4 *2 (-695 *8 *9 *10)) (-5 *1 (-693 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-695 *5 *6 *7)) (-4 *9 (-380 *8)) (-4 *10 (-380 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-564)) (-4 *7 (-564))
- (-4 *6 (-1255 *5)) (-4 *2 (-1255 (-415 *8)))
- (-5 *1 (-717 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1255 (-415 *6)))
- (-4 *8 (-1255 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1060)) (-4 *9 (-1060))
- (-4 *5 (-858)) (-4 *6 (-801)) (-4 *2 (-958 *9 *7 *5))
- (-5 *1 (-736 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-801))
- (-4 *4 (-958 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-858)) (-4 *6 (-858)) (-4 *7 (-801))
- (-4 *9 (-1060)) (-4 *2 (-958 *9 *8 *6))
- (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-801))
- (-4 *4 (-958 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5 *7)) (-4 *5 (-1060))
- (-4 *6 (-1060)) (-4 *7 (-734)) (-5 *2 (-743 *6 *7))
- (-5 *1 (-742 *5 *6 *7))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1062)) (-4 *8 (-1062))
+ (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10))
+ (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7))
+ (-4 *9 (-382 *8)) (-4 *10 (-382 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1062))
+ (-4 *8 (-1062)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5))
+ (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566))
+ (-4 *6 (-1257 *5)) (-4 *2 (-1257 (-417 *8)))
+ (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1257 (-417 *6)))
+ (-4 *8 (-1257 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1062)) (-4 *9 (-1062))
+ (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-960 *9 *7 *5))
+ (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803))
+ (-4 *4 (-960 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803))
+ (-4 *9 (-1062)) (-4 *2 (-960 *9 *8 *6))
+ (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803))
+ (-4 *4 (-960 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1062))
+ (-4 *6 (-1062)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7))
+ (-5 *1 (-744 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-743 *3 *4))
- (-4 *4 (-734))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-745 *3 *4))
+ (-4 *4 (-736))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1060))
- (-4 *6 (-1060)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1062))
+ (-4 *6 (-1062)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-805 *6)) (-5 *1 (-806 *4 *5 *2 *6)) (-4 *4 (-805 *5))))
+ (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-841 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *1 (-840 *5 *6))))
+ (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *1 (-842 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-851 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *1 (-850 *5 *6))))
+ (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *1 (-852 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-898 *5 *6)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-898 *5 *7))
- (-5 *1 (-897 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-900 *5 *7))
+ (-5 *1 (-899 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1060))
- (-4 *6 (-1060)) (-5 *2 (-961 *6)) (-5 *1 (-955 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1062))
+ (-4 *6 (-1062)) (-5 *2 (-963 *6)) (-5 *1 (-957 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-858))
- (-4 *8 (-1060)) (-4 *6 (-801))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860))
+ (-4 *8 (-1062)) (-4 *6 (-803))
(-4 *2
- (-13 (-1111)
- (-10 -8 (-15 -3075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779))))))
- (-5 *1 (-960 *6 *7 *8 *5 *2)) (-4 *5 (-958 *8 *6 *7))))
+ (-13 (-1113)
+ (-10 -8 (-15 -3078 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))))))
+ (-5 *1 (-962 *6 *7 *8 *5 *2)) (-4 *5 (-960 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-967 *6)) (-5 *1 (-966 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-969 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-969 *6)) (-5 *1 (-968 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1111))
- (-4 *6 (-1111)) (-5 *2 (-975 *6)) (-5 *1 (-977 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1113))
+ (-4 *6 (-1113)) (-5 *2 (-977 *6)) (-5 *1 (-979 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1060))
- (-4 *6 (-1060)) (-5 *2 (-952 *6)) (-5 *1 (-992 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1062))
+ (-4 *6 (-1062)) (-5 *2 (-954 *6)) (-5 *1 (-994 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-961 *4))) (-4 *4 (-1060))
- (-4 *2 (-958 (-961 *4) *5 *6)) (-4 *5 (-801))
+ (-12 (-5 *3 (-1 *2 (-963 *4))) (-4 *4 (-1062))
+ (-4 *2 (-960 (-963 *4) *5 *6)) (-4 *5 (-803))
(-4 *6
- (-13 (-858)
- (-10 -8 (-15 -1835 ((-1188) $))
- (-15 -1487 ((-3 $ "failed") (-1188))))))
- (-5 *1 (-995 *4 *5 *6 *2))))
+ (-13 (-860)
+ (-10 -8 (-15 -1837 ((-1190) $))
+ (-15 -1489 ((-3 $ "failed") (-1190))))))
+ (-5 *1 (-997 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-564)) (-4 *6 (-564))
- (-4 *2 (-1003 *6)) (-5 *1 (-1001 *5 *6 *4 *2)) (-4 *4 (-1003 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566))
+ (-4 *2 (-1005 *6)) (-5 *1 (-1003 *5 *6 *4 *2)) (-4 *4 (-1005 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-1008 *6)) (-5 *1 (-1009 *4 *5 *2 *6)) (-4 *4 (-1008 *5))))
+ (-4 *2 (-1010 *6)) (-5 *1 (-1011 *4 *5 *2 *6)) (-4 *4 (-1010 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1064 *3 *4 *5 *6 *7))
- (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1066 *3 *4 *5 *6 *7))
+ (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1064 *3 *4 *5 *6 *7))
- (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1066 *3 *4 *5 *6 *7))
+ (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1060)) (-4 *10 (-1060))
- (-14 *5 (-779)) (-14 *6 (-779)) (-4 *8 (-242 *6 *7))
- (-4 *9 (-242 *5 *7)) (-4 *2 (-1064 *5 *6 *10 *11 *12))
- (-5 *1 (-1066 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1064 *5 *6 *7 *8 *9)) (-4 *11 (-242 *6 *10))
- (-4 *12 (-242 *5 *10))))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1062)) (-4 *10 (-1062))
+ (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7))
+ (-4 *9 (-244 *5 *7)) (-4 *2 (-1066 *5 *6 *10 *11 *12))
+ (-5 *1 (-1068 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1066 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10))
+ (-4 *12 (-244 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-1105 *6)) (-5 *1 (-1100 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-1107 *6)) (-5 *1 (-1102 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-856))
- (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-652 *6))
- (-5 *1 (-1100 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-858))
+ (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-654 *6))
+ (-5 *1 (-1102 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-1103 *6)) (-5 *1 (-1102 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-1105 *6)) (-5 *1 (-1104 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1106 *4 *2)) (-4 *4 (-856))
- (-4 *2 (-1160 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1108 *4 *2)) (-4 *4 (-858))
+ (-4 *2 (-1162 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-1168 *6)) (-5 *1 (-1166 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-1170 *6)) (-5 *1 (-1168 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1168 *6)) (-5 *5 (-1168 *7))
- (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8))
- (-5 *1 (-1167 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1170 *6)) (-5 *5 (-1170 *7))
+ (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8))
+ (-5 *1 (-1169 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1060))
- (-4 *6 (-1060)) (-5 *2 (-1184 *6)) (-5 *1 (-1182 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5)) (-4 *5 (-1062))
+ (-4 *6 (-1062)) (-5 *2 (-1186 *6)) (-5 *1 (-1184 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1205 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1207 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1243 *5 *7 *9)) (-4 *5 (-1060))
- (-4 *6 (-1060)) (-14 *7 (-1188)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1243 *6 *8 *10)) (-5 *1 (-1238 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1188))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1245 *5 *7 *9)) (-4 *5 (-1062))
+ (-4 *6 (-1062)) (-14 *7 (-1190)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1245 *6 *8 *10)) (-5 *1 (-1240 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1190))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-1248 *6)) (-5 *1 (-1247 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-856))
- (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1168 *6))
- (-5 *1 (-1245 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5)) (-4 *5 (-858))
+ (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1170 *6))
+ (-5 *1 (-1247 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1252 *5 *6)) (-14 *5 (-1188))
- (-4 *6 (-1060)) (-4 *8 (-1060)) (-5 *2 (-1252 *7 *8))
- (-5 *1 (-1247 *5 *6 *7 *8)) (-14 *7 (-1188))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1254 *5 *6)) (-14 *5 (-1190))
+ (-4 *6 (-1062)) (-4 *8 (-1062)) (-5 *2 (-1254 *7 *8))
+ (-5 *1 (-1249 *5 *6 *7 *8)) (-14 *7 (-1190))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060))
- (-4 *2 (-1255 *6)) (-5 *1 (-1253 *5 *4 *6 *2)) (-4 *4 (-1255 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062))
+ (-4 *2 (-1257 *6)) (-5 *1 (-1255 *5 *4 *6 *2)) (-4 *4 (-1257 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5 *7 *9)) (-4 *5 (-1060))
- (-4 *6 (-1060)) (-14 *7 (-1188)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1264 *6 *8 *10)) (-5 *1 (-1259 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1188))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5 *7 *9)) (-4 *5 (-1062))
+ (-4 *6 (-1062)) (-14 *7 (-1190)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1266 *6 *8 *10)) (-5 *1 (-1261 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1190))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060))
- (-4 *2 (-1270 *6)) (-5 *1 (-1268 *5 *6 *4 *2)) (-4 *4 (-1270 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062))
+ (-4 *2 (-1272 *6)) (-5 *1 (-1270 *5 *6 *4 *2)) (-4 *4 (-1272 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-1229))
- (-4 *6 (-1229)) (-5 *2 (-1279 *6)) (-5 *1 (-1278 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-1231))
+ (-4 *6 (-1231)) (-5 *2 (-1281 *6)) (-5 *1 (-1280 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1279 *5))
- (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1279 *6))
- (-5 *1 (-1278 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1281 *5))
+ (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1281 *6))
+ (-5 *1 (-1280 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-1060))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-1062))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-1302 *3 *4))
- (-4 *4 (-854)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-652
- (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 *2))
- (|:| |logand| (-1184 *2)))))
- (-5 *4 (-652 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-370)) (-5 *1 (-594 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 *1)) (-4 *1 (-308))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-620 *3)) (-4 *3 (-1111))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-1304 *3 *4))
+ (-4 *4 (-856)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-622 *3)) (-4 *3 (-1113))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-115)) (-5 *3 (-652 *5)) (-5 *4 (-779)) (-4 *5 (-1111))
- (-5 *1 (-620 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-620 *5))) (-4 *4 (-1111)) (-5 *2 (-620 *5))
- (-5 *1 (-581 *4 *5)) (-4 *5 (-438 *4)))))
-(((*1 *1 *1) (-5 *1 (-1074))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1255 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1113))
+ (-5 *1 (-622 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-1209)))))
+(((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-784)) (-5 *1 (-115)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-699 (-963 *4))) (-5 *1 (-1041 *4))
+ (-4 *4 (-1062)))))
+(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-1062))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-779)) (-4 *5 (-1060)) (-4 *2 (-1255 *5))
- (-5 *1 (-1273 *5 *2 *6 *3)) (-4 *6 (-664 *2)) (-4 *3 (-1270 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4))
- (-14 *3 (-930)) (-4 *4 (-1060))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2361 *4)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-587)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-652 (-652 (-652 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-652 *5)) (-4 *5 (-858)) (-5 *1 (-1199 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572)))))
- (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *5))
- (-4 *5 (-1255 (-415 *4))))))
+ (-12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3))
+ (-4 *3 (-13 (-1216) (-29 *5))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-5 *2
+ (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574))
+ (|:| |success| (-112))))
+ (-5 *1 (-799)) (-5 *5 (-574)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-652
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (-654
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227)))))
- (-5 *1 (-567))))
+ (-5 *1 (-569))))
((*1 *2 *1)
- (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-5 *2 (-652 *3))))
+ (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-5 *2 (-654 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-652
+ (-654
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
- (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227)))))
- (-5 *1 (-811)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-514)) (-5 *3 (-652 (-884))) (-5 *1 (-491)))))
-(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-322 (-227))) (-5 *2 (-322 (-386))) (-5 *1 (-311)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-2 (|:| -3080 *4) (|:| -3298 (-572)))))
- (-4 *4 (-1111)) (-5 *2 (-1 *4)) (-5 *1 (-1028 *4)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-755)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-425 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930))))
- ((*1 *1 *1 *1) (-5 *1 (-1234))) ((*1 *1 *1 *1) (-5 *1 (-1235)))
- ((*1 *1 *1 *1) (-5 *1 (-1236))) ((*1 *1 *1 *1) (-5 *1 (-1237))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1229))
- (-4 *5 (-380 *4)) (-4 *2 (-380 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *6 *7 *2)) (-4 *6 (-1060))
- (-4 *7 (-242 *5 *6)) (-4 *2 (-242 *4 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1074)) (-5 *3 (-1170)))))
-(((*1 *1) (-5 *1 (-445))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227)))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384)))) (-5 *3 (-227))
- (-5 *2 (-1046)) (-5 *1 (-756)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191))))
- ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1192)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882)))
- (-5 *1 (-476)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1134 *3 *4 *2 *5)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4))
- (-4 *2 (-242 *3 *4)))))
+ (-5 *1 (-813)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7)))
+ (-4 *7 (-1257 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-584 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-372))
+ (-5 *2 (-112)) (-5 *1 (-677 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457))))
+ (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-112))
+ (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5)))
+ (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-781)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *3 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
- (-5 *1 (-457 *4 *3 *5 *6)) (-4 *6 (-958 *4 *3 *5)))))
-(((*1 *2) (-12 (-5 *2 (-841 (-572))) (-5 *1 (-542))))
- ((*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1111)))))
+ (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2874 *3)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *1 *1) (-4 *1 (-1073)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-460)) (-5 *2 (-112))
- (-5 *1 (-367 *4 *5)) (-14 *5 (-652 (-1188)))))
+ (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4))
+ (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-788 *4 (-872 *5)))) (-4 *4 (-460))
- (-14 *5 (-652 (-1188))) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930))))
- ((*1 *1 *1 *1) (-5 *1 (-1234))) ((*1 *1 *1 *1) (-5 *1 (-1235)))
- ((*1 *1 *1 *1) (-5 *1 (-1236))) ((*1 *1 *1 *1) (-5 *1 (-1237))))
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1255 *4)) (-5 *1 (-815 *4 *2 *3 *5))
- (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2))
- (-4 *5 (-664 (-415 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1255 *4)) (-5 *1 (-815 *4 *2 *5 *3))
- (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-664 *2))
- (-4 *3 (-664 (-415 *2))))))
+ (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1232 *2))
+ (-4 *2 (-1113))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-860))
+ (-5 *1 (-1232 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 *10))
- (-5 *1 (-632 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1082 *5 *6 *7 *8))
- (-4 *10 (-1120 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
- (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6)))
- (-5 *1 (-636 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
- (-14 *6 (-652 (-1188)))
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566))
+ (-4 *7 (-960 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *8) (|:| |radicand| *8)))
+ (-5 *1 (-964 *5 *6 *3 *7 *8)) (-5 *4 (-781))
+ (-4 *8
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *7)) (-15 -2965 (*7 $)) (-15 -2977 (*7 $))))))))
+(((*1 *1 *1 *1) (-5 *1 (-130)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932))))
+ ((*1 *1 *1 *1) (-5 *1 (-1236))) ((*1 *1 *1 *1) (-5 *1 (-1237)))
+ ((*1 *1 *1 *1) (-5 *1 (-1238))) ((*1 *1 *1 *1) (-5 *1 (-1239))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574)))))
+ (-4 *3 (-1257 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3))
+ (-4 *5 (-666 (-417 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-417 *5))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4))
+ (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))))
+(((*1 *2 *2 *2)
+ (-12
(-5 *2
- (-652 (-1157 *5 (-539 (-872 *6)) (-872 *6) (-788 *5 (-872 *6)))))
- (-5 *1 (-636 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
- (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6)))
- (-5 *1 (-1057 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-1082 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-1222 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-399)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
+ (-2 (|:| -2722 (-699 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-699 *3))))
+ (-4 *3 (-13 (-315) (-10 -8 (-15 -3440 ((-428 $) $)))))
+ (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1184 *7)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *2 (-1184 *6))
- (-5 *1 (-327 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-820 *4 *2))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1257 *4))
+ (-5 *1 (-820 *4 *2))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-654 (-1040 *5 *6 *7 *3))) (-5 *1 (-1040 *5 *6 *7 *3))
+ (-4 *3 (-1078 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-654 *6)) (-4 *1 (-1084 *3 *4 *5 *6)) (-4 *3 (-462))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-5 *2 (-654 (-1159 *5 *6 *7 *3))) (-5 *1 (-1159 *5 *6 *7 *3))
+ (-4 *3 (-1078 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1186 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-1176 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1281))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1281)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-901 *6)))
- (-5 *5 (-1 (-898 *6 *8) *8 (-901 *6) (-898 *6 *8))) (-4 *6 (-1111))
- (-4 *8 (-13 (-1060) (-622 (-901 *6)) (-1049 *7)))
- (-5 *2 (-898 *6 *8)) (-4 *7 (-1060)) (-5 *1 (-950 *6 *7 *8)))))
+ (-12 (-5 *2 (-1170 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
+(((*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544))))
+ ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1113)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-426 *3)) (-4 *3 (-553)) (-4 *3 (-564))))
- ((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-553)) (-4 *3 (-1111))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-553)) (-4 *3 (-1111))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1049 (-415 (-572)))))))
-(((*1 *1 *1) (-5 *1 (-227)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
- ((*1 *1 *1) (-5 *1 (-386))) ((*1 *1) (-5 *1 (-386))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-572))
- (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-52)) (-5 *1 (-837)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-370))
- (-5 *2 (-112)) (-5 *1 (-675 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455))))
- (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-112))
- (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))))
+ (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566))
+ (-4 *3 (-1231)))))
(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-697 *3))))
- (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))))
+(((*1 *1 *1 *1) (-5 *1 (-130)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932))))
+ ((*1 *1 *1 *1) (-5 *1 (-1236))) ((*1 *1 *1 *1) (-5 *1 (-1237)))
+ ((*1 *1 *1 *1) (-5 *1 (-1238))) ((*1 *1 *1 *1) (-5 *1 (-1239))))
(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-763)))))
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
(((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))))
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048))
+ (-5 *1 (-758)))))
+(((*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1193)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-372))
+ (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *1 (-460 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372))
+ (-5 *2
+ (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6))))
+ (-5 *1 (-991 *6)) (-5 *3 (-699 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574))))
+ (-5 *1 (-313)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5)))
+ (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574)))))
+ (-14 *6 (-932)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174))))
+ ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2))))
+ ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1) (-5 *1 (-227)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
+ ((*1 *1 *1) (-5 *1 (-388))) ((*1 *1) (-5 *1 (-388))))
+(((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
+ (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7))
+ (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1))
+ (-4 *1 (-1084 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-1113))))
+ ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148)) (-5 *2 (-701 (-288))) (-5 *1 (-169)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-427 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932))
+ (-14 *4 (-932)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1048)) (-5 *1 (-763)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-415 (-961 (-572)))))
- (-5 *2 (-652 (-652 (-300 (-961 *4))))) (-5 *1 (-387 *4))
- (-4 *4 (-13 (-856) (-370)))))
+ (-12 (-5 *3 (-654 (-417 (-963 (-574)))))
+ (-5 *2 (-654 (-654 (-302 (-963 *4))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-858) (-372)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-300 (-415 (-961 (-572))))))
- (-5 *2 (-652 (-652 (-300 (-961 *4))))) (-5 *1 (-387 *4))
- (-4 *4 (-13 (-856) (-370)))))
+ (-12 (-5 *3 (-654 (-302 (-417 (-963 (-574))))))
+ (-5 *2 (-654 (-654 (-302 (-963 *4))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-858) (-372)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 (-572)))) (-5 *2 (-652 (-300 (-961 *4))))
- (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370)))))
+ (-12 (-5 *3 (-417 (-963 (-574)))) (-5 *2 (-654 (-302 (-963 *4))))
+ (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-300 (-415 (-961 (-572)))))
- (-5 *2 (-652 (-300 (-961 *4)))) (-5 *1 (-387 *4))
- (-4 *4 (-13 (-856) (-370)))))
+ (-12 (-5 *3 (-302 (-417 (-963 (-574)))))
+ (-5 *2 (-654 (-302 (-963 *4)))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-858) (-372)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1188))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-4 *4 (-13 (-29 *6) (-1214) (-968)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -4362 (-652 *4))))
- (-5 *1 (-660 *6 *4 *3)) (-4 *3 (-664 *4))))
+ (|partial| -12 (-5 *5 (-1190))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-4 *4 (-13 (-29 *6) (-1216) (-970)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2722 (-654 *4))))
+ (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 *2))
- (-4 *2 (-13 (-29 *6) (-1214) (-968)))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *1 (-660 *6 *2 *3)) (-4 *3 (-664 *2))))
+ (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 *2))
+ (-4 *2 (-13 (-29 *6) (-1216) (-970)))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *5)) (-4 *5 (-370))
+ (-12 (-5 *3 (-699 *5)) (-4 *5 (-372))
(-5 *2
- (-2 (|:| |particular| (-3 (-1279 *5) "failed"))
- (|:| -4362 (-652 (-1279 *5)))))
- (-5 *1 (-675 *5)) (-5 *4 (-1279 *5))))
+ (-2 (|:| |particular| (-3 (-1281 *5) "failed"))
+ (|:| -2722 (-654 (-1281 *5)))))
+ (-5 *1 (-677 *5)) (-5 *4 (-1281 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-652 *5))) (-4 *5 (-370))
+ (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372))
(-5 *2
- (-2 (|:| |particular| (-3 (-1279 *5) "failed"))
- (|:| -4362 (-652 (-1279 *5)))))
- (-5 *1 (-675 *5)) (-5 *4 (-1279 *5))))
+ (-2 (|:| |particular| (-3 (-1281 *5) "failed"))
+ (|:| -2722 (-654 (-1281 *5)))))
+ (-5 *1 (-677 *5)) (-5 *4 (-1281 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *5)) (-4 *5 (-370))
+ (-12 (-5 *3 (-699 *5)) (-4 *5 (-372))
(-5 *2
- (-652
- (-2 (|:| |particular| (-3 (-1279 *5) "failed"))
- (|:| -4362 (-652 (-1279 *5))))))
- (-5 *1 (-675 *5)) (-5 *4 (-652 (-1279 *5)))))
+ (-654
+ (-2 (|:| |particular| (-3 (-1281 *5) "failed"))
+ (|:| -2722 (-654 (-1281 *5))))))
+ (-5 *1 (-677 *5)) (-5 *4 (-654 (-1281 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-652 *5))) (-4 *5 (-370))
+ (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372))
(-5 *2
- (-652
- (-2 (|:| |particular| (-3 (-1279 *5) "failed"))
- (|:| -4362 (-652 (-1279 *5))))))
- (-5 *1 (-675 *5)) (-5 *4 (-652 (-1279 *5)))))
+ (-654
+ (-2 (|:| |particular| (-3 (-1281 *5) "failed"))
+ (|:| -2722 (-654 (-1281 *5))))))
+ (-5 *1 (-677 *5)) (-5 *4 (-654 (-1281 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455))))
- (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455))))
+ (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457))))
+ (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4362 (-652 *4))))
- (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4))))
+ (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455))))
- (-4 *7 (-13 (-380 *5) (-10 -7 (-6 -4455))))
+ (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457))))
+ (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4457))))
(-5 *2
- (-652
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4362 (-652 *7)))))
- (-5 *1 (-676 *5 *6 *7 *3)) (-5 *4 (-652 *7))
- (-4 *3 (-695 *5 *6 *7))))
+ (-654
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2722 (-654 *7)))))
+ (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7))
+ (-4 *3 (-697 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-564))
- (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-778 *5))))
+ (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-566))
+ (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-780 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-564))
- (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-778 *4))))
+ (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-566))
+ (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-780 *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *1 (-780 *5 *2)) (-4 *2 (-13 (-29 *5) (-1214) (-968)))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1216) (-970)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-697 *7)) (-5 *5 (-1188))
- (-4 *7 (-13 (-29 *6) (-1214) (-968)))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1190))
+ (-4 *7 (-13 (-29 *6) (-1216) (-970)))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
(-5 *2
- (-2 (|:| |particular| (-1279 *7)) (|:| -4362 (-652 (-1279 *7)))))
- (-5 *1 (-810 *6 *7)) (-5 *4 (-1279 *7))))
+ (-2 (|:| |particular| (-1281 *7)) (|:| -2722 (-654 (-1281 *7)))))
+ (-5 *1 (-812 *6 *7)) (-5 *4 (-1281 *7))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-697 *6)) (-5 *4 (-1188))
- (-4 *6 (-13 (-29 *5) (-1214) (-968)))
- (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *2 (-652 (-1279 *6))) (-5 *1 (-810 *5 *6))))
+ (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1190))
+ (-4 *6 (-13 (-29 *5) (-1216) (-970)))
+ (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *2 (-654 (-1281 *6))) (-5 *1 (-812 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-652 (-300 *7))) (-5 *4 (-652 (-115)))
- (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968)))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115)))
+ (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970)))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
(-5 *2
- (-2 (|:| |particular| (-1279 *7)) (|:| -4362 (-652 (-1279 *7)))))
- (-5 *1 (-810 *6 *7))))
+ (-2 (|:| |particular| (-1281 *7)) (|:| -2722 (-654 (-1281 *7)))))
+ (-5 *1 (-812 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-652 *7)) (-5 *4 (-652 (-115)))
- (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968)))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115)))
+ (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970)))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
(-5 *2
- (-2 (|:| |particular| (-1279 *7)) (|:| -4362 (-652 (-1279 *7)))))
- (-5 *1 (-810 *6 *7))))
+ (-2 (|:| |particular| (-1281 *7)) (|:| -2722 (-654 (-1281 *7)))))
+ (-5 *1 (-812 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-300 *7)) (-5 *4 (-115)) (-5 *5 (-1188))
- (-4 *7 (-13 (-29 *6) (-1214) (-968)))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1190))
+ (-4 *7 (-13 (-29 *6) (-1216) (-970)))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
(-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -4362 (-652 *7))) *7 "failed"))
- (-5 *1 (-810 *6 *7))))
+ (-3 (-2 (|:| |particular| *7) (|:| -2722 (-654 *7))) *7 "failed"))
+ (-5 *1 (-812 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-115)) (-5 *5 (-1188))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-12 (-5 *4 (-115)) (-5 *5 (-1190))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -4362 (-652 *3))) *3 "failed"))
- (-5 *1 (-810 *6 *3)) (-4 *3 (-13 (-29 *6) (-1214) (-968)))))
+ (-3 (-2 (|:| |particular| *3) (|:| -2722 (-654 *3))) *3 "failed"))
+ (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1216) (-970)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-300 *2)) (-5 *4 (-115)) (-5 *5 (-652 *2))
- (-4 *2 (-13 (-29 *6) (-1214) (-968))) (-5 *1 (-810 *6 *2))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))))
+ (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2))
+ (-4 *2 (-13 (-29 *6) (-1216) (-970))) (-5 *1 (-812 *6 *2))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-300 *2)) (-5 *5 (-652 *2))
- (-4 *2 (-13 (-29 *6) (-1214) (-968)))
- (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *1 (-810 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2))
+ (-4 *2 (-13 (-29 *6) (-1216) (-970)))
+ (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *1 (-812 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1048)) (-5 *1 (-815))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-816)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ (-12 (-5 *3 (-818)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-815))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4))
- (-5 *2 (-1046)) (-5 *1 (-813))))
+ (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4))
+ (-5 *2 (-1048)) (-5 *1 (-815))))
((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4))
- (-5 *2 (-1046)) (-5 *1 (-813))))
+ (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4))
+ (-5 *2 (-1048)) (-5 *1 (-815))))
((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386)))
- (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388)))
+ (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815))))
((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4))
- (-5 *2 (-1046)) (-5 *1 (-813))))
+ (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4))
+ (-5 *2 (-1048)) (-5 *1 (-815))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386)))
- (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388)))
+ (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386)))
- (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388)))
+ (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815))))
((*1 *2 *3 *4 *5)
(|partial| -12
(-5 *5
(-1
- (-3 (-2 (|:| |particular| *6) (|:| -4362 (-652 *6))) "failed")
+ (-3 (-2 (|:| |particular| *6) (|:| -2722 (-654 *6))) "failed")
*7 *6))
- (-4 *6 (-370)) (-4 *7 (-664 *6))
- (-5 *2 (-2 (|:| |particular| (-1279 *6)) (|:| -4362 (-697 *6))))
- (-5 *1 (-821 *6 *7)) (-5 *3 (-697 *6)) (-5 *4 (-1279 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-907)) (-5 *2 (-1046)) (-5 *1 (-906))))
+ (-4 *6 (-372)) (-4 *7 (-666 *6))
+ (-5 *2 (-2 (|:| |particular| (-1281 *6)) (|:| -2722 (-699 *6))))
+ (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1281 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1048)) (-5 *1 (-908))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-907)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-906))))
+ (-12 (-5 *3 (-909)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-908))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-779)) (-5 *6 (-652 (-652 (-322 *3)))) (-5 *7 (-1170))
- (-5 *8 (-227)) (-5 *5 (-652 (-322 (-386)))) (-5 *3 (-386))
- (-5 *2 (-1046)) (-5 *1 (-906))))
+ (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1172))
+ (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388))
+ (-5 *2 (-1048)) (-5 *1 (-908))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-779)) (-5 *6 (-652 (-652 (-322 *3)))) (-5 *7 (-1170))
- (-5 *5 (-652 (-322 (-386)))) (-5 *3 (-386)) (-5 *2 (-1046))
- (-5 *1 (-906))))
+ (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1172))
+ (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1048))
+ (-5 *1 (-908))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *2 (-652 (-386)))
- (-5 *1 (-1034)) (-5 *4 (-386))))
+ (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *2 (-654 (-388)))
+ (-5 *1 (-1036)) (-5 *4 (-388))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-961 (-572))) (-5 *2 (-652 (-386))) (-5 *1 (-1034))
- (-5 *4 (-386))))
+ (-12 (-5 *3 (-963 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1036))
+ (-5 *4 (-388))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
+ (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1142 *4))
- (-5 *3 (-322 *4))))
+ (-12 (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4))
+ (-5 *3 (-324 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1142 *4))
- (-5 *3 (-300 (-322 *4)))))
+ (-12 (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4))
+ (-5 *3 (-302 (-324 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1142 *5))
- (-5 *3 (-300 (-322 *5)))))
+ (-12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5))
+ (-5 *3 (-302 (-324 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1142 *5))
- (-5 *3 (-322 *5))))
+ (-12 (-5 *4 (-1190))
+ (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5))
+ (-5 *3 (-324 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-1188)))
- (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *2 (-652 (-652 (-300 (-322 *5))))) (-5 *1 (-1142 *5))
- (-5 *3 (-652 (-300 (-322 *5))))))
+ (-12 (-5 *4 (-654 (-1190)))
+ (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)))
+ (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5))
+ (-5 *3 (-654 (-302 (-324 *5))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188)))
- (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5))))))
- (-5 *1 (-1197 *5))))
+ (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190)))
+ (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5))))))
+ (-5 *1 (-1199 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-1188))) (-4 *5 (-564))
- (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-1197 *5))
- (-5 *3 (-652 (-300 (-415 (-961 *5)))))))
+ (-12 (-5 *4 (-654 (-1190))) (-4 *5 (-566))
+ (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-1199 *5))
+ (-5 *3 (-654 (-302 (-417 (-963 *5)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-415 (-961 *4)))) (-4 *4 (-564))
- (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-1197 *4))))
+ (-12 (-5 *3 (-654 (-417 (-963 *4)))) (-4 *4 (-566))
+ (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-1199 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4))))))
- (-5 *1 (-1197 *4)) (-5 *3 (-652 (-300 (-415 (-961 *4)))))))
+ (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4))))))
+ (-5 *1 (-1199 *4)) (-5 *3 (-654 (-302 (-417 (-963 *4)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188)) (-4 *5 (-564))
- (-5 *2 (-652 (-300 (-415 (-961 *5))))) (-5 *1 (-1197 *5))
- (-5 *3 (-415 (-961 *5)))))
+ (-12 (-5 *4 (-1190)) (-4 *5 (-566))
+ (-5 *2 (-654 (-302 (-417 (-963 *5))))) (-5 *1 (-1199 *5))
+ (-5 *3 (-417 (-963 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1188)) (-4 *5 (-564))
- (-5 *2 (-652 (-300 (-415 (-961 *5))))) (-5 *1 (-1197 *5))
- (-5 *3 (-300 (-415 (-961 *5))))))
+ (-12 (-5 *4 (-1190)) (-4 *5 (-566))
+ (-5 *2 (-654 (-302 (-417 (-963 *5))))) (-5 *1 (-1199 *5))
+ (-5 *3 (-302 (-417 (-963 *5))))))
((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *4)))))
- (-5 *1 (-1197 *4)) (-5 *3 (-415 (-961 *4)))))
+ (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *4)))))
+ (-5 *1 (-1199 *4)) (-5 *3 (-417 (-963 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *4)))))
- (-5 *1 (-1197 *4)) (-5 *3 (-300 (-415 (-961 *4)))))))
-(((*1 *1) (-5 *1 (-1074))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-561)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1214))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-503)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
- (-4 *4 (-1111)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-434 *4 *2)) (-4 *2 (-13 (-1214) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-148))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-322 *5))
- (-5 *1 (-597 *5)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-572)) (-5 *2 (-112)) (-5 *1 (-488)))))
+ (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *4)))))
+ (-5 *1 (-1199 *4)) (-5 *3 (-302 (-417 (-963 *4)))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574))))
+ (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574))))
+ (-5 *4 (-324 (-388))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574))))
+ (-5 *4 (-324 (-574))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-171 (-388)))))
+ (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-388)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-574)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-171 (-388)))))
+ (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-388))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-574))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574))))
+ (-5 *4 (-324 (-704))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574))))
+ (-5 *4 (-324 (-709))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574))))
+ (-5 *4 (-324 (-711))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-704)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-709)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-711)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-704))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-709))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-711))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-704))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-709))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-711))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-704))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-709))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-711))) (-5 *1 (-338))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1172)) (-5 *1 (-338))))
+ ((*1 *1 *1 *1) (-5 *1 (-872))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-306))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-311)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-652 (-873))))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -4294 (-115)) (|:| |arg| (-652 (-901 *3)))))
- (-5 *1 (-901 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-652 (-901 *4)))
- (-5 *1 (-901 *4)) (-4 *4 (-1111)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
- (-5 *2 (-1046)) (-5 *1 (-760)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060))
- (-4 *2 (-460))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 *4)) (-4 *4 (-1255 (-572))) (-5 *2 (-652 (-572)))
- (-5 *1 (-494 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-460))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858)) (-4 *3 (-460)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-622 (-901 (-572))))
- (-4 *5 (-895 (-572)))
- (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-575 *5 *3)) (-4 *3 (-637))
- (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+ (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4))
+ (-5 *3 (-654 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
+ (-5 *1 (-1137 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1184 *4)) (-5 *1 (-536 *4))
- (-4 *4 (-356)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-652 *2))) (-5 *4 (-652 *5))
- (-4 *5 (-38 (-415 (-572)))) (-4 *2 (-1270 *5))
- (-5 *1 (-1272 *5 *2)))))
+ (-12 (-4 *1 (-931)) (-5 *2 (-2 (|:| -1859 (-654 *1)) (|:| -2970 *1)))
+ (-5 *3 (-654 *1)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1255 (-171 *2))))))
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315)))))
+(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875))))))
+(((*1 *2)
+ (-12 (-4 *3 (-1062)) (-5 *2 (-969 (-722 *3 *4))) (-5 *1 (-722 *3 *4))
+ (-4 *4 (-1257 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1113))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1113)) (-5 *1 (-103 *2)))))
+(((*1 *1) (-5 *1 (-1076))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231))
+ (-5 *2 (-654 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227))))
+ (-5 *2 (-1048)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-762)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1231))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -3693
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -1909
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1170 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2967
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-569))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -3693
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
+ (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (|:| -1909
+ (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388))
+ (|:| |expense| (-388)) (|:| |accuracy| (-388))
+ (|:| |intermediateResults| (-388))))))
+ (-5 *1 (-813))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
+(((*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1111)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-691 *4 *5)) (-4 *4 (-1111))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1113)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-693 *4 *5)) (-4 *4 (-1113))))
((*1 *2 *2)
- (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3))))
+ (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939))))
+ (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941))))
((*1 *2 *1)
- (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060))))
+ (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062))))
((*1 *2 *1)
- (-12 (-4 *2 (-1060)) (-5 *1 (-1302 *2 *3)) (-4 *3 (-854)))))
-(((*1 *2) (-12 (-5 *2 (-652 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-133)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
- (-5 *1 (-178 *3)))))
+ (-12 (-4 *2 (-1062)) (-5 *1 (-1304 *2 *3)) (-4 *3 (-856)))))
+(((*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1097 *3)) (-4 *3 (-133)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372))
+ (-5 *2 (-2 (|:| -1360 (-428 *3)) (|:| |special| (-428 *3))))
+ (-5 *1 (-737 *5 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1257 *4))
+ (-5 *2 (-1281 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-932)) (-5 *1 (-1043 *2))
+ (-4 *2 (-13 (-1113) (-10 -8 (-15 -3078 ($ $ $))))))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-313) (-10 -8 (-15 -2287 ((-426 $) $)))))
- (-4 *4 (-1255 *3))
- (-5 *2
- (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-697 *3))))
- (-5 *1 (-357 *3 *4 *5)) (-4 *5 (-417 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-572)) (-4 *4 (-1255 *3))
+ (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4))
(-5 *2
- (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-697 *3))))
- (-5 *1 (-776 *4 *5)) (-4 *5 (-417 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 *3))
- (-5 *2
- (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-697 *3))))
- (-5 *1 (-996 *4 *3 *5 *6)) (-4 *6 (-732 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 *3))
- (-5 *2
- (-2 (|:| -4362 (-697 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-697 *3))))
- (-5 *1 (-1288 *4 *3 *5 *6)) (-4 *6 (-417 *3 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-594 *3)) (-4 *3 (-370)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-930)) (-5 *1 (-1041 *2))
- (-4 *2 (-13 (-1111) (-10 -8 (-15 -3075 ($ $ $))))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3))
- (-4 *3 (-1111)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1246 (-572))) (-4 *1 (-288 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))))
+ (-3 (|:| |overq| (-1186 (-417 (-574))))
+ (|:| |overan| (-1186 (-48))) (|:| -3601 (-112))))
+ (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-566)) (-4 *3 (-1062))
+ (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-862 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1062))
+ (-5 *2 (-2 (|:| -3855 *3) (|:| -3435 *3))) (-5 *1 (-863 *5 *3))
+ (-4 *3 (-862 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1170 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2967
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1048)) (-5 *1 (-313)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1229))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1231))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-961 (-386))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (|partial| -12 (-5 *2 (-963 (-388))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-415 (-961 (-386)))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (|partial| -12 (-5 *2 (-417 (-963 (-388)))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-322 (-386))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-961 (-572))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (|partial| -12 (-5 *2 (-963 (-574))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-415 (-961 (-572)))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (|partial| -12 (-5 *2 (-417 (-963 (-574)))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-322 (-572))) (-5 *1 (-346 *3 *4 *5))
- (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5))
+ (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190))) (-4 *5 (-397))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-346 *3 *4 *5))
- (-14 *3 (-652 *2)) (-14 *4 (-652 *2)) (-4 *5 (-395))))
+ (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-348 *3 *4 *5))
+ (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-322 *5)) (-4 *5 (-395))
- (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188)))
- (-14 *4 (-652 (-1188)))))
+ (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397))
+ (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190)))
+ (-14 *4 (-654 (-1190)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-697 (-415 (-961 (-572))))) (-4 *1 (-391))))
+ (|partial| -12 (-5 *2 (-699 (-417 (-963 (-574))))) (-4 *1 (-393))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-697 (-415 (-961 (-386))))) (-4 *1 (-391))))
+ (|partial| -12 (-5 *2 (-699 (-417 (-963 (-388))))) (-4 *1 (-393))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-697 (-961 (-572)))) (-4 *1 (-391))))
+ (|partial| -12 (-5 *2 (-699 (-963 (-574)))) (-4 *1 (-393))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-697 (-961 (-386)))) (-4 *1 (-391))))
+ (|partial| -12 (-5 *2 (-699 (-963 (-388)))) (-4 *1 (-393))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-697 (-322 (-572)))) (-4 *1 (-391))))
+ (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-697 (-322 (-386)))) (-4 *1 (-391))))
+ (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-415 (-961 (-572)))) (-4 *1 (-404))))
+ (|partial| -12 (-5 *2 (-417 (-963 (-574)))) (-4 *1 (-406))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-415 (-961 (-386)))) (-4 *1 (-404))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-572))) (-4 *1 (-404))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-386))) (-4 *1 (-404))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-572))) (-4 *1 (-404))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-386))) (-4 *1 (-404))))
+ (|partial| -12 (-5 *2 (-417 (-963 (-388)))) (-4 *1 (-406))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-574))) (-4 *1 (-406))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-388))) (-4 *1 (-406))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1279 (-415 (-961 (-572))))) (-4 *1 (-449))))
+ (|partial| -12 (-5 *2 (-1281 (-417 (-963 (-574))))) (-4 *1 (-451))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1279 (-415 (-961 (-386))))) (-4 *1 (-449))))
+ (|partial| -12 (-5 *2 (-1281 (-417 (-963 (-388))))) (-4 *1 (-451))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1279 (-961 (-572)))) (-4 *1 (-449))))
+ (|partial| -12 (-5 *2 (-1281 (-963 (-574)))) (-4 *1 (-451))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1279 (-961 (-386)))) (-4 *1 (-449))))
+ (|partial| -12 (-5 *2 (-1281 (-963 (-388)))) (-4 *1 (-451))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1279 (-322 (-572)))) (-4 *1 (-449))))
+ (|partial| -12 (-5 *2 (-1281 (-324 (-574)))) (-4 *1 (-451))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1279 (-322 (-386)))) (-4 *1 (-449))))
+ (|partial| -12 (-5 *2 (-1281 (-324 (-388)))) (-4 *1 (-451))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-356)) (-4 *5 (-335 *4)) (-4 *6 (-1255 *5))
- (-5 *2 (-1184 (-1184 *4))) (-5 *1 (-785 *4 *5 *6 *3 *7))
- (-4 *3 (-1255 *6)) (-14 *7 (-930))))
+ (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1257 *5))
+ (-5 *2 (-1186 (-1186 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7))
+ (-4 *3 (-1257 *6)) (-14 *7 (-932))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5))
- (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *1 (-987 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1049 *2)) (-4 *2 (-1229))))
+ (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5))
+ (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-4 *1 (-989 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1051 *2)) (-4 *2 (-1231))))
((*1 *1 *2)
- (|partial| -2813
- (-12 (-5 *2 (-961 *3))
- (-12 (-2074 (-4 *3 (-38 (-415 (-572)))))
- (-2074 (-4 *3 (-38 (-572)))) (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
- (-4 *5 (-858)))
- (-12 (-5 *2 (-961 *3))
- (-12 (-2074 (-4 *3 (-553))) (-2074 (-4 *3 (-38 (-415 (-572)))))
- (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
- (-4 *5 (-858)))
- (-12 (-5 *2 (-961 *3))
- (-12 (-2074 (-4 *3 (-1003 (-572)))) (-4 *3 (-38 (-415 (-572))))
- (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
- (-4 *5 (-858)))))
+ (|partial| -2818
+ (-12 (-5 *2 (-963 *3))
+ (-12 (-2077 (-4 *3 (-38 (-417 (-574)))))
+ (-2077 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803))
+ (-4 *5 (-860)))
+ (-12 (-5 *2 (-963 *3))
+ (-12 (-2077 (-4 *3 (-555))) (-2077 (-4 *3 (-38 (-417 (-574)))))
+ (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803))
+ (-4 *5 (-860)))
+ (-12 (-5 *2 (-963 *3))
+ (-12 (-2077 (-4 *3 (-1005 (-574)))) (-4 *3 (-38 (-417 (-574))))
+ (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803))
+ (-4 *5 (-860)))))
((*1 *1 *2)
- (|partial| -2813
- (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
- (-12 (-2074 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572)))
- (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))
- (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))))
- (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))))
+ (|partial| -2818
+ (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5))
+ (-12 (-2077 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574)))
+ (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))
+ (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))))
+ (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5))
- (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))
- (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))))
-(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-52)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 (-2 (|:| -4218 (-1184 *6)) (|:| -1679 (-572)))))
- (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
- (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-13 (-313) (-148)))
- (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801))
- (-5 *2 (-652 (-415 (-961 *4)))) (-5 *1 (-933 *4 *5 *6 *7))
- (-4 *7 (-958 *4 *6 *5)))))
-(((*1 *1) (-5 *1 (-145)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-268)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-656 *3)) (-4 *3 (-1060))
- (-5 *1 (-722 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-844 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-760)))))
-(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-158)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4))
- (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-707)) (-5 *1 (-311)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-987 *4 *5 *3 *6)) (-4 *4 (-1060)) (-4 *5 (-801))
- (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-652 *6) "failed") (-572) *6 *6)) (-4 *6 (-370))
- (-4 *7 (-1255 *6))
- (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6)))
- (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
+ (|partial| -12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5))
+ (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))
+ (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))))
+(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-572)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1060))
- (-5 *1 (-327 *4 *5 *2 *6)) (-4 *6 (-958 *2 *4 *5)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))))
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-566)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-839)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2))
+ (-4 *2 (-666 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1264 *3 *4 *5)) (-5 *1 (-325 *3 *4 *5)) (-4 *3 (-370))
- (-14 *4 (-1188)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-426 *3)) (-4 *3 (-564))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-707))))
+ (-12 (-5 *2 (-654 (-2 (|:| |k| (-1190)) (|:| |c| (-1303 *3)))))
+ (-5 *1 (-1303 *3)) (-4 *3 (-1062))))
((*1 *2 *1)
- (-12 (-4 *2 (-1111)) (-5 *1 (-721 *3 *2 *4)) (-4 *3 (-858))
- (-14 *4
- (-1 (-112) (-2 (|:| -2571 *3) (|:| -1679 *2))
- (-2 (|:| -2571 *3) (|:| -1679 *2)))))))
-(((*1 *1 *1) (-4 *1 (-637)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-533)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *1 (-371 *2 *4)) (-4 *2 (-1111))
- (-4 *4 (-1111))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-371 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-370) (-1214) (-1013)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 (-415 *2)))
- (-4 *2 (-1255 *4)) (-5 *1 (-348 *3 *4 *2 *5))
- (-4 *3 (-349 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-349 *3 *2 *4)) (-4 *3 (-1233))
- (-4 *4 (-1255 (-415 *2))) (-4 *2 (-1255 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-425 *4)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-1074)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-313))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1111))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-393 *3))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4215 (-779)) (|:| -3669 (-779))))
- (-5 *1 (-779))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
- (-5 *2 (-1046)) (-5 *1 (-765)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1193))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-514)) (-5 *3 (-652 (-1193))) (-5 *1 (-1193)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-652 (-112))) (-5 *7 (-697 (-227)))
- (-5 *8 (-697 (-572))) (-5 *3 (-572)) (-5 *4 (-227)) (-5 *5 (-112))
- (-5 *2 (-1046)) (-5 *1 (-762)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3))
- (-4 *2
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $))
- (-15 -2974 ((-1136 *3 (-620 $)) $))
- (-15 -2940 ($ (-1136 *3 (-620 $))))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-936))
+ (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1305 *3 *4)))))
+ (-5 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
+ (-5 *1 (-212)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1224 *4 *5 *6 *7))
+ (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 *4))))
+ (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
(-5 *2
- (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
- (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-415 (-572)))
+ (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574))
+ (|:| |success| (-112))))
+ (-5 *1 (-799)) (-5 *5 (-574)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860))
+ (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315))
+ (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6) (-10 -8 (-15 -2943 ($ *7)))))
+ (-4 *7 (-858))
+ (-4 *8
+ (-13 (-1259 *3 *7) (-372) (-1216)
+ (-10 -8 (-15 -3905 ($ $)) (-15 -2968 ($ $)))))
(-5 *2
- (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
- (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
- (-5 *1 (-154)))))
-(((*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4))
- (-4 *4 (-356)))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))))
+ (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1172)) (-4 *9 (-996 *8))
+ (-14 *10 (-1190)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113))
+ (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1172)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1113))
+ (-4 *4 (-1113))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-306))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-311)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572))) (-5 *3 (-572))
- (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))))
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-930))) (-5 *4 (-914 (-572)))
- (-5 *2 (-697 (-572))) (-5 *1 (-598))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-652 (-930))) (-5 *2 (-652 (-697 (-572))))
- (-5 *1 (-598))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-930))) (-5 *4 (-652 (-914 (-572))))
- (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-598)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-460)) (-4 *4 (-858))
- (-4 *5 (-801)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3))
- (-4 *3 (-13 (-370) (-148) (-1049 (-572)))) (-5 *1 (-576 *3 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-553))))
+ (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *2 (-112))
+ (-5 *1 (-270)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-796)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-372) (-1216) (-1015))))))
+(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884))))
+ ((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190))
+ (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1216) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-148))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-324 *5))
+ (-5 *1 (-599 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-652 *3)) (-5 *1 (-970 *3)) (-4 *3 (-553)))))
+ (-12 (-4 *4 (-566))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
+ (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803))
+ (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-1078 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-969 (-1133)))
+ (-5 *1 (-355 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
+ (-5 *2 (-699 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4))
+ (-4 *3 (-427 *4))))
+ ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-781)) (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *5))))
- (-5 *1 (-1140 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-13 (-313) (-148)))
- (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1140 *4))))
+ (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1190))) (-5 *1 (-212))
+ (-5 *3 (-1190))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-300 (-415 (-961 *5)))) (-5 *4 (-1188))
- (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *5))))
- (-5 *1 (-1140 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-300 (-415 (-961 *4)))) (-4 *4 (-13 (-313) (-148)))
- (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1140 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188)))
- (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5)))))
- (-5 *1 (-1140 *5))))
+ (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1190)))
+ (-5 *1 (-274))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
+ (-5 *2 (-654 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
+ (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))
+ (-5 *2 (-654 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-415 (-961 *4)))) (-4 *4 (-13 (-313) (-148)))
- (-5 *2 (-652 (-652 (-300 (-322 *4))))) (-5 *1 (-1140 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 (-300 (-415 (-961 *5))))) (-5 *4 (-652 (-1188)))
- (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5)))))
- (-5 *1 (-1140 *5))))
+ (-12
+ (-5 *3
+ (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
+ (-253 *4 (-417 (-574)))))
+ (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112))
+ (-5 *1 (-515 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-972 *3)) (-4 *3 (-555))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1235)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-622 *3))
+ (-4 *3 (-13 (-440 *5) (-27) (-1216)))
+ (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *2 (-2 (|:| -4332 *3) (|:| |coeff| *3)))
+ (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1186 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1186 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-300 (-415 (-961 *4)))))
- (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *4)))))
- (-5 *1 (-1140 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-779)) (-5 *2 (-652 (-1188))) (-5 *1 (-212))
- (-5 *3 (-1188))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-322 (-227))) (-5 *4 (-779)) (-5 *2 (-652 (-1188)))
- (-5 *1 (-272))))
+ (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1257 (-171 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-932)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))))
+ ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372))))
((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
- (-5 *2 (-652 *3))))
+ (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174))))
((*1 *2 *1)
- (-12 (-5 *2 (-652 *3)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
- (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-827 *3)) (-4 *3 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858))))
+ (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1005 *3)) (-5 *1 (-423 *3 *2 *4 *5))
+ (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1051 *2)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
- (-5 *2 (-652 *3)))))
-(((*1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1282))))
- ((*1 *2 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1282)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
- ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1184 *5)) (-4 *5 (-460)) (-5 *2 (-652 *6))
- (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-961 *5)) (-4 *5 (-460)) (-5 *2 (-652 *6))
- (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1170)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *4 (-1076 *6 *7 *8)) (-5 *2 (-1284))
- (-5 *1 (-784 *6 *7 *8 *4 *5)) (-4 *5 (-1082 *6 *7 *8 *4)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801))
- (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8))
- (-5 *2
- (-2 (|:| -4121 (-652 *9)) (|:| -4090 *4) (|:| |ineq| (-652 *9))))
- (-5 *1 (-999 *6 *7 *8 *9 *4)) (-5 *3 (-652 *9))
- (-4 *4 (-1082 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801))
- (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8))
- (-5 *2
- (-2 (|:| -4121 (-652 *9)) (|:| -4090 *4) (|:| |ineq| (-652 *9))))
- (-5 *1 (-1118 *6 *7 *8 *9 *4)) (-5 *3 (-652 *9))
- (-4 *4 (-1082 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))))
-(((*1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-375)) (-4 *2 (-1111)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1255 (-415 (-572))))
- (-5 *2 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))))
- (-5 *1 (-922 *3 *4)) (-4 *4 (-1255 (-415 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *3))
- (-4 *3 (-1255 (-415 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1255 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572))))
+ (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1005 *3))
+ (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4))
+ (-14 *6 (-1281 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-932)) (-4 *5 (-1062))
+ (-4 *2 (-13 (-414) (-1051 *5) (-372) (-1216) (-292)))
+ (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1257 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1186 (-505))) (-5 *3 (-654 (-622 (-505))))
+ (-5 *1 (-505))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1186 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1281 *4)) (-5 *3 (-932)) (-4 *4 (-358))
+ (-5 *1 (-538 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1257 *4))
+ (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1257 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174))))
+ ((*1 *1 *1) (-4 *1 (-1073))))
+(((*1 *2)
+ (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574)))))
((*1 *2 *2)
- (-12 (-4 *3 (-313)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
- (-5 *1 (-1135 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 *1)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1060)) (-5 *1 (-697 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-652 *4)) (-4 *4 (-1060)) (-4 *1 (-1134 *3 *4 *5 *6))
- (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *3 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *5) (-27) (-1214)))
- (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2 (-594 *3)) (-5 *1 (-574 *5 *3 *6)) (-4 *6 (-1111)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2870 (-790 *3)) (|:| |coef1| (-790 *3))))
- (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *2 (-2 (|:| -2870 *1) (|:| |coef1| *1)))
- (-4 *1 (-1076 *3 *4 *5)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-652 (-489 *4 *5))) (-5 *3 (-872 *4))
- (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-639 *4 *5)))))
+ (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -2803 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -1360 (-417 *6))
+ (|:| |special| (-417 *6))))
+ (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-907 *3 *4))
+ (-4 *3 (-1257 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372))
+ (-5 *2 (-2 (|:| -3891 *3) (|:| -3904 *3))) (-5 *1 (-907 *3 *5))
+ (-4 *3 (-1257 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112))
+ (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1082 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112))
+ (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1082 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112))
+ (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1158 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112))
+ (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462))
+ (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235))
+ (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-322 (-386))) (-5 *2 (-322 (-227))) (-5 *1 (-311)))))
+ (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1062)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2722 (-654 *4))))
+ (-5 *1 (-816 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4))))
+ (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-781)) (-4 *4 (-1062))
+ (-5 *2 (-2 (|:| -3855 *1) (|:| -3435 *1))) (-4 *1 (-1257 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-930)) (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))))
- ((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-370))))
+ (-12 (-5 *2 (-932)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))))
+ ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372))))
((*1 *2 *1)
- (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174))))
+ (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1279 *4)) (-5 *3 (-930)) (-4 *4 (-356))
- (-5 *1 (-536 *4))))
+ (-12 (-5 *2 (-1281 *4)) (-5 *3 (-932)) (-4 *4 (-358))
+ (-5 *1 (-538 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
- (-4 *5 (-242 *3 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
- (-5 *2
- (-2 (|:| -3080 *4) (|:| -2671 *4) (|:| |totalpts| (-572))
- (|:| |success| (-112))))
- (-5 *1 (-797)) (-5 *5 (-572)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-697 *11)) (-5 *4 (-652 (-415 (-961 *8))))
- (-5 *5 (-779)) (-5 *6 (-1170)) (-4 *8 (-13 (-313) (-148)))
- (-4 *11 (-958 *8 *10 *9)) (-4 *9 (-13 (-858) (-622 (-1188))))
- (-4 *10 (-801))
- (-5 *2
- (-2
- (|:| |rgl|
- (-652
- (-2 (|:| |eqzro| (-652 *11)) (|:| |neqzro| (-652 *11))
- (|:| |wcond| (-652 (-961 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *8))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *8))))))))))
- (|:| |rgsz| (-572))))
- (-5 *1 (-933 *8 *9 *10 *11)) (-5 *7 (-572)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-572))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -1384))))
- (-5 *2 (-1046)) (-5 *1 (-756)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)) (-4 *2 (-1062)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *2 (-1048)) (-5 *1 (-764)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574))
+ (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048))
+ (-5 *1 (-758)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -4090 *4))))
- (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1113 (-779))) (-5 *6 (-779))
- (-5 *2
- (-2 (|:| |contp| (-572))
- (|:| -4225 (-652 (-2 (|:| |irr| *3) (|:| -2866 (-572)))))))
- (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
-(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1105 (-227)))
- (-5 *5 (-112)) (-5 *2 (-1281)) (-5 *1 (-262)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-572))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046))
- (-5 *1 (-756)))))
-(((*1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1212)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+ (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1257 *5))
+ (-5 *1 (-737 *5 *2)) (-4 *5 (-372)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-501)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4))
+ (-4 *4 (-879 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-574)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-1272 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1272 *2)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1023 *2)) (-4 *2 (-1231)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370)))
- (-4 *3 (-1255 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-572)) (-4 *2 (-438 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1049 *4)) (-4 *3 (-564)))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 (-903 *3)))))
+ (-5 *1 (-903 *3)) (-4 *3 (-1113))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4)))
+ (-5 *1 (-903 *4)) (-4 *4 (-1113)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1139 *4 *3 *5))) (-4 *4 (-38 (-417 (-574))))
+ (-4 *4 (-1062)) (-4 *3 (-860)) (-5 *1 (-1139 *4 *3 *5))
+ (-4 *5 (-960 *4 (-541 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1225 *4))) (-5 *3 (-1190)) (-5 *1 (-1225 *4))
+ (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
- (-4 *4 (-356)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 (-572))) (-5 *4 (-572)) (-5 *2 (-52))
- (-5 *1 (-1016)))))
+ (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1174 *4)) (-4 *4 (-1062))
+ (-5 *3 (-574)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-388)) (-5 *1 (-1076)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *4 (-1190))
+ (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1123)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-297)))
- ((*1 *1) (-5 *1 (-870)))
- ((*1 *1)
- (-12 (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801))
- (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1096)))
- ((*1 *1)
- (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
- (-4 *3 (-13 (-1111) (-34)))))
- ((*1 *1) (-5 *1 (-1191))) ((*1 *1) (-5 *1 (-1192))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4))
- (-4 *4 (-1229)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-336))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-300 *2)) (-4 *2 (-734)) (-4 *2 (-1229)))))
+ (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-762)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-699 *4)) (-4 *4 (-1062)) (-5 *1 (-1155 *3 *4))
+ (-14 *3 (-781)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
- (-5 *2 (-697 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-697 *4)) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
- ((*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))))
+ (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274))))
+ ((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4))
+ (-4 *4 (-13 (-372) (-858))))))
+(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231))
+ (-14 *4 (-574)))))
+(((*1 *1) (-5 *1 (-338))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207)))))
+(((*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
- (-14 *4 (-652 (-1188)))))
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062))
+ (-14 *4 (-654 (-1190)))))
((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013)))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
- (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3))
+ (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
- (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
- ((*1 *1 *1) (-4 *1 (-290)))
+ (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3))
+ (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))
+ ((*1 *1 *1) (-4 *1 (-292)))
((*1 *1 *1)
- (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
- (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190)))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-672 *3 *4)) (-4 *3 (-858))
- (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-5 *1 (-635 *3 *4 *5))
- (-14 *5 (-930))))
+ (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5))
+ (-14 *5 (-932))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572)))))
- (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4))))
+ (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574)))))
+ (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4))
- (-4 *4 (-725 (-415 (-572)))) (-4 *3 (-858)) (-4 *4 (-174)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-697 *8)) (-4 *8 (-958 *5 *7 *6))
- (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
- (-4 *7 (-801))
- (-5 *2
- (-652
- (-2 (|:| -3581 (-779))
- (|:| |eqns|
- (-652
- (-2 (|:| |det| *8) (|:| |rows| (-652 (-572)))
- (|:| |cols| (-652 (-572))))))
- (|:| |fgb| (-652 *8)))))
- (-5 *1 (-933 *5 *6 *7 *8)) (-5 *4 (-779)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-652 *7) *7 (-1184 *7))) (-5 *5 (-1 (-426 *7) *7))
- (-4 *7 (-1255 *6)) (-4 *6 (-13 (-370) (-148) (-1049 (-415 (-572)))))
- (-5 *2 (-652 (-2 (|:| |frac| (-415 *7)) (|:| -4121 *3))))
- (-5 *1 (-817 *6 *7 *3 *8)) (-4 *3 (-664 *7))
- (-4 *8 (-664 (-415 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5))
- (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
- (-5 *2
- (-652 (-2 (|:| |frac| (-415 *6)) (|:| -4121 (-662 *6 (-415 *6))))))
- (-5 *1 (-820 *5 *6)) (-5 *3 (-662 *6 (-415 *6))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564))))
+ (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4))
+ (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781))
+ (-14 *4 (-781)) (-4 *5 (-174)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062))
+ (-4 *2 (-462))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-1257 (-574))) (-5 *2 (-654 (-574)))
+ (-5 *1 (-496 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-462))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-564)))))
-(((*1 *1 *1) (-4 *1 (-553))))
+ (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860)) (-4 *3 (-462)))))
+(((*1 *1 *1) (-4 *1 (-555))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1113 *4)) (-4 *4 (-1111)) (-5 *2 (-1 *4))
- (-5 *1 (-1028 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1105 (-572))) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-652 (-572)))
- (|:| |cols| (-652 (-572)))))
- (-5 *4 (-697 *12)) (-5 *5 (-652 (-415 (-961 *9))))
- (-5 *6 (-652 (-652 *12))) (-5 *7 (-779)) (-5 *8 (-572))
- (-4 *9 (-13 (-313) (-148))) (-4 *12 (-958 *9 *11 *10))
- (-4 *10 (-13 (-858) (-622 (-1188)))) (-4 *11 (-801))
- (-5 *2
- (-2 (|:| |eqzro| (-652 *12)) (|:| |neqzro| (-652 *12))
- (|:| |wcond| (-652 (-961 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1279 (-415 (-961 *9))))
- (|:| -4362 (-652 (-1279 (-415 (-961 *9)))))))))
- (-5 *1 (-933 *9 *10 *11 *12)))))
+ (-12 (-5 *3 (-1172)) (-5 *2 (-216 (-512))) (-5 *1 (-847)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-1280))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1280))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1280))))
+ (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-1282))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1282))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1282))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-1281))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1281))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1281)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1279 *5)) (-4 *5 (-13 (-1060) (-647 *4)))
- (-4 *4 (-564)) (-5 *2 (-1279 *4)) (-5 *1 (-646 *4 *5)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-572) "failed") *5)) (-4 *5 (-1060))
- (-5 *2 (-572)) (-5 *1 (-551 *5 *3)) (-4 *3 (-1255 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-572) "failed") *4)) (-4 *4 (-1060))
- (-5 *2 (-572)) (-5 *1 (-551 *4 *3)) (-4 *3 (-1255 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-572) "failed") *4)) (-4 *4 (-1060))
- (-5 *2 (-572)) (-5 *1 (-551 *4 *3)) (-4 *3 (-1255 *4)))))
+ (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-1283))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1283))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1283)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34)))
+ (-4 *3 (-13 (-1113) (-34))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-956 *4 *3))
+ (-4 *3 (-1257 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-969 (-781))) (-5 *1 (-341)))))
(((*1 *1) (-5 *1 (-188))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-489 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060))
- (-5 *2 (-961 *5)) (-5 *1 (-953 *4 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-898 *5 *3)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
- (-4 *3 (-167 *6)) (-4 (-961 *6) (-895 *5))
- (-4 *6 (-13 (-895 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-898 *4 *1)) (-5 *3 (-901 *4)) (-4 *1 (-895 *4))
- (-4 *4 (-1111))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-898 *5 *6)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
- (-4 *6 (-13 (-1111) (-1049 *3))) (-4 *3 (-895 *5))
- (-5 *1 (-940 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111))
- (-4 *3 (-13 (-438 *6) (-622 *4) (-895 *5) (-1049 (-620 $))))
- (-5 *4 (-901 *5)) (-4 *6 (-13 (-564) (-895 *5)))
- (-5 *1 (-941 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-898 (-572) *3)) (-5 *4 (-901 (-572))) (-4 *3 (-553))
- (-5 *1 (-942 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-898 *5 *6)) (-5 *3 (-620 *6)) (-4 *5 (-1111))
- (-4 *6 (-13 (-1111) (-1049 (-620 $)) (-622 *4) (-895 *5)))
- (-5 *4 (-901 *5)) (-5 *1 (-943 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-894 *5 *6 *3)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
- (-4 *6 (-895 *5)) (-4 *3 (-674 *6)) (-5 *1 (-944 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-898 *6 *3) *8 (-901 *6) (-898 *6 *3)))
- (-4 *8 (-858)) (-5 *2 (-898 *6 *3)) (-5 *4 (-901 *6))
- (-4 *6 (-1111)) (-4 *3 (-13 (-958 *9 *7 *8) (-622 *4)))
- (-4 *7 (-801)) (-4 *9 (-13 (-1060) (-895 *6)))
- (-5 *1 (-945 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111))
- (-4 *3 (-13 (-958 *8 *6 *7) (-622 *4))) (-5 *4 (-901 *5))
- (-4 *7 (-895 *5)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *8 (-13 (-1060) (-895 *5))) (-5 *1 (-945 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111)) (-4 *3 (-1003 *6))
- (-4 *6 (-13 (-564) (-895 *5) (-622 *4))) (-5 *4 (-901 *5))
- (-5 *1 (-948 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-898 *5 (-1188))) (-5 *3 (-1188)) (-5 *4 (-901 *5))
- (-4 *5 (-1111)) (-5 *1 (-949 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-652 (-901 *7))) (-5 *5 (-1 *9 (-652 *9)))
- (-5 *6 (-1 (-898 *7 *9) *9 (-901 *7) (-898 *7 *9))) (-4 *7 (-1111))
- (-4 *9 (-13 (-1060) (-622 (-901 *7)) (-1049 *8)))
- (-5 *2 (-898 *7 *9)) (-5 *3 (-652 *9)) (-4 *8 (-1060))
- (-5 *1 (-950 *7 *8 *9)))))
+(((*1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-932)) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220))))
+ ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231))))
+ ((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
+ (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1231))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-659 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-779)) (-5 *6 (-112)) (-4 *7 (-460)) (-4 *8 (-801))
- (-4 *9 (-858)) (-4 *3 (-1076 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1080 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *3 (-1076 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-779)) (-5 *6 (-112)) (-4 *7 (-460)) (-4 *8 (-801))
- (-4 *9 (-858)) (-4 *3 (-1076 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1156 *7 *8 *9 *3 *4)) (-4 *4 (-1120 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
- (-4 *3 (-1076 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1156 *6 *7 *8 *3 *4)) (-4 *4 (-1120 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-652 *4))
- (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -4090 *4))))))
- (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+ (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-163)))
- ((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-163)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1190))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-654 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -4332 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1216) (-27) (-440 *8)))
+ (-4 *8 (-13 (-462) (-148) (-1051 *3) (-649 *3))) (-5 *3 (-574))
+ (-5 *2 (-654 *4)) (-5 *1 (-1027 *8 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-858)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -3948 (-428 *3))))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1113)))))
(((*1 *1) (-5 *1 (-188))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-652 (-652 (-227)))) (-5 *4 (-227))
- (-5 *2 (-652 (-952 *4))) (-5 *1 (-1225)) (-5 *3 (-952 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1281 *6)) (-5 *4 (-1281 (-574))) (-5 *5 (-574))
+ (-4 *6 (-1113)) (-5 *2 (-1 *6)) (-5 *1 (-1030 *6)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-241 *3))
+ (-4 *3 (-1113))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4456)) (-4 *1 (-241 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-1113))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1113))
+ (-5 *1 (-747 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34)))
+ (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-652 *2)) (-5 *1 (-114 *2))
- (-4 *2 (-1111))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-652 *4))) (-4 *4 (-1111))
- (-5 *1 (-114 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1111))
- (-5 *1 (-114 *4))))
+ (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-566)) (-4 *8 (-960 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2524 (-781)) (|:| -1859 *9) (|:| |radicand| *9)))
+ (-5 *1 (-964 *5 *6 *7 *8 *9)) (-5 *4 (-781))
+ (-4 *9
+ (-13 (-372)
+ (-10 -8 (-15 -2943 ($ *8)) (-15 -2965 (*8 $)) (-15 -2977 (*8 $))))))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-765)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-932)) (-4 *5 (-566)) (-5 *2 (-699 *5))
+ (-5 *1 (-967 *5 *3)) (-4 *3 (-666 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1283)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1208 *4 *5))
+ (-4 *4 (-1113)) (-4 *5 (-1113)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-876 *4 *5 *6 *7))
+ (-4 *4 (-1062)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 *3))
+ (-14 *7 *3)))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-652 *4)))
- (-5 *1 (-114 *4)) (-4 *4 (-1111))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-656 *3)) (-4 *3 (-1060))
- (-5 *1 (-722 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-844 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1111)))))
+ (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-4 *5 (-860)) (-4 *6 (-803))
+ (-14 *8 (-654 *5)) (-5 *2 (-1286))
+ (-5 *1 (-1293 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-960 *4 *6 *5))
+ (-14 *9 (-654 *3)) (-14 *10 *3))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4))
+ (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1188))
+ (-12 (-4 *4 (-462))
(-5 *2
- (-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227)))
- (|:| |singularities| (-1168 (-227)))))
- (-5 *1 (-105)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1280))))
- ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-652 (-1184 *7))) (-5 *3 (-1184 *7))
- (-4 *7 (-958 *5 *6 *4)) (-4 *5 (-918)) (-4 *6 (-801))
- (-4 *4 (-858)) (-5 *1 (-915 *5 *6 *4 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
- (-5 *1 (-812 *4 *2)) (-4 *2 (-13 (-29 *4) (-1214) (-968))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-779)) (-4 *6 (-1111)) (-4 *7 (-909 *6))
- (-5 *2 (-697 *7)) (-5 *1 (-700 *6 *7 *3 *4)) (-4 *3 (-380 *7))
- (-4 *4 (-13 (-380 *6) (-10 -7 (-6 -4454)))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+ (-654
+ (-2 (|:| |eigval| (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4))))
+ (|:| |geneigvec| (-654 (-699 (-417 (-963 *4))))))))
+ (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-963 *4)))))))
(((*1 *1) (-5 *1 (-188))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1188)) (-5 *2 (-1 *6 *5)) (-5 *1 (-714 *4 *5 *6))
- (-4 *4 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-652 (-572))) (-5 *3 (-697 (-572))) (-5 *1 (-1121)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-759)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-652 *6))
- (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
- (-4 *4 (-1060)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-4 *5 (-370)) (-5 *2 (-1168 (-1168 (-961 *5))))
- (-5 *1 (-1287 *5)) (-5 *4 (-1168 (-961 *5))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-652 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060))
- (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
- (-4 *3 (-564)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-858)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
- (-4 *4 (-356)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1296 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
+ (-5 *1 (-674 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1301 *3 *4))
+ (-4 *3 (-860)) (-4 *4 (-174)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1062)))))
+(((*1 *2)
+ (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-462)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1190)) (-4 *4 (-462)) (-4 *4 (-1113))
+ (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5))
+ (-5 *1 (-1001 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5))
+ (-5 *1 (-1120 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5))
+ (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803)) (-5 *1 (-935 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1190))
+ (-4 *2 (-13 (-27) (-1216) (-440 *5)))
+ (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-284 *5 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
+ (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-564)))))
-(((*1 *1) (-4 *1 (-978))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313))
- (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-958 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *6))))
+ (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-112))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *6 *4 *5))
- (-5 *1 (-925 *4 *5 *6 *2)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-313)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
- (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
- (-5 *1 (-796)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-245))))
+ (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-112))
+ (-5 *1 (-1220 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-1281 *5))) (-5 *4 (-574)) (-5 *2 (-1281 *5))
+ (-5 *1 (-1042 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062)))))
+(((*1 *1) (-4 *1 (-980))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-654 (-963 *4))) (-5 *3 (-654 (-1190))) (-4 *4 (-462))
+ (-5 *1 (-929 *4)))))
+(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-388))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-247))))
((*1 *2 *3)
- (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1284)) (-5 *1 (-245)))))
+ (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1286)) (-5 *1 (-247)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860))
+ (-4 *4 (-1062)) (-4 *4 (-174))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062))
+ (-4 *3 (-174)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-370)) (-4 *3 (-1060))
- (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-860 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-370)) (-4 *5 (-1060))
- (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-861 *5 *3))
- (-4 *3 (-860 *5)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-652
- (-2
- (|:| -3690
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1279 (-322 (-227))))
- (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227)))
- (|:| |g| (-322 (-227))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -1907
- (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386))
- (|:| |expense| (-386)) (|:| |accuracy| (-386))
- (|:| |intermediateResults| (-386)))))))
- (-5 *1 (-811)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *3 (-652 (-268)))
- (-5 *1 (-266))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *1 (-268))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 (-489 *5 *6))) (-5 *3 (-489 *5 *6))
- (-14 *5 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-1279 *6))
- (-5 *1 (-639 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-224 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-259 *3))))
- ((*1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
- (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
- (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1188)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-574)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1151 *3 *2)) (-4 *3 (-13 (-1111) (-34)))
- (-4 *2 (-13 (-1111) (-34))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
- (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-697 (-322 (-227))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-372)) (-4 *3 (-1062))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1)))
+ (-4 *1 (-862 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315))
+ (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7))
+ (-4 *3 (-1257 *6)) (-4 *7 (-960 *6 *4 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-960 *4 *5 *6))
+ (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-5 *1 (-459 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227)))
+ (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1048)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))))
- (-5 *1 (-207)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-426 *3)) (-4 *3 (-564)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-370) (-1214) (-1013))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1150))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-1011 *3)))))
+ (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801))
- (-4 *8 (-858)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-652 *9))))
- (-5 *3 (-652 *9)) (-4 *1 (-1222 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1076 *5 *6 *7))
- (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-652 *8))))
- (-5 *3 (-652 *8)) (-4 *1 (-1222 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-762)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-370) (-856)))
- (-5 *2 (-652 (-2 (|:| -4225 (-652 *3)) (|:| -2671 *5))))
- (-5 *1 (-183 *5 *3)) (-4 *3 (-1255 (-171 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-370) (-856)))
- (-5 *2 (-652 (-2 (|:| -4225 (-652 *3)) (|:| -2671 *4))))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
+ (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 *3))
+ (-4 *3 (-13 (-27) (-1216) (-440 *6)))
+ (-4 *6 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-567 *6 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-652 (-227)))
- (-5 *1 (-476)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572))))
- (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))))
+ (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 (-574)))
+ (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5))
+ (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-1186 (-417 (-574))))
+ (-5 *1 (-443 *5 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1015) (-1216)))
+ (-5 *1 (-610 *4 *2 *3))
+ (-4 *3 (-13 (-440 (-171 *4)) (-1015) (-1216))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1062))
+ (-4 *4 (-802)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1113))
+ (-5 *1 (-114 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1188))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *1 (-1218 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
-(((*1 *1 *1) (-4 *1 (-1071))))
-(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-216 *4))
- (-4 *4
- (-13 (-858)
- (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 (*2 $))
- (-15 -1528 (*2 $)))))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1113))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4))))
+ (-5 *1 (-114 *4)) (-4 *4 (-1113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1212)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1231))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1231))))
((*1 *2 *1)
- (-12 (-5 *2 (-1284)) (-5 *1 (-216 *3))
- (-4 *3
- (-13 (-858)
- (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 (*2 $))
- (-15 -1528 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-510)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-858)) (-5 *2 (-652 (-652 (-652 *4))))
- (-5 *1 (-1199 *4)) (-5 *3 (-652 (-652 *4))))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-652 (-620 *6))) (-5 *4 (-1188)) (-5 *2 (-620 *6))
- (-4 *6 (-438 *5)) (-4 *5 (-1111)) (-5 *1 (-581 *5 *6)))))
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-572)) (-5 *2 (-652 (-2 (|:| -4218 *3) (|:| -4390 *4))))
- (-5 *1 (-704 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-652 (-2 (|:| |totdeg| (-779)) (|:| -2057 *3))))
- (-5 *4 (-779)) (-4 *3 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801))
- (-4 *7 (-858)) (-5 *1 (-457 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282))))
- ((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
- (-4 *3 (-374 *4))))
- ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-564))))
- ((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))))
+ (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1190))) (-4 *6 (-462))
+ (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7))
+ (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *2) (-12 (-5 *2 (-1160 (-1172))) (-5 *1 (-401)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1062)) (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1257 *5))
+ (-5 *2
+ (-654
+ (-2 (|:| -2722 (-699 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-699 *6)))))
+ (-5 *1 (-508 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2722 (-699 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-699 *6))))
+ (-4 *7 (-1257 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1190)))
+ (-4 *2 (-13 (-440 (-171 *5)) (-1015) (-1216))) (-4 *5 (-566))
+ (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1015) (-1216))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
+ (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-654
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-803)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860))
+ (-5 *1 (-459 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8))
+ (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148)))
+ (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-112))
+ (-5 *1 (-935 *5 *6 *7 *8)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1190))) (-5 *1 (-835)))))
+(((*1 *1) (-5 *1 (-447))))
+(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))))
(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1062))) (-5 *2 (-1172))
+ (-5 *1 (-836 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1062)))
+ (-5 *2 (-1172)) (-5 *1 (-836 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1062)))
+ (-5 *2 (-1286)) (-5 *1 (-836 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-838) (-1062))) (-5 *2 (-1286)) (-5 *1 (-836 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1172))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1172))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1286))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1286)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-194))))
+ ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1281 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-920))
+ (-5 *2 (-1281 *1)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-954 (-227)) (-227) (-227)))
+ (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))))
+(((*1 *1) (-5 *1 (-1098))))
+(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))))
(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
- ((*1 *1 *1 *1) (-4 *1 (-481)))
- ((*1 *1 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
- ((*1 *2 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-892))))
- ((*1 *1 *1) (-5 *1 (-982)))
- ((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
-(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227)))
- (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227))
- (-5 *2 (-1046)) (-5 *1 (-757)))))
-(((*1 *1) (-5 *1 (-605))))
+ ((*1 *1 *1 *1) (-4 *1 (-483)))
+ ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
+ ((*1 *2 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-894))))
+ ((*1 *1 *1) (-5 *1 (-984)))
+ ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
- (|:| -1910 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-652 (-227))) (-5 *1 (-206)))))
-(((*1 *1 *1) (-4 *1 (-637)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
+ (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-193)) (-5 *3 (-574))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
-(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-923 *3)) (-4 *3 (-313)))))
+ (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1610 *4))))
+ (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1186 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-516)) (-5 *3 (-654 (-976))) (-5 *1 (-109)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-1109 *3))))
- ((*1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1111)) (-4 *6 (-1111))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-692 *4 *5 *6)) (-4 *5 (-1111)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-251 *3 *4))
- (-14 *3 (-652 (-1188))) (-4 *4 (-1060))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-572))) (-14 *3 (-652 (-1188)))
- (-5 *1 (-462 *3 *4 *5)) (-4 *4 (-1060))
- (-4 *5 (-242 (-2860 *3) (-779)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-489 *3 *4))
- (-14 *3 (-652 (-1188))) (-4 *4 (-1060)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191))))
- ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1191)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-572))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-779)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-801)) (-4 *4 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-858))
- (-5 *1 (-457 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+ (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-1111 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))))
(((*1 *2)
- (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-425 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-652 (-961 *3))) (-4 *3 (-460))
- (-5 *1 (-367 *3 *4)) (-14 *4 (-652 (-1188)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-652 (-788 *3 (-872 *4)))) (-4 *3 (-460))
- (-14 *4 (-652 (-1188))) (-5 *1 (-636 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1077)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1255 *9)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-313))
- (-4 *10 (-958 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-652 (-1184 *10)))
- (|:| |dterm|
- (-652 (-652 (-2 (|:| -2726 (-779)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-652 *6)) (|:| |nlead| (-652 *10))))
- (-5 *1 (-786 *6 *7 *8 *9 *10)) (-5 *3 (-1184 *10)) (-5 *4 (-652 *6))
- (-5 *5 (-652 *10)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-103 *3)) (-4 *3 (-1111)))))
+ (-12 (-4 *1 (-358))
+ (-5 *2 (-654 (-2 (|:| -4220 (-574)) (|:| -2524 (-574))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-417 (-574)))
+ (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1170 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))))
+(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1231))
+ (-4 *3 (-382 *4)) (-4 *5 (-382 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-871))))
+ ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1079)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-426 (-1184 *1))) (-5 *1 (-322 *4)) (-5 *3 (-1184 *1))
- (-4 *4 (-460)) (-4 *4 (-564)) (-4 *4 (-1111))))
+ (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-761)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1224 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *5 (-1078 *2 *3 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-4 *3 (-1113))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860)) (-4 *2 (-566)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555))))
((*1 *2 *3)
- (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-652 *3)) (-4 *3 (-1255 (-572))) (-5 *1 (-494 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $))
- (-15 -2974 ((-1136 *3 (-620 $)) $))
- (-15 -2940 ($ (-1136 *3 (-620 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $))
- (-15 -2974 ((-1136 *3 (-620 $)) $))
- (-15 -2940 ($ (-1136 *3 (-620 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 *2))
- (-4 *2
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *4 (-620 $)) $))
- (-15 -2974 ((-1136 *4 (-620 $)) $))
- (-15 -2940 ($ (-1136 *4 (-620 $)))))))
- (-4 *4 (-564)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 (-620 *2)))
- (-4 *2
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *4 (-620 $)) $))
- (-15 -2974 ((-1136 *4 (-620 $)) $))
- (-15 -2940 ($ (-1136 *4 (-620 $)))))))
- (-4 *4 (-564)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-415 (-572))))
- (-5 *2 (-2 (|:| -2222 (-1168 *4)) (|:| -2231 (-1168 *4))))
- (-5 *1 (-1174 *4)) (-5 *3 (-1168 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858))))
+ (-12 (-5 *2 (-2 (|:| -2629 *3) (|:| -2524 (-781)))) (-5 *1 (-597 *3))
+ (-4 *3 (-555)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048))
+ (-5 *1 (-762)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3))
+ (-4 *3 (-13 (-414) (-1216)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-872 *3)) (-14 *3 (-652 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1000))))
+ (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1002))))
((*1 *2 *1)
- (-12 (-4 *4 (-1229)) (-5 *2 (-1188)) (-5 *1 (-1068 *3 *4))
- (-4 *3 (-1104 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1103 *3)) (-4 *3 (-1229))))
+ (-12 (-4 *4 (-1231)) (-5 *2 (-1190)) (-5 *1 (-1070 *3 *4))
+ (-4 *3 (-1106 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1105 *3)) (-4 *3 (-1231))))
((*1 *2 *1)
- (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
- (-5 *2 (-1188))))
- ((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1275 *3)) (-14 *3 *2))))
+ (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802))
+ (-5 *2 (-1190))))
+ ((*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1277 *3)) (-14 *3 *2))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1229)) (-5 *2 (-779))
- (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113))
+ (-4 *4 (-1113)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1231)) (-5 *2 (-781))
+ (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132))
- (-5 *2 (-779))))
+ (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132))
+ (-5 *2 (-781))))
((*1 *2)
- (-12 (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-334 *3 *4))
- (-4 *3 (-335 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-368 *3)) (-4 *3 (-1111))))
- ((*1 *2) (-12 (-4 *1 (-375)) (-5 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-1111)) (-5 *2 (-779))))
+ (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1113))))
+ ((*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1113)) (-5 *2 (-781))))
((*1 *2)
- (-12 (-4 *4 (-1111)) (-5 *2 (-779)) (-5 *1 (-432 *3 *4))
- (-4 *3 (-433 *4))))
+ (-12 (-4 *4 (-1113)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4))
+ (-4 *3 (-435 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-779)) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111))
+ (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-779))
- (-5 *1 (-731 *3 *4 *5)) (-4 *3 (-732 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017))))
+ (-12 (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-781))
+ (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5))))
+ ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
- (-4 *3 (-1255 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2870 *3)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-322 (-227))) (-5 *4 (-1188))
- (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-194))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-322 (-227))) (-5 *4 (-1188))
- (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-112))
- (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1214) (-29 *4))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1222 *4 *5 *3 *6)) (-4 *4 (-564)) (-4 *5 (-801))
- (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-1111))
- (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-297)) (-5 *1 (-286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-370) (-308)
- (-10 -8 (-15 -2963 ((-1136 *3 (-620 $)) $))
- (-15 -2974 ((-1136 *3 (-620 $)) $))
- (-15 -2940 ($ (-1136 *3 (-620 $))))))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188))
- (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3))
+ (-4 *3 (-1257 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1205 *2)) (-4 *2 (-372)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-652 *5)) (-4 *5 (-1255 *3)) (-4 *3 (-313))
- (-5 *2 (-112)) (-5 *1 (-463 *3 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-368 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *1 (-393 *4)) (-4 *4 (-1111)) (-5 *2 (-779))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-572)) (-4 *2 (-23)) (-5 *1 (-657 *4 *2 *5))
- (-4 *4 (-1111)) (-14 *5 *2))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))))
+ (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227)))
+ (-5 *1 (-313)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *5)) (-5 *4 (-930)) (-4 *5 (-858))
- (-5 *2 (-59 (-652 (-680 *5)))) (-5 *1 (-680 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-457 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-652 (-779))) (-5 *3 (-112)) (-5 *1 (-1176 *4 *5))
- (-14 *4 (-930)) (-4 *5 (-1060)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1072 (-1035 *4) (-1184 (-1035 *4)))) (-5 *3 (-870))
- (-5 *1 (-1035 *4)) (-4 *4 (-13 (-856) (-370) (-1033))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
+ (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1193))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1286))
+ (-5 *1 (-1193))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1286))
+ (-5 *1 (-1193)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3))))
+ (-5 *1 (-122 *3)) (-4 *3 (-860))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1216)))
+ (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574))))
+ (-5 *1 (-593 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-596 (-417 (-963 *3))))
+ (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-599 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372))
+ (-5 *2 (-2 (|:| -1360 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1281 *5)) (-4 *5 (-372)) (-4 *5 (-1062))
+ (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5))
+ (-5 *3 (-654 (-699 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1281 (-1281 *5))) (-4 *5 (-372)) (-4 *5 (-1062))
+ (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5))
+ (-5 *3 (-654 (-699 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1157))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1157)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-4 *3 (-1111))
- (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-640)))))
+ (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860))
+ (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860))
+ (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227))
+ (-5 *2 (-1048)) (-5 *1 (-759)))))
+(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-97)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34)))
+ (-4 *3 (-13 (-1113) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1291)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1281 (-574))) (-5 *3 (-574)) (-5 *1 (-1123))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1281 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574))
+ (-5 *1 (-1123)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172)) (-5 *2 (-574)) (-5 *1 (-1213 *4))
+ (-4 *4 (-1062)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1113))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1172)) (-5 *1 (-1212)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-1145 *4 *2))
+ (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4456) (-6 -4457))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-860)) (-4 *3 (-1231)) (-5 *1 (-1145 *3 *2))
+ (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4456) (-6 -4457)))))))
+(((*1 *1) (-5 *1 (-607))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-566)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1231))
+ (-4 *5 (-382 *4)) (-4 *2 (-382 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *6 *2 *7)) (-4 *6 (-1062))
+ (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932))
+ (-4 *4 (-1062)))))
+(((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1188)) (-4 *5 (-370)) (-5 *2 (-652 (-1223 *5)))
- (-5 *1 (-1287 *5)) (-5 *4 (-1223 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-779)) (-5 *1 (-228))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-171 (-227))) (-5 *3 (-779)) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1150))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-652
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-779)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-801)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *5 (-858))
- (-5 *1 (-457 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-370)) (-5 *1 (-667 *4 *2))
- (-4 *2 (-664 *4)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))))
+(((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-699 (-417 (-963 *4)))) (-4 *4 (-462))
+ (-5 *2 (-654 (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4)))))
+ (-5 *1 (-300 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
(((*1 *2 *1)
(-12
(-5 *2
@@ -16696,1625 +16686,1637 @@
(|:| |Continue| "continue")
(|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
(|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-336)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-268)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))))
-(((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3537 *4)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+ (-5 *1 (-338)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227)))
+ (|:| -2967 (-1107 (-853 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-654 (-227))) (-5 *1 (-206)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-574)) (|has| *1 (-6 -4447)) (-4 *1 (-414))
+ (-5 *2 (-932)))))
+(((*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-534)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-417 (-963 *5)) (-1179 (-1190) (-963 *5))))
+ (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *5)))))
+ (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-963 *5)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-415 (-572))) (-4 *4 (-1049 (-572))) (-4 *4 (-564))
- (-5 *1 (-32 *4 *2)) (-4 *2 (-438 *4))))
+ (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1051 (-574))) (-4 *4 (-566))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4))))
((*1 *1 *1 *1) (-5 *1 (-135)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
((*1 *1 *1 *1) (-5 *1 (-227)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-247)) (-5 *2 (-572))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-415 (-572))) (-4 *4 (-370)) (-4 *4 (-38 *3))
- (-4 *5 (-1270 *4)) (-5 *1 (-283 *4 *5 *2)) (-4 *2 (-1241 *4 *5))))
+ (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3))
+ (-4 *5 (-1272 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1243 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-415 (-572))) (-4 *4 (-370)) (-4 *4 (-38 *3))
- (-4 *5 (-1239 *4)) (-5 *1 (-284 *4 *5 *2 *6)) (-4 *2 (-1262 *4 *5))
- (-4 *6 (-994 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-290)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-368 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *1) (-5 *1 (-386)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-393 *2)) (-4 *2 (-1111))))
+ (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3))
+ (-4 *5 (-1241 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1264 *4 *5))
+ (-4 *6 (-996 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-292)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *1 *1) (-5 *1 (-388)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1113))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-438 *3)) (-4 *3 (-1111))
- (-4 *3 (-1123))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-481)) (-5 *2 (-572))))
+ (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1113))
+ (-4 *3 (-1125))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
- (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
+ (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1279 *4)) (-5 *3 (-572)) (-4 *4 (-356))
- (-5 *1 (-536 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-544))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-544))))
+ (-12 (-5 *2 (-1281 *4)) (-5 *3 (-574)) (-4 *4 (-358))
+ (-5 *1 (-538 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *4 (-1111))
- (-5 *1 (-690 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1113))
+ (-5 *1 (-692 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-370))))
+ (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-779)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-697 *4)) (-5 *3 (-779)) (-4 *4 (-1060))
- (-5 *1 (-698 *4))))
+ (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1062))
+ (-5 *1 (-700 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (-4 *3 (-1060)) (-5 *1 (-722 *3 *4))
- (-4 *4 (-656 *3))))
+ (-12 (-5 *2 (-574)) (-4 *3 (-1062)) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-658 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-572)) (-4 *4 (-1060))
- (-5 *1 (-722 *4 *5)) (-4 *5 (-656 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-779))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-844 *3)) (-4 *3 (-1060))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1062))
+ (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1062))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-572)) (-5 *1 (-844 *4)) (-4 *4 (-1060))))
- ((*1 *1 *1 *1) (-5 *1 (-870)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-415 (-572)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-930))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1062))))
+ ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-417 (-574)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1125)) (-5 *2 (-932))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-572)) (-4 *1 (-1134 *3 *4 *5 *6)) (-4 *4 (-1060))
- (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *3 *4)) (-4 *4 (-370))))
+ (-12 (-5 *2 (-574)) (-4 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-1062))
+ (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1173 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1175 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
- (-5 *1 (-1174 *3))))
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-5 *1 (-1176 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+ (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-544) (-652 (-544)))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-544) (-652 (-544)))) (-5 *1 (-115))))
- ((*1 *1) (-5 *1 (-586))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-652 (-1184 *7))) (-5 *3 (-1184 *7))
- (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-918)) (-4 *5 (-801))
- (-4 *6 (-858)) (-5 *1 (-915 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-652 (-1184 *5))) (-5 *3 (-1184 *5))
- (-4 *5 (-1255 *4)) (-4 *4 (-918)) (-5 *1 (-916 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
- (-4 *4 (-356)))))
-(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
- ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
+ (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115))))
+ ((*1 *1) (-5 *1 (-588))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-932)) (-5 *2 (-1186 *3)) (-5 *1 (-1205 *3))
+ (-4 *3 (-372)))))
+(((*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-932)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884))
+ (-5 *2 (-1286)) (-5 *1 (-1282)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1279 (-3 (-476) "undefined"))) (-5 *1 (-1280)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-322 *3)) (-4 *3 (-13 (-1060) (-858)))
- (-5 *1 (-225 *3 *4)) (-14 *4 (-652 (-1188))))))
+ (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190))
+ (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-639)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015) (-1216))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1114 *3 *4 *5 *6 *2)) (-4 *3 (-1111)) (-4 *4 (-1111))
- (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-829)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-779))))
+ (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))
+ (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1116 *3 *4 *5 *6 *2)) (-4 *3 (-1113)) (-4 *4 (-1113))
+ (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803))
+ (-4 *4 (-860))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1281 (-1190))) (-5 *3 (-1281 (-463 *4 *5 *6 *7)))
+ (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-932))
+ (-14 *6 (-654 (-1190))) (-14 *7 (-1281 (-699 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-463 *4 *5 *6 *7)))
+ (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-932))
+ (-14 *6 (-654 *2)) (-14 *7 (-1281 (-699 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1281 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190)))
+ (-14 *6 (-1281 (-699 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1281 (-1190))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190)))
+ (-14 *6 (-1281 (-699 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1190)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-932)) (-14 *5 (-654 *2)) (-14 *6 (-1281 (-699 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-932))
+ (-14 *4 (-654 (-1190))) (-14 *5 (-1281 (-699 *2))))))
+(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-572)) (-4 *1 (-380 *3)) (-4 *3 (-1229))
- (-4 *3 (-1111))))
+ (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1231))
+ (-4 *3 (-1113))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-1111))
- (-5 *2 (-572))))
+ (-12 (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-1113))
+ (-5 *2 (-574))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-380 *4)) (-4 *4 (-1229))
- (-5 *2 (-572))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-537))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-572)) (-5 *3 (-142))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-572)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-652 (-1188))) (-4 *5 (-460))
- (-5 *2
- (-2 (|:| |glbase| (-652 (-251 *4 *5))) (|:| |glval| (-652 (-572)))))
- (-5 *1 (-639 *4 *5)) (-5 *3 (-652 (-251 *4 *5))))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-697 (-415 (-961 (-572)))))
- (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-801))
- (-4 *3 (-13 (-858) (-10 -8 (-15 -1835 ((-1188) $))))) (-4 *5 (-564))
- (-5 *1 (-740 *4 *3 *5 *2)) (-4 *2 (-958 (-415 (-961 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1060)) (-4 *5 (-801))
- (-4 *3
- (-13 (-858)
- (-10 -8 (-15 -1835 ((-1188) $))
- (-15 -1487 ((-3 $ "failed") (-1188))))))
- (-5 *1 (-995 *4 *5 *3 *2)) (-4 *2 (-958 (-961 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-652 *6))
- (-4 *6
- (-13 (-858)
- (-10 -8 (-15 -1835 ((-1188) $))
- (-15 -1487 ((-3 $ "failed") (-1188))))))
- (-4 *4 (-1060)) (-4 *5 (-801)) (-5 *1 (-995 *4 *5 *6 *2))
- (-4 *2 (-958 (-961 *4) *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1234))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-1060)) (-4 *5 (-801))
- (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-914 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-2 (|:| -4218 *4) (|:| -4390 (-572)))))
- (-4 *4 (-1255 (-572))) (-5 *2 (-745 (-779))) (-5 *1 (-450 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-426 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-1060))
- (-5 *2 (-745 (-779))) (-5 *1 (-452 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
- (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-998 (-415 (-572)) (-872 *3) (-244 *4 (-779))
- (-251 *3 (-415 (-572)))))
- (-14 *3 (-652 (-1188))) (-14 *4 (-779)) (-5 *1 (-997 *3 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-622 (-901 (-572))))
- (-4 *5 (-895 (-572)))
- (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-575 *5 *3)) (-4 *3 (-637))
- (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1188)) (-5 *4 (-851 *2)) (-4 *2 (-1150))
- (-4 *2 (-13 (-27) (-1214) (-438 *5)))
- (-4 *5 (-622 (-901 (-572)))) (-4 *5 (-895 (-572)))
- (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572))))
- (-5 *1 (-575 *5 *2)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3)) (-5 *6 (-1184 *3))
- (-4 *3 (-13 (-438 *7) (-27) (-1214)))
- (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-568 *7 *3 *8)) (-4 *8 (-1111))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3))
- (-5 *6 (-415 (-1184 *3))) (-4 *3 (-13 (-438 *7) (-27) (-1214)))
- (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-568 *7 *3 *8)) (-4 *8 (-1111)))))
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1231))
+ (-5 *2 (-574))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-539))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-574)) (-5 *3 (-142))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-574)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-829)) (-5 *4 (-52)) (-5 *2 (-1284)) (-5 *1 (-839)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-572))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))
- (-14 *4 (-779)) (-4 *5 (-174)))))
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227)))
+ (-5 *2 (-1048)) (-5 *1 (-757)))))
+(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1075))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1075)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-652 *1)) (-4 *1 (-929)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935))))
- ((*1 *2 *1) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))))
-(((*1 *2)
- (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
- (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-370)) (-4 *3 (-1060))
- (-5 *1 (-1172 *3)))))
+ (-12 (-5 *3 (-1281 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372))
+ (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1257 *5))
+ (-5 *2 (-699 *5)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
- (-14 *6
- (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *2))
- (-2 (|:| -2571 *5) (|:| -1679 *2))))
- (-4 *2 (-242 (-2860 *3) (-779))) (-5 *1 (-469 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-858)) (-4 *7 (-958 *4 *2 (-872 *3))))))
+ (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6))
+ (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239))))))
+(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3))
+ (-4 *5 (-1257 (-417 *4)))
+ (-5 *2 (-2 (|:| |num| (-1281 *4)) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-574))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1062))
+ (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292)))
+ (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
- (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
- (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
- (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))))
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
- (-14 *4 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
- (-5 *2
- (-3 (|:| |%expansion| (-319 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))))
- (-5 *1 (-428 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
- (-14 *6 (-1188)) (-14 *7 *3))))
+ (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-370) (-1214) (-1013))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1111)) (-5 *1 (-1206 *3 *2)) (-4 *3 (-1111)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
- (-5 *2 (-1046)) (-5 *1 (-759)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-837)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
- (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-860)) (-5 *2 (-1202 (-654 *4))) (-5 *1 (-1201 *4))
+ (-5 *3 (-654 *4)))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
- (-5 *1 (-178 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060))
- (-4 *2 (-1239 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-547 *4 *2 *5 *6))
- (-4 *4 (-313)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-779))))))
+ (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
+ (-4 *2 (-13 (-440 *3) (-1015))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-839)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190))))
+ (-4 *6 (-803)) (-4 *7 (-960 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7))))
+ (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
- (-5 *2 (-652 (-961 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-652 (-961 *4))) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-803)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860))
+ (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763)))))
+(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-925 *3)) (-4 *3 (-315)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-781)) (-4 *1 (-1257 *4)) (-4 *4 (-1062))
+ (-5 *2 (-1281 *4)))))
+(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1257 *2))
+ (-4 *2 (-174))))
((*1 *2)
- (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-652 (-961 *3)))))
+ (-12 (-4 *4 (-1257 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4))
+ (-4 *3 (-419 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174))))
((*1 *2)
- (-12 (-5 *2 (-652 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
- (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
- (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1279 (-461 *4 *5 *6 *7))) (-5 *2 (-652 (-961 *4)))
- (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-564)) (-4 *4 (-174))
- (-14 *5 (-930)) (-14 *6 (-652 (-1188))) (-14 *7 (-1279 (-697 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-870) (-870))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-870) (-652 (-870)))) (-5 *1 (-115))))
+ (-12 (-4 *3 (-1257 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4))
+ (-4 *4 (-419 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860)) (-4 *3 (-174))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-174)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-5 *3 (-1190)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-29 *3)) (-4 *3 (-566))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1186 *2)) (-5 *4 (-1190)) (-4 *2 (-440 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-566))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1186 *1)) (-5 *3 (-932)) (-4 *1 (-1025))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1186 *1)) (-5 *3 (-932)) (-5 *4 (-872))
+ (-4 *1 (-1025))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-932)) (-4 *4 (-13 (-858) (-372)))
+ (-4 *1 (-1081 *4 *2)) (-4 *2 (-1257 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *6 (-1257 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7))
+ (-5 *5 (-1 (-428 *7) *7))
+ (-4 *6 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *7 (-1257 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *6 (-1257 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7))
+ (-5 *5 (-1 (-428 *7) *7))
+ (-4 *6 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-4 *7 (-1257 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1257 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6))
+ (-4 *6 (-1257 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1257 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6))
+ (-4 *6 (-1257 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))
+ (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1113)) (-4 *6 (-1113))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1113)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1015) (-1216)))
+ (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1015) (-1216)))
+ (-5 *1 (-610 *4 *5 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-870) (-652 (-870)))) (-5 *1 (-115))))
+ (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803))
+ (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338))
+ (-5 *1 (-340)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115))))
((*1 *2 *1)
- (-12 (-5 *2 (-1284)) (-5 *1 (-216 *3))
+ (-12 (-5 *2 (-1286)) (-5 *1 (-216 *3))
(-4 *3
- (-13 (-858)
- (-10 -8 (-15 -2196 ((-1170) $ (-1188))) (-15 -1401 (*2 $))
- (-15 -1528 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-402))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-402))))
- ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-510))))
- ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-718))))
- ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1209))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1279 (-652 (-2 (|:| -3080 *4) (|:| -2571 (-1131))))))
- (-4 *4 (-356)) (-5 *2 (-779)) (-5 *1 (-353 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-358 *3 *4)) (-14 *3 (-930))
- (-14 *4 (-930))))
- ((*1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-359 *3 *4)) (-4 *3 (-356))
- (-14 *4
- (-3 (-1184 *3)
- (-1279 (-652 (-2 (|:| -3080 *3) (|:| -2571 (-1131)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-779)) (-5 *1 (-360 *3 *4)) (-4 *3 (-356))
- (-14 *4 (-930)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7))))
- (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-112))
- (-5 *1 (-898 *4 *5)) (-4 *5 (-1111))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-5 *2 (-112))
- (-5 *1 (-899 *5 *3)) (-4 *3 (-1229))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *6)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
- (-4 *6 (-1229)) (-5 *2 (-112)) (-5 *1 (-899 *5 *6)))))
+ (-13 (-860)
+ (-10 -8 (-15 -2200 ((-1172) $ (-1190))) (-15 -1403 (*2 $))
+ (-15 -3588 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-404))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-404))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-512))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-720))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1211))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1211)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462))
+ (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1073)) (-4 *3 (-1216))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+ (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4))
+ (-4 *3 (-1257 (-171 (-574)))) (-4 *4 (-13 (-372) (-858)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4)))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4)))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-1062))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1190)))
+ (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1062))
+ (-4 *5 (-244 (-2863 *3) (-781)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4))
+ (-14 *3 (-654 (-1190))) (-4 *4 (-1062)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-5 *3 (-1190)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-29 *3)) (-4 *3 (-566))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))))
+(((*1 *1 *1) (-5 *1 (-1076))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-699 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2420 "void")))
- (-5 *1 (-445)))))
-(((*1 *1 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))))
+ (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-476)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))))
+ (-12 (-5 *3 (-478)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802))))
((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188)))))
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190)))))
((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858)))
- (-14 *3 (-652 (-1188)))))
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860)))
+ (-14 *3 (-654 (-1190)))))
((*1 *1 *1)
- (-12 (-4 *1 (-389 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1111))))
+ (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1113))))
((*1 *1 *1)
- (-12 (-14 *2 (-652 (-1188))) (-4 *3 (-174))
- (-4 *5 (-242 (-2860 *2) (-779)))
+ (-12 (-14 *2 (-654 (-1190))) (-4 *3 (-174))
+ (-4 *5 (-244 (-2863 *2) (-781)))
(-14 *6
- (-1 (-112) (-2 (|:| -2571 *4) (|:| -1679 *5))
- (-2 (|:| -2571 *4) (|:| -1679 *5))))
- (-5 *1 (-469 *2 *3 *4 *5 *6 *7)) (-4 *4 (-858))
- (-4 *7 (-958 *3 *5 (-872 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-858))))
+ (-1 (-112) (-2 (|:| -2576 *4) (|:| -2524 *5))
+ (-2 (|:| -2576 *4) (|:| -2524 *5))))
+ (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860))
+ (-4 *7 (-960 *3 *5 (-874 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-860))))
((*1 *1 *1)
- (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1060))))
+ (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1062))))
((*1 *1 *1)
- (-12 (-5 *1 (-743 *2 *3)) (-4 *3 (-858)) (-4 *2 (-1060))
- (-4 *3 (-734))))
- ((*1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060))))
+ (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1062))
+ (-4 *3 (-736))))
+ ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858))))
+ (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860))))
((*1 *1 *1)
- (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-652 (-697 *6))) (-5 *4 (-112)) (-5 *5 (-572))
- (-5 *2 (-697 *6)) (-5 *1 (-1040 *6)) (-4 *6 (-370)) (-4 *6 (-1060))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-652 (-697 *4))) (-5 *2 (-697 *4)) (-5 *1 (-1040 *4))
- (-4 *4 (-370)) (-4 *4 (-1060))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-572)) (-5 *2 (-697 *5))
- (-5 *1 (-1040 *5)) (-4 *5 (-370)) (-4 *5 (-1060)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-415 *5))
- (|:| |c2| (-415 *5)) (|:| |deg| (-779))))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-171 (-227)))) (-5 *2 (-1046))
- (-5 *1 (-762)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227)))
- (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1046)) (-5 *1 (-761)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-572)) (-5 *1 (-1168 *3)) (-4 *3 (-1229))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-435 *3 *2)) (-4 *3 (-13 (-174) (-38 (-415 (-572)))))
- (-4 *2 (-13 (-858) (-21))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *2 *3 *4)
+ (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856)))))
+(((*1 *1) (-5 *1 (-1193))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1062)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1257 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4))))
+ (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
+ (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2722 (-654 *1))))
+ (-4 *1 (-376 *3))))
+ ((*1 *2)
(|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2114 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-370)) (-5 *1 (-582 *4 *2)) (-4 *2 (-1255 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
- (-5 *1 (-760)))))
+ (-5 *2
+ (-2 (|:| |particular| (-463 *3 *4 *5 *6))
+ (|:| -2722 (-654 (-463 *3 *4 *5 *6)))))
+ (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932))
+ (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193))))
+ ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1193)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))))
+(((*1 *1) (-5 *1 (-569))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803))
+ (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1082 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7))
+ (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803))
+ (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
+ (-4 *3 (-376 *4))))
+ ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1280))))
- ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1281)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1283)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-958 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-652 (-961 *4))) (-5 *3 (-652 (-1188))) (-4 *4 (-460))
- (-5 *1 (-927 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-370)) (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3)))
- (-5 *1 (-774 *3 *4)) (-4 *3 (-716 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-370)) (-4 *3 (-1060))
- (-5 *2 (-2 (|:| -4215 *1) (|:| -3669 *1))) (-4 *1 (-860 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-370)) (-4 *5 (-1060))
- (-5 *2 (-2 (|:| -4215 *3) (|:| -3669 *3))) (-5 *1 (-861 *5 *3))
- (-4 *3 (-860 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-262)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-158)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229))
- (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060))))
+ (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
+ (-4 *1 (-960 *3 *4 *5)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803))
+ (-5 *2 (-112)) (-5 *1 (-1000 *3 *4 *5 *6))
+ (-4 *6 (-960 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34)))
+ (-4 *4 (-13 (-1113) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7))
+ (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4))))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462))
+ (-5 *1 (-1222 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3))
+ (-4 *2 (-13 (-440 *3) (-1216))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-574))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-803)) (-4 *4 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860))
+ (-5 *1 (-459 *5 *6 *7 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2))
+ (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3))
+ (-4 *5 (-382 *3)) (-5 *2 (-574))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-920)) (-4 *6 (-803))
+ (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-428 (-1186 *8)))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-1186 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5)))
+ (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-654 *5))
+ (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1141 *3 *5)) (-4 *3 (-1257 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062))))
((*1 *2 *1)
- (-12 (-4 *2 (-1060)) (-5 *1 (-50 *2 *3)) (-14 *3 (-652 (-1188)))))
+ (-12 (-4 *2 (-1062)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1190)))))
((*1 *2 *1)
- (-12 (-5 *2 (-322 *3)) (-5 *1 (-225 *3 *4))
- (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188)))))
+ (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4))
+ (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190)))))
((*1 *2 *1)
- (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1060))))
+ (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1062))))
((*1 *2 *1)
- (-12 (-14 *3 (-652 (-1188))) (-4 *5 (-242 (-2860 *3) (-779)))
+ (-12 (-14 *3 (-654 (-1190))) (-4 *5 (-244 (-2863 *3) (-781)))
(-14 *6
- (-1 (-112) (-2 (|:| -2571 *4) (|:| -1679 *5))
- (-2 (|:| -2571 *4) (|:| -1679 *5))))
- (-4 *2 (-174)) (-5 *1 (-469 *3 *2 *4 *5 *6 *7)) (-4 *4 (-858))
- (-4 *7 (-958 *2 *5 (-872 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-517 *2 *3)) (-4 *3 (-858)) (-4 *2 (-1111))))
+ (-1 (-112) (-2 (|:| -2576 *4) (|:| -2524 *5))
+ (-2 (|:| -2576 *4) (|:| -2524 *5))))
+ (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860))
+ (-4 *7 (-960 *2 *5 (-874 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1113))))
((*1 *2 *1)
- (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1060))))
+ (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1062))))
((*1 *2 *1)
- (-12 (-4 *2 (-1060)) (-5 *1 (-743 *2 *3)) (-4 *3 (-858))
- (-4 *3 (-734))))
- ((*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060))))
+ (-12 (-4 *2 (-1062)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860))
+ (-4 *3 (-736))))
+ ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062))))
((*1 *2 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *3 (-800)) (-4 *4 (-858))
- (-4 *2 (-1060))))
+ (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860))
+ (-4 *2 (-1062))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
- (-4 *2 (-858)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060))
- (-5 *1 (-1172 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060))
- (-14 *4 (-1188)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-914 *3))) (-4 *3 (-1111)) (-5 *1 (-913 *3)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-171 (-227))))
- (-5 *2 (-1046)) (-5 *1 (-762)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1279 *4)) (-5 *3 (-697 *4)) (-4 *4 (-370))
- (-5 *1 (-675 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-370))
- (-4 *5 (-13 (-380 *4) (-10 -7 (-6 -4455))))
- (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455))))
- (-5 *1 (-676 *4 *5 *2 *3)) (-4 *3 (-695 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-652 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-370))
- (-5 *1 (-822 *2 *3)) (-4 *3 (-664 *2))))
+ (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *2 (-860)))))
+(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-358)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-920)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3904 *6) (|:| |sol?| (-112))) (-574)
+ *6))
+ (-4 *6 (-372)) (-4 *7 (-1257 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6))
+ (-2 (|:| -4332 (-417 *7)) (|:| |coeff| (-417 *7))) "failed"))
+ (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-849))
+ (-5 *3
+ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227)))
+ (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227))))
+ (|:| |ub| (-654 (-853 (-227))))))
+ (-5 *2 (-1048))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
- (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
- (-4 *3 (-1076 *5 *6 *7))
- (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -4090 *4))))
- (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214)))))
- ((*1 *1 *1 *1) (-4 *1 (-801))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+ (-12 (-4 *1 (-849))
+ (-5 *3
+ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))
+ (-5 *2 (-1048)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1231)) (-4 *3 (-382 *2))
+ (-4 *4 (-382 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4457)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1113))
+ (-4 *2 (-1231)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))))
+ (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802))))
((*1 *2 *1)
- (-12 (-4 *1 (-389 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1111))))
+ (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1113))))
((*1 *2 *1)
- (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
- (-4 *6 (-242 (-2860 *3) (-779)))
+ (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174))
+ (-4 *6 (-244 (-2863 *3) (-781)))
(-14 *7
- (-1 (-112) (-2 (|:| -2571 *5) (|:| -1679 *6))
- (-2 (|:| -2571 *5) (|:| -1679 *6))))
- (-5 *2 (-721 *5 *6 *7)) (-5 *1 (-469 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-858)) (-4 *8 (-958 *4 *6 (-872 *3)))))
+ (-1 (-112) (-2 (|:| -2576 *5) (|:| -2524 *6))
+ (-2 (|:| -2576 *5) (|:| -2524 *6))))
+ (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-860)) (-4 *8 (-960 *4 *6 (-874 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-734)) (-4 *2 (-858)) (-5 *1 (-743 *3 *2))
- (-4 *3 (-1060))))
+ (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2))
+ (-4 *3 (-1062))))
((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-800))
- (-4 *4 (-858)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1060)) (-5 *1 (-720 *3 *4))
- (-4 *4 (-1255 *3)))))
+ (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-802))
+ (-4 *4 (-860)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-652 (-1184 (-572)))) (-5 *1 (-193)) (-5 *3 (-572)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1046)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564))))
- ((*1 *1 *1) (|partial| -4 *1 (-730))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-1233))
- (-4 *6 (-1255 (-415 *5)))
+ (-12
(-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-349 *4 *5 *6)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-782)) (-5 *1 (-115))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-782)) (-5 *1 (-115)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2870 *3)))
- (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-661 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-818 *4 *2))
- (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))))
+ (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))
+ (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))
+ (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574)))
+ (-5 *4 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))
+ (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))) (-5 *4 (-417 (-574)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-417 (-574)))
+ (-5 *2 (-654 (-2 (|:| -3891 *5) (|:| -3904 *5)))) (-5 *1 (-1033 *3))
+ (-4 *3 (-1257 (-574))) (-5 *4 (-2 (|:| -3891 *5) (|:| -3904 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-662 *2 (-415 *2))) (-4 *2 (-1255 *4))
- (-5 *1 (-818 *4 *2))
- (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
- (-5 *1 (-756)))))
-(((*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060))))
- ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-652 (-512 *3 *4 *5 *6))) (-4 *3 (-370)) (-4 *4 (-801))
- (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
- (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7))
- (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *7 (-1076 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
- (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1))
- (-4 *1 (-1082 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
- (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1))
- (-4 *1 (-1082 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
- (-5 *4 (-322 (-171 (-386)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
- (-5 *4 (-322 (-386))) (-5 *1 (-336))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
- (-5 *4 (-322 (-572))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-171 (-386)))))
- (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-386)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-572)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-171 (-386)))))
- (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-386)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-572)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-171 (-386)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-386))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-572))) (-5 *1 (-336))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
- (-5 *4 (-322 (-702))) (-5 *1 (-336))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
- (-5 *4 (-322 (-707))) (-5 *1 (-336))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
- (-5 *4 (-322 (-709))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-702)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-707)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-709)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-702)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-707)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-709)))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-702))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-707))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-709))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-702))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-707))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-709))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-702))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-707))) (-5 *1 (-336))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-709))) (-5 *1 (-336))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1170)) (-5 *1 (-336))))
- ((*1 *1 *1 *1) (-5 *1 (-870))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229))
- (-5 *2 (-652 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-745 *3)) (-4 *3 (-1111))))
- ((*1 *2 *1) (-12 (-5 *2 (-652 (-447))) (-5 *1 (-873)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4))
+ (-12
(-5 *2
- (-3 (|:| |overq| (-1184 (-415 (-572))))
- (|:| |overan| (-1184 (-48))) (|:| -3597 (-112))))
- (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-837)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-4 *7 (-858))
- (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801)) (-4 *8 (-313))
- (-5 *2 (-652 (-779))) (-5 *1 (-750 *6 *7 *8 *9)) (-5 *5 (-779)))))
-(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
+ (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))
+ (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))
+ (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574))))
+ (-5 *4 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-417 (-574)))
+ (-5 *2 (-654 (-2 (|:| -3891 *4) (|:| -3904 *4)))) (-5 *1 (-1034 *3))
+ (-4 *3 (-1257 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-417 (-574)))
+ (-5 *2 (-654 (-2 (|:| -3891 *5) (|:| -3904 *5)))) (-5 *1 (-1034 *3))
+ (-4 *3 (-1257 *5)) (-5 *4 (-2 (|:| -3891 *5) (|:| -3904 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-622 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) (-5 *5 (-1186 *2))
+ (-4 *2 (-13 (-440 *6) (-27) (-1216)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1113))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-622 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190)))
+ (-5 *5 (-417 (-1186 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1216)))
+ (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))))
+ (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1113)))))
+(((*1 *2)
+ (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-427 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
- (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801))
- (-5 *2 (-112)) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-779)) (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062))
+ (-5 *2 (-654 (-654 (-954 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-654 (-654 (-954 *4)))) (-5 *3 (-112)) (-4 *4 (-1062))
+ (-4 *1 (-1147 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 (-654 (-954 *3)))) (-4 *3 (-1062))
+ (-4 *1 (-1147 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1147 *4)) (-4 *4 (-1062))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-654 (-654 (-954 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1147 *4)) (-4 *4 (-1062))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173)))
+ (-5 *4 (-173)) (-4 *1 (-1147 *5)) (-4 *5 (-1062))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-654 (-654 (-954 *5)))) (-5 *3 (-654 (-173)))
+ (-5 *4 (-173)) (-4 *1 (-1147 *5)) (-4 *5 (-1062)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4))
+ (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))))
+(((*1 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))))
+(((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062))))
+ ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-699 *5)) (-4 *5 (-1062)) (-5 *1 (-1067 *3 *4 *5))
+ (-14 *3 (-781)) (-14 *4 (-781)))))
+(((*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781)))))
+(((*1 *1 *1 *1) (-4 *1 (-980))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-781)) (-4 *5 (-174))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-781)) (-4 *5 (-174))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
+ (-253 *4 (-417 (-574)))))
+ (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1190))) (-14 *5 (-781))
+ (-5 *1 (-515 *4 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-654 (-963 *3))) (-4 *3 (-462))
+ (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1190)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462))
+ (-14 *4 (-654 (-1190))) (-5 *1 (-638 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))))
+(((*1 *1) (-5 *1 (-1283))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372))
+ (-5 *2 (-781)) (-5 *1 (-956 *5 *6)) (-4 *6 (-1257 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1203 (-932) (-781))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-572))
- (-14 *6 (-779)) (-4 *7 (-174)) (-4 *8 (-174))
+ (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574))
+ (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174))
(-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-652 *9)) (-4 *9 (-1060)) (-4 *5 (-858)) (-4 *6 (-801))
- (-4 *8 (-1060)) (-4 *2 (-958 *9 *7 *5))
- (-5 *1 (-736 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-801))
- (-4 *4 (-958 *8 *6 *5)))))
+ (-12 (-5 *3 (-654 *9)) (-4 *9 (-1062)) (-4 *5 (-860)) (-4 *6 (-803))
+ (-4 *8 (-1062)) (-4 *2 (-960 *9 *7 *5))
+ (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803))
+ (-4 *4 (-960 *8 *6 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802))
(-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112))
+ (-5 *2 (-1048)) (-5 *1 (-755)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-415 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1255 *5))
- (-5 *1 (-735 *5 *2)) (-4 *5 (-370)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1137 *4 *3 *5))) (-4 *4 (-38 (-415 (-572))))
- (-4 *4 (-1060)) (-4 *3 (-858)) (-5 *1 (-1137 *4 *3 *5))
- (-4 *5 (-958 *4 (-539 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1223 *4))) (-5 *3 (-1188)) (-5 *1 (-1223 *4))
- (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *2 (-112)) (-5 *1 (-272))))
- ((*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-112)) (-5 *1 (-272))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
- (-4 *3 (-13 (-1111) (-34))))))
-(((*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-884))))
- ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-884))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-572))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1170))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-514))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-600))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-486))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1178))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-634))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1107))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1101))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1084))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-981))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-182))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1047))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-317))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-679))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-155))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1162))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-533))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1290))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1077))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-689))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1126))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-134))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-614))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-139))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1289))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-684))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-220))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-532))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1193))))
- ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1193))))
- ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1193))))
- ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1193)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-370) (-856)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -4225 (-426 *3))))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1206 *4 *5))
- (-4 *4 (-1111)) (-4 *5 (-1111)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
- (-4 *4 (-858)) (-4 *2 (-460)))))
+ (-12 (-5 *3 (-417 (-963 (-171 (-574))))) (-5 *2 (-654 (-171 *4)))
+ (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-654 (-417 (-963 (-171 (-574))))))
+ (-5 *4 (-654 (-1190))) (-5 *2 (-654 (-654 (-171 *5))))
+ (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
+ (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-5 *1 (-872))))
+(((*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-886))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-574))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-516))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-602))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-488))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1180))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-636))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1109))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1103))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1086))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-983))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-182))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1049))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-319))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-681))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-155))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1164))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-535))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1292))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1079))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-527))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-691))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-134))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-616))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-139))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1291))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-686))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-220))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-534))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1195)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
- (-4 *2 (-13 (-438 *3) (-1013))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-145)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4091 *7))))
+ (-4 *6 (-1078 *3 *4 *5)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1001 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4091 *7))))
+ (-4 *6 (-1078 *3 *4 *5)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462))
+ (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1120 *3 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-652 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))
- (-14 *4 (-779)) (-4 *5 (-174)))))
-(((*1 *1 *1) (-4 *1 (-247)))
+ (-12 (-5 *2 (-1115 (-1115 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174))))
+ ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2))))
+ ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-145)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))
+ (-14 *4 (-781)) (-4 *5 (-174)))))
+(((*1 *1 *1) (-4 *1 (-249)))
((*1 *1 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-2813 (-12 (-5 *1 (-300 *2)) (-4 *2 (-370)) (-4 *2 (-1229)))
- (-12 (-5 *1 (-300 *2)) (-4 *2 (-481)) (-4 *2 (-1229)))))
- ((*1 *1 *1) (-4 *1 (-481)))
- ((*1 *2 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3))))
+ (-2818 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1231)))
+ (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1231)))))
+ ((*1 *1 *1) (-4 *1 (-483)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)) (-4 *2 (-370)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-746)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1229))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1229))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-652
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-779)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-801)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *5 (-858))
- (-5 *1 (-457 *3 *4 *5 *6)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-748)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803))
+ (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-697 *1)) (-4 *1 (-356)) (-5 *2 (-1279 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-697 *1)) (-4 *1 (-146)) (-4 *1 (-918))
- (-5 *2 (-1279 *1)))))
-(((*1 *2)
- (-12 (-4 *1 (-356))
- (-5 *2 (-652 (-2 (|:| -4218 (-572)) (|:| -1679 (-572))))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-415 (-572))) (-4 *1 (-562 *3))
- (-4 *3 (-13 (-412) (-1214)))))
- ((*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))))
-(((*1 *2 *1) (-12 (-5 *2 (-652 (-185 (-140)))) (-5 *1 (-141)))))
-(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-572)) (-5 *1 (-1211 *4))
- (-4 *4 (-1060)))))
-((-1313 . 732572) (-1314 . 732523) (-1315 . 732457) (-1316 . 732224)
- (-1317 . 732127) (-1318 . 731936) (-1319 . 731697) (-1320 . 731244)
- (-1321 . 731175) (-1322 . 730439) (-1323 . 730323) (-1324 . 730249)
- (-1325 . 730175) (-1326 . 730080) (-1327 . 729967) (-1328 . 729854)
- (-1329 . 729697) (-1330 . 727636) (-1331 . 727531) (-1332 . 727239)
- (-1333 . 726924) (-1334 . 726802) (-1335 . 726736) (-1336 . 726573)
- (-1337 . 726172) (-1338 . 726086) (-1339 . 725791) (-1340 . 725739)
- (-1341 . 725533) (-1342 . 725466) (-1343 . 725233) (-1344 . 725003)
- (-1345 . 722222) (-1346 . 721262) (-1347 . 721134) (-1348 . 721030)
- (-1349 . 720712) (-1350 . 720582) (-1351 . 720437) (-1352 . 720211)
- (-1353 . 720090) (-1354 . 720037) (-1355 . 719953) (-1356 . 719851)
- (-1357 . 719207) (-1358 . 719129) (-1359 . 719038) (-1360 . 718937)
- (-1361 . 718719) (-1362 . 718136) (-1363 . 717988) (-1364 . 717905)
- (-1365 . 717831) (-1366 . 717778) (-1367 . 717560) (-1368 . 716388)
- (-1369 . 716302) (-1370 . 716204) (-1371 . 716127) (-1372 . 716072)
- (-1373 . 716019) (-1374 . 715967) (-1375 . 715616) (-1376 . 715205)
- (-1377 . 715094) (-1378 . 714979) (-1379 . 714820) (-1380 . 714701)
- (-1381 . 714520) (-1382 . 714434) (-1383 . 714315) (-1384 . 714237)
- (-1385 . 714075) (-1386 . 713904) (-1387 . 713790) (-1388 . 713557)
- (-1389 . 713138) (-1390 . 712001) (-1391 . 711909) (-1392 . 711854)
- (-1393 . 711761) (-1394 . 711609) (-1395 . 711537) (-1396 . 711449)
- (-1397 . 711074) (-1398 . 710860) (-1399 . 710381) (-1400 . 710241)
- (-1401 . 709487) (-1402 . 708819) (-1403 . 708674) (-1404 . 708577)
- (-1405 . 708515) (-1406 . 708415) (-1407 . 708282) (-1408 . 708215)
- (-1409 . 708081) (-1410 . 707993) (-1411 . 707878) (-1412 . 707559)
- (-1413 . 707386) (-1414 . 707333) (-1415 . 706991) (-1416 . 706707)
- (-1417 . 706608) (-1418 . 706484) (-1419 . 706366) (-1420 . 706298)
- (-1421 . 706210) (-1422 . 706087) (-1423 . 706000) (-1424 . 705210)
- (-1425 . 704624) (-1426 . 704444) (-1427 . 704292) (-1428 . 704168)
- (-1429 . 704102) (-1430 . 704030) (-1431 . 703765) (-1432 . 703691)
- (-1433 . 703502) (-1434 . 703442) (-1435 . 702785) (-1436 . 702670)
- (-1437 . 702585) (-1438 . 702387) (-1439 . 701866) (-1440 . 701783)
- (-1441 . 701701) (-1442 . 701648) (-1443 . 701510) (-1444 . 701391)
- (-1445 . 701313) (-1446 . 701151) (-1447 . 701050) (-1448 . 700956)
- (-1449 . 700625) (-1450 . 700444) (** . 697450) (-1452 . 697303)
- (-1453 . 697269) (-1454 . 697206) (-1455 . 696995) (-1456 . 696480)
- (-1457 . 696302) (-1458 . 696066) (-1459 . 696013) (-1460 . 695754)
- (-1461 . 695629) (-1462 . 695577) (-1463 . 695481) (-1464 . 695407)
- (-1465 . 695261) (-1466 . 695137) (-1467 . 695014) (-1468 . 694943)
- (-1469 . 694816) (-1470 . 694731) (-1471 . 694681) (-1472 . 694608)
- (-1473 . 694336) (-1474 . 694218) (-1475 . 693996) (-1476 . 693875)
- (-1477 . 693647) (-1478 . 693526) (-1479 . 693474) (-1480 . 693401)
- (-1481 . 693203) (-1482 . 692991) (-1483 . 692828) (-1484 . 692554)
- (-1485 . 692424) (-1486 . 691488) (-1487 . 690969) (-1488 . 690814)
- (-1489 . 689850) (-1490 . 689776) (-1491 . 689719) (-1492 . 689642)
- (-1493 . 689559) (-1494 . 689341) (-1495 . 689267) (-1496 . 688858)
- (-1497 . 688824) (-1498 . 688705) (-1499 . 688447) (-1500 . 688352)
- (-1501 . 688296) (-1502 . 688043) (-1503 . 687924) (-1504 . 687550)
- (-1505 . 687410) (-1506 . 687281) (-1507 . 687208) (-1508 . 687113)
- (-1509 . 686934) (-1510 . 686802) (-1511 . 686560) (-1512 . 686532)
- (-1513 . 686268) (-1514 . 686155) (-1515 . 686106) (-1516 . 685826)
- (-1517 . 685799) (-1518 . 685711) (-1519 . 685574) (-1520 . 685449)
- (-1521 . 685393) (-1522 . 685235) (-1523 . 685134) (-1524 . 684930)
- (-1525 . 684798) (-1526 . 684651) (-1527 . 684533) (-1528 . 684111)
- (-1529 . 684016) (-1530 . 683984) (-1531 . 683417) (-1532 . 683365)
- (-1533 . 683265) (-1534 . 682919) (-1535 . 682812) (-1536 . 682294)
- (-1537 . 682217) (-1538 . 681990) (-1539 . 681875) (-1540 . 681780)
- (-1541 . 681707) (-1542 . 681554) (-1543 . 681426) (-1544 . 681286)
- (-1545 . 681178) (-1546 . 681083) (-1547 . 680925) (-1548 . 680874)
- (-1549 . 680772) (-1550 . 680686) (-1551 . 680294) (-1552 . 680097)
- (-1553 . 679752) (-1554 . 679471) (-1555 . 678925) (-1556 . 678639)
- (-1557 . 678494) (-1558 . 678398) (-1559 . 678213) (-1560 . 677802)
- (-1561 . 677774) (-1562 . 677675) (-1563 . 677595) (-1564 . 677501)
- (-1565 . 677286) (-1566 . 677122) (-1567 . 676982) (-1568 . 676886)
- (-1569 . 676745) (-1570 . 676635) (-1571 . 676545) (-1572 . 676405)
- (-9 . 676377) (-1574 . 676291) (-1575 . 676096) (-1576 . 675931)
- (-1577 . 675738) (-1578 . 675438) (-1579 . 675332) (-1580 . 675245)
- (-1581 . 675068) (-1582 . 675006) (-1583 . 674404) (-1584 . 674338)
- (-1585 . 674196) (-8 . 674168) (-1587 . 674116) (-1588 . 674032)
- (-1589 . 673874) (-1590 . 673788) (-1591 . 673732) (-1592 . 672002)
- (-1593 . 671846) (-1594 . 669618) (-1595 . 669491) (-1596 . 669417)
- (-7 . 669389) (-1598 . 668928) (-1599 . 668782) (-1600 . 668704)
- (-1601 . 668310) (-1602 . 667676) (-1603 . 667422) (-1604 . 667391)
- (-1605 . 667161) (-1606 . 666587) (-1607 . 666173) (-1608 . 664973)
- (-1609 . 664714) (-1610 . 664631) (-1611 . 664603) (-1612 . 664479)
- (-1613 . 664103) (-1614 . 664035) (-1615 . 663947) (-1616 . 663789)
- (-1617 . 663696) (-1618 . 663599) (-1619 . 663501) (-1620 . 663407)
- (-1621 . 663290) (-1622 . 663202) (-1623 . 662954) (-1624 . 662901)
- (-1625 . 662843) (-1626 . 662672) (-1627 . 662526) (-1628 . 662474)
- (-1629 . 662240) (-1630 . 662022) (-1631 . 661953) (-1632 . 661787)
- (-1633 . 661167) (-1634 . 660948) (-1635 . 660522) (-1636 . 660439)
- (-1637 . 660300) (-1638 . 660000) (-1639 . 659793) (-1640 . 659349)
- (-1641 . 659144) (-1642 . 658958) (-1643 . 658743) (-1644 . 658469)
- (-1645 . 658401) (-1646 . 658327) (-1647 . 657688) (-1648 . 657489)
- (-1649 . 657194) (-1650 . 657057) (-1651 . 657001) (-1652 . 656886)
- (-1653 . 656070) (-1654 . 654847) (-1655 . 654769) (-1656 . 654735)
- (-1657 . 654594) (-1658 . 654439) (-1659 . 654114) (-1660 . 653937)
- (-1661 . 653689) (-1662 . 653531) (-1663 . 653372) (-1664 . 652974)
- (-1665 . 652689) (-1666 . 652484) (-1667 . 652341) (-1668 . 652212)
- (-1669 . 651791) (-1670 . 651663) (-1671 . 651576) (-1672 . 651478)
- (-1673 . 651090) (-1674 . 650916) (-1675 . 650863) (-1676 . 650784)
- (-1677 . 650558) (-1678 . 650426) (-1679 . 649958) (-1680 . 649870)
- (-1681 . 649731) (-1682 . 649488) (-1683 . 649345) (-1684 . 649278)
- (-1685 . 649120) (-1686 . 648984) (-1687 . 648935) (-1688 . 648807)
- (-1689 . 648625) (-1690 . 648488) (-1691 . 648320) (-1692 . 648102)
- (-1693 . 647841) (-1694 . 647790) (-1695 . 643247) (-1696 . 643091)
- (-1697 . 642988) (-1698 . 642915) (-1699 . 642800) (-1700 . 642439)
- (-1701 . 642320) (-1702 . 641441) (-1703 . 641341) (-1704 . 641270)
- (-1705 . 640853) (-1706 . 640751) (-1707 . 640605) (-1708 . 640511)
- (-1709 . 640425) (-1710 . 640114) (-1711 . 639732) (-1712 . 639604)
- (-1713 . 639348) (-1714 . 639289) (-1715 . 639215) (-1716 . 638967)
- (-1717 . 638889) (-1718 . 638558) (-1719 . 638465) (-1720 . 638410)
- (-1721 . 638314) (-1722 . 638262) (-1723 . 638233) (-1724 . 628783)
- (-1725 . 628649) (-1726 . 628539) (-1727 . 628293) (-1728 . 627978)
- (-1729 . 627912) (-1730 . 627788) (-1731 . 627650) (-1732 . 627453)
- (-1733 . 626802) (-1734 . 626538) (-1735 . 626266) (-1736 . 626101)
- (-1737 . 626005) (-1738 . 625955) (-1739 . 625860) (-1740 . 623892)
- (-1741 . 623550) (-1742 . 623328) (-1743 . 623066) (-1744 . 622959)
- (-1745 . 622818) (-1746 . 622705) (-1747 . 622602) (-1748 . 622480)
- (-1749 . 622286) (-1750 . 622258) (-1751 . 622176) (-1752 . 621924)
- (-1753 . 621702) (-1754 . 621607) (-1755 . 621506) (-1756 . 621374)
- (-1757 . 621291) (-1758 . 621163) (-1759 . 621062) (-1760 . 620983)
- (-1761 . 620388) (-1762 . 620209) (-1763 . 620066) (-1764 . 620013)
- (-1765 . 619945) (-1766 . 619815) (-1767 . 619277) (-1768 . 619132)
- (-1769 . 619033) (-1770 . 618981) (-1771 . 618878) (-1772 . 618846)
- (-1773 . 618721) (-1774 . 618412) (-1775 . 618166) (-1776 . 603935)
- (-1777 . 603837) (-1778 . 603764) (-1779 . 603696) (-1780 . 603492)
- (-1781 . 603418) (-1782 . 603298) (-1783 . 603248) (-1784 . 603165)
- (-1785 . 603092) (-1786 . 603040) (-1787 . 602925) (-1788 . 602839)
- (-1789 . 602751) (-1790 . 602620) (-1791 . 602501) (-1792 . 602430)
- (-1793 . 602342) (-1794 . 601783) (-1795 . 601047) (-1796 . 600929)
- (-1797 . 600834) (-1798 . 600743) (-1799 . 596680) (-1800 . 596536)
- (-1801 . 596201) (-1802 . 596127) (-1803 . 596041) (-1804 . 595843)
- (-1805 . 595452) (-1806 . 595334) (-1807 . 594775) (-1808 . 594672)
- (-1809 . 594595) (-1810 . 594521) (-1811 . 594435) (-1812 . 593851)
- (-1813 . 593751) (-1814 . 593667) (-1815 . 593610) (-1816 . 593481)
- (-1817 . 593225) (-1818 . 593116) (-1819 . 593037) (-1820 . 592963)
- (-1821 . 592226) (-1822 . 592131) (-1823 . 592103) (-1824 . 591937)
- (-1825 . 591710) (-1826 . 591517) (-1827 . 591429) (-1828 . 591333)
- (-1829 . 591259) (-1830 . 591120) (-1831 . 591041) (-1832 . 590906)
- (-1833 . 590696) (-1834 . 590368) (-1835 . 586701) (-1836 . 586536)
- (-1837 . 586425) (-1838 . 586359) (-1839 . 585931) (-1840 . 585827)
- (-1841 . 585522) (-1842 . 585451) (-1843 . 585135) (-1844 . 585039)
- (-1845 . 582694) (-1846 . 582596) (-1847 . 582526) (-1848 . 581652)
- (-1849 . 581366) (-1850 . 581332) (-1851 . 581174) (-1852 . 581061)
- (-1853 . 581008) (-1854 . 580889) (-1855 . 580660) (-1856 . 580593)
- (-1857 . 580235) (-1858 . 580127) (-1859 . 579949) (-1860 . 579867)
- (-1861 . 579705) (-1862 . 579314) (-1863 . 579038) (-1864 . 578722)
- (-1865 . 578578) (-1866 . 578510) (-1867 . 578177) (-1868 . 578125)
- (-1869 . 578097) (-1870 . 577786) (-1871 . 577687) (-1872 . 577353)
- (-1873 . 577177) (-1874 . 576881) (-1875 . 576691) (-1876 . 576096)
- (-1877 . 575912) (-1878 . 575742) (-1879 . 574594) (-1880 . 574325)
- (-1881 . 574188) (-1882 . 574122) (-1883 . 574069) (-1884 . 573856)
- (-1885 . 573828) (-1886 . 573541) (-1887 . 573148) (-1888 . 573078)
- (-1889 . 572975) (-1890 . 572898) (-1891 . 572808) (-1892 . 572479)
- (-1893 . 572380) (-1894 . 572249) (-1895 . 572198) (-1896 . 572045)
- (-1897 . 572011) (-1898 . 571863) (-1899 . 571482) (-1900 . 571095)
- (-1901 . 570728) (-1902 . 570265) (-1903 . 570192) (-1904 . 570140)
- (-1905 . 570046) (-1906 . 569867) (-1907 . 568665) (-1908 . 568366)
- (-1909 . 568244) (-1910 . 568105) (-1911 . 568052) (-1912 . 567978)
- (-1913 . 567381) (-1914 . 567003) (-1915 . 566951) (-1916 . 566845)
- (-1917 . 566373) (-1918 . 566321) (-1919 . 566176) (-1920 . 565098)
- (-1921 . 565029) (-1922 . 564977) (-1923 . 564709) (-1924 . 564587)
- (-1925 . 564440) (-1926 . 564406) (-1927 . 564356) (-1928 . 564297)
- (-1929 . 563584) (-1930 . 563485) (-1931 . 563097) (-1932 . 563006)
- (-1933 . 562622) (-1934 . 562459) (-1935 . 562380) (-1936 . 562292)
- (-1937 . 562064) (-1938 . 561987) (-1939 . 561844) (-1940 . 561749)
- (-1941 . 561697) (-1942 . 561638) (-1943 . 561543) (-1944 . 561460)
- (-1945 . 561403) (-1946 . 561215) (-1947 . 561144) (-1948 . 560026)
- (-1949 . 559866) (-1950 . 559734) (-1951 . 559685) (-1952 . 559588)
- (-1953 . 559516) (-1954 . 559430) (-1955 . 559280) (-1956 . 559220)
- (-1957 . 559146) (-1958 . 559091) (-1959 . 559023) (-1960 . 558890)
- (-1961 . 558444) (-1962 . 558416) (-1963 . 558261) (-1964 . 558204)
- (-1965 . 557868) (-1966 . 557840) (-1967 . 557657) (-1968 . 557588)
- (-1969 . 557381) (-1970 . 557178) (-1971 . 557127) (-1972 . 556450)
- (-1973 . 556235) (-1974 . 555964) (-1975 . 555845) (-1976 . 555786)
- (-1977 . 555643) (-1978 . 555569) (-1979 . 555346) (-1980 . 555191)
- (-1981 . 555159) (-1982 . 554192) (-1983 . 554096) (-1984 . 554043)
- (-1985 . 553782) (-1986 . 553684) (-1987 . 553437) (-1988 . 553333)
- (-1989 . 553269) (-1990 . 553174) (-1991 . 553091) (-1992 . 553008)
- (-1993 . 552910) (-1994 . 552882) (-1995 . 552679) (-1996 . 552295)
- (-1997 . 552207) (-1998 . 552125) (-1999 . 552017) (-2000 . 551837)
- (-2001 . 551780) (-2002 . 551634) (-2003 . 551438) (-2004 . 551343)
- (-2005 . 551216) (-2006 . 549920) (-2007 . 549868) (-2008 . 549739)
- (-2009 . 549637) (-2010 . 549527) (-2011 . 549302) (-2012 . 549249)
- (-2013 . 549105) (-2014 . 549028) (-2015 . 548852) (-2016 . 548151)
- (-2017 . 548052) (-2018 . 547949) (-2019 . 547702) (-2020 . 547574)
- (-2021 . 547414) (-2022 . 547340) (-2023 . 547233) (-2024 . 547046)
- (-2025 . 546942) (-2026 . 546846) (-2027 . 546794) (-2028 . 545008)
- (-2029 . 544892) (-2030 . 544246) (-2031 . 544131) (-2032 . 544103)
- (-2033 . 543969) (-2034 . 543713) (-2035 . 543427) (-2036 . 541012)
- (-2037 . 540902) (-2038 . 540807) (-2039 . 540696) (-2040 . 540337)
- (-2041 . 540254) (-2042 . 539662) (-2043 . 539460) (-2044 . 539281)
- (-2045 . 538928) (-2046 . 538833) (-2047 . 538737) (-2048 . 537556)
- (-2049 . 537165) (-2050 . 536736) (-2051 . 536569) (-2052 . 536399)
- (-2053 . 536203) (-2054 . 536105) (-2055 . 535916) (-2056 . 535848)
- (-2057 . 535750) (-2058 . 535585) (-2059 . 535433) (-2060 . 535327)
- (-2061 . 535204) (-2062 . 533987) (-2063 . 533916) (-2064 . 533800)
- (-2065 . 533615) (-2066 . 533560) (-2067 . 533433) (-2068 . 533348)
- (-2069 . 533242) (-2070 . 533138) (-2071 . 533110) (-2072 . 533004)
- (-2073 . 532895) (-2074 . 532836) (-2075 . 532664) (-2076 . 532473)
- (-2077 . 532390) (-2078 . 532119) (-2079 . 531726) (-2080 . 531673)
- (-2081 . 531564) (-2082 . 531512) (-2083 . 530971) (-2084 . 530883)
- (-2085 . 530818) (-2086 . 530719) (-2087 . 530553) (-2088 . 530416)
- (-2089 . 530339) (-2090 . 530253) (-2091 . 530161) (-2092 . 529846)
- (-2093 . 529764) (-2094 . 529665) (-2095 . 529530) (-2096 . 529465)
- (-2097 . 528813) (-2098 . 528706) (-2099 . 528591) (-2100 . 528087)
- (-2101 . 528004) (-2102 . 527856) (-2103 . 527727) (-2104 . 527654)
- (-2105 . 527481) (-2106 . 527413) (-2107 . 527315) (-2108 . 527066)
- (-2109 . 527004) (-2110 . 526870) (-2111 . 526652) (-2112 . 526545)
- (-2113 . 526457) (-2114 . 526402) (-2115 . 526272) (-2116 . 526219)
- (-2117 . 526147) (-2118 . 525994) (-2119 . 525819) (-2120 . 522156)
- (-2121 . 522032) (-2122 . 521828) (-2123 . 521800) (-2124 . 521745)
- (-2125 . 521663) (-2126 . 521520) (-2127 . 520553) (-2128 . 520393)
- (-2129 . 520183) (-2130 . 519868) (-2131 . 519594) (-2132 . 519154)
- (-2133 . 518562) (-2134 . 518485) (-2135 . 518300) (-2136 . 518120)
- (-2137 . 517733) (-2138 . 517566) (-2139 . 517500) (-2140 . 517441)
- (-2141 . 517368) (-2142 . 517225) (-2143 . 516978) (-2144 . 516819)
- (-2145 . 516701) (-2146 . 516574) (-2147 . 516446) (-2148 . 516330)
- (-2149 . 516140) (-2150 . 515973) (-2151 . 515894) (-2152 . 515865)
- (-2153 . 515641) (-2154 . 515578) (-2155 . 515379) (-2156 . 515037)
- (-2157 . 514960) (-2158 . 514761) (-2159 . 514381) (-2160 . 514291)
- (-2161 . 514203) (-2162 . 513716) (-2163 . 513613) (-2164 . 513449)
- (-2165 . 513349) (-2166 . 513212) (-2167 . 513159) (-2168 . 513094)
- (-2169 . 512487) (-2170 . 512120) (-2171 . 511920) (-2172 . 511835)
- (-2173 . 511565) (-2174 . 511402) (-2175 . 511299) (-2176 . 511198)
- (-2177 . 511057) (-2178 . 510800) (-2179 . 510768) (-2180 . 509322)
- (-2181 . 509184) (-2182 . 509118) (-2183 . 509016) (-2184 . 508413)
- (-2185 . 508177) (-2186 . 508111) (-2187 . 507865) (-2188 . 507502)
- (-2189 . 507187) (-2190 . 506937) (-2191 . 506841) (-2192 . 506782)
- (-2193 . 506604) (-2194 . 506331) (-2195 . 506085) (-2196 . 502085)
- (-2197 . 501980) (-2198 . 501683) (-2199 . 501614) (-2200 . 501191)
- (-2201 . 501038) (-2202 . 500914) (-2203 . 500828) (-2204 . 495489)
- (-2205 . 495375) (-2206 . 495291) (-2207 . 495205) (-2208 . 495128)
- (-2209 . 494976) (-2210 . 494926) (-2211 . 494794) (-2212 . 494587)
- (-2213 . 494384) (-2214 . 494330) (-2215 . 494244) (-2216 . 494178)
- (-2217 . 494095) (-2218 . 494027) (-2219 . 493960) (-2220 . 493843)
- (-2221 . 493786) (-2222 . 493057) (-2223 . 492927) (-2224 . 492550)
- (-2225 . 492469) (-2226 . 492396) (-2227 . 492337) (-2228 . 492287)
- (-2229 . 492228) (-2230 . 492136) (-2231 . 491407) (-2232 . 491311)
- (-2233 . 490597) (-2234 . 490454) (-2235 . 490354) (-2236 . 490326)
- (-2237 . 490267) (-2238 . 490109) (-2239 . 490026) (-2240 . 489934)
- (-2241 . 489831) (-2242 . 489155) (-2243 . 489099) (-2244 . 488892)
- (-2245 . 488570) (-2246 . 488371) (-2247 . 487787) (-2248 . 487731)
- (-2249 . 487638) (-2250 . 487303) (-2251 . 487217) (-2252 . 486653)
- (-2253 . 486574) (-2254 . 486429) (-2255 . 486111) (-2256 . 486034)
- (-2257 . 485833) (-2258 . 485731) (-2259 . 485664) (-2260 . 485456)
- (-2261 . 485343) (-2262 . 484779) (-2263 . 484672) (-2264 . 484356)
- (-2265 . 484225) (-2266 . 484188) (-2267 . 484094) (-2268 . 484038)
- (-2269 . 483818) (-2270 . 483254) (-2271 . 483021) (-2272 . 482848)
- (-2273 . 481667) (-2274 . 481597) (-2275 . 481441) (-2276 . 481335)
- (-2277 . 480936) (-2278 . 480839) (-2279 . 480723) (-2280 . 480603)
- (-2281 . 480484) (-2282 . 479810) (-2283 . 479651) (-2284 . 479463)
- (-2285 . 479406) (-2286 . 479322) (-2287 . 478049) (-2288 . 477690)
- (-2289 . 477640) (-2290 . 477609) (-2291 . 477535) (-2292 . 476861)
- (-2293 . 476796) (-2294 . 476251) (-2295 . 476170) (-2296 . 475844)
- (-2297 . 475766) (-2298 . 475609) (-2299 . 475550) (-2300 . 474813)
- (-2301 . 474706) (-2302 . 474637) (-2303 . 474553) (-2304 . 474422)
- (-2305 . 474373) (-2306 . 474282) (-2307 . 474064) (-2308 . 473923)
- (-2309 . 473783) (-2310 . 473221) (-2311 . 473114) (-2312 . 472722)
- (-2313 . 471834) (-2314 . 471731) (-2315 . 471676) (-2316 . 471449)
- (-2317 . 471393) (-2318 . 471254) (-2319 . 471151) (-2320 . 470589)
- (-2321 . 470168) (-2322 . 470094) (-2323 . 469452) (-2324 . 469162)
- (-2325 . 469064) (-2326 . 468866) (-2327 . 468760) (-2328 . 468661)
- (-2329 . 468099) (-2330 . 467840) (-2331 . 467691) (-2332 . 467626)
- (-2333 . 467543) (-2334 . 467486) (-2335 . 467320) (-2336 . 467265)
- (-2337 . 467210) (-2338 . 466535) (-2339 . 466458) (-2340 . 466107)
- (-2341 . 466026) (-2342 . 465884) (-2343 . 465417) (-2344 . 464907)
- (-2345 . 464361) (-2346 . 463828) (-2347 . 463778) (-2348 . 463103)
- (-2349 . 463031) (-2350 . 462854) (-2351 . 462329) (-2352 . 462148)
- (-2353 . 462092) (-2354 . 461988) (-2355 . 461805) (-2356 . 461690)
- (-2357 . 461637) (-2358 . 460962) (-2359 . 459622) (-2360 . 459569)
- (-2361 . 459182) (-2362 . 459123) (-2363 . 458971) (-2364 . 458897)
- (-2365 . 458769) (-2366 . 458548) (-2367 . 458460) (-2368 . 458388)
- (-2369 . 458311) (-2370 . 457748) (-2371 . 457632) (-2372 . 457508)
- (-2373 . 457410) (-2374 . 457267) (-2375 . 457168) (-2376 . 457008)
- (-2377 . 456900) (-2378 . 456797) (-2379 . 456535) (-2380 . 456103)
- (-2381 . 455930) (-2382 . 455796) (-2383 . 455710) (-2384 . 455147)
- (-2385 . 454844) (-2386 . 454776) (-2387 . 454663) (-2388 . 454531)
- (-2389 . 454430) (-2390 . 454272) (-2391 . 454191) (-2392 . 454138)
- (-2393 . 454064) (-2394 . 453985) (-2395 . 453911) (-2396 . 453859)
- (-2397 . 453296) (-2398 . 452879) (-2399 . 452705) (-2400 . 452459)
- (-2401 . 452402) (-2402 . 452300) (-2403 . 452272) (-2404 . 452221)
- (-2405 . 451999) (-2406 . 451881) (-2407 . 451793) (-2408 . 451487)
- (-2409 . 450925) (-2410 . 450782) (-2411 . 450646) (-2412 . 450512)
- (-2413 . 450439) (-2414 . 450359) (-2415 . 450261) (-2416 . 450118)
- (-2417 . 450025) (-2418 . 449782) (-2419 . 449664) (-2420 . 449635)
- (-2421 . 448752) (-2422 . 448700) (-2423 . 448138) (-2424 . 447846)
- (-2425 . 447736) (-2426 . 447666) (-2427 . 447388) (-2428 . 447277)
- (-2429 . 447206) (-2430 . 447124) (-2431 . 446978) (-2432 . 446918)
- (-2433 . 446649) (-2434 . 446567) (-2435 . 446508) (-2436 . 445946)
- (-2437 . 445659) (-2438 . 445124) (-2439 . 445032) (-2440 . 444960)
- (-2441 . 444830) (-2442 . 444603) (-2443 . 444073) (-2444 . 443972)
- (-2445 . 442670) (-2446 . 442134) (-2447 . 442018) (-2448 . 441456)
- (-2449 . 441384) (-2450 . 441166) (-2451 . 440992) (-2452 . 440930)
- (-2453 . 440698) (-2454 . 440459) (-2455 . 440302) (-2456 . 440206)
- (-2457 . 440146) (-2458 . 439853) (-2459 . 439765) (-2460 . 439203)
- (-2461 . 439022) (-2462 . 438819) (-2463 . 438688) (-2464 . 438441)
- (-2465 . 438288) (-2466 . 438098) (-2467 . 438027) (-2468 . 437880)
- (-2469 . 437750) (-2470 . 437642) (-2471 . 437586) (-2472 . 437494)
- (-2473 . 437409) (-2474 . 437380) (-2475 . 437308) (-2476 . 437100)
- (-2477 . 436783) (-2478 . 436359) (-2479 . 436187) (-2480 . 435865)
- (-2481 . 435767) (-2482 . 435613) (-2483 . 435534) (-2484 . 435429)
- (-2485 . 435377) (-2486 . 435251) (-2487 . 435191) (-2488 . 435129)
- (-2489 . 434938) (-2490 . 434766) (-2491 . 434673) (-2492 . 434585)
- (-2493 . 434511) (-2494 . 434095) (-2495 . 434021) (-2496 . 433944)
- (-2497 . 433843) (-2498 . 433673) (-2499 . 433620) (-2500 . 433531)
- (-2501 . 433193) (-2502 . 432941) (-2503 . 432769) (-2504 . 432656)
- (-2505 . 432600) (-2506 . 432516) (-2507 . 432393) (-2508 . 432262)
- (-2509 . 432003) (-2510 . 431830) (-2511 . 431750) (-2512 . 431594)
- (-2513 . 431070) (-2514 . 430992) (-2515 . 430820) (-2516 . 430258)
- (-2517 . 430172) (-2518 . 429954) (-2519 . 429901) (-2520 . 429137)
- (-2521 . 429004) (-2522 . 428937) (-2523 . 428783) (-2524 . 428462)
- (-2525 . 428376) (-2526 . 428306) (-2527 . 428169) (-2528 . 427976)
- (-2529 . 427737) (-2530 . 427531) (-2531 . 427308) (-2532 . 426744)
- (-2533 . 426687) (-2534 . 426591) (-2535 . 426316) (-2536 . 426165)
- (-2537 . 426115) (-2538 . 426051) (-2539 . 425772) (-2540 . 425719)
- (-2541 . 425549) (-2542 . 425361) (-2543 . 425260) (-2544 . 425126)
- (-2545 . 425053) (-2546 . 425016) (-2547 . 424915) (-2548 . 424801)
- (-2549 . 424773) (-2550 . 424695) (-2551 . 424593) (-2552 . 424474)
- (-2553 . 424314) (-2554 . 424259) (-2555 . 424024) (-2556 . 423982)
- (-2557 . 423555) (-2558 . 423491) (-2559 . 423371) (-2560 . 423285)
- (-2561 . 422718) (-2562 . 422623) (-2563 . 422570) (-2564 . 422204)
- (-2565 . 421860) (-2566 . 420708) (-2567 . 420674) (-2568 . 420645)
- (-2569 . 420332) (-2570 . 420114) (-2571 . 419787) (-2572 . 419690)
- (-2573 . 419381) (-2574 . 419286) (-2575 . 419184) (-2576 . 419060)
- (-2577 . 418833) (-2578 . 418781) (-2579 . 418600) (-2580 . 418551)
- (-2581 . 418443) (-2582 . 418099) (-2583 . 418044) (-2584 . 417973)
- (-2585 . 417899) (-2586 . 417781) (-2587 . 417682) (-2588 . 417506)
- (-2589 . 417453) (-2590 . 417135) (-2591 . 416971) (-2592 . 416858)
- (-2593 . 416787) (-2594 . 416691) (-2595 . 416481) (-2596 . 416108)
- (-2597 . 415912) (-2598 . 415709) (-2599 . 415566) (-2600 . 415456)
- (-2601 . 415018) (-2602 . 414799) (-2603 . 414581) (-2604 . 414501)
- (-2605 . 414272) (-2606 . 414175) (-2607 . 413989) (-2608 . 413782)
- (-2609 . 413680) (-2610 . 413505) (-2611 . 413410) (-2612 . 413300)
- (-2613 . 413109) (-2614 . 412951) (-2615 . 412765) (-2616 . 412652)
- (-2617 . 412412) (-2618 . 412137) (-2619 . 412022) (-2620 . 411909)
- (-2621 . 411628) (-2622 . 411455) (-2623 . 411384) (-2624 . 411324)
- (-2625 . 411078) (-2626 . 410968) (-2627 . 410753) (-2628 . 410697)
- (-2629 . 410609) (-2630 . 410415) (-2631 . 410319) (-2632 . 410239)
- (-2633 . 410158) (-2634 . 410080) (-2635 . 410026) (-2636 . 409908)
- (-2637 . 409807) (-2638 . 409729) (-2639 . 409571) (-2640 . 409488)
- (-2641 . 405538) (-2642 . 405459) (-2643 . 405078) (-2644 . 404998)
- (-2645 . 404895) (-2646 . 404792) (-2647 . 404621) (-2648 . 404483)
- (-2649 . 404020) (-2650 . 403896) (-2651 . 403799) (-2652 . 403681)
- (-2653 . 403539) (-2654 . 403488) (-2655 . 402915) (-2656 . 402696)
- (-2657 . 402596) (-2658 . 402500) (-2659 . 402441) (-2660 . 402380)
- (-2661 . 402211) (-2662 . 402085) (-2663 . 401978) (-2664 . 401904)
- (-2665 . 401781) (-2666 . 401629) (-2667 . 401406) (-2668 . 401079)
- (-2669 . 400869) (-2670 . 400695) (-2671 . 400386) (-2672 . 400015)
- (-2673 . 399907) (-2674 . 399662) (-2675 . 399593) (-2676 . 399341)
- (-2677 . 399239) (-2678 . 398366) (-2679 . 398248) (-2680 . 397068)
- (-2681 . 397016) (-2682 . 396889) (-2683 . 396828) (-2684 . 396776)
- (-2685 . 396724) (-2686 . 396627) (-2687 . 396298) (-2688 . 396239)
- (-2689 . 396011) (-2690 . 395758) (-2691 . 395664) (-2692 . 395593)
- (-2693 . 395498) (-2694 . 395336) (-2695 . 394673) (-2696 . 394517)
- (-2697 . 394030) (-2698 . 393894) (-2699 . 393755) (-2700 . 393269)
- (-2701 . 393128) (-2702 . 392989) (-2703 . 392859) (-2704 . 392733)
- (-2705 . 392287) (-2706 . 392236) (-2707 . 391557) (-2708 . 391483)
- (-2709 . 391231) (-2710 . 391105) (-2711 . 390977) (-2712 . 390926)
- (-2713 . 390744) (-2714 . 390581) (-2715 . 390450) (-2716 . 390351)
- (-2717 . 390160) (-2718 . 390005) (-2719 . 389823) (-2720 . 389480)
- (-2721 . 389301) (-2722 . 389241) (-2723 . 389152) (-2724 . 389073)
- (-2725 . 388670) (-2726 . 388559) (-2727 . 388430) (-2728 . 388353)
- (-2729 . 388126) (-2730 . 388053) (-2731 . 388025) (-2732 . 387859)
- (-2733 . 387785) (-2734 . 387702) (-2735 . 387647) (-2736 . 387588)
- (-2737 . 387517) (-2738 . 387401) (-2739 . 387121) (-2740 . 386882)
- (-2741 . 386768) (-2742 . 386682) (-2743 . 386629) (-2744 . 386577)
- (-2745 . 386447) (-2746 . 386289) (-2747 . 386223) (-2748 . 386095)
- (-2749 . 385996) (-2750 . 385910) (-2751 . 385772) (-2752 . 385719)
- (-2753 . 385494) (-2754 . 385314) (-2755 . 385087) (-2756 . 384948)
- (-2757 . 384862) (-2758 . 384759) (-2759 . 384652) (-2760 . 384566)
- (-2761 . 384489) (-2762 . 384346) (-2763 . 384252) (-2764 . 384014)
- (-2765 . 383926) (-2766 . 383495) (-2767 . 382741) (-2768 . 382647)
- (-2769 . 382489) (-2770 . 382416) (-2771 . 382256) (-2772 . 381058)
- (-2773 . 380976) (-2774 . 380916) (-2775 . 380888) (-2776 . 380831)
- (-2777 . 380708) (-2778 . 380539) (-2779 . 380511) (-2780 . 380414)
- (-2781 . 380359) (-2782 . 380180) (-2783 . 380019) (-2784 . 379937)
- (-2785 . 379819) (-2786 . 379696) (-2787 . 379643) (-2788 . 379537)
- (-2789 . 379322) (-2790 . 379293) (-2791 . 379160) (-2792 . 379063)
- (-2793 . 377285) (-2794 . 377047) (-2795 . 376801) (-2796 . 376675)
- (-2797 . 376620) (-2798 . 376564) (-2799 . 376406) (-2800 . 376207)
- (-2801 . 376135) (-2802 . 375855) (-2803 . 375610) (-2804 . 375514)
- (-2805 . 375350) (-2806 . 375267) (-2807 . 375239) (-2808 . 375185)
- (-2809 . 375002) (-2810 . 374793) (-2811 . 374736) (-2812 . 374605)
- (-2813 . 374433) (-2814 . 374303) (-2815 . 373680) (-2816 . 373522)
- (-2817 . 373445) (-2818 . 373346) (-2819 . 373159) (-2820 . 372996)
- (-2821 . 372828) (-2822 . 372535) (-2823 . 372270) (-2824 . 372213)
- (-2825 . 372126) (-2826 . 372058) (-12 . 371886) (-2828 . 371664)
- (-2829 . 371598) (-2830 . 371387) (-2831 . 371036) (-2832 . 370915)
- (-2833 . 370676) (-2834 . 369815) (-2835 . 369659) (-2836 . 369506)
- (-2837 . 369456) (-2838 . 369403) (-2839 . 369315) (-2840 . 367972)
- (-2841 . 367170) (-2842 . 366776) (-2843 . 366695) (-2844 . 366531)
- (-2845 . 366476) (-2846 . 366389) (-2847 . 364533) (-2848 . 364461)
- (-2849 . 364332) (-2850 . 364248) (-2851 . 363406) (-2852 . 363215)
- (-2853 . 362833) (-2854 . 362774) (-2855 . 362678) (-2856 . 362582)
- (-2857 . 362336) (-2858 . 362283) (-2859 . 362168) (-2860 . 361751)
- (-2861 . 361671) (-2862 . 361555) (-2863 . 361485) (-2864 . 361358)
- (-2865 . 357749) (-2866 . 357641) (-2867 . 357547) (-2868 . 357441)
- (-2869 . 357261) (-2870 . 356159) (-2871 . 356075) (-2872 . 355693)
- (-2873 . 355564) (-2874 . 355533) (-2875 . 355467) (-2876 . 355372)
- (-2877 . 355301) (-2878 . 355163) (-2879 . 355072) (-2880 . 354927)
- (-2881 . 354783) (-2882 . 354755) (-2883 . 354678) (-2884 . 354362)
- (-2885 . 354196) (-2886 . 354093) (-2887 . 354059) (-2888 . 353638)
- (-2889 . 353585) (-2890 . 353460) (-2891 . 353392) (-2892 . 352984)
- (-2893 . 352812) (-2894 . 352620) (-2895 . 352534) (-2896 . 352475)
- (-2897 . 352382) (-2898 . 351991) (-2899 . 351936) (-2900 . 351801)
- (-2901 . 351399) (-2902 . 351272) (-2903 . 351220) (-2904 . 351158)
- (-2905 . 351054) (-2906 . 351002) (-2907 . 350086) (-2908 . 349989)
- (-2909 . 349955) (-2910 . 349898) (-2911 . 349464) (-2912 . 348851)
- (-2913 . 348768) (-2914 . 348671) (-2915 . 348534) (-2916 . 348409)
- (-2917 . 348332) (-2918 . 348279) (-2919 . 348182) (-2920 . 348115)
- (-2921 . 347930) (-2922 . 347896) (-2923 . 347469) (-2924 . 347309)
- (-2925 . 347226) (-2926 . 347174) (-2927 . 347090) (-2928 . 346935)
- (-2929 . 346883) (-2930 . 346780) (-2931 . 346701) (-2932 . 346470)
- (-2933 . 346401) (-2934 . 346255) (-2935 . 346198) (-2936 . 346139)
- (-2937 . 346056) (-2938 . 345891) (-2939 . 345779) (-2940 . 327204)
- (* . 322937) (-2942 . 322446) (-2943 . 322358) (-2944 . 321725)
- (-2945 . 321603) (-2946 . 321532) (-2947 . 321278) (-2948 . 321086)
- (-2949 . 320925) (-2950 . 320846) (-2951 . 320688) (-2952 . 320525)
- (-2953 . 317704) (-2954 . 317621) (-2955 . 317568) (-2956 . 315312)
- (-2957 . 315170) (-2958 . 315040) (-2959 . 314925) (-2960 . 314791)
- (-2961 . 314614) (-2962 . 314580) (-2963 . 313876) (-2964 . 313824)
- (-2965 . 313758) (-2966 . 313670) (-2967 . 313059) (-2968 . 313007)
- (-2969 . 312774) (-2970 . 312591) (-2971 . 312298) (-2972 . 312217)
- (-2973 . 312113) (-2974 . 311432) (-2975 . 311191) (-2976 . 311079)
- (-2977 . 310955) (-2978 . 310683) (-2979 . 310567) (-2980 . 310335)
- (-2981 . 310117) (-2982 . 310019) (-2983 . 309924) (-2984 . 309721)
- (-2985 . 309684) (-2986 . 309618) (-2987 . 309532) (-2988 . 309504)
- (-2989 . 309431) (-2990 . 308912) (-2991 . 308835) (-2992 . 308356)
- (-2993 . 308003) (-2994 . 307637) (-2995 . 307585) (-2996 . 307479)
- (-2997 . 307226) (-2998 . 306582) (-2999 . 306530) (-3000 . 306292)
- (-3001 . 306137) (-3002 . 306071) (-3003 . 305840) (-3004 . 305560)
- (-3005 . 305033) (-3006 . 304934) (-3007 . 304311) (-3008 . 304216)
- (-3009 . 304185) (-3010 . 304032) (-3011 . 303866) (-3012 . 303796)
- (-3013 . 303730) (-3014 . 303643) (-3015 . 303500) (-3016 . 303326)
- (-3017 . 302880) (-3018 . 302675) (-3019 . 302616) (-3020 . 302526)
- (-3021 . 302456) (-3022 . 302428) (-3023 . 302297) (-3024 . 302003)
- (-3025 . 301557) (-3026 . 301398) (-3027 . 301214) (-3028 . 301065)
- (-3029 . 300966) (-3030 . 300882) (-3031 . 300830) (-3032 . 300750)
- (-3033 . 300580) (-3034 . 293637) (-3035 . 293582) (-3036 . 293529)
- (-3037 . 292689) (-3038 . 292262) (-3039 . 292175) (-3040 . 291844)
- (-3041 . 291682) (-3042 . 291629) (-3043 . 291471) (-3044 . 291112)
- (-3045 . 290898) (-3046 . 290835) (-3047 . 290712) (-3048 . 290427)
- (-3049 . 290300) (-3050 . 290188) (-3051 . 290010) (-3052 . 289978)
- (-3053 . 289603) (-3054 . 289114) (-3055 . 288821) (-3056 . 288701)
- (-3057 . 288616) (-3058 . 288509) (-3059 . 288364) (-3060 . 288248)
- (-3061 . 287951) (-3062 . 287899) (-3063 . 287781) (-3064 . 287709)
- (-3065 . 287373) (-3066 . 287300) (-3067 . 287205) (-3068 . 286675)
- (-3069 . 286190) (-3070 . 285693) (-3071 . 285458) (-3072 . 285365)
- (-3073 . 285212) (-3074 . 284964) (-3075 . 283778) (-3076 . 282959)
- (-3077 . 282796) (-3078 . 282680) (-3079 . 282582) (-3080 . 282269)
- (-3081 . 282217) (-3082 . 282148) (-3083 . 282068) (-3084 . 281905)
- (-3085 . 281573) (-3086 . 280652) (-3087 . 280166) (-3088 . 279830)
- (-3089 . 278648) (-3090 . 278547) (-3091 . 278473) (-3092 . 278336)
- (-3093 . 278241) (-3094 . 278149) (-3095 . 278054) (-3096 . 277807)
- (-3097 . 277627) (-3098 . 277560) (-3099 . 277526) (-3100 . 277366)
- (-3101 . 276936) (-3102 . 276782) (-3103 . 276685) (-3104 . 276395)
- (-3105 . 276328) (-3106 . 274120) (-3107 . 274029) (-3108 . 273917)
- (-3109 . 273804) (-3110 . 273738) (-3111 . 273652) (-3112 . 273474)
- (-3113 . 273295) (-3114 . 273207) (-3115 . 273052) (-3116 . 271826)
- (-3117 . 271628) (-3118 . 271409) (-3119 . 271315) (-3120 . 271221)
- (-3121 . 271187) (-3122 . 271120) (-3123 . 271050) (-3124 . 271016)
- (-3125 . 270931) (-3126 . 270672) (-3127 . 270579) (-3128 . 270414)
- (-3129 . 270382) (-3130 . 270235) (-3131 . 270175) (-3132 . 270146)
- (-3133 . 269921) (-3134 . 269722) (-3135 . 269420) (-3136 . 269343)
- (-3137 . 269056) (-3138 . 268616) (-3139 . 267318) (-3140 . 266014)
- (-3141 . 265943) (-3142 . 265636) (-3143 . 265530) (-3144 . 265158)
- (-3145 . 265106) (-3146 . 265032) (-3147 . 264523) (-3148 . 264218)
- (-3149 . 263991) (-3150 . 263887) (-3151 . 263782) (-3152 . 263603)
- (-3153 . 263209) (-3154 . 263054) (-3155 . 262966) (-3156 . 262480)
- (-3157 . 262423) (-3158 . 262312) (-3159 . 262246) (-3160 . 261181)
- (-3161 . 260992) (-3162 . 260892) (-3163 . 260840) (-3164 . 260513)
- (-3165 . 260420) (-3166 . 260342) (-3167 . 260162) (-3168 . 260113)
- (-3169 . 260035) (-3170 . 259963) (-3171 . 259805) (-3172 . 259493)
- (-3173 . 259368) (-3174 . 259059) (-3175 . 258964) (-3176 . 258840)
- (-3177 . 258692) (-3178 . 258436) (-3179 . 258383) (-3180 . 258204)
- (-3181 . 258145) (-3182 . 257895) (-3183 . 257829) (-3184 . 257744)
- (-3185 . 257671) (-3186 . 257585) (-3187 . 257396) (-3188 . 257318)
- (-3189 . 257235) (-3190 . 256787) (-3191 . 256685) (-3192 . 256591)
- (-3193 . 256372) (-3194 . 256256) (-3195 . 256191) (-3196 . 255373)
- (-3197 . 255257) (-3198 . 255155) (-3199 . 255102) (-3200 . 254850)
- (-3201 . 254724) (-3202 . 254523) (-3203 . 254442) (-3204 . 254063)
- (-3205 . 253983) (-3206 . 253671) (-3207 . 253601) (-3208 . 253523)
- (-3209 . 253283) (-3210 . 253174) (-3211 . 253095) (-3212 . 253040)
- (-3213 . 252927) (-3214 . 252817) (-3215 . 252511) (-3216 . 252443)
- (-3217 . 252370) (-3218 . 252341) (-3219 . 252264) (-3220 . 252119)
- (-3221 . 252023) (-3222 . 251950) (-3223 . 251442) (-3224 . 251347)
- (-3225 . 251203) (-3226 . 251151) (-3227 . 250990) (-3228 . 250846)
- (-3229 . 250763) (-3230 . 250694) (-3231 . 250513) (-3232 . 250400)
- (-3233 . 250225) (-3234 . 250040) (-3235 . 249981) (-3236 . 249947)
- (-3237 . 249876) (-3238 . 249780) (-3239 . 249510) (-3240 . 249387)
- (-3241 . 249250) (-3242 . 249131) (-3243 . 249097) (-3244 . 249044)
- (-3245 . 248686) (-3246 . 248416) (-3247 . 248066) (-3248 . 248000)
- (-3249 . 247592) (-3250 . 247522) (-3251 . 247452) (-3252 . 247227)
- (-3253 . 247156) (-3254 . 247051) (-3255 . 246893) (-3256 . 246542)
- (-3257 . 246246) (-3258 . 245965) (-3259 . 245735) (-3260 . 245636)
- (-3261 . 245565) (-3262 . 245485) (-3263 . 245428) (-3264 . 245150)
- (-3265 . 245092) (-3266 . 244741) (-3267 . 244358) (-3268 . 243843)
- (-3269 . 243667) (-3270 . 243544) (-3271 . 243472) (-3272 . 243319)
- (-3273 . 243249) (-3274 . 243046) (-3275 . 242889) (-3276 . 242789)
- (-3277 . 242539) (-3278 . 242381) (-3279 . 242273) (-3280 . 242160)
- (-3281 . 241626) (-3282 . 241385) (-3283 . 240988) (-3284 . 240830)
- (-3285 . 240730) (-3286 . 240593) (-3287 . 240426) (-3288 . 240328)
- (-3289 . 240012) (-3290 . 239884) (-3291 . 239730) (-3292 . 239657)
- (-3293 . 239455) (-3294 . 239395) (-3295 . 239294) (-3296 . 239034)
- (-3297 . 238861) (-3298 . 238423) (-3299 . 238353) (-3300 . 238301)
- (-3301 . 238167) (-3302 . 237826) (-3303 . 237730) (-3304 . 237621)
- (-3305 . 237569) (-3306 . 237360) (-3307 . 237308) (-3308 . 237166)
- (-3309 . 237062) (-3310 . 236985) (-3311 . 236890) (-3312 . 236806)
- (-3313 . 236648) (-3314 . 236440) (-3315 . 236298) (-3316 . 236270)
- (-3317 . 236132) (-3318 . 236013) (-3319 . 235565) (-3320 . 235507)
- (-3321 . 235397) (-3322 . 235086) (-3323 . 234958) (-3324 . 234872)
- (-3325 . 234795) (-3326 . 234646) (-3327 . 234225) (-3328 . 234137)
- (-3329 . 234086) (-3330 . 234042) (-3331 . 233898) (-3332 . 233299)
- (-3333 . 233117) (-3334 . 233033) (-3335 . 232826) (-3336 . 232701)
- (-3337 . 232505) (-3338 . 232408) (-3339 . 232342) (-3340 . 232224)
- (-3341 . 232073) (-3342 . 231857) (-3343 . 231804) (-3344 . 231679)
- (-3345 . 231624) (-3346 . 231530) (-3347 . 231249) (-3348 . 231152)
- (-3349 . 231089) (-3350 . 231005) (-3351 . 230893) (-3352 . 230823)
- (-3353 . 230767) (-3354 . 230652) (-3355 . 230420) (-3356 . 230089)
- (-3357 . 229715) (-3358 . 229600) (-3359 . 229512) (-3360 . 229356)
- (-3361 . 229249) (-3362 . 228913) (-3363 . 228829) (-3364 . 228286)
- (-3365 . 228192) (-3366 . 228054) (-3367 . 227886) (-3368 . 227524)
- (-3369 . 227459) (-3370 . 227280) (-3371 . 227224) (-3372 . 227171)
- (-3373 . 227112) (-3374 . 227017) (-3375 . 226894) (-3376 . 226783)
- (-3377 . 226723) (-3378 . 226667) (-3379 . 226600) (-3380 . 226499)
- (-3381 . 225910) (-3382 . 225762) (-3383 . 225578) (-3384 . 225500)
- (-3385 . 225468) (-3386 . 225416) (-3387 . 225367) (-3388 . 225339)
- (-3389 . 225267) (-3390 . 224816) (-3391 . 224660) (-3392 . 224442)
- (-3393 . 224100) (-3394 . 224026) (-3395 . 223931) (-3396 . 223863)
- (-3397 . 223726) (-3398 . 223515) (-3399 . 223431) (-3400 . 223226)
- (-3401 . 223146) (-3402 . 223093) (-3403 . 222972) (-3404 . 222917)
- (-3405 . 222768) (-3406 . 222638) (-3407 . 221885) (-3408 . 221811)
- (-3409 . 221758) (-3410 . 221730) (-3411 . 221656) (-3412 . 221383)
- (-3413 . 221293) (-3414 . 221211) (-3415 . 221139) (-3416 . 221044)
- (-3417 . 220972) (-3418 . 220461) (-3419 . 220365) (-3420 . 219295)
- (-3421 . 218804) (-3422 . 218727) (-3423 . 218605) (-3424 . 218492)
- (-3425 . 218440) (-3426 . 218153) (-3427 . 218064) (-3428 . 217772)
- (-3429 . 217655) (-3430 . 217593) (-3431 . 217293) (-3432 . 217234)
- (-3433 . 217049) (-3434 . 216997) (-3435 . 216881) (-3436 . 216826)
- (-3437 . 216572) (-3438 . 216447) (-3439 . 216376) (-3440 . 215559)
- (-3441 . 215421) (-3442 . 215277) (-3443 . 215222) (-3444 . 215139)
- (-3445 . 214999) (-3446 . 214860) (-3447 . 214681) (-3448 . 214586)
- (-3449 . 214534) (-3450 . 214351) (-3451 . 214180) (-3452 . 213985)
- (-3453 . 213714) (-3454 . 213361) (-3455 . 213088) (-3456 . 212964)
- (-3457 . 212818) (-3458 . 212675) (-3459 . 211811) (-3460 . 211728)
- (-3461 . 211553) (-3462 . 211452) (-3463 . 211233) (-3464 . 211145)
- (-3465 . 210945) (-3466 . 210800) (-3467 . 210678) (-3468 . 210606)
- (-3469 . 210577) (-3470 . 210508) (-3471 . 210412) (-3472 . 210317)
- (-3473 . 210150) (-3474 . 210068) (-3475 . 210002) (-3476 . 209857)
- (-3477 . 209716) (-3478 . 209528) (-3479 . 209471) (-3480 . 209387)
- (-3481 . 209314) (-3482 . 209261) (-3483 . 208828) (-3484 . 208728)
- (-3485 . 208508) (-3486 . 208379) (-3487 . 207926) (-3488 . 207818)
- (-3489 . 207711) (-3490 . 207561) (-3491 . 207403) (-3492 . 207295)
- (-3493 . 207222) (-3494 . 207012) (-3495 . 206732) (-3496 . 206673)
- (-3497 . 206498) (-3498 . 202338) (-3499 . 202244) (-3500 . 202216)
- (-3501 . 202156) (-3502 . 202058) (-3503 . 201980) (-3504 . 201827)
- (-3505 . 201750) (-3506 . 201383) (-3507 . 201142) (-3508 . 201090)
- (-3509 . 200960) (-3510 . 200908) (-3511 . 200849) (-3512 . 200677)
- (-3513 . 200341) (-3514 . 200056) (-3515 . 199959) (-3516 . 199871)
- (-3517 . 199424) (-3518 . 199371) (-3519 . 199318) (-3520 . 199215)
- (-3521 . 199114) (-3522 . 199048) (-3523 . 198977) (-3524 . 198824)
- (-3525 . 198400) (-3526 . 198280) (-3527 . 198197) (-3528 . 198138)
- (-3529 . 197943) (-3530 . 197792) (-3531 . 197612) (-3532 . 197531)
- (-3533 . 197285) (-3534 . 197127) (-3535 . 197095) (-3536 . 196568)
- (-3537 . 195865) (-3538 . 195784) (-3539 . 195713) (-3540 . 194717)
- (-3541 . 194644) (-3542 . 194538) (-3543 . 194484) (-3544 . 194380)
- (-3545 . 194267) (-3546 . 194124) (-3547 . 193348) (-3548 . 192672)
- (-3549 . 192343) (-3550 . 192187) (-3551 . 192114) (-3552 . 191959)
- (-3553 . 191804) (-3554 . 191061) (-3555 . 190807) (-3556 . 190725)
- (-3557 . 189297) (-3558 . 189169) (-3559 . 189111) (-3560 . 188515)
- (-3561 . 188442) (-3562 . 188354) (-3563 . 188277) (-3564 . 188206)
- (-3565 . 188120) (-3566 . 187970) (-3567 . 187818) (-3568 . 187747)
- (-3569 . 187588) (-3570 . 187517) (-3571 . 187458) (-3572 . 187426)
- (-3573 . 187360) (-3574 . 187231) (-3575 . 187180) (-3576 . 187058)
- (-3577 . 186912) (-3578 . 186707) (-3579 . 186509) (-3580 . 186164)
- (-3581 . 184914) (-3582 . 184777) (-3583 . 184695) (-3584 . 184621)
- (-3585 . 184492) (-3586 . 184331) (-3587 . 184215) (-3588 . 183577)
- (-3589 . 183433) (-3590 . 183367) (-3591 . 183285) (-3592 . 183171)
- (-3593 . 183067) (-3594 . 182966) (-3595 . 182938) (-3596 . 182886)
- (-3597 . 182718) (-3598 . 182658) (-3599 . 182559) (-3600 . 182295)
- (-3601 . 182243) (-3602 . 182163) (-3603 . 182065) (-3604 . 181996)
- (-3605 . 181908) (-3606 . 181501) (-3607 . 181311) (-3608 . 180454)
- (-3609 . 180206) (-3610 . 180106) (-3611 . 180020) (-3612 . 179891)
- (-3613 . 179788) (-3614 . 179687) (-3615 . 179593) (-3616 . 179512)
- (-3617 . 179171) (-3618 . 179069) (-3619 . 178925) (-3620 . 176084)
- (-3621 . 176013) (-3622 . 175929) (-3623 . 175877) (-3624 . 175721)
- (-3625 . 175511) (-3626 . 175410) (-3627 . 175325) (-3628 . 175191)
- (-3629 . 175067) (-3630 . 175014) (-3631 . 174805) (-3632 . 174664)
- (-3633 . 174333) (-3634 . 174261) (-3635 . 174171) (-3636 . 174091)
- (-3637 . 174036) (-3638 . 173939) (-3639 . 173554) (-3640 . 173404)
- (-3641 . 173321) (-3642 . 173225) (-3643 . 172737) (-3644 . 172660)
- (-3645 . 172559) (-3646 . 172449) (-3647 . 172370) (-3648 . 172336)
- (-3649 . 172220) (-3650 . 172098) (-3651 . 171980) (-3652 . 171534)
- (-3653 . 171369) (-3654 . 171091) (-3655 . 171038) (-3656 . 170879)
- (-3657 . 170731) (-3658 . 170616) (-3659 . 170424) (-3660 . 170336)
- (-3661 . 170267) (-3662 . 170071) (-3663 . 169893) (-3664 . 169792)
- (-3665 . 169184) (-3666 . 168680) (-3667 . 168521) (-3668 . 168384)
- (-3669 . 168176) (-3670 . 168005) (-3671 . 167915) (-3672 . 167663)
- (-3673 . 167339) (-3674 . 167244) (-3675 . 167160) (-3676 . 166733)
- (-3677 . 166481) (-3678 . 166323) (-3679 . 166113) (-3680 . 166034)
- (-3681 . 165895) (-3682 . 165789) (-3683 . 165740) (-3684 . 165632)
- (-3685 . 165431) (-3686 . 165370) (-3687 . 165238) (-3688 . 165164)
- (-3689 . 165076) (-3690 . 164922) (-3691 . 164792) (-3692 . 164669)
- (-3693 . 164564) (-3694 . 164451) (-3695 . 163865) (-3696 . 163499)
- (-3697 . 163292) (-3698 . 163078) (-3699 . 162845) (-3700 . 162762)
- (-3701 . 162402) (-3702 . 162095) (-3703 . 161977) (-3704 . 161922)
- (-3705 . 161806) (-3706 . 161739) (-3707 . 161655) (-3708 . 161599)
- (-3709 . 161431) (-3710 . 161372) (-3711 . 161273) (-3712 . 161177)
- (-3713 . 160974) (-3714 . 160811) (-3715 . 160667) (-3716 . 160538)
- (-3717 . 160414) (-3718 . 159910) (-3719 . 159690) (-3720 . 159588)
- (-3721 . 159518) (-3722 . 159324) (-3723 . 159164) (-3724 . 158958)
- (-3725 . 158578) (-3726 . 158339) (-3727 . 158254) (-3728 . 158036)
- (-3729 . 157818) (-3730 . 157762) (-3731 . 157710) (-3732 . 157569)
- (-3733 . 157490) (-3734 . 157438) (-3735 . 157333) (-3736 . 157000)
- (-3737 . 156738) (-3738 . 156618) (-3739 . 156526) (-3740 . 156473)
- (-3741 . 156022) (-3742 . 155830) (-3743 . 155562) (-3744 . 155402)
- (-3745 . 155267) (-3746 . 155208) (-3747 . 155153) (-3748 . 155072)
- (-3749 . 154991) (-3750 . 154825) (-3751 . 154721) (-3752 . 154527)
- (-3753 . 154235) (-3754 . 153925) (-3755 . 153875) (-3756 . 153716)
- (-3757 . 153597) (-3758 . 153493) (-3759 . 153416) (-3760 . 153337)
- (-3761 . 152677) (-3762 . 152486) (-3763 . 152384) (-3764 . 151900)
- (-3765 . 151349) (-3766 . 151071) (-3767 . 150956) (-3768 . 150919)
- (-3769 . 150712) (-3770 . 150612) (-3771 . 150584) (-3772 . 150480)
- (-3773 . 150342) (-3774 . 150219) (-3775 . 150017) (-3776 . 149963)
- (-3777 . 149911) (-3778 . 149632) (-3779 . 149495) (-3780 . 149378)
- (-3781 . 149218) (-3782 . 149000) (-3783 . 148912) (-3784 . 148858)
- (-3785 . 148731) (-3786 . 148575) (-3787 . 147805) (-3788 . 147739)
- (-3789 . 147609) (-3790 . 147307) (-3791 . 147093) (-3792 . 147028)
- (-3793 . 146912) (-3794 . 146802) (-3795 . 146746) (-3796 . 146569)
- (-3797 . 146517) (-3798 . 146404) (-3799 . 146240) (-3800 . 146145)
- (-3801 . 145992) (-3802 . 145877) (-3803 . 145825) (-3804 . 145794)
- (-3805 . 145642) (-3806 . 145357) (-3807 . 145220) (-3808 . 145189)
- (-3809 . 144996) (-3810 . 144946) (-3811 . 144727) (-3812 . 144664)
- (-3813 . 144560) (-3814 . 144369) (-3815 . 144244) (-3816 . 143957)
- (-3817 . 143500) (-3818 . 143426) (-3819 . 143255) (-3820 . 142879)
- (-3821 . 142743) (-3822 . 142497) (-3823 . 142437) (-3824 . 142363)
- (-3825 . 142310) (-3826 . 142018) (-3827 . 141917) (-3828 . 141836)
- (-3829 . 141560) (-3830 . 141464) (-3831 . 141274) (-3832 . 140476)
- (-3833 . 140393) (-3834 . 140298) (-3835 . 140246) (-3836 . 140185)
- (-3837 . 140113) (-3838 . 140019) (-3839 . 139644) (-3840 . 139591)
- (-3841 . 139520) (-3842 . 139367) (-3843 . 139293) (-3844 . 139131)
- (-3845 . 138996) (-3846 . 138923) (-3847 . 138871) (-3848 . 137439)
- (-3849 . 137310) (-3850 . 137035) (-3851 . 136873) (-3852 . 136486)
- (-3853 . 136427) (-3854 . 136163) (-3855 . 136092) (-3856 . 135912)
- (-3857 . 135831) (-3858 . 135733) (-3859 . 135671) (-3860 . 135572)
- (-3861 . 134480) (-3862 . 134355) (-3863 . 134077) (-3864 . 133954)
- (-3865 . 133827) (-3866 . 133689) (-3867 . 133631) (-3868 . 133409)
- (-3869 . 133352) (-3870 . 133144) (-3871 . 132902) (-3872 . 132729)
- (-3873 . 132670) (-3874 . 132397) (-3875 . 132265) (-3876 . 132120)
- (-3877 . 131988) (-3878 . 131909) (-3879 . 131520) (-3880 . 131357)
- (-3881 . 131221) (-3882 . 130739) (-3883 . 130561) (-3884 . 130458)
- (-3885 . 130278) (-3886 . 130183) (-3887 . 130062) (-3888 . 129724)
- (-3889 . 129647) (-3890 . 129528) (-3891 . 129348) (-3892 . 129130)
- (-3893 . 128977) (-3894 . 128916) (-3895 . 128742) (-3896 . 128643)
- (-3897 . 128383) (-3898 . 128242) (-3899 . 128180) (-3900 . 128099)
- (-3901 . 127761) (-3902 . 125574) (-3903 . 125505) (-3904 . 125039)
- (-3905 . 124926) (-3906 . 124676) (-3907 . 124560) (-3908 . 124250)
- (-3909 . 124092) (-3910 . 124020) (-3911 . 123948) (-3912 . 123844)
- (-3913 . 123743) (-3914 . 123687) (-3915 . 123659) (-3916 . 123499)
- (-3917 . 123157) (-3918 . 122940) (-3919 . 122605) (-3920 . 122519)
- (-3921 . 122136) (-3922 . 122084) (-3923 . 121897) (-3924 . 121406)
- (-3925 . 121231) (-3926 . 120981) (-3927 . 120801) (-3928 . 120323)
- (-3929 . 120295) (-3930 . 120243) (-3931 . 118462) (-3932 . 118228)
- (-3933 . 118058) (-3934 . 117980) (-3935 . 117894) (-3936 . 117787)
- (-3937 . 117626) (-3938 . 117546) (-3939 . 117487) (-3940 . 117366)
- (-3941 . 117262) (-3942 . 117090) (-3943 . 116937) (-3944 . 116833)
- (-3945 . 116718) (-3946 . 116328) (-3947 . 116186) (-3948 . 116085)
- (-3949 . 116008) (-3950 . 115976) (-3951 . 115388) (-3952 . 115276)
- (-3953 . 115198) (-3954 . 115097) (-3955 . 115018) (-3956 . 114820)
- (-3957 . 114571) (-3958 . 114361) (-3959 . 114333) (-3960 . 114284)
- (-3961 . 114184) (-3962 . 114114) (-3963 . 114061) (-3964 . 114007)
- (-3965 . 113954) (-3966 . 113893) (-3967 . 113740) (-3968 . 113521)
- (-3969 . 113352) (-3970 . 113243) (-3971 . 113174) (-3972 . 109875)
- (-3973 . 109636) (-3974 . 109309) (-3975 . 109239) (-3976 . 109205)
- (-3977 . 109149) (-3978 . 109003) (-3979 . 107414) (-3980 . 107295)
- (-3981 . 107001) (-3982 . 106341) (-3983 . 106147) (-3984 . 105777)
- (-3985 . 105675) (-3986 . 105528) (-3987 . 105328) (-3988 . 105258)
- (-3989 . 105145) (-3990 . 105012) (-3991 . 104857) (-3992 . 104449)
- (-3993 . 104377) (-3994 . 104300) (-3995 . 104229) (-3996 . 104134)
- (-3997 . 104035) (-3998 . 103822) (-3999 . 103600) (-4000 . 103484)
- (-4001 . 103371) (-4002 . 103257) (-4003 . 103119) (-4004 . 103059)
- (-4005 . 102975) (-4006 . 102904) (-4007 . 102838) (-4008 . 102764)
- (-4009 . 102668) (-4010 . 102590) (-4011 . 101980) (-4012 . 101825)
- (-4013 . 101759) (-4014 . 101448) (-4015 . 101299) (-4016 . 101204)
- (-4017 . 101009) (-4018 . 100957) (-4019 . 100849) (-4020 . 100731)
- (-4021 . 100635) (-4022 . 100490) (-4023 . 100435) (-4024 . 100225)
- (-4025 . 100029) (-4026 . 99898) (-4027 . 99608) (-4028 . 98898)
- (-4029 . 98824) (-4030 . 98612) (-4031 . 98546) (-4032 . 98255)
- (-4033 . 98227) (-4034 . 98147) (-4035 . 98093) (-4036 . 97951)
- (-4037 . 97699) (-4038 . 97562) (-4039 . 97291) (-4040 . 97076)
- (-4041 . 96933) (-4042 . 96839) (-4043 . 96412) (-4044 . 96362)
- (-4045 . 96257) (-4046 . 96179) (-4047 . 96069) (-4048 . 95933)
- (-4049 . 95867) (-4050 . 95804) (-4051 . 95378) (-4052 . 95288)
- (-4053 . 95158) (-4054 . 94848) (-4055 . 94776) (-4056 . 94726)
- (-4057 . 94658) (-4058 . 94624) (-4059 . 94407) (-4060 . 94333)
- (-4061 . 94280) (-4062 . 94161) (-4063 . 94065) (-4064 . 93943)
- (-4065 . 93850) (-4066 . 93499) (-4067 . 93447) (-4068 . 93364)
- (-4069 . 93232) (-4070 . 92947) (-4071 . 92789) (-4072 . 92688)
- (-4073 . 92372) (-4074 . 92150) (-4075 . 92079) (-4076 . 91824)
- (-4077 . 91740) (-4078 . 91608) (-4079 . 91556) (-4080 . 91482)
- (-4081 . 91195) (-4082 . 90984) (-4083 . 90882) (-4084 . 90782)
- (-4085 . 90723) (-4086 . 90508) (-4087 . 90343) (-4088 . 90266)
- (-4089 . 90192) (-4090 . 90130) (-4091 . 90074) (-4092 . 89909)
- (-4093 . 89696) (-4094 . 88945) (-4095 . 88841) (-4096 . 88789)
- (-4097 . 88736) (-4098 . 88644) (-4099 . 88581) (-4100 . 88399)
- (-4101 . 88326) (-4102 . 88242) (-4103 . 88163) (-4104 . 88110)
- (-4105 . 87957) (-4106 . 87813) (-4107 . 87535) (-4108 . 87461)
- (-4109 . 87243) (-4110 . 85701) (-4111 . 85520) (-4112 . 85440)
- (-4113 . 85370) (-4114 . 85120) (-4115 . 84767) (-4116 . 84694)
- (-4117 . 84642) (-4118 . 84484) (-4119 . 83596) (-4120 . 83398)
- (-4121 . 83188) (-4122 . 82892) (-4123 . 82760) (-4124 . 82281)
- (-4125 . 82195) (-4126 . 82094) (-4127 . 82042) (-4128 . 81915)
- (-4129 . 80653) (-4130 . 80107) (-4131 . 79964) (-4132 . 79780)
- (-4133 . 79104) (-4134 . 78774) (-4135 . 78708) (-4136 . 78461)
- (-4137 . 78345) (-4138 . 78128) (-4139 . 78054) (-4140 . 77450)
- (-4141 . 76692) (-4142 . 74560) (-4143 . 74022) (-4144 . 73968)
- (-4145 . 73701) (-4146 . 73560) (-4147 . 73439) (-4148 . 73022)
- (-4149 . 72823) (-4150 . 72511) (-4151 . 72285) (-4152 . 72215)
- (-4153 . 71629) (-4154 . 71577) (-4155 . 70947) (-4156 . 70518)
- (-4157 . 70441) (-4158 . 69634) (-4159 . 69264) (-4160 . 69233)
- (-4161 . 69171) (-4162 . 69034) (-4163 . 69006) (-4164 . 68704)
- (-4165 . 68530) (-4166 . 68431) (-4167 . 68335) (-4168 . 68275)
- (-4169 . 68223) (-4170 . 68129) (-4171 . 66962) (-4172 . 66710)
- (-4173 . 66592) (-4174 . 66457) (-4175 . 66354) (-4176 . 66131)
- (-4177 . 66036) (-4178 . 65952) (-4179 . 65842) (-4180 . 65698)
- (-4181 . 65354) (-4182 . 65130) (-4183 . 64989) (-4184 . 64958)
- (-4185 . 64903) (-4186 . 64516) (-4187 . 64463) (-4188 . 64435)
- (-4189 . 62858) (-4190 . 62756) (-4191 . 61354) (-4192 . 61230)
- (-4193 . 61177) (-4194 . 61070) (-4195 . 61015) (-4196 . 60847)
- (-4197 . 60774) (-4198 . 60676) (-4199 . 60598) (-4200 . 60502)
- (-4201 . 60474) (-4202 . 60418) (-4203 . 59875) (-4204 . 59627)
- (-4205 . 59531) (-4206 . 59378) (-4207 . 59127) (-4208 . 59023)
- (-4209 . 58545) (-4210 . 58298) (-4211 . 57922) (-4212 . 57885)
- (-4213 . 57823) (-4214 . 57795) (-4215 . 57545) (-4216 . 57493)
- (-4217 . 57438) (-4218 . 51924) (-4219 . 50926) (-4220 . 50892)
- (-4221 . 50703) (-4222 . 50508) (-4223 . 50437) (-4224 . 49702)
- (-4225 . 49362) (-4226 . 49281) (-4227 . 48888) (-4228 . 48835)
- (-4229 . 48714) (-4230 . 48682) (-4231 . 48537) (-4232 . 48109)
- (-4233 . 48057) (-4234 . 47497) (-4235 . 47349) (-4236 . 47293)
- (-4237 . 46851) (-4238 . 46754) (-4239 . 46514) (-4240 . 46373)
- (-4241 . 45947) (-4242 . 45832) (-4243 . 45764) (-4244 . 45651)
- (-4245 . 45556) (-4246 . 45487) (-4247 . 45152) (-4248 . 45100)
- (-4249 . 44234) (-4250 . 44157) (-4251 . 43072) (-4252 . 43044)
- (-4253 . 42992) (-4254 . 42697) (-4255 . 42574) (-4256 . 42516)
- (-4257 . 42431) (-4258 . 41403) (-4259 . 41323) (-4260 . 41267)
- (-4261 . 41152) (-4262 . 40999) (-4263 . 40913) (-4264 . 40676)
- (-4265 . 40581) (-4266 . 40553) (-4267 . 40416) (-4268 . 39905)
- (-4269 . 39785) (-4270 . 39717) (-4271 . 39407) (-4272 . 38893)
- (-4273 . 38799) (-4274 . 38747) (-4275 . 38572) (-4276 . 38217)
- (-4277 . 38107) (-4278 . 37969) (-4279 . 37754) (-4280 . 37652)
- (-4281 . 37421) (-4282 . 37338) (-4283 . 37285) (-4284 . 37157)
- (-4285 . 37033) (-4286 . 36537) (-4287 . 36382) (-4288 . 36240)
- (-4289 . 35909) (-4290 . 35768) (-4291 . 35479) (-4292 . 35187)
- (-4293 . 34889) (-4294 . 34810) (-4295 . 34744) (-4296 . 34603)
- (-4297 . 34508) (-4298 . 34406) (-4299 . 33749) (-4300 . 33665)
- (-4301 . 33524) (-4302 . 33446) (-4303 . 33243) (-4304 . 33120)
- (-4305 . 32638) (-4306 . 32447) (-4307 . 32238) (-4308 . 32168)
- (-4309 . 32116) (-4310 . 31985) (-4311 . 31689) (-4312 . 31529)
- (-4313 . 31055) (-4314 . 30892) (-4315 . 30796) (-4316 . 30623)
- (-4317 . 30385) (-4318 . 30242) (-4319 . 30096) (-4320 . 29877)
- (-4321 . 29781) (-4322 . 29725) (-4323 . 29625) (-4324 . 29555)
- (-4325 . 29378) (-4326 . 29313) (-4327 . 29142) (-4328 . 29061)
- (-4329 . 27869) (-4330 . 27651) (-4331 . 27571) (-4332 . 27500)
- (-4333 . 25870) (-4334 . 25818) (-4335 . 25702) (-4336 . 25338)
- (-4337 . 25264) (-4338 . 24737) (-4339 . 24441) (-4340 . 24340)
- (-4341 . 24288) (-4342 . 24239) (-4343 . 23380) (-4344 . 23321)
- (-4345 . 23212) (-4346 . 23067) (-4347 . 23013) (-4348 . 22955)
- (-4349 . 22787) (-4350 . 22620) (-4351 . 22568) (-4352 . 22471)
- (-4353 . 21175) (-4354 . 21065) (-4355 . 20913) (-4356 . 20842)
- (-4357 . 20480) (-4358 . 20123) (-4359 . 20037) (-4360 . 19397)
- (-4361 . 19172) (-4362 . 18304) (-4363 . 18231) (-4364 . 17827)
- (-4365 . 17702) (-4366 . 17430) (-4367 . 17373) (-4368 . 17094)
- (-4369 . 17023) (-4370 . 16929) (-4371 . 16832) (-4372 . 16698)
- (-4373 . 16510) (-4374 . 16347) (-4375 . 16180) (-4376 . 16127)
- (-4377 . 15984) (-4378 . 15841) (-4379 . 15785) (-4380 . 15661)
- (-4381 . 15577) (-4382 . 15475) (-4383 . 15368) (-4384 . 15121)
- (-4385 . 15025) (-4386 . 14581) (-4387 . 14480) (-4388 . 14384)
- (-4389 . 14263) (-4390 . 12149) (-4391 . 12091) (-4392 . 11739)
- (-4393 . 11390) (-4394 . 11247) (-4395 . 11081) (-4396 . 11028)
- (-4397 . 10932) (-4398 . 10746) (-4399 . 10585) (-4400 . 8819)
- (-4401 . 8661) (-4402 . 8488) (-4403 . 8435) (-4404 . 8292)
- (-4405 . 8063) (-4406 . 7221) (-4407 . 7148) (-4408 . 7096)
- (-4409 . 6792) (-4410 . 6707) (-4411 . 5252) (-4412 . 5099)
- (-4413 . 4840) (-4414 . 4496) (-4415 . 4120) (-4416 . 3987)
- (-4417 . 3866) (-4418 . 3765) (-4419 . 3670) (-4420 . 3583)
- (-4421 . 3358) (-4422 . 1868) (-4423 . 1815) (-4424 . 1729)
- (-4425 . 1658) (-4426 . 1364) (-4427 . 1198) (-4428 . 1115)
- (-4429 . 1062) (-4430 . 480) (-4431 . 320) (-4432 . 268) (-4433 . 216)
- (-4434 . 30)) \ No newline at end of file
+ (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574))))
+ (-5 *2 (-1281 (-574))) (-5 *1 (-1309 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-654 *3)) (-4 *3 (-1122 *5 *6 *7 *8))
+ (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860))
+ (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-601 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1257 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315))
+ (-4 *10 (-960 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-654 (-1186 *10)))
+ (|:| |dterm|
+ (-654 (-654 (-2 (|:| -1941 (-781)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10))))
+ (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1186 *10)) (-5 *4 (-654 *6))
+ (-5 *5 (-654 *10)))))
+(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341)))))
+((-1315 . 732747) (-1316 . 732612) (-1317 . 732560) (-1318 . 732151)
+ (-1319 . 731941) (-1320 . 731804) (-1321 . 731738) (-1322 . 731577)
+ (-1323 . 731508) (-1324 . 730772) (-1325 . 730656) (-1326 . 730582)
+ (-1327 . 730482) (-1328 . 730287) (-1329 . 730202) (-1330 . 729772)
+ (-1331 . 727711) (-1332 . 727677) (-1333 . 727325) (-1334 . 727010)
+ (-1335 . 726891) (-1336 . 726809) (-1337 . 726736) (-1338 . 726573)
+ (-1339 . 726172) (-1340 . 726088) (-1341 . 725937) (-1342 . 725908)
+ (-1343 . 725831) (-1344 . 725573) (-1345 . 725133) (-1346 . 725099)
+ (-1347 . 725047) (-1348 . 724929) (-1349 . 724801) (-1350 . 724744)
+ (-1351 . 724672) (-1352 . 724492) (-1353 . 723685) (-1354 . 723590)
+ (-1355 . 722998) (-1356 . 722945) (-1357 . 722892) (-1358 . 721460)
+ (-1359 . 720816) (-1360 . 720738) (-1361 . 720609) (-1362 . 720528)
+ (-1363 . 720320) (-1364 . 719950) (-1365 . 719894) (-1366 . 719544)
+ (-1367 . 719467) (-1368 . 719361) (-1369 . 719232) (-1370 . 718060)
+ (-1371 . 717804) (-1372 . 717487) (-1373 . 717241) (-1374 . 717104)
+ (-1375 . 716851) (-1376 . 716785) (-1377 . 716600) (-1378 . 716385)
+ (-1379 . 716109) (-1380 . 715994) (-1381 . 715835) (-1382 . 715726)
+ (-1383 . 715568) (-1384 . 715144) (-1385 . 715116) (-1386 . 715038)
+ (-1387 . 714919) (-1388 . 714511) (-1389 . 714331) (-1390 . 714169)
+ (-1391 . 714140) (-1392 . 713003) (-1393 . 712911) (-1394 . 712832)
+ (-1395 . 712510) (-1396 . 712478) (-1397 . 712176) (-1398 . 711802)
+ (-1399 . 711415) (-1400 . 711345) (-1401 . 711212) (-1402 . 710824)
+ (-1403 . 710070) (-1404 . 709996) (-1405 . 709898) (-1406 . 709371)
+ (-1407 . 709197) (-1408 . 709057) (-1409 . 708987) (-1410 . 708921)
+ (-1411 . 708862) (-1412 . 707084) (-1413 . 706347) (-1414 . 706268)
+ (-1415 . 705565) (-1416 . 705466) (-1417 . 705393) (-1418 . 705334)
+ (-1419 . 705109) (-1420 . 704871) (-1421 . 704607) (-1422 . 704540)
+ (-1423 . 704445) (-1424 . 704364) (-1425 . 704259) (-1426 . 704163)
+ (-1427 . 704068) (-1428 . 703925) (-1429 . 703854) (-1430 . 703783)
+ (-1431 . 703537) (-1432 . 703371) (-1433 . 703319) (-1434 . 703248)
+ (-1435 . 703188) (-1436 . 703009) (-1437 . 702850) (-1438 . 702745)
+ (-1439 . 702619) (-1440 . 702439) (-1441 . 701918) (-1442 . 700922)
+ (-1443 . 700695) (-1444 . 700557) (-1445 . 700431) (-1446 . 700379)
+ (-1447 . 700247) (-1448 . 700129) (-1449 . 699971) (-1450 . 699916)
+ (-1451 . 699818) (-1452 . 699637) (** . 696643) (-1454 . 696450)
+ (-1455 . 696390) (-1456 . 696317) (-1457 . 696223) (-1458 . 695981)
+ (-1459 . 695466) (-1460 . 695339) (-1461 . 694987) (-1462 . 694829)
+ (-1463 . 694767) (-1464 . 694715) (-1465 . 694627) (-1466 . 694565)
+ (-1467 . 694459) (-1468 . 694207) (-1469 . 694108) (-1470 . 694080)
+ (-1471 . 693784) (-1472 . 693656) (-1473 . 693563) (-1474 . 693491)
+ (-1475 . 693395) (-1476 . 693204) (-1477 . 693150) (-1478 . 693032)
+ (-1479 . 692983) (-1480 . 692719) (-1481 . 692438) (-1482 . 692322)
+ (-1483 . 691230) (-1484 . 690950) (-1485 . 690846) (-1486 . 690772)
+ (-1487 . 689836) (-1488 . 689743) (-1489 . 689224) (-1490 . 689089)
+ (-1491 . 688856) (-1492 . 688743) (-1493 . 688553) (-1494 . 688323)
+ (-1495 . 688227) (-1496 . 688102) (-1497 . 687989) (-1498 . 687850)
+ (-1499 . 687762) (-1500 . 687643) (-1501 . 687540) (-1502 . 687417)
+ (-1503 . 687368) (-1504 . 687289) (-1505 . 687190) (-1506 . 687026)
+ (-1507 . 686929) (-1508 . 686800) (-1509 . 686721) (-1510 . 686647)
+ (-1511 . 686504) (-1512 . 686281) (-1513 . 686198) (-1514 . 685918)
+ (-1515 . 685847) (-1516 . 685818) (-1517 . 685691) (-1518 . 685500)
+ (-1519 . 685365) (-1520 . 684589) (-1521 . 684515) (-1522 . 684420)
+ (-1523 . 684393) (-1524 . 684337) (-1525 . 684309) (-1526 . 684229)
+ (-1527 . 684005) (-1528 . 683766) (-1529 . 683628) (-1530 . 683418)
+ (-1531 . 683089) (-1532 . 683012) (-1533 . 682928) (-1534 . 682870)
+ (-1535 . 682782) (-1536 . 682583) (-1537 . 682526) (-1538 . 682073)
+ (-1539 . 682019) (-1540 . 681691) (-1541 . 681590) (-1542 . 681434)
+ (-1543 . 681324) (-1544 . 681250) (-1545 . 681113) (-1546 . 680835)
+ (-1547 . 680493) (-1548 . 680271) (-1549 . 680088) (-1550 . 679923)
+ (-1551 . 679850) (-1552 . 679680) (-1553 . 679536) (-1554 . 679478)
+ (-1555 . 679383) (-1556 . 679306) (-1557 . 679249) (-1558 . 679040)
+ (-1559 . 678895) (-1560 . 678842) (-1561 . 678731) (-1562 . 678703)
+ (-1563 . 678548) (-1564 . 678204) (-1565 . 678124) (-1566 . 677916)
+ (-1567 . 677717) (-1568 . 677365) (-1569 . 677234) (-1570 . 677121)
+ (-1571 . 677055) (-1572 . 676900) (-1573 . 676811) (-1574 . 676587)
+ (-9 . 676559) (-1576 . 676317) (-1577 . 675934) (-1578 . 675554)
+ (-1579 . 675441) (-1580 . 675335) (-1581 . 675263) (-1582 . 675133)
+ (-1583 . 675071) (-1584 . 674967) (-1585 . 674629) (-1586 . 673886)
+ (-1587 . 673745) (-8 . 673717) (-1589 . 673544) (-1590 . 673387)
+ (-1591 . 673299) (-1592 . 672784) (-1593 . 672626) (-1594 . 672538)
+ (-1595 . 672382) (-1596 . 672130) (-1597 . 671876) (-1598 . 671845)
+ (-7 . 671817) (-1600 . 671758) (-1601 . 671582) (-1602 . 671479)
+ (-1603 . 671374) (-1604 . 670980) (-1605 . 670903) (-1606 . 670872)
+ (-1607 . 670490) (-1608 . 670377) (-1609 . 670295) (-1610 . 669095)
+ (-1611 . 669040) (-1612 . 668908) (-1613 . 668880) (-1614 . 668716)
+ (-1615 . 668593) (-1616 . 668301) (-1617 . 668202) (-1618 . 668074)
+ (-1619 . 667981) (-1620 . 667925) (-1621 . 667797) (-1622 . 667409)
+ (-1623 . 667264) (-1624 . 667192) (-1625 . 667092) (-1626 . 666905)
+ (-1627 . 666590) (-1628 . 666334) (-1629 . 666279) (-1630 . 666195)
+ (-1631 . 665599) (-1632 . 665546) (-1633 . 665424) (-1634 . 665256)
+ (-1635 . 665124) (-1636 . 665050) (-1637 . 664624) (-1638 . 664571)
+ (-1639 . 664448) (-1640 . 664375) (-1641 . 664347) (-1642 . 664295)
+ (-1643 . 663901) (-1644 . 663608) (-1645 . 663529) (-1646 . 663463)
+ (-1647 . 663215) (-1648 . 663084) (-1649 . 662996) (-1650 . 661419)
+ (-1651 . 661264) (-1652 . 659478) (-1653 . 659213) (-1654 . 658824)
+ (-1655 . 658008) (-1656 . 657922) (-1657 . 657844) (-1658 . 657585)
+ (-1659 . 657508) (-1660 . 657406) (-1661 . 657318) (-1662 . 657202)
+ (-1663 . 656907) (-1664 . 656744) (-1665 . 656687) (-1666 . 656356)
+ (-1667 . 656232) (-1668 . 656117) (-1669 . 656060) (-1670 . 655992)
+ (-1671 . 655856) (-1672 . 655804) (-1673 . 655711) (-1674 . 655613)
+ (-1675 . 655474) (-1676 . 655300) (-1677 . 655247) (-1678 . 655113)
+ (-1679 . 655002) (-1680 . 654520) (-1681 . 654314) (-1682 . 654092)
+ (-1683 . 654037) (-1684 . 653894) (-1685 . 653715) (-1686 . 653608)
+ (-1687 . 653542) (-1688 . 653286) (-1689 . 653108) (-1690 . 653042)
+ (-1691 . 652975) (-1692 . 652879) (-1693 . 652780) (-1694 . 652685)
+ (-1695 . 652630) (-1696 . 652579) (-1697 . 648036) (-1698 . 646971)
+ (-1699 . 646685) (-1700 . 646452) (-1701 . 646337) (-1702 . 646285)
+ (-1703 . 646233) (-1704 . 646073) (-1705 . 645905) (-1706 . 645834)
+ (-1707 . 645417) (-1708 . 645228) (-1709 . 642813) (-1710 . 642694)
+ (-1711 . 642555) (-1712 . 642325) (-1713 . 642296) (-1714 . 642113)
+ (-1715 . 642005) (-1716 . 641946) (-1717 . 641873) (-1718 . 641773)
+ (-1719 . 641663) (-1720 . 641533) (-1721 . 641429) (-1722 . 638648)
+ (-1723 . 629198) (-1724 . 629027) (-1725 . 628924) (-1726 . 628826)
+ (-1727 . 628731) (-1728 . 628679) (-1729 . 628602) (-1730 . 628476)
+ (-1731 . 627516) (-1732 . 627382) (-1733 . 627185) (-1734 . 626990)
+ (-1735 . 626817) (-1736 . 626724) (-1737 . 626365) (-1738 . 626286)
+ (-1739 . 626235) (-1740 . 626131) (-1741 . 625997) (-1742 . 625887)
+ (-1743 . 625665) (-1744 . 625394) (-1745 . 625293) (-1746 . 625186)
+ (-1747 . 625103) (-1748 . 625025) (-1749 . 624951) (-1750 . 624291)
+ (-1751 . 623973) (-1752 . 623727) (-1753 . 623641) (-1754 . 623288)
+ (-1755 . 623066) (-1756 . 622750) (-1757 . 622570) (-1758 . 622368)
+ (-1759 . 622116) (-1760 . 621925) (-1761 . 621795) (-1762 . 621522)
+ (-1763 . 621207) (-1764 . 620904) (-1765 . 620309) (-1766 . 620087)
+ (-1767 . 619908) (-1768 . 619859) (-1769 . 619733) (-1770 . 619631)
+ (-1771 . 619486) (-1772 . 619420) (-1773 . 619296) (-1774 . 619228)
+ (-1775 . 618919) (-1776 . 618848) (-1777 . 618720) (-1778 . 604489)
+ (-1779 . 604136) (-1780 . 604058) (-1781 . 603854) (-1782 . 603370)
+ (-1783 . 603144) (-1784 . 601030) (-1785 . 600906) (-1786 . 600760)
+ (-1787 . 600647) (-1788 . 600532) (-1789 . 600277) (-1790 . 600182)
+ (-1791 . 599904) (-1792 . 599783) (-1793 . 599711) (-1794 . 599592)
+ (-1795 . 599541) (-1796 . 598982) (-1797 . 598924) (-1798 . 598786)
+ (-1799 . 598643) (-1800 . 598485) (-1801 . 598401) (-1802 . 594338)
+ (-1803 . 594223) (-1804 . 593871) (-1805 . 593775) (-1806 . 593617)
+ (-1807 . 593435) (-1808 . 593361) (-1809 . 592802) (-1810 . 592749)
+ (-1811 . 592098) (-1812 . 591234) (-1813 . 591153) (-1814 . 591101)
+ (-1815 . 590789) (-1816 . 590397) (-1817 . 590360) (-1818 . 590197)
+ (-1819 . 590113) (-1820 . 589764) (-1821 . 589500) (-1822 . 589417)
+ (-1823 . 589364) (-1824 . 589290) (-1825 . 589159) (-1826 . 589034)
+ (-1827 . 588605) (-1828 . 588577) (-1829 . 588370) (-1830 . 588268)
+ (-1831 . 588125) (-1832 . 587853) (-1833 . 587678) (-1834 . 587604)
+ (-1835 . 587317) (-1836 . 587217) (-1837 . 583550) (-1838 . 583383)
+ (-1839 . 583074) (-1840 . 582646) (-1841 . 582547) (-1842 . 582456)
+ (-1843 . 582290) (-1844 . 582125) (-1845 . 582046) (-1846 . 581945)
+ (-1847 . 581734) (-1848 . 579389) (-1849 . 579294) (-1850 . 579124)
+ (-1851 . 579096) (-1852 . 578905) (-1853 . 578852) (-1854 . 578751)
+ (-1855 . 578655) (-1856 . 578581) (-1857 . 578362) (-1858 . 578260)
+ (-1859 . 577902) (-1860 . 577778) (-1861 . 577582) (-1862 . 577478)
+ (-1863 . 577323) (-1864 . 577047) (-1865 . 576951) (-1866 . 576901)
+ (-1867 . 576813) (-1868 . 576761) (-1869 . 576661) (-1870 . 576609)
+ (-1871 . 576511) (-1872 . 576363) (-1873 . 576225) (-1874 . 576043)
+ (-1875 . 575857) (-1876 . 575762) (-1877 . 575562) (-1878 . 575145)
+ (-1879 . 575086) (-1880 . 574830) (-1881 . 574641) (-1882 . 574372)
+ (-1883 . 574248) (-1884 . 573905) (-1885 . 573744) (-1886 . 571776)
+ (-1887 . 571602) (-1888 . 571457) (-1889 . 571242) (-1890 . 571174)
+ (-1891 . 571121) (-1892 . 571067) (-1893 . 570888) (-1894 . 570730)
+ (-1895 . 570388) (-1896 . 570142) (-1897 . 570020) (-1898 . 569855)
+ (-1899 . 569821) (-1900 . 569723) (-1901 . 569544) (-1902 . 569492)
+ (-1903 . 569432) (-1904 . 569259) (-1905 . 568997) (-1906 . 568895)
+ (-1907 . 568823) (-1908 . 568749) (-1909 . 567547) (-1910 . 567488)
+ (-1911 . 567323) (-1912 . 567234) (-1913 . 566955) (-1914 . 566902)
+ (-1915 . 566761) (-1916 . 566733) (-1917 . 566704) (-1918 . 566648)
+ (-1919 . 566398) (-1920 . 566246) (-1921 . 566109) (-1922 . 566030)
+ (-1923 . 565801) (-1924 . 565688) (-1925 . 565619) (-1926 . 565568)
+ (-1927 . 565403) (-1928 . 565297) (-1929 . 565231) (-1930 . 565114)
+ (-1931 . 564711) (-1932 . 563869) (-1933 . 563651) (-1934 . 563548)
+ (-1935 . 563326) (-1936 . 563230) (-1937 . 563017) (-1938 . 562894)
+ (-1939 . 562809) (-1940 . 562649) (-1941 . 562538) (-1942 . 562465)
+ (-1943 . 561882) (-1944 . 561760) (-1945 . 561665) (-1946 . 561577)
+ (-1947 . 560826) (-1948 . 560707) (-1949 . 560621) (-1950 . 559404)
+ (-1951 . 559275) (-1952 . 559187) (-1953 . 559135) (-1954 . 558941)
+ (-1955 . 558869) (-1956 . 558563) (-1957 . 558396) (-1958 . 558292)
+ (-1959 . 558111) (-1960 . 557922) (-1961 . 557806) (-1962 . 557579)
+ (-1963 . 557525) (-1964 . 557221) (-1965 . 557066) (-1966 . 557038)
+ (-1967 . 556981) (-1968 . 556899) (-1969 . 556756) (-1970 . 556704)
+ (-1971 . 556497) (-1972 . 556419) (-1973 . 556234) (-1974 . 556161)
+ (-1975 . 556005) (-1976 . 555920) (-1977 . 555838) (-1978 . 555772)
+ (-1979 . 555636) (-1980 . 555583) (-1981 . 555360) (-1982 . 555277)
+ (-1983 . 555222) (-1984 . 555194) (-1985 . 555128) (-1986 . 555075)
+ (-1987 . 554922) (-1988 . 554670) (-1989 . 554525) (-1990 . 554391)
+ (-1991 . 554299) (-1992 . 554040) (-1993 . 553592) (-1994 . 553465)
+ (-1995 . 553299) (-1996 . 553169) (-1997 . 552966) (-1998 . 552582)
+ (-1999 . 552487) (-2000 . 552346) (-2001 . 552273) (-2002 . 552210)
+ (-2003 . 552153) (-2004 . 552068) (-2005 . 551966) (-2006 . 551892)
+ (-2007 . 551590) (-2008 . 550294) (-2009 . 549950) (-2010 . 549849)
+ (-2011 . 549661) (-2012 . 549563) (-2013 . 549381) (-2014 . 549328)
+ (-2015 . 549234) (-2016 . 549128) (-2017 . 549045) (-2018 . 548831)
+ (-2019 . 548455) (-2020 . 548323) (-2021 . 548180) (-2022 . 548123)
+ (-2023 . 548050) (-2024 . 547946) (-2025 . 547727) (-2026 . 547662)
+ (-2027 . 547607) (-2028 . 547474) (-2029 . 547390) (-2030 . 547307)
+ (-2031 . 547195) (-2032 . 546549) (-2033 . 546456) (-2034 . 546428)
+ (-2035 . 546344) (-2036 . 546316) (-2037 . 546200) (-2038 . 546141)
+ (-2039 . 546025) (-2040 . 545904) (-2041 . 545793) (-2042 . 545720)
+ (-2043 . 545592) (-2044 . 545349) (-2045 . 544757) (-2046 . 544678)
+ (-2047 . 544572) (-2048 . 544507) (-2049 . 544397) (-2050 . 544326)
+ (-2051 . 543145) (-2052 . 543044) (-2053 . 542943) (-2054 . 542890)
+ (-2055 . 542007) (-2056 . 541954) (-2057 . 541136) (-2058 . 540945)
+ (-2059 . 540889) (-2060 . 540773) (-2061 . 540678) (-2062 . 540599)
+ (-2063 . 540547) (-2064 . 540114) (-2065 . 539961) (-2066 . 539890)
+ (-2067 . 539774) (-2068 . 539691) (-2069 . 539411) (-2070 . 539234)
+ (-2071 . 539147) (-2072 . 538968) (-2073 . 538676) (-2074 . 538576)
+ (-2075 . 538432) (-2076 . 538323) (-2077 . 538264) (-2078 . 538092)
+ (-2079 . 537821) (-2080 . 537719) (-2081 . 537555) (-2082 . 537316)
+ (-2083 . 537263) (-2084 . 537120) (-2085 . 536900) (-2086 . 536790)
+ (-2087 . 536512) (-2088 . 536447) (-2089 . 536054) (-2090 . 536001)
+ (-2091 . 535906) (-2092 . 535792) (-2093 . 535706) (-2094 . 535653)
+ (-2095 . 535338) (-2096 . 535209) (-2097 . 535139) (-2098 . 535065)
+ (-2099 . 535000) (-2100 . 534748) (-2101 . 534695) (-2102 . 534542)
+ (-2103 . 534456) (-2104 . 534385) (-2105 . 534317) (-2106 . 534039)
+ (-2107 . 533586) (-2108 . 533368) (-2109 . 533259) (-2110 . 533161)
+ (-2111 . 533035) (-2112 . 532982) (-2113 . 532733) (-2114 . 532618)
+ (-2115 . 532324) (-2116 . 532213) (-2117 . 532125) (-2118 . 531995)
+ (-2119 . 531942) (-2120 . 531834) (-2121 . 530292) (-2122 . 530117)
+ (-2123 . 526454) (-2124 . 526402) (-2125 . 526201) (-2126 . 526149)
+ (-2127 . 526097) (-2128 . 525931) (-2129 . 524964) (-2130 . 524426)
+ (-2131 . 524319) (-2132 . 524248) (-2133 . 524067) (-2134 . 523793)
+ (-2135 . 523252) (-2136 . 523171) (-2137 . 523041) (-2138 . 522889)
+ (-2139 . 522806) (-2140 . 522724) (-2141 . 522557) (-2142 . 522412)
+ (-2143 . 522262) (-2144 . 522189) (-2145 . 522109) (-2146 . 521862)
+ (-2147 . 521774) (-2148 . 521395) (-2149 . 521237) (-2150 . 520952)
+ (-2151 . 520899) (-2152 . 520800) (-2153 . 520633) (-2154 . 520475)
+ (-2155 . 520329) (-2156 . 520259) (-2157 . 520196) (-2158 . 520097)
+ (-2159 . 520017) (-2160 . 519869) (-2161 . 519732) (-2162 . 519666)
+ (-2163 . 519576) (-2164 . 518994) (-2165 . 518942) (-2166 . 518455)
+ (-2167 . 518186) (-2168 . 518078) (-2169 . 517828) (-2170 . 517775)
+ (-2171 . 517463) (-2172 . 517380) (-2173 . 517214) (-2174 . 517021)
+ (-2175 . 516893) (-2176 . 516733) (-2177 . 516630) (-2178 . 516571)
+ (-2179 . 516498) (-2180 . 516145) (-2181 . 516075) (-2182 . 515938)
+ (-2183 . 515839) (-2184 . 515789) (-2185 . 515737) (-2186 . 515705)
+ (-2187 . 515418) (-2188 . 515208) (-2189 . 515135) (-2190 . 514889)
+ (-2191 . 514811) (-2192 . 514734) (-2193 . 514515) (-2194 . 514429)
+ (-2195 . 514377) (-2196 . 514097) (-2197 . 513562) (-2198 . 513510)
+ (-2199 . 513264) (-2200 . 509264) (-2201 . 509178) (-2202 . 509069)
+ (-2203 . 508931) (-2204 . 508868) (-2205 . 508682) (-2206 . 508483)
+ (-2207 . 508424) (-2208 . 508332) (-2209 . 502993) (-2210 . 502835)
+ (-2211 . 502756) (-2212 . 502664) (-2213 . 502560) (-2214 . 502507)
+ (-2215 . 502212) (-2216 . 502080) (-2217 . 501873) (-2218 . 501698)
+ (-2219 . 501626) (-2220 . 500738) (-2221 . 500656) (-2222 . 500601)
+ (-2223 . 500410) (-2224 . 500185) (-2225 . 500068) (-2226 . 499931)
+ (-2227 . 499202) (-2228 . 499072) (-2229 . 498942) (-2230 . 494782)
+ (-2231 . 494584) (-2232 . 494297) (-2233 . 494117) (-2234 . 494061)
+ (-2235 . 494002) (-2236 . 493910) (-2237 . 493181) (-2238 . 492651)
+ (-2239 . 492557) (-2240 . 492261) (-2241 . 492187) (-2242 . 491741)
+ (-2243 . 491283) (-2244 . 491056) (-2245 . 490964) (-2246 . 490288)
+ (-2247 . 490173) (-2248 . 490145) (-2249 . 490044) (-2250 . 489912)
+ (-2251 . 489884) (-2252 . 489747) (-2253 . 489608) (-2254 . 489534)
+ (-2255 . 489448) (-2256 . 488225) (-2257 . 487661) (-2258 . 487601)
+ (-2259 . 486299) (-2260 . 485820) (-2261 . 485725) (-2262 . 485389)
+ (-2263 . 485218) (-2264 . 485132) (-2265 . 484924) (-2266 . 484846)
+ (-2267 . 484282) (-2268 . 484196) (-2269 . 484082) (-2270 . 484054)
+ (-2271 . 483962) (-2272 . 483859) (-2273 . 483483) (-2274 . 483449)
+ (-2275 . 482885) (-2276 . 482434) (-2277 . 482385) (-2278 . 482258)
+ (-2279 . 482025) (-2280 . 481930) (-2281 . 481747) (-2282 . 481611)
+ (-2283 . 481504) (-2284 . 481384) (-2285 . 481243) (-2286 . 481124)
+ (-2287 . 480450) (-2288 . 480359) (-2289 . 480203) (-2290 . 478941)
+ (-2291 . 478872) (-2292 . 478625) (-2293 . 478539) (-2294 . 478293)
+ (-2295 . 478262) (-2296 . 478106) (-2297 . 477432) (-2298 . 477214)
+ (-2299 . 476996) (-2300 . 476450) (-2301 . 476247) (-2302 . 476180)
+ (-2303 . 476039) (-2304 . 475714) (-2305 . 474977) (-2306 . 474870)
+ (-2307 . 474528) (-2308 . 474385) (-2309 . 474351) (-2310 . 474300)
+ (-2311 . 474212) (-2312 . 474129) (-2313 . 474055) (-2314 . 473878)
+ (-2315 . 473316) (-2316 . 473176) (-2317 . 473069) (-2318 . 472885)
+ (-2319 . 472782) (-2320 . 472622) (-2321 . 471945) (-2322 . 471866)
+ (-2323 . 471736) (-2324 . 471488) (-2325 . 470926) (-2326 . 470831)
+ (-2327 . 470439) (-2328 . 470109) (-2329 . 469679) (-2330 . 469464)
+ (-2331 . 469083) (-2332 . 468960) (-2333 . 468802) (-2334 . 468240)
+ (-2335 . 467981) (-2336 . 467913) (-2337 . 467025) (-2338 . 466928)
+ (-2339 . 466657) (-2340 . 466554) (-2341 . 466449) (-2342 . 466290)
+ (-2343 . 465615) (-2344 . 465560) (-2345 . 465423) (-2346 . 465345)
+ (-2347 . 465311) (-2348 . 465021) (-2349 . 464902) (-2350 . 464789)
+ (-2351 . 464686) (-2352 . 464288) (-2353 . 463613) (-2354 . 463386)
+ (-2355 . 463175) (-2356 . 463123) (-2357 . 462513) (-2358 . 462446)
+ (-2359 . 462387) (-2360 . 462216) (-2361 . 461630) (-2362 . 461345)
+ (-2363 . 461261) (-2364 . 460586) (-2365 . 460530) (-2366 . 460477)
+ (-2367 . 460322) (-2368 . 460256) (-2369 . 460182) (-2370 . 460091)
+ (-2371 . 459948) (-2372 . 459810) (-2373 . 459444) (-2374 . 459239)
+ (-2375 . 458676) (-2376 . 458471) (-2377 . 458332) (-2378 . 458244)
+ (-2379 . 458178) (-2380 . 458104) (-2381 . 457897) (-2382 . 457434)
+ (-2383 . 457322) (-2384 . 457060) (-2385 . 456628) (-2386 . 456410)
+ (-2387 . 456261) (-2388 . 455698) (-2389 . 455555) (-2390 . 455452)
+ (-2391 . 455372) (-2392 . 455320) (-2393 . 455188) (-2394 . 455087)
+ (-2395 . 454932) (-2396 . 454819) (-2397 . 454605) (-2398 . 454481)
+ (-2399 . 454401) (-2400 . 454306) (-2401 . 454177) (-2402 . 453614)
+ (-2403 . 453561) (-2404 . 453140) (-2405 . 452907) (-2406 . 452850)
+ (-2407 . 452784) (-2408 . 452687) (-2409 . 452655) (-2410 . 452422)
+ (-2411 . 452304) (-2412 . 452233) (-2413 . 451812) (-2414 . 451250)
+ (-2415 . 451176) (-2416 . 451055) (-2417 . 450872) (-2418 . 450677)
+ (-2419 . 450559) (-2420 . 450479) (-2421 . 450393) (-2422 . 449426)
+ (-2423 . 449343) (-2424 . 449225) (-2425 . 449173) (-2426 . 449144)
+ (-2427 . 449016) (-2428 . 448454) (-2429 . 448399) (-2430 . 447756)
+ (-2431 . 447463) (-2432 . 447411) (-2433 . 447233) (-2434 . 447091)
+ (-2435 . 446995) (-2436 . 446635) (-2437 . 446575) (-2438 . 446459)
+ (-2439 . 446377) (-2440 . 446290) (-2441 . 445728) (-2442 . 445438)
+ (-2443 . 445289) (-2444 . 445208) (-2445 . 445100) (-2446 . 444873)
+ (-2447 . 444694) (-2448 . 444433) (-2449 . 444382) (-2450 . 444075)
+ (-2451 . 443711) (-2452 . 443613) (-2453 . 443051) (-2454 . 442921)
+ (-2455 . 442823) (-2456 . 442719) (-2457 . 442601) (-2458 . 442546)
+ (-2459 . 442448) (-2460 . 442360) (-2461 . 441787) (-2462 . 441555)
+ (-2463 . 441481) (-2464 . 441093) (-2465 . 440531) (-2466 . 440333)
+ (-2467 . 439580) (-2468 . 439339) (-2469 . 439243) (-2470 . 438996)
+ (-2471 . 438841) (-2472 . 438725) (-2473 . 438506) (-2474 . 437979)
+ (-2475 . 437926) (-2476 . 437852) (-2477 . 437746) (-2478 . 437601)
+ (-2479 . 437489) (-2480 . 437291) (-2481 . 437224) (-2482 . 437120)
+ (-2483 . 437020) (-2484 . 436848) (-2485 . 436552) (-2486 . 436473)
+ (-2487 . 436319) (-2488 . 436266) (-2489 . 436167) (-2490 . 436112)
+ (-2491 . 435988) (-2492 . 435816) (-2493 . 435597) (-2494 . 435533)
+ (-2495 . 435437) (-2496 . 435353) (-2497 . 435252) (-2498 . 434836)
+ (-2499 . 434610) (-2500 . 434582) (-2501 . 434433) (-2502 . 434317)
+ (-2503 . 434121) (-2504 . 434026) (-2505 . 433932) (-2506 . 433764)
+ (-2507 . 433705) (-2508 . 433533) (-2509 . 433481) (-2510 . 433349)
+ (-2511 . 433275) (-2512 . 433210) (-2513 . 432978) (-2514 . 432847)
+ (-2515 . 432674) (-2516 . 432591) (-2517 . 432497) (-2518 . 432325)
+ (-2519 . 432264) (-2520 . 432165) (-2521 . 431603) (-2522 . 431554)
+ (-2523 . 431336) (-2524 . 430868) (-2525 . 430785) (-2526 . 430512)
+ (-2527 . 430222) (-2528 . 429554) (-2529 . 429471) (-2530 . 429437)
+ (-2531 . 429268) (-2532 . 429172) (-2533 . 429113) (-2534 . 429025)
+ (-2535 . 428819) (-2536 . 428762) (-2537 . 428672) (-2538 . 428574)
+ (-2539 . 427864) (-2540 . 427797) (-2541 . 427699) (-2542 . 427573)
+ (-2543 . 427370) (-2544 . 427261) (-2545 . 426982) (-2546 . 426887)
+ (-2547 . 426748) (-2548 . 426582) (-2549 . 426500) (-2550 . 426355)
+ (-2551 . 426281) (-2552 . 426211) (-2553 . 426183) (-2554 . 426076)
+ (-2555 . 425913) (-2556 . 425768) (-2557 . 425713) (-2558 . 425470)
+ (-2559 . 425258) (-2560 . 425186) (-2561 . 424983) (-2562 . 424886)
+ (-2563 . 424798) (-2564 . 424764) (-2565 . 424620) (-2566 . 424546)
+ (-2567 . 424493) (-2568 . 424439) (-2569 . 424344) (-2570 . 424201)
+ (-2571 . 423049) (-2572 . 422994) (-2573 . 422957) (-2574 . 422891)
+ (-2575 . 422673) (-2576 . 422346) (-2577 . 422264) (-2578 . 422179)
+ (-2579 . 422027) (-2580 . 421898) (-2581 . 421840) (-2582 . 421773)
+ (-2583 . 421696) (-2584 . 421624) (-2585 . 421596) (-2586 . 421530)
+ (-2587 . 421271) (-2588 . 421163) (-2589 . 420940) (-2590 . 420816)
+ (-2591 . 420698) (-2592 . 420530) (-2593 . 420372) (-2594 . 419861)
+ (-2595 . 419510) (-2596 . 419430) (-2597 . 419344) (-2598 . 419164)
+ (-2599 . 419071) (-2600 . 418567) (-2601 . 418240) (-2602 . 418073)
+ (-2603 . 418045) (-2604 . 417909) (-2605 . 417828) (-2606 . 417732)
+ (-2607 . 417634) (-2608 . 417580) (-2609 . 417500) (-2610 . 417354)
+ (-2611 . 417189) (-2612 . 416979) (-2613 . 416759) (-2614 . 416707)
+ (-2615 . 416532) (-2616 . 416483) (-2617 . 416373) (-2618 . 416231)
+ (-2619 . 416045) (-2620 . 415903) (-2621 . 414833) (-2622 . 414760)
+ (-2623 . 414683) (-2624 . 414568) (-2625 . 414372) (-2626 . 414340)
+ (-2627 . 414166) (-2628 . 413972) (-2629 . 413726) (-2630 . 413629)
+ (-2631 . 413519) (-2632 . 413391) (-2633 . 412924) (-2634 . 412433)
+ (-2635 . 412181) (-2636 . 411662) (-2637 . 411582) (-2638 . 411487)
+ (-2639 . 411340) (-2640 . 410969) (-2641 . 410809) (-2642 . 410699)
+ (-2643 . 410622) (-2644 . 410440) (-2645 . 409930) (-2646 . 405980)
+ (-2647 . 405843) (-2648 . 405766) (-2649 . 405686) (-2650 . 405559)
+ (-2651 . 405499) (-2652 . 405391) (-2653 . 405185) (-2654 . 405033)
+ (-2655 . 404896) (-2656 . 404350) (-2657 . 404228) (-2658 . 403749)
+ (-2659 . 403478) (-2660 . 403426) (-2661 . 403397) (-2662 . 403017)
+ (-2663 . 402772) (-2664 . 402701) (-2665 . 402533) (-2666 . 402420)
+ (-2667 . 401887) (-2668 . 401534) (-2669 . 401319) (-2670 . 401196)
+ (-2671 . 401067) (-2672 . 400842) (-2673 . 400773) (-2674 . 400534)
+ (-2675 . 400177) (-2676 . 400125) (-2677 . 399907) (-2678 . 399598)
+ (-2679 . 399548) (-2680 . 399182) (-2681 . 399039) (-2682 . 398977)
+ (-2683 . 398104) (-2684 . 398002) (-2685 . 397803) (-2686 . 397718)
+ (-2687 . 397466) (-2688 . 397380) (-2689 . 397093) (-2690 . 396832)
+ (-2691 . 396760) (-2692 . 396431) (-2693 . 396379) (-2694 . 396285)
+ (-2695 . 396185) (-2696 . 395883) (-2697 . 395773) (-2698 . 395555)
+ (-2699 . 395453) (-2700 . 394813) (-2701 . 394657) (-2702 . 394568)
+ (-2703 . 394391) (-2704 . 394285) (-2705 . 393858) (-2706 . 393740)
+ (-2707 . 393515) (-2708 . 393438) (-2709 . 392992) (-2710 . 392774)
+ (-2711 . 392549) (-2712 . 391870) (-2713 . 391767) (-2714 . 391475)
+ (-2715 . 390950) (-2716 . 390900) (-2717 . 390256) (-2718 . 389816)
+ (-2719 . 389672) (-2720 . 389620) (-2721 . 388440) (-2722 . 387572)
+ (-2723 . 387499) (-2724 . 387318) (-2725 . 387201) (-2726 . 387096)
+ (-2727 . 386858) (-2728 . 385560) (-2729 . 385483) (-2730 . 385431)
+ (-2731 . 385290) (-2732 . 385217) (-2733 . 385140) (-2734 . 384779)
+ (-2735 . 384717) (-2736 . 384661) (-2737 . 384506) (-2738 . 384428)
+ (-2739 . 384357) (-2740 . 384181) (-2741 . 384129) (-2742 . 384002)
+ (-2743 . 383598) (-2744 . 383479) (-2745 . 383375) (-2746 . 383075)
+ (-2747 . 382965) (-2748 . 382899) (-2749 . 382592) (-2750 . 381891)
+ (-2751 . 381786) (-2752 . 381725) (-2753 . 381600) (-2754 . 380721)
+ (-2755 . 380538) (-2756 . 380479) (-2757 . 380343) (-2758 . 380063)
+ (-2759 . 379964) (-2760 . 379858) (-2761 . 379806) (-2762 . 379473)
+ (-2763 . 379201) (-2764 . 379101) (-2765 . 378986) (-2766 . 378801)
+ (-2767 . 378735) (-2768 . 378208) (-2769 . 377836) (-2770 . 377733)
+ (-2771 . 377302) (-2772 . 377040) (-2773 . 376988) (-2774 . 376931)
+ (-2775 . 376829) (-2776 . 376777) (-2777 . 375437) (-2778 . 375338)
+ (-2779 . 375275) (-2780 . 375223) (-2781 . 374976) (-2782 . 374879)
+ (-2783 . 374787) (-2784 . 374508) (-2785 . 374411) (-2786 . 374265)
+ (-2787 . 374149) (-2788 . 374096) (-2789 . 374006) (-2790 . 373383)
+ (-2791 . 373260) (-2792 . 373186) (-2793 . 373058) (-2794 . 372999)
+ (-2795 . 372946) (-2796 . 372875) (-2797 . 372781) (-2798 . 372684)
+ (-2799 . 372629) (-2800 . 372242) (-2801 . 372147) (-2802 . 372017)
+ (-2803 . 371961) (-2804 . 371510) (-2805 . 371311) (-2806 . 371151)
+ (-2807 . 370642) (-2808 . 370397) (-2809 . 370169) (-2810 . 370075)
+ (-2811 . 369989) (-2812 . 369930) (-2813 . 369676) (-2814 . 369645)
+ (-2815 . 369335) (-2816 . 369278) (-2817 . 369204) (-2818 . 369032)
+ (-2819 . 368727) (-2820 . 368104) (-2821 . 367851) (-2822 . 367659)
+ (-2823 . 367562) (-2824 . 367251) (-2825 . 367088) (-2826 . 366963)
+ (-2827 . 366811) (-2828 . 366658) (-2829 . 366586) (-2830 . 366492)
+ (-12 . 366320) (-2832 . 366213) (-2833 . 365986) (-2834 . 365899)
+ (-2835 . 365739) (-2836 . 365605) (-2837 . 365449) (-2838 . 364588)
+ (-2839 . 364517) (-2840 . 364389) (-2841 . 364319) (-2842 . 364269)
+ (-2843 . 364082) (-2844 . 363978) (-2845 . 363919) (-2846 . 363848)
+ (-2847 . 363660) (-2848 . 363058) (-2849 . 362971) (-2850 . 362154)
+ (-2851 . 361933) (-2852 . 361865) (-2853 . 361799) (-2854 . 360957)
+ (-2855 . 360862) (-2856 . 360807) (-2857 . 360703) (-2858 . 360598)
+ (-2859 . 360539) (-2860 . 360366) (-2861 . 360203) (-2862 . 360137)
+ (-2863 . 359720) (-2864 . 359632) (-2865 . 359494) (-2866 . 359460)
+ (-2867 . 359317) (-2868 . 355708) (-2869 . 355529) (-2870 . 355476)
+ (-2871 . 355380) (-2872 . 355218) (-2873 . 355137) (-2874 . 354035)
+ (-2875 . 353868) (-2876 . 353726) (-2877 . 353695) (-2878 . 353551)
+ (-2879 . 353479) (-2880 . 353262) (-2881 . 353088) (-2882 . 353007)
+ (-2883 . 352665) (-2884 . 352002) (-2885 . 351974) (-2886 . 351921)
+ (-2887 . 351869) (-2888 . 351792) (-2889 . 351737) (-2890 . 351663)
+ (-2891 . 351217) (-2892 . 351068) (-2893 . 350995) (-2894 . 350829)
+ (-2895 . 350545) (-2896 . 350389) (-2897 . 350246) (-2898 . 350162)
+ (-2899 . 350046) (-2900 . 349963) (-2901 . 349572) (-2902 . 349367)
+ (-2903 . 349314) (-2904 . 349262) (-2905 . 349163) (-2906 . 349059)
+ (-2907 . 348960) (-2908 . 348473) (-2909 . 348330) (-2910 . 348172)
+ (-2911 . 348138) (-2912 . 348014) (-2913 . 347874) (-2914 . 347440)
+ (-2915 . 346827) (-2916 . 346768) (-2917 . 346649) (-2918 . 346555)
+ (-2919 . 346471) (-2920 . 346347) (-2921 . 346153) (-2922 . 346017)
+ (-2923 . 345961) (-2924 . 345875) (-2925 . 345841) (-2926 . 345414)
+ (-2927 . 345324) (-2928 . 345228) (-2929 . 345049) (-2930 . 344997)
+ (-2931 . 344913) (-2932 . 344621) (-2933 . 344482) (-2934 . 344364)
+ (-2935 . 344240) (-2936 . 344184) (-2937 . 344133) (-2938 . 344033)
+ (-2939 . 343963) (-2940 . 343841) (-2941 . 343542) (-2942 . 343462)
+ (-2943 . 324887) (* . 320620) (-2945 . 320552) (-2946 . 320066)
+ (-2947 . 319756) (-2948 . 319672) (-2949 . 317942) (-2950 . 317898)
+ (-2951 . 317870) (-2952 . 317842) (-2953 . 317749) (-2954 . 317627)
+ (-2955 . 317457) (-2956 . 314636) (-2957 . 314495) (-2958 . 314407)
+ (-2959 . 314248) (-2960 . 314146) (-2961 . 311918) (-2962 . 311774)
+ (-2963 . 311715) (-2964 . 311584) (-2965 . 310880) (-2966 . 310528)
+ (-2967 . 310389) (-2968 . 303446) (-2969 . 303323) (-2970 . 302712)
+ (-2971 . 302605) (-2972 . 302478) (-2973 . 302320) (-2974 . 302138)
+ (-2975 . 302086) (-2976 . 301792) (-2977 . 301111) (-2978 . 301056)
+ (-2979 . 300954) (-2980 . 300901) (-2981 . 300816) (-2982 . 300544)
+ (-2983 . 300457) (-2984 . 300210) (-2985 . 300136) (-2986 . 300053)
+ (-2987 . 299969) (-2988 . 299886) (-2989 . 299440) (-2990 . 299366)
+ (-2991 . 299313) (-2992 . 299179) (-2993 . 299055) (-2994 . 298265)
+ (-2995 . 298169) (-2996 . 297708) (-2997 . 297501) (-2998 . 297398)
+ (-2999 . 297113) (-3000 . 296929) (-3001 . 296676) (-3002 . 296624)
+ (-3003 . 296027) (-3004 . 295187) (-3005 . 294956) (-3006 . 294729)
+ (-3007 . 294605) (-3008 . 294019) (-3009 . 293575) (-3010 . 293429)
+ (-3011 . 293373) (-3012 . 293248) (-3013 . 292870) (-3014 . 292704)
+ (-3015 . 292277) (-3016 . 292190) (-3017 . 292137) (-3018 . 292085)
+ (-3019 . 291904) (-3020 . 291803) (-3021 . 291725) (-3022 . 291518)
+ (-3023 . 291322) (-3024 . 291263) (-3025 . 291121) (-3026 . 291069)
+ (-3027 . 290738) (-3028 . 290579) (-3029 . 290370) (-3030 . 290189)
+ (-3031 . 290037) (-3032 . 289941) (-3033 . 289307) (-3034 . 289210)
+ (-3035 . 288888) (-3036 . 288795) (-3037 . 288694) (-3038 . 288588)
+ (-3039 . 288426) (-3040 . 288292) (-3041 . 288205) (-3042 . 288156)
+ (-3043 . 288015) (-3044 . 287891) (-3045 . 287770) (-3046 . 287516)
+ (-3047 . 287317) (-3048 . 287251) (-3049 . 287174) (-3050 . 287119)
+ (-3051 . 286647) (-3052 . 286594) (-3053 . 286506) (-3054 . 286175)
+ (-3055 . 286067) (-3056 . 286001) (-3057 . 285771) (-3058 . 285653)
+ (-3059 . 285069) (-3060 . 285037) (-3061 . 284902) (-3062 . 284787)
+ (-3063 . 284629) (-3064 . 284577) (-3065 . 284233) (-3066 . 284161)
+ (-3067 . 284075) (-3068 . 284003) (-3069 . 283429) (-3070 . 283373)
+ (-3071 . 283222) (-3072 . 282820) (-3073 . 282232) (-3074 . 281873)
+ (-3075 . 281728) (-3076 . 281409) (-3077 . 281319) (-3078 . 280133)
+ (-3079 . 280078) (-3080 . 279983) (-3081 . 279718) (-3082 . 279640)
+ (-3083 . 279327) (-3084 . 278913) (-3085 . 278844) (-3086 . 278628)
+ (-3087 . 278535) (-3088 . 277614) (-3089 . 277487) (-3090 . 277416)
+ (-3091 . 277080) (-3092 . 276002) (-3093 . 275788) (-3094 . 274606)
+ (-3095 . 274526) (-3096 . 274498) (-3097 . 274424) (-3098 . 274372)
+ (-3099 . 274113) (-3100 . 273778) (-3101 . 273725) (-3102 . 273545)
+ (-3103 . 273444) (-3104 . 273375) (-3105 . 273221) (-3106 . 273158)
+ (-3107 . 270950) (-3108 . 270876) (-3109 . 270821) (-3110 . 270684)
+ (-3111 . 270495) (-3112 . 270412) (-3113 . 270333) (-3114 . 270208)
+ (-3115 . 270146) (-3116 . 270067) (-3117 . 269944) (-3118 . 269892)
+ (-3119 . 268666) (-3120 . 268567) (-3121 . 268470) (-3122 . 268410)
+ (-3123 . 267899) (-3124 . 267775) (-3125 . 267720) (-3126 . 267575)
+ (-3127 . 267377) (-3128 . 267273) (-3129 . 266988) (-3130 . 266720)
+ (-3131 . 266335) (-3132 . 266159) (-3133 . 266039) (-3134 . 265382)
+ (-3135 . 265005) (-3136 . 264687) (-3137 . 264593) (-3138 . 264383)
+ (-3139 . 264331) (-3140 . 264044) (-3141 . 263917) (-3142 . 263795)
+ (-3143 . 262491) (-3144 . 262438) (-3145 . 262288) (-3146 . 262220)
+ (-3147 . 262105) (-3148 . 262037) (-3149 . 261960) (-3150 . 261679)
+ (-3151 . 260763) (-3152 . 260735) (-3153 . 260588) (-3154 . 260476)
+ (-3155 . 260393) (-3156 . 260075) (-3157 . 259990) (-3158 . 259680)
+ (-3159 . 259194) (-3160 . 259106) (-3161 . 258905) (-3162 . 258808)
+ (-3163 . 258759) (-3164 . 258662) (-3165 . 258628) (-3166 . 258450)
+ (-3167 . 258123) (-3168 . 257959) (-3169 . 257863) (-3170 . 257349)
+ (-3171 . 257151) (-3172 . 256993) (-3173 . 256891) (-3174 . 256828)
+ (-3175 . 256728) (-3176 . 256671) (-3177 . 256621) (-3178 . 256589)
+ (-3179 . 256476) (-3180 . 255988) (-3181 . 255894) (-3182 . 255811)
+ (-3183 . 255714) (-3184 . 255630) (-3185 . 255563) (-3186 . 255480)
+ (-3187 . 255427) (-3188 . 255354) (-3189 . 255295) (-3190 . 254920)
+ (-3191 . 254849) (-3192 . 254772) (-3193 . 254690) (-3194 . 254638)
+ (-3195 . 254540) (-3196 . 254428) (-3197 . 254315) (-3198 . 254218)
+ (-3199 . 254165) (-3200 . 253746) (-3201 . 253033) (-3202 . 252544)
+ (-3203 . 252443) (-3204 . 252347) (-3205 . 251992) (-3206 . 251939)
+ (-3207 . 251845) (-3208 . 251775) (-3209 . 251668) (-3210 . 251531)
+ (-3211 . 251470) (-3212 . 251230) (-3213 . 251175) (-3214 . 250882)
+ (-3215 . 250783) (-3216 . 250573) (-3217 . 250463) (-3218 . 250344)
+ (-3219 . 250234) (-3220 . 250117) (-3221 . 250061) (-3222 . 249745)
+ (-3223 . 249592) (-3224 . 249467) (-3225 . 249079) (-3226 . 248959)
+ (-3227 . 248880) (-3228 . 248507) (-3229 . 248369) (-3230 . 248291)
+ (-3231 . 248203) (-3232 . 248088) (-3233 . 247957) (-3234 . 247880)
+ (-3235 . 247661) (-3236 . 247576) (-3237 . 247485) (-3238 . 247369)
+ (-3239 . 247173) (-3240 . 246942) (-3241 . 246780) (-3242 . 246510)
+ (-3243 . 246473) (-3244 . 246225) (-3245 . 245993) (-3246 . 245824)
+ (-3247 . 245771) (-3248 . 245413) (-3249 . 245143) (-3250 . 245036)
+ (-3251 . 244652) (-3252 . 244534) (-3253 . 244331) (-3254 . 244248)
+ (-3255 . 244147) (-3256 . 244094) (-3257 . 243979) (-3258 . 243885)
+ (-3259 . 243776) (-3260 . 243679) (-3261 . 243534) (-3262 . 243371)
+ (-3263 . 242925) (-3264 . 242782) (-3265 . 242688) (-3266 . 242635)
+ (-3267 . 242577) (-3268 . 242489) (-3269 . 242433) (-3270 . 242364)
+ (-3271 . 242297) (-3272 . 242204) (-3273 . 242125) (-3274 . 242009)
+ (-3275 . 241844) (-3276 . 241734) (-3277 . 241606) (-3278 . 241275)
+ (-3279 . 241055) (-3280 . 240884) (-3281 . 240771) (-3282 . 240615)
+ (-3283 . 240430) (-3284 . 237131) (-3285 . 236913) (-3286 . 236761)
+ (-3287 . 236673) (-3288 . 236376) (-3289 . 236323) (-3290 . 235885)
+ (-3291 . 235389) (-3292 . 235242) (-3293 . 235096) (-3294 . 234989)
+ (-3295 . 234756) (-3296 . 234596) (-3297 . 234269) (-3298 . 234183)
+ (-3299 . 234131) (-3300 . 233903) (-3301 . 233684) (-3302 . 233525)
+ (-3303 . 233370) (-3304 . 233336) (-3305 . 233284) (-3306 . 232948)
+ (-3307 . 232775) (-3308 . 232705) (-3309 . 232622) (-3310 . 232545)
+ (-3311 . 232427) (-3312 . 232209) (-3313 . 232061) (-3314 . 231919)
+ (-3315 . 231856) (-3316 . 231622) (-3317 . 231538) (-3318 . 230357)
+ (-3319 . 230323) (-3320 . 230271) (-3321 . 230128) (-3322 . 230056)
+ (-3323 . 229941) (-3324 . 229712) (-3325 . 229501) (-3326 . 229170)
+ (-3327 . 228952) (-3328 . 228882) (-3329 . 228339) (-3330 . 228193)
+ (-3331 . 228038) (-3332 . 227943) (-3333 . 227532) (-3334 . 227196)
+ (-3335 . 226597) (-3336 . 226500) (-3337 . 226308) (-3338 . 226130)
+ (-3339 . 225989) (-3340 . 225920) (-3341 . 225764) (-3342 . 225670)
+ (-3343 . 225618) (-3344 . 224029) (-3345 . 223918) (-3346 . 223866)
+ (-3347 . 223793) (-3348 . 223607) (-3349 . 223519) (-3350 . 223227)
+ (-3351 . 222991) (-3352 . 222825) (-3353 . 222657) (-3354 . 222551)
+ (-3355 . 222432) (-3356 . 222329) (-3357 . 222234) (-3358 . 222175)
+ (-3359 . 221844) (-3360 . 221470) (-3361 . 221401) (-3362 . 221194)
+ (-3363 . 220896) (-3364 . 220276) (-3365 . 219877) (-3366 . 219515)
+ (-3367 . 219221) (-3368 . 219142) (-3369 . 219004) (-3370 . 218909)
+ (-3371 . 218379) (-3372 . 218277) (-3373 . 218081) (-3374 . 218015)
+ (-3375 . 217796) (-3376 . 217731) (-3377 . 217634) (-3378 . 216974)
+ (-3379 . 216743) (-3380 . 216683) (-3381 . 216198) (-3382 . 216115)
+ (-3383 . 216020) (-3384 . 215842) (-3385 . 215701) (-3386 . 215618)
+ (-3387 . 215439) (-3388 . 215323) (-3389 . 215254) (-3390 . 215060)
+ (-3391 . 214869) (-3392 . 214812) (-3393 . 214315) (-3394 . 214214)
+ (-3395 . 213839) (-3396 . 213744) (-3397 . 213605) (-3398 . 213549)
+ (-3399 . 213390) (-3400 . 213020) (-3401 . 212874) (-3402 . 212686)
+ (-3403 . 212451) (-3404 . 212237) (-3405 . 211629) (-3406 . 211471)
+ (-3407 . 210814) (-3408 . 210514) (-3409 . 210461) (-3410 . 210273)
+ (-3411 . 210171) (-3412 . 210114) (-3413 . 210043) (-3414 . 209950)
+ (-3415 . 209837) (-3416 . 209678) (-3417 . 209594) (-3418 . 209387)
+ (-3419 . 209328) (-3420 . 209271) (-3421 . 209212) (-3422 . 209065)
+ (-3423 . 208912) (-3424 . 207794) (-3425 . 207657) (-3426 . 207417)
+ (-3427 . 207339) (-3428 . 206895) (-3429 . 206800) (-3430 . 206716)
+ (-3431 . 206633) (-3432 . 206433) (-3433 . 206273) (-3434 . 206025)
+ (-3435 . 205817) (-3436 . 205542) (-3437 . 205339) (-3438 . 205134)
+ (-3439 . 205011) (-3440 . 203738) (-3441 . 203573) (-3442 . 203503)
+ (-3443 . 203371) (-3444 . 202552) (-3445 . 202381) (-3446 . 202268)
+ (-3447 . 202145) (-3448 . 201959) (-3449 . 201600) (-3450 . 201489)
+ (-3451 . 201376) (-3452 . 201264) (-3453 . 201101) (-3454 . 201052)
+ (-3455 . 200962) (-3456 . 200681) (-3457 . 200199) (-3458 . 199984)
+ (-3459 . 199928) (-3460 . 199878) (-3461 . 199387) (-3462 . 199254)
+ (-3463 . 199157) (-3464 . 199041) (-3465 . 198789) (-3466 . 198616)
+ (-3467 . 198425) (-3468 . 198151) (-3469 . 198084) (-3470 . 198010)
+ (-3471 . 197922) (-3472 . 197767) (-3473 . 197669) (-3474 . 197583)
+ (-3475 . 197259) (-3476 . 197188) (-3477 . 196979) (-3478 . 196911)
+ (-3479 . 196846) (-3480 . 196745) (-3481 . 196111) (-3482 . 195703)
+ (-3483 . 195608) (-3484 . 195556) (-3485 . 195406) (-3486 . 194927)
+ (-3487 . 194867) (-3488 . 194797) (-3489 . 194723) (-3490 . 194178)
+ (-3491 . 193589) (-3492 . 193467) (-3493 . 193395) (-3494 . 193311)
+ (-3495 . 193251) (-3496 . 193171) (-3497 . 192956) (-3498 . 192816)
+ (-3499 . 192685) (-3500 . 192045) (-3501 . 191897) (-3502 . 191816)
+ (-3503 . 191739) (-3504 . 191668) (-3505 . 191594) (-3506 . 191538)
+ (-3507 . 191375) (-3508 . 190948) (-3509 . 190871) (-3510 . 190575)
+ (-3511 . 190249) (-3512 . 190065) (-3513 . 189811) (-3514 . 189740)
+ (-3515 . 189685) (-3516 . 189353) (-3517 . 189101) (-3518 . 189013)
+ (-3519 . 188853) (-3520 . 188728) (-3521 . 188675) (-3522 . 188597)
+ (-3523 . 188519) (-3524 . 188424) (-3525 . 188232) (-3526 . 188161)
+ (-3527 . 188093) (-3528 . 187607) (-3529 . 187413) (-3530 . 187255)
+ (-3531 . 186781) (-3532 . 186623) (-3533 . 186466) (-3534 . 186434)
+ (-3535 . 186273) (-3536 . 186174) (-3537 . 186041) (-3538 . 185940)
+ (-3539 . 185730) (-3540 . 185634) (-3541 . 185471) (-3542 . 185370)
+ (-3543 . 185318) (-3544 . 185259) (-3545 . 185046) (-3546 . 184967)
+ (-3547 . 184888) (-3548 . 184807) (-3549 . 184711) (-3550 . 184507)
+ (-3551 . 183831) (-3552 . 183782) (-3553 . 183713) (-3554 . 183555)
+ (-3555 . 183333) (-3556 . 183027) (-3557 . 182888) (-3558 . 182810)
+ (-3559 . 182637) (-3560 . 182505) (-3561 . 181077) (-3562 . 181019)
+ (-3563 . 180991) (-3564 . 180907) (-3565 . 180744) (-3566 . 180628)
+ (-3567 . 180557) (-3568 . 180451) (-3569 . 180397) (-3570 . 180159)
+ (-3571 . 180012) (-3572 . 179940) (-3573 . 179809) (-3574 . 179696)
+ (-3575 . 179613) (-3576 . 179297) (-3577 . 179189) (-3578 . 179071)
+ (-3579 . 178928) (-3580 . 178810) (-3581 . 178757) (-3582 . 178643)
+ (-3583 . 178547) (-3584 . 177297) (-3585 . 177096) (-3586 . 176995)
+ (-3587 . 176776) (-3588 . 176354) (-3589 . 176217) (-3590 . 176064)
+ (-3591 . 175426) (-3592 . 175366) (-3593 . 173110) (-3594 . 173028)
+ (-3595 . 172930) (-3596 . 172852) (-3597 . 172791) (-3598 . 172739)
+ (-3599 . 172643) (-3600 . 172548) (-3601 . 172380) (-3602 . 172315)
+ (-3603 . 172245) (-3604 . 172161) (-3605 . 172075) (-3606 . 171933)
+ (-3607 . 171863) (-3608 . 171731) (-3609 . 171573) (-3610 . 171517)
+ (-3611 . 170607) (-3612 . 170575) (-3613 . 170372) (-3614 . 169765)
+ (-3615 . 169694) (-3616 . 169575) (-3617 . 169445) (-3618 . 168571)
+ (-3619 . 168471) (-3620 . 168314) (-3621 . 167747) (-3622 . 167380)
+ (-3623 . 164539) (-3624 . 164424) (-3625 . 164358) (-3626 . 164072)
+ (-3627 . 163992) (-3628 . 163921) (-3629 . 163851) (-3630 . 163799)
+ (-3631 . 163699) (-3632 . 163499) (-3633 . 163425) (-3634 . 163291)
+ (-3635 . 163257) (-3636 . 163171) (-3637 . 163015) (-3638 . 162838)
+ (-3639 . 162738) (-3640 . 162653) (-3641 . 162403) (-3642 . 162226)
+ (-3643 . 162130) (-3644 . 161972) (-3645 . 161822) (-3646 . 161298)
+ (-3647 . 161233) (-3648 . 160887) (-3649 . 160729) (-3650 . 160459)
+ (-3651 . 160425) (-3652 . 160312) (-3653 . 160190) (-3654 . 160038)
+ (-3655 . 159960) (-3656 . 159789) (-3657 . 159682) (-3658 . 159404)
+ (-3659 . 159241) (-3660 . 159133) (-3661 . 159030) (-3662 . 158819)
+ (-3663 . 158766) (-3664 . 158680) (-3665 . 158609) (-3666 . 158528)
+ (-3667 . 158425) (-3668 . 157907) (-3669 . 157403) (-3670 . 156869)
+ (-3671 . 156689) (-3672 . 156337) (-3673 . 156218) (-3674 . 156000)
+ (-3675 . 155841) (-3676 . 154649) (-3677 . 154572) (-3678 . 154331)
+ (-3679 . 154230) (-3680 . 154135) (-3681 . 154014) (-3682 . 153785)
+ (-3683 . 153732) (-3684 . 153661) (-3685 . 153422) (-3686 . 153373)
+ (-3687 . 153146) (-3688 . 153005) (-3689 . 152608) (-3690 . 152487)
+ (-3691 . 152413) (-3692 . 152346) (-3693 . 152192) (-3694 . 151428)
+ (-3695 . 151369) (-3696 . 151291) (-3697 . 151176) (-3698 . 151018)
+ (-3699 . 150761) (-3700 . 150642) (-3701 . 150489) (-3702 . 150381)
+ (-3703 . 150349) (-3704 . 150216) (-3705 . 150120) (-3706 . 150002)
+ (-3707 . 149907) (-3708 . 149727) (-3709 . 149627) (-3710 . 149595)
+ (-3711 . 149545) (-3712 . 149489) (-3713 . 149430) (-3714 . 149252)
+ (-3715 . 149185) (-3716 . 149119) (-3717 . 149091) (-3718 . 149018)
+ (-3719 . 147572) (-3720 . 147435) (-3721 . 147382) (-3722 . 147164)
+ (-3723 . 147062) (-3724 . 146992) (-3725 . 146910) (-3726 . 146781)
+ (-3727 . 146627) (-3728 . 146571) (-3729 . 146418) (-3730 . 146330)
+ (-3731 . 146192) (-3732 . 146025) (-3733 . 145969) (-3734 . 145816)
+ (-3735 . 145654) (-3736 . 145575) (-3737 . 145254) (-3738 . 145203)
+ (-3739 . 144660) (-3740 . 144527) (-3741 . 144407) (-3742 . 144279)
+ (-3743 . 144105) (-3744 . 144039) (-3745 . 143941) (-3746 . 143673)
+ (-3747 . 142330) (-3748 . 142195) (-3749 . 141804) (-3750 . 141718)
+ (-3751 . 141596) (-3752 . 141348) (-3753 . 141208) (-3754 . 141106)
+ (-3755 . 140790) (-3756 . 140530) (-3757 . 139728) (-3758 . 139678)
+ (-3759 . 139362) (-3760 . 139292) (-3761 . 139146) (-3762 . 139050)
+ (-3763 . 138942) (-3764 . 138339) (-3765 . 138211) (-3766 . 138070)
+ (-3767 . 137676) (-3768 . 137125) (-3769 . 136981) (-3770 . 136776)
+ (-3771 . 136639) (-3772 . 136486) (-3773 . 136391) (-3774 . 136155)
+ (-3775 . 136001) (-3776 . 135939) (-3777 . 135858) (-3778 . 135656)
+ (-3779 . 135588) (-3780 . 135390) (-3781 . 135197) (-3782 . 134946)
+ (-3783 . 134880) (-3784 . 134722) (-3785 . 134504) (-3786 . 134431)
+ (-3787 . 134304) (-3788 . 134140) (-3789 . 134059) (-3790 . 133289)
+ (-3791 . 132956) (-3792 . 132717) (-3793 . 132372) (-3794 . 132268)
+ (-3795 . 132066) (-3796 . 132015) (-3797 . 131652) (-3798 . 131597)
+ (-3799 . 131528) (-3800 . 131476) (-3801 . 131363) (-3802 . 131335)
+ (-3803 . 131198) (-3804 . 130975) (-3805 . 130497) (-3806 . 130395)
+ (-3807 . 129929) (-3808 . 129898) (-3809 . 129838) (-3810 . 129523)
+ (-3811 . 129492) (-3812 . 127636) (-3813 . 127325) (-3814 . 127243)
+ (-3815 . 126679) (-3816 . 126432) (-3817 . 126346) (-3818 . 126221)
+ (-3819 . 125971) (-3820 . 125870) (-3821 . 125757) (-3822 . 125685)
+ (-3823 . 125586) (-3824 . 125512) (-3825 . 125455) (-3826 . 125079)
+ (-3827 . 124950) (-3828 . 124558) (-3829 . 124298) (-3830 . 124202)
+ (-3831 . 123952) (-3832 . 123676) (-3833 . 123342) (-3834 . 123213)
+ (-3835 . 123117) (-3836 . 123080) (-3837 . 122883) (-3838 . 122824)
+ (-3839 . 122740) (-3840 . 122567) (-3841 . 122257) (-3842 . 121882)
+ (-3843 . 121706) (-3844 . 121431) (-3845 . 121270) (-3846 . 121242)
+ (-3847 . 120897) (-3848 . 120459) (-3849 . 120281) (-3850 . 120090)
+ (-3851 . 119932) (-3852 . 119636) (-3853 . 119520) (-3854 . 119369)
+ (-3855 . 119119) (-3856 . 119038) (-3857 . 118757) (-3858 . 118484)
+ (-3859 . 118414) (-3860 . 118032) (-3861 . 117960) (-3862 . 117770)
+ (-3863 . 117720) (-3864 . 117576) (-3865 . 117524) (-3866 . 117246)
+ (-3867 . 116700) (-3868 . 116595) (-3869 . 116543) (-3870 . 116447)
+ (-3871 . 116375) (-3872 . 115780) (-3873 . 115714) (-3874 . 115650)
+ (-3875 . 115595) (-3876 . 115309) (-3877 . 115036) (-3878 . 114739)
+ (-3879 . 114605) (-3880 . 114501) (-3881 . 114405) (-3882 . 114221)
+ (-3883 . 114168) (-3884 . 114054) (-3885 . 113056) (-3886 . 112960)
+ (-3887 . 112891) (-3888 . 112549) (-3889 . 112303) (-3890 . 112202)
+ (-3891 . 111864) (-3892 . 111787) (-3893 . 111617) (-3894 . 111447)
+ (-3895 . 111343) (-3896 . 111309) (-3897 . 111248) (-3898 . 111063)
+ (-3899 . 110964) (-3900 . 110868) (-3901 . 110445) (-3902 . 110392)
+ (-3903 . 110336) (-3904 . 109998) (-3905 . 107758) (-3906 . 106610)
+ (-3907 . 106422) (-3908 . 106321) (-3909 . 106132) (-3910 . 106016)
+ (-3911 . 105605) (-3912 . 105531) (-3913 . 105422) (-3914 . 105269)
+ (-3915 . 105154) (-3916 . 105126) (-3917 . 104989) (-3918 . 104888)
+ (-3919 . 104860) (-3920 . 104665) (-3921 . 104566) (-3922 . 104513)
+ (-3923 . 104389) (-3924 . 104337) (-3925 . 104257) (-3926 . 104097)
+ (-3927 . 104031) (-3928 . 103897) (-3929 . 103837) (-3930 . 103766)
+ (-3931 . 103672) (-3932 . 103586) (-3933 . 103377) (-3934 . 103035)
+ (-3935 . 102919) (-3936 . 102866) (-3937 . 102793) (-3938 . 102694)
+ (-3939 . 101959) (-3940 . 101744) (-3941 . 101692) (-3942 . 101578)
+ (-3943 . 101361) (-3944 . 101291) (-3945 . 101078) (-3946 . 101041)
+ (-3947 . 100777) (-3948 . 100437) (-3949 . 100273) (-3950 . 100189)
+ (-3951 . 100047) (-3952 . 99712) (-3953 . 99585) (-3954 . 99557)
+ (-3955 . 99505) (-3956 . 99404) (-3957 . 99323) (-3958 . 99074)
+ (-3959 . 98934) (-3960 . 98848) (-3961 . 98744) (-3962 . 98658)
+ (-3963 . 98550) (-3964 . 98480) (-3965 . 98193) (-3966 . 98139)
+ (-3967 . 98059) (-3968 . 97945) (-3969 . 97892) (-3970 . 97796)
+ (-3971 . 97719) (-3972 . 97642) (-3973 . 97548) (-3974 . 97164)
+ (-3975 . 96925) (-3976 . 96532) (-3977 . 96504) (-3978 . 96406)
+ (-3979 . 96350) (-3980 . 96229) (-3981 . 96087) (-3982 . 95992)
+ (-3983 . 95840) (-3984 . 95788) (-3985 . 95682) (-3986 . 95612)
+ (-3987 . 95534) (-3988 . 95465) (-3989 . 95433) (-3990 . 95323)
+ (-3991 . 95273) (-3992 . 95189) (-3993 . 95002) (-3994 . 94822)
+ (-3995 . 94719) (-3996 . 94617) (-3997 . 94529) (-3998 . 94384)
+ (-3999 . 94226) (-4000 . 94136) (-4001 . 93933) (-4002 . 93771)
+ (-4003 . 93687) (-4004 . 93196) (-4005 . 93058) (-4006 . 92981)
+ (-4007 . 92862) (-4008 . 92455) (-4009 . 92027) (-4010 . 91819)
+ (-4011 . 91679) (-4012 . 91508) (-4013 . 91454) (-4014 . 91072)
+ (-4015 . 90897) (-4016 . 90586) (-4017 . 90496) (-4018 . 90306)
+ (-4019 . 90146) (-4020 . 90094) (-4021 . 90008) (-4022 . 89922)
+ (-4023 . 89780) (-4024 . 89651) (-4025 . 89401) (-4026 . 89191)
+ (-4027 . 88862) (-4028 . 88614) (-4029 . 88559) (-4030 . 87999)
+ (-4031 . 87971) (-4032 . 87776) (-4033 . 87710) (-4034 . 87419)
+ (-4035 . 87353) (-4036 . 87173) (-4037 . 87074) (-4038 . 86974)
+ (-4039 . 86739) (-4040 . 86591) (-4041 . 86426) (-4042 . 86343)
+ (-4043 . 86205) (-4044 . 86110) (-4045 . 85632) (-4046 . 85501)
+ (-4047 . 85415) (-4048 . 85373) (-4049 . 85317) (-4050 . 85198)
+ (-4051 . 85005) (-4052 . 84937) (-4053 . 84511) (-4054 . 84483)
+ (-4055 . 84412) (-4056 . 84361) (-4057 . 84232) (-4058 . 83805)
+ (-4059 . 83708) (-4060 . 83408) (-4061 . 82960) (-4062 . 82893)
+ (-4063 . 82841) (-4064 . 82703) (-4065 . 82550) (-4066 . 82447)
+ (-4067 . 82383) (-4068 . 82143) (-4069 . 82085) (-4070 . 81953)
+ (-4071 . 81866) (-4072 . 81708) (-4073 . 81651) (-4074 . 79870)
+ (-4075 . 79779) (-4076 . 79631) (-4077 . 79511) (-4078 . 79410)
+ (-4079 . 79278) (-4080 . 79137) (-4081 . 78960) (-4082 . 78583)
+ (-4083 . 78473) (-4084 . 78328) (-4085 . 78094) (-4086 . 77713)
+ (-4087 . 77627) (-4088 . 77533) (-4089 . 77456) (-4090 . 77030)
+ (-4091 . 76968) (-4092 . 76657) (-4093 . 76576) (-4094 . 76406)
+ (-4095 . 76261) (-4096 . 75873) (-4097 . 75792) (-4098 . 75225)
+ (-4099 . 75110) (-4100 . 75057) (-4101 . 74929) (-4102 . 74856)
+ (-4103 . 74778) (-4104 . 74701) (-4105 . 74334) (-4106 . 74239)
+ (-4107 . 73898) (-4108 . 73830) (-4109 . 73571) (-4110 . 73512)
+ (-4111 . 73426) (-4112 . 73110) (-4113 . 73024) (-4114 . 72561)
+ (-4115 . 72195) (-4116 . 72093) (-4117 . 71980) (-4118 . 71855)
+ (-4119 . 71689) (-4120 . 71639) (-4121 . 71562) (-4122 . 71352)
+ (-4123 . 71245) (-4124 . 71101) (-4125 . 70757) (-4126 . 70662)
+ (-4127 . 70566) (-4128 . 70465) (-4129 . 70413) (-4130 . 70264)
+ (-4131 . 70168) (-4132 . 70065) (-4133 . 69904) (-4134 . 69779)
+ (-4135 . 69103) (-4136 . 69032) (-4137 . 68998) (-4138 . 68929)
+ (-4139 . 68855) (-4140 . 68775) (-4141 . 68354) (-4142 . 67640)
+ (-4143 . 65508) (-4144 . 65474) (-4145 . 65228) (-4146 . 65174)
+ (-4147 . 64907) (-4148 . 64823) (-4149 . 64794) (-4150 . 64742)
+ (-4151 . 64596) (-4152 . 64508) (-4153 . 64365) (-4154 . 64306)
+ (-4155 . 63885) (-4156 . 63787) (-4157 . 63157) (-4158 . 63105)
+ (-4159 . 62792) (-4160 . 61926) (-4161 . 61802) (-4162 . 61681)
+ (-4163 . 61650) (-4164 . 61588) (-4165 . 61535) (-4166 . 61462)
+ (-4167 . 61365) (-4168 . 61209) (-4169 . 60124) (-4170 . 60001)
+ (-4171 . 59888) (-4172 . 59789) (-4173 . 58622) (-4174 . 58518)
+ (-4175 . 58393) (-4176 . 58325) (-4177 . 58016) (-4178 . 57806)
+ (-4179 . 57754) (-4180 . 57683) (-4181 . 57548) (-4182 . 57438)
+ (-4183 . 57370) (-4184 . 57198) (-4185 . 57124) (-4186 . 57029)
+ (-4187 . 56928) (-4188 . 56633) (-4189 . 56506) (-4190 . 55854)
+ (-4191 . 55548) (-4192 . 55140) (-4193 . 54987) (-4194 . 53585)
+ (-4195 . 53465) (-4196 . 53342) (-4197 . 53257) (-4198 . 53189)
+ (-4199 . 53082) (-4200 . 52978) (-4201 . 52806) (-4202 . 52756)
+ (-4203 . 52658) (-4204 . 52122) (-4205 . 52064) (-4206 . 52014)
+ (-4207 . 51899) (-4208 . 51826) (-4209 . 51711) (-4210 . 51519)
+ (-4211 . 51436) (-4212 . 51358) (-4213 . 51242) (-4214 . 51157)
+ (-4215 . 51095) (-4216 . 51022) (-4217 . 50518) (-4218 . 50489)
+ (-4219 . 50403) (-4220 . 44889) (-4221 . 44499) (-4222 . 44426)
+ (-4223 . 44354) (-4224 . 44201) (-4225 . 43173) (-4226 . 42901)
+ (-4227 . 42818) (-4228 . 42741) (-4229 . 42348) (-4230 . 42296)
+ (-4231 . 42078) (-4232 . 41711) (-4233 . 41655) (-4234 . 41537)
+ (-4235 . 41389) (-4236 . 41244) (-4237 . 41184) (-4238 . 41107)
+ (-4239 . 40665) (-4240 . 40579) (-4241 . 40405) (-4242 . 40164)
+ (-4243 . 40049) (-4244 . 39827) (-4245 . 39698) (-4246 . 39602)
+ (-4247 . 39528) (-4248 . 39385) (-4249 . 39050) (-4250 . 38998)
+ (-4251 . 38910) (-4252 . 38833) (-4253 . 38771) (-4254 . 38743)
+ (-4255 . 38590) (-4256 . 38469) (-4257 . 38396) (-4258 . 38323)
+ (-4259 . 38229) (-4260 . 38176) (-4261 . 38096) (-4262 . 37965)
+ (-4263 . 37726) (-4264 . 37596) (-4265 . 37368) (-4266 . 37131)
+ (-4267 . 36623) (-4268 . 36450) (-4269 . 36158) (-4270 . 35920)
+ (-4271 . 35849) (-4272 . 35797) (-4273 . 35640) (-4274 . 35574)
+ (-4275 . 35479) (-4276 . 35358) (-4277 . 35290) (-4278 . 35115)
+ (-4279 . 35027) (-4280 . 34926) (-4281 . 34711) (-4282 . 34609)
+ (-4283 . 34521) (-4284 . 34462) (-4285 . 34366) (-4286 . 34119)
+ (-4287 . 34067) (-4288 . 33313) (-4289 . 33169) (-4290 . 33107)
+ (-4291 . 32983) (-4292 . 32902) (-4293 . 32613) (-4294 . 32441)
+ (-4295 . 31703) (-4296 . 31624) (-4297 . 31564) (-4298 . 31448)
+ (-4299 . 31375) (-4300 . 31323) (-4301 . 31221) (-4302 . 31087)
+ (-4303 . 30946) (-4304 . 30852) (-4305 . 30756) (-4306 . 30638)
+ (-4307 . 30345) (-4308 . 30009) (-4309 . 29792) (-4310 . 29594)
+ (-4311 . 29542) (-4312 . 29381) (-4313 . 29163) (-4314 . 29005)
+ (-4315 . 28815) (-4316 . 28720) (-4317 . 28435) (-4318 . 28347)
+ (-4319 . 28273) (-4320 . 28127) (-4321 . 27915) (-4322 . 27808)
+ (-4323 . 27664) (-4324 . 27591) (-4325 . 26793) (-4326 . 26702)
+ (-4327 . 26521) (-4328 . 26424) (-4329 . 25820) (-4330 . 25657)
+ (-4331 . 25574) (-4332 . 25519) (-4333 . 25436) (-4334 . 25276)
+ (-4335 . 23646) (-4336 . 23502) (-4337 . 23414) (-4338 . 23211)
+ (-4339 . 22453) (-4340 . 22179) (-4341 . 22110) (-4342 . 21980)
+ (-4343 . 21885) (-4344 . 20687) (-4345 . 19828) (-4346 . 19493)
+ (-4347 . 19362) (-4348 . 18915) (-4349 . 18377) (-4350 . 18247)
+ (-4351 . 18066) (-4352 . 17994) (-4353 . 17912) (-4354 . 17860)
+ (-4355 . 16564) (-4356 . 16511) (-4357 . 16425) (-4358 . 16178)
+ (-4359 . 15816) (-4360 . 15675) (-4361 . 15520) (-4362 . 15367)
+ (-4363 . 15254) (-4364 . 15193) (-4365 . 15133) (-4366 . 14935)
+ (-4367 . 14832) (-4368 . 14679) (-4369 . 14558) (-4370 . 13594)
+ (-4371 . 13470) (-4372 . 13295) (-4373 . 13267) (-4374 . 13195)
+ (-4375 . 12803) (-4376 . 12702) (-4377 . 12512) (-4378 . 12095)
+ (-4379 . 12021) (-4380 . 11817) (-4381 . 11632) (-4382 . 11538)
+ (-4383 . 11481) (-4384 . 11363) (-4385 . 11292) (-4386 . 11226)
+ (-4387 . 11027) (-4388 . 10970) (-4389 . 10911) (-4390 . 10883)
+ (-4391 . 10830) (-4392 . 10706) (-4393 . 10603) (-4394 . 10450)
+ (-4395 . 10303) (-4396 . 9991) (-4397 . 9914) (-4398 . 9859)
+ (-4399 . 9825) (-4400 . 9754) (-4401 . 9585) (-4402 . 7819)
+ (-4403 . 7676) (-4404 . 7599) (-4405 . 7469) (-4406 . 7045)
+ (-4407 . 6819) (-4408 . 6736) (-4409 . 6665) (-4410 . 6583)
+ (-4411 . 6555) (-4412 . 6402) (-4413 . 4947) (-4414 . 4873)
+ (-4415 . 4753) (-4416 . 4645) (-4417 . 4575) (-4418 . 4357)
+ (-4419 . 4214) (-4420 . 4118) (-4421 . 4063) (-4422 . 3989)
+ (-4423 . 3764) (-4424 . 2274) (-4425 . 2188) (-4426 . 2132)
+ (-4427 . 2049) (-4428 . 1463) (-4429 . 1389) (-4430 . 1229)
+ (-4431 . 1106) (-4432 . 927) (-4433 . 765) (-4434 . 181) (-4435 . 89)
+ (-4436 . 30)) \ No newline at end of file